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1. Introduction

Amodel equation of Painlevé II typewas derived independently byGrafov andChernenko [1] andBass [2] in the context of
charged ion transport. Thus, in [2], two-ion electrolytic phenomena in the presence of a planar boundary were investigated,
and the classical Painlevé II equation was derived ab initio for the electric field via the Nernst–Planck system. Additional
literature on the derivation of the Painlevé II equation in the context of ionic transport is cited in Volgin and Davydov [3].
Two-point Dirichlet and periodic boundary value problems (BVPs) for this Painlevé II equation and a non-integrable
generalization in two-ion electrodiffusion were investigated successively in [4,5]. In particular, topological methods were
applied to establish the existence of solutions under appropriate conditions on the physical parameters. Three-ion BVPs
were also investigated in [5,6]. In [6], an integro-differential formulation was adopted, and boundedness properties were
established via the method of upper and lower solutions (see, for example, De Coster and Habets [7]). The latter method
was later applied to a generalized Painlevé II equation in [8], and existence results were obtained by a diagonal argument.
A two-point Neumann BVP for the Painlevé II model of two-ion electrodiffusion was recently investigated by Amster et al.
in [9,10]. The BVP is unconventional in that the model equation involves the yet-to-be-determined boundary values of the
solution. A novel two-dimensional shooting method was used to establish existence properties, and a practical algorithm
was presented for the numerical solution of the BVP.

In [11], Rogers et al. returned to the BVP originally posed and treated approximately by Bass in [2]; it determines the
electric field distribution in a region x > 0 occupied by an electrolyte. An auto-Bäcklund transformation admitted by the
Painlevé II equation was applied iteratively to construct exact representations for the electric field distribution for BVPs
wherein the ratio of the fluxes of the positive and negative ions adopts one of an infinite sequence of values. These repre-
sentations involve either Yablonski–Vorob’ev polynomials or classical Airy functions. The requirement that the electric field
distributions and ion concentrations in these representations be non-singular imposes constraints on the physical parame-
ters. These constraints, along with asymptotic properties, were investigated in detail by Bass et al. in [12].
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In recent work by Bracken et al. [13], novel flux quantization aspects associated with the iterative action of the Bäcklund
transformations were investigated. Exact analytic expressions were obtained for the electric field and ionic concentrations
in well-stirred reservoirs exterior to the junction boundaries. Radiation boundary conditions applied to two-point BVPs for
the Painlevé II equation were derived in this connection.

To date, existence and uniqueness properties for such Robin-type BVPs for the Painlevé II equation do not seem to have
been treated in the literature. In this paper, a variational approach is adopted in order to treat this class of two-ion BVPs.

2. The main results

Here, we consider a two-ion electrodiffusion BVP on 0 < x < 1 in which the electric field E(x) is given by the Painlevé II
equation

λ2E ′′(x) =
1
2
λ2E(x)3 + 2[c−∞ + (c+∞ − c−∞)x]E(x) + A (1)

subject to radiation-type boundary conditions (see [13]):

λ0E ′(0) = E(0), λ1E ′(1) = E(1), (2)

where

λ0 = λ/

2c−∞, λ1 = λ/


2c+∞. (3)

In the above, λ > 0 is a dimensionless constant, and the constants c±∞ > 0 and A are regarded as given. Here,

A = −2(α+ − α−)(c+∞ − c−∞) − 2j0,

where

α± =
D±

D+ + D−

,

with D± being the diffusion constants corresponding to the two ionic species. It is noted that α± > 0 and α+ + α− = 1.
The quantities c+∞, c−∞, and j0 denote ionic concentrations and current density, respectively (see [13]). Replacing E by −E
if necessary, throughout the paper we shall assume, without loss of generality, that A ≥ 0. By redefining ϕ and A, we can
further assume, without loss of generality, that λ = 1, but we refrain from doing that.

The following results will be established.

Theorem 2.1. Problem (1)–(2) has exactly one negative solution. Moreover, there are at most two positive solutions, and the set
of all solutions is bounded in the C2-norm.

Theorem 2.2. (i) If c−∞ ≥ c+∞, then (1)–(2) has a unique solution.
(ii) If c−∞ < c+∞, then there exist positive constants A∗ < A∗ such that the following hold.

(a) If A < A∗, then (1)–(2) admits at least three classical solutions.
(b) If A > A∗, then (1)–(2) has a unique solution.

