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A binary self-assembling mixture near a planar wall is studied by theory and Monte Carlo simulations.
The grand potential functional of the local concentration and the local volume fraction of all particles
is developed in the framework of the density functional and field-theoretic methods. We obtain ordinary
differential Euler–Lagrange equations for the concentration and the volume fraction, and solve them ana-
lytically in the perturbation expansion. The obtained exponentially damped oscillations of the concentra-
tion, with the characteristic lengths the same as in the concentration-concentration correlation function,
agree very well with simulations. For the excess volume fraction we obtain a monotonic decay superim-
posed on the exponentially damped oscillations with a fair agreement with simulations. The period of the
density oscillations is equal to half the period of the concentration oscillations in both the theory and
simulations. Simulations show local ordering in the layers parallel to the wall that are rich in one of
the two components. Bubbles, stripes and clusters appear in the subsequent layers for increasing distance
from the wall. Between these almost one-component layers the density takes minima, and a bulk-like
structure with clusters of different particles being nearest neighbors appears.
� 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license

(http://creativecommons.org/licenses/by-nc/4.0/).
1. Introduction

Biological and soft-matter systems are strongly inhomoge-
neous, and the effect of boundaries in their case is significantly dif-
ferent than in simple fluids. In the case of systems with
spontaneous inhomogeneities, confinement in regions of various
sizes and shapes leads to significant structural modifications
resulting in changes of thermodynamic and mechanical properties.
These effects have been studied over decades [1–14]. In contrast,
adsorption phenomena in systems with spontaneous inhomo-
geneities attracted much less attention [7–9], despite the fact that
surfaces of different kind play a very important role in biological
and soft-matter systems. In this work, we address the general
question of the effect of a planar wall on a mixture with sponta-
neous inhomogeneities that occur on a mesoscopic length scale.

In biological and soft-matter systems, the interactions or effec-
tive interactions between particles can be quite complex, and often
exhibit competing tendencies. A representative example is the
short-range attraction long-range repulsion (SALR) between
charged particles or globular proteins in complex solvents inducing
the short-range attraction. When the particles interact with the
SALR potential, stable clusters can be formed when a density of a
dilute system increases, and/or temperature decreases [15]. The
onset of clustering can be identified with the appearance of a max-
imum at n ¼ no > 1 of the probability PðnÞ that a randomly chosen
particle is a member of a cluster consisting of n particles [16]. PðnoÞ
increases with increasing density of the particles, and becomes
equal to Pð1Þ at the crossover between monomer- and cluster dom-
inated system. At this crossover, the specific heat takes a maxi-
mum, since the energy fluctuations are large when clusters
assemble and disassemble with a high probability [8].

In the monomer dominated system, the adsorption at an attrac-
tive surface at z ¼ 0 has the same qualitative behavior as in simple
fluids. Namely, the adsorption C ¼ R1

0 dzðfðzÞ � fbÞ, where fðzÞ and
fb are the volume fraction at the distance z from the wall and in the
bulk, respectively, increases with increasing chemical potential l
[9]. At the crossover between the monomer- and cluster domi-
nated systems, however, CðlÞ takes a maximum [9]. Further
increase of l leads to decreasing C, which means that new parti-
cles introduced to the system are not adsorbed at the surface,
but remain in the bulk. This is because the sum of the interactions
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of a particle in the bulk with all the adsorbed clusters is strongly
repulsive. The repulsion keeps the particle away from the surface,
and leads to a broad depletion zone after the adsorbed layer of
clusters [8]. As shown by simulations, the excess density exhibits
an oscillatory decay, fðzÞ � fb / expð�a0zÞ sinða1zþ hÞ, with the
period 2p=a1 and the decay length 1=a0 the same as in the bulk
correlation function [8]. This asymptotic behavior of fðzÞ � fb pre-
dicted theoretically for z ! 1 [17] agrees very well with simula-
tions for z just after the depletion zone [8]. It is worth
mentioning that the decay of the charge density in ionic liquids
near an electrode follows the same asymptotic behavior already
for z > 2p=a1 as well [18].

Another interesting property distinguishing the SALR system
from simple fluids is the structure near a hard wall. A particle at
the wall interacts with the fluid particles, and this interaction is
not compensated by the interaction with the missing particles at
z < 0. In simple fluids, the particle at the wall is pulled to the bulk,
because of the uncompensated attraction by the fluid particles. In
the SALR system, however, the long-range repulsion by the fluid
particles is not compensated, and particles near the wall are
pushed towards it. Such an effective attraction by the hard wall
was observed in simulations and in DFT calculations
[12,13,11,14]. The strength of the effect of the missing neighbors
was predicted in [17] in the mean-field (MF) approximation.

A very powerful method of determining the structure near solid
surfaces or at interfaces, is the classical density functional theory
(DFT) [19,20]. It gives accurate predictions for the density profiles
near the surface. Minimization of the functional, especially for
complex systems, is not trivial, however. The Euler–Lagrange (EL)
equations are very complex, and can be solved only numerically
at rather large computational cost. Finally, the results are limited
to particular examples. The EL equations in the phenomenological
Landau theory, where the interactions with the wall and the com-
pensation for the missing neighbors are taken into account in a
simple surface contribution to the Landau functional, are much
simpler [21]. The ordinary differential EL equations can be solved
analytically, but the results are only qualitative and are given in
terms of phenomenological parameters. The advantage is a general
overview of possible types of solutions of the EL equations for a
broad range of phenomenological parameters, but a microscopic
theory or experimental results are necessary for determining the
values of the phenomenological parameters for particular systems.

A compromise between the DFT and the Landau-type theory is
the mesoscopic theory developed for the semiinfinite SALR system
in Ref.[17]. In this theory, the grand-potential functional is coarse-
grained and transformed to a functional that has the Landau-type
form, but all parameters are given in terms of interactions and
thermodynamic variables. The missing-neighbors contribution is
given in terms of odd semi-moments of the interaction potential.
The theory, however, is of the MF type, whereas in inhomogeneous
systems fluctuations of the local density, i.e. in fact formation of
clusters or depleted regions between them, play an essential role.

Biological and soft-matter systems are typically inhomoge-
neous and multicomponent, but mixtures with competing interac-
tions did not attract much attention until very recently [22–26].
Addition of a second component to particles interacting with the
SALR potential can lead to formation of different aggregates,
depending on the interactions between the second-component
particles and on the cross-interaction. The cross-interaction may
have different forms, depending on the nature of the particles
and of the solvent. Depending on the strength of the
cross-interaction, giant clusters with mixed or separated compo-
nents, or chains of alternating clusters of different species were
observed in simulations of a binary mixture with the SALR interac-
tions between all the pairs of the particles [23]. In another,
2

experimentally relevant example, for the cross-interaction a repul-
sion at short- and an attraction at large distances was assumed in
the simulation and theoretical studies [24,25]. Oppositely charged
solvophilic and solvophobic particles attract each other at large
distances, and repel each other at shorter distances due to the ther-
modynamic Casimir potential when the solvent approaches its crit-
ical point [27–29]. The Casimir potential between like particles is
attractive, therefore like charged particles interact with the SALR
potential. The Casimir potential can be tuned by controlling the
temperature. In simulation and theoretical studies of such a mix-
ture with interactions favoring small clusters of like particles, a
coexistence of a gas and a dense phase with alternating bilayers
of the two components was observed for equal numbers of parti-
cles of the two components. In the disordered phase, the correla-
tion function for the concentration fluctuations exhibits
exponentially damped oscillations, and the period of the oscilla-
tions can be tuned by changing the shape of the potential [25,24].

