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Abstract: The interest in video anomaly detection systems that can detect different types of anomalies,
such as violent behaviours in surveillance videos, has gained traction in recent years. The current
approaches employ deep learning to perform anomaly detection in videos, but this approach has
multiple problems. For example, deep learning in general has issues with noise, concept drift,
explainability, and training data volumes. Additionally, anomaly detection in itself is a complex
task and faces challenges such as unknownness, heterogeneity, and class imbalance. Anomaly
detection using deep learning is therefore mainly constrained to generative models such as generative
adversarial networks and autoencoders due to their unsupervised nature; however, even they suffer
from general deep learning issues and are hard to properly train. In this paper, we explore the
capabilities of the Hierarchical Temporal Memory (HTM) algorithm to perform anomaly detection
in videos, as it has favorable properties such as noise tolerance and online learning which combats
concept drift. We introduce a novel version of HTM, named GridHTM, which is a grid-based HTM
architecture specifically for anomaly detection in complex videos such as surveillance footage. We
have tested GridHTM using the VIRAT video surveillance dataset, and the subsequent evaluation
results and online learning capabilities prove the great potential of using our system for real-time
unsupervised anomaly detection in complex videos.

Keywords: HTM; deep learning; surveillance; anomaly detection

1. Introduction and Motivation

As the global demand for security and automation increases, many seek to use video
anomaly detection systems. In the US alone, the surveillance market is expected to reach
USD 23.60 billion by 2027 [1]. Leveraging modern computer vision, modern anomaly
detection systems play an important role in increasing monitoring efficiency and reducing
the need for expensive live monitoring. Their use cases can vary from detecting faulty
products on an assembly line to detecting car accidents on a highway.

The most important component in video anomaly detection systems is the algorithm
behind it. These can range from simple on-board algorithms [2,3] to advanced deep learning
models [4–6], with the latter experiencing an increase in popularity over the past few years.
Yet, despite major progress within the field of deep learning, there are still many tasks
where humans outperform models, especially in anomaly detection where the anomalies
are often undefined. In addition, deep learning approaches have challenges when dealing
with online learning, noise and concept drift [7–10].

The cause for the discrepancy often lies in the difference between how humans and
machine learning algorithms represent data and learn. Most machine learning algorithms
use a dense representation of the data and apply back-propagation in order to learn. It is
believed that human learning occurs in the neocortex, which utilizes a sparse representation
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and employs Hebbian-style learning, as supported by evidence [11]. For the latter, there
is a growing field of machine learning dedicated to replicating the inner mechanics of the
neocortex, namely Hierarchical Temporal Memory (HTM) theory [12]. HTM bears several
advantages over standard machine learning, such as noise-tolerance and the ability to
adapt to data changing over time (e.g., type anomalies change, behaviour changes, etc.).

The main motivation behind this work is to explore the use of HTM for visual content.
In light of the advantages offered by HTM and the rise of video anomaly detection, a
natural question would be whether HTM could be applied to video anomaly detection for
surveillance videos.

In this paper, we therefore propose and evaluate Grid-based Hierarchical Temporal
Memory (GridHTM) which is a novel expansion of the base HTM algorithm that allows
for unsupervised anomaly detection in videos. The main contributions of our work are
the following:

• We provide the theoretical and practical foundation for making HTM usable in a
visual analysis context.

• We present GridHTM, a method that allows users to perform unsupervised anomaly
detection in real-time for visual content.

• We show the potential of GridHTM using the VIRAT publicly available real-world dataset.
• We analyse and discuss possible shortcomings and future directions.
• We provide our implementation as open source code.

Our initial experimental results show the potential of the presented GridHTM for
unsupervised visual anomaly detection in real-time. Since GridHTM can perform in real-
time on little data and adjust itself to possible changes over time, it holds potential as a
feasible alternative to methods that require a large amount of labelled data and are limited
to offline learning schemes.

2. Related Work

Anomaly detection is often defined as detecting data points that deviate from the
general distribution [5]. A subset of anomaly detection is smart surveillance [13], which is
the use of video analysis specifically in surveillance. Unlike most other problems in deep
learning, anomaly detection deals with unpredictable and rare events which makes it hard
to apply traditional deep learning for anomaly detection. Popular approaches therefore
often employ generative models, that calculate an anomaly measure using generated or
reconstructed data [5,14–16]. This approach is based on the assumption that the model will
only be able to generate data similar to what it has been trained on, and therefore fail when
an anomalous event occurs.