Section 3 is devoted to proving the preceding results by variational methods. It is worth recording that the boundary
conditions (2) differ from the standard Robin-type conditions in the crucial fact that both λ0 and λ1 are positive. Thus, the
associated functional has the form J(E) := J0(E) − λ1J1(E), where J0 is coercive and J1 takes arbitrarily large positive values
over a one-dimensional subspace of H1(0, 1). In this setting, the proof of the existence part of our first result will consist of
showing that the functional is still coercive, and deducing from this fact the existence of a global minimum. In broad terms,
we shall see that, if ∥E∥H1 is large, then J1(E) is small enough when compared with J0(E). In fact, this is immediate when λ1
is large. It is important to note that, from (3), it is seen that larger values of λ1 imply that J0(E) tends to ∞ faster than J1(E)
as ∥E∥H1 → ∞. Theorem 2.1 is proved with this taken into consideration.

The beginning part of our second result states that, if c−∞ ≥ c+∞, then the solution is unique. In the contrary case, under
a smallness assumption on the independent term of the equation, the functional satisfies the hypotheses of a linking-type
theorem. This allows us to prove the existence of at least one extra local minimum and a saddle-type critical point.

In Section 4, we present some examples obtained using the shootingmethod. The purposes are to support our theoretical
results with concrete numerical evidence, and to shed light on further properties of the solutions.

3. Proofs of the main results

In this section, we introduce a variational formulation for the BVP (1)–(2). For convenience, we set

ϕ(x) := c−∞ + (c+∞ − c−∞)x.
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Eq. (1) can be rewritten in the simpler form

E ′′(x) =
1
2
E(x)3 +

2ϕ(x)
λ2

E(x) +
A
λ2

. (4)

Note that ϕ(x) > 0 for all x ∈ [0, 1].
Define the functional J : H1(0, 1) → R by

J(E) :=

 1

0


λ2

2
E ′(x)2 +

λ2

8
E(x)4 + ϕ(x)E(x)2 + AE(x)


dx + λ0c−∞E(0)2 − λ1c+∞E(1)2.

It is readily shown that J ∈ C1(H1(0, 1), R), with

DJ(E)(φ) =

 1

0
λ2E ′(x)φ′(x) +

λ2

2
E(x)3φ(x) + 2ϕ(x)E(x)φ(x) + Aφ(x)dx

+ 2[λ0c−∞E(0)φ(0) − λ1c+∞E(1)φ(1)].

Suppose that E is a critical point of J . We claim that it is a solution of our BVP.
First, by considering φ ∈ C1

0 (0, 1), we deduce that E is a weak solution of (1). As H1(0, 1) ↩→ C([0, 1]), it follows that E
has a continuous second-order weak derivative, and hence it is classical. Now, taking arbitrary φ ∈ H1(0, 1), and integrating
by parts the equality DJ(E)(φ) = 0, we have

λ2
[E ′(1)φ(1) − E ′(0)φ(0)] = 2[λ1c+∞E(1)φ(1) − λ0c−∞E(0)φ(0)].

By choosing φ such that φ(0) = 0 ≠ φ(1), we see that λ2E ′(1) = 2λ1c+∞E(1). In the same way, by choosing φ such that
φ(1) = 0 ≠ φ(0), we deduce that λ2E ′(0) = 2λ0c−∞E(0). Hence, E satisfies (2), and is a solution of our BVP.

Proof of Theorem 2.1.
Existence

We claim that J achieves a global minimum in H1(0, 1), which is a critical point, and hence it is a solution of our BVP.
By standard results (see e.g. Mawhin andWillem [14]), J is weakly lower semi-continuous. Therefore, it suffices to prove

that J is coercive in order to establish the claim. Suppose that this is false, namely, that there exists some sequence {En} such
that ∥En∥H1 → ∞, but {J(En)} is bounded above.

First, let us observe that, for given E ∈ H1(0, 1), we may fix an x0 ∈ [0, 1] such that |E(x0)| = minx∈[0,1] |E(x)|, and write

E(1) = E(x0) +

 1

x0
E ′(x)dx.

Then

|E(1)| ≤ |E(x0)| +

 1

0
|E ′(x)| dx ≤ ∥E∥L2 + ∥E ′

∥L2 . (5)

It follows that, for arbitrary ε > 0,

E(1)2 ≤


1 +

1
ε


∥E∥

2
L2 + (1 + ε) ∥E ′

∥
2
L2 .

If ∥E ′
n∥L2 ≤ M for some constant M and all n, then, from the assumption that ∥En∥H1 → ∞, we see that ∥En∥L2 → ∞,

which implies that ∥En∥L4 → ∞. Moreover, from (5), |En(1)| ≤ ∥En∥L4 + M , and thus

J(En) ≥ ∥En∥2
L4


λ2

8
∥En∥2

L4 −
A

∥En∥L4
− λ1c+∞

En(1)2

∥En∥2
L4


→ +∞,

a contradiction.
Hence, we may suppose that ∥E ′

n∥L2 → ∞, and observe that, for n large enough,

J(En) ≥ ∥E ′

n∥
2
L2


λ2

4
+

λ2

8

∥En∥4
L4

∥E ′
n∥

2
L2


− λ1c+∞En(1)2.