In general, in one component systems either macroscopic gas–
liquid transition, or alternating mesoscopic dense and dilute
domains can be formed. The density waves in different directions
can interfere leading to phases with different symmetry [30]. In
binary mixtures, we can have demixing on the macroscopic or
mesoscopic length scale in addition to the separation into dense
and dilute regions [31]. Interference of the density and concentra-
tion waves can produce more complex structures. The types of
aggregates for different concentrations and densities and the
whole phase diagrams for binary mixtures with competing interac-
tions are not known yet.

Because of many open questions concerning the bulk properties
of mixtures with competing interactions, the effect of confinement
on such mixtures has not attracted much attention yet. However,
as shown by molecular dynamics simulations in Ref.[7], nontrivial
adsorption phenomena can occur at a planar surface for the system
with the phase diagram determined in Ref.[24]. When the gas
phase in the bulk is close to the coexistence with the dense ordered
phase, very interesting structural changes occur at a selective sur-
face attracting only the first component. When the wall-particle
attraction is moderate, a dense and quite thick film with the alter-
nating bilayers perpendicular to the wall is adsorbed. When the
wall-particle attraction becomes very strong, the alternating layers
are parallel to the surface, and ordered internal patterns in the lay-
ers at some distance from the wall develop.

As far as we know, no theoretical predictions for the effect of a
wall on the disordered inhomogeneous mixture have been pub-
lished so far. In this work, a mesoscopic theory for binary mixtures
near a planar wall is developed. We take into account fluctuations
of the local densities by combining the DFT and field-theoretic
methods. Our theory for the bulk is summarized in Section 2. We
focus on symmetrical binary mixtures, such as those studied in
Ref.[24,25], and obtain the grand potential functional for a semiin-
finite system in Section 3. In Section 3.1, the derivation of the func-
tional is presented. Explicit expressions for the EL equations for the
volume fraction and concentration, and the boundary conditions
are developed in Section 3.2. We solve the equations analytically
in a perturbation expansion in Section 3.3. In Section 4 a particular
model for the symmetrical binary mixture is considered. We obtain
the correlation functions and the concentration and density pro-
files from our analytical expressions in Section 4.1. Our results
are compared with Monte Carlo (MC) simulations in Section 4.2.
Section 5 contains our conclusions.

2. Mesoscopic theory for inhomogeneous binary mixtures

In this section we briefly summarize the formalism allowing for
addition of terms depending on the variance of local densities to
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the grand potential density functional [31,24]. Next, we develop
approximate equations for the correlation functions in the case
of symmetrical binary mixtures. In our theory, the methods of
the DFT are combined with an extension of the Brazovskii field the-
ory [32].

In order to describe the structure on the mesoscopic length
scale, we consider the volume fraction fiðrÞ of the i-th component
in the mesoscopic region around r, and external fields hiðrÞ acting
on the i-th component, varying on the mesoscopic length scale as
well. We consider a binary mixture with i ¼ 1;2, but generalization
to more components is straightforward. The generating functional
for the correlation functions is �bXh½fhig�, where

bXh½fhig� ¼ � ln
Z

Df1

Z
Df2 exp �bXco½ffig� þ

Z
drbhiðrÞfiðrÞ

� �
ð1Þ

is the grand potential in a presence of the external fields hiðrÞ in
kBT ¼ 1=b units, with kB and T denoting the Boltzmann constant
and temperature, respectively. In (1) and below the summation
convention for repeated indexes is used. Note that in (1) we have
the factor exp½�bXco� instead of the Boltzmann factor expð�bHÞ,
where H is the microscopic Hamiltonian. Moreover, the functional
integrals are over the mesoscopic volume fractions fi, rather than
over all microscopic states. This is because in (1) the integration
over the mesoscopic degrees of freedom, fi, and the integration over
the microscopic states for each fixed fi are performed separately.
The integration of the Boltzmann factor expð�bHÞ over the micro-
scopic states for given fi leads to the factor exp½�bXco�, where Xco

is the grand potential for the system with suppressed fluctuations
around fiðrÞ.

The average mesoscopic volume fraction at r, and the correla-
tion function between fluctuations of fi in the mesoscopic regions
around r1 and r2 are given by

�fiðrÞ ¼ dð�bXhÞ
dðbhiðrÞÞ ð2Þ

and

Gijðr1 � r2Þ ¼ hfiðr1Þfjðr2Þi � �fiðr1Þ�fjðr2Þ ¼ d�fiðr1Þ
dbhjðr2Þ : ð3Þ

The Legendre transform

bX½ff
�
ig� ¼ bXh½fhig� þ

Z
drbhiðrÞf

�
iðrÞ ð4Þ

is a functional of �fi, generating the inverse correlation functions,

Cijðr1 � r2Þ ¼ d2bX
d�fiðr1Þd�fjðr2Þ

¼ dbhiðr1Þ
d�fjðr2Þ

: ð5Þ

From (3) and (5) one can easily get the analog of the Ornstein–Zer-
nike (OZ) equation relating the correlation and the inverse (in the
matrix sense) correlation functions, G and C, with the elements Gij

and Cij, respectively,Z
dr3Cijðr1 � r3ÞGjkðr3 � r2Þ ¼ dðr1 � r2ÞdKrik : ð6Þ

Using (1), we rewrite (4) in the form

bX½f�fig� ¼ bXco½f�fig� � ln
Z

D/1

Z
D/2 exp �bHf ½f�fi;/ig�

� � ð7Þ

where /iðrÞ ¼ fiðrÞ � �fi is the local fluctuation of fi, and

bHf ½ff
�
i;/ig� ¼ bXco½ff

�
i þ /ig� � bXco½ff

�
ig� �

Z
drbhiðrÞ/iðrÞ: ð8Þ

In the disordered phase with hi ¼ 0;�fi does not depend on the
position.
3

From (5) and (7) we can see that the matrix C contains a contri-
bution from bXco associated with microscopic fluctuations (the
first term in (7)), and the contribution associated with the meso-
scopic fluctuations /iðrÞ (the second term in (7)). The fluctuations
of the local densities play important role in systems with sponta-
neous inhomogeneity, since the density inside the clusters is larger
than between them, and the clusters move freely in the disordered
phase. In the course of time, the clusters enter or leave the meso-
scopic subsystem at r, therefore local deviations from �fi appear
with a large probability, leading to a large fluctuation contribution
to the grand potential. The separation of the microscale from the
mesoscale fluctuations allows us to use the methods of the field
theory in calculations of the correlation functions at large
separations.

