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Abstract: Because of the sustained growth of information and mobile users transmitting a great
amount of data packets, modern network performances are being seriously affected by congestion
problems. In fact, congestion management is a challenging task that can be roughly summarized
as a trade off between transmission latency and cost. In order to contribute to solve the congestion
problem on communication networks, a novel framework based on a quantum game model is
proposed, where network packets compete selfishly for their fastest route. Simulations show that
final network routing and traveling times achieved with the quantum version outperform those
obtained with a classical game model with the same options for packet transmission for both. Pareto
optimality and Nash equilibrium are studied as well as the influence of simulated and real noise in
the quantum protocol. This leads to the opportunity of developing full-stack protocols that may be
capable of taking advantage of the quantum properties for optimizing communication systems. Due
to its generality, this game approach can be applied both in classical complex networks and in future
quantum networks in order to maximize the performance of the quantum internet.
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1. Introduction

Congestion is a significant issue in the more diverse environments, from supermarket
queuing, urban traffic, transport, local networks to 5G and LTE-A networks.

Congestion problems arise when users compete over a set of limited resources causing
an increase in the latency to all contenders. Latency, for its part, depends on the number of
agents that use a resource. A common example of congestion is at rush hour when the city’s
vehicle flow is saturated due to excess demand for roads by drivers. When the number of
vehicles surpass the capacity of the roads, there is a decrease in velocities that cause waste
of time and excessive fuel consumption. Likewise, delays, loss of efficiency and increase of
transmission time occur when networks are too demanded [1].

At present, the constant increase in the number of packets sent over networks evi-
dences the congestion problems and suggests that more research is needed when designing
efficient communication systems. By their nature, the congestion problems become ap-
propriate for being modeled by Game Theory [2,3], because selfish decisions of agents
(packets on the network or vehicles in a city) cause the whole system performance to be
adversely affected.

In the case of Wireless Sensor Networks (WSN), a type of network that faces a more
challenging environment compared to traditional networks, several works on the threat
mitigation problem have recently been published. In [4], for instance, the authors present a
survey of several game-theoretic defense strategies for Wireless Sensor Networks. Due to
their dynamic nature, WSN are exposed to malicious intruders. Such a security situation
involving an interaction between the defender(s) and attacker(s) is directly mapped to a
game among players where each player strives to promote its own benefit.
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Besides, in [5], a game theory model to control congestion in wireless body sensor
networks supported on intelligent drop packet mechanisms is proposed. Moreover, a
repeated game approach is proposed to sensor nodes protection in a clustered WSN in [6],
where the proposed model outperforms non-cooperative defense mechanism to prevent
cluster members from dropping the high priority packets.

Furthermore, today we know that if game theory models harness the capabilities of
quantum computing [7,8] better outcomes can emerge. Moreover, the authors of [9] present
an interesting work that address the Nash equilibria and correlated equilibria of classical
and quantum games in the context of their Pareto efficiency. They focus their study in three
classical games: the prisoner’s dilemma, battle of the sexes and the game of chicken and
show that the Nash equilibria of these games in quantum mixed Pauli strategies are closer
to Pareto optimal results than their classical counter-parts. Quantum routing games were
first proposed in [10] where the Braess’ paradox was studied along with an analysis of the
flow in a network with quantum resources, more exactly, networks that provide quantum
entangled particles to the players before they play their strategies. In addition, in [11] a
quantum game is applied to diminish spectrum allocation times and power consumption
in quantum communication networks [12].

In this work, we start by modeling a network that allows both classical and quantum
packets and then propose a routing protocol designed using the Game Theory formalism.
After that, different variables with information about the dynamics of the network were
measured and we point out that the protocol that makes use of the quantum game theory
rules [13] significantly outperforms its classical equivalent. We demonstrate how to avoid
congestion in a network and decrease the traveling time per packet in a system with a high
number of packets that selfishly decide which decision is the best for everyone of them.

