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Let G, be a semisimple Lie group, let K, be a maximal compact subgroup of G, and
let ¢ C g denote the complexification of their Lie algebras. Let G be the adjoint group
of g and let K be the connected Lie subgroup of G with Lie algebra ad(¢). If U(g) is
the universal enveloping algebra of g, then U(g)X will denote the centralizer of K in
U(g). Also let P:U(g) — U(¥) ® U(a) be the projection map corresponding to the direct
sum U(g) = (U(®) ® U(a)) @ U(g)n associated to an Iwasawa decomposition of G, adapted
to K,. In this paper, we give a characterization of the image of U(g)X under the injective
antihomorphism P : U(g)X — U®™ ® U(a), considered by Lepowsky in [12], when G, is

isomorphic to the rank 1 real form F;2° of the exceptional Lie group Fj.

1 Introduction

Let G, be a connected, noncompact, real semisimple Lie group with finite center, and let
K, denote a maximal compact subgroup of G,. We denote with g, and ¢, the Lie algebras
of G, and K,, and ¢ C g will denote the respective complexified Lie algebras. Let G be the
adjoint group of g and let K be the connected Lie subgroup of G with Lie algebra ad(¥).
Let U(g) be the universal enveloping algebra of g and let U(g)X denote the centralizer of
K in U(g).
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2 A.Bregaetal

In order to contribute to the understanding of U(g)* B. Kostant suggested to con-
sider the projection map P : U(g) —> U (#) ® U(a), corresponding to the direct sum U(g) =
(U®) ® U(a)) ® U(g)n associated to an Iwasawa decomposition g=¢ & a & n adapted to ¢.
In [12], Lepowsky studied the restriction of P to U(g)X and proved, among other things,

that one has the following exact sequence:
0— U@ L Uu®mMe U,

where U (£)™ denotes the centralizer of M in U (¢), M being the centralizer of a in K. More-
over, if U®)M ® U(a) is given the tensor product algebra structure, then P becomes an
antihomomorphism of algebras. Hence to go any further in this direction it is necessary
to determine the image of P.

To determine the image P(U(g)¥), Tirao introduced in [15] a subalgebra B of
U(#)M ® U(a) which is described in detail in §2. This subalgebra B is defined by a set
of linear equations in U(f) derived from certain embeddings between Verma modules
and he proved, among other things, that P(U(g)X) C B for any G,. We point out that
B is defined in a uniform way for any noncompact real semisimple Lie group G, with
finite center (see Theorem 2.3). When G, has real rank 1 the definition of B becomes very
transparent and it is given below in Definition 2.5.

More recently, in [3, 4], we proved that P(U(g)¥) = B for Go = Sp(n, 1) and for Gy =
SO(n,1) or SU(n,1) (see also [11, 15]). Hence these results established that P(U(g)X) = B for
every classical real rank 1 semisimple Lie group with finite center. This paper is devoted
to proving that this result also holds for the rank 1 real form F;?° of F4. The main result

of this paper is the following:
Theorem 1.1. If G, is isomorphic to F;?°, then P(U(g)¥) = B. O

This result confirms our old belief that the image of P can be described in a
uniform way for all real rank 1 semisimple Lie groups, as it is stated in the following

theorem.

Theorem 1.2. Let G, be a real rank 1 semisimple Lie group. Then the image of the

Lepowsky homomorphism P is the algebra B. O

The proof of Theorem 1.2 follows a general pattern in all cases, however, at cer-
tain points in the argument there are some differences. Certainly, the cases of Sp(n, 1)
and F,2° are the most difficult to handle.
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Originally, one of the main motivations to study the image of P was the hope
that understanding it would lead to a classification of the irreducible (g, K)-modules.
However, due to the difficulties encountered in the characterization of P(U(g)X) and
the enormous progress achieved in the classification of the irreducible (g, K)-modules
this is no longer our main motivation. Nevertheless, taking into account that P is a
remarkable injective antihomomorphism between two very important algebras asso-
ciated to a semisimple Lie group, we believe that our description of the image of P
might have other applications yet to be discovered. For instance, we think that a new
proof of the remarkable result of Knop (see [9]), describing the center of U(g)X as
Z(U(@)%)=2Z(U(g)) ® Z(U(¥)), could be obtained by using the map P and the algebra
B, at least for G, of real rank 1. In fact, in [16] this program was carried out by Tirao
for the groups SO(n,1) and SU(n,1). Also, it is reasonable to expect P(U(g)X) to be the
subalgebra of invariants under the action of certain group acting on U(£)” ® U(a) and
since B is the solution space of a system of linear equations in U(£) ® U(a), this system
might help us to discover this group action.

The proof of Theorem 1.1 follows the same ideas used to prove the analog
theorem for the group Sp(n, 1), however, we had to overcome some difficulties to estab-
lish the transversality results needed and the a priori estimates of the Kostant degrees.
In Section 6, we give a new and simplified version of the corresponding transversality
results obtained in the symplectic case (see [3, Section 4]). This version is sufficient
because of the introduction of a simplifying hypothesis called the degree property,
which is done in Section 7. In this section, we use this property to obtain an a priori
estimate of the Kostant degree of certain elements b € B. This allows us to reduce the
proof of Theorem 1.1 to proving Theorem 7.12 (see Proposition 7.14). The proof of this
last theorem is given in Section 8 following the ideas developed in the symplectic case.
In fact, most of the results proved in [3, Section 6] hold in this case with appropriate

changes.

2 The Algebra B and the Image of U(g)X

Let G, be a connected, noncompact, real semisimple Lie group with finite center, and let
K, be a maximal compact subgroup of G,. Let g, and ¢, be the Lie algebras of G, and
K,, and let £ C g be their respective complexifications. Also let g=t @ p be the Cartan
decomposition of g corresponding to (G,. K,) and let 6 denote the associated Cartan
involution. Let t, be a Cartan subalgebra of the Lie algebra m, of M,. Set h, =t, D a, and

let h =t ® a be the corresponding complexification. Then h, and h are Cartan subalgebras
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of g, and g, respectively. Let A be the set of roots of g with respect to h. Choose a Borel
subalgebra t@® m* of the complexification m of m, and take b=h @ m" & n as a Borel
subalgebra of g. Let AT be the corresponding set of positive roots and set, gt =m*™ & n
and g~ =), 4+ 8-« Let (, ) denote the Killing form of g and, for each « € A, let H, €}
be the unique element such that ¢ (H,) = 2(¢$, «)/(«, @) for all ¢ € h*, and let X, denote a
nonzero root vector associated to «.

If 1 € h* consider the Verma module M(u) = U(g) ®u®) Cu—p, where C,_, denotes
the 1-dimensional b-module where h acts by u — p and g* acts trivially. Then M(u) is a
U (g)-module by left multiplication in the first factor with canonical generator1, =1® 1.

For the sake of completeness and in the benefit of the reader we will now summa-
rize the results obtained by Tirao in [15, Section 2]. These results give a family of equa-
tions that are satisfied by every element of P(U(g)X), moreover, these equations have
proved to be enough to obtain an a priori description of P(U(g)X) as a certain subalge-
bra of U(¥) ® U(a). We are going to consider embeddings M(u;) C M(u2) between Verma
modules. The pairs (i1, 12) for which Homy g (M(u1), M(u2)) =1 are described by the B-
G-G Theorem (see [1]). In particular, if u(H,) =2(u, a)/{a, ) =neN for some a € AT, it
is shown in [1] that M(u — no) € M(u). Moreover, every embedding M(u;) C M(us) is a
composition of embeddings of this kind. The following proposition, due to Shapovalov

(see [13]), is a refinement of results contained in [1].

Proposition 2.1. For every a« € AT and ne N there exists an element 6, ,€ U(g~ ® h) of

weight —no with the following properties:

(i) [X,, 000l €U(g)(Hy + p(Hy) — ) + U(g)gt forall y € A*.
(ii) If {or,..., 0} C AT is the set of simple roots and o =) ; £;0;, then

Oun=[ [ X2 + D ajbj.
7

i

where aj € U(g™) is of weight —na, bj € U(h) and the degree of a; is less than

lei 4.
(iii) The element 6, , is uniquely determined by properties (i) and (ii) modulo the
left ideal of U(g~ & b) generated by H, + p(H,) — n. O

Remarks.

(i) If @ is a simple root, then we may choose 6, ,= X",,.
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(ii) If1,=1®1isthe canonical generator of M(u), then 6, -1, can be identified
with the canonical generator 1,,_,, of M(u — no) C M(w).

Ifpebh* let A, ={XeU®):X 1,=0}bethe annihilator of 1, in U (¥). The algebra U(a) is
just the symmetric algebra S(a), which can be identified with S(a*), hence we may regard
every element be U(f) ® U(a) as a polynomial function on a with coefficients in U(£).
Next, we recall [15, Proposition 2] and refer the reader to [15, Section 2] for a detailed

proof of this result. O
Proposition 2.2. (i) If « € A" and u(H,) =ne N. Then,

P(Oun) (1 — p)P(w)(n — p) = P(W)(u — nat — p) P(Oon) (1 — p) (1)

for every ue U(g)X. Here, the congruence is modulo 4,,.

(ii) The annihilator of 1,, in U(¢) is given as follows:

A, =U®m" + Y U®)H — u(H) + p(H)). 0

Het

For o € AY write H, =Y, + Z, where Y, ctand Z, cqa, and let P, ={a € A" : Z, #
0} f e P, let ay={He€a:a(H)=0}. Then a=a,  CZ, and we can consider the ele-
ments in U(k) ® U(a) as polynomials in Z, with coefficients in U(¥) ® U(a,). In the
next theorem, the congruence modulo 4, in (1) is replaced by a congruence modulo
U®m"™ ® U(a,), a detailed proof of this result can be found in [15, Theorem 4]. On the
other hand, since @ € A" is a simple root, in view of Remark (i), we can replace 6, , by

X", for every ne N. For the proof of part (ii), we refer the reader to [15, Theorem 5].

Theorem 2.3. (i) Let o € P, be a simple root and neN. Then for every ue U(g)X the

element b = P(u) satisfies
PX')n—-Y, —1)bn—-Y, —1)=b(-n-Y, - 1P X" )(n—-¥, - 1), (2)

where the congruence is modulo U(®)m*™ ® U(a,).
(ii) Let B be the set of all be U(¥)™ ® U(a) that satisfy (2) for every simple root
a € P, and every ne N. Then B is a subalgebra of U(®)M ® U(a). O
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If « € P, is a simple root set E,=X_, +6X_,. One can show that if o € P, is
simple and Y, # 0, then P(X" ) = EJ. We refer the reader to [15, Corollary 6] for a proof

of this result. Then from Theorem 2.3 we obtain the following theorem:

Theorem 2.4. Let o € P, be a simple root such that ¥, #0. Then for every ne N and
ue U(g)X the element b= P(u) satisfies

E;Lb(n— Y,—-1)=b(—n-Y, — l)E;l, (3)
where the congruence is modulo U(®)m™ ® U(a,). O

If G, has real rank 1, we have a =CZ, for any « € P,, hence the congruence in
Equation (3) is modulo the left ideal U (¢)m* of U(¢). Also, in this paper, we are interested
in the case when G, is isomorphic to the rank 1 real form F, % of the Lie group F,. In
this case, there is only one simple root « € P; and Y, # 0, therefore we can restate the

definition of the algebra B (see Theorem 2.3(ii)) as follows:
Definition 2.5. The algebra B is the set of all be U(¥) ® U(a) such that

E'b(n—Y, —1)=b(-n—Y, — 1)E? mod (U(&)m"), (4)
for all simple roots « € P, and all ne N. O

In view of Theorem 2.4, we have P(U(g)X) C B, in this paper, we will show that
equality holds for the rank 1 real form F;zo of Fy.