In order to proceed, we need to know the form of Xco that
should satisfy the general thermodynamic formula

Xco½ffig� ¼ Uco½ffig� � TSco½ffig� � li

Z
drfiðrÞ: ð9Þ

Uco½ffig� and Sco½ffig� are the internal energy and the entropy,
respectively, in the presence of the constraints ffig imposed on
the microscopic states, and li is the chemical potential of the i-th
species. Exact determination of Uco and Sco is a very difficult task.
However, in the case of suppressed mesoscopic fluctuations, these
quantities can be approximated by the well-known MF formulas.
We make the approximation

Uco½ffig� ¼
1
2

Z
dr1

Z
drfiðr1ÞVijðrÞfjðr1 þ rÞ; ð10Þ

where r ¼ jrj. By VijðrÞ we denote the product of the interaction
between particles of the i-th and j-th component and the pair distri-
bution function gijðrÞ. For the system with suppressed mesoscopic
fluctuations we assume gijðrÞ ¼ h r � ðri þ rjÞ=2

� �
, where ri is the

diameter of the i-th species and h is the unit step function. With this
assumption, we avoid contributions to the energy from overlapping
hard cores of the particles. Because in (9) and (10) we use
fi ¼ pqi=6, where qi is the dimensionless density, li and VijðrÞ
should be in appropriate units. Finally, we assume
�TSco ¼

R
drf hðf1ðrÞ; f2ðrÞÞ, where

bf h ¼ q1 lnq1 þ q2 lnq2 þ bf ex ð11Þ
is the free-energy per unit volume of the hard-core reference sys-
tem in the local-density approximation. The first two terms come
from the entropy of mixing, and the last term describes packing
of hard cores. For the latter term, the Carnahan-Starling (CS)
approximation [33] can be used.

The rather difficult problem of calculating the correlation func-
tions from (5)–(8) simplifies greatly in symmetrical mixtures with
l1 ¼ l2, and Vii ¼ �Vij ¼ V (see [24,25]). The above property has
for example the restricted primitive model (RPM) for ions or parti-
cles with the positive and negative charge of the same magnitude
and with the spherical hard cores of the same size. From now on
we limit ourselves to such symmetrical mixtures. In the symmetri-
cal case, it is convenient to consider the total volume fraction and
the concentration, f ¼ f1 þ f2 and c ¼ f1 � f2, respectively, because
in the absence of external fields �c ¼ 0 by symmetry. Moreover, in
these variables the internal energy (10) takes the simple form

Uco ¼ 1
2

Z
dr1

Z
drcðr1ÞVðrÞcðr1 þ rÞ

¼ 1
2

Z
dkĉðkÞV̂ðkÞĉð�kÞ; ð12Þ

where V̂ðkÞ and ĉðkÞ denote the functions V and c in Fourier repre-
sentation, and k ¼ jkj. We will use the same convention (a hat) for
all functions in Fourier representation in the 3 dimensional space.
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We shall calculate the correlation functions for the fields c and
f;GccðrÞ ¼ hcðr1Þcðr1 þ rÞi and GffðrÞ ¼ hfðr1Þfðr1 þ rÞi � �f2. For the
inverse correlation functions we obtain, using (7) the following
expression

CabðrÞ ¼ d2bX
daðr1Þdbðr1 þ rÞ ¼

d2ðbXcoÞ
daðr1Þdbðr1 þ rÞ

þ d2ðbHf Þ
daðr1Þdbðr1 þ rÞ �

dðbHf Þ
daðr1Þ

dðbHf Þ
dbðr1 þ rÞ

* +
ð13Þ

where a ¼ c; f; b ¼ c; f.
Note that

Am;nðc; fÞ ¼ @nþmðbf hÞ
@nc@mf

ð14Þ

has the property Am;2nþ1ð0;�fÞ ¼ 0, because derivatives of an even
function of c vanish at c ¼ 0. As a result Cfc ¼ 0, and the fields c

and f are the eigenvectors of the matrices C and G ¼ C�1, therefore
the correlation functions GccðrÞ and GffðrÞ in Fourier representation
are simply given by

ĜaaðkÞ ¼ 1=ĈaaðkÞ: ð15Þ
The probability that a local fluctuation / ¼ c � �c;w ¼ f� �f appears,
is proportional to expð�bHf Þ, and the correlation functions can be
obtained from the formula

Gccðr1; r2Þ ¼ h/ðr1Þ/ðr2Þi ¼
R
D/
R
Dwe�bHf /ðr1Þ/ðr2ÞR
D/
R
Dwe�bHf

; ð16Þ

with analogous expression for Gff. We make the approximation

bHf ½f�fi;/ig� � bHG½�c;�f;/;w� ð17Þ
with

bHG½�c;�f;/;w� ¼ 1
2

Z
dr1

Z
dr2 /ðr1ÞCccðrÞ/ðr2Þ þ wðr1ÞCffðrÞwðr2Þð

þ2/ðr1ÞCcfðrÞwðr2ÞÞ; ð18Þ

where Cab is a functional of �c;�f satisfying (13). Because Ccf ¼ 0 for
�c ¼ 0 (vanishing external fields), we obtain in Fourier representa-

tion ĜccðkÞ ¼ 1=ĈccðkÞ for Gcc defined in (16), and ĜffðkÞ ¼ 1=ĈffðkÞ
for Gff defined by an equation analogous to (16). Thus, when Hf is
approximated by (17) and (18), Caa can be obtained for �c ¼ 0 by a
self-consistent solution of (13).

In order to solve self-consistently Eqs. (13)–(18), we assume
that the fluctuation contribution to the two-point functions should
be taken into account according to Eq. (13), but for the higher-
order functional derivatives of bX (i.e. the functional derivatives
of Cab), the fluctuation contribution in (7) can be disregarded. This
approximation for Cab corresponds to the self-consistent one-loop
approximation in the field-theoretic approach. Based on this
assumption, we make for nþm > 2 the approximation

dnþmðbXÞ
dcðr1Þ . . . dcðrnÞdfðrnþ1Þ . . . dfðrnþmÞ

� dnþmðbXcoÞ
dcðr1Þ . . . dcðrnÞdfðrnþ1Þ . . . dfðrnþmÞ : ð19Þ

In the local density approximation for bf hðffigÞ, we have for
nþm > 2

dnþmðbXcoÞ
dcðr1Þ . . . dcðrnÞdfðrnþ1Þ . . . dfðrnþmÞ
¼ Am;nðc; fÞdðr1 � r2Þ . . . dðrnþm�1 � rmþnÞ ð20Þ

where Am;nðc; fÞ is defined in (14).
4

We want to study spontaneous formation of clusters with
rather small size polydispersity, or another words, inhomogeneity
on a well-defined length scale 2p=k0. Such inhomogeneity can
occur in the class of systems with the interaction potential V that
in Fourier representation takes a deep negative minimum for

k ¼ k0 > 0. When V̂ðk0Þ < 0, then the interactions favor oscillatory
concentration, and the largest decrease of the energy takes place
when the concentration wave with the wavenumber k0 is excited
(see (12)). Because of that, such concentration waves appear with
a high probability, and in a given mesoscopic region with a linear
size smaller than 2p=k0, the local concentration c is typically either
larger or smaller than its average value. In such a case, the variance
of the local concentration

h/2i ¼
Z

dk

ð2pÞ3
Ĉ�1
cc ðkÞ ð21Þ

should be taken into account. However, local fluctuations of f are
not energetically favored in this model, and hw2i can be neglected.

