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Transportation Infrastructure is one of key critical infrastructures which are crucial for a well-

functioning modern society. This study proposes a resilience-oriented framework for analyzing 

and ultimately mitigating risk and improving resilience for land transportation networks with a 

focus on vulnerable nodes.  The framework uses network theory and considers the concept of 

independent pathways, network topology, redundancies in the network, reliability of roads, 

importance of hub nodes and vulnerable nodes. A network score is developed based on the 

aforementioned criterion of the network which will be used for comparing different failure 

scenarios under extreme weather events hazard type. The focus of this paper is the importance of 

vulnerable nodes, and it tries to highlight that throughout the paper. A numerical example has 

been utilized to illustrate the use of this framework.  
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1.  INTRODUCTION 
 

Modern Societies rely on critical infrastructures (CIs) for their daily functions. Transportation 

infrastructure (TI) is one of the most crucial of these CIs which is essential for a functioning modern 

society. Along with the normal usage and importance of TIs, most CI sectors are dependent on TIs to 

function effectively; Also, in case of a crisis (natural or man-made) TIs are essential for post-crisis 

recovery.  

Resilience engineering is gradually moving towards becoming one of the major tools in CI 

management. Resilience can be defined as the ability of a system to resist disruptions and adapt to them 

and in case of a failure recover from them quickly. Resilience concept can be divided into four elements: 

I) robustness/redundancy – the ability of a system to avoid and mitigate perturbations while maintaining 

an acceptable service level. II) rapidity – the ability of a system to quickly recover from to the base 

service level after suffering from a perturbation. III) resourcefulness – the ability of a system to continue 

to detect and analyse perturbations to provide adequate measures. IV) adaptability – the ability of a 

system to emerge stronger and learn from disruptions. [1-3] 

TI assessment has been tackled with different modelling approaches in the available literature; these 

methodologies can be categorized into graph theoretical and network analysis approaches, big data 

approaches, simulation models, and optimization models.* [4] 

I) Graph theoretical and network analysis approaches – modelling the transportation networks (TNs) as 

a complex network with cities or intersections as nodes and roads between them as corresponding links. 

There are different perspectives for using network analysis for analysing a TN, some are solely looking 

at the connectivity aspect of the networks, for example, Zhang et al. [5] discovered four different 

network topologies based on their connectivity and ranked them for best to worst resilience. Some are 

looking into various network types and their effect on network resilience, for example Hartmann [6] 

discovered that reducing the network diameter might increase the resilience of TNs by analysing 

different network types. Ip et al. [7] used the concept of reliable passageways for analysing the 

 
* Note that there might be some models that fall out of this categorization, and some models might combine two or 
more of these approaches together. 
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connectivity of origin-destination (O-D) pairs and based on that formulates resilience of each node and 

whole network’s resilience. Zhang et al. [8] used the concept of independent pathways (pathways that 

do not share any common road links) to formulate a performance measure for TNs and used it to find 

the TN’s resilience.  

II) Big data approaches; Chan et al. [9] used the concept of lost service day to formulate the resilience, 

Donavan et al. [10] utilized the probe vehicle numbers (e.g. taxies) to analyse the resilience of TNs in 

a city. Cox et al. [11] measured the difference between passenger behaviour before and after a terrorist 

attack to measure TNs resilience.   

III) Simulation models; Alipour et al. [12] used the concept of change in capacity of the aging bridges 

to assess the seismic resilience of TNs. Mostafavi et al. [13] looked at the sea level rise and its effects 

on long term resilience of TNs. 

IV) Optimization models. Patil et al. [14] minimized the network cost while maximizing the capacity 

degradation of each link before network failure. 