There have already been efforts to try to mitigate congestion in networks using quan-
tum technologies (mainly coming from the automotive industry [14–16]) but they focus on
a centralized optimization approach using quantum annealing. In this work, we propose a
decentralized self-organization approach using gate-based quantum computers. Finally,
due to the absence of ideal quantum computers that we suffer today, the influence of noise
in our system is studied. This is achieved by both doing simulations using quantum noise
models and using current IBM noisy quantum computers available on the web [17].

The work is organized as follows. In Section 2, the problem and the system are
presented in detail. In Section 3, we explain the two possible strategies for modeling
the network and develop in depth the quantum model. In Section 4, the results of each
protocol are compared and their performance is graphically analyzed under different types
of environment: ideal case, simulated noise and real devices. Finally, the work is concluded
in Section 5 with a debate on its consequences.

2. Modeling the Congestion Problem

Our goal is to minimize the total transmission time, which is formed by the sum of
the routing time and the traveling time. The routing time measures how long it takes for a
packet to find a path for going from origin to destination. More precisely, in our model, the
routing time is a quantity proportional to the number of games a packet must play before
finding its final path. The greater the number of possible paths that a packet considers, the
longer the routing time. The traveling time, for its part, measures how long it takes for a
packet to travel from origin to destination when the path is chosen. This means, the sum of
the weights of all the edges that a final path has.

Therefore, TotalTimei = KGGi + KE ∑Ei
e=1 w(e, e + 1), where KG is the time it takes to

play one game, Gi is the number of games played by the player i, KE is the maximum
distance between two nodes in the network, Ei is the number of edges of the final path of
player i and w(e, e + 1) is the weight of the edge connecting the nodes e and e + 1.

The communication network model has n1 nodes and n2 packets to be sent between
nodes. The net is generated using the Erdős–Rényi–Gilbert model [18] with G(nodes = n1,
probability = 0.5) (where nodes is the number of nodes and probability the probability that
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two nodes are connected to each others) with the condition that every node has at least
one connection to other node. The maximum capacity of every channel is assumed to
be one packet, with linearly declining performance from there on. This decline will be
reflected in our model by increasing the corresponding weight, w(e, e + 1), of each channel
proportionally to the number of packets going through it. An example of a n1 = 10 nodes
network is shown in Figure 1 where the packets traveling through are represented with
different colors.

Figure 1. Example of network model for n1 = 10.

In a congested channel it will take much longer traveling time for a given packet than
in an idle one. In other words, as the number of packets traveling through the same channel
increases, the traveling time for each packet increases. This situation is analogous to city
transport where the time a vehicle takes to travel a route increases as the number of vehicles
on that route increases. If this situation is not handled well, this may result in heavy traffic
congestion [19].

Every packet is thought as a player in a game that prefers the shortest path channel.
The traveling channel choice is made by playing a game. Whenever many players choose
the same channel, the traveling time for that channel increases. Channel congestion makes
traveling time much longer. Finally, on every congested channel packets play game, each
of them has two options: to travel through the preferred channel or to search another path.

If every player decides to choose their shortest path, some network channels will
be overloaded with all the packets that are disputing for it, slowing down the network.
Therefore, if players behave in a selfish way, always choosing their shortest path, the whole
communication network will be harmed. On the other hand, if every player decides to
look for idle channels, the routing time increases and the network would be also slowed
down. This simple model reflects the massive problem faced in modern communication
technologies which poses a severe challenge to the existing routing strategies [20]. This
phenomenon is called congestion dilemma, as we will observe in the following sections,
the routing time may decrease by increasing traveling time or traveling time may decrease
by increasing routing time.

3. Classical and Quantum Strategies

It is well known that a game is defined by three elements: players, strategies, and
rewards. In this case, our game has a non-cooperative nature, that is, it is a game with
competition between individual players, the players being the packets that travel through
the network. The strategies are to take or not a channel when there are enough packets
to congest the channel. Lastly, the reward is the total time that is specified by adding
the routing and traveling time (with a negative sign since the lower the time, the bigger
the reward).

