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In brief

CALANGO is a comparative genomics

tool that identifies genotype-phenotype

associations across species. It accounts

for the non-independence of species data

and can detect homologous regions and

molecular functional convergences linked

to phenotypes. Using phylogeny-aware

linear models, CALANGO can investigate

the genomic and functional evolution of

complex quantitative phenotypes across

species and select targets for

experimental characterization. This tool

can help answer key questions about the

genetic mechanisms underlying

phenotypic differences between species.
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THE BIGGER PICTURE Life is a complex and varied phenomenon with a wide range of phenotypic and
genotypic variations. The search for the putative genetic mechanisms associated with—and eventually
playing causal roles in—the phenotypic differences between species remains a key question in biology.
We introduce CALANGO, a comparative genomics tool to search for genome-wide genotype-phenotype
associations across species, taking advantage of the large amounts of phenotypic data available for spe-
cies with complete genomes. Our tool uses phylogeny-aware linearmodels to account for the non-indepen-
dence of species data and can be used to detect both homologous regions and molecular functional con-
vergences associated with phenotypes. Through two case studies, we show howCALANGO can be used to
investigate the genomic and functional evolution of distinct complex phenotypes and to select targets for
experimental characterization.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Living species vary significantly in phenotype and genomic content. Sophisticated statistical methods linking
genes with phenotypes within a species have led to breakthroughs in complex genetic diseases and genetic
breeding. Despite the abundance of genomic and phenotypic data available for thousands of species, finding
genotype-phenotype associations across species is challenging due to the non-independence of species
data resulting from common ancestry. To address this, we present CALANGO (comparative analysis with
annotation-based genomic components), a phylogeny-aware comparative genomics tool to find homolo-
gous regions and biological roles associated with quantitative phenotypes across species. In two case
studies, CALANGO identified both known and previously unidentified genotype-phenotype associations.
The first study revealed unknown aspects of the ecological interaction between Escherichia coli, its inte-
grated bacteriophages, and the pathogenicity phenotype. The second identified an association between
maximum height in angiosperms and the expansion of a reproductive mechanism that prevents inbreeding
and increases genetic diversity, with implications for conservation biology and agriculture.
This is an open access article under the CC BY-N
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INTRODUCTION

Living species exhibit a remarkable range of quantitative

variation across both their phenotypes and genomic contents.

Cellular organisms, for example, vary from unicellular species

to complex multicellular lineages with hundreds of cell types.1

Land plants cover a spectrum from annual, small herbs to

some of the tallest and longest-living organisms on Earth,

including trees with lifespans spanning thousands of years.2

The genomic content of living organisms is equally diverse in

terms of length and composition.3 A key challenge of contempo-

rary biology is to understand the genomic mechanisms associ-

ated with the evolution of phenotypic differences between spe-

cies.4 Advanced statistical methods are available for linking

genes with phenotypes of interest within a given species, leading

to significant breakthroughs in fields as diverse as complex ge-

netic diseases and genetic breeding.5–7

Numerous databases and other data sources now offer unpar-

alleled access to vast amounts of high-quality genome

sequences and phenotypic variation data for thousands of

species.8,9 Despite the vast phenotypic and genomic diversity

observed across species, there is a surprising dearth of compu-

tational tools available for comparing genomes of distinct

species and identifying quantitative associations between geno-

types and phenotypes, in stark contrast to the sophisticated

statistical tools that exist for intraspecific genotype-phenotype

association studies.

Themain bottleneck for the extraction of biologicallymeaningful

knowledge from the joint analysis of phenotypic and genomic vari-

ation across species, therefore, no longer lies in obtaining such

data. Instead, the biggest obstacle is now the integration and anal-

ysisof theseheterogeneousdata types inabiologicallymeaningful

manner and under a comparative and evolutionary framework to

survey genomic-scale data.4 Developing data-modeling schemas

and statistical workflows to investigate genotype-phenotype as-

sociations in species sharing a common ancestor is a significant

challengesince it is essential toaccount for thenon-independence

of species data due to common ancestry. Species that share a

more recent common ancestor tend to exhibit greater phenotypic

and genomic similarities comparedwith those sharing anancestor

further back in time. This fact creates dependencies on species

data that limit the application of traditional association statistics

in exploring genotype-phenotype associations.4,10

Furthermore, most comparative genomics strategies rely

exclusively on the patterns of variation of shared homologous

genes across genomes as the basic unit of comparison. Howev-

er, this approach fails to capture molecular functional conver-

gences of non-homologous genes fulfilling the same biological

function in distinct genomes and contributing to the emergence

of complex phenotypes.11,12 From computational and statistical

perspectives, genomic-scale searches for genotype-phenotype

associations require a tool capable of not only correcting for mul-

tiple hypothesis testing13 but also mitigating frequent biases in

genomic data arising from usual bioinformatics procedures

such as genome assembly, gene prediction, and annotation.14

Various approaches have been developed to compare ge-

nomes across species and explore the association between ho-

mologous regions and phenotypic traits.4 These methods have

been effective in discovering associations between the pres-
2 Patterns 4, 100728, June 9, 2023
ence/absence of homologous regions shared by distinct species

and binary traits while also considering phylogenetic informa-

tion. However, these tools do not currently offer ways to perform

genome-wide searches for associations between quantitative

phenotypic and genotypic variables or to identify molecular func-

tional convergences linked to quantitative traits.

In this article we present CALANGO (comparative analysis with

annotation-based genomic components), a general comparative

genomics tool designed to address the aforementioned issues

while searching for associationsbetweenquantitativephenotypes

in distinct species or lineages and the abundance of annotation

terms associated with sets of genomic components in the ge-

nomes of the same species. These annotations may reflect both

distinct groups of homologous regions, as in traditional compara-

tivegenomicsstudies, ormolecular convergences,wherenon-ho-

mologous regions fulfill the same biological roles contributing to

the evolution of the same phenotype in distinct lineages.

We validated CALANGO using two case studies that differ in

major aspects, such as evolutionary time, taxonomy, and biolog-

ical phenomena under analysis. The first one comprises the anal-

ysis of the biological interaction of the bacteriophages genomes

integrated into host genomes (prophages) in distinct Escherichia

coli lineages, using the density of prophages as a proxy variable.

The second evaluates the variation of a complex phenotype in a

major group of eukaryotes, namely the evolution of plant height

in angiosperms, a key trait for the ecology, physiology, and evo-

lution of this group.15,16 We also compare the proposed

approach with other comparative genomic tools that perform

phylogeny-aware analyses to highlight the strengths, limitations,

unique features, and capabilities of CALANGO.

CALANGO is provided as an open-source R package, which

can be installed directly from The Comprehensive R Archive

Network (CRAN) as well as from the project website (https://

labpackages.github.io/CALANGO/), where usage examples

and long-format documentation can also be found. CALANGO

outputs interactive web documents and R objects, which facili-

tate sharing and fast communication of results and integration

with existing bioinformatics pipelines.