However, deep learning has issues that make it difficult to apply for complex anomaly
detection in surveillance scenarios that change over time and require online learning.
One issue for deep-learning models in general is that they are susceptible to noise in
the dataset [9,10], which leads to decreased model accuracy and poor prediction results.
Likewise, concept drift is an ongoing challenge in deep learning [7,8] as deep learning
models typically do not perform online learning and must be frequently adjusted to
maintain performance on evolving data. Although anomalies typically do not imply a
shift in the underlying data, an anomaly detection model that neglects concept drift will
eventually begin detecting false anomalies.

As mentioned before, deep learning does not work well for online learning which
is required in dynamic and swiftly changing environments such as video or network
traffic surveillance [17]. In addition, deep learning models require a large amount of data
before they can be considered effective, and performance increases logarithmically based
on the volume of training data [18]. Deep learning models also suffer from issues with
out-of-distribution generalization [19], where a model might perform great on the dataset
it is tested on, but performs poorly when deployed in real life. This could be caused by
selection bias in the dataset or when there are differences in the causal structure between the
training domain and the deployment domain [20]. Another challenge with deep learning
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models is that they generally suffer from a lack of explainability [21]. While it is known
how the models make their decisions, their huge parametric spaces make it unfeasible
to determine why they make those predictions. In addition, the possible application of
machine learning in critical sectors, such as medicine, makes approaches that provide some
degree of explanation necessary.

In this work, we want to open up a possible new direction of online, real-time learning
for visual content based on the HTM theory. The HTM theory [12] introduces a machine
learning algorithm that works on the same principles as the human brain and therefore
solves some of the issues that deep learning has. Here, we give a high-level overview, and
we refer to original works [12,22] for more information. HTM is considered noise resistant
and can perform online learning, meaning that it learns as it observes more data. HTM
replicates the structure of the neocortex which is made up of cortical regions, and which in
turn are made up of mini-columns and then neurons.

The data in an HTM model is represented using a Sparse Distributed Representation
(SDR), which is a sparse bit array. An encoder converts real world values into SDRs, and
there are currently encoders for numbers, geospatial locations, categories, and dates. One of
the difficulties with HTM is making it work on visual data, where creating a good encoder
for visual data is still being researched [23–25].

The learning mechanism consists of two parts, the Spatial Pooler (SP) and the Temporal
Memory (TM). The SP learns to extract semantically important information into output
SDRs. The TM learns sequences of patterns of SDRs and forms a prediction in the form
of a predictive SDR. Both the SP and TM learn by growing and strengthening/weakening
synapses, similar to Hebbian learning [26]. Finally, the predictive SDR can be used in
tandem with a simple classifier to make a classification, or be compared against the actual
outcome in order to calculate an anomaly score. The method for determining the anomaly
score involves comparing the current predictive SDR and the output of the SP in the
following timestep, and computing the ratio of the number of overlapping active bits to the
total number of bits. Figure 1 shows the HTM pipeline at a glance.

Figure 1. A typical HTM pipeline. A common next-step could be to use a classifier to convert the
predictive SDR into a classification, or to compare the prediction with the actual outcome.

Ahmad et al. [22] showed that HTM is highly capable of performing anomaly detection
on low-dimensional data and is able to outperform other anomaly detection methods. On
the other hand, related works [25] show that HTM struggles with higher dimensional data,
such as video. Therefore, a natural conclusion is that HTM should be applied differently,
and that a new type of architecture using HTM should be explored for the purpose of video
anomaly detection and surveillance.

Overall, from the related work, we can see that HTM has potential to be extended
for video anomalies detection in real-time. Nevertheless, there are still many basic open
questions that warrant exploration. Thus, a comparison of HTM with other algorithms
at this stage is not of interest, but rather an understanding of the internal processes and
limitations is needed.

3. GridHTM

This paper proposes and explores a new type of architecture, named Grid-based Hi-
erarchical Temporal Memory (GridHTM), for anomaly detection in videos using HTM,
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and proposes the use of segmentation techniques to simplify the data into an SDR-friendly
format. These segmentation techniques could be anything from simple binary thresholding
to deep learning instance segmentation. Even keypoint detectors such as Oriented FAST
and Rotated BRIEF (ORB) [27] could in theory be applied. When explaining Grid-based
Hierarchical Temporal Memory (GridHTM), the examples will be taken from deep learn-
ing instance segmentation of cars on a video from the VIRAT [28] dataset. An example
segmentation is shown in Figure 2.

Figure 2. Segmentation result of cars, which is suited for use as an SDR. Original frame taken from
VIRAT [28].