If more than one packet is interested in a channel, because it is part of their currently
shortest path, each packet has two possible strategies: choose this preferred channel (risking
that other packets will also select it and then congest the channel) or search for its following
shortest path (longer but possibly idler). These two strategies will be called option 1 and 0,
respectively. For example, in the first game of a player, he has two options: (1) Take the
shortest path risking that the congestion increases their traveling time significantly. (0) Try



Quantum Rep. 2022, 4 138

with their second shortest path, where there might be no congestion. In Table 1, an example
of a situation where two packets are interested in the same channel, is presented.

Table 1. Example of two packets interested in the same channel.

Players Player 1

Actions 0 1

Player 0
0

Neither of them takes
the channel and both
go to look for another.

Player 1 takes the channel
and player 0 goes to
search another.

1
Player 0 takes the channel
and player 1 goes to
search another.

Both take the channel
creating a congested path.

The playing games may be of different kind, that is classical or quantum. Let us
consider first classical games. The player’s mixed classical strategies are probabilistic,
that is, option 0 is chosen with probability p and option 1 with probability (1− p). Then,
probability p near zero corresponds to greedy players, since players will tend to always
take the shortest path even when many players are competing for that channel. A value of
p closer to one will create players more patiently looking for another idler route.

To study the quantum game for channel choice we follow the EWL protocol for
2 players [8] and then extended for N players [21]. The first step is to assign a quantum state
to each of the possible strategies. The quantum protocol is exactly the same as the classical
one, the only difference being that strategies 0 and 1 were previously represented on a bit
and now they are represented on a qubit. Strategy 0 (leave the preferred route) is mapped
to the quantum state |0〉 and strategy 1 (take the preferred route) to the quantum state |1〉.
The second step is to create a quantum circuit where each player will be assigned a qubit
that will start in state |0〉. The third step is to create a maximally entangled state between
all the players. This is done by applying the entangling operator J = 1√

2
(I⊗N + iσ⊗N

x ), as
seen in Figure 2, where the number of players is N = 2.

Figure 2. EWL game model for 2 players. Where q0 and q1 are the initial quantum states of the
players and c is a classical register where the qubits measurements are stored.

In the fourth step, every player chooses her most suitable strategy individually and
independently. This is done by modifying the state of her own qubit locally. To do this,
every player applies one or more one-qubit gates, modifying the state of her qubit. A
general one-qubit gate is a unitary matrix that can be represented as [22]:

U(θ, φ, λ) =

(
cos( θ

2 ) −eiλ sin( θ
2 )

eiφ sin( θ
2 ) ei(φ+λ) cos( θ

2 )

)
(1)

We can already highlight the fact that while classic players have only one parameter
to choose their mixed strategy: p, quantum players have three parameters to choose in
order to select their own pure strategy: θ, φ and λ. The fifth step is to apply the operator
J† (J conjugate transpose) after the players’ strategies. Furthermore, finally, the sixth step
consists of measuring the state of the qubits to know the output of the circuit and, therefore,
the final action of each player.
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4. Results

In this section, we compare the results of classic and quantum protocols. The simula-
tions were done averaging the performance of 50 simulations for different auto-generated
random network configurations. The prospect of Pareto optimality and Nash equilibrium in
each case is considered. The quantum protocol is also analyzed under non-ideal conditions,
by modeling a noisy channel and also using the quantum devices available from IBM.

4.1. Pareto Optimality and Nash Equilibrium

Numerical simulations are performed since we do not have an analytical represen-
tation of the model due to its complexity. In the classic case with mixed strategies we
will accomplish this by sweeping in p, while in the quantum case with pure strategies, as
explained below, sweeping in ϕX , ϕY and ϕZ.

4.1.1. Mixed Classical Strategies

Simulations of the classical game, where all players have the probability p, are shown
in Figure 3. Figure 3a displays the average traveling time per packet increase with the
increasing number of packets for different probabilities p. The variation of the average
routing time with the number of packets is shown alongside in Figure 3b.