RESULTS

CALANGO: A brief overview
Genomes can be divided into different classes of functionally

distinct elements, referred to henceforward as genomic compo-

nents. At the highest level, genomes are made up of distinct

types of genomic components such as coding and non-coding

genes, together with their regulatory sequences (Figure 1A,

‘‘genomic annotation,’’ two genomic components observed in

distinct genes from genome GEN_1 depicted as the brown and

orange boxes). The decades-long effort to functionally charac-

terize the distinct classes genomic components, together with

the extensive usage of computational tools and databases,

provides several possibilities to associate distinct genomic com-

ponents with the biological functions carried out by them.18,19

This annotation procedure provides standardized biological

knowledge readily available as dictionaries of biologically mean-

ingful terms, referred to as annotation terms hereafter (Figure 1A,

‘‘genome annotation,’’ purple boxes denote distinct annotation

schemas). These dictionaries commonly reflect shared

https://labpackages.github.io/CALANGO/
https://labpackages.github.io/CALANGO/
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Figure 1. General structure of CALANGO

(A) Species-centered input data types needed to run CALANGO. To search for associations between the abundance of annotated genomic components across

species and a quantitative phenotype of interest (quantitative values across lineages [QVALs]), CALANGO requires the following data types: (1) a set of genomic

(legend continued on next page)
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evolutionary origins, such as the several conserved gene families

found in distinct organisms (Figure 1A, purple box, ‘‘homology

annotation’’).20 Other dictionaries are built to reflect the functional

similarities of genomic components by annotating non-homolo-

gous regions that fulfill the same functional roles or belong to the

same biological pathways to the same annotation IDs (Figure 1A,

purple box, ‘‘functional annotation’’). The Gene Ontology (GO)

annotation consortiumprovides an annotation dictionary intended

tospecify a universal, curateddescriptionofgene functionsacross

species.21 GO annotation provides a conceptual scaffold of bio-

logically meaningful terms and their relationships that can be

used to perform comparative genomics at the function level.11,12

CALANGOprovides a flexible platform for investigating the as-

sociation of the variation in quantitative phenotypes across spe-

cies/lineages in a phylogeny and the sets of genomic elements of

these species when annotated using controlled dictionaries that

reflect domain-specific biological knowledge. By dissociating

genomic components from their annotation schemas, our tool al-

lows comparative genomics analyses to survey distinct classes

of genomic components, such as promoters, domains, or genes

(Figure S1A). Additionally, by using distinct annotation schemas,

CALANGO enables the search for associations of both homolo-

gous regionsand functionalmolecular convergencesasprovided

by the GO-based annotation (see supplemental experimental

procedures, section ‘‘genomic data modeling,’’ for a full descrip-

tion of how genomic information is represented in CALANGO).

Our tool uses a set of species-centereddata types as input: one

annotation file per species containing pairs of genomic compo-

nents IDsand their annotation term IDs; onedictionary filedefining

all annotation terms IDs; one fully dichotomous species tree with

branch lengths proportional to the divergence times to compute

phylogeny-aware linear models that take into account the depen-

dencies on species data; and one metadata file describing

species-centered data, including the quantitative phenotype/ge-

notype vector to be used to search for associations (this vector

is from now on referred to as quantitative values across lineages

[QVALs]) (Figure 1A; for a more detailed description of our tool,

please refer to the ‘‘analyzing data using CALANGO’’ section in

the experimental procedures). CALANGO processes the genome

annotation files and calculates annotation vectors that record the

raw abundance (counts) of each annotation term in the full set of

annotated genomic components of each species (Figure 1B,
elements from distinct species and their associated annotation data (‘‘genomic

same species to compute phylogeny-aware linear models and to cluster output

species metadata file describing groups for heatmap and boxplot construction, n

annotation terms (‘‘metadata’’; phenotypic and normalization data represented in

(B) CALANGO execution starts by reading the genome annotation data (‘‘genome

the number of occurrences of each annotation term per genome (‘‘building of a

normalization to account for relevant variations in genomic content, such as geno

arrow). The matrix with the raw or relative abundances of annotation terms acros

and the phylogenetic data, to build phylogeny-aware statistical models for each a

provided by the pic() function from the ape17 R package (‘‘building of linearmodels

for genotype-phenotype associations is followed by multiple hypothesis correctio

that represents current biological knowledge (dictionary file) to produce output fi

files,’’ bottom purple arrow).

(C) CALANGO outputs dynamical webpage reports, which can be accessed usi

resentations and summaries, including tables, heatmaps, scatterplots, and boxp

produces a list object that can be integrated in other bioinformatics pipelines (data

refer to Figure S1.

4 Patterns 4, 100728, June 9, 2023
‘‘building of annotation vectors’’). At this point, it is possible to

normalize the vectors containing the counts of annotation terms

in different genomes (raw abundances) to account for variations

ingenomesizeandcontent, for examplebynormalizing thevector

of annotation termsofeachspeciesby the total numberofprotein-

coding genes of the same species (Figure 1B, ‘‘normalization’’).

This procedure generates normalized annotation vectors with

the relative abundances of each annotation term in each species.

CALANGO proceeds by searching for associations between

the abundance of each annotation term across all species and

theQVAL vector (Figure 1B, green box, ‘‘building of linearmodels

for annotation terms’’). Our tool computes phylogeny-aware

linear models that use the phylogenetic information to compute

a set of two vectors of standardized and phylogenetically inde-

pendent contrasts from the annotation vector and the QVAL

vector.17 The output vectors are then used to build linear models

and search for genotype-phenotype associations. Traditional as-

sociation statistics are also available. At this point, our tool

gathers individual p values for each model class, producing vec-

torsof p values. Thesearecorrected formultiple hypothesis using

the Benjamini-Hochberg (BH) method.22 CALANGO outputs a

dynamicwebpage report compatiblewithmodernbrowsers con-

taining graphical elements and tables with association statistics

and other useful quantities, intended to instigate users to interact

and actively interpret the results. The full set of user-defined input

parameters is also returned alongside all computed results as a

list object, which can be easily integrated into other bioinformat-

ics pipelines (Figures 1B, ‘‘production of output files,’’ and 1C).

We testedCALANGOwith twocasestudies that differed in their

evolutionary time, taxonomical ranges, and biological phenom-

ena. The first studied the interaction between bacterial viruses

(bacteriophages) and the bacterial species E. coli using the den-

sity of integrated viral genomes in bacterial genomes (prophages)

as a proxy variable for this biological interaction. The second

studied the evolution of plant height in angiosperms, a key trait

for their ecology, physiology, and evolution. All data files needed

to fully reproduce these results are distributed with CALANGO.

Case study 1: Coevolution of E. coli lineages and their
integrated bacteriophages
E. coli have a remarkable genomic variability, with a considerable

fractionof this variationcomprisinghorizontally transferredgenes
annotation,’’ represented in purple); (2) phylogenetic relationships across the

heatmaps of associated terms (‘‘phylogeny,’’ represented in black); and (3) a

ormalizing factors, and the QVAL vector to be surveyed for associations with

blue and red, respectively).

annotations’’) and building raw annotation vectors for each species, defined as

nnotation vectors,’’ top purple arrow). CALANGO can perform optional data

mes with vastly distinct numbers of protein-coding genes (‘‘normalization,’’ red

s species is then used, together with the quantitative phenotype vector (QVAL)

nnotation term by computing phylogenetically independent contrasts (PICs) as

from annotation terms,’’ green arrow and green box). The genome-wide search

n. At this point, CALANGO integrates the domain-specific genome annotation

les containing the description of each annotation term (‘‘production of output

ng any modern web browser and contain graphical and interactive data rep-

lots highlighting specific aspects of the associations detected. Our tool also

not shown). For amore detailed description of the annotation schemas, please
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through integrated bacteriophage genomes (prophages).23 This

genomic diversity is reflected in the distinct ecological niches

occupiedby this bacterium,which is found in several body niches

of animal hosts as a commensal or pathogen. Bacteriophage in-

fections are not always deleterious to their bacterial hosts. While

obligate lytic phages represent agents of cell death and popula-

tion control, persistent lysogenic phages are responsible for

gene transfer and mutualism. In a microbial population, the

lysis-lysogeny events are dynamic and extremes of a continuum

comprising antagonistic and beneficial biological interactions.24

Virulence factors are an archetypal example of bacteriophage-

mediatedhorizontal gene transfer thatcan result infitness increase

for both new bacterial hosts and prophages, including pathogenic

E. coli.25 Although this represents a well-known phenomenon, we

are not aware of any systematic evaluation of the association be-

tween prophage occurrence and the abundance of non-homolo-

gous virulence factors. Since prophages are themselves genomic

elements with specific coordinates, this case study also allows us

to selectively remove the effect of viral genes on CALANGO’s re-

sults, enabling the potential investigation of associations of causal

origin. Therefore, we consider this as an interesting scenario to

evaluate our tool, as it has expected causal associations while

also representing a complex biological interaction likely to contain

previously undescribed biological phenomena.

