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Let Go be a semisimple Lie group, let Ko be a maximal compact subgroup of Go and

let k ⊂ g denote the complexification of their Lie algebras. Let G be the adjoint group

of g and let K be the connected Lie subgroup of G with Lie algebra ad(k). If U (g) is

the universal enveloping algebra of g, then U (g)K will denote the centralizer of K in

U (g). Also let P : U (g)−→ U (k)⊗ U (a) be the projection map corresponding to the direct

sum U (g)= (U (k)⊗ U (a))⊕ U (g)n associated to an Iwasawa decomposition of Go adapted

to Ko. In this paper, we give a characterization of the image of U (g)K under the injective

antihomorphism P : U (g)K −→ U (k)M ⊗ U (a), considered by Lepowsky in [12], when Go is

isomorphic to the rank 1 real form F−20
4 of the exceptional Lie group F4.

1 Introduction

Let Go be a connected, noncompact, real semisimple Lie group with finite center, and let

Ko denote a maximal compact subgroup of Go. We denote with go and ko the Lie algebras

of Go and Ko, and k ⊂ g will denote the respective complexified Lie algebras. Let G be the

adjoint group of g and let K be the connected Lie subgroup of G with Lie algebra ad(k).

Let U (g) be the universal enveloping algebra of g and let U (g)K denote the centralizer of

K in U (g).
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2 A. Brega et al.

In order to contribute to the understanding of U (g)K B. Kostant suggested to con-

sider the projection map P : U (g)−→ U (k)⊗ U (a), corresponding to the direct sum U (g)=
(U (k)⊗ U (a))⊕ U (g)n associated to an Iwasawa decomposition g = k ⊕ a ⊕ n adapted to k.

In [12], Lepowsky studied the restriction of P to U (g)K and proved, among other things,

that one has the following exact sequence:

0 −→ U (g)K
P−→ U (k)M ⊗ U (a),

where U (k)M denotes the centralizer of M in U (k), M being the centralizer of a in K. More-

over, if U (k)M ⊗ U (a) is given the tensor product algebra structure, then P becomes an

antihomomorphism of algebras. Hence to go any further in this direction it is necessary

to determine the image of P .

To determine the image P (U (g)K), Tirao introduced in [15] a subalgebra B of

U (k)M ⊗ U (a) which is described in detail in §2. This subalgebra B is defined by a set

of linear equations in U (k) derived from certain embeddings between Verma modules

and he proved, among other things, that P (U (g)K)⊂ B for any Go. We point out that

B is defined in a uniform way for any noncompact real semisimple Lie group Go with

finite center (see Theorem 2.3). When Go has real rank 1 the definition of B becomes very

transparent and it is given below in Definition 2.5.

More recently, in [3, 4], we proved that P (U (g)K)= B for G0 = Sp(n,1) and for G0 =
SO(n,1) or SU(n,1) (see also [11, 15]). Hence these results established that P (U (g)K)= B for

every classical real rank 1 semisimple Lie group with finite center. This paper is devoted

to proving that this result also holds for the rank 1 real form F−20
4 of F4. The main result

of this paper is the following:

Theorem 1.1. If Go is isomorphic to F−20
4 , then P (U (g)K)= B. �

This result confirms our old belief that the image of P can be described in a

uniform way for all real rank 1 semisimple Lie groups, as it is stated in the following

theorem.

Theorem 1.2. Let Go be a real rank 1 semisimple Lie group. Then the image of the

Lepowsky homomorphism P is the algebra B. �

The proof of Theorem 1.2 follows a general pattern in all cases, however, at cer-

tain points in the argument there are some differences. Certainly, the cases of Sp(n,1)

and F−20
4 are the most difficult to handle.
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The Classifying Ring 3

Originally, one of the main motivations to study the image of P was the hope

that understanding it would lead to a classification of the irreducible (g, K)-modules.