The idea is that the SP will learn to find an optimal general representation of cars.
How general this representation is can be configured using the various SP parameters, but
ideally they should be set so that different cars will be represented similarly while trucks
and motorcycles will be represented differently. An example representation by the SP is
shown in Figure 3.

Figure 3. The SDR (left) and its corresponding SP representation (right) for the original image in
Figure 2. Both are SDRs, but the one produced by the SP is of a lower dimension and tries to capture
unique features that it observes are reoccurring.

The task of the TM will then be to learn the common patterns that the cars exhibit,
their speed, shape, and positioning will be taken into account. Finally, the learning will be
set so that new patterns are learned quickly, but forgotten slowly. This will allow the model
to quickly learn the norm, even if there is little activity, while still reacting to anomalies.
This requires that the point of view is stationary, in our example this means that the camera
is stationary.

It is possible to split different segmentation classes into separate SDRs. This will
give the SP and the TM the ability to learn different behaviors for each of the classes. For
instance, if there are “person” and “car” classes, then, the TM will learn that it is normal for
objects belonging to “person” to be on the sidewalk, while objects belonging to “car” will
be marked as anomalous when on the sidewalk.

Ideally, the architecture will have a calibration period spanning several days or weeks,
during which the architecture is not performing any anomaly detection, but is just learning
the patterns. In general, the duration of the calibration period is set so that the most
common events have had time to be observed.
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4. Improvements

Daylidyonok et al. [25] tested only the base HTM algorithm and showed that the
algorithm cannot handle subtle anomalies, and therefore multiple improvements needed
to be introduced to increase effectiveness.

4.1. Invariance

One issue that becomes evident is the lack of invariance, due to the TM learning the
global patterns. Using the example in Figure 2, it learns that it is normal for cars to drive
along the road but only in the context of there being cars parked in the parking lot. It
is instead desired that the TM learns that it is normal for cars to drive along the road,
regardless of whether there are cars in the parking lot. We propose a solution based on
dividing the encoder output into a grid and have a separate SP and TM for each cell in the
grid. The anomaly scores of all the cells are then aggregated into a single anomaly score
using an aggregation function.

4.2. Aggregation Function

Selecting the correct aggregation function is important because it affects the final
anomaly output. For instance, it might be tempting to use the mean of all the anomaly
scores as the aggregation function:

X : {x ∈ R : x ≥ 0}

Anomaly_Score =
∑

x∈X
x

|X|

where X denotes the set of anomaly scores x from each individual grid. However, this
leads to problems with normalization, meaning that an overall anomaly score of 1 is hard
to achieve due to many cells having a zero anomaly score. In fact, it becomes unclear what
a high anomaly score is anymore. Using the mean also means that anomalies that take up a
lot of space will be weighted higher than anomalies that take up little space, which might
not be desirable. To solve the aforementioned problem and given that the data contain little
noise, a potential aggregation function could be the non-zero mean:

X : {x ∈ R : x > 0}

Anomaly_Score =


∑

x∈X
x

|X| if |X| > 0

0 otherwise

This means that only the cells with a strictly positive anomaly score will be contributing
to the overall anomaly score which helps solve the aforementioned problems. Meanwhile,
the non-zero mean will perform poorly when the architecture is exposed to noisy data
which could lead to there always being cells with a high anomaly score. To clarify, noise in
this context refers to unknown events occurring that are not necessarily anomalies, such
as flickering due to objects falling above/below the instance classification threshold, or
randomness in the input data such as sperm cells that vibrate seemingly randomly.

Figure 4 illustrates the effect of an aggregation function for noisy data, where the
non-zero mean is rendered useless due to the noise. On the other hand, Figure 5 shows
how the non-zero mean gives a clearer anomaly score when the data is clean compared to
the noise data which has a more chaotic line.
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Figure 4. Aggregation function performance on noisy data.
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Figure 5. Aggregation function performance on clean data.

4.3. Explainability

Having the encoder output divided into a grid has the added benefit of introducing
explainability into the model. By using Grid HTM, it is now possible to determine where
in the input an anomaly has occurred by simply observing which cell has a high anomaly
score. It is also possible to estimate the number of predictions for each cell [29] which can
be used as a measure of certainty, where fewer predictions means higher certainty. Making
it possible to measure certainty per cell creates a new source of information that can be
used for explainability or robustness purposes.

4.4. Flexibility and Performance

Furthermore, it is also possible to configure the SP and the TM in each cell indepen-
dently, giving the architecture increased flexibility, and to use a non-uniform grid, meaning
that some cells can have different sizes. Furthermore, dividing the frame into smaller cells
makes it possible to run each cell in parallel for increased performance.