 

A variety of different metrics is being utilized for modelling TNs as seen in the short literature review 

done above. These metrics have two main types, generic or functional. Generic metrics describe the 

network structure, e.g. degree centrality, betweenness centrality, connectivity, etc. Functional metrics 

describe the attributes of a TN, e.g. path length, travel time, traffic flow, path reliability, population 

density of nodes/cities, network topology, etc. [15] 

 

The aim of this paper is to build a resilience-oriented framework of TNs while focusing on the 

robustness/redundancy aspect of resilience is presented. This framework is based on graph theory and 

network analysis and takes into account the concept of independent pathways (i.e., a set of all the 

pathways connecting each node-pair that do not share any identical edge), network topology, 

redundancies in the network, traffic flow, reliabilities of edges, vulnerabilities in nodes (nodes that have 

fewer outgoing edges relative to the other nodes) and the importance of hub nodes (also critical nodes). 

This paper argues that in resilience assessment for transportation networks, node vulnerabilities is 

crucial and needs to be considered with extra emphasis when analysing the network. Last but not least, 

this framework will utilize a score system for comparing different failure scenarios (edge failure 

combinations) to discover the most critical elements (nodes and edges) in the network. The scoring 

system is employed for the whole network and the individual nodes. A hypothetical network consisting 

of 30 nodes subjected to extreme weather hazards will be utilized for a numerical example in this study. 

 

2.  METHODOLOGY 
 

The main purpose of any TI is to handle traffic from any point of origin to any destination. The resilience 

of these TIs can be summed up to them being able to carry out their purpose in case of any disruptions. 

However, as discussed in section 2, previous studies mainly focused on the whole TN in their resilience 

assessment, which will cause vulnerable nodes (VNs) to have little to no effect on the total resilience 

of the TNs. This paper considers the effect of VNs into TNs resilience. VNs are particularly of interest 

to this paper because in case of a disturbance in any of their outgoing edges, their overall connection to 

the network decreases drastically. 

 

This paper defines a resilience-oriented framework of TNs by extending the concept (i.e. weighted 

number of independent pathways or WIPW) suggested by Zhang et al [8]. A pathway between any two 

nodes in a network, consists of multiple edges that in TNs means roads, that are connected in series. 

Independent pathways (IPWs) are a set of all pathways connecting each node-pair that do not share any 

identical edges. the number of IPWs are limited compared to the number of all possible pathways 

between node-pairs in a network which makes this concept particularly useful in networks with a large 

number of nodes due to calculation times. The process for finding IPWs in a network is discussed later 

in the paper. 
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2.1 Network construction 

By using the terminology of graph theory [16], the TN can be defined by 𝐺 = (𝑉, 𝐴) in which 𝑉 =
{1,2, … 𝑛} is a set of nodes that shows either road intersections (if the network is for modelling a city 

TNs) or cities (if the network is for modelling national or international TNs) and 𝐴 = {1,2 … 𝑚} is a set 

of edges that corresponds to roads connecting these nodes. This paper will use the concept of adjacency 

matrix for building the network. Adjacency matrix (𝐴) shows the connectivity of all nodes with respect 

to each other (𝑎𝑖𝑗 = {0 𝑓𝑜𝑟 𝑛𝑜 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑟 1 𝑓𝑜𝑟 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑} ), in a 2D array. Which will be 

denoted by a matrix of ones and zeros.  

𝐴 = [

0 ⋯ 𝑎𝑖𝑗

⋮ ⋱ ⋮
𝑎𝑖𝑗 ⋯ 0

] (1) 

 

2.2 Vulnerable nodes (VNs) 

There are instances in a network when a nodes will get isolated from the main network. This is of 

particular importance for nodes that have relative low degrees with respect to other nodes. For assessing 

resilience of TNs, it is imperative to consider vulnerable and remote nodes. This metric will help to 

consider the remote areas in a transportation network. The model is using node degree to find the VNs 

in the network; however, the resulting metric contributes to edge importance weights. The model will 

assign scores which will signify the importance of each edge with respect to the degree of the node its 

connected to, the lower the node degree, the connecting edges of that node become more important. For 

calculating the scores, there is a need to construct an empirical cumulative distribution function (ECDF) 

from all node degrees in the network, and the nodes that fall under the 10th percentile in the empirical 

distribution function will be considered to be VNs in the network. Note that, usually since the nodes in 

the network won’t exceed a certain amount, the 10th percentile of the ECDF won’t fall exactly on a 

certain node degree number, in that case, the model will consider the closest node degree number to the 