In order to prove Theorem 1.1 we will now introduce some notation and recall
known results. Let I" denote the set of all equivalence classes of irreducible holomor-
phic finite-dimensional K-modules V, such that V}f‘/f #0. Any y € I' can be realized as a
submodule of all harmonic polynomial functions on p, homogeneous of degree d, for a
uniquely determined d=d(y) (see [10]). We shall refer to the nonnegative integer d(y) as
the Kostant degree of y. If V is any K-module and y € K, then V, will denote the iso-
typic component of V corresponding to y. Let V be a locally finite K-module such that

VM +£0and let ve VM, v # 0. Since V is locally finite, we can decompose v into K-isotypic

V=3 vy,

yell

M-invariants as follows:
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where v, € V, denotes the y-isotypic component of v. Then we define the Kostant degree
of v by,
d(v) =max{d(y) : v, #0}. (5)

Since we are mainly concerned with representations y € I' that occur as subrepresenta-

tions of U(£) we set,
I ={y eI : y is a subrepresentation of U (¢)}. (6)

If04AbeU(t) ® U(a), we can write b=>b,, ® Z™ + --- + by in a unique way with
bjeU®) for j=0,...,m, b, #0 and Z = Z, for any « € P, simple. We shall refer to b,
(resp. b=b,, ® Z™) as the leading coefficient (resp. leading term) of b and to m as the
degree of b. Also, let 0 be the leading coefficient and the leading term of b=0.

Let M, be the normalizer of A4, in K, and let W= M,/M, be the Weyl group of
(Go, Ky). Then (U®)M @ U(a))" denotes the ring of W-invariants in U(¥)® ® U(a), under
the tensor product action of the natural actions of W on U (&) and U(a), respectively.

At this point, it is convenient to state the following result. Its proof is given in

[3, Proposition 2.6], using the techniques and the notation of [15, Section 3].

Proposition 2.6. If b=b,, ® Z" € (U®)" ® U(a))¥ and d(b,,) <m, then there exits ue
U(g)¥ such that b is the leading term of b= P (u). O

Last proposition suggests using an inductive argument to prove Theorem 1.1. To
do this, it is sufficient to establish the following theorem. In fact, in Proposition 2.8, we

prove that Theorem 2.7 implies Theorem 1.1.

Theorem 2.7. If b=b, ® Z™+---+ by € B and by, #0, then d(b,) <m and its leading
term b, ® Z™ e (U®OM @ U(a)W. O

Remark. In F,? the nontrivial element of W can be represented by an element in M,
which acts on g as the Cartan involution. Hence, to prove that the leading term b,, ® Z™

is W-invariant it is enough to show that m is even. O
Proposition 2.8. Theorem 2.7 implies Theorem 1.1. O

Proof. Assume that Theorem 2.7 holds. From Theorem 2.4, we know that P(U(g)¥) C B.
Then let us prove by induction on the degree m of be B, that B C P(U(g)X). If m =0,
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we have b=by € U®)™ and Theorem 2.7 implies that d(by) =0. If y € I’ and d(y) =0,
then y can be realized by constant polynomial functions on p and these functions are
K-invariant. Thus, by € U(£)X and therefore b= by = P(by) € P(U(g)¥).

If be B and m > 0, from Theorem 2.7 and Proposition 2.6, we know that there
exists v e U(g)X such that 1?(\11/) =b. Then b — P(v) lies in B and the degree of b — P(v) is
strictly less than m. Hence, by the induction hypothesis, there exists ue U(g)X such that
P(uy=b— P(v) and b= P(u+v) € P(U(g)¥). This completes the induction argument and
we obtain that B ¢ P(U(g)X), as we wanted to prove. [ |

In view of this result the main objective of this paper is to prove Theorem 2.7

when G is isomorphic to the rank 1 real form F,° of F,.

3 The Equations Defining B

From now on, we shall write u= v instead of u=v mod (U(¢)m*), for any u, v € U(¥). Next

result was proved in [15, Lemma 29] for G, of arbitrary rank.

Lemma 3.1. Let o« € P, be a simple root. Set H, =Y, + Z, where Y, €t, Z, €a and let
c=a(Y,).If » =a|, and m(r) is the multiplicity of A, then c=1 when 2 is not a restricted
root and m(}) is even, or when m(A) is odd, and c= % when 2 is a restricted root and

m(}) is even. O

In particular, if G, is isomorphic to F;?° we have c= % To simplify the notation
set E=E,, Y=Y, and Z = Z, for any simple root « € P,. Note that [E, Y] = cE, where cis
as in Lemma 3.1. Also, since E, =X , + 06X , and « is a simple root in P, it follows that
E is m*- dominant.

We shall identify U(#) ® U(a) with the polynomial ring in one variable U (¥)[x],
replacing Z by the indeterminate x. To study Equation (4), we change b(x) € U (¢)[x] by

c(x) € U(8)[x] defined by
c(x)=b(x+ H —1), (7)

where H is an appropriate vector in t to be chosen later, depending on the simple root
o € P, and such that [H, E] = %E (see (19)). Now, if Y=Y + H, we have [E, Y]= E. Then
b(x) € U (¥)[x] satisfies (4) if and only if c(x) € U (¢)[x] satisfies

Ec(n—Y)=c(-n— Y)E" (8)

for all ne N. Note that (8) is an equation in the noncommutative ring U ().
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Now, if p is a polynomial in one indeterminate x with coefficients in a ring let
p"" denote the nth discrete derivative of p. That is, p™(x) = Z'}:O(—l)j (7) px+3—j).In
particular, if p= p,x™ + --- + py, we have

- 0 if n>m,
pU(x) =
m!p, ifn=m.

Also, if X ¢, we shall denote with X the derivation of U () induced by ad(X).
Moreover, if D is a derivation of U(f), we shall denote with the same symbol the unique
derivation of U(¢)[x] which extends D and such that Dx=0. Thus for be U¥)[x] and
b=b,x™ + ---+ by, we have Db = (Db,,)x™ + --- + (Dby). Observe that these derivations
commute with the operation of taking the discrete derivative in U (8)[x].

Next theorem gives a triangularized version of the system (8), and in turn, of
the system (4) that defines the algebra B. A proof of it is given in [2], where the system
(8) is studied in a more abstract setting and in particular the LU-decomposition of its

coefficient matrix is given.

Theorem 3.2. Letce U(#)[x]. Then the following systems of equations are equivalent:

(i) E"c(n—Y)=c(-n— Y)E", (neNo);
(i) E™(c™)(2+1-Y)+EY™V)(2 -3 -Y)E=0, (neNy).
Moreover, if ce U(¥)[x] is a solution of one of the above systems, then for all
¢, ne Ny, we have
(i) (~D"E‘Cc™)(—Z+L—Y)E"— (—D'EYO) (-t +n-Y)E'=0. O

Observe that if ce U(¥)[x] is of degree m and c=cy,x™ + --- + ¢y, then all the
equations of the system (ii) corresponding to n> m are trivial, because ¢ =0. More-
over, the equation corresponding to n=m reduces to E™*!(c,,) =0, and more generally
the equation associated to n=j only involves the coefficients ¢y, ..., c;. In this sense,
the system (ii) is a triangular system of m + 1 linear equations in the m + 1 unknowns
Cms - - » Co.

If 0 £ b(x) € U(®)[x] and c(x) € U(¥)[x] is defined by c(x) = b(x + H — 1), where H is

as in (19), we find it convenient to write, in a unique way, b= ZT:O b;x’) with b; € U(¥),
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by, #0, and c= Z}":O cjp; where c;j € U(£) and {¢,}n=0 is the basis of C[x] defined by,

i) @o=1,

(i) ¢V =g, ifn>1,

(i) @u(0)=0 ifn>1.

Moreover it is easy to prove that such a family is given by

(p,iX):%X(X—i—g—l)(x—}—g—Z)---(X—24—1), n>1. 9)

Next lemma contains the results of [3, Lemmas 3.3 and 3.5]. Its proof is the same as that

of the corresponding lemmas in [3].

Lemma 3.3. Letb=) 7', b;x/ € U(¥)[x] and set c(x) =b(x + H — 1). Then, if c=Y"T" cj¢;
with ¢j € U(¢), we have

m
Ci=2bjtij, 0<i<m,

j=i

where
t,—i:(—mk : Helo1-k j
k=0
Thus, #;; is a polynomial in H of degree j — i. Moreover,
ET () = (—3) T UET .

From these results and Theorem 3.2, we obtain the following theorem and its

corollary in the same way as in [3].

Theorem 3.4. Ifb=b,,® Z™ +---+ by € B, then Em“(cj) =0forall0<j<m. O

Corollary 3.5. Ifb=b,, ® Z™ +---+ by € B, then E?™*1-J(h;) =0 forall 0 < j <m. O
Next we rewrite equation (iii) of Theorem 3.2 for later reference. Given b=

Z;.":O bjxj € B and c(x) =b(x+ H — 1) as above, it follows from Theorem 3.4 that equation

(iii) of Theorem 3.2 is satisfied if £ > m or n> m, and it is trivial when ¢ = n. Also note

that the equation corresponding to (n, ¢) is equivalent to the one corresponding to (¢, n).
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Theorem 3.6. Let b=)"", bix/ e U®)[x] and c(x) =b(x+ H —1). If c= Yo cigj with

cjeU(¥) and 0 </, n, we set

€em=1" Y E@in(-—5+t-7)E = (-1 Y E'@eie (—g +n- y) E',

n<i<m {<i<m

Then, if b e B, we have €(¢, n) =0 mod (U#)m™") forall 0 < ¢, n. O

Proof. The assertion follows from equation (iii) of Theorem 3.2 and the fact that c®¥ =
Yo gk forall0 <k<m. [ |

4 The Group F,;*°

Let G, be isomorphic to the rank 1 real form F,?° of F,. Then the Dynkin-Satake diagram
of g is

e——e—>e0— O
g a3 a2 a1

We can choose an orthonormal basis {¢;}}_; of b}, such that as =€, — €3, a3 = €3 — €4, 0z =
€4, 0] = %(61 — €3 — €3 — €4). Moreover, if o denotes the conjugation of g with respect to g,,
then €] =€, and €/ = —¢; if 2 <i <4. Also, we have ¢} = —¢; and €/ =¢; for 2 <i <4. From

the diagram it follows that

At ) ={e:1<i<4}Ulete;:1<i<j<4}U{j(c1 e e+ e,
Po={e1,e1 €z, €1 L ez, €1 Leg} U561 ea £ eg £ eg)),

P_={eg,€3,€4,€2 £ €3, €2 £ €4, €3 £ €4},

where the signs may be chosen independently. Here, P_ denotes the set of roots in
A'(g, h) that vanish on a. Hence, P_ = A*(m, t) and from this it follows that m ~ s0(7, C).