4.5. Reviewing Encoder Rules

A potential challenge with the grid approach is that the rules [12] for creating a good
encoder, may not be respected and therefore should be reviewed:

• Semantically similar data should result in SDRs with overlapping active bits. In this
example, a car at one position will produce an SDR with a high amount of overlapping
bits as another car at a similar position in the input image.
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• The same input should always produce the same SDR. The segmentation model
produces a deterministic output given the same input.

• The output must have the same dimensionality (total number of bits) for all inputs.
The segmentation model output has a fixed dimensionality.

• The output should have similar sparsity (similar number of one-bits) for all inputs
and have enough one-bits to handle noise and subsampling. The segmentation model
does not respect this. An example is that there can be no cars (zero active bits), one car
(n active bits), or two cars (2n active bits), and that this will fluctuate over time.

The solution for the last rule is two-fold, and consists of imposing a soft upper bound
and a hard lower bound for the number of active pixels within a cell. The purpose is to
lower the variation of number of active pixels, while also containing enough semantic
information for the HTM to work:

• Pick a cell size so that the distribution of number of active pixels (white pixels, repre-
senting active bits) is as tight as possible, while containing enough semantic informa-
tion and also being small enough so that the desired invariance is achieved. The cell
size acts as a soft upper bound for the possible number of active pixels.

• Create a pattern representing emptiness, where the number of active bits is similar to
what can be expected on average when there are cars inside a cell. This acts as a hard
lower bound for the number of active pixels.

There could be situations where a few pixels are active within a cell, which could
happen when a car has just entered a cell, but this is acceptable as long as it does not affect
the distribution too much. If it does affect the distribution, which can be the case with noisy
data, then an improvement would be to add a minimum sparsity requirement before a cell
is considered not empty, e.g., less than five active pixels means that the cell is empty. In the
following example, the number of active pixels within a cell centered in the video was used
to build the distributions as seen in Figure 6.

0 20 40 60
Number of Active Pixels

101
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103

104

105

Fr
am

es

σ=3.78
Non-zero Mean

(a) Without empty pattern

20 40 60
Number of Active Pixels
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102

103

104

105

Fr
am

es

σ=1.41
Non-zero Mean

(b) With empty pattern, minimum sparsity of 5

Figure 6. Distribution of number of active pixels within a cell of size 12× 12.

With a carefully selected empty pattern sparsity, the standard deviation of active pixels
was lowered from 3.78 to 1.41. It is possible to automate this process by developing an
algorithm which finds the optimal cell size and empty pattern sparsity which causes the
least variation of the number of active pixels per cell. This algorithm would run as a part of
the calibration process.

In addition to the aggregated anomaly score, the visual representation of these changes
is also a crucial output. This can be observed in Figure 7, where cells are color-coded with
red indicating a higher anomaly score and green indicating a lower anomaly score.
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Figure 7. Example Grid HTM output and the corresponding input. The color represents the anomaly
score for each of the cells, where red represents high anomaly score and green means zero anomaly
score. Two of the cars are marked as anomalous because they are moving, which is something Grid
HTM has not seen before during its 300 frame-long lifetime (top right).

4.6. Stabilizing Anomaly Output

An additional limitation of the grid-based approach is its inability to anticipate the
presence of a car entering a cell. The TM within a cell is unable to detect external factors,
resulting in a high anomaly output when a car first enters a cell. This is illustrated in
Figure 8, where it can be observed that this effect causes the anomaly output to needlessly
fluctuate. The band-aid solution is to ignore the anomaly score for the frame during which
the cell goes from being empty to being not empty, as illustrated in Figure 9.

Figure 8. High anomaly score when an empty cell (represented with an empty pattern with a sparsity
value of 5) changes to being not empty, as something enters the cell.

Figure 9. The anomaly score is ignored (set to 0) for the frame in which the cell changes state from
empty to not empty.



Sensors 2023, 23, 2087 9 of 15

A more proper solution could be to allow the TM to grow synapses to the TMs in the
neighboring cells; however, this is not documented in any research papers and might also
hinder invariance. A pyramid-based architecture could also be explored for solving this issue.

4.7. Multistep Temporal Patterns

Since the TM can only grow segments to cells that were active in the previous timestep,
it will struggle to learn temporal patterns across multiple timesteps [30]. This is especially
evident in high-frame-rate videos, where an object in motion has a similar representation
at timestep t and t + 1, as an object standing still.