10th percentile in ECDF to be the threshold for being a VN. Any node degree number that is smaller 

than the threshold number will assumed to be a VN. When the VNs have been identified, based on the 

value of the highest node degree in the VNs, a score system will be assigned to them as shown in table 

1: 

 

Table 1: Edge scores with respect to node vulnerabilities 

Node degree Edge/Edges score 

1 n 

2 n-1 

… … 

n-1 2 

n 1 

n+ 0 

  

A situation may arise in this scoring system that an edge has several different scores based on its 

connection to several VNs. In this case, that edge will have a score of the more important category (e.g. 

if an edge have both 3 and 4 scores, it will be assigned a 4 in the final result.) 

2.3 IPW calculation algorithm 

The process of finding IPWs in a network is explained in algorithm 1. This algorithm has been adapted 

from Zhang et al [8]: 
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Algorithm 1 (IPW finding algorithm) [8] 

Input  TNs adjacency matrix for construction of the network 

Output IPWs between all node-pairs in the network 

Step 1 Finding all node-pairs in the network 

Step 2 Finding the shortest path between node-pair (𝑖, 𝑗) using Dijkstra’s algorithm [17] 

Step 3 Storing the shortest path 𝑚𝑘(𝑖, 𝑗)  

Step 4 Removing the edges in 𝑚𝑘(𝑖, 𝑗) from the network 

Step 5 
{
no path can be found between node − pair (𝑖, 𝑗) → end

otherwise → return to step 2
 

Step 6 Repeat steps 2-5 for all node-pairs in the network 

2.4 Framework formulation 

Using the concept of IPWs [8], an overall score can be defined to analyse the performance of the 

network with an emphasis on VNs. This paper calls this score “Network Score” (NS), the network score 

is showing the weighted number of IPWs between all node-pairs in the network. NS can be formulated 

as shown in equation 2: 

 

𝑁𝑆(𝐺) = ∑ 𝑤𝑖ℎ𝑖

𝑛

𝑖=1

 (2) 

in which 𝑤𝑖 is the weight of each individual node in 𝑉 = {1,2, … 𝑛} which will be explained later on, 

and ℎ𝑖 is the normalized number of IPWs between node 𝑖 and all other nodes except for 𝑖 which can be 

seen in equations 3 and 4: 

ℎ𝑖 =
1

𝑛 − 1
∑ 𝐴(𝑖, 𝑗)

𝑛

𝑗=1,𝑗≠𝑖

 (3) 

𝐴(𝑖, 𝑗) =  ∑ 𝑤𝑘
′ (𝑖, 𝑗). 𝑅𝑘(𝑖, 𝑗)

𝑘(𝑖,𝑗)

𝑘=1

 (4) 

in which 𝑘(𝑖,𝑗) is the number of IPWs between node-pair (𝑖, 𝑗), 𝑤𝑘
′ (𝑖, 𝑗) is the weight of the 𝑘𝑡ℎ IPW 

between node-pair (𝑖, 𝑗) (this model will use 𝑚𝑘(𝑖, 𝑗) for showing the 𝑘𝑡ℎ IPW between node-pair (𝑖, 𝑗) 

, and 𝑅𝑘(𝑖, 𝑗) is the reliability of the 𝑘𝑡ℎ IPW between node-pair (𝑖, 𝑗). Since each IPW is a set of 

connected edges in series the total reliability of any IPW can be calculated by multiplying the reliability 

of all edges in that IPW (this paper shows the reliability of each edge by 𝑟𝑒 and the reliability of edges 

are assumed to be constant) which can be found in equation 5: 

𝑅𝑘(𝑖, 𝑗) =  ∏ 𝑟𝑒  ∀ 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑘𝑡ℎ 𝐼𝑃𝑊 (5) 

 

𝑤𝑖 which has been introduced in equation 2 is proportional to the degree centrality of each node. Degree 

centrality is a way of ranking nodes in any network based on the number of edges connected to them. 