If
∥En∥4L4
∥E′

n∥
2
L2

→ ∞, then, for any ε > 0, we have

J(En) ≥ ∥E ′

n∥
2
L2


C(ε) +

∥En∥4
L4

∥E ′
n∥

2
L2


λ2

8
− D(ε)

∥En∥2
L2

∥En∥4
L4


,
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where

C(ε) :=
λ2

4
− λ1c+∞(1 + ε)

and

D(ε) := λ1c+∞


1 +

1
ε


.

As ∥En∥L2 ≤ ∥En∥L4 → ∞, we deduce again that J(En) → +∞, a contradiction.

Finally, by taking a subsequence,wemay suppose that
∥En∥4L4
∥E′

n∥
2
L2

≤ M for some constantM . Let Fn :=
En

∥E′
n∥L2

; then ∥Fn∥L2 → 0

and ∥F ′
n∥L2 = 1. From the compact embeddingH1(0, 1) ↩→ C([0, 1]), wemay suppose that Fn → 0 uniformly; in particular,

Fn(1) → 0. Now write

J(En) ≥ ∥E ′

n∥
2
L2


λ2

4
− λ1c+∞Fn(1)2


,

and the same contradiction J(En) → +∞ follows. This completes the proof of the coerciveness of J and, hence, proves the
existence of a solution.
Boundedness of the solution set

We first establish several lemmas which are both of intrinsic interest and relevant to our purpose.

Lemma 3.1. Let b ∈ (0, +∞], and let E, Ẽ : [0, b) → R be classical solutions of (1) subject to the first boundary condition in
(2). If there exists x0 ∈ [0, b) such that E(x0) > Ẽ(x0), then E(x) > Ẽ(x) and E ′(x) > Ẽ ′(x) for all x ∈ [0, b).

Proof. Let φ := E − Ẽ. Then

λ2φ′′(x) =


λ2

2
µ(x) + 2ϕ(x)


φ(x), (6)

whereµ(x) := E(x)2+E(x)Ẽ(x)+ Ẽ(x)2 ≥ 0. The ‘‘coefficient’’ ofφ on the right-hand side of the equation (i.e. the expression
in square brackets) is positive.

Let us first consider the special case x0 = 0. This implies that φ(0) > 0 and φ′(0) = φ(0)/λ0 > 0. The conclusion follows
from the fact that the right-hand side of (6) remains positive for all x ∈ [0, b).

The case x0 > 0 is an immediate corollary of the special case; the hypothesis implies that E(0) > Ẽ(0), because the
contrary case would have led to E(x) ≤ Ẽ(x) for all x ∈ [0, b) and, in particular, for x = x0. �

Although the hypotheses of Lemma 3.1 do not involve the right endpoint boundary condition of the solutions, in this sec-
tion we will only apply the result to a set of solutions that satisfy both boundary conditions. The significance of the lemma
is that solutions of the BVP do not intersect each other, and thus they can be linearly ordered.

We say that a solution E(x) is positive (negative) if E(x) > (<)0 for all x ∈ (0, 1).

Lemma 3.2. There are at most two positive solutions.

Proof. Suppose on the contrary that there are three distinct positive solutions, 0 < E1(x) < E2(x) < E3(x). Define
φ1(x) := E2(x) − E1(x) and φ2(x) := E3(x) − E2(x). Then they satisfy, respectively, differential equations of the form

φ′′

1 (x) = Q1(x)φ1(x) and φ′′

2 (x) = Q2(x)φ2(x)

that are analogues of (6), whereQ1 andQ2 are appropriate adaptations of the expression in square brackets on the right-hand
side of (6). It is obvious that

Q1(x) < Q2(x), for all x ∈ [0, 1].

Using the boundary condition at the initial point x = 0, we see that

φ′

1(0)
φ1(0)

=
E ′

2(0) − E ′

1(0)
E2(0) − E1(0)

=
1
λ0

=
E ′

3(0) − E ′

2(0)
E3(0) − E2(0)

=
φ′

2(0)
φ2(0)

.

From standard Sturm comparison theory, we conclude that

φ′

1(x)
φ1(x)

<
φ′

2(x)
φ2(x)

, for x ∈ (0, 1).
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In particular,

φ′

1(1)
φ1(1)

<
φ′

2(1)
φ2(1)

.