This could cause situations where an object that is supposed to be moving, suddenly
halts, yet the TM will not mark it as an anomaly due to it being stuck in a contextual loop.
A contextual loop occurs when a prediction made at time t is fulfilled by the state at time
t + 1, and then the prediction made at time t + 1 is similar to the state at time t, which in
this example happens if the object stops moving. This leads the TM to repeat the same state
it was in at time t, creating a loop.

To address this, one solution is to incorporate the past n SP outputs as input to the TM
by maintaining a buffer of past SP outputs and updating it as new SP outputs are received.
This is illustrated in Figure 10.

t t-1 t-2

Concatenate

SDR

t t-1 t-2

Concatenate

SDR

Figure 10. Example of concatenation with n = 3 when an object is moving from left to right (left),
compared to when an object is not in motion (right). It can be observed that the SDRs are vastly different.

This follows the core idea behind encoding semantic time in addition to the data,
which makes time, such as time of day and day of the week, act as a contextual anchor.
However, in this example there are no cyclical time elements that are suitable to be used as
contextual anchors, so as a replacement, the past observations are encoded instead.

Concatenating past observations together will force the TM input, for when an object
is in motion and when an object is still, to be unique. High-frame-rate videos can benefit
the most from this, and the effect will be more pronounced for higher values of n.

An advantage of incorporating temporal patterns is that it may increase the robustness
of the TM to temporal noise. For example, if an object is not captured by the deep learning
segmentation model encoder for a single frame, and thus disappears from the scene, this
noise will have less impact on the TM’s input as it will only constitute a small fraction 1

n of
the input, as the TM is now exposed to multiple frames at once.

4.8. Use Cases

One of the most straightforward applications of GridHTM is in semi-active surveil-
lance, where personnel are only required to examine the segments that contain anomalies,
resulting in a significant improvement in efficiency. For example, it could enable monitor-
ing of an entire city with a minimal number of personnel. This is achieved by directing
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attention to only the anomalous segments identified by GridHTM, which greatly reduces
the manpower required for active monitoring of the entire city.

5. Experimental Details and Results

As stated earlier, one of the use cases of GridHTM is anomaly detection in surveillance,
and using a video from the VIRAT [28] video dataset with long duration and a stationary
camera, we demonstrate our system. The video contains technical anomalies in the form of
sudden frame skips, as well as a synthetic anomaly of a frame repeat lasting several seconds,
which is included to test the ability of GridHTM to detect unusual temporal patterns and
understand the expected movement of objects over time. The working code for GridHTM
and the parameters for the experiments conducted in for this paper can be found on GitHub
https://github.com/vladim0105/GridHTM (accessed on 10 February 2023).

In this experiment, a segmentation model that can extract classes into their respective
SDRs is employed. This means that there could be an SDR for cars and an SDR for
pedestrians, that are then concatenated before being fed into the system.

The segmentation model used is PointRend [31] with a ResNet101 [32] backbone,
pretrained on ImageNet [33], and implemented using PixelLib [34]. For the sake of sim-
plicity, this experiment will focus only on the segmentation of cars. While on the topic of
segmentation, it is important to mention that the segmentation model is not perfect and
that there are cases where objects are misclassified as well as cases where cars repeatedly
go above and below the confidence threshold. It should also be mentioned that the system
trains as it observes, thus no pre-training of the system was performed before applying it
to the video, unlike the typical approach used with deep learning systems.

Normally, one would compare the performance of the system with state-of-the-art
deep learning methods, but at the time of writing there are no deep learning systems that
operate on the same premises and can provide a fair comparison. Typically, unsupervised
deep learning approaches are pre-trained on a specific domain and therefore perform poorly
when dealing with other domains or drifting changes in a domain, whereas GridHTM can
be put in potentially any domain and will learn its behaviors online.

5.1. Results

We can see in Figure 11 that GridHTM is detecting when segments begin and end.
However, it is not possible to use a threshold value to isolate them, and they also have vastly
different anomaly scores compared to each other. This is due to the way the aggregation
function works, which means that the anomaly output is dependent on the physical size
of the anomaly. It should also be noted that a moving average (n = 200) was applied to
smooth out the anomaly score output, otherwise the graph would be too noisy.

0 20000 40000 60000 80000 100000 120000 140000 160000
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Figure 11. Anomaly score output from GridHTM.
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With the aggregation functions presented in this paper in mind, it is safe to conclude
that looking at the anomaly score output is meaningless for complex data such as a surveil-
lance video. This however does not mean that GridHTM is completely useless, and this
can be observed by looking at the visual output of GridHTM. The visual output during
which the first segment anomaly occurs can be observed in Figure 12. Here, it is observed
that GridHTM correctly marks the sudden change of cars when the current segment ends
and a new segment begins.