Figure 3. Graphs for different probabilities p of: (a) Traveling time as a function of the number of
packets. (b) Routing time as a function of the number of packets.

The simulations were done on networks of n1 = 10 nodes and a value of n2 packets
from n2 = 5 to n2 = 100 packets and averaging the performance of 50 different cases.
The qualitative behavior of the network, that is, the dynamics reflected in the graphs, is
independent of the number of nodes. The only difference is the number of packets needed
for the network to stabilizes, the larger the network, the greater the number of packets
required to saturate it. Analyzing the graphs for an increasing number of nodes it is possible
to conclude that there is a kind of trade-off between traveling and routing time. Given a
fixed number of packets and a low p, the traveling time per packet increases but the routing
time decreases. On the other hand, as p increases, the traveling time per packet decreases
but the routing time increases.
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This effect can be seen in Figure 4 where traveling and routing time for different
probabilities p are shown. These results are obtained when the system reaches steady state
with a high number of packets (n2 = 100).

Figure 4. Trade-off between traveling and routing time for different p values between 0 and 0.9.
Values of p closer to 0 give a high traveling time and low routing time. Values of p closer to 1 give a
low traveling time and high routing time.

4.1.2. Pure Quantum Strategies

As mentioned earlier, the quantum player’s strategy consists of a sequence of 1 qubit
quantum gates. To demonstrate the potential that quantum strategies have, we are going to
start by studying a particular case: the system with rotations in the X, Y and Z axes. The
one-qubit quantum gate matrices for rotations are:

RX(ϕ) =

(
cos( ϕ

2 ) −i sin( ϕ
2 )

−i sin( ϕ
2 ) cos( ϕ

2 )

)
(2)

RY(ϕ) =

(
cos( ϕ

2 ) − sin( ϕ
2 )

sin( ϕ
2 ) cos( ϕ

2 )

)
(3)

RZ(ϕ) =

(
e−i ϕ

2 0
0 ei ϕ

2

)
(4)

Therefore, every player must choose 3 angles that we will call ϕX , ϕY and ϕZ . In our
design, we propose the strategy ϕX = π

2 , ϕY = π
4 and ϕZ = 0 for every player as shown in

Figure 5.

Figure 5. Game model for 2 players.
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In Figure 6a,b the quantum protocol performance when all players are using S1 = (π
2 , π

4 , 0)
is shown against the classical performance. The quantum game shows the lowest traveling
time and a medium routing time compared to the classical one. With this in mind we can
recalculate Figure 4 and add the quantum case. By doing this we obtain Figure 7 where
we can observe how the classical traveling-routing time trade-off barrier is crossed by
this quantum protocol. Thus, we will obtain a performance that enhances any classical
performance by simultaneously reaching less routing time and less traveling time.

Figure 6. Graphs for different probabilities p and the quantum case: (a) Traveling time as a function
of the number of packets. (b) Routing time as a function of the number of packets.

Figure 7. Trade-off barrier broken by quantum protocol. In red the quantum strategy, in blue different
mixed classical strategies with p values between 0 and 0.9.
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Another way of visualizing the advantage of the quantum protocol is by measuring the
total_time = routing_time + traveling_time. In Figure 8, it is clear that when the total time is
measured, the performance of the quantum protocol surpass the performance of the classical
protocol as the number of packets increases and the network becomes increasingly congested.

Figure 8. Total time = routing time + traveling time, it is evident that the minimum total time
correspond to the quantum case when the number of packets increases.

This advantage may be understood considering the quantum state of the circuit for
two players (Figure 5) just before measuring, is: |ψout〉 = J†(Rz(0) ⊗ Rz(0))(Ry(

π
4 ) ⊗

Ry(
π
4 ))(Rx(

π
2 )⊗ Rx(

π
2 ))J|00〉 = −j |01〉+|10〉√

2
.