We have t =ker(e¢;) and ¢; is the only root in P, that vanishes on t. If we set u =€,
then H, = Z, € a. Choose the root vector X, so that (X,,0X,) =2 and define X_, =60X,.
Then the ordered set {H,, X,,, X_,} is an s-triple. This choice characterizes X, up to
a sign. On the other hand, it can be established that for any choice of nonzero root
vectors X,, and X_,, we have [X,,0X,,]1=1tX,, and [X,, X 4 ]=—t0X_,, with t*=1. Then
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normalize X, so that,

[X,,0X,]=—X, and [X,, X o]=0X_,,. (10)

1

Now consider the Cayley transform y of g defined by
x =Ad (exp Z(GXH - XM)) .
4
It is easy to see that

Ad(expt( X, — X,))H, =cos(2t)H, + sin(2t)(X, +6X,).

Then x(H,) =X, + 60X, and, since u; =0, x fixes all elements of t. Therefore, he = x (t ®
a)=t® C(X, +6X,) C tis a Cartan subalgebra of both g and ¢.

For any ¢ cbh* define ¢ €hi by ¢=¢-x~'. Then A(g, he) ={d: @€ A(g,h)} and
ga = x(go). A Toot & € A(g, ) is said to be compact (respectively noncompact) if gz C ¢
(respectively, gz Cp). Let A, bhe) and A(p, he) denote, respectively, the sets of compact
and noncompact roots.

Using [3, Lemma 3.1] it follows that a3 and &4 are compacts roots, and that &, is
a noncompact root. Also, since X,, was chosen so that (10) holds, we obtain that &, is a

noncompact root. From this it follows that

A, b)) ={F£(& L€ 1<i<j<4U {%(:I:él + €, £ €3 £ €4): even number of minus signs},

Alp,he) ={£€&:1<i<4}U {%(iél + €, £ €3+ &) odd number of minus signs}.

Next we construct a particular Borel subalgebra b, = h, @ ¢t of ¢ that will be
useful later on to describe the set I, as well as some of the properties of the elements
of I' (see Proposition 5.1). For more details on the construction of the subalgebra b, and
its relation with I" we refer the reader to [6].

Since o] = %(el — €2 — €3 — €4) is the only simple root in P, set, as in the previous
section, E=X_,, +60X_,,. Let H; € tg be such that «(H,) > 0 for all « € A*(m, t). We say
that H, is t-regular if in addition «(H,)#0 for all « with @ € A(%, he). Since pn is the

only root in A*(g, h) that vanishes on t and since & is a noncompact root, it follows that
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t-regular vectors exist. Given a t-regular vector H, consider the positive system
AT(e, be) ={a € A(E, be) :a(Hy) > 0},

If Ao =01, is the simple restricted root and H, is a ¢-regular vector, we consider the

following set:

P,(A) ={ae€eP,:alg=% anda(H,)<O0}.

Definition 4.1. A positive system A™ (¢, he) defined by a ¢-regular vector H, (see (4)) is
said to be compatible with E if « — «; is a root for every o € P, (Ao)~ such that @ #¢«;. O

The ¢-regular vectors in tg, for g, >~ f4, are all of the form H, = (0, t;, t3, t4) with
t, > t3 > t, > 0 and &, # &3 + t,. Different vectors H, define two different positive systems,
they depend only on whether +(t, — t3 — t4) > 0, and they are both compatible with E.
From now on, fix a ¢-regular vector H, = (0,6, 63, t4) with >3 >8>0 and 6 > 3 + t.

The corresponding positive system in A%, by) is,

AT ) ={&+&:2<i<j<a}U[E+&:2<i<4)

U {%(:i:él + €3 + €3 + €4) : even number of minus signs},

and by =he ® £t is the associated Borel subalgebra. A simple system in A1 (g, be) is

given by,

TT(E, be) = (€4 + €1, €3 — €4, é4 — €1, 5(€1 + €3 — €3 — éa)). (11)

Hence £~ s0(9, C).

Fix nonzero root vectors X, ., (2<i<4), X+, (2<i < j<4) and define,
Xgi+€1 = X(X€i+€1)a Xgi—gl = X(QXEH-Q)’ Xgiigj =X(Xéiﬁ:5j)' (12)
Then it follows from [6, Proposition 2.4] that,

Xgiigj = Xéiiejv
(13)
XEﬁLEl = %(Xeﬁ%l + [X;u 9X5i+51] + 9X€i+€1)7
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and
Xéi—él = %(Xﬁ‘-‘rﬂ - [X;u 9X€i+51] + 9X€i+61)'

Hence,

Xeve, — Xemey = [ Xy, 0X e = X, em™, (14)

Then from (13) and (14) it follows that:
m' = ({Xee,:2<i< J<4U{Xeye — Xgg, 1 2<1<4}), (15)

where (S) denotes the linear space spanned by the set S.

Next we define, as in the case of Sp(n,1) (see [3, Section 3]), a Lie subalgebra g
of g that it is both o and 6 stable and its real form g, =g, N g is isomorphic to sp(2, 1).
Recall that a; = %(61 — €2 — €3 — €4) is the only simple root in P,. Let g be the complex Lie

subalgebra of g generated by the following nonzero root vectors:

{X:i:ez 5 X:I:oq 5 X:I:(63+e4)}-

Then g is a simple Lie algebra stable under o and 6. Therefore, g is the complexification
of the real subalgebra §o=g,N§ and §=t® p is a Cartan decomposition of §, where
t=tNngand p=pn§ Moreover, h=(tN§) @ a is a Cartan subalgebra of § and m=mnNE
is the centralizer of a in & That §,~sp(2, 1) follows from the Dynkin-Satake diagram

Of gOr

° 0 <G °
€2 aq €3+ €4

Since the root vectors X, and 60X, are in g, it follows that g is stable under the Cayley
transform yx of the pair (g, h). Hence the restriction of x to g is the Cayley transform
associated to (§, ). Then b = x(h) =be NEis a Cartan subalgebra of £ and §. The positive
system A*(t, be) determines a positive system A*(E, ) = {&lhé € A(t, hp) :@ € AT(E bhe)} in
A(t, b;). Moreover,

OEb) ==& —&. =2 +&—&—&). p=& + &}

is a simple system in A*(E, h;) and the corresponding Dynkin diagram is

0 O <& o0
0 71 Y2

2102 ‘ST 48qo100 o 139nB Ag /610°s feuino [pioyxo-uiwiy/:dny wouy pepeojumod


http://imrn.oxfordjournals.org/

The Classifying Ring 15

Then A*(E, bhy) = {5, y1. V2, v3. va}, where ys =y, +y2 = 3(é1 + & + & + &) and ya =2y, +

Y2 = €1 + €. Hence, %:sp(l, C) x sp(2,C).

V2
2
corresponding to y3;. Then set X,, = E. Now define ¢; =€é3 + €1, §1 =€3 — €1, po =€+ €;

A simple calculation shows that x(0X_,,) = %2E, thus E is a root vector in Bt

and 8, = €4 — €;. Then in view of (12) we have,
XV4 = X(X€z+€1)v X5 - X (9X€2+61)7 X(pl = X (X€3+€1) (16)

and
X5, =X(O0Xez1e), Xpp =X Xegre), X5, = x(0Xeyre,)- (17)

It follows from (14) that X, — X; and X, — X;, are in m* fori=1, 2.

Normalize X_,,, X_5, X_,,, and X_; so that (X,,, X_,,) = (X5, X_5) = (X,,, X_y,) =
(X5, X_s;) =1, fori =1, 2. Then it follows that:

(X, — X5, X, + X 5) = (X, — X5, Xy, + X_5,) =0. (18)

Hence, X_,, + X_s and X_,, + X_5, (1 =1, 2) are in (m*)*, the orthogonal complement of
m* in ¢ with respect to the Killing form of &.

To simplify the notation set, X1, =X, Xip =Xy, X4z =Xy, and Xy4 =Xy,
Let H, €[¢,,, t_,,] be such that y, (H;) = 2, and normalize X; and X_; so that {H;, X;, X_;}
is an s-triple. Next normalize X, and X, (and accordingly X;), so that

[X;, X2]=E and [X;, El=X,.

From this, and the fact that y,(H;) = —2, it follows that

[X 1,El=2X, and [X_;, X4]=2E.

Now choose Hy€lt,,t_,,] such that y,(Hz) =2 and normalize X_, so that
{H, X2, X_5} is an s-triple. Since [¢,,, ¢_,,] C t and y; (Hy) = —1, if we define

H=1H,, (19)

we obtain a vector H € t such that H(E) = %E This vector H is the one used in (7). Also,
since §(H,) =0, we have [X;, H] =0.
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As in the previous sections, set Z=Z,,, Y=Y,, and Y=Y+ H. From Lemma 3.1,
it follows that E(Y) = %E, hence E(Y) = E. Now, since (¢; + €2)(H,,) =0, we have (¢; +
€)(Y)=—(e1 + €2)(Z) =—1 because (€1 + €2)|qa =201]q and «;(2) = % (see Lemma 3.1).
Then X;(Y) = X;, and therefore X;(Y) = X;.

5 The M-Spherical K-Modules

In this section, we describe the main properties of the K-modules in the classes I and I
(see (6)). In the following proposition, we collect several results that will be very useful
later on, and in Proposition 5.3 we will prove some important properties of the Kostant

degree d(u) for ue U*)™ that make use of these results.

Proposition 5.1. Let G, be isomorphic to F,;?° and let by = b @ £+ be the Borel subalge-

bra of ¢ defined before. Then m*™ C ¢© and E is a root vector in £+. Moreover:

(i) For any y € K let &, denote its highest weight. Then, y € I" if and only if
& = ]f()@ +6) + Lys with k, £ € N,. In this context, we write y =yx, & =&k
and Vi, for the corresponding representation space. Also we shall refer to
any v € V,j}’l{ as an M-invariant element of type (k, £).

(ii) For any yx, € I', we have d(yi¢) =k + 2¢.

(iii) If y e I', we have y € Il if and only if £, = &, with k even.

(iv) For any yx € I', we have XFE/(VM) =V, and XPE?(V}4) = {0} if and only if
p>korp+g>k+¢. O

For a proof of this proposition, we refer the reader to [6]. The construction of the
Borel subalgebra b is contained in [6, Section 3] and the statements in (i), (ii) and (iv)
follow from [6, Proposition 4.4, Theorem 4.5 and Theorem 5.3], respectively. On the other
hand (iii) is a well-known general fact. We point out that some of these results were first
established in [8], others were proved in [5] and they were generalized in [6] to any real
rank 1 semisimple Lie group.

The following proposition is the analog of part (ii) of [3, Proposition 3.11]. We

omit its proof since, up to minor changes, is the same as that of Proposition 3.11.