Figure 12. The first segment anomaly, which is marked with red text, and the corresponding changes
detected by GridHTM (from red to yellow, strong to light weak change and green no change). The
numbers beneath each frame represent the relative frame number and the current anomaly score,
respectively.

5.1.1. Road

In the original video, there is a road on which cars regularly drive. By observing the
visual output, it becomes evident that after some time GridHTM has mostly learned that
behavior and does not report those moving cars as anomalies. This is shown in Figure 13.

Figure 13. Visual output of a car driving along a road.
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5.1.2. Frame Repeat

To prove that GridHTM has learned that cars on the road should be moving, it is possible
to inspect the visual output during the period when the video is repeating the same frame
and observe if the system identifies the cars that are stationary on the road as anomalies.

Figure 14. Anomaly output during the repeating frame, the start of the frame repeat is marked with
red text. The blue circle highlights the object of interest.

It can be observed in Figure 14 that the cars along the main road are not marked as
anomalies, but this could be attributed to the fact that there is a crossing there and that cars
periodically have to stop at that point to let pedestrians cross.

On the other hand, the anomaly marked with a blue circle shows a car on the road in a
parking lot that is identified as an anomaly, and the anomaly’s severity increases as the frame
is repeated. The reason for this is that, unlike the cars on the main road, it is unusual to see a
car stationary in that position, thus causing the anomaly. To confirm that the anomaly was
specifically caused by the repeated frame and not simply a repetition of the anomaly over
time, it should be compared to the anomaly output in the absence of the repeated frame.

Figure 15. Anomaly output when there is no frame repeating, where it should have repeated is
marked with red text. The blue circle highlights the object of interest.
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Figure 16. Anomaly output during the repeating frame, the start of the frame repeat is marked with
red text. The blue circle highlights the object of interest. This time without multistep temporal patterns.

As shown in Figure 15, it can be observed that the anomaly output is much lower
when there is no repeating frame. This confirms that the anomaly was caused by the
repeated frame, and that GridHTM was able to learn the expected temporal patterns of
moving objects.

It is also noteworthy to examine how GridHTM handles the repeated frames without
incorporating multistep temporal patterns, the result of which is shown in Figure 16.

Unfortunately, simply disabling multistep temporal patterns without adjusting the
other TM parameters causes the same car to be marked as an anomaly both before and
during the repeated frame. In fact, as previously mentioned, disabling multistep temporal
patterns causes GridHTM to become less noise tolerant, thus causing many more anomalies
to be wrongly detected. This can be seen in Figure 16, where a higher number of severe
anomalies are observed compared to previous examples. This also illustrates how sensitive
HTM can be with regard to parameters.

6. Conclusions

In this work, we presented a novel method called Grid-based Hierarchical Temporal
Memory (GridHTM) for anomaly detection in videos. The experimental results demonstrate
that the proposed GridHTM has potential for unsupervised anomaly detection in complex
videos such as surveillance footage. Notably, the method proposed herein is an extension
of traditional HTM which is usually only able to handle single data input streams. This
insight could also be used to extend the standard HTM even further in future work.

One of the most important future works would be to create a dataset with videos
that are several days long and contain anomalies such as car accidents, jaywalking, and
other similar anomalous behaviors. For GridHTM, more time can be spent exploring other
aggregation functions so that the aggregated anomaly score can be used more efficiently.
One could employ deep learning for this purpose or perhaps use another layer of HTM,
the possibilities are endless. Another area of improvement would be to develop an algo-
rithm that can automatically set the parameters for each cell during the calibration phase.
Additionally, it would be beneficial to increase explainability and robustness by imple-
menting a measure of certainty for each cell. Moreover, experiments should be conducted
to evaluate the use of depth or 3D vision for anomaly detection in surveillance, as the
depth information could be valuable. This could be achieved by using voxels, which can
be employed similarly to 2D segmentation, where an extra SDR could be created for each
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layer of depth in the voxelized 3D image. Furthermore, to address the problem of unstable
anomaly output, it might be worthwhile to investigate the possibility of having the TM in
each cell form synapses with neighboring cells.