In a TN, considering degree centrality as a weighting index helps the model to identify the critical nodes 

(nodes that have the most degree and therefore are critical to the networks connectivity). In resilience 

assessment of TNs, nodes with high degree centrality are crucial since a disruption in one of these nodes 

can disrupt the whole network. In this paper, Degree centrality of each node is shown by 𝐶𝐷
𝑖  and it can 

be calculated by equation 6 [18]: 

 

𝐶𝐷
𝑖 =  

𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑖

𝑛 − 1
 (6) 

in which, “degree of node 𝑖 is the number of outgoing edges from node 𝑖, and 𝑛 − 1 is the total number 

of possible outgoing edges which is the number of total nodes minus one. With this index, the model 

can now calculate the weight of each node by equation 7: 

𝑤𝑖 =  
𝐶𝐷

𝑖

∑ 𝐶𝐷
𝑖𝑛

𝑖

 (7) 
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note that ∑ 𝑤𝑖
𝑛
𝑖 = 1. 

𝑤𝑘
′ (𝑖, 𝑗) which has been introduced in equation 4 and is the weight of each IPW, is related to two 

different metrics that are related to edges of the graph: 1) length of each edge 2) vulnerability of nodes 

factor in each edge. The model needs to calculate each of these measures separately. Let’s start with the 

length of each edge, which needs to first be transformed into length of each IPW: 

𝐿𝑚𝑘
(𝑖, 𝑗) =  ∑ 𝐿𝑒 ∀ 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑘𝑡ℎ 𝐼𝑃𝑊 (8) 

 

in which, 𝐿𝑚𝑘
(𝑖, 𝑗) is the length of 𝑘𝑡ℎ IPW, and 𝐿𝑒is the length of each respective edge in 𝑚𝑘(𝑖, 𝑗). 

importance of length of 𝑚𝑘(𝑖, 𝑗) is negatively correlated to the value of 𝐿𝑚𝑘
(𝑖, 𝑗), lower values for 

𝐿𝑚𝑘
(𝑖, 𝑗) represents better scores for 𝑚𝑘(𝑖, 𝑗). To be able to use this as a metric in the weights of IPWs 

it needs to be normalized. The normalized version of length of 𝑚𝑘(𝑖, 𝑗) can be found in equation 9: 

𝐿𝑚𝑘
𝑛 (𝑖, 𝑗) =  

1

𝐿𝑚𝑘
(𝑖,𝑗)

∑
1

𝐿𝑚𝑘
(𝑖,𝑗)

𝑘(𝑖,𝑗)
𝑘=1

∗ 𝐾(𝑖, 𝑗)    (9) 

in which 𝐿𝑚𝑘
𝑛 (𝑖, 𝑗) is the normalized length of 𝑚𝑘(𝑖, 𝑗), and 𝐾(𝑖, 𝑗) is the total number of IPWs between 

node-pair (𝑖, 𝑗). Now to formulate the VN factor in edges, this paper will present the score of each edge 

by 𝐼𝑒, equation 10 shows the VN factor in 𝑚𝑘(𝑖, 𝑗): 

𝐼𝑚𝑘
(𝑖, 𝑗) =  ∑ 𝐼𝑒 ∀ 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑘𝑡ℎ 𝐼𝑃𝑊 (10) 

in which 𝐼𝑚𝑘
(𝑖, 𝑗) is the VN factor of 𝑚𝑘(𝑖, 𝑗). The normalized version of VN factor of 𝑚𝑘(𝑖, 𝑗) is 

shown in equation 11: 

𝐼𝑚𝑘
𝑛 (𝑖, 𝑗) =  

𝐼𝑚𝑘
(𝑖, 𝑗)

∑ 𝐼𝑚𝑘
(𝑖, 𝑗)

𝑘(𝑖,𝑗)

𝑘=1

∗  𝐾(𝑖, 𝑗) 

 

(11) 

Finally, the weight of each IPW (𝑤𝑘
′ (𝑖, 𝑗)) can be calculated by combining the normalized version of 