This contradicts the required boundary condition at x = 1, which implies that

φ′

1(1)
φ1(1)

=
E ′

2(1) − E ′

1(1)
E2(1) − E1(1)

=
1
λ1

=
E ′

3(1) − E ′

2(1)
E3(1) − E2(1)

=
φ′

2(1)
φ2(1)

.

Thus, there cannot be three positive solutions. �

Weremark that exactly the same arguments as used in the above proof are also applicable to negative solutions. However,
a stronger result actually holds for negative solutions.

Lemma 3.3. There is at most one negative solution.

Proof. Suppose on the contrary that there are two distinct negative solutions, E1(x) < E2(x) < 0, which satisfy the ‘‘lin-
earized’’ equations

E ′′

i (x) = Pi(x)Ei(x), i = 1, 2,

respectively, where

Pi(x) =


Ei(x)2

2
+

2ϕ(x)
λ2

+
A

λ2Ei(x)


.

Since Ei(x) < 0, we see that Pi is a decreasing function of Ei, and so

P1(x) > P2(x).

Note that this is not true if Ei is not negative, and that is why positive solutions behave differently. At the initial boundary
point,

E ′

1(0)
E1(0)

=
E ′

2(0)
E2(0)

=
1
λ0

.

Again, Sturm comparison theory yields

E ′

1(1)
E1(1)

<
E ′

2(1)
E2(1)

,

contradicting the second boundary condition. �

Lemma 3.4. Assume that A > 0. Suppose that E(x) is a solution that changes sign. Then it has a unique zero x0, such that
E(x0) = 0. In (0, x0), E(x) < 0. In (x0, 1], E(x) > 0, E ′(x) > 0, and E ′′(x) > 0.

Proof. First, we show that E(0) < 0. Suppose the contrary, i.e. that E(0) ≥ 0. Then E ′(0) ≥ 0, and, by (4), E ′′(0) > 0.
Then usual comparison arguments can be used to show that E(x) is convex and increasing. Thus, it remains positive for all
x ∈ (0, 1], contradicting the assumption.

Since E(x) changes sign, it must have at least one zero. Let x0 be the smallest of all the zeros. In (0, x0), E(x) < 0. At
x0, E ′(x0) ≥ 0 and E ′′(x0) > 0. Comparison arguments again show that E(x) is strictly convex (i.e. that E ′′(x) > 0) and
increasing for x > x0, and so E(x) cannot have another zero. �

Lemma 3.5. Assume that A > 0, and let Emin be a global minimizer of J; that is, J(Emin) = minE∈H1(0,1) J(E). Then Emin(x) < 0
for all x.

Proof. Suppose that the statement of the lemma is false. Then, from the previous lemma, there are only two possibilities.

1. If Emin(1) > 0, then take E(x) := −|Emin(x)|. It is seen that E ∈ H1(0, 1) and J(E) < J(Emin), a contradiction.
2. If Emin(1) = 0, then Emin(x) < 0 for x < 1. As E ′

min(1) = 0 and E ′′

min(1) > 0, a new contradiction is obtained. �

We are now in a position to prove the boundedness of the solution set.We first show that the set is bounded above. There
are two cases.

In the first case, we assume that there is a positive solution. By Lemma 3.2, there are at most two positive solutions. Let
E+(x) denote either the unique positive solution or the largest of the two positive solutions. Let E(x) be any other solution. If
E(x) is positive, it must be the smallest of the two positive solutions, and so is bounded above by E+(x). If E(x) is not positive,
then there exists an x0 ∈ [0, 1] such that E(x0) ≤ 0 < E+(x0). By Lemma 3.1, E(x) < E+(x) for all x. Therefore, E+(x) serves
as an upper bound for the solution set.
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In the complementary case, there is no positive solution. Suppose that the solution set is not bounded above. Then there
exists a sequence of solutions E1(x) < E2(x) < · · · < En(x) < · · ·, such that En(1) → +∞. Without loss of generality, we
may assume that

En(1) > 0 and En(xn) = 0 for some xn ∈ [0, 1). (7)

We consider two subcases. First, suppose that λ1 ≥ 1. Since En(x) is strictly convex in (xn, 1), E ′
n(x) < E ′

n(1) = En(1)/λ1.
Thus,

En(xn) = En(1) −

 1

xn
E ′

n(x) dx

> En(1) − (1 − xn)
En(1)
λ1

=


1 −

1 − xn
λ1


En(1) (8)

> 0,

contradicting (7). Now, suppose that λ1 < 1, and define α = 1 − λ1/2. Observe that En is not necessarily convex in [α, 1];
however, for n large, it is still true that E ′

n(x) < E ′
n(1) for all x < 1. Indeed, otherwise (since E ′

n(0) = En(0)/λ0 ≤ 0), the
function E ′

n achieves an absolutemaximumat some value x∗
∈ (0, 1), with E ′

n(x
∗) ≥ E ′

n(1) and E ′′
n (x

∗) = 0. The latter implies
that En(x∗) < 0 is the (unique) root of the polynomial