We performed a thorough literature review to select 80 E. coli

lineages with both gapless genomes (plus plasmids, when avail-

able) and reliable information regarding its pathogenicity status

(Data S1,26 contains all genomes, together with their phenotypes

and genes used for phylogenetic tree reconstruction; see also

the supplemental experimental procedures, section ‘‘Escheri-

chia coli data’’). We proceeded by extracting the protein

sequence for each protein-coding genes and performing a de

novo annotation using InterProScan.20 At this point, we per-

formed a domain-level representation of genomes where each

non-overlapping conserved region as predicted by the Protein

Families database (Pfam)27 was considered a distinct genomic

element (Figure S1A, ‘‘domain-centered annotation’’).

To assess the usefulness of GO in detecting molecular func-

tional convergences, we annotated the same set of genomic

components—the full set of protein domains identified in each

bacterial genome by Pfam—using either their Pfam IDs (Pfam2-

domain) or the GO terms associated with them by InterProScan

(Pfam2GO) (Figure S1B describes the annotation schemas). We

used two metrics to compare different annotation schemas: (1)

the abundance of each annotation term, defined as the sum of

occurrences of an annotation term across all genomes, and (2)

the prevalence of each annotation term, defined as the fraction

of genomes where an annotation term was observed.

The annotation of non-homologous domains that fulfill the

same biological function are expected to produce annotation

terms that are both more abundant and more prevalent across

genomes, as non-homologous regions are annotated to their

shared biological roles (Figure 1A, ‘‘genomic annotation’’).

Therefore, these two metrics cand be used to assess whether

GO annotation captures molecular convergences when

compared with Pfam-based annotation. The annotation terms

from Pfam2GO were significantly more abundant and prevalent

than the terms from Pfam2domain annotation, indicating that

GO annotation integrates the functional information of non-ho-
mologous elements and is suitable to represent molecular func-

tional convergences of non-homologous regions that fulfill the

same biological roles (p < 0.01, Wilcoxon test; see Note S1 for

a more in-depth exploration of our findings).

Prophage density is associated with pathogenicity
in E. coli

We first calculated the number of prophages in the chromosomal

genome of each E. coli lineage using PHASTER.28 Pathogenic

E. coli were found to have a significantly higher number of pro-

phages, even after controlling for phylogenetic relationships (Fig-

ure2, ‘‘prophagecount,’’Wilcoxon test [W] andphylogeny-aware

model [PAM], cutoff for significance p < 0.01; see supplemental

experimental procedures, section ‘‘statistical analysis of pro-

phage abundance in pathogenic and non-pathogenic E. coli’’).

Pathogenic lineagesalsohavesignificantly larger genomes (Fig-

ure 2, ‘‘genome size"). This fact could potentially explain the differ-

ences detected in prophage counts, as larger bacterial genomes

may simply have a proportionally larger number of integrated viral

genomes. To address this potential bias, we calculated prophage

densities, defined as the ratio between number of prophages to

genome size. We found that this variable was also significantly

greater in pathogenic E. coli (Figure 2, ‘‘prophage density’’).

Furthermore, when we removed the contribution of regions pre-

dicted as prophages, the genome lengths were no longer signifi-

cantly different between pathogenic and non-pathogenic E. coli,

suggesting that the prophages make up a significant portion of

the difference in the total genome lengths of our dataset (Figure 2,

‘‘genome size less prophages’’).

We found a significant correlation between the numbers and

the densities of prophages across genomes, as well as between

these metrics and the total genome lengths (see Note S2). How-

ever, these associations were no longer present when prophage

regions were removed from the analysis of genome length. We

used the Pfam2domain dataset as input to CALANGO to

examine the protein domains associated with the four variables

analyzed in Figure 2 (see supplemental experimental proced-

ures, section ‘‘experimental design,’’ for the full description of

parameters). The list of protein domains associated with pro-

phage density and prophage count are highly similar and, impor-

tantly, share almost no intersection with the domains found to be

associated with genome length variation after excluding pro-

phages (see Note S2). This finding suggests that these variables

are measuring distinct types of associations. From these results,

we conclude that (1) prophages are a major contributor to

genome size variation in E. coli and (2) pathogenic E. coli strains

have a significantly higher abundance of prophages in their ge-

nomes, even after accounting for their larger genome sizes. Pro-

phage density may therefore be a suitable proxy for further

studying the biological interactions between prophages and their

hosts and was used as the QVAL in the subsequent analyses.

Homologous regions and biological roles associated
with prophage density in E. coli

We found 230 out of the 3,729 (6.2%) Pfam domains observed in

at least one genome from our E. coli dataset to be significantly

associated with prophage density when using the raw count

data of annotation terms. Since CALANGO allows the normaliza-

tion of annotation term abundances by genome, we used the
Patterns 4, 100728, June 9, 2023 5



Figure 2. Associations between the number

of prophages, genome length, prophage

density, and pathogenicity in E. coli

Pathogenicity status: pathogenic, blue; non-

pathogenic, red. p values computed using the

Wilcoxon test (W) or a phylogeny-aware model

(PAM); cutoff for significance: p < 0.01. Patho-

genic E. coli have a significantly higher number of

prophages (prophage count). We also found

pathogenic lineages to have significantly larger

genomes (genome size). To account for this vari-

ation in genome length, we computed prophage

densities (prophage counts divided by genome

sizes), which are also significantly greater in

pathogenic E. coli (prophage density). These

findings, together with the absence of significance

between the two groups when considering only

the fraction of the genome lengths after excluding

the prophage contributions to genome size

(genome size less prophages), strongly suggests

that (1) pathogenic E. coli have a significantly

higher number of prophages, (2) a large fraction of

the genome variation in E. coli is caused by dif-

ferences in prophage content, and (3) prophage

density is arguably a good proxy to represent the

prophage-bacteria biological interaction.
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total number of genomic elements to compute the relative fre-

quencies of annotation terms while searching for associations

to further evaluate our tool. We found a high degree of concor-

dance for the positive associations using both abundance met-

rics (Note S3). Although all the negative associations identified

using raw counts are also detected using relative frequencies,

a considerable number of the negative associations are exclu-

sively identified through the use of relative frequencies. This

phenomenon is an artifact caused by the non-independence of

relative frequencies since they must sum to one. Specifically,

the expansion of annotation terms that are truly associated

with a phenotype (i.e., positive associations) creates the appear-

ance of negative correlations among annotation terms that have

little or no variation in their raw count data (Note S3). As this bias

is caused when using frequency data alone, we proceed by us-

ing the raw count data of annotation terms hereafter.