That is, state |01〉 will be measured with a 50% probability and state |10〉 with a 50%
probability. This strategy turns out to be Pareto optimal since no player can improve their
performance without worsening someone else’s. This |ψout〉 = −j |01〉+|10〉√

2
means that one

of the two players will always take the channel and the other will not. By avoiding state
|11〉 we are avoiding the case where the two players take the channel, therefore, avoiding
network congestion.

By taking advantage of the entanglement generated at the beginning of the circuit in
the quantum game, an unattainable behavior in the classical case is obtained: having a
medium routing time with minimal traveling time.

However, S1 = (ϕX , ϕY, ϕZ) = (π
2 , π

4 , 0) is just one of the possible pure strategies. In
Figure 9, the performance of different quantum strategies is shown. The quantum protocol
may enhance (points under the classical trade-off curve) or worsen (points over the classical
trade-off curve) the network performance depending on the different quantum strategies
selected by the players if they change the values of ϕX , ϕY and ϕZ.
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Figure 9. Trade-off barrier broken by quantum protocol. In red different pure quantum strategies, in
blue different mixed classical strategies with p values between 0 and 0.99.

4.1.3. Mixed Quantum Strategies

It is interesting to know if S1 = (π
2 , π

4 , 0) is also a Nash equilibrium. For an
Sx = (ϕX , ϕY, ϕZ) strategy to be a Nash equilibrium, no player will have any incentive to
individually modify their strategy. It turns out that there exists a strategy S2 = (π

2 , π
4 , π

2 )
that is beneficial to an individual player assuming that the rest apply S1, therefore S1 is not
a Nash equilibrium. It also turns out that S2 is Pareto optimal and is not a Nash equilibrium,
since there exists a S3 = (π

2 , π
4 , π) that is beneficial for an individual player assuming that

the rest apply S2. Again, S3 is Pareto optimal and not a Nash equilibrium, since there exists
another S4 = (π

2 , π
4 , 3π

2 ) that is beneficial for an individual player assuming that the rest
apply S3. Furthermore, finally, S4 is Pareto optimal and not a Nash equilibrium since an
individual player can apply S1 to benefit himself!

In short, S1, S2, S3 and S4 are all pure strategies. All of them are Pareto optimal in our
problem, since no player can improve their performance without worsening someone else’s
and if all the players apply the same strategy maximum performance can be obtained and
the network congestion be avoided. However, none of them is a Nash equilibrium since
there is always a dominant strategy that would increase the benefit of an individual player
thus encouraging players to individually modify their strategy.

Finally, we can build a mixed strategy S5 that applies the four strategies S1, S2, S3 and S4
with equal probability w = 0.25. S5 turns out to be Pareto optimal since no one can improve
their own performance without worsening someone else’s and it also appears to be Nash
equilibrium since we could not find any SX strategy that a player can apply individually to
increase their own performance assuming that the other players are applying S5.

S5 =


S1 = (π

2 , π
4 , 0) with w = 0.25

S2 = (π
2 , π

4 , π
2 ) with w = 0.25

S3 = (π
2 , π

4 , π) with w = 0.25
S4 = (π

2 , π
4 , 3π

2 ) with w = 0.25

(5)



Quantum Rep. 2022, 4 144

The rigorous proof that S5 is a Nash equilibrium will be left for future work and its
difficulty relies on the fact that the strategy space is infinite. Another interesting work that
remains for the future is the study of the equilibrium strategies of the system formulated as
a generic infinitely repeated quantum game [23]. ϕX, ϕY and ϕZ are already continuous
variables, and for proving that S5 is a Nash equilibrium it is necessary to demonstrate that
there is no mixed strategy in the entire space (three probability density function, over ϕX ,
ϕY and ϕZ) that has the incentive to deviate.

Observing the outcome |ψout〉 of the system when all players apply the mixed strategy
S5, we see in Equation (6) how we avoid congestion. States |00〉 and |11〉 are absent,
therefore, the congestion is avoided.

|ψout〉 =


|01〉+|10〉√

2
with 50%

|10〉 with 25%
|01〉 with 25%

(6)

4.2. Noise Influence

To date, we have been studying the system without considering noise and decoherence
of quantum states. In this section, quantum noise on the system is considered.