However, due to the difficulties encountered in the characterization of P (U (g)K) and

the enormous progress achieved in the classification of the irreducible (g, K)-modules

this is no longer our main motivation. Nevertheless, taking into account that P is a

remarkable injective antihomomorphism between two very important algebras asso-

ciated to a semisimple Lie group, we believe that our description of the image of P

might have other applications yet to be discovered. For instance, we think that a new

proof of the remarkable result of Knop (see [9]), describing the center of U (g)K as

Z(U (g)K)= Z(U (g))⊗ Z(U (k)), could be obtained by using the map P and the algebra

B, at least for Go of real rank 1. In fact, in [16] this program was carried out by Tirao

for the groups SO(n,1) and SU(n,1). Also, it is reasonable to expect P (U (g)K) to be the

subalgebra of invariants under the action of certain group acting on U (k)M ⊗ U (a) and

since B is the solution space of a system of linear equations in U (k)M ⊗ U (a), this system

might help us to discover this group action.

The proof of Theorem 1.1 follows the same ideas used to prove the analog

theorem for the group Sp(n,1), however, we had to overcome some difficulties to estab-

lish the transversality results needed and the a priori estimates of the Kostant degrees.

In Section 6, we give a new and simplified version of the corresponding transversality

results obtained in the symplectic case (see [3, Section 4]). This version is sufficient

because of the introduction of a simplifying hypothesis called the degree property,

which is done in Section 7. In this section, we use this property to obtain an a priori

estimate of the Kostant degree of certain elements b ∈ B. This allows us to reduce the

proof of Theorem 1.1 to proving Theorem 7.12 (see Proposition 7.14). The proof of this

last theorem is given in Section 8 following the ideas developed in the symplectic case.

In fact, most of the results proved in [3, Section 6] hold in this case with appropriate

changes.

2 The Algebra B and the Image of U(g)K

Let Go be a connected, noncompact, real semisimple Lie group with finite center, and let

Ko be a maximal compact subgroup of Go. Let go and ko be the Lie algebras of Go and

Ko, and let k ⊂ g be their respective complexifications. Also let g = k ⊕ p be the Cartan

decomposition of g corresponding to (Go, Ko) and let θ denote the associated Cartan

involution. Let to be a Cartan subalgebra of the Lie algebra mo of Mo. Set ho = to ⊕ ao and

let h = t ⊕ a be the corresponding complexification. Then ho and h are Cartan subalgebras
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4 A. Brega et al.

of go and g, respectively. Let Δ be the set of roots of g with respect to h. Choose a Borel

subalgebra t ⊕ m+ of the complexification m of mo and take b = h ⊕ m+ ⊕ n as a Borel

subalgebra of g. Let Δ+ be the corresponding set of positive roots and set, g+ = m+ ⊕ n

and g− =∑
α∈Δ+ g−α. Let 〈 , 〉 denote the Killing form of g and, for each α ∈Δ, let Hα ∈ h

be the unique element such that φ(Hα)= 2〈φ, α〉/〈α, α〉 for all φ ∈ h∗, and let Xα denote a

nonzero root vector associated to α.

If μ ∈ h∗ consider the Verma module M(μ)= U (g)⊗U (b) Cμ−ρ, where Cμ−ρ denotes

the 1-dimensional b-module where h acts by μ− ρ and g+ acts trivially. Then M(μ) is a

U (g)-module by left multiplication in the first factor with canonical generator 1μ = 1 ⊗ 1.

For the sake of completeness and in the benefit of the reader we will now summa-

rize the results obtained by Tirao in [15, Section 2]. These results give a family of equa-

tions that are satisfied by every element of P (U (g)K), moreover, these equations have

proved to be enough to obtain an a priori description of P (U (g)K) as a certain subalge-

bra of U (k)M ⊗ U (a). We are going to consider embeddings M(μ1)⊂ M(μ2) between Verma

modules. The pairs (μ1, μ2) for which HomU (g)(M(μ1),M(μ2))= 1 are described by the B-

G-G Theorem (see [1]). In particular, if μ(Hα)= 2〈μ, α〉/〈α, α〉 = n∈ N for some α ∈Δ+, it

is shown in [1] that M(μ− nα)⊂ M(μ). Moreover, every embedding M(μ1)⊂ M(μ2) is a

composition of embeddings of this kind. The following proposition, due to Shapovalov

(see [13]), is a refinement of results contained in [1].