Of the 230 associated domains, 207 presented positive corre-

lation (from 0.28 to 0.85) and 23 showed negative correlation

(from �0.26 to �0.47) (Data S2, sheet ‘‘domain2PfamCount’’).29

Figure 3 is a heatmap of the associated terms as produced by

CALANGO (rows), together with our manual annotation of the

larger clusters of domains associated with prophage density

(columns). This graphical output integrates phylogenetic infor-

mation (the species are clustered based on the user-provided

phylogenetic tree), together with the user-defined classes (path-

ogenic versus non-pathogenic in this case), allowing the visual

detection of interesting clustering patterns.

Most positively associated domains (125/207 domains,

60.4%) have clear roles in the viral life cycle, such as lysozymes

and integrases (see Data S2, sheet ‘‘domain2PfamCount,’’ for

the manual curation of all associated homologous domains).29

Figure 4A illustrates a typical output of the CALANGO package
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for one of these domains (additional examples available in

Note S4). The second largest category of positive associations

encompasses several classes of virulence factors (58/207 do-

mains, 28%) (Figures 3 and 4B). Some of these virulence factors,

including Shiga-like toxins and effectors of the type III secretion

system, are frequently horizontally transferred by bacterio-

phages in specific E. coli pathotypes,25,30 an association also

detected by CALANGO (Figure 3, species clusters ‘‘1’’ and

‘‘2’’; see also Note S4). The association of domains from the viral

life cycle and virulence factors with prophage densities provides

a sound example of how CALANGO can uncover known associ-

ations of causal origin.

Some domains of unknown function (DUFs) have a distribution

pattern similar to that of virulence factors, potentially suggesting

uncharacterized pathogenicity domains and demonstrating how

CALANGO can be used to prioritize targets for experimental

investigation. CALANGO also highlighted positive associations

that unveil previously unknown biological interactions between

immune genes found in bacterial genomes, prophages, and

other classes of mobile elements, such as transposases and

plasmids. Several of these homologous regions are located

outside prophage regions, which may suggest a complex inter-

play of symbiosis and competition between them (Figure 3;

see also Note S4).

The 23 negative associations suggest that E. coli lineages with

fewer integrated prophages—which are also less likely to be

non-pathogenic—have a set of genes enabling a greater diver-

sity of lifestyles at several levels, ranging from metabolic path-

ways and membrane transport to community-level processes,

such as biofilm formation (Figure 3; see also Note S5 for the ex-

amples of negative associations). Interestingly, we observed

negative associations of prophage density and components of



Figure 3. Heatmap as produced by CALANGO integrates phylogenetic, phenotypic, and annotation data

Species clustering is based on user-provided phylogeny. Each cell of the heatmap contains additional information that can be accessed through ‘‘onmouseover’’

events in the heatmap output as produced by CALANGO (also available as a vignette with the R package). Pathogenic and non-pathogenic lineages are

(legend continued on next page)
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the cell wall and of the lipopolysaccharide (LPS) biosynthesis

pathway. Both classes of molecules are receptors of bacterio-

phages for cellular infection but are also major activators of the

vertebrate immune system.31–33 These undocumented negative

associations may be a consequence of the selective pressure

against prophage infection resulting in the loss of these compo-

nents. However, these losses can also confer an advantage to

pathogenic bacteria when infecting vertebrate hosts, as they

may be less likely to trigger the host’s immune responses and

could represent a previously unknown aspect of the emergence

of a virulence phenotype in this species.

The results provided by the domain2GO schema largely

support the same conclusions found by our manual curation of

the domain2Pfam results for both positive and negative associ-

ations, highlighting how GO annotation provides an interpret-

ability that appears to be qualitatively equivalent to human cura-

tion (Figure 4C; Data S2, sheet ‘‘domain2GOCount’’; see also

Note S6 for additional examples).29 Additionally, several of these

biological roles associated with prophage density are performed

by non-homologous domains. For example, a total of 23 non-ho-

mologous virulence factors in our dataset are automatically an-

notated by InterProScan to the GO term GO: 0009405 (patho-

genesis), which was found to be associated with prophage

density (Figure 4D). These results further demonstrate how

CALANGO, together with a GO-based annotation, allows

comparative genomics analysis at the function level suitable

for the detection of molecular functional convergences.

Interestingly, we found a positive association of the term GO:

0006950 (response to stress), which may represent a previously

unknown example of virus-mediated transfer of non-homolo-

gous fitness genes that fulfill a common biological role, such

aswas seen for the non-homologous virulence factors (Figure 4E;

see Data S2, sheet ‘‘stress_response_genes,’’ for the full list of

domains annotated to this GO).29 Among the domains annotated

to this GO, we observed components of restriction-modification

systems, DNA repair pathways, colicins, toxin-antitoxin

systems, tellurite resistance, and transcription factors. We hy-

pothesize that integrated prophages could also contribute to

fitness increase of bacteria specifically under conditions of

stress, such as the host’s immune response against pathogenic

bacterial lineages.34 This finding comprises yet another dimen-

sion of this complex biological interaction and provides evidence

of how the functional annotation provided by GO terms can

support the detection of previously unknown associations of

functional molecular convergences associated with QVALs.

Since prophages are genomic elements with defined genomic

coordinates within bacterial genomes, this case study allows us

to perform a controlled in silico experiment to evaluate the ability

of CALANGO to support the investigation of a potential causal

relationship (see supplemental experimental procedures, sec-

tion ‘‘removal of genes of viral origin in E. coli genomes’’). A

considerable number of the annotation terms are associated

with the prophage density because they annotate protein-cod-

ing genes of viral origin that are located within prophage coordi-
distributed with no clear broader grouping pattern, suggesting that both phenoty

eages. Two pathogenic E. coli groups have the highest count of several of the asso

factors known to be horizontally transferred by bacteriophages and components

enteropathogenic (EPEC) pathotypes, including all O157:H7 lineages, a Shiga-lik
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nates. This experiment consisted of reexecuting CALANGO

holding the QVALs fixed (i.e., as calculated previously) while

removing all genes of viral origin. This effectively blocks out

possible effects of prophage genes on the output of

CALANGO, allowing us to test whether the significant associa-

tions detected earlier between the annotation terms and the

QVALs are indeed due to genes of viral origin.

As expected, most protein domains manually annotated by us

asbeingof viral originwereno longer significantly associatedwith

prophage density after the removal of genes of viral origin (123/

125, 98.4%). A similar pattern was found for the associated GO

terms (Data S2, sheets ‘‘domain2PfamCountLessPhages’’ and

‘‘domain2GOCountLessPhages’’; see also Note S7).29 Interest-

ingly, several classes of virulence factor domains were still signif-

icantly associated with prophage density after the removal of

genes of viral origin, a scenario compatible with bacteriophage-

mediated horizontal gene transfer followed by prophage degen-

eration (Data S2, sheet ‘‘virulence_factors,’’ columns ‘‘sum,’’

and ‘‘sum_less_phages’’).29 However, other homologous groups

of virulence factors were totally or mostly located within detect-

able prophage genomes and consequently were not found to

be associated after blocking the effect of viral genes. This obser-

vation suggests a synergistic interaction between virulence

factors acquired from different evolutionary origins.