P(z) :=
λ2

2
z3 + 2ϕ(x∗)z + A,

and, consequently, |En(x∗)| cannot be arbitrarily large. On the other hand,

λ2E ′′′

n (x∗) =


3λ2

2
En(x∗)2 + 2ϕ(x∗)


E ′

n(x
∗) + 2ϕ′(x∗)En(x∗)

≥


3λ2

2
En(x∗)2 + 2ϕ(x∗)


E ′

n(1) + 2ϕ′(x∗)En(x∗).

As E ′
n(1) = En(1)/λ1 → +∞, it is seen that, when n is sufficiently large, E ′′′

n (x∗) > 0, and this contradicts the fact that a
maximum of E ′

n is achieved at x∗. Thus, the same argument as that used to obtain (8) can be used for any x ∈ [α, 1], instead
of xn, to obtain

En(x) >


1 −

1 − x
λ1


En(1)

≥


1 −

1 − α

λ1


En(1)

=
En(1)
2

> 0.

One consequence is that xn < α. When combined with (4), another consequence is that

E ′′

n (x) ≥
En(x)3

2
≥

En(1)3

16
for x ∈ [α, 1].

Integrating this inequality over [α, 1] leads to

E ′

n(α) ≤ E ′

n(1) −
(1 − α)En(1)3

16

=


1
λ1

−
(1 − α)En(1)2

16


En(1).

As n becomes very large, En(1) becomes very large, and the number given by the expression inside the square brackets will
eventually become negative. Thus E ′

n(α) < 0 for large n, contradicting the last conclusion of Lemma 3.4. This completes the
proof of the upper-boundedness of the solution set.

The proof of the lower-boundedness of the solution set proceeds in a similar manner, and is actually simpler. Indeed,
from Lemma 3.5, we know that the global minimizer Emin is strictly negative, and from Lemma 3.3 there are no other neg-
ative solutions. Using now Lemma 3.1, we conclude that Emin serves as a lower bound of all solutions. This completes the
proof of the lower-boundedness of the solution set.
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Once we know that |E(x)| is uniformly bounded, by (4), |E ′′(x)| is also uniformly bounded. Hence, E(x) is uniformly
bounded in the C2-norm.

Proof of Theorem 2.2. Let Φ denote the unique solution of the initial value problem

−λ2Φ ′′(x) + 2ϕ(x)Φ(x) = 0
Φ(0) = λ0 Φ ′(0) = 1,

and define the functional

M(E) :=

 1

0


λ2

2
E ′(x)2 + ϕ(x)E(x)2


dx.

Lemma 3.6. The following conditions are equivalent.

(A0) c−∞ < c+∞.
(A1) λ1Φ

′(1) < Φ(1).
(A2) M(E) < λ1c+∞E(1)2 − λ0c−∞E(0)2 for some E ∈ H1(0, 1).

Proof. Let us first prove the equivalence of (A1) and (A2).
If (A1) holds, then it suffices to take E = Φ to verify (A2). Conversely, let us consider the functional I defined by

I(E) := M(E) + λ0c−∞E(0)2. It is clear that I is coercive and that I(E) > 0 for E ≠ 0. It is easy to verify that its restriction
over the set {E ∈ H1(0, 1) : E(1) = 1} achieves a minimum at some function E1.

Then 1

0
[λ2E ′

1(x)ξ
′(x) + 2ϕ(x)E1(x)ξ(x)]dx + 2λ0c−∞E1(0)ξ(0) = µξ(1) (9)

for all ξ ∈ H1(0, 1), where µ is a Lagrange multiplier. It follows that

−λ2E ′′

1 (x) + 2ϕ(x)E1(x) = 0,

λ0E ′

1(0) = E1(0), λ2E ′

1(1) = µ,

and (A2) implies that µ = 2I(E1) < 2λ1c+∞. Thus, (A1) follows from the fact that Φ(x) = E1(x)/E1(0).
Next, we show that (A0) is equivalent to (A1). Suppose that (A0) holds. Then λ0 > λ1 and ϕ(x) < c+∞ for x ∈ [0, 1). Let

v(x) := ex/λ1 . A simple computation shows that 1

0
Φ ′′(x)v(x)dx <

 1

0
Φ(x)v′′(x)dx,

and hence

Φ ′(1)v(1) −
v(0)
λ0

< Φ(1)
v(1)
λ1

−
v(0)
λ1

.