Proposition 2.1. For every α ∈Δ+ and n∈ N there exists an element θα,n ∈ U (g− ⊕ h) of

weight −nα with the following properties:

(i) [Xγ , θα,n] ∈ U (g)(Hα + ρ(Hα)− n)+ U (g)g+ for all γ ∈Δ+.

(ii) If {α1, . . . , αr} ⊂Δ+ is the set of simple roots and α=∑
i �iαi, then

θα,n =
∏

i

Xn�i−αi
+
∑

j

ajbj,

where aj ∈ U (g−) is of weight −nα, bj ∈ U (h) and the degree of aj is less than

n
∑

i �i.

(iii) The element θα,n is uniquely determined by properties (i) and (ii) modulo the

left ideal of U (g− ⊕ h) generated by Hα + ρ(Hα)− n. �

Remarks.

(i) If α is a simple root, then we may choose θα,n = Xn
−α.
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The Classifying Ring 5

(ii) If 1μ = 1 ⊗ 1 is the canonical generator of M(μ), then θα,n · 1μ can be identified

with the canonical generator 1μ−nα of M(μ− nα)⊂ M(μ).

If μ ∈ h∗, let Aμ = {X ∈ U (k) : X · 1μ = 0} be the annihilator of 1μ in U (k). The algebra U (a) is

just the symmetric algebra S(a), which can be identified with S(a∗), hence we may regard

every element b ∈ U (k)⊗ U (a) as a polynomial function on a with coefficients in U (k).

Next, we recall [15, Proposition 2] and refer the reader to [15, Section 2] for a detailed

proof of this result. �

Proposition 2.2. (i) If α ∈Δ+ and μ(Hα)= n∈ N. Then,

P (θα,n)(μ− ρ)P (u)(μ− ρ)≡ P (u)(μ− nα − ρ)P (θα,n)(μ− ρ) (1)

for every u∈ U (g)K . Here, the congruence is modulo Aμ.

(ii) The annihilator of 1μ in U (k) is given as follows:

Aμ = U (k)m+ +
∑
H∈t

U (k)(H − μ(H)+ ρ(H)). �

For α ∈Δ+ write Hα = Yα + Zα where Yα ∈ t and Zα ∈ a, and let P+ = {α ∈Δ+ : Zα �=
0}. If α ∈ P+ let aα = {H ∈ a : α(H)= 0}. Then a = aα ⊕ CZα and we can consider the ele-

ments in U (k)⊗ U (a) as polynomials in Zα with coefficients in U (k)⊗ U (aα). In the

next theorem, the congruence modulo Aμ in (1) is replaced by a congruence modulo

U (k)m+ ⊗ U (aα), a detailed proof of this result can be found in [15, Theorem 4]. On the

other hand, since α ∈Δ+ is a simple root, in view of Remark (i), we can replace θα,n by

Xn
−α for every n∈ N. For the proof of part (ii), we refer the reader to [15, Theorem 5].

Theorem 2.3. (i) Let α ∈ P+ be a simple root and n∈ N. Then for every u∈ U (g)K the

element b = P (u) satisfies

P (Xn
−α)(n− Yα − 1)b(n− Yα − 1)≡ b(−n− Yα − 1)P (Xn

−α)(n− Yα − 1), (2)

where the congruence is modulo U (k)m+ ⊗ U (aα).

(ii) Let B be the set of all b ∈ U (k)M ⊗ U (a) that satisfy (2) for every simple root

α ∈ P+ and every n∈ N. Then B is a subalgebra of U (k)M ⊗ U (a). �
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6 A. Brega et al.

If α ∈ P+ is a simple root set Eα = X−α + θX−α. One can show that if α ∈ P+ is

simple and Yα �= 0, then P (Xn
−α)= En

α. We refer the reader to [15, Corollary 6] for a proof

of this result. Then from Theorem 2.3 we obtain the following theorem:

Theorem 2.4. Let α ∈ P+ be a simple root such that Yα �= 0. Then for every n∈ N and

u∈ U (g)K the element b = P (u) satisfies

En
αb(n− Yα − 1)≡ b(−n− Yα − 1)En

α, (3)

where the congruence is modulo U (k)m+ ⊗ U (aα). �

If Go has real rank 1, we have a = CZα for any α ∈ P+, hence the congruence in

Equation (3) is modulo the left ideal U (k)m+ of U (k). Also, in this paper, we are interested

in the case when Go is isomorphic to the rank 1 real form F−20
4 of the Lie group F4. In

this case, there is only one simple root α ∈ P+ and Yα �= 0, therefore we can restate the

definition of the algebra B (see Theorem 2.3(ii)) as follows:

Definition 2.5. The algebra B is the set of all b ∈ U (k)M ⊗ U (a) such that

En
αb(n− Yα − 1)≡ b(−n− Yα − 1)En

α mod (U (k)m+), (4)

for all simple roots α ∈ P+ and all n∈ N. �

In view of Theorem 2.4, we have P (U (g)K)⊂ B, in this paper, we will show that

equality holds for the rank 1 real form F−20
4 of F4.

In order to prove Theorem 1.1 we will now introduce some notation and recall

known results. Let Γ denote the set of all equivalence classes of irreducible holomor-

phic finite-dimensional K-modules Vγ such that V M
γ �= 0. Any γ ∈ Γ can be realized as a

submodule of all harmonic polynomial functions on p, homogeneous of degree d, for a

uniquely determined d= d(γ ) (see [10]). We shall refer to the nonnegative integer d(γ ) as

the Kostant degree of γ . If V is any K-module and γ ∈ K̂, then Vγ will denote the iso-

typic component of V corresponding to γ . Let V be a locally finite K-module such that

V M �= 0 and let v ∈ V M, v �= 0. Since V is locally finite, we can decompose v into K-isotypic

M-invariants as follows:

v =
∑
γ∈Γ

vγ ,
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The Classifying Ring 7

where vγ ∈ Vγ denotes the γ -isotypic component of v. Then we define the Kostant degree

of v by,

d(v)= max{d(γ ) : vγ �= 0}. (5)

Since we are mainly concerned with representations γ ∈ Γ that occur as subrepresenta-

tions of U (k) we set,

Γ1 = {γ ∈ Γ : γ is a subrepresentation of U (k)}. (6)

If 0 �= b ∈ U (k)⊗ U (a), we can write b = bm ⊗ Zm + · · · + b0 in a unique way with

bj ∈ U (k) for j = 0, . . . ,m, bm �= 0 and Z = Zα for any α ∈ P+ simple. We shall refer to bm

(resp. b̃ = bm ⊗ Zm) as the leading coefficient (resp. leading term) of b and to m as the

degree of b. Also, let 0 be the leading coefficient and the leading term of b = 0.

Let M′
o be the normalizer of Ao in Ko and let W = M′

o/Mo be the Weyl group of

(Go, Ko). Then (U (k)M ⊗ U (a))W denotes the ring of W-invariants in U (k)M ⊗ U (a), under

the tensor product action of the natural actions of W on U (k)M and U (a), respectively.

At this point, it is convenient to state the following result. Its proof is given in

[3, Proposition 2.6], using the techniques and the notation of [15, Section 3].

Proposition 2.6. If b̃ = bm ⊗ Zm ∈ (U (k)M ⊗ U (a))W and d(bm)≤ m, then there exits u∈
U (g)K such that b̃ is the leading term of b = P (u). �

Last proposition suggests using an inductive argument to prove Theorem 1.1. To

do this, it is sufficient to establish the following theorem. In fact, in Proposition 2.8, we

prove that Theorem 2.7 implies Theorem 1.1.

Theorem 2.7. If b = bm ⊗ Zm + · · · + b0 ∈ B and bm �= 0, then d(bm)≤ m and its leading

term bm ⊗ Zm ∈ (U (k)M ⊗ U (a))W. �

Remark. In F−20
4 the nontrivial element of W can be represented by an element in M′

o

which acts on g as the Cartan involution. Hence, to prove that the leading term bm ⊗ Zm

is W-invariant it is enough to show that m is even. �

Proposition 2.8. Theorem 2.7 implies Theorem 1.1. �

Proof. Assume that Theorem 2.7 holds. From Theorem 2.4, we know that P (U (g)K)⊂ B.