VN factor of 𝑚𝑘(𝑖, 𝑗) and normalized length of 𝑚𝑘(𝑖, 𝑗) and it is shown in equation 12: 

 

𝑤𝑘
′ (𝑖, 𝑗) =  𝑥 ∗ 𝐿𝑚𝑘

𝑛 (𝑖, 𝑗) + (1 − 𝑥) ∗ 𝐼𝑚𝑘

𝑛 (𝑖, 𝑗) 

 
(12) 

 

in which 𝑥 is a decision variable, and is a number between 0 to 1 and can be manipulated based on the 

needs of the decision makers. 

2.5 Failure scenarios  

The failure scenarios that this paper uses are based on extreme weather events which in this case the 

paper is talking about severe icing on roads which makes transportation on some roads of the TN 

impossible. The failure will be binary (i.e., a road is either failed completely or is operational there is 

no limited operationality defined). Failure scenarios are constructed on a basis of semi-random edge 

removal which is linked to the reliability of each edge (i.e., the removal of edges are randomized based 

on their reliability) using Monte-Carlo simulation.  

2.6 Resilience enhancement strategies 

This paper knowingly will ignore the cost-benefit analysis for enhancing the typical overall network 

resilience in favour of enhancing the vulnerable nodes and with that enhances the network resilience in 

a different way in other words, this paper will consider an unlimited resources scenario. There are many 

ways of enhancing the pre-disaster network resilience in a transportation network this paper will discuss 

two possible solution scenarios. note that, these scenarios can be combined given the unlimited 

resources assumption.  

 

1. Changing the networks topology:  

Adding new construction plans (adding new edges to the network) for enhancing the vulnerable 

nodes.  
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2. Improving the reliability of roads: 

This strategy is about strengthening the roads for the specific hazard scenario of extreme 

weather events. Which can be done by adding modifications and repairing the existing roads. 

There are three ways of achieving this  

 

 

2.7 Illustrative numerical example 

In this section, A numerical example will be presented to illustrate the role of the network score metric. 

The network consists of 30 nodes and 45 edges that represent a TN which is illustrated in Figure 1.  

  

 
Figure 1 Hypothetical TN’s Illustration 

 

 

Table 2 VN factor calculations 

Node degree 𝑃(𝑥 ≤ 𝑁𝑜𝑑𝑒 𝐷𝑒𝑔𝑟𝑒𝑒) VN factor for outgoing edges 

1 0.167 1 

2 0.533 0 

3 0.7 0 

4 0.8 0 

5 0.867 0 

6 0.967 0 

7 0.967 0 

8 1 0 
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The reliability of each edge is based on the failure scenario of extreme weather events which means the 

numbers provided in table 2 are based on reliability of edges against this specific hazard. The reliability 

of each edge is considered to be a normal distribution with a mean value as shown in table 3 for each 

respective edge. VN factor for this network has been calculated based on the empirical cumulative 

distribution function of all the node degrees in the network, as explained in section 3.2. Table 2 shows 

the respective probabilities based on the ECDF of the node degrees for each node degree number. Based 

on table 2 only nodes with node degrees one or less are considered to be VNs in this network; thereafter, 

with respect to table 1, the VN factor for edges can be calculated. Nodes 26, 27, 28, 29 and 30 are the 

VNs and respectively edges (22,28), (18,27), (14,26), (10,30) and (24,29) are edges that are affected by 

the VN factor. The attributes for all edges can be found in Table 3. 

 

Before analysing the network in its real operational condition, this study looks at this network under 

different operational condition these conditions are described in four scenarios that are: 

1. Perfect reliability for all roads, No VN factor: 

In this scenario, the reliability of all roads in the network is set to perfect condition (0.999) and 

the decision variable 𝑥 is set to one. Which means the VN factor is removed from the formula 

in this scenario the model will produce 𝑁𝑆 = 1.2435 which means there are 1.2435 average 

IPWs between all node-pairs under this perfect condition.  