This in silicomanipulative experiment exemplifies the ability of

CALANGO to support the investigation of basic causal relation-

ships by enabling a level of counterfactual investigation of

observed associations in the data. While this is still short of a fully

developed causal inference package for genomic data, the abil-

ity to uncover some causal relationships from data by in silico

isolation and testing of the influence of putative confounders

can provide valuable insights into biologically meaningful phe-

nomena, as illustrated in this case study.

Case study 2: Homologous regions associated with
maximum height in angiosperms
Maximum height is a key trait in the ecology, physiology, and evo-

lutionof landplants, and theunderstandingof themolecularmech-

anismsassociatedwith the emergence of this complex phenotype

has impactful consequences for fields as diverse as conservation

biology and agriculture.35,36 Angiosperms, or the flowering plants,

are the largest andmost diverse group of land plants, displaying a

remarkablephenotypic variation, including inplant height. Artificial

selection experiments within single species supports the notion

that plant height is a trait strongly controlled by genes that can

evolve fast under phenotypic selection.16,37

The relationship between height and reproductive success

has been suggested to be a result of several factors, such as

increased pollination, improved seed dispersal mechanisms,

and better access to light. As a result, tall species that evolved

from short ancestors likely experienced positive selection for

height, a trait that is potentially under selection in natural popu-

lations.16 Importantly, shorter plants have smaller generation

times and, consequently, higher rates of evolution, which
pes emerged and/or were lost several times during the evolution of these lin-

ciated domains (clusters 1 and 2, highlighted at the bottom), including virulence

of the viral life cycle. These lineages comprise enterohemorrhagic (EHEC) and

e toxin-producing serotype, and an important source of foodborne disease.
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Figure 4. Homologous regions and GO terms

associated with prophage density in E. coli

From left to right: linear models (QVALs and anno-

tation term counts, q values as provided by CAL-

ANGO), phylogeny-aware linear models (PIC values

for QVALs and for annotation term counts, q values

as provided by CALANGO) and boxplots with count

data values of annotation terms in the user-defined

groups (p values computed using a PAM as

described in the supplemental experimental pro-

cedures, section ‘‘statistical analysis of prophage

abundance in pathogenic and non-pathogenic

E. coli’’). For boxplots, the statistical test surveys

possible differences in the abundance of annotation

terms when comparing the pathogenic and the non-

pathogenic groups using the PAM test (supple-

mental experimental procedures, section ‘‘statistical

analysis of prophage abundance in pathogenic and

non-pathogenic E. coli’’; test executed using the

annotation term abundance instead of prophage

abundance). From top to bottom: examples of

annotation terms (distinct protein domains as

defined in Pfam and annotated using either Pfam IDs

or GO IDs) playing roles in (A) viral life cycle

(PF00959, phage lysozyme); (B) virulence mecha-

nisms (PF06416, effector protein NleG); (C) viral

process (GO: 0019058, viral life cycle);

(D) pathogenicity (GO: 0009405, pathogenesis); and

(E) stress response mechanisms (GO: 0006950,

response to stress).
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Figure 5. Evolution of maximum height in angiosperms

(A) Maximum height variation across the phylogeny of 54 angiosperms species with high-quality proteomes available suggests multiple independent increases

and decreases in maximum length in this group. Species names are as follows: Aco, Ananas comosus; Aha, Arabidopsis halleri; Ane, Arabis nemorensis; Ath,

Arabidopsis thaliana; Ati, Amborella trichopoda; Aya, Acer yangbiense; Bdi, Brachypodium distachyon; Bst, Boechera stricta; Bsy, Brachypodium sylvaticum;

Bvu,Beta vulgaris; Can,Capsicum annuum; Cba,Capsicum baccatum; Cca,Cajanus cajan; Cch,Capsicum chinense; Ccl,Citrus clementina; Cka,Cinnamomum

kanehirae; Cli, Carex littledalei; Cmi, Cinnamomum micranthum; Cmo, Castanea mollissima; Csa, Cannabis sativa; Csi, Citrus sinensis; Cun, Citrus unshiu; Cvi,

Cleome violacea; Dso,Descurainia sophioides; Egr, Eucalyptus grandis; Egt, Erythranthe guttata; Fve, Fragaria vesca; Jcu, Jatropha curcas; Lsa, Lactuca saligna;

Mba, Musa balbisiana; Mco, Macleaya cordata; Mno, Morus notabilis; Nco, Nymphaea colorata; Obr, Oryza brachyantha; Ome, Oryza meyeriana; Osj, Oryza

sativa; Pav, Prunus avium; Pdu, Prunus dulcis; Pgr, Punica granatum; Plu, Phaseolus lunatus; Pmu, Prunus mume; Ppr, Prunus persica; Pvu, Phaseolus vulgaris;

Rco, Ricinus communis; Rru, Rhamnella rubrinervis; Sbi, Sorghum bicolor; Soe, Syzygium oleosum; Sol, Spinacia oleracea; Stu, Solanum tuberosum; Tca,

Theobroma cacao; Tor, Trema orientale; Tth, Thalictrum thalictroides; Van, Vigna angularis.

(B) Examples of protein domains significantly expanded in taller plants fulfilling different biological roles. From top to bottom: (1) increase of genetic diversity

through cross-pollination (SI system) (PF00954, S-locus glycoprotein domain), (2) cell wall biology (PF11721, Malectin domain), and (3) immunity and stress

(legend continued on next page)

ll
OPEN ACCESS Descriptor

10 Patterns 4, 100728, June 9, 2023



ll
OPEN ACCESSDescriptor
provides a greater capacity of phenotypical adaptation in distinct

environments. In contrast, taller species typically exhibit lower

evolutionary rates due to their longer generation times, which

presents a significant concern for the long-term sustainability

of ecosystems that depend on them.38 Despite the importance

of understanding the evolutionary trajectory of this phenotype

across different species from a comparative genomics perspec-

tive, such studies are currently lacking.

The evolution of a complex phenotype like height is likely

coupled with many other plants traits, such as rates of mitosis

in meristematic tissues, cell expansion, development of leaves

and reproductive organs, pollination syndrome, longevity, and

community composition, among others, and plays important

roles in the success of establishment of distinct species.15,35

As such, the evolution of height in angiosperms represents a

compelling case study to further evaluate CALANGO and

demonstrate its usefulness to reveal biological knowledge.
Protein domains associated with maximum height in
angiosperms unveil independent expansions of
reproductive processes in taller species
We surveyed the specialized literature and sequence databases,

together with our in-house annotation pipeline, to gather the

annotation, phylogenetic, andQVAL information for the 54 angio-

sperm species with high-quality, non-redundant proteomes

available (Data S3,39; see also supplemental experimental pro-

cedures, section ‘‘angiosperms data’’). Our dataset has species

withmaximumheight varying from20cm (thewild strawberryFra-

garia vesca, Rosaceae) to 55meters (the treeEucalyptus grandis,

Myrtaceae), more than two orders of magnitude (Figures 5A and

S2A).We found theancestor statesof height in angiosperms tobe

highly uniform, with internal nodes having mostly average values

and phenotypic extremes occurring multiple times, a pattern

compatiblewith independentemergenceof this trait (FigureS2B).