4.2.1. Decoherence Simulation

In order to add quantum noise to the model we use the quantum depolarization chan-
nel [22]. This channel depends on a parameter C that maps from the ρout = |ψout〉〈ψout| state
(from Equation (6)) to the maximally mixed state ( I

d ) following the equation:
∆C(ρout) = Cρout + (1− C) I

d , with I the identity matrix and d the dimension of the quan-
tum state.

Figure 10 is obtained by plotting the performance of the system for a Pareto optimal
case and different values of C (from C = − 1

3 to C = 1, respecting the condition of complete
positivity). The performance becomes more and more similar to the classical case as the
original quantum state tends to the maximally mixed state. Finally, as expected, the maximally
mixed state (C = 0) and the classical mixed strategy with p = 0.5 have the same performance.

Figure 10. Effect of decoherence in the trade-off barrier by quantum protocol. As the value of C
moves away from C = 1 (ideal case), the quantum case looks more and more like the classical case.
p values between 0.3 and 0.7.
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4.2.2. Real Device Noise

In order to test our proposal, the IBM quantum computers [17] were used to simulate
the quantum games. IBM quantum computer are denominated NISQ (Noisy Intermediate-
Scale Quantum) devices [24], this means that the quantum processors are very sensitive to
the environment and may lose their quantum state due to quantum decoherence. In the
NISQ era, the quantum processors are not sophisticated enough to continuously implement
quantum error correction, that is why it is important to test our algorithm in these type of
quantum devices. The results can be observed in Figure 11.

Figure 11. Effect of real devices in the trade-off barrier by quantum protocol. Congestion can be
mitigated by making use of IBM NISQ quantum computers. p values between 0.3 and 0.7.

Importantly, the protocol performance is actually very high. This is because the games
were implemented playing in 2-player batches, that is, 2-qubit quantum circuits, while
available quantum computers are still very noisy for large quantum systems, they perform
well when dealing with few qubits and shallow quantum gates circuits.

4.3. Outline

To sum up, mixed classical strategies are constrained by a trade-off between the routing
and traveling time. By allowing quantum strategies, it is possible to break this trade-off and
many Pareto optimal points that outperform the protocol with classical games are obtained.
However, they do not correspond to a Nash equilibrium. In order to achieve this goal it
is necessary to switch to mixed quantum strategies where we propose a strategy that is
Pareto optimal and appears to be a Nash equilibrium.

5. Conclusions

Communication networks are facing increasing congestion problems associated with
the tremendous growth of the number of packets sent over the networks. In order to get an
improvement on the communication network performance classical and quantum network
protocols based on game theory are proposed in this work. Classical game protocols lead
to a routing and traveling time constraint that deteriorates the network performance for an
increasing number of packets.
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The quantum model is obtained with quantum strategies as proposed by the EWL
protocol of quantum games. Quantum strategies are represented by a three-parameter
one-qubit quantum gate model. Then, the players strategies are extended when passing
from classical to quantum.

The trade-off barrier between routing and traveling time present in the classic proba-
bilistic protocol is surpassed by many quantum game strategies leading to an enhancement
of the network performance for increasing packet number. The stability of the quantum
strategies is associated with Nash equilibrium. As pure quantum strategies are not Nash
equilibrium, mixed strategies have been studied. In this way, a mixed strategy that is Pareto
optimal and seems to be Nash equilibrium was shown. Additionally, it was also shown that
under the influence of simulated noise and real quantum devices the quantum protocol
benefits still remain.

We have shown that a quantum game formalism applied to the communication
network enhances its efficiency when dealing with congestion problems. Consequently, a
new world of opportunities could emerge in these types of complex systems when taking
advantage of the possibilities offered by quantum computing. Moreover, they might bring
with them solutions that create remarkably more efficient systems.
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