2. Perfect reliability for all roads, VN factor included: 

In this scenario, again the reliability of all roads in the network is set to perfect condition, 

however, the decision variable is set to 𝑥 = 0.5. which means both length and VN factor are 

considered equally as important. The model will give 𝑁𝑆 = 0.7095 which indicated a huge 

decline in NS after introducing the VN factor into it. Note that this number is not representative 

of the average number of IPWs between all node-pairs in the network. 

3. Real reliability for all roads, No VN factor: 

In this scenario, the reliability of all roads has been set to their actual number as stated in table 

3, and the decision variable is set to 𝑥 = 1 , which again means that VN factor has been 

eliminated from the formula. For these conditions the model produces 𝑁𝑆 = 0.6092 which 

again is representative of the number of average IPWs between all node-pairs, under real 

conditions this time. 

4. Real reliability for all roads, VN factor included: 

In this scenario, like the previous one, the reliability of all roads has been set to their actual 

numbers; However, the decision variable is set to  𝑥 = 0.5. Under these conditions the model 

produces 𝑁𝑆 = 0.3354 which again shows a significant decline compared to the previous one 

with no VN factor.  

 

The model will use scenario 4 as its base of calculations. In this scenario,  𝑁𝑆 = 0.3354 is considered 

the baseline network score. The model now considers an extreme precipitation event in wintertime 

which results in freezing rain on roads and renders some of the roads out of service. Some of the roads 

will be eliminated based on their reliability to this specific hazard type. For achieving this a semi-

random removal of roads with respect to their reliability has been implemented in the system. Fig. 2 

shows the histogram of NS after using 300000 Monte-Carlo simulations under this specific hazard type, 

the mean network score is  𝑚𝑒𝑎𝑛(𝑁𝑆) = 0.1464 which is less than half of the baseline NS of the 

network. This shows that the network is susceptible to this specific hazard type and in case of an extreme 

precipitation event, this network will lose half its functionality while focusing on the VNs.  
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Table 3 attributes of edges in the hypothetical TN 

Edge Reliability VN factor Length (Km) 

(1,2) 0.73 0 10 

(1,3) 0.83 0 9.7 

(1,4) 0.72 0 9.6 

(1,5) 0.69 0 10.4 

(1,6) 0.79 0 4 

(1,7) 0.75 0 6 

(1,8) 0.69 0 7 

(1,9) 0.67 0 8.2 

(2,3) 0.65 0 9.5 

(2,7) 0.71 0 8.9 

(2,19) 0.80 0 7.3 

(2,21) 0.81 0 10.8 

(3,4) 0.89 0 4.58 

(3,17) 0.75 0 5.69 

(3,18) 0.80 0 7.45 

(4,5) 0.79 0 6.57 

(5,6) 0.61 0 9.24 

(5,14) 0.78 0 7.54 

(5,15) 0.77 0 7.16 

(5,16) 0.89 0 6.32 

(6,9) 0.71 0 5.96 

(6,11) 0.89 0 8.29 

(6,12) 0.70 0 7.46 

(6,13) 0.84 0 6.38 

(7,8) 0.85 0 4.85 

(7,22) 0.77 0 8.42 

(8,9) 0.82 0 11.58 

(8,25) 0.55 0 10.43 

(9,10) 0.88 0 9.28 

(9,11) 0.82 0 8.79 

(9,25) 0.76 0 5.17 

(10,30) 0.66 1 6.84 

(12,13) 0.84 0 7.14 

(14,15) 0.75 0 10.74 

(14,26) 0.76 1 8.11 

(16,17) 0.59 0 7.12 

(18,27) 0.85 1 8.55 

(19,20) 0.74 0 6.99 

(20,21) 0.83 0 6.5 

(21,22) 0.77 0 8.5 

(22,23) 0.82 0 5.5 

(22,28) 0.81 1 10.5 

(23,24) 0.76 0 7.6 

(24,25) 0.74 0 5.6 

(24,29) 0.70 1 5.64 
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Figure 2 Histogram of Network Score (NS) 

 

Resilience enhancement strategy one (changing the topology of the network): 