Taking into account all the above assumptions, and using the

property h/ðr1Þ2/ðr2Þ2i ¼ 2h/ðr1Þ/ðr2Þi2 of the Gaussian approxi-
mation, we obtain from (13) the following equations for C in Four-
ier representation

ĈccðkÞ � bV̂ðkÞ þ A0;2 þ A0;4

2
h/2i � A2

1;2

Z
dreik�rGccðrÞGffðrÞ ð22Þ

and

ĈffðkÞ � A2;0 þ A2;2

2
h/2i þ bV̂ flðkÞ; ð23Þ

where

bV̂ flðkÞ ¼ �A2
1;2

2

Z
dreik�rGccðrÞ2 �

A2
3;0

2

Z
dreik�rGffðrÞ2: ð24Þ

Note that both,
R
dreik�rGccðrÞ2 and

R
dreik�rGffðrÞ2 are positive and

even functions of k, and take a maximum for k ¼ 0. Thus, V̂ flðkÞ
induced by correlations between the fluctuations takes a negative
minimum for k ¼ 0, and plays a role analogous to attractive interac-
tions. For k ! 0, Eq. (23) takes the form

ĈffðkÞ ¼ R0 þ R2k
2 þ . . . ð25Þ

where R0;R2 are given in Appendix. From Eq. (25), we obtain the
asymptotic decay of correlations for large r in the real space

GffðrÞ ¼ 1
4pR2

expð�r=nfÞ
r

: ð26Þ

where

nf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=R0

p
: ð27Þ

Let us return to Ccc. Because of the oscillatory decay of the concen-
tration correlations, we expect that

R
drGccðrÞGffðrÞ is small, and we

assume that the last term in (22) can be neglected. With this
assumption we obtain the Brazovskii-type approximation

ĈccðkÞ � bV̂ðkÞ þ A0;2 þ A0;4

2

Z
dk

ð2pÞ3
Ĉ�1
cc ðkÞ: ð28Þ

In this approximation, ĈccðkÞ is independent of the density–density

correlations, and can be obtained for particular forms of V̂ðkÞ by a

self-consistent solution of Eq. (28). When V̂ðkÞ is approximated by

V̂ðkÞ � V̂ðk0Þ þ vðk2 � k20Þ
2 þ . . . ; ð29Þ

valid for k � k0, i.e. for the waves giving the largest decrease of the
energy, then
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ĈccðkÞ � Ĉccðk0Þ þ bvðk2 � k20Þ
2 ð30Þ

where

Ĉccðk0Þ � bV̂ðk0Þ þ A0;2 þ A0;4

2

Z
dk

ð2pÞ3
Ĉ�1
cc ðkÞ: ð31Þ

The analytical solution of (31) and (30) for Ĉccðk0Þ can be found

easily, and the expression for Ĉccðk0Þ is given in Ref.[34]. The
approximation (30) can lead to a fair accuracy of the last term in

(31) only for ĜccðkÞ that has a high peak at k ¼ k0, so that the main
contribution to the integral comes from the most probable
wavenumbers. For this reason our analytical theory is valid only
in systems with strong inhomogeneities, i.e. in a limited region of
the phase diagram. In this approximation

GccðrÞ � Acc sinðk0rÞ expð�a0rÞ
r

; ð32Þ

with

Acc � h/2i=k0 and a�1
0 � 8pbvh/2i: ð33Þ

Note that the amplitude and the correlation length of GccðrÞ are pro-

portional to the variance of the local concentration that for ĈccðkÞ
approximated by (30) is given by

h/2i ¼ k0

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bvĈccðk0Þ

q : ð34Þ

Once the form of GccðrÞ is known, nf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=R0

p
and R2 can be

obtained by a self-consistent solution of Eqs-(23)–(25). Explicit
expressions are given in Appendix.

We have made a number of approximations, therefore we can-
not expect full quantitative agreement of our final analytical
expressions with simulations. In particular, the neglected last term

in (22) would lead to a smaller value of ~Cccðk0Þ, and in turn to larger
Acc and 1=a0 (see (33) and (34)). This in turn would lead to larger

fluctuation-induced pseudo-interactions jV̂ flðkÞj and larger correla-
tion length of the density–density correlations. When comparing
our results with simulations, we should take into account that
the correlations in the theory are underestimated. In the case of
~CccðkÞ, the fluctuation contribution is only a correction, while in

the case of ~CffðkÞ, the whole k-dependence is induced by fluctua-
tions. For this reason, the accuracy of our predictions for the den-
sity–density correlations is poorer than for Gcc.

Finally, we stress that in the MF approximation the density–
density correlations are strictly local. We predict monotonic expo-
nential decay of these correlations and show that their physical
basis is the local fluctuation of the concentration.

3. Mesoscopic theory for binary mixtures near a planar wall

Here we develop the excess grand potential density functional
in the semiinfinite system with the variance of the local densities
taken into account. Our expression for the functional leads to
highly simplified differential EL equations for the concentration
and the volume fraction in inhomogeneous mixtures confined by
a planar wall. Our equations can be solved analytically in a pertur-
bation expansion.

3.1. Derivation of the excess grand potential functional in the
mesoscopic theory

When a planar, homogeneous wall at z ¼ 0 is present, transla-
tional invariance in the z-direction is broken, and external poten-
tials VcðzÞ and V fðzÞ appear. The average volume fraction and
5

concentration differ from the bulk values, and vanish for z < 0.
For z > 0, we introduce excess concentration and volume fraction,

cðrk; zÞ ¼ �c þ Dcðrk; zÞ; ð35Þ

fðrk; zÞ ¼ �fþ Dfðrk; zÞ; ð36Þ
and in the following we limit ourselves to the disordered phase in
the bulk with �f ¼ const., �c ¼ 0 and Dc ¼ c.