Author Contributions: Conceptualization, V.M. and M.A.R.; methodology, V.M. and M.A.R.; soft-
ware, V.M.; validation, V.M.; formal analysis, V.M.; investigation, V.M.; resources, P.H.; data curation,
V.M.; writing—original draft preparation, V.M. and M.A.R.; writing—review and editing, V.M.,
M.A.R., V.T. and P.H.; visualization, V.M.; supervision, M.A.R., V.T. and P.H.; project administration,
M.A.R.; funding acquisition, P.H.; All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tewari, D. U.S. Video Surveillance Market by Component (Solution, Service, and Connectivity Technology), Application (Com-

mercial, Military & Defense, Infrastructure, Residential, and Others), and Customer Type (B2B and B2C): Opportunity Analysis
and Industry Forecast, 2020–2027. 2019. Available online: https://www.alliedmarketresearch.com/us-video-surveillance-
market-A06741 (accessed on 9 January 2023).

2. Agrawal, S.; Agrawal, J. Survey on anomaly detection using data mining techniques. Procedia Comput. Sci. 2015, 60, 708–713.
[CrossRef]

3. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [CrossRef]
4. Chalapathy, R.; Chawla, S. Deep learning for anomaly detection: A survey. arXiv 2019, arXiv:1901.03407 .
5. Pang, G.; Shen, C.; Cao, L.; Hengel, A.V.D. Deep learning for anomaly detection: A review. ACM Comput. Surv. (CSUR) 2021, 54, 1–38.

[CrossRef]
6. Wang, R.; Nie, K.; Wang, T.; Yang, Y.; Long, B. Deep learning for anomaly detection. In Proceedings of the 13th International

Conference On Web Search Furthermore, Data Mining, Yanuca Island, Cuvu, Fiji, 14–16 December 2020; pp. 894–896.
7. Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A Review on Outlier/Anomaly Detection in Time Series Data. ACM

Comput. Surv. 2021, 54, 1–33. [CrossRef]
8. Ye, N.; Li, K.; Bai, H.; Yu, R.; Hong, L.; Zhou, F.; Li, Z.; Zhu, J. OoD-Bench: Quantifying and Understanding Two Dimensions of

Out-of-Distribution Generalization. arXiv 2021, arXiv:2106.03721.
9. Gupta, S.; Gupta, A. Dealing with Noise Problem in Machine Learning Data-sets: A Systematic Review. Procedia Comput. Sci.

2019, 161, 466–474. [CrossRef]
10. Hendrycks, D.; Dietterich, T. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. arXiv 2019,

arXiv.1903.1226.
11. Cui, Y.; Ahmad, S.; Hawkins, J. The HTM Spatial Pooler—A Neocortical Algorithm for Online Sparse Distributed Coding. Front.

Comput. Neurosci. 2017, 11. [CrossRef] [PubMed]
12. Hawkins, J.; Ahmad, S.; Purdy, S.; Lavin, A. Biological and Machine Intelligence (BAMI), 2016. Initial online release 0.4. Available

online: https://numenta.com/resources/biological-and-machine-intelligence/ (accessed on 9 January 2023).
13. Zhu, S.; Chen, C.; Sultani, W. Video Anomaly Detection for Smart Surveillance. arXiv 2020, arXiv.2004.00222.
14. Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M.R.; Venkatesh, S.; Hengel, A.v.d. Memorizing Normality to Detect Anomaly:

Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection. arXiv 2019, arXiv.1904.02639.
15. Liu, W.; Luo, W.; Lian, D.; Gao, S. Future Frame Prediction for Anomaly Detection – A New Baseline. arXiv 2017, arXiv.1712.09867.
16. Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training.

arXiv 2018, arXiv.1805.0672.
17. Sahoo, D.; Pham, Q.; Lu, J.; Hoi, S.C. Online Deep Learning: Learning Deep Neural Networks on the Fly. arXiv 2018,

arXiv:1711.03705.
18. Sun, C.; Shrivastava, A.; Singh, S.; Gupta, A. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. arXiv 2017,

arXiv.1707.02968. [CrossRef]
19. Shen, Z.; Liu, J.; He, Y.; Zhang, X.; Xu, R.; Yu, H.; Cui, P. Towards Out-Of-Distribution Generalization: A Survey. arXiv 2021,

arXiv.2108.13624. [CrossRef]
20. D’Amour, A.; Heller, K.; Moldovan, D.; Adlam, B.; Alipanahi, B.; Beutel, A.; Chen, C.; Deaton, J.; Eisenstein, J.; Hoffman,