We again used the domain2Pfam and domain2GO annotation

schemes to search for homologous regions and biological roles

associated with maximum height (log10 transformed values

used as QVALs). Angiosperm is a lineage where whole-genome

duplication events are relatively common.40–42 This phenome-

non may bias association studies that consider only the raw

counts of abundance terms and is an example where the normal-

ization of the raw abundance values of annotation terms may be

desirable. However, using relative frequencies to correct for

distinct proteome sizes may introduce other biases, as we

demonstrated in the first case study (Note S3). For these rea-

sons, in this case study, we considered associated annotation

terms only the ones found as associated when considering

both their raw counts and relative frequencies (see supplemental

experimental procedures, section ‘‘experimental design for case

studies’’).
response mechanisms (PF13855, leucine-rich repeat). From left to right: phylog

values computed from linear model statistics as reported by CALANGO) and bo

PAMs as described in the supplemental experimental procedures, section ‘‘sta

E. coli,’’ replacing count values and phenotypic classes by angiospermdata for the

in three groups of plants based on their heights: less than one meter, 1–10 mete

(C) Biological processes significantly enriched in protein-coding genes from A. tha

suggests that the expanded domains found in taller plants are enriched in biolog
From a total of 5,381 domainswith at least one copy across the

non-redundant proteomes of all angiosperm species, we identi-

fied seven that displayed a significant positive association with

the maximum heigh (see Data S4, sheet ‘‘associated_do-

mains’’43; see also Note S8). Even though a considerable fraction

of the genes coding for these domains are hypothetical se-

quences with no known biological roles, the experimentally vali-

dated genes inArabidopsis thaliana have roles in embryogenesis,

cell wall signaling, immunity, and reproductive processes (Fig-

ure5B;NoteS8; seealsoDataS4, sheet ‘‘Arabidopsis_genes’’).39

Self-incompatibility (SI) systems are non-homologous molec-

ular mechanisms that prevent inbreeding and promote outcross-

ing in flowering plants.44 Three of the domains associated with

maximum height in angiosperms are components of the most

well-characterized SI system (e.g., Figure 5B, ‘‘PF00954 –

S-locus glycoprotein domain’’). We found 37 copies of

PF00954—a signature domain of the most well-studied SI sys-

tem—in A. thaliana (maximum height of 0.30 meters, the eighth

smallest plant in our dataset), while Eucalyptus grandis

(maximum height of 55 meters, the tallest plant in our dataset)

has 210 copies of this domain (a 5.68-fold increase). The remain-

ing two components of the SI system have similar expansion

profiles (Data S4, sheet ‘‘associated_domains’’).39

The SI system found by CALANGO (from now on referred

simply as ‘‘SI’’) has been described in exquisite molecular details

in the Brassicaceae family, even though it is widely distributed in

flowering plants, and is an archetypal example of natural

(balancing) selection maintaining genetic variation over long

evolutionary times through inbreeding avoidance and rare-allele

advantage.44 The SI system is a mating barrier controlled by a

single highly polymorphic locus (S-locus), which codes for two

closely linked genes. One gene codes for the S-locus receptor

kinase (SRK), a glycoprotein with kinase activity that allows

stigma cells to discriminate between pollen from the same or-

ganism or from genetically related individuals. The three associ-

ated domains that are also components of the SI system are

observed in SRK genes. The second gene codes for the

S-locus cysteine-rich protein (SCR), expressed in pollen coat

and the ligand of SRK.45 In the case of self-fertilization, the

SCR protein in pollen is structurally complementary to the SRK

protein found in the same S-locus haplotype, activating a

signaling pathway that inhibits pollen tube development.

Individuals in a population that share a recent common

ancestor are more likely to share a considerable fraction of their

alleles, including the alleles observed in the SI loci. Given this

scenario, a higher percentage of the fertilization events of these

individuals would be unsuccessful, as the common shared al-

leles would activate the SCR-SRK signaling pathway and pre-

vent fertilization. Unrelated individuals that share no recent com-

mon ancestors, in contrast, aremore likely to bemore genetically

diverse. This includes a potentially greater diversity of alleles
eny-aware linear models using relative frequency data of annotation terms (q

xplots with relative frequencies of annotation terms (p values computed using

tistical analysis of prophage abundance in pathogenic and non-pathogenic

corresponding domains). In the boxplots, we searched for differences in plants

rs, and more than 10 meters.

liana containing the domains associated with maximum height in angiosperms

ical processes also needed for increased lifespan.
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observed in the SI loci, therefore increasing their rates of suc-

cessful fertilization. These successful events are also likely to in-

crease the genetic diversity of the offspring. This is because the

seeds that result from such events would have been produced

by the reproduction of unrelated individuals that are genetically

dissimilar. Not surprisingly, the S-locus is highly polymorphic

and has been extensively characterized in several populations

across multiple species and in distinct ecological contexts.44

The independent expansion of the number of genes coding for

the S-locus in taller species increases the total number of alleles

potentially hosted in the genome of a single organism of these

species. This would increase the chance of related individuals

from the same population sharing S-locus alleles, therefore

increasing the fraction of possible incompatible individuals in

these populations. Under these circumstances, successful fertil-

ization events would have a greater chance of outcrossing in

species where individuals can potentially host a greater number

of S-locus haplotypes, therefore allowing taller plants to increase

their evolutionary rates through successful cross-pollination

events between more unrelated individuals.

Taller plants have lower rates of molecular evolution, presum-

ably due to their longer generation times and slower long-term

rates of mitosis in their apical meristems. The lower evolutionary

rate in these species is a concern for their long-term survival and

for the various ecosystems where they play critical roles.38

CALANGO revealed a molecular mechanism that can promote

outcrossing in taller species with longer generation times and

may counterbalance their lower evolutionary rates. The unex-

pected association of a major reproductive mechanism that

increases genetic diversity and height variation in angiosperms

can have significant implications, as the evolutionary future of

taller species relies on their adaptation to changing environ-

ments, which fundamentally relies on their underlying mutation

rates.46

Even though no GO term was found to be significantly associ-

ated with the maximum height, an enrichment analysis using the

457 A. thaliana genes annotated to these seven Pfam domains

found an overrepresentation of genes belonging to reproduction

and embryogenesis pathways, as well as of genes involved in

secondary growth, immune system, and stress response mech-

anisms (Figure 5C; see also supplemental experimental proced-

ures, section ‘‘enrichment analysis of A. thaliana genes’’’). The

increase in the number of genes coding for some of these pro-

cesses, such as immunity and wood tissue development, has

already been reported for Populus trichocarpa—a model organ-

ism for tree biology—when compared with A. thaliana.47 The ex-

pansions of immune and stress response genes families are

likely to represent adaptations required for the longer lifespan

of taller species, which results in the exposure to long-term infec-

tions and to a myriad of stress sources. Importantly,

P. trichocarpa has not been included in our analysis due to a

large amount of gene duplication events detected by our pre-

processing pipeline. Therefore, CALANGO provides indepen-

dent evidence supporting the previous report of the association

between genes fulfilling these biological roles and the emer-

gence of taller species. As several of the genes containing these

domains are hypothetical, they also comprise interesting targets

for downstream characterization to search for new components

of plant immunity and developmental processes.
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Comparison of CALANGO with conceptually similar
software
As recently reviewed by Lázló et al., some tools are currently

available to search for associations between the patterns of

occurrence of homologous genomic components (mostly

single-copy genes) and a binary phenotype of interest across

species while considering phylogenetic dependency.4 One

important distinction between CALANGO and these tools is the

class of phenotypic and genotypic data accepted by them.