Then let us prove by induction on the degree m of b ∈ B, that B ⊂ P (U (g)K). If m = 0,
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8 A. Brega et al.

we have b = b0 ∈ U (k)M and Theorem 2.7 implies that d(b0)= 0. If γ ∈ Γ and d(γ )= 0,

then γ can be realized by constant polynomial functions on p and these functions are

K-invariant. Thus, b0 ∈ U (k)K and therefore b = b0 = P (b0) ∈ P (U (g)K).

If b ∈ B and m> 0, from Theorem 2.7 and Proposition 2.6, we know that there

exists v ∈ U (g)K such that P̃ (v)= b̃. Then b − P (v) lies in B and the degree of b − P (v) is

strictly less than m. Hence, by the induction hypothesis, there exists u∈ U (g)K such that

P (u)= b − P (v) and b = P (u+ v) ∈ P (U (g)K). This completes the induction argument and

we obtain that B ⊂ P (U (g)K), as we wanted to prove. �

In view of this result the main objective of this paper is to prove Theorem 2.7

when G0 is isomorphic to the rank 1 real form F−20
4 of F4.

3 The Equations Defining B

From now on, we shall write u≡ v instead of u≡ v mod (U (k)m+), for any u, v ∈ U (k). Next

result was proved in [15, Lemma 29] for Go of arbitrary rank.

Lemma 3.1. Let α ∈ P+ be a simple root. Set Hα = Yα + Zα where Yα ∈ t, Zα ∈ a and let

c = α(Yα). If λ= α|a and m(λ) is the multiplicity of λ, then c = 1 when 2λ is not a restricted

root and m(λ) is even, or when m(λ) is odd, and c = 3
2 when 2λ is a restricted root and

m(λ) is even. �

In particular, if Go is isomorphic to F−20
4 we have c = 3

2 . To simplify the notation

set E = Eα, Y = Yα and Z = Zα for any simple root α ∈ P+. Note that [E,Y] = cE , where c is

as in Lemma 3.1. Also, since Eα = X−α + θX−α and α is a simple root in P+ it follows that

E is m+- dominant.

We shall identify U (k)⊗ U (a) with the polynomial ring in one variable U (k)[x],

replacing Z by the indeterminate x. To study Equation (4), we change b(x) ∈ U (k)[x] by

c(x) ∈ U (k)[x] defined by
c(x)= b(x + H − 1), (7)

where H is an appropriate vector in t to be chosen later, depending on the simple root

α ∈ P+ and such that [H, E ] = 1
2 E (see (19)). Now, if Ỹ = Y + H, we have [E, Ỹ] = E . Then

b(x) ∈ U (k)[x] satisfies (4) if and only if c(x) ∈ U (k)[x] satisfies

Enc(n− Ỹ)≡ c(−n− Ỹ)En (8)

for all n∈ N. Note that (8) is an equation in the noncommutative ring U (k).
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The Classifying Ring 9

Now, if p is a polynomial in one indeterminate x with coefficients in a ring let

p(n) denote the nth discrete derivative of p. That is, p(n)(x)=∑n
j=0(−1) j

(n
j

)
p(x + n

2 − j). In

particular, if p= pmxm + · · · + p0, we have

p(n)(x)=
⎧⎨
⎩0 if n>m,

m!pm if n= m.

Also, if X ∈ k, we shall denote with Ẋ the derivation of U (k) induced by ad(X).

Moreover, if D is a derivation of U (k), we shall denote with the same symbol the unique

derivation of U (k)[x] which extends D and such that Dx = 0. Thus for b ∈ U (k)[x] and

b = bmxm + · · · + b0, we have Db = (Dbm)xm + · · · + (Db0). Observe that these derivations

commute with the operation of taking the discrete derivative in U (k)[x].

Next theorem gives a triangularized version of the system (8), and in turn, of

the system (4) that defines the algebra B. A proof of it is given in [2], where the system

(8) is studied in a more abstract setting and in particular the LU-decomposition of its

coefficient matrix is given.

Theorem 3.2. Let c ∈ U (k)[x]. Then the following systems of equations are equivalent:

(i) Enc(n− Ỹ)≡ c(−n− Ỹ)En, (n∈ N0);

(ii) Ėn+1(c(n))
(

n
2 + 1 − Ỹ

)+ Ėn(c(n+1))
(

n
2 − 1

2 − Ỹ
)
E ≡ 0, (n∈ N0).