The equilibrium c and Df correspond to the minimum of the
excess grand potential functional

DbX½c;Df� ¼ bX½c;�fþ Df� � bX½0;�f�; ð37Þ
where X½c;�fþ Df� is the grand potential in the presence of the pla-
nar wall at z ¼ 0, and X½0;�f� is the grand potential in the same sys-
tem in the absence of the wall. We expand DbX in the functional
Taylor series in c and Df. In the approximation consistent with
our theory for the bulk, the second functional derivatives of bX con-
tain fluctuation contributions and are given by (25) and (30), but
the higher-order derivatives of bX are of the MF-type. Moreover,
the first functional derivative of the grand potential vanishes at
equilibrium. Thus, (37) takes the form

DbX½c;Df� ¼ DbX2c½c� þ DbX2f½Df� ð38Þ
þ
Z

drk
Z 1

0
dz bghð�f; c;DfÞ þ bVcðzÞcðrk; zÞ þ bV fðzÞfðrk; zÞ
� �

where

DbX2c ½c� ¼
Z

dkk

ð2pÞ2
Z 1

0
dz c

�ðkk; zÞ
Z 1

0
dDzC

�
ccðkk;DzÞ c

�ð�kk; zþ DzÞ ð39Þ

DbX2f½Df� ¼
Z

dkk

ð2pÞ2
Z 1

0
dzD f

�
ðkk; zÞ

Z 1

0
dDzC

�
ffðkk;DzÞD f

�
ð�kk; zþ DzÞ ð40Þ

and

bghð�f; c;DfÞ ¼
X

mþn>2

Am;nð0;�fÞ
m!n!

Dfmcn; ð41Þ

where Am;n is defined in (14). In (39) and (40), we use the Fourier
representation in directions parallel to the wall and real-space rep-
resentation in the z-direction, and tilde denotes the Fourier trans-
form in the ðx; yÞ plane.

In some thermodynamic states, a periodic, ordered structure
can be formed in particle layers parallel to the substrate, and in
such cases, Df and c depend on rk. In Ref. [7] such ordered patterns
were observed in the gas phase when the transition to a crystal
was approached. In this work we focus on thermodynamic states
such that no periodic patterns in the plane ðx; yÞ are expected, as
for example seen in simulations of the one-component SALR sys-
tem [8], where only short-range order at the wall was present. In
this case, we assume that c and Df depend only on z, and
~cðkk; zÞ ¼ ð2pÞ2dðkkÞcðzÞ, with analogous expression for D~f. In order
to simplify the calculations, we make an additional assumption of
strictly short-range wall-particle interactions, Va ¼ hadðzÞ, and
obtain

DbX½c;Df�=A ¼ bX2c½c�=Aþ bX2f½Df�=A ð42Þ
þ
Z 1

0
dzbgh þ bhccð0Þ þ bhffð0Þ

where A denotes the surface area, and

bX2c½c�=A ¼
Z 1

0
dzcðzÞ

Z 1

0
dDz~Cccð0;DzÞcðzþ DzÞ; ð43Þ

with analogous formula for bX2f.
In order to develop a functional of the Landau-Brazovskii type

for which the EL equations are particularly simple, we consider
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the even and the odd powers of Dz in the Taylor expansion of
cðzþ DzÞ in (43) separately, and focus on the formulaZ 1

0
dDz~Cccð0;DzÞcðzþ DzÞ ¼ EcðzÞ þ OcðzÞ: ð44Þ

For the sum of the even powers of Dz we obtain

EcðzÞ ¼
Z 1

0
dDz~Cccð0;DzÞ

X1
n¼0

Dz2n

ð2nÞ!
d2n

dz2n
cðzÞ ð45Þ

¼ 1
2

R1
�1 dDz~Cccð0;DzÞ exp iDz �i d

dz

� �� �
cðzÞ

¼ 1
2 Ĉcc �i d

dz

� �
cðzÞ;

where a function of a differential operator is defined by the Taylor

expansion, we used the symmetry ~Cccð0;DzÞ ¼ ~Cccð0;�DzÞ and the
fact that the integral of an odd function vanishes. The sum of the
odd powers is

OcðzÞ ¼
X1
n¼0

Z 1

0
dDz~Cccð0;DzÞ Dz2nþ1

ð2nþ 1Þ!
d2nþ1

dz2nþ1 cðzÞ: ð46Þ

Note that by inserting (46) into (43), we obtain a sum of terms pro-

portional to
R1
0 dzcðzÞd2nþ1cðzÞ=dz2nþ1. By integrating by parts the

above integrals, we obtain a contribution to X2c=A localized at the
surface, i.e. depending only on cð0Þ and its derivatives. The same
considerations can be applied to bX2f=A, defined by an equation
analogous to (43).

The sum of the even powers of Dz in the expansions of cðzþ DzÞ
and Dfðzþ DzÞ gives the bulk contributions, and for Caa approxi-
mated by (25) and (30), DbX takes the form

DbX½c;Df�=A ¼ 1
2

Z 1

0
dzcðzÞ A4

@4

@z4
þ A2

@2

@z2
þ A0

 !
cðzÞ ð47Þ

þ 1
2

Z 1

0
dzDfðzÞ R0 � R2

d2

dz2

 !
DfðzÞ þ

Z 1

0
dzbgh þ buI;

where bgh is defined in (41) and

A0 ¼ Ĉccðk0Þ þ bvk40 ð48Þ
A2 ¼ 2bvk20 ð49Þ
A4 ¼ bv: ð50Þ

To obtain the surface contribution buI in the functional (47), we
truncate the Taylor expansion of cðzþ DzÞ in the odd powers of Dz
in (43) at the term consistent with the fourth-order derivative of
c in the first term in (47). Since in the second term in (47) only
the second-order derivative of Df is present, the Taylor expansion
of Dfðzþ DzÞ in the odd powers of Dz is truncated at the first-
order term. The result is

buI ¼ bhccð0Þ þ bhffð0Þ � 1
2

Oc
1cð0Þ2 þ Of

1Dfð0Þ2
� �

� Oc
3cð0Þc00ð0Þ þ

Oc
3

2
jc0ð0Þj2 ð51Þ

with

Oa
2nþ1 ¼

Z 1

0
dDz~Caað0;DzÞ Dz2nþ1

ð2nþ 1Þ! : ð52Þ

The first two terms in (51) represent the wall-fluid interactions. The
contribution to DbX coming from the missing fluid particles for
z < 0 is compensated by the remaining terms.
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3.2. The Euler–Lagrange equations

By the minimization of the functional (47) and (51) we easily
obtain the EL equations

A0 þ A2
d2

dz2
þ A4

d4

dz4

 !
cðzÞ þ @bghð�f; cðzÞ;DfðzÞÞ

@cðzÞ ¼ 0 ð53Þ

R0 � R2
d2

dz2

 !
DfðzÞ þ @bghð�f; cðzÞ;DfðzÞÞ

@DfðzÞ ¼ 0 ð54Þ

and the boundary conditions,

bv
2

c000ð0Þ � bOc
3c

00ð0Þ þ bvk20c
0ð0Þ � bOc

1cð0Þ þ bhc ¼ 0 ð55Þ

bv
2

c00ð0Þ � bOc
3c

0ð0Þ þ bvk20cð0Þ ¼ 0 ð56Þ

� R2

2
Df0ð0Þ � bOf

1Dfð0Þ þ bhf ¼ 0 ð57Þ
3.3. Approximate analytical solutions of the EL equations

For large z we can solve linearized Eqs. 53,54, because both cðzÞ
and DfðzÞ are small for z ! 1. The second term in (53) and (54) is
of a second order in the fields c and Df, therefore only the first
terms remain and the linearized equations are decoupled. The
solutions are

Dfð0ÞðzÞ ¼ A0
f e

�z=nf ð58Þ
and

cð0ÞðzÞ ¼ Ace�a0z sinðk0zþ hÞ ð59Þ
with nf and a0 given in (27) and (33), respectively. The amplitudes

are proportional to the contact potentials hf and hc . In addition, A0
f

and Ac as well as the phase depend on the interactions, in particular
on the semimoments (52), and on the thermodynamic state.