Most methods can only be used to investigate secondary gene

losses associated with categorical phenotypes (presence/

absence). While useful to describe several types of biological

variation, these methods cannot be used to survey quantitative

phenotypic data without the usage of ad hoc thresholds to define

classes. In this aspect, the proposed tool considerably expands

the strategies currently available to search for associations be-

tween genomic components and phenotypic data across

species, as CALANGO is intended to search for quantitative ge-

notype-phenotype associations by considering the copy-num-

ber variation of genomic components across genomes. By

dissociating the genomic components from their functional

annotation, CALANGO also provides the unique flexibility to sur-

vey the distribution of several classes of genomic components,

such as protein domains or entire genes.

Furthermore, despite being successful in detecting homolo-

gous regions associated with the emergence of complex pheno-

types, at the time of writing, none of these methods incorporate

current genomic knowledge at the function level as provided by

GO annotation. Instead, they exclusively evaluate associations

between sets of homologous elements across genomes and

phenotypic data. GO terms have been shown to capture patterns

of functional convergence and to provide a deeper biological

comprehension of the genomic evolution of complex pheno-

types, such as parasitism and sociality, and can provide a func-

tional landscape for comparative genomics at the molecular

function level.11,12

The distinct annotation schemas supported by CALANGO

allow both the emulation of classic comparative genomics anal-

ysis (by using a homology-based annotation dictionary) and of

pathway- or function-based comparison (by using a GO-based

dictionary). As illustrated in our first case study, the combination

of both strategies delivers a richer, more biologically meaningful

interpretation of the results, including the detection of functional

molecular convergences that could not be discovered using ho-

mology-based annotation. Also, in contrast to virtually all the

tools reviewed by Lázló, most of which provide text files as the

main output, the CALANGO package produces a rich set of

dynamical output result files that can be visualized in anymodern

browser. These files contain statistical summaries and other

useful quantities, together with their visual representations. For

advanced users, CALANGO provides all results as a list of stan-

dard R objects, therefore allowing easy integration with other

computational pipelines.

DISCUSSION

The post-genomic era has brought a plethora of high-quality

sequenced genomes, ranging from previously underrepresented

early branching lineages of cellular organisms to thousands of
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genomes of a single bacterial species. In contrast to this abun-

dance of genomic data, there are currently a deficiency of

methods in computational statistics for extracting genomic

properties associated with a quantitative phenotype of interest

across genomes while considering the non-independence of

species data.4 CALANGO addresses this gap in the comparative

genomics field by integrating phylogenetic, genomic, annota-

tion, and phenotypic data together in order to perform this task.

Our two case studies comprise datasets that are highly con-

trasting in terms of evolutionary time, taxonomic diversity, and

the nature of the quantitative phenotype/genotype under anal-

ysis. The first evaluated the biological roles associated with the

change of a complex genotype (the density of prophages) in a

single bacterial species when used as a proxy for the virus-bac-

teria biological interaction. We found, as expected, a consider-

able association with genes of viral origin. By removing these

genes and blocking their effect from the analysis, this case study

allowed us to demonstrate how CALANGO can support the

investigation of causal associations. We also observed several

unknown associations at the function level that point to a much

richer scenario of the biological interaction between bacteria,

their prophages, and other classes of mobile elements. We

emphasize how the horizontal acquisition of adaptive genes,

such as virulence factors and stress response genes, may allow

bacteria to thrive in distinct environments.

The second case study detected domain expansions associ-

atedwith acomplexphenotype (maximumheight) in the flowering

plants, a major group of multicellular eukaryotes. Tall plants have

morphological andphysiological adaptations to the challenges of

growing vertically36 and concomitantly harbor several advan-

tages in dispersal and establishment success rates.15 Our case

study described several mechanisms that improve our under-

standing of the genomic regions and molecular mechanisms

associatedwith the emergence andmaintenance of this complex

phenotype. Of special interest, we described a reproductive

strategy that may allow taller plants to increase their genetical di-

versity through the independent expansionof theS-locus in these

species and the allocationofmore resources to cross-pollination,

a fact with long-reaching consequences for fields as diverse as

agriculture and conservation biology. More importantly, we

demonstrated how our tool produces testable hypotheses in

both case studies, indicating how it can be used to prioritize

downstream targets for experimental characterization.

For future improvements, we intend to incorporate statistical

methods that allow the detection of associations between the

abundance of annotation terms and discrete phenotypes. While

our tool is capable of detecting causal associations, we

acknowledge that CALANGO is not designed for causal infer-

ence. Developing comparative genomics tools that can explicitly

model causal relationships while searching for genotype-pheno-

type associations across species is a key question in biology and

an area of future research.

CALANGO represents a considerable step toward the estab-

lishment of an annotation-based, phylogeny-aware comparative

genomics framework to survey genomic data beyond the

sequence level and to search for associations between quantita-

tive phenotypes across lineages sharing a common ancestor

and the multiple layers of biological knowledge coded in their

genomes.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Request for further information will be fulfilled by Francisco Pereira Lobo

(franciscolobo@ufmg.br, franciscolobo@gmail.com).

Materials availability

This study did not generate new unique materials other than the code and data

as described below.

Data and code availability

d Original data have been deposited to Zenodo: Data S1 (https://doi.org/

10.5281/zenodo.7647841),26 Data S2 (https://doi.org/10.5281/zenodo.

7647874),29 Data S3 (https://doi.org/10.5281/zenodo.7647884),39 and

Data S4 (https://doi.org/10.5281/zenodo.7647892).43 The IDs

and URLs for the raw data used in the two case studies (genome IDs

and sources of phenotypic/phylogenetic data) are available in Data S1

(case study 1: E. coli data) and Data S3 (case study 2: angiosperms

data). All processed data needed to fully reproduce the two case studies

(genome annotation files, phylogenetic tree, metadata file with pheno-

typic information, and CALANGO configuration files) are available at

https://labpackages.github.io/CALANGO/.

d Our tool is freely available as an R package in CRAN (https://cran.r-

project.org/package=CALANGO). All original code and processed

data needed to reproduce our results has been deposited at Zenodo

as supplemental data (https://doi.org/10.5281/zenodo.7648987) and

is publicly available as of the date of publication.48

d Any additional information required to reanalyze the data reported in this

descriptor is available from the lead contact upon request.
Analyzing data using CALANGO

Input data

The genomic features, annotation, and dictionary files’ input data are simple

tabular text files containing textual information used to describe genomic ele-

ments and their annotations (Figures S1A and 1A; see the supplemental exper-

imental procedures, section ‘‘genomic data modeling’’, CALANGO’s docu-

mentation, and example files for a deeper explanation on data files and

formats).

- Annotation/dictionary data: we provide a Perl script (calanguize_geno-

mes.pl) that parses GenBank files into high-quality genomic annotation

data compatible with CALANGO input data (Figure 1A, ‘‘genomic anno-

tation’’). This de novo annotation is intended to both allow non-model or-

ganisms to be analyzed using CALANGO and also to remove potential

biases found in data from model organisms arising from an excess of

annotation information.49 The script performs the following steps:
(1) Downloads genomic data for the species/individual to be analyzed.

(2) Extracts the protein-coding genes described.

(3) Provides a single coding sequence per locus, reporting only the

longest coding sequence per locus to avoid possible biases intro-

duced due to the larger number of isoforms described for model

organisms.1

(4) Executes BUSCO for genome completeness evaluation.14

(5) Annotates de novo all valid protein sequences using Inter-

ProScan.20

(6) Generates CALANGO-compatible files for annotated genomes and

dictionaries of annotation terms (Figure 1A, ‘‘genome annotation’’).