 

 

 
Figure 3 retrofitted network 
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This resilience enhancement strategy requires proposing new construction plans for enhancing the 

overall network’s resilience with respect to VNs. This paper proposes adding 5 new edges to the 

network; Figure 3 shows the retrofitted network. Edges (13,26), (17,27), (21,28), (23,29) and (25,30) 

has been added to the network to eliminate the vulnerable nodes factor entirely. With these 

modifications, the baseline network score will increase up to 𝑁𝑆 =  0.6811 which is more than twice 

the baseline NS for the network before the retrofit operations. Also, by imposing the retrofitted network 

to the same failure scenario of semi-random edge removals with respect to extreme weather events, 

mean network score for this retrofitted network post-disruption will be 𝑚𝑒𝑎𝑛(𝑁𝑆) =  0.2994 which is 

more than twice the mean NS for the original network before retrofit operations. 

 

Resilience enhancement strategy two (Improving the reliability of roads): 

 

This resilience enhancement strategy can be done in two different ways. The decision makers can either 

improve the reliability of all the roads by a small amount; or, to improve the reliability of certain 

important roads that contribute the most to NS. In the scope of this paper, the roads that lead to the VNs 

are the most critical roads since in case they are removed from the network, the VNs will become 

isolated from the main body of the network. This paper proposes to increase the reliability of the edges 

(14,26), (18,27), (22,28), (24,29) and (10,30) which will decrease the probability of isolation for the 

VNs, the reliability of this roads with the planned modifications and repairs will be close to as good as 

new conditions which is 0.99. The reliabilities of these edges and the improved ones are shown in table 

4. 

 

Table 4 Improved reliability data 

Edge Original Reliability Improved Reliability 

(14,26) 0.76 0.99 

(18,27) 0.85 0.99 

(22,28) 0.81 0.99 

(24,29) 0.7 0.99 

(10,30) 0.66 0.99 

 

This resilience enhancement scenario will lead to a baseline NS of 𝑁𝑆 =  0.357 which is a 6.5% 

increase from the original network’s NS. This slight increase in NS shows that, a small, directed 

enhancement of edge reliabilities can prove very effective in the overall NS of the network. Also, by 

imposing the enhanced network to the same failure scenario of semi-random edge removals with respect 

to extreme weather events, mean network score for this enhanced network post-disruption will be 

𝑚𝑒𝑎𝑛(𝑁𝑆) =  0.152, which is almost a 4% increase in the mean NS compared to the original network.  

  

  

 

3.  CONCLUSION 
This paper introduced a framework for analyzing the resilience of a network before and after a 

disruption with an emphasis on vulnerable nodes and based on extreme weather events. The framework 

uses network theory and considers the concept of independent pathways, network topology, 

redundancies in the network, reliability of roads, importance of hub nodes and vulnerable nodes. The 

main objective of this framework is to integrate the vulnerable nodes into the resilience assessment of 

transportation networks, which is achieved by introducing a new metric vulnerable nodes factor that is 

utilized in the importance of the edges in the network. The framework allow for studying different 

scenarios to see the effects of different changes in the baseline value for NS; this shows that we’ll the 

vulnerable nodes factor introduced by this paper will reduce the effective amount of IPWs between all 

node-pairs significantly, in the numerical example it can be seen that NS has decreased by 81%. There 

are two different resilience enhancement strategies has been proposed by this paper I) Changing the 

topology of the network II) Improving the reliability of the roads. In the numerical example illustrated 

by this paper, the first strategy proved to be more effective since by adding new roads connecting the 
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VNs to the main body of network, the VN factor was eliminated from the network, resulting in both 

baseline and mean NS being doubled. The secondary resilience enhancement strategy which increased 

the reliability of roads affected by VN factor, however, increased the baseline NS by 6.5% and mean 

NS by 4%; the secondary strategy is only recommended if implementation of the first strategy is either 

not physically possible or economically unreasonable. This study introduced a way for the marginal 

and vulnerable nodes to be entered into the discourse of transportation networks resilience analysis.   
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