Proposition 5.2. Let G, be isomorphic to FZZO. Let yx¢ € I" and let Vi, be a K-module in
the class yx .. Then if 0 # v € VY, the set

(X, TEH () 0<j<k
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is a basis of the irreducible {H;, X7, X_;}-module of dimension k+ 1 generated by any
nontrivial highest weight vector of Vi,. Moreover, X?ﬁj E“J(v) is a weight vector of

weight &, — jy1 and the following identities hold:

P () :
X, X} ’E“J(v)z(JZL)XQC MESTYw), 0<j<k (20)
_j ; 2+ )(k—J) x—i . )
XX TE ) = 2 DO i) o< j<k (21)
C+j+1
K\ (e+7\
: - + s .
X7 () =27 ! < ) ( ‘ J) X,Igc 'E(v), 0<j<k (22)
J
where w ¢ is the highest weight vector X(’S‘El(v). O

In the following proposition, we prove some important properties of the Kostant
degree d(u) for ue U(®¥)™. Even though we give the proof for F;zo, since our argument
relies heavily on Proposition 5.1, the same proof hold for the other real rank 1 groups,
S0(n,1), SU(n,1) and Sp(n, 1), with the appropriate changes. These result will be used in

Section 8.

Proposition 5.3. Let G, be isomorphic to FZZO. If u,veU®M are nonzero vectors,
then

(1) d(u+v) <max{d(w), d(v)},
(2) dw)=dw + d@),
(3) d(w) =0if and only if ue U®)X. O

Proof. The assertions (a) and (c) follow directly from the definition of the Kostant
degree. We start the proof of (b) by showing that d(w) < d(w) + d(v) for any 0#£u, v e
UM, Let us begin by considering ue Vs c U®M and v € V. gy C U()™ where Vs and
V. ¢ are, respectively, irreducible finite-dimensional K-modules in the classes y,s and

Yr.g of I1. Then u® v € (Vs ® Vi ¢)™ and we decompose it as follows:

uQuv= Zwi,j, (23)
iJ
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where w; ; #0 is the y; j-isotypic component of u® v. We recall that if y; ; € I', then its
highest weight is & j=1(ys + ) + jy; and d(;,;) =i+ 2], see Proposition 5.1. We will
show that d(w; ;) < d(w) + d(v) for any w; ; that occurs in (23).

In view of (11) a simple system of roots in A™ (g, h;) is given by
T8, he) ={€a+¢1,é3 —és, &4 — €1, =561 + & — €3 — &)} (24)
Then it follows that
Yat+8=(€a+€1)+ 2(€3 —€1) + 3(€a — €1) + 40

and
y3=(€s+ €1) + (€3 — €a) + (€2 — €1) + 1.

If V;; cU®M occurs in the decomposition of Vs ® V¢ it is known (see [7]) that its

highest weight §; ; = %(y4 +3) + jys is given by
& j=6rirsts —[C1(€4+ €1) + (€3 — €4) + a3(€4 — €1) + Cannl, (25)

where ¢; € N, for 1 <i <4. Hence comparing the coefficients of the simple root €, 4+ €; on
the left- and the right-hand sides of (25) it follows that

i ., r47r ,
—+J]= 2 +SsS+S —cC1.

Then, since ¢; > 0, we have
dw;j)=r+1r"+2(s+5s) —2c =dWw) + d(v) — 2¢; <d(w) + d(v).
Therefore, using the definition (5) and (23) it follows that:
d(u® v) =max{d(w; ;)} < d(w) + d(v).
Now, using that the map u®veU®M @ UE®)M - w e U(¥)M is a K-homomorphism it
follows that d(w) < d(w) + d(v).

Now letue Vs @ --- ® Vs (m summands) andve V¢ & --- & V¢ (nsummands),

where V. and V. ¢ are irreducible finite-dimensional K-submodules of U(£)M as above.
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Writeu=u + -+ up, withuge Vs (1 <k<m)andv=v; +---+ v, withv, e Vo (1 <L <

n). Then using the above calculation, we obtain:

dw)=d (Z ukw) <max{dwv,):1<k<m, 1<t<n}
k.t

<max{d(u) + d(v)):1<k<m, 1<{<n}=dw + d). (26)

Consider now u, v € U(¥)M such that d(u) = p and d(v) = q. It follows from (5) that,

u= Z u, and v= Z Vo, (27)

d(y)<p d(r)=<q

where u, and v, denote, respectively, the K-isotypic components of u and v correspond-

ing to the classes y and t of I';. Then using (26), we obtain,

dlw)=d <Z uyvf> <max{d(u,v;):u, #0, v, #0}

Y.T
<max{d(u,) +d(v;) :u, #0, v, #0}
=max{d(y) + d(r):u, #0, v, # 0}
<p+q=dw + d(v).

Our next goal is to show that d(uw)=d(w) + d(v) for any u, v e U¥)M. Assume

that d(u) = p and d(v) = q. Then, using (27) and the fact that d(uw) < d(u) + d(v) for any
u, v e U(®M it follows that:

uy = Z u,v;: +w,
d(y)=p, d(r)=q

where w e U(£)M is such that d(w) < p+ g. Then, in view of (5), we may assume that

u= Z u;; and v= Z Vrs, (28)

i+2j=p r42s=q

where u;; and v, denote, respectively, the K-isotypic components of u and v corre-

sponding to the classes y;j and y.; of I. Let k=max{i e N,:u;; #0 for some j} and
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¢ =max{r e N, :v,;#0 for some s}. Then using (28), Leibnitz rule and part (iv) of Propo-
sition 5.1 it follows that:

p+q—k—¢

. . k+¢ . . . .
E(p+q—k—e)/2X§+£ (w) = ( ) ) q % ¢ E(p_k)/zXf(uk,p%k)E(q_MzXf (ngqsz) £0.

2
(29)

We point out that the right-hand side of (29) is different from zero because, in view of
(iv) of Proposition 5.1, it is a product of two dominant vectors. Also using Leibnitz rule,
Proposition 5.1(iv) and (29) it follows that:

. k+¢\ . .
X (w) = ( : ) XE (W - 0) X[ (V, a0) #0 (30)
and
XK () = 0. (31)
To finish the proof, write

uv = E bi,]’,
i.j

where b; ; denote the K-isotypic components of wv corresponding, respectively, to the

classes y; j € I'l. Then from (29)—(31), we obtain,

X ) =) X5 (bry )
J

and

0+ Z E(erqfku)/Z X(ISC-&-Z (karE,j)-
J

Therefore, from Proposition 5.1(iv) it follows that there exists by, j # 0 such that (p+
q—k—0/2+k+¢<k+4{¢+ j. Thus

dw) <d(w) +dv) =p+qg<k+ L+ 2j=dbrj) < dw).

This completes the proof of the proposition. |
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6 Transversality Results

In this section, we prove several results that will allow us to deal with the congruence
modulo U(®)m* that occur in the equations that define the algebra B (see (4)). In par-
ticular, we reduce the congruence modulo U(¥)m* to a congruence modulo U (£)y, where

p Cm' is the abelian subalgebra defined as follows:

0= ({Xe1e,, Xepreyr Xeyven))- (32)

Before stating the main results, we introduce the following notation:

823 = ng-‘rggv 824 = X§2+§47 and T’l] = Xgi—gj (2 =< i # J = 4) (33)

Let q* be the linear span of {X,:a € A" (¢, be) and o # y1}. Since y; is a simple
root in A1 (L, b;) (see (24)) it follows that q* is a subalgebra of ¢*. We are interested in
considering weight vectors ue U(®)m* of weight A =a(ys + 8) + bys (a, b€ Z), and such
that X(u) = 0 mod (U (¥)y) for every X € q+.

Consider the subalgebra q C ¢ defined as follows:

I=q"®bh.dq, (34)
where
he =ker(ys + 8) Nker(ys) = ({Hz,—¢,, Hey—¢,}) (35)
and
9" ={X-@-ea))- (36)

Then a simple calculation shows that

[q,9] Cv.

Moreover, g =t @ uwhere vt = (h, U {X1¢,-¢,)}) = gl(2, C), b, is a Cartan subalgebra of v and

u is the following nilpotent subalgebra:

u=({Xeure; 13=J =4 U{Xeze 12514} U{X,

29

X)’S’ Xl/fl ’ Xlﬂz}>’

2102 ‘ST 48qo100 o 139nB Ag /610°s feuino [pioyxo-uiwiy/:dny wouy pepeojumod


http://imrn.oxfordjournals.org/

22 A.Bregaetal.

where

Y1=3(—&+& —E&+é), Ya=3(—& +&+&— &) (37)

The proof of the next two lemmas follow from a direct application of Poincaré-
Birkhoff-Witt theorem. Let g be an arbitrary finite-dimensional complex Lie algebra
and let [ be a subalgebra of g. If {X;, ..., X,} is an ordered basis of [ complete it to an
ordered basis {1, ..., Y, X1, ..., Xp} of g. Now,ifI:(il,...,iq)eNg and J=(ji,..., Jp) €
N? define as usual Y/X7 = V{ ... ¥ X7 ... X% in U(g). Then we have the following lemma:

Lemma 6.1. Any ue U(g)l can be written in a unique way as u=a; X; + - - - + apX, where
ak=Za1,jl ,,,,, jkYIX{I'--X,Jf fork=1,...,p,
and the coefficients a; j, . ; are complex numbers. O

Lemma 6.2. Let g and [ be as above. Let ue U(g) and X € g — [ be such that X(I) C [. If
uX"=0mod (U(g)l) for some ne N, then u=0 mod (U(g)l). O

Let n* be the orthogonal complement of y in € with respect to the Killing form

of €. For any Z € (m")* consider the linear map Tz : q x (m*)* — p* given by
T;(X,Y)=I[X,Zl+Y, Xeq and Ye@mhHt (38)

Since [q, y] C y and (m*")* C p* it follows that Im(T%) C yt, where Im(T%) denotes the image
of the map Tz. The following proposition will be used in Theorem 6.4 to prove one of the

main results of this section.
Proposition 6.3. There exists Z, € (m)* such that Im(Tz,) =y=. O

Proof. Using (15) and the notation introduced in (16), (17) and (33) it is easy to check
that
pt=mhHt @ ({X 5, X_s,, X s,, Taa, Taz, Taz)}). (39)

It is clear, from the definition of Ty, that (m*)* C Im(T;) for every Z € (m*)*. Now,

consider the vector,

ZO = X—;/4 + X—(S + X—(p2 + X—Sz + X—y3 + H§4—§37 (40)
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where H,_¢, € b¢ is such that (€4 — €3)(H;,_z,) =2. Using (15) and (18), it follows that
Z, € (m™)L. In view of (39), to prove that Im(Tz,) =y’ we need to show that ({X_s, X_;,,
Xﬁﬂz’ Xlﬁl ’ th’ H€4—€1 ,and

Ty3 are in q (see (16), (17), (33), and (37) for the notation) a simple calculation shows that

X_s,, T2, Taz, Tu3}) is contained in Im(T%,). In fact, using that X,

19

T7,(Xy,, 0)=C1Ty, Tz,(X,,0)=0cT;,
T7,(Xy,, 0) =3 X_5,, T7,(Xy,,0)=c1X_s,

T7,(Hz,—,,0)=05X_s5, Tz, (Ta3,0)=CeTas,

where, in all cases, the congruence is modulo the subspace (m*)! and ¢ £0for 1 <i <6.