Weconclude thatλ1Φ
′(1) < Φ(1), so (A1)holds. If, on the contrary,we assume that c−∞ ≥ c+∞, the previous computations

still hold, with all the inequalities reversed, and we deduce that λ1Φ
′(1) ≥ Φ(1). �

In order to prove (i), assume that c−∞ ≥ c+∞, and suppose that the BVP has two different solutions E and Ẽ. As before,
φ := E − Ẽ satisfies (6). Multiplying (6) by φ and integrating yields

2c+∞λ1φ(1)2 = 2c−∞λ0φ(0)2 + λ2
∥φ′

∥
2
L2 +

 1

0


λ2

2
µ(x) + 2ϕ(x)


φ(x)2 dx. (10)

From this, we deduce that (A2) holds, a contradiction. Thus, the first statement of Theorem 2.2 is proved.
For the proof of (ii)(a), we shall make use of a linking theorem by Rabinowitz [15]. Let us recall the following definitions

for a Banach space B and I ∈ C1(B, R).

1. A sequence {un} ⊂ B is called a Palais–Smale sequence if |I(un)| ≤ c for some constant c and DI(un) → 0, and
2. I is said to satisfy condition (PS) if any Palais–Smale sequence has a convergent subsequence in B.

Theorem 3.7. (Rabinowitz [15].) Let B be a Banach space, and let J ∈ C1(B, R) satisfy (PS). Furthermore, assume that
B = B1 ⊕ B2, with dim(B1) < ∞.

max
u∈B1:∥u∥=r

J(x) < inf
u∈B2

J(u) := ρ (11)

for some r > 0. Then J has at least one critical point E0 with J(E0) ≥ ρ .
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In our case, we make use of Φ ∈ H1(0, 1) := B as defined above, and take

B1 = span{Φ},

B2 := {E ∈ H1(0, 1) : E(1) = 0}.

A simple computation shows that

inf
E∈B2

J(E) ≥ −

 1

0

A2

4ϕ(x)
dx.

On the other hand, if ε > 0, then

J(εΦ) = k(ε) + εA
 1

0
Φ(x) dx,

where

k(ε) := ε2(M(Φ) + λ0c−∞Φ(0)2 − λ1c+∞Φ(1)2) +
λ2ε4

8

 1

0
Φ(x)4 dx.

Fix ε small enough such that k(ε) < 0; thus, if |A| is sufficiently small, then (11) holds with r := ε∥Φ∥. Moreover, we know
from Theorem 2.1 that J achieves a global minimum at some Emin ∈ H1(0, 1), and hence the linking theorem will provide
a solution E0 such that J(E0) ≥ ρ > J(Emin), which implies that E0 ≠ Emin. When A = 0, it is clear that ρ = 0 and that
E0 ≡ 0 is a critical point; thus,±Emin are two nontrivial solutions.When A > 0, we know from Lemma 3.5 that Emin is strictly
negative. From the properties of the functional, we deduce that the infimum

min
E:E(1)≥0

J(E)

is achieved at some E∗
≠ Emin. As Φ(1) > 0, it follows that J(E∗) < ρ; in particular, E∗

∉ B2, and hence E∗(1) > 0. We
conclude that E∗ is a critical point and that E∗

≠ E0, Emin.

To conclude the proof, let us verify that J satisfies the (PS) condition.
Let En ∈ H1(0, 1) such that |J(En)| ≤ c for some constant c and DJ(En) → 0. If ∥En∥H1 ↛ ∞, then, by taking a

subsequence, we may assume that En → E weakly in H1 and uniformly. As DJ(En)(E) → 0, we deduce that 1

0
λ2E ′(x)2 +

λ2

2
E(x)4 + 2ϕ(x)E(x)2 + AE(x)dx + 2[λ0c−∞E(0)2 − λ1c+∞E(1)2] = 0.

Using now the fact that DJ(En)(En) → 0, it is seen that
 1
0 E ′

n(x)
2 dx →

 1
0 E ′(x)2 dx, and thus En → E strongly.

Next, assume that ∥En∥H1 → ∞, and let Vn := En/∥En∥H1 .
As DJ(En)(Vn) → 0, from the identity

1
2
DJ(En)(Vn) =

J(En)
∥En∥H1

+
λ2

8

 1

0

En(x)4

∥En∥H1
dx −

A
2

 1

0

En(x)
∥En∥H1

dx,

the fact that J(En) is bounded, and that
 1

0 En(x) dx
 ≤ ∥En∥L4 , we deduce that ∥En∥4

L4
/∥En∥H1 → 0, and thus also ∥En∥4

L2
/

∥En∥H1 → 0.
Next, for arbitrary φ and r ≠ 0, compute

DJ(rVn)(φ) = DJ(En)


rφ
∥En∥H1


+ A

 1

0
φ(x)


1 −

r
∥En∥H1


dx +

λ2

2

 1

0


r3En(x)3

∥En∥3
H1

−
rEn(x)3

∥En∥H1


φ(x) dx.