M.D.; et al. Underspecification Presents Challenges for Credibility in Modern Machine Learning. arXiv 2020, arXiv.2011.03395.
[CrossRef]

https://www.alliedmarketresearch.com/us-video-surveillance-market-A06741
https://www.alliedmarketresearch.com/us-video-surveillance-market-A06741
http://doi.org/10.1016/j.procs.2015.08.220
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1145/3439950
http://dx.doi.org/10.1145/3444690
http://dx.doi.org/10.1016/j.procs.2019.11.146
http://dx.doi.org/10.3389/fncom.2017.00111
http://www.ncbi.nlm.nih.gov/pubmed/29238299
https://numenta.com/resources/biological-and-machine-intelligence/
http://dx.doi.org/10.48550/ARXIV.1707.02968
http://dx.doi.org/10.48550/ARXIV.2108.13624
http://dx.doi.org/10.48550/ARXIV.2011.03395


Sensors 2023, 23, 2087 15 of 15

21. Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.;
Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]

22. Ahmad, S.; Lavin, A.; Purdy, S.; Agha, Z. Unsupervised real-time anomaly detection for streaming data. Neurocomputing 2017,
262, 134–147. [CrossRef]

23. Zou, Y.; Shi, Y.; Wang, Y.; Shu, Y.; Yuan, Q.; Tian, Y. Hierarchical Temporal Memory Enhanced One-Shot Distance Learning for
Action Recognition. In Proceedings of the 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, CA,
USA, 23–27 July 2018; pp. 1–6. [CrossRef]

24. McDougall, D. 2019. Available online: https://github.com/htm-community/htm.core/issues/259#issuecomment-533333336
(accessed on 9 January 2023).

25. Daylidyonok, I.; Frolenkova, A.; Panov, A.I., Extended Hierarchical Temporal Memory for Motion Anomaly Detection. In
Biologically Inspired Cognitive Architectures 2018; Springer International Publishing: Cham, Switzerland, 2019; pp. 69–81. [CrossRef]

26. Hebb, D. The Organization of Behavior: A Neuropsychological Theory; Taylor & Francis: Washington, DC, USA, 2005.
27. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the International

Conference on Computer Vision (ICCV), Barcelona, Spain, 2011; pp. 2564–2571. [CrossRef]
28. Oh, S.; Hoogs, A.; Perera, A.; Cuntoor, N.; Chen, C.C.; Lee, J.T.; Mukherjee, S.; Aggarwal, J.K.; Lee, H.; Davis, L.; et al. A

large-scale benchmark dataset for event recognition in surveillance video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 3153–3160. [CrossRef]

29. Heiserman, S. 2022. Available online: https://discourse.numenta.org/t/htm-core-am-i-getting-prediction-density-correctly/92
99 (accessed on 9 January 2023).

30. Iegorov, O. My Analysis On Why Temporal Memory Prediction Doesn’T Work On Sequential Data; 2017. Available online: https://
discourse.numenta.org/t/my-analysis-on-why-temporal-memory-prediction-doesnt-work-on-sequential-data/3141 (accessed
on 9 January 2023).

31. Kirillov, A.; Wu, Y.; He, K.; Girshick, R. PointRend: Image Segmentati on as Rendering. arXiv 2019, arXiv.1912.08193. [CrossRef]
32. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), Web Conference, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
[CrossRef]

33. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, 20–25 June 2009; pp. 248–255.
[CrossRef]

34. Olafenwa, A. Simplifying Object Segmentation with PixelLib Library; 2021. Available online: https://vixra.org/pdf/2101.0122v1.pdf
(accessed on 9 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.neucom.2017.04.070
http://dx.doi.org/10.1109/ICME.2018.8486447
https://github.com/htm-community/htm.core/issues/259#issuecomment-533333336
http://dx.doi.org/10.1007/978-3-319-99316-4_10
http://dx.doi.org/10.1109/ICCV.2011.6126544
http://dx.doi.org/10.1109/CVPR.2011.5995586
https://discourse.numenta.org/t/htm-core-am-i-getting-prediction-density-correctly/9299
https://discourse.numenta.org/t/htm-core-am-i-getting-prediction-density-correctly/9299
https://discourse.numenta.org/t/my-analysis-on-why-temporal-memory-prediction-doesnt-work-on-sequential-data/3141
https://discourse.numenta.org/t/my-analysis-on-why-temporal-memory-prediction-doesnt-work-on-sequential-data/3141
http://dx.doi.org/10.48550/ARXIV.1912.08193
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2009.5206848
https://vixra.org/pdf/2101.0122v1.pdf

	Introduction and Motivation
	Related Work
	GridHTM
	Improvements
	Invariance
	Aggregation Function
	Explainability
	Flexibility and Performance
	Reviewing Encoder Rules
	Stabilizing Anomaly Output
	Multistep Temporal Patterns
	Use Cases

	Experimental Details and Results
	Results
	Road
	Frame Repeat


	Conclusions
	References