This completes the proof of the proposition. |

Theorem 6.4. Let uc U(&)m™' be a vector of weight A = a(ys + 8) + bys, with a, b€ Z, and
such that X(uw) =0 mod (U (¢)y) for every X € q*. Then u= 0 mod (U (¢)n). O

Proof. LetU(¥) = szo U; () be the canonical ascending filtration of U(¥). If v € U(¢) and
v # 0, define

deg(v) =min{j:v e U;(¥) and v ¢ Uj_1(8)}, (41)

where it is understood that U_;(¢) = {0}. Let S be the set of all v € U(®)m™ of weight A =
a(ys + 8) + bys (a,be7Z), so that X(v) € U(b)y for every X € q* and v ¢ U(¥)y. The theorem
will be proved if we show that S =¢. Assume on the contrary that S # ¢ and choose
ue S such that deg(w) = min{deg(v) : v € §S}. Set r = deg(w) and let p, : U, () — U, (¥)/ Ur_;1 ()
denote the quotient map. The map p, intertwines the representations of K on U, (¢) and
on U.(8)/U,_1(¥), and since u¢ U,_; (¢) we have p.(u) # 0.

Let S(¢) be the symmetric algebra of ¢ and let S(¢*) denote the algebra of poly-
nomial functions on £. Let S,(¢) and S.(£*) denote the corresponding homogeneous sub-
spaces of S(£) and S(¢*) of degree r. There is an algebra isomorphism between S(¢) and
S(t*) defined by the Killing form of ¢, this isomorphism maps S,(¢) onto S,(¢*) and inter-
twines the canonical representations of K on S,(¢) and on S,(¢*). Composing this iso-
morphism with the natural K-isomorphism between U, (¢)/U,_; (¢) and S,(¢), we obtain a

K-isomorphism,

Ur(®)/ Up_1(8) = Sy (£). (42)
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Hence, we can think of p,(u) as a homogeneous polynomial function on ¢ of degree r, and
regard p- as a K-homomorphism from U, (£) to S,(¢*).

Let (m*)* be the orthogonal complement of m* in ¢ with respect to the Killing
form of ¢. Since ue U(t)m™ and the isomorphism given in (42) is defined by the Killing
form of ¢ it follows that:

p-(W(Y)=0 forevery Ye (mh)t. (43)

Now let X € q*. Since [q", y] C v, we have X*(U (¢)n) C U(¢)y for every ke N. Then,
since by hypothesis X(u) € U(¢)y, it follows that X*(u) € U(¢)y for any ke N. Therefore,
using that (m*)* cy* and that p, is a K-homomorphism it follows by induction on k
that

X(pr)(¥) = p(X*w)(¥) =0 for Ve m"" and Xeq", (44)

where X(p-(u)) denotes the action of X on the polynomial function p,(w).
Since u is a vector of weight A = a(ys + §) + bys, it follows from the definition of
h. that H(u) =0 for every H € b,. Then,

H*p-(w)(Y)=0 forYet, Heh, andkeN. (45)

Let0#£uc U(®)/U(¥)y be the image of uunder the quotient map. Normalize X;, ¢,
and X_,_¢,) so that {Xz,_¢,, Hz,—¢,, X—(2,—¢,)} is an s-triple. Since X;, ¢, € 9" and H;, ¢, € b,
and by hypothesis &2 is a dominant vector of weight zero with respect to above s-triple,
we obtain that X,(gs,g4)(a) = 0. Hence, from (36), we obtain that X(u) € U(£)y for X eq~.

Then, since [q~, y]l C v, it follows that:
X*(p(w)(Y)=0 forYem")', Xeq , andkeN. (46)

Now recall that for k€ K and f € S.(¢*) the action of k on fis given by (kf)(Y) =
f(Ad(k 1Y) for every Y e £ . Then, from (43)—(46) it follows that

p-(w(Ad(exp X)Y)=0 for XeqUh.Uq and Ye(mhHt (47)

Let Q be the connected Lie subgroup of K with Lie algebra q (see (34)). Since the set

expqt.expbh,.expq generates Q, we obtain that

p-(W(Ad(9)Y) =0 forgeQ and Ye (mh)’. (48)
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Now consider the map @ : Q x (m*)* — n* defined by ®(g, Y) = Ad(g)Y. The fact
that the image of @ is contained in y* follows from a simple calculation using that
[9. 9] Cy and that n C m™. Let e € Q be the identity element and Z € (m™)*, then (d®) . z) is
the map Tz : q x (m")* — n* defined in (38). It follows from Proposition 6.3 that (d®) .z,
is surjective. This implies that the image of & contains an open set of n*, then in view of
(48) we obtain that,

p-(w)(Y)=0 forevery Yey'. (49)

Recall that y= ({Xs, Sp3, S24}) (see (32)). Extend the basis of y to a basis B=
{Z1,..., 24, X2, Sp3, Soa} of &, where g =dim ¢ — 3. If I = (iy, ..., Iy) € N¢ and J = (J1, jo, J3) €
N3, set [I|=iy 4+ +ig |[J=ji+ jo+ js and Z* =Zi1 ... Zg in S(¢). If we regard p,(u) as

an element in S,(¢), we can write
pr(w) = Z br.sZ" X3 S33S33.

where b; ; € C and the sum extends over all I and J such that |I| + |J| =r. Now, identify-
ing ¢* with ¢ via the Killing form of ¢ and considering a basis B of ¢ dual to B it follows
from (49) that b; o =0, for all I such that |I| =r. Therefore,

pw=Y brsZ X} kS, (50)
|J|>0

where the sum extends over all I and J such that |I|+ |J|=r. On the other hand,
since p, is a K-homomorphism from U,(¥) to S.(f) it follows that p.(w) has weight
A =a(ys + 38) + by; with respect to he. Then, (50) implies that

u= Y bysZ' X} SESE + U, (51)
|J|>0

where the monomials Z’ Xgl sggsgi are in U(¢), the sum extends over all I and J such that
|I| 4+ |J| =r and u is a vector of weight A in U,_; (). Moreover, since the sum in the first
term of (51) is a vector in U(¥)y and X(U (¢)y) C U(¥)y for X € q*, it follows by hypothesis
that X(u) € U(t)y for every X e qt. Also, since ue U(®)m* and u¢ U(¥)y the same facts
hold for «/, therefore v € S. This is a contradiction since deg(v) < deg(uw). Then S =¢ and
the proof of the theorem is completed. |
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Corollary 6.5. Let uec U(®)m* be a qt-dominant vector of weight A = a(ys + §) + bys with
a,beZ. Then ue U(b)y. O

Next theorem will be used in an important way in Section 8. Its proof is similar

to that of Theorem 6.4. Consider the following subalgebra of ¢,

ﬁ:{XeE:X(Vyﬁ):O for every y € I'}. (52)
It is easy to see that,

I=t" Db ® (X g4e,. X cprers Xotyre}),

where b, is as in (35). Let Q denote the connected Lie subgroup of K with Lie algebra §.

If Z € (m™)* consider the linear map Tz : § x (mt)L — ¢ given by
T,(X,Y)=[X,Z1+Y, Xe§i and Ye(m)":. (53)

Next proposition is the analog of Proposition 6.3 and will be used in the proof of
Theorem 6.7.

Proposition 6.6. If Z, € (m*)! is as in (40), it follows that Im(T;,) = ¢. O
Proof. Using the definition of y (see (32)) it is easy to see that,

=0 @ (X g Xyt Xyt ). (54)
Now, since q C q it follows from Proposition 6.3 that,

Tz,(a x (m*)h) = Tz, (q x (mHH) =p*.

Hence, it follows from (54) that to complete the proof we need to show that X_;,_.,,

X ¢z, and X _;, ¢, are in the image of Ty,. In fact, a simple calculation shows that,

Ty, (X tyre, =X ¢z, Tz2,(X,,00=@X ¢ (55)
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and

Tz, (X 246, 0) =X ¢, 2, + X 2, 2, (56)

where, in all cases, the congruence is modulo the subspace y' and the constants g; are

nonzero for 1 <i <4. This completes the proof. |

Theorem 6.7. Let uc U(¢)m™ be a £T-dominant vector of weight A = a(ys + §) + bys with
a,beN,. Then u=0. O

Proof. Let U(®)=J j=0Uj(®) and let ue U®m* be a tt-dominant vector of weight
A=a(ys+93) + by; with a,beN,. Assume that u#0 and set r=deg(w) (see (41)). Let
pr: U (£) — S.(¢*) be the K-homomorphism defined in the proof of Theorem 6.4. Observe
that p-(w) # 0 because u¢ U,_;(¥).

Since ue U(f)m", and the K-homomorphism p, : U.(£) — S.(¢*) is defined via the
Killing form of ¢, it follows that

p-(w)(Y)=0 forevery Ve (mh)t. (57)

Also, since uis a ¢ -dominant vector of weight A = a(ys + §) + bys, it follows from
Proposition 5.1 that ue VyE+ for y € Il with highest weight 1. Hence, X(u) =0 for every

X € q. Then since p. is a K-homomorphism, we have
X*(p-(w)(Y) = p-(X*(w)(Y)=0 for Xe§, Yet and keN. (58)
Now, since {exp X : X € §} generates Q, it follows from (57) and (58) that
pr(W(Ad(g)Y)=0 forge @ and Ye (mh)t.

That is, p-(u) vanishes on the image of the map & :Q x (mt)L — ¢ defined by &(g,Y) =
Ad(g)Y. Now, if ee Q is the identity element and Z e (m*)*, then (dd;)(e,z) = TZ:E| X
(m*)* — & Then it follows from Proposition 6.6 that (dqs)(e, z,) is surjective. This implies
that the image of & contains an open set of ¢, hence p.(u) =0 as a polynomial function

on ¢, which is a contradiction. Therefore, u=0 as we wanted to prove. [ |
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Before stating the next results we define the following subalgebra of ¢,
5= Ei @ bé @ ({X€3+€17 Xg4+gl ) T347 Xl})' (59)

The following result is the analog of [3, Proposition 4.9]. Although its proof uses
the same idea as that of Proposition 4.9 we include it here because of some technical

differences.

Proposition 6.8. Let up, u; € U(t) be such that X;(up) = X1 (w1) =0. If up + w1 E =0 mod
(U(®)n), then up = w; =0 mod (U ()n). O

Proof. Lets be the subalgebra of ¢ defined in (59). If {S;, ..., S;} is an ordered basis of s,

the following is an ordered basis for ¢
{S1, ..., St Toz, Toa, X5, Xy,, Xs,, Xy, Xs,, Xa, X3, X2, So3, Soa}, (60)

we refer the reader to (16), (17), (33), and (37) for the notation.

Let U, (respectively, ) be the subspace of U(f) spanned by those monomials
that, when written in the Poincaré-Birkhoff-Witt bases of U(¢) associated to (60), end
with powers of X, (respectively, Sy3) or before. Using that X;(s) C s and taking a close
look at the action of X; on the other elements of the basis (60) it follows that X; ;) C U;
and X, (Us) C Us.