- Phylogenetic tree data: CALANGO currently supports fully dichotomous,

ultrametric trees in the newick or nexus formats (Figure 1A, ‘‘phylog-

eny’’). Trees with multichotomies are converted into a dichotomous

tree with branches of length zero to be compatible with the pic() method

from ape R package,17 used to create the phylogeny-aware linear

models.

- Metadata: CALANGO expects a metadata file containing a vector with a

quantitative value to be used for genome-scale association searches

(QVAL), groups for heatmap and boxplot visualization, normalization fac-

tors, and other information needed for proper execution (Figure 1A,

‘‘metadata’’).
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Initiating data analysis

CALANGO starts its analysis with (1) a set of genomic components from

distinct genomes annotated using a common, controlled set of annotation

terms; (2) a dictionary file defining each annotation term in a biologically mean-

ingful way; and (3) a metadata file containing species-centered information,

such as values for optional normalization of annotation count values in each

species (e.g., total count of annotation terms per genome), and theQVAL infor-

mation vector with the quantitative phenotypes in the search for genome-wide

genotype-phenotype associations (Figure 1A). Users must also provide (4) an

ultrametric phylogenetic tree containing all lineages in a given analysis, which

allows CALANGO to correct for phylogeny-related dependencies in the values

of abundance of annotation terms in distinct genomes and in the QVALs.50

The annotation and dictionary files can be generated for non-model organ-

isms by using associated helper scripts distributed with our tool to generate

and parse de novo annotation data from InterProScan20 to CALANGO-

compatible input annotation files. As these input archives are simple tab-de-

limited text files, these can also be easily produced by in-house tools to repre-

sent user-defined annotation schemas.

Based on these input files, CALANGO proceeds by processing genome

annotation data and computing an annotation vector for each species, defined

as the total number of observations of each annotation term in the full set of

genomic components of a species (Figure 1B, ‘‘building of annotation vectors,

table ‘‘annotation vectors’’ contains the representation of all annotation vec-

tors for the distinct species). As an example, if analyzing homologous regions

as defined by the Pfam database, this vector would contain the number of

times each Pfam domain—as defined in the dictionary file linking Pfam IDs

to their definitions—was observed when considering all protein-coding genes

in a genome. Importantly, even though we used only Pfam IDs and their asso-

ciated GO IDs as annotation terms in our case studies, CALANGO can use any

type of annotation schema that encompasses genomic elements and their

annotation terms.

Each annotation vector can be optionally normalized to produce relative

fractions of annotation terms using, for instance, the total number of protein-

coding genes or the total number of annotated regions. This step is intended

to provide a fair comparison in scenarios where distinct genomes have a

considerable variation in their coded proteome size or annotation coverage.

At the end of this step, CALANGO contains a vector containing the relative

or absolute abundance of annotation terms for each genome (Figure 1B,

‘‘normalized annotation vectors’’). If users provide a GO-based annotation,

CALANGO computes count values for terminal GO terms and also for internal

nodes of the GO graph using functionalities provided by the GO.db and

AnnotationDbi R packages.

The next step of our algorithmperforms a genome-scale search for annotation

terms associated with the quantitative phenotype/genotype of interest, repre-

sented as the QVAL vector (Figure 1B, green box, ‘‘building of linear models

for annotation terms’’). Our tool computes different classes of association statis-

tics between theQVAL vector and the abundance of each annotation term: three

commonly used correlation statistics (Pearson, Spearman, and Kendall correla-

tion values) and a phylogeny-aware linearmodel constructed using phylogenetic

independent contrasts (PICs) as described in the classic article by Felsenstein

and implemented in the ape R package through the pic() function.17,50

One key assumption of linear regression analysis is that the residual error in

themodel is independently and identically distributed. This premise is no longer

true when analyzing data from species that descend from a common ancestor,

as closely related species are commonly more phenotypically and genotypi-

cally similar than distant ones. The pic() function computes standardized differ-

ences in trait values for the internal nodes in a phylogeny, taking advantage of

the fact that speciation events are independent. Standardization is performed

bydividing the rawcontrasts computed for each internal node in aphylogenyby

a value proportional to its expected standard deviation under the Felsenstein50

model, which assumes trait changes over time following a Brownian motion

with normal distribution, amean of zero, and a variance ofs2.Under aBrownian

motion model, these standardized contrasts are independent and identically

distributed and canbe used in a variety of statistical tests, including the phylog-

eny-aware linear models computed by CALANGO.

At this point, CALANGOaccess individual p values for each test (traditional as-

sociation statistics and phylogeny-aware linear models) to produce lists of p

values.Toaccount for themultiple hypothesisscenarioof simultaneously search-
14 Patterns 4, 100728, June 9, 2023
ing for associations between QVAL and thousands of annotation terms,

CALANGO reports false discovery rate (FDR)-corrected q values for each list of

p values from distinct association statistics (Benjamini-Hochberg [BH] method).

CALANGO additionally computes the variance and standard deviation of

annotation term counts, together with two customized statistics that summa-

rize how abundant an annotation term is and how frequently it is observed: the

sum of annotation terms and their prevalence (fraction of genomes where an

annotation term is observed). These statistics are intended to provide users

with a useful set of tools to quickly identify interesting associations and also

to detect potential spurious results (we provide post-analysis filtering exam-

ples in the example page containing the output data for the two case studies;

https://labpackages.github.io/CALANGO/articles/examples-page.html).

These metrics have also been used to demonstrate some properties of the do-

main2Pfam and domain2GO annotations.

Twomain output structures are provided (Figure 1C). The first is a list-type R

object containing all computed results, which can be used to survey specific

downstream hypotheses and also to be integrated in other bioinformatics

pipelines (data not shown). This object also contains all input parameters

used to generate the results, therefore providing a simple and convenient

way to share results as well as all necessary parameters required for full repro-

ducibility. The second output is a fully interactive web document that can be

easily shared, hosted online, or browsed locally using any modern web

browser. The CALANGO outputs were designed to facilitate more transparent

reporting of results and sharing of raw data and code. This user-friendly output

facilitates the critical evaluation of all statistics provided by CALANGO in a dy-

namic tabular and graphical manner.

Four kinds of interactive results are provided by the tool. The first is a biclus-

tered heatmap based on annotation terms (clustered based on their values)

and species under analysis (clustered according to the user-provided phylo-

genetic tree), which allows easy inspection of annotation term distribution

across phylogenetic groups and refinement of questions based on interactive

exploration of the graph (Figures 1C and 3 contain examples of a typical output

of CALANGO manually annotated for publication). The second comprises

interactive scatterplots of annotation terms as distributed by their corrected

q values arising from PAMs and from other association tests. Dot size and

transparency are used to highlight interesting annotation terms (both highly

frequent and variable across species).

The third type of output is a dynamical table where users may further explore

and filter results. Each line contains several computed statistics related to a

single annotation term (e.g., correlation values, q values for PIC linear model

and other correlation tests, abundance, prevalence), as well as the raw counts

of that annotation term in each genome. This table allows users to filter results

based on any data column, selecting data slices for further inspection. The dy-

namic table also contains links to the fourth type of interactive output: individ-

ual plots with the distribution of associated annotation term, which includes

scatterplots, linear model trend lines and confidence bands for actual data

values, ranked data, and phylogenetic-aware linear models, together with

violin plots with superimposed raw data, allowing users to visually inspect

how the abundance of annotation terms is distributed in the distinct user-

defined groups. The heatmap in Figure 3 and the association scatterplots in

Figures 4 and 5B are examples of CALANGO’s graphical outputs.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100728.
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