Hence,DJ(rVn)(φ) − A
 1

0
φ(x)dx

 ≤ cn∥φ∥H1

for some cn → 0; that is, DJ(rVn) → A.
By taking a subsequence, we may suppose that Vn converges weakly in H1(0, 1) and uniformly to some V . In particular,

it is readily seen that DJ(rVn)(φ) → DJ(rV )(φ) for all φ, so

DJ(rV )(φ) = A
 1

0
φ(x) dx.

Let us consider now the functional given by

J̃(E) := J(E) − A
 1

0
E(x) dx.



128 P. Amster et al. / Nonlinear Analysis: Real World Applications 16 (2014) 120–131

Then DJ̃(rVn) → 0, and it is easy to verify that J̃(rVn) is bounded. Thus, {rVn} is a bounded Palais–Smale sequence for J̃ , and,
as before, we deduce that it has a convergent subsequence. Hence, we may assume that Vn → V strongly and, in particular,
that ∥V∥H1 = 1. Moreover, rV is a critical point of J̃; in other words, rV is a solution of (1)–(2) with A = 0. As r is arbitrary,
it follows that V = 0. This contradiction completes the proof.

Finally, we proceed with case (ii)(b). In order to emphasize the dependence on A, for fixed A > 0, the absolute minimizer
Emin of the functional shall be denoted EA. From Lemma 3.5, we know that EA is strictly negative.

Claim. EA(x) → −∞ uniformly as A → +∞.

Indeed, let x0 ∈ [0, 1] be the point where the absolute maximum of EA is achieved. Then x0 < 1, since EA decreases in a
neighborhood of 1.

If x0 > 0, then E ′′

A (x0) ≤ 0. From (1), it follows that EA(x0) ≤ r(x0, A) → −∞ uniformly in x0 as A → +∞, where r(x, A)
denotes the unique root of the polynomial

Px,A(z) :=
λ2

2
z3 + 2ϕ(x)z + A.

Finally, suppose that x0 = 0, and that EA(0) ≥ −M for some constant M independent of A. Take A large enough in order
to have r(x, A) ≤ −(1 + 1/λ0)M for all x. Then E ′′

A (0) > 0. Assume that E ′′

A (x) ≥ 0 for x ∈ [0, δ] with δ maximum. Then
EA(δ) − EA(0) = δE ′

A(ξ) > δE ′

A(0) ≥ −M/λ0. Thus EA(δ) ≥ −(1 + 1/λ0)M , and we deduce that δ = 1. In particular,
E ′

A(x) > E ′

A(0) for all x, and hence EA(x) ≥ −M(1 + 1/λ0). This implies that E ′′

A (x) → +∞ uniformly, and this contradicts
the fact that EA(1) < 0.

Now, we are able to prove uniqueness for A large. Suppose that E ≠ EA is a solution, and write E = EA + V . As solutions
do not intersect and EA is the only negative solution, it follows that V (x) > 0 for all x. Moreover, V satisfies the radiation
boundary conditions, and

λ2V ′′(x) =
λ2

2


3EA(x)2 + 3EA(x)V (x) + V (x)2


V (x) + 2ϕ(x)V (x).

Next, observe that

3EA(x)2 + 3EA(x)V (x) + V (x)2 ≥
3
4
E2
A(x),

so we conclude that V ′′(x) > c2V (x) for some constant c satisfying c → +∞ as A → +∞. Now, consider W (x) := ecx.
Then

V ′(1)W (1) − V ′(0)W (0) > V (1)W ′(1) − V (0)W ′(0);
that is,

V (1)
λ1

ec −
V (0)
λ0

> (V (1)ec − V (0))c.

Take c > 1/λ0, 1/λ1. Then
V (1)
V (0)

ec <
c − 1/λ0

c − 1/λ1
.

Furthermore, observe that V is convex and that V ′(0) > 0. Thus, V (1) > V (0), and we conclude that c (and hence A) cannot
be too large.

Remark. As the functional J satisfies the (PS) condition and J(0) = 0, it might be natural to ask if, under appropriate
conditions on the parameters, J satisfies the standard mountain pass geometry; that is,

inf
∥E∥=ρ

J(E) > 0 and J(Ẽ) ≤ 0 for some Ẽ such that ∥Ẽ∥ > ρ (12)

for some ρ > 0. It is worth noting that, if A ≠ 0, then inf∥E∥=ρ J(E) < 0 when ρ > 0 is small. Indeed, it suffices to write

J(rE) = r2J(E) + (r4 − r2)
λ2

8

 1

0
E(x)4 dx + (r − r2)A

 1

0
E(x) dx,

and to fix E such that A
 1
0 E(x) dx < 0, so J(rE) < 0 for small values of r .