Since up + w E € U(¥)y in view of Lemma 6.1, we can write
U+ wmE =aX; + bSy3 + cSua, (61)
with ae Uy, be U, and ce U(t). Then applying X;, we obtain that,
w Xs = X1 (@)X, + aE + X1(b)Sz3 + X1(C) Saa, (62)
and for every k> 2, we obtain

. . k\ . . .
0=XN@)X, + kX N (@E + (2) X7 (@) Xs + XE(D)Sps + X¥(0) Sa. (63)
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Now set §=({S:3,S}). If n is sufficiently large so that X{l(a) =0, using
Equation (63) and decreasing induction on j it follows that X{(a):O for every 0 <
j <n. In particular, a=0. Hence, from (61) and (62), we obtain that u; X, € U(£)h and
U + w E € U®)H. Now, using Lemma 6.2 and the fact that E(y) =0 it follows that uy =
u; =0 mod (U (¥)n), therefore uyg = u; =0 mod (U (£)y) as we wanted to prove. [ |

Next proposition will be used in Theorem 8.6 of Section 8.

Proposition 6.9. Let {n;: j € No} be a sequence in U (¢) such that n; # 0 for a finite num-
ber of j's, X1(77j) =0 for every j € Ny and ijo njEf =0 mod (U(£)y). Then

> nuE*=0 and > nynE*'=0,

i>0 i>0

where the congruence is mod (U (¥)p). O

Proof. Let A=2X,X, — E2. Since X,, X4, and E commute with each other it follows
that (—1)/A7 = E2/ mod (U (¢)y) for every j € Ny. Also observe that X;(A) = 0. From now
on the proof follows in the same way as that of [3, Proposition 4.11], simply changing

the congruence mod (U () X,) for a congruence mod (U (£)n). [ |

7 An Estimate on the Kostant Degree

In this section, we introduce the degree property and show that every be P(U(g)¥X)
has the degree property. This result is used in Proposition 7.11. We also show that to
prove Theorem 2.7, and therefore our main result Theorem 1.1, it is enough to prove
Theorem 7.12.

Definition 7.1. Letb=b, ® Z™ +--- + by e U®M ® U(a) with b,, # 0. We say that b has
the degree property if d(b,—;) <m + 2j forevery 0 < j <m. O

We begin by recalling a few facts about s-triples in g. Recall that an s-triple is a
set of three linearly independent elements {x, e, f} in g such that [x, e] = 2e, [x, fl=—-2F,
and [e, f]=x. The s-triple {x, e, f} is called normal if e, f € p and x € £. A normal s-triple
{x, e, f}is called principal if e (and hence f) is a regular element in p. Theorem 3 of [10]

guarantees that principal normal s-triples exist, and in Theorem 6 of the same paper
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it is proved that any two principal normal s-triples are Kj-conjugate, where K, is the
subgroup of all elements in G that commute with 6.

Fix a principal normal s-triple {x, e, f} in g and set z=x/2. In [14, Proposition 1],
it is proved that the map ad(2) : p — p is diagonalizable with eigenvalues 1, —1, and pos-
sibly 0. Since in our case g is the complexification of the Lie algebra of F,%°, the eigen-
values of ad(z) in g are —2, —1, 0, 1, and 2 (see the [14, proof of Proposition 1]), then the

next result follows.
Lemma 7.2. The map ad(z): ¢ — tis diagonalizable and its highest eigenvalue is 2. [

In [14, Corollary 9], it is shown that if g, is a semisimple Lie algebra over R,
different from sl(2, R), and V, is an irreducible K-module of type y € I, then d(y) is the

highest eigenvalue of zin V,. From this result, we have the following lemma:

Lemma 7.3. Let V be a finite-dimensional K-module and let nbe the highest eigenvalue
of zin V. If ue V™ and u# 0, then d(u) < n. O

As an application of Lemmas 7.2 and 7.3, we obtain the following result that will

be useful in what follows.
Lemma 7.4. If ue U, #®M and u#£0, then d(u) < 2m. O

Recall that P: U(g) — U(¥) ® U(a) is the projection on the first summand of the
direct sum U(g) = (U(¢) ® U(a)) & U(g)n, associated to an Iwasawa decomposition g=
£ ® a @ n adapted to . The proof of the following result follows easily by choosing an
appropriate Poincaré-Birkhoff-Witt bases of U(g).

Lemma 7.5.
P(Un(g) = Z Un_e(®) ® Z¢  for every m > 0.

0<t<m

O

Let o :S(g) —> U(g) be the symmetrization mapping. It is known that o is a
K-linear isomorphism. Let ¢ : U(£) ® S(p) —> U(g) be the K-linear isomorphism defined
by ¢(u® p) = uo (p). Then we have,

U@~ =) (U®(Snp)N~.

m>0
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Theorem 7.6. Let ue (U#)o(Sn(p)))X where m is the smallest possible. Then P(u) =
bp @ Z™+ - +bye UM ®U(a), by, #0 and d(bm—j) <m +2jfor0< j <m. O

Proof. Let te (U(¥) ® Sp(p))X be such that ¢(@t) = u. Write Sy, (p) =Y W, where the sum

runs over a finite set J C I'. Then by Schur’s Lemma we have,

U® ® Sn(p)* =) (U®) ® W), (64)

ted

where t* is the contragradient representation of r, and U(f),- denotes the t*-isotypic
component of U ().

Let q be a subspace of p such that p=a® q and let {X;,..., X;} be an ordered
basesof q. If a= (ay, ..., @) with ¢; € Ng, and X? = X'f‘ --» X% in S(p), it follows that {Z¢X%:
0 </{¢+ |al| <m} is a bases of S,,(p), where |a|=a; + - - - + a,. Then, in view of (64), we can
write

= w.®Z'x%

O<t+lal=m

where . belongs to the K-module V=3___, U(&) for every pair (¢, a). Then,

ted

Pw= Y PweoZ'X)= Y  w.P(Z'X%). (65)

0<(+|al<m 0<(l+|al<m

Now, since o (ZX%) e Ur4)q(9), it follows from Lemma 7.5 that

P((Z' XY= Y a;®Z,
0<j<t+lal

with vy g j € Uryq—;(8). Hence from (65) we have,

Pw= Y | D wavre;|®2.

O0<j<m \ j<t+|al=m

Then from the uniqueness of the coefficients b; it follows that

bj = Z Up.qV¢,a,j forO<j<m, (66)

j=<t+lalsm
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where v 4 j € Upyjq—j(8) C Up—j(¢) for every pair (¢, a). Hence from (66), we obtain that,
b e(V -Up_j@)McU®Y foro<j<m. (67)

Recall that (S) denotes the linear space spanned by the set S. Observe that in this case
(V- Un—j(¥)) is a K-module.

Now, since the highest eigenvalue of zin p is 1, it follows that the highest eigen-
value of zin S,,(p) is m. Then d(tr) < m for every t € J, and therefore d(t*) < m for every
t € J. This implies that the highest eigenvalue of zin V is less or equal to m. On the other
hand, we know that the highest eigenvalue of z in U,,_;(f) is less or equal to 2(m — j),
hence the highest eigenvalue of zin (V - Up_j(¥)) is less or equal to m + 2(m — j). Then,
from Lemma 7.3 and (67) it follows that d(b;) <m + 2(m — j) for 0 < j <m, and therefore

d(by—j) <m+2j for 0 < j <m, as we wanted to prove. [ |

Theorem 7.7. Let be P(U(g)X) be such that b=b, ® Z™ + --- + by with by, #0, then
dby—j) <m+2jforevery0< j<m. 0O

Proof. Let ue U(g)X be such that P(u)=b. Since b,, # 0, it follows from [11, Corollary
7.3] that ue (U®)o (Sn(p))X and m is the smallest possible. Hence the result follows
from Theorem 7.6. n

Our next goal is to show that Theorem 2.7 follows from Theorem 7.12. In the
next lemma, we single out a particular element w € B. This element is a scalar multiple
of P(£2), where 2 is the Casimir of g.

Lemma 7.8. There exist o =wy, ® Z% + w1 ® Z + wg € P(U(g)¥X) C B such that wy, =1, o,

is a nonzero scalar, wg is a scalar multiple of the Casimir element of m and d(wg) <4. [

Proposition 7.9. For any be U®M ® U(a), there exist ne Ny such that bo"™ has the
degree property. O

Proof. Let b=b, ®Z™+---+ by c U®)M ® U(a). Fix ne Ny sufficiently large so that

d(by,—j) <m+ 2n+ 2j for every 0 < j <m. A simple calculation shows that

2n
o= arn® 27K, (68)
k=0
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where @y, = Zyi/g] (") (k;i)w’f_Ziwé for 0 < k< 2n, and that
m+2n [ min{j,2n

}
bo"= ) b sk j@orn | ® Z™H. (69)
j=0 k=0

Then if (bw™), denotes the coefficient of Z* in bw", we have

d((bwn)m+2n—j) = max{d(bm-&-k—jﬁ)k,n) :0<k<j}
=max{d(bmr—j) + @) :0<k=<j}
<max{m+2n+2(j — k) + 2k:0<k< j}

=m+ 2n+ 2j,
for every 0 < j <m + 2n. Hence bw™ has the degree property. |

It is now convenient to introduce the following notation, for any m € Ny and

d-= [M} . (70)

0 <r <m define d. as follows:

2

In the next lemma, we obtain an upper bound on the Kostant degree of the coefficients
b, of certain be U(®)M @ U (a).

Lemma 7.10. Letb=b,; ® Z™ +---+ by € U®™ ® U(a) with b, #0. If bw has the degree
property, then d(b,) < 2d, for every 0 <r <m. O

Proof. Let (bw), denote the coefficient of Z¢ in bw. It follows from (68) and (69), or
directly by computing bw, that

bm—j = (bw)mi2-j — bm—jr101 — by jy200 (71)

for 0 < j < m, with the understanding that b, ;1 = b2 = 0. Then, since w; is a scalar and
d(wg) <4, from (71) we obtain that

dlbm- ;) < max{d((Bo) iz ) A j41), A j2) +4). (72)
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Hence, using (72) and the fact that bw has the degree property, it follows by induction
on j that d(bm—j) <m+ 2+ 2j for every 0 < j < m. Now, since the Kostant degree of any
element of U(¥)™ is even (see (ii) and (iii) of Proposition 5.1), it follows that d(b,) < 2d, for

every 0 <r <m. [ |

Let b=b, ® Z™ +---+ by € B be such that d(b,) < 2d, for 0 <r <m, where d, is
as in (70). Using Proposition 5.1 and the above bound on d(b,) we can decompose the

coefficients b, of b as follows:

2d,
by = Z Z by o for0O<r<m, (73)

t=0 max|{0,t—d,}<i<[t/2]

where b, , ,; is the component of b, in the isotypic component of U )M of type (21, t — 2i).

Consider now the following linear subspace of B:

B={beB: by;=0 ifi+j<k andO0<2k<deg(h)}. (74)

That is, B consists of the elements b e B such that the K-types bgllfj that occur in the

coefficient byi of b, have Kostant degree > 2k for all k such that 0 < 2k < deg(b).