Moreover, if c ∈ U (k)[x] is a solution of one of the above systems, then for all

�,n∈ N0, we have

(iii) (−1)nĖ�(c(n))
(− n

2 + �− Ỹ
)
En − (−1)� Ėn(c(�))

(− �
2 + n− Ỹ

)
E� ≡ 0. �

Observe that if c ∈ U (k)[x] is of degree m and c = cmxm + · · · + c0, then all the

equations of the system (ii) corresponding to n>m are trivial, because c(n) = 0. More-

over, the equation corresponding to n= m reduces to Ėm+1(cm)≡ 0, and more generally

the equation associated to n= j only involves the coefficients cm, . . . , cj. In this sense,

the system (ii) is a triangular system of m + 1 linear equations in the m + 1 unknowns

cm, . . . , c0.

If 0 �= b(x) ∈ U (k)[x] and c(x) ∈ U (k)[x] is defined by c(x)= b(x + H − 1), where H is

as in (19), we find it convenient to write, in a unique way, b =∑m
j=0 bjxj with bj ∈ U (k),
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10 A. Brega et al.

bm �= 0, and c =∑m
j=0 cjϕ j where cj ∈ U (k) and {ϕn}n≥0 is the basis of C[x] defined by,

(i) ϕ0 = 1,

(ii) ϕ(1)n = ϕn−1 if n≥ 1,

(iii) ϕn(0)= 0 if n≥ 1.

Moreover it is easy to prove that such a family is given by

ϕn(x)= 1

n!
x
(

x + n

2
− 1

) (
x + n

2
− 2

)
· · ·
(

x − n

2
+ 1

)
, n≥ 1. (9)

Next lemma contains the results of [3, Lemmas 3.3 and 3.5]. Its proof is the same as that

of the corresponding lemmas in [3].

Lemma 3.3. Let b =∑m
j=0 bjxj ∈ U (k)[x] and set c(x)= b(x + H − 1). Then, if c =∑m

j=0 cjϕ j

with cj ∈ U (k), we have

ci =
m∑
j=i

bjtij, 0 ≤ i ≤ m,

where

tij =
i∑

k=0

(−1)k
(

i

k

)(
H + i

2
− 1 − k

) j

.

Thus, tij is a polynomial in H of degree j − i. Moreover,

Ė j−i(tij)= (− 1
2 )

j−i j!E j−i. �

From these results and Theorem 3.2, we obtain the following theorem and its

corollary in the same way as in [3].

Theorem 3.4. If b = bm ⊗ Zm + · · · + b0 ∈ B, then Ėm+1(cj)≡ 0 for all 0 ≤ j ≤ m. �

Corollary 3.5. If b = bm ⊗ Zm + · · · + b0 ∈ B, then Ė2m+1− j(bj)≡ 0 for all 0 ≤ j ≤ m. �

Next we rewrite equation (iii) of Theorem 3.2 for later reference. Given b =∑m
j=0 bjxj ∈ B and c(x)= b(x + H − 1) as above, it follows from Theorem 3.4 that equation

(iii) of Theorem 3.2 is satisfied if � >m or n>m, and it is trivial when �= n. Also note

that the equation corresponding to (n, �) is equivalent to the one corresponding to (�,n).
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The Classifying Ring 11

Theorem 3.6. Let b =∑m
j=0 bjxj ∈ U (k)[x] and c(x)= b(x + H − 1). If c =∑m

j=0 cjϕ j with

cj ∈ U (k) and 0 ≤ �,n, we set

ε(�,n)= (−1)n
∑

n≤i≤m

Ė�(ci)ϕi−n

(
−n

2
+ �− Ỹ

)
En − (−1)�

∑
�≤i≤m

Ėn(ci)ϕi−�

(
− �

2
+ n− Ỹ

)
E�.