When A = 0, (12) cannot be satisfied for any value of ρ. This follows from the fact that, if inf∥E∥=ρ J(E) > 0 and ∥Ẽ∥ > ρ,
then, setting r := ∥Ẽ∥/ρ > 1 and E := Ẽ/r , we obtain

J(Ẽ) = r2J(E) + (r4 − r2)
λ2

8

 1

0
E(x)4 dx > 0.

However, in this particular case, E = 0 is a critical point, and J achieves a global minimum, so a sufficient condition for the
existence of a pair ±E of nontrivial solutions (since J is even) is that J(E) ≤ 0 for some E ≠ 0. This is obviously the case
when (A2) holds.
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Fig. 1. Graph of T (γ ) {c−∞ = 1, c+∞ = 0.5, A = 0.05}.

4. Numerical experiments

An alternative approach to study the boundary value problem (1)–(2) is to employ a shooting method. It is possible to
derive rigorous theoretical results using this alternative approach, but our main concern here is with numerical evidence.
Thus, we study the initial value problem that consists of the differential equation (1) (or equivalently (4)) subject to the
initial conditions

E(0) = γ , E ′(0) =
γ

λ0
, (13)

where γ is a real parameter. Corresponding to each γ ∈ R is a solution E(x; γ ). It satisfies the first boundary condition in
(2), but not necessarily the second one. Due to the superlinear term E(x)3/2 in the equation, it is possible that the solution
may blow up to ∞ or down to −∞, at some point before reaching x = 1. As Lemma 3.1 shows, for γ within some bounded
interval (γ1, γ2), E(x; γ ) can be extended to x = 1. We define the function T : (γ1, γ2) → R by

T (γ ) =
E ′(1; γ )

E(1; γ )
.

If we can find a γ such that T (γ ) = 1/λ1, then the corresponding E(x; γ ) will be a solution of the BVP.
MATLAB is adopted for our numerical experiments. For each computation, specific numerical values are chosen for the

set of constants:
λ, c−∞, c+∞, A.

For convenience, we set λ = 1. Then, we choose a set of values for γ . For each γ , we solve the initial value problem (1)–(13)
using the built-inMATLAB functionode45. The value of T (γ ) is then computed. The figures provided are plots of the function
T (γ ) for different choices of the constants involved.

The graph of each T (γ ) consists of two components, a decreasing curve on the left and aU-shaped curve on the right, with
a common asymptote, represented by the vertical solid lines in Figs. 1 and 2. The asymptote occurs at γ = γ0, determined
by requiring that E(1; γ0) = 0. The horizontal solid line in each figure is drawn at T (γ ) = 1/λ1. Its intersections with the
graph of T (γ ) give the solutions of (1)–(2).

Fig. 1 illustrates the situationwhen c−∞ > c+∞. The right-hand component of the graph of T (γ ) lies above the horizontal
line, while the left-hand component intersects the latter at one point, thus confirming part (i) of Theorem 2.1.

Fig. 2 illustrates the situation when c−∞ < c+∞. The right-hand component of the graph of T (γ ) cuts the horizontal
line at two points, while the left-hand component cuts the latter at one more point, giving a total of three solutions, thus
confirming part (ii)(a) of Theorem 2.1.

Fig. 3 extends the experiment of Fig. 2 by varying the constant A. The dotted, solid, and dashed curves correspond to
the three choices A = 0.02, 0.05, and 0.1, respectively. It is observed empirically that, as A is increased, the right-hand
component of the graph is raised, while the left-hand component is lowered. In any case, the left-hand component always
yields one solution. On the other hand, for large A, the right-hand component can be raised clear of the horizontal line. This
confirms part (ii)(b) of Theorem 2.1.

Remarks/Conjectures. In all the previous examples, the left-hand component contains the (unique) negative solution.
When c−∞ < c+∞, the right-hand component yields two positive solutions. The existence of a sign-changing solution
seems to be quite exceptional, since the vertical asymptote lies very close to γ = 0. In any case, it seems that there are
always at most three solutions. It also seems reasonable to conjecture that minγ≥0 T (γ ) always exists and increases with A
(it is already known that it is greater than 1/λ1 if A is large).
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Fig. 2. Graph of T (γ ) {c−∞ = 1, c+∞ = 1.5, A = 0.05}.

Fig. 3. {c−∞ = 1, c+∞ = 1.5, A = 0.02, 0.05, 0.1}.
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