Proposition 7.11. Let b=b, ® Z™ +---+ by € B, b, #0, and d(b,) <2d. for 0<r<m.
Then there exist be B such that d(b,) <2d. for 0<r<m, b, =b,, if m is odd, and
d(bm — by) < m if m is even. Moreover Egi’j =by, jifi + j=d, for every 0 <r <m. O
Proof. Let b=b,, ® Z™ +---+ by € B be such that b,, #0 and d(b,) <2d. for 0<r <m.
Set p=2[m/2] and using (73) define,

p
_ p
Cp= Z Z bi -
t=0

max(0,t— 5} <i<lt/2]
That is, ¢, contains all the K-types of b, of Kostant degree smaller or equal to p. Hence,
cp e U®M and d(cp) < p. Since p is even ¢, ® ZP € (U(®)™ ® U(a))". Then from Proposi-
tion 2.6 it follows that ¢, ® ZP is the leading term of an element ¢P =c, ® ZP+--- €
P(U(g)¥). Now define b'P = b — ¢P’ € B. All the K-types that occur in the p-coefficient of
b® have Kostant degree > p and, since ¢ € P(U(g)X), it follows from Theorem 7.7 that
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d(bﬁp)) < 2d, for 0 <r <m. Moreover, the K-types of Kostant degree 2d, of bﬁp) and b, are
the same for 0 <r <m.

Considering now the (p — 2)-coefficient of b'P? we construct, in a similar way,
elements ¢P~? e P(U(g)¥) and b'’P2 =pP — ¢P~2 ¢ B, such that the coefficients of b'P~2
corresponding to degrees > p— 2 are the same as those of b'?, and all the K-types
that occur in the (p— 2)-coefficient of bP~? have Kostant degree > p— 2. Moreover,
since ¢P~? € P(U(g)X), Theorem 7.7 implies that d(b* ?) < 2d. for 0 <r <m, and that
the K-types of Kostant degree 2d. of bﬁp_z) and b, are the same for every 0 <r <m.

Continuing in this way, we obtain a sequence b'?, bP=2 . b® of elements in B
of degree at most m. If we set b= b, it is clear that b € B and that b has all the required
properties. |

Finally, in Proposition 7.14, we show that next theorem implies Theorem 2.7 (and

therefore Theorem 1.1). The proof of Theorem 7.12 will be done in the next section.

Theorem 7.12. Let b=b,®Z™+---+bye B be such that d(b,) <2d. for every
0<r<m. Then b=0. O

If we assume that Theorem 7.12 holds, we obtain the following corollary.

Corollary 7.13. Letb=b,, ® Z™ + --- + by € B be such that b, # 0 and bw has the degree
property. Then m is even and b has the degree property. O

Proof. Since bw has the degree property, it follows from Lemma 7.10 that d(b,) < 2d,
for 0 <7 <m. Then Proposition 7.11 implies that there exist b € B such that d(b,) < 2d-

for 0 <r <m, by, =by, if m is odd and B}, . =b}. . if i + j=d, for 0 <r <m. On the other

2i,j = D2, j
hand, Theorem 7.12 implies that b=0. Hence, m must be even and bgi,j =0ifi+ j=d
for 0 <r <m, which implies that b has the degree property. |

Proposition 7.14. Let b=b,, ® Z™ + --- 4+ by € B with by, # 0. Then, m is even and b has
the degree property. In particular d(b,,) <m, and therefore Theorem 2.7 holds. |

Proof. Let b=b,, ® Z™ + ---+ by € B be as in the statement of the theorem. It follows
from Proposition 7.9 that there exist ne Ny such that bw™ has the degree property.
Now, since bo™" ' =b, ® 2™V 4 ... B and b,, #0, it follows from Corollary 7.13

that m 4 2(n— 1) is even and bo™ ! has the degree property. Hence m is even, and from
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Corollary 7.13 and induction on k it follows that bw™ * has the degree property for every

0 <k <n. In particular, b has the degree property, as we wanted to prove. |

8 Proof of Theorem 7.12

Our goal in this section is to prove Theorem 7.12. To do this, given any b=>b,,, ® Z™ +
-+++ by € B such that d(b,) < 2d. for 0 <r < m, we will construct a linear system of equa-
tions in U (¢) where the unknowns are ¢*-dominant vectors associated to certain K-types
of the coefficients of b (see Theorem 8.6). This system will allow us to carry out a decreas-
ing induction process that, when applied to b € B, will lead to the proof of Theorem 7.12.

Letb=b,, ® Z™ + ---+ by € B be such that d(b,) < 2d. for 0 <r <m. As indicated

in (73), we can decompose the coefficient b, of b as follows:

2d,
b, = Z Z by i 5 for0O<r<m. (75)

t=0 max{0,t—d.}<i<[t/2]

We find it very convenient to keep in mind the following array of the K-types that occur

in b,.

br = bgdﬁo + bgdr—Z,l + b£¢—4,2 + bZdr—B,S + et + bg,d,
+b5q 20+ bog a1 tbog 62+ +D5q1
+byg 40+ brg 61t +byg o

+ bgd’_s,o + st + b(r).dr—3 + st + b(’;’o- (76)

Observe that the parameter t used in (75) may be regarded as a label for
the skew diagonals of the array (76). In fact, for 0 <t < 2d. we shall refer to the set
{D5; ;o i max{0,t — d} <i <[t/2]} as the skew diagonal associated to t. Also observe that
the Kostant degree is constant along the rows of the array (76), it takes the values
2d,,2d.- — 2, ...,0 from the top to the bottom row of the array corresponding to b;.

Let T € N, denote the label of the skew diagonals in the array corresponding to
bo. We will use T as a parameter for a decreasing induction. For m < T < 2q, if m is even,
andm — 1 < T < 2d, if m is odd, consider the following propositional function associated

to b:
min{T-r,2d.}

P(T):by= ) > by o O0<r<m. (77)

t=0 max{0,t—d.}<i<[t/2]
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Observe that P(T) holds if and only if b}, , ,; =0for ¢ > min{T —r, 2d;} forevery 0 <r <m.
Also, in view of (73), it follows that P(2dy) holds. This will be the starting point of our
inductive argument.

Let E, X5, H, Y, and Y be as in Section 4. Recall that E(H) = —%E, X5(Y) = X5 and
X5(H) = E(X;) =0. In the following lemma, we state some properties of the derivations

E and X;, we refer to [3, Lemma 6.1] for their proof.

Lemma 8.1.

(i) E*HF)=kl(—1E)*and E*H))=0if k> j.
(i) E*@r(H) = (—3E)¥, where g is as in (9).
(i) X¥(—¥)%) =k!(—X;5)* and X¥((-¥)7) =0if k> j.
(iv) XFpr(a— Y)=(—X;)* for any ae C. O

The following proposition is the analog of [3, Proposition 6.2]. Its proof is the
same as that of Proposition 6.2 and it is obtained by applying X! "‘ to €(¢,n) of
Theorem 3.6, and using Lemma 3.3 and Lemma 8.1. Also observe that the derivation

X; preserves the ideal U(®)m™.

Proposition 8.2. Letb=b,, ® Z™ + --- + by € B be such that d(b,) < 2d, for0 <r <m, and
assume that P(T) holds for m < T < 2dy. Then for every (¢, n) suchthat0 <¢,nand ¢ + n<

T we have
(=)' E"— (-1)'2,E' =0 mod (U(®)m™), (78)
where
Di= ) An(Ton OX] T TTESTTG)ETIX
(i,r)el
(79)
3, = Z A (T, 6, ) XT " E™ T (b ETEXL
(i,f’)EIZ
and

N\ [T—n—t ¢
Ai,r(T,n,€)=(—§) (=D"r! - N R
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L ={Gi,r)eN;:n<i<min{m, T — £},i <r <min{m, i+ £}},

L ={@i,r) e N;:£<i<min{m, T —n},i <r <min{m, i + n}}.

Next proposition is the analog of [3, Proposition 6.3] and its proof is the same
as that of Proposition 6.3. It is obtained by replacing b, in (79) by its decomposition
in K-types given in (77), then one uses Proposition 5.1(iv) to simplify the sums ¥; and
Y,, and finally one multiplies both sums on the right by X7 and then changes in each
term a certain number of X;'s by the same number of X,'s so that ¥; and X, become
weight vectors with respect to he. Here, we use that X; = X, mod (U(¢)ym™) and that the

derivation X; preserves the ideal U(f)m™.

Proposition 8.3. Letb=b,, ® Z™ + --- + by € B be such that d(b,) < 2d, for0 <r <m, and
assume that P(T) holds for m < T <2dy. Then for every (¢{,n) such that 0<¢,n and

{ +n<T we have

(—D)"ZE" — (-1)' Z,E" =0 mod (U (t)m™), (80)
where
z = > A (Ton, OX) T E T (B p g x ETTIX] X
@irel
max{0, T—r—d.}<k<[T;"]
= > A (T L)X E™ T (M g x ETUXTTRXE
(i,r)EIz

max{0,T—r—d.}<k<[1;"]

with the understanding that the K-types by ;_,_,; that do not occur in b, are assumed to
be zero. Moreover, in Equation (80) all the terms of the left-hand side are weight vectors
of weight 2T — ¢ — m)y;1 + T(y2 + §). O

Equation (80) may be regarded as a system of linear equations where the
unknowns, X;"f _iEfJ“i"(bgk’T_r_zk), are derivatives of the K-types that occurinthe T —r
skew diagonal of the coefficient b, of b (see (76)). Since the unknowns in this system
are, in general, not ¢t-dominant, we are going to replace the system by an equivalent

one where all the unknowns become ¢*-dominant vectors associated to the K-types

r
2k, T—r—2k*
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Let €(¢, n) be the left-hand side of Equation (80). For 0 < n<min{2d,, T} and 0 <

L <min{2m, T} — n consider the following linear combination:

L
EL(n) = Z(—z)f C) U, mEFE X, (81)
=0

Under the hypothesis of Proposition 8.3, we have £ (n) =0 mod (U(£)m™). Also set,

L L
L L
gL =) (-2)" (15) S EM' X and Emy=) 2 (z) 2 Xy

=0 (=0

Then it follows that

EL(m) = (—)"E}(ME" — E2(M)EL. (82)

The following lemma is the analog of [3, Lemma 6.5]. For the symplectic group

Sp(n,1) the vectors Dy(by; ;) are ¢"-dominant, however, in F, this property does not hold.

Lemma 8.4. Let by j € U(®)M be an M-invariant element of type (2i, j). For 0 <k<2i
define,

-1
k j + £ e e
Dk(bzi,j) = Eéczo(—Z)Z <e> (J Z ) X5175E1+Z (bZi,j)Ek_lXi (83)

Then Di(by; ;) is a vector of weight i(ya + 8) + (j + k)ys with respect to by, X(Dk(bzl-,j)) =
0 mod (U (&)y) for every X € q* and Xl(Dk(bzi,j)) =0. O

Proof. Recall that q* is the linear span of {X, :a € AT(E, by) — {y1}}. Since y; is a simple
root in AT(E, be), if o is a positive root it follows that o — y; is either a positive root

different from y; or it is not a root. Hence if uc U () is a ¢*-dominant vector, we have
X, (X' (W) =0 foreveryae AT(¢, hy) — {1} and ¢ eNy.
Then, in view of (22), it follows that

X(XZ I (bai,j))=0 forevery Xeq®. (84)
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On the other hand, since E(y) = X4(n) =0 and [q", y] C y it follows that

X(EM=0 and X(X})=0mod (U(t)y) forevery Xeq™. (85)

Hence, from (83) to (85), we obtain that

X(Dy(byi 1)) =0 mod (U (¥)y) for every X eq™. (86)

Now, since X, (E) = X, and X;(X,) =0, using (20) it follows that X, (Di(bs;, 1)) =0.
The details of this calculation can be found in [3, proof of Lemma 6.5]. Finally, it is
easy to check that each term of Di(by; ;) is a vector of weight i(ys +6) + (j + k)ys with
respect to hg. |

As indicated at the beginning of the section, we are interested in proving that
P(T) implies P(T — 1) for m < T < 2dy. To do this, we need to show that the K-types
by; r_r_p; that occur in the T —r skew diagonal of b, are equal to zero for 0 <r<m.
That is,

byir r ;=0 ifO<T—r—2i<min{T,2d — T} -,

for 0 < r < m. For this purpose, we introduce another propositional function Q(n) defined
for 0 <n<min{T, 2dy — T} + 1 as follows:

Qm): by gy , ;=0 If0<T-r—-2i<nfor0O<r<m. (87)

Clearly, Q(0) is true. Also, since we have that d(b,) < 2d, for 0 <r < m, we obtain that (87)
holds if T — r — 2i > min{T, 2dy — T} —r.