Now, in the perturbation expansion, we truncate the series for
bghð�f; c;DfÞ at m ¼ 1;n ¼ 2 (see (41)) and approximate the EL
Eqs. 53,54 by

�R2
@2

@z2
þ R0

 !
DfðzÞ þ A1;2

2
cð0ÞðzÞ2 ¼ 0; ð60Þ

A4
@4

@z4
þ A2

@2

@z2
þ A0

 !
cðzÞ þ A1;2Df

ð0ÞðzÞcð0ÞðzÞ ¼ 0: ð61Þ

The solutions of the above equations are sums of the solution of the
linear equation and a correction. Note that the correction term in
(61) decays faster than the solution of the linear equation. However,
the correction term in (60) can have a longer range than the solu-
tion of the linear equation, if 2a0 < 1=nf. We conclude that the
asymptotic decay of cðzÞ is correctly predicted by the linear equa-
tion. For Df we solve (60) and obtain

DfðzÞ ¼ Afe�z=nf þ f ðzÞe�2a0z ð62Þ
with

f ðzÞ ¼ Ap cosð2k0zþ h1Þ þ Am; ð63Þ
where h1;Af;Ap, and Am depend on the thermodynamic state and on
the particle–particle and the particle–wall interactions. The rather
lengthy formulas are not given here. We stress that the EL equations
are strongly nonlinear, and the above approximation is in principle
valid only for weak wall-particle interactions and far from any
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phase transitions. Moreover, in the coarse-grained theory with the
local-density approximation for the hard-sphere reference system,
the density at short distances from the wall cannot be correctly
predicted.

The adsorption in this approximation takes the form

C ¼
Z 1

0
dzDfðzÞ ¼ Afnf þ

Am

2a0
þ Ap

a0 cos h1 � k0 sin h1

2ða2
0 þ k20Þ

; ð64Þ

and the selective adsorption is

Cs ¼
Z 1

0
dzcðzÞ ¼ Ac

a0 cos h� k0 sin h

a2
0 þ k20

: ð65Þ

We can see that the total adsorption increases with increasing cor-
relation lengths nf and 1=a0. The selective adsorption, however, is
bounded by jCsj 6 Ac=k0 for a0 ! 0. This means that in the adsorbed
film the amount of the particles of each type is comparable. This
result agrees with simulations [7].

4. Results for a representative model

In order to model a mixture of oppositely charged hydrophilic
and hydrophobic particles in near-critical solvents, we choose the
double Yukawa potential between like particles, uii ¼ �uij ¼ u,
with

uðrÞ ¼ �K1
expð�j1rÞ

r
þ K2

expð�j2rÞ
r

; ð66Þ

where K1 ¼ 1;K2 ¼ 0:2;j1 ¼ 1 and j2 ¼ 0:5. This potential belongs
to the SALR-type interaction potentials, and leads to a formation of
rather large clusters. As noted in Section 2, in order to avoid contri-
butions to the internal energy coming from overlapping cores of the
particles and to rescale the potential due to the replacement of the
density by the volume fraction in Eq. (12), we assume

VðrÞ ¼ uðrÞhðr � 1Þð6=pÞ2 in our theoretical formulas. We shall con-
sider the volume fraction of all particles, f, and the dimensionless
temperature T� ¼ kBT=K1 as thermodynamic variables.

The theoretical results for this model are presented in Sec-
tion 4.1 and compared with results of MC simulations in
Section 4.2.

4.1. Theoretical results

In this model, the parameters present in the approximation (29)

for V̂ðkÞ take the values: k0 ’ 0:6088; V̂ðk0Þ ’ �10:092;v ’ 20:563.
For the reference system free-energy associated with close-packing
(see (11)) we assume the CS approximation [33]

bf exðfÞ ¼ q
4f� 3f2

ð1� fÞ2
� 1

" #
: ð67Þ
Fig. 1. The decay length a�1
0 ðfÞ of the concentration-concentration correlation function (

(right panel) for the double Yukawa potential (66) as a function of the volume fraction

7

The correlation lengths of the concentration-concentration and
density–density correlation functions are shown in Fig. 1 for a range
of �f at two fixed temperatures, T� ¼ 0:25 and T� ¼ 0:28. We can see
that both correlation lengths increase significantly with increasing
volume fraction. While the increase of 1=a0 is gradual (almost lin-
ear), nf increases very slowly for small f, and next at the volume
fraction increasing with increasing T�, a rapid growth of nf begins.
The concentration-concentration correlation function in Fourier
representation is shown in Fig. 2. We can see a maximum increasing
with increasing �f, signaling stronger inhomogeneities and better
accuracy of our approximate theory for larger density.

Let us focus on the near-surface structure. The phases h and h1
of the concentration and volume-fraction profiles (see (59) and
(62)–(63)) depend on the interparticle interactions and thermody-

namic state, whereas the amplitudes Ac and A0
f depend in addition

on the surface-fluid interactions hc and hf, respectively. We assume
hc ¼ hf to model a surface attracting only the first component. We
tune hc such that Ac ¼ 0:5. The obtained cðzÞ and DfðzÞ are shown in
Fig. 3 for T� ¼ 0:28 and �f ¼ 0:065;0:07, i.e. for rather small volume
fractions and as seen in Fig. 1, rather small correlation lengths. The
oscillatory decay of DfðzÞ superimposed on the monotonic decay
can be clearly seen. Thus, the asymptotic decay of the density at
large distances from a wall cannot be deduced solely from the
decay of the density–density correlations in the bulk. It depends
on the concentration-concentration correlations in the bulk too.

The adsorption C, Eq. (64), describes the excess of the number
of particles per unit area r2 of the wall. In Fig. 4, C is shown for
the surface attracting the first component. As expected, the
adsorbed amount of particles increases with increasing bulk
density.

4.2. Results of MC simulations

To verify the theoretical predictions, we performed MC simula-
tions in the lVT ensemble. Particles of the same diameter
(r1 ¼ r2 ¼ r ¼ 1:0) interacted with the SALR potential beyond
the hard cores, with uii ¼ �uij ¼ u, and with u given in Eq. (66).
The cut-off radius was 15 r. The same chemical potentials of the
two species were assumed, l1 ¼ l2 [24,25]. First, we simulated
the bulk symmetrical binary mixture to be used as a reference sys-
tem. The particles were placed in a cubic box of edge length 60 r
with periodic boundary conditions applied to the system in the
three directions. Each system has run 106 MC steps for equilibra-
tion and 105 for production. Because of the inhomogeneities on
the length scale 10r, finite size effects may have some impact on
the correlation functions. However, for verification of the theory
on the qualitative or semiquantitative level, we do not need very
good quantitative accuracy for the correlation functions in the
bulk.
32) (left panel) and the decay length nf of the density–density correlation function
of particles f for T� ¼ 0:25 and T� ¼ 0:28.



Fig. 2. The concentration-concentration correlation functions (32) in Fourier representation for T� ¼ 0:25 (left panel) and T� ¼ 0:28 (right panel) for the double Yukawa
potential (66) and the volume fractions indicated in the legends.

Fig. 3. The concentration (59) (left panel) and the volume fraction (62) (right panel) for the double Yukawa potential (66) as functions of the distance z from the attractive
wall for �f ¼ 0:065;0:07 and T� ¼ 0:28. The amplitude is fixed to Ac ¼ 0:5 that corresponds to the particle–wall interaction hc ¼ hf ¼ �19:69;�18:60 for �f ¼ 0:065;0:07,
respectively. Inset: the behaviour of DfðzÞ for z > 12 (�f ¼ 0:07).

Fig. 4. The adsorption (64) for the double Yukawa potential (66) as a function of the
bulk volume fraction of the particles at T� ¼ 0:28 and for the particle–wall
interaction hc ¼ hf ¼ �20.
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In order to simulate this symmetrical binary mixture confined
in a semi-infinite system, we assume that there is a homogeneous
planar wall of width 16r centered at z ¼ 0, (xy plane). In addition
to the steric interactions of the particles of the two species with the
wall, we assume that the particles of the first species interact with
the wall with the attractive potential vwðzÞ ¼ �Aw expð�kwzÞ, with
Aw ¼ 1:0 and kw ¼ 2:0. As the wall is in the center of the box, the
8

periodic boundary conditions are applied to the system in the three
directions, with Lx ¼ Ly ¼ 40r. Lz has been enlarged till f1ðzÞ and
f2ðzÞ reached the bulk value for z � Lz=2. We found that
Lz ¼ 100r was sufficiently large to mimic a semi-infinite system.

The concentration cðzÞ and the excess volume fraction DfðzÞ
obtained in the MC simulations for T� ¼ 0:28 and �f ¼ 0:051 are
shown in Fig. 5 together with the best fits to Eqs. (59) and (62)–
(63), respectively. The parameters Ac and h for cðzÞ, and Af;Ap;Am

and h1 for DfðzÞ, were fitted to the simulation results. The decay
lengths nf and 1=a0 and the wave number k0 were fitted to the sim-
ulation results for cðzÞ and DfðzÞ, as well as to the simulation
results for the two correlation functions. The correlation functions
with the fits to Eqs. (32) and (26) are shown in the insets in Fig. 5.
The oscillatory decay of GccðrÞ and the monotonic decay of GffðrÞ
agree with our theoretical predictions. The wavenumber of the
oscillatory decay of the concentration-concentration correlation
function obtained in simulations is very close to our theoretical

prediction k0 � 0:6088 obtained from the minimum of V̂ðkÞ. This
confirms that the length scale of inhomogeneity is determined by
the interaction potential, and therefore it is correctly predicted
even in the MF approximation. In contrast, the decay lengths and
the amplitudes of the correlation functions depend on the way
the fluctuations of the local concentration are taken into account.
As discussed in Section 2, the correlations in our analytical theory
are underestimated, and the results for the parameters a0; nf and
Acc;R2 are correct on the semi-quantitative level only. The formulas
(32) and (26), however, describe rather well the simulation results
for z > 7 when the above parameters are fitted.

The formula (59) for the concentration profile obtained from the
linearized EL equation reproduces the simulation results with quite



Fig. 5. The concentration cðzÞ (left) and the excess volume fraction DfðzÞ ¼ fðzÞ � �f (right panel) for T� ¼ 0:28 and f ¼ 0:051 for the double Yukawa potential (66), as functions
of the distance z from the attractive wall. In the insets, the correlation functions in the bulk are shown. The results of the MC simulations are shown by the symbols. The fits of
the simulation data to Eqs. (32), (26), (59) and (62)–(63) are shown by the solid lines. In all the plots, a0 ¼ 0:148; k0 ¼ 0:609 and nf ¼ 4:896. The remaining parameters are
Acc ¼ 0:006;1=ð4pR2Þ ¼ 0:0033, for GccðrÞ and GffðrÞ respectively, Ac ¼ 0:35 and h ¼ 1:493 for cðzÞ, and Af ¼ 0:153;Am ¼ 0:56;Ap ¼ 0:22 and h1 ¼ �0:186 for DfðzÞ. z is in units
of the molecular diameter.

Fig. 6. Simulation results for the adsorption (circles) and the selective adsorption
(triangles) per unit area of the surface, Cð�fÞ and Csð�fÞ defined in Eq. (64) and (65),
respectively for T� ¼ 0:28.
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good accuracy. For the density, however, the linear approximation
(Eq. (58)) fails completely, because instead of the predicted expo-
nential decay, oscillations superimposed on the monotonic decay
are present. A fair agreement between the simulations and the for-
mula (62)–(63) is obtained beyond the linear approximation, at the
first order in the perturbation expansion. Both the simulations and
the theory show the oscillatory decay superimposed on the mono-
tonic decay, with the maxima of DfðzÞ at the same distances from
the wall in the two cases. Thus, our prediction that the wavenum-
ber of the density oscillations is twice the wavenumber of the
oscillations of the concentration-concentration correlation func-
tion is quantitatively correct. However, the amplitude of the oscil-
lations is underestimated in the formula (62)–(63).
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The simulation results (Fig. 5) can be compared with our theo-
retical predictions obtained for T� ¼ 0:28;�f ¼ 0:07 and the contact
potential hc ¼ hf ¼ �18:60 (Fig. 3). The concentration profiles in
the theory and simulations are very similar, and the extrema of
DfðzÞ are at very similar distances from the wall. The magnitude
of DfðzÞ in Fig. 3 is underestimated, however, mostly because of
the underestimated amplitudes. We should stress that the only
adjusted parameter in Fig. 3 is the contact potential hc ¼ hf that
mimics the exponentially decaying attraction in the simulations.
Besides that, no more parameters were fitted.