Next theorem is the analog of [3, Theorem 6.6] and its proof is the same as that of
Theorem 6.6, it consist in rewriting the sum &} (n) in terms of the vectors Di(by;. j) defined
in Lemma 8.4, and the sum £Z(n) in terms of ¢ -dominant vectors. We refer the reader to
[3, Section 6] for the details.
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Theorem 8.5. Let b=b,, ® Z™ + ...+ by € B be such that d(b,) <2d. for 0<r <m, let
m<T <2dy and 0 <n<min{T, 2dy — T}. Then if P(T) and Q(n) are true, we have,

> Bek(T.n L)Dpyorir 1V g g) (X5 X)) FE™
k
T-L §2II‘¢+F§T7ﬂ

_ Z (_2)[ (E) (T —n— Z) lévirin’n(XSXZL)(T-t,-rﬁ-n)/ZEL = 0’ (88)
rt

r—=~

r=T-n

for all L such that 0 < L <min{2m, T} — n. Here, the congruence is module the left ideal
U®mt, u, =ri(=1) X " TE™b, ) and

T—n—-r.n

L T -1 —
Bri(Ton L) =rl(=1)T27 % n\
T_r_2k r—n

Moreover, the left-hand side of Equation (88) is a weight vector of weight T(ys + §) +
(n+L)ys. O

—r—nn

We are now in a good position to obtain the system of equations that we are

looking for. Using the notation introduced in (33) define
U=XsXs — T23523 + T24Ss4. (89)

Then U is a t*-dominant vector of weight y, + § with respect to h, and U = X; X, mod
(U(®)y). For any T and n such that m < T <2dy and 0 < n<min{T, 2dy — T} consider the

following sets:

L(T,n)={LeNy:0<L <min{2m, T} —n, L=#n},

Rp(T,n)={reNy:0<r <min{m, min{T,2dy — T} —n}, r=T — n},

the congruence is mod(2) and the subindex F stands for FZZO. Let |[L(T, n)| and |Rr(T, n)|
denote the cardinality of these sets. The set L(T, n) was also considered for the symplec-
tic group Sp(n,1) while Rr(T, n) is the analog of the set R(T, n) defined in [3, Section 6].

Next theorem gives a system of linear equations where the unknowns, Ur
are £"-dominant vectors associated to the K-types that occur in the T — r skew diagonal
of the coefficient b, of b for 0 <r <m (see (76)).
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Theorem 8.6. Let b=b,, ® Z™ + --- + by € B be such that d(b,) <2d. for 0 <r <m, and
let m < T <2dy and 0 <n<min{T, 2dy — T}. Then if P(T) and Q(n) are true we have,

(o) e
:

reRp(T,n) 14

for every L € L(T, n). Here, U, _ =rl(=1) X" E"(b, ). O

r-nn T—n-rn

Proof. Let udenote the left-hand side of Equation (88). Then, in view of Theorem 8.5, u
is a vector in U(£)m™* of weight A = T(y4 + §) + (n+ L)ys with respect to he. On the other
hand, using that X(X5) =0 mod (U (¢¥)y), for every X € q*, together with (85), (86), and the
fact that E, X4, and X5 commute with y and that [q*", y] C v, it follows that X(u) =0 mod
(U(®)y) for every X € q*. Then applying Theorem 6.4, we obtain that u=0 mod (U(£)y),
that is,

> Be(T.n L)Dpjokir—1(Byy p ) (X5 Xa)" FE"

rk
T—-L<2k+r<T-n

o Z (_Z)K (i) (T , nz_ K) Lg}‘—r—n,n(XtSX4)(T+r+n)/2EL =0. (91)
rt r—

r=T-n

Since U = X; X, mod (U(£)y) (see (89)), we replace X;X, by U in (91). Also, recall
that X;(Xs) = X;(Xs) =0 and X;(Dy(bs; ;) =0 for by ; € U®)M of type (2i, j) and 0 <k <
2i (see Lemma 8.4). Hence, since L #nmod (2), it follows from Proposition 6.9 and
Lemma 6.2 that

2. (Z(_Z)Z (ID (T . n(— E)) Uy U2 =0, (92)
r J—

reRg(T,n) 14

module the left ideal U(¥)y. Now, since the left-hand side of Equation (92) is a £"-
dominant vector of weight T(y4 + §) + nys, applying Theorem 6.7 we can replace the
congruence mod(U (¢)y) by an equality. This completes the proof of the theorem. |

For T and n fixed, Theorem 8.6 gives a system of |L(T,n)| linear equations
in the |Rp(T,n)| unknowns u;_,_, .. This system is the analog of the one given in

[3, Theorem 6.7]. The main advantage of this system is that the unknowns are all
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tt-dominant vectors. Let A(T,n) denote the coefficient matrix of this system. In [3,
Section 6], a very thorough study of this matrix is being carried out (see Section 6.2). This
is done by considering a (k4 1) x (k+ 1) matrix A(s) with polynomial entries A4;;(s) € Cls]

that generalizes A(T, n). This matrix is defined as follows:

L; s— ¢
A©= 2, 2 ( ) ( | ) ,
0<¢<min{L;,2j+8} V4 2] +85—1¢

where 0 <Ly <--- < Lg is a sequence of integers and § € {0, 1}. In [3, Theorem 6.15], we
obtained an explicit formula for det A(s) as a product of polynomials of degree 1 in the
variable s. Hence, we know the exact values of s for which A(s) is singular. Moreover,
from the proof of Theorem 6.15 it follows that whenever A(s) is singular the reason is
that it has several pairs of equal rows. In this case, the strategy consist in replacing one
equation in each one of these pairs by a new equation obtained from Theorem 8.5. We
refer the reader to [3, Section 6.3] for the details.

Since our goal in this section is to prove Theorem 7.12, we need to restate
Theorem 8.6 for elements be B. If b= Z’r":o b, ® Z" € B, it follows from (74) that for r
even we have bgiq]- =0 if d(b;i,j) =2(+ j) <r. Hence, when T —n=0 and r € Rg(T, n) is
such that d(b},_,_, ) =T —r +n<r, we have Ur_,_n,=0 in Equation (90). Then we may

consider a new index set defined as follows:

T
{reRF(T,n):r< +n} ifT—n=0,

Rp(T,n) = (93)

Rr(T, 1) ifT—n=1,

where the congruence is mod(2). For be B, we restate Theorem 8.6 as follows. This
theorem is the analog of [3, Theorem 6.19] and it will be our main tool in the proof
of Theorem 7.12.

Theorem 8.7. Let b=b, ® Z™ + --- + by € B be such that d(b,) < 2d, for 0 <r <m, and
let m <T <2dyand 0 <n<min{T, 2dy — T}. Then if P(T) and Q(n) are true, we have,

o o
.

reRp(T.n) \ ¢

for every L € L(T, n). Here, U, ,,= r!(—l)ng’_”_rE"(b’ ). O

T—n—-r.n
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Now we recall the definition of the sets R(T, n) and R(T, n) used in the case of the
group Sp(n,1) (see [3, Section 6]). Let b=b,, ® Z™ + - - - + by € B with b,, # 0. For positive
integers T and nsuch that m < T <4m and 0 < n<min{T, 4m — T} consider the following

set:

R(T,n)={reNyp:0<r <min{m, min{T,4m — T} —n},r=T — n},

where the congruence is mod(2). The set R(T, n) is defined as in (93) replacing Rr (T, n) by
R(T, n) (see [3, (116)]). Next we will show that Theorem 7.12 follows from [3, Proposition
6.21 and Proposition 6.22 ].

Proof of Theorem 7.12. Let b=b,, ® Z™ +--- + by € B be such that d(b,) < 2d, for 0 <
r < m. We need to show that b=0. Assume on the contrary that b # 0 and that m = deg(b),
that is b, #0. We will obtain a contradiction by showing that b, =0. In view of the
definition of B (see (74)) to do this it is enough to show that P(37m) holds if m is even and
that P(m — 1) is true if m is odd. Since P(2d;) holds (see (73) and (77)) this will follow
from the fact that P(T) implies P(T — 1) forany m < T < 2d,.

Consider first m>1. Let m<T <2dy and 0 <n<min{T, 2dy — T}, and assume
that P(T) and Q(n) hold. Since 2d, < 4m, it follows that min{T, 2dy — T} < min{T,4m — T}

and a simple calculation shows that
min{m, min{T, 2dy — T} — n} <min{m, min{T,4m — T} — n}.

Hence, Rr (T, n) C R(T, n) and therefore Rz (T, n) C R(T, n).
Now set, u;_._,,=0 if re R(T, n) and r gZﬁF(T, n) and u’T_r_,m:
ri(—=1)" X T E(b, ) if r € Rp(T, n). Then from Theorem 8.7, we obtain for every

T—n—rn
L € L(T, n) that

()

reR(T,nm) \ ¢

Observe that, except for the fact that the vector X;X, is replaced by U, the system of
equations given by (94) is the same as that of [3, Theorem 6.19], in particular, their coeffi-
cient matrices are exactly the same. Then that P(T) implies P(T — 1) forany m < T < 2dy
follows from [3, Proposition 6.21 and Proposition 6.22]. We point out that the proof of

these propositions are based on a very thorough study of the coefficient matrix of these
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system. We refer the reader to [3, Theorem 6.15, Corollary 6.16 and Proposition 6.20] for
the details.

Consider now m = 0. Assume that b= by € B, b #0, and that d(b) = d(by) < 2dp = 2.
From the definition of B (see (74)) we have b= by = b , + bJ |, therefore bJ , # 0 or b, #0,
in particular, d(b) = 2. Consider the element b?w =b?* ® Z? + w,b* ® Z + b?>wy € B, where
w=1® Z? + w, ® Z + wy is the element in P(U(g))¥ defined in Lemma 7.8.

From Proposition 5.3, we have d(b?) = 4, hence the component of Kostant degree
4 of b? is nonzero. Now, as in Proposition 7.11, we can remove the components of Kostant
degree less or equal to two from b? and the components of Kostant degree less or equal
to zero from b?wy. This procedure defines an element b=b,® 22+ b, ® Z + by € B with
d(b,) < 2d. for 0 <r <2, and such that the component of Kostant degree 4 of b, is the
same as that of b%. Then B;«é 0, which contradicts the first part of the proof. Therefore,

b=0, as we wanted to prove. |
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