Fig. 5 shows that the functions predicted by our theory repro-
duce quite well the shapes of cðzÞ and DfðzÞ also beyond the range
of validity of our perturbation expansion, valid for very weak wall-
particle interaction. The parameters in our equations, especially
the amplitudes, are not sufficiently accurate for strongly attractive
surfaces, as can be seen from the comparison of Figs. 5 and 3.

The adsorption computed for �f 6 0:051 and shown in Fig. 6 has
a shape similar to our theoretical result shown in Fig. 4. We calcu-
lated C for �f P 0:065, because our analytical theory is not valid for
smaller densities. We can see, however that the magnitude of C is
similar in the theory and simulations, and the selective adsorption
is small, in agreement with our predictions.

The simulation results give additional insight into the structure
in the layers parallel to the wall. A snapshot of the equilibrium
structure in half of the simulation box is shown in Fig. 7 for
T� ¼ 0:28 and l1 ¼ l2 ¼ �0:839. In addition to the side view, we
show particles in layers of thickness 2 parallel to the wall, at four
distances from it.

In the regions around the maxima of qiðzÞ (see Fig. 7 (f)), one
can recognize the structure found in the two dimensional SALR
model at a similar average density [4], i.e. bubbles for 0 < z < 2
(Fig. 7 b), stripes for 4 < z < 6 (Fig. 7 d) and clusters for
9 < z < 11 (Fig. 7 e), all with the linear size p=k0 � 5. Between
the layers rich in the first and the second component, i.e. around
the minima of DfðzÞ, neighboring clusters of the two components
and small voids are formed (Fig. 7c). When z increases, the clusters
in the layers with comparable amount of the two components
become less compact.



Fig. 7. Snapshot of half of the simulation box, z > 0. (a): side view of the simulated binary mixture in contact with a wall (grey region in the left part of the figure).
T� ¼ 0:28;l1 ¼ l2 ¼ �0:839; Lx ¼ Ly ¼ 40r and Lz ¼ 100r. (b)-(e): snapshots of layers of a width 2r parallel to the wall, with 0 6 z 6 2 (b), 2 6 z 6 4 (c), 4 6 z 6 6 (d) and
9 6 z 6 11 (e). (f): a density profile as a function of z of each component of the mixture.
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5. Conclusions

We studied the effect of a planar wall on a symmetrical binary
mixture with interactions leading to spontaneous inhomogeneities
on a well defined length scale. We assumed that the interactions
outside the hard cores of the particles of the i-th and j-th compo-
nents are uii ¼ �uij ¼ u, with u having the SALR form. This type
of interactions favors concentration waves with a well-defined
wavenumber, but the density waves are not energetically favor-
able, therefore no long-range correlations between density fluctu-
ations, as well as no excess density at large distances from the wall
can be obtained in the MF approximation.

The main result of our work is the approximation for the excess
grand potential functional of the concentration and the excess vol-
ume fraction, Eqs. (47) and (51).The functional has a form of a sum
of the Brazovskii-functional [32] of the concentration, the Landau-
functional of the excess volume fraction, and a cross-term where
the two order parameters are coupled. In our theory, the role of
attractive interactions in the functional (47) is played by the corre-
lations between fluctuations of the local concentration.

The Euler–Lagrange Eqs. 53,54 derived from the functional
(47) are simple differential equations and can be solved analyt-
ically in the perturbation expansion. The concentration and
excess volume fraction profiles are given by (59) and (62)–(63)
respectively. The characteristic lengths of the concentration pro-
file are entirely determined by the concentration-concentration
10
correlation function. The decay of DfðzÞ, however, depends on
both, the density–density and concentration-concentration corre-
lation functions.

Our theory was applied to a model with the double Yukawa
interactions (66), and the results were verified by Monte Carlo sim-
ulations. The functional form of the correlation functions is in a
good agreement with the simulations - the concentration-
concentration correlations show oscillatory decay, and the den-
sity–density correlations decay monotonically. The concentration
profile (59) agrees very well with simulations already for z larger
than the period of oscillations, as found previously for different
systems [8,18]. Also the prediction that DfðzÞ is a sum of a mono-
tonic and an oscillatory decay was confirmed by simulations. We
verified that the period of oscillations is half the period of the
concentration-concentration correlation function. The perturba-
tion expansion in our analytical theory is in principle valid only
for weak wall-particle interactions. Still, a semiquantitative agree-
ment with simulations is obtained also for rather strong hc ¼ hf.

We conclude that the predicted expressions for the concentra-
tion and excess volume fraction correctly describe the near-
surface structure, with good quantitative agreement in the case
of concentration, and semiquantitative agreement in the case of
excess volume fraction. The predicted dependence of the parame-
ters in Eqs. (59) and (62)-(63) on the thermodynamic state and the
interparticle interactions, however, is less accurate because of the
approximations done in order to obtain analytical expressions.
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While in the one component SALR systems the adsorption
decreases with increasing density when the clusters dominate, in
the symmetrical mixture the adsorption increases with increasing
density. In the adsorbed film, the amount of particles of the two
components is comparable, even when only the first component
is attracted to the wall.

Simulations show that in the layers parallel to the wall that are
rich in one of the two components, the structure closely resembles
the structure found previously for the two-dimensional SALR sys-
tems with similar average density. In the layers parallel to the wall
centered at the extrema of cðzÞ, we see bubbles, stripes and clusters
for increasing distance from the wall (Fig. 7). These almost one-
component layers are separated by layers with comparable
amount of the two components, with clusters of different particles
being close neighbors, as in the bulk. We conclude that an external
surface significantly enhances ordering of the mixture, and leads to
a sequence of different patterns in its neighborhood.
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Appendix A. Expressions for the parameters R0 and R2

From (23)–(25) we obtain the following expressions for the
parameters R0 and R2,

R0 ¼ A2;0 þ A2;2

2
h/2i

� 4p
A2
1;2

2

Z 1

0
drr2GccðrÞ2 þ

A2
3;0

2

Z 1

0
drr2GffðrÞ2

 !
ð68Þ

and

R2 ¼ 4p
3!

A2
1;2

2

Z 1

0
drr4GccðrÞ2 þ A2

3;0

2

Z 1

0
drr4GffðrÞ2

 !
: ð69Þ

For GccðrÞ and Gff given in (32) and (26), the explicit forms of
nf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2=R0

p
and R2 are obtained by the solution of the equations
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R2

n2f
¼ A2;0 þ A2;2

2
h/2i � A2

1;2

2
pA2

cck
2
0

a0ða2
0 þ k20Þ

þ A2
3;0

2
nf

8pR2
2

 !
ð70Þ

and

R2 ¼ 4p
3!

A2
1;2

2
A2
cck

2
0ð6a4

0 þ 3k20a2
0 þ k40Þ

8a3
0ða2

0 þ k20Þ
3 þ A2

3;0

2
n3f

4ð4pR2Þ2

0
@

1
A: ð71Þ

where Am;n;Acc and a0 are given in (14) and (33), and h/2i is given in
(34).
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