Then, if b ∈ B, we have ε(�,n)≡ 0 mod (U (k)m+) for all 0 ≤ �,n. �

Proof. The assertion follows from equation (iii) of Theorem 3.2 and the fact that c(k) =∑m
i=k ciϕi−k for all 0 ≤ k≤ m. �

4 The Group F−20
4

Let Go be isomorphic to the rank 1 real form F−20
4 of F4. Then the Dynkin–Satake diagram

of g is

We can choose an orthonormal basis {εi}4
i=1 of h∗

R
such that α4 = ε2 − ε3, α3 = ε3 − ε4, α2 =

ε4, α1 = 1
2 (ε1 − ε2 − ε3 − ε4). Moreover, if σ denotes the conjugation of g with respect to go,

then εσ1 = ε1 and εσi = −εi if 2 ≤ i ≤ 4. Also, we have εθ1 = −ε1 and εθi = εi for 2 ≤ i ≤ 4. From

the diagram it follows that

Δ+(g, h)= {εi : 1 ≤ i ≤ 4} ∪ {εi ± ε j : 1 ≤ i < j ≤ 4} ∪ { 1
2 (ε1 ± ε2 ± ε3 ± ε4)},

P+ = {ε1, ε1 ± ε2, ε1 ± ε3, ε1 ± ε4} ∪ { 1
2 (ε1 ± ε2 ± ε3 ± ε4)},

P− = {ε2, ε3, ε4, ε2 ± ε3, ε2 ± ε4, ε3 ± ε4},

where the signs may be chosen independently. Here, P− denotes the set of roots in

Δ+(g, h) that vanish on a. Hence, P− =Δ+(m, t) and from this it follows that m � so(7,C).

We have t = ker(ε1) and ε1 is the only root in P+ that vanishes on t. If we set μ= ε1,

then Hμ = Zμ ∈ a. Choose the root vector Xμ so that 〈Xμ, θXμ〉 = 2 and define X−μ = θXμ.

Then the ordered set {Hμ, Xμ, X−μ} is an s-triple. This choice characterizes Xμ up to

a sign. On the other hand, it can be established that for any choice of nonzero root

vectors Xα1 and X−α1 we have [Xμ, θXα1 ] = tXα1 and [Xμ, X−α1 ] = −tθX−α1 with t2 = 1. Then
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12 A. Brega et al.

normalize Xμ so that,

[Xμ, θXα1 ] = −Xα1 and [Xμ, X−α1 ] = θX−α1 . (10)

Now consider the Cayley transform χ of g defined by

χ = Ad
(
exp

π

4
(θXμ − Xμ)

)
.

It is easy to see that

Ad(exp t(θXμ − Xμ))Hμ = cos(2t)Hμ + sin(2t)(Xμ + θXμ).

Then χ(Hμ)= Xμ + θXμ and, since μ|t = 0, χ fixes all elements of t. Therefore, hk = χ(t ⊕
a)= t ⊕ C(Xμ + θXμ)⊂ k is a Cartan subalgebra of both g and k.

For any φ ∈ h∗ define φ̃ ∈ h∗
k by φ̃ = φ · χ−1. Then Δ(g, hk)= {α̃ : α ∈Δ(g, h)} and

gα̃ = χ(gα). A root α̃ ∈Δ(g, hk) is said to be compact (respectively noncompact) if gα̃ ⊂ k

(respectively, gα̃ ⊂ p). Let Δ(k, hk) and Δ(p, hk) denote, respectively, the sets of compact

and noncompact roots.

Using [3, Lemma 3.1] it follows that α̃3 and α̃4 are compacts roots, and that α̃2 is

a noncompact root. Also, since Xμ was chosen so that (10) holds, we obtain that α̃1 is a

noncompact root. From this it follows that

Δ(k, hk)= {±(ε̃i ± ε̃ j) : 1 ≤ i < j ≤ 4} ∪ { 1
2 (±ε̃1 ± ε̃2 ± ε̃3 ± ε̃4): even number of minus signs},

Δ(p, hk)= {±ε̃i : 1 ≤ i ≤ 4} ∪ { 1
2 (±ε̃1 ± ε̃2 ± ε̃3 ± ε̃4) : odd number of minus signs}.

Next we construct a particular Borel subalgebra bk = hk ⊕ k+ of k that will be

useful later on to describe the set Γ , as well as some of the properties of the elements

of Γ (see Proposition 5.1). For more details on the construction of the subalgebra bk and

its relation with Γ we refer the reader to [6].

Since α1 = 1
2 (ε1 − ε2 − ε3 − ε4) is the only simple root in P+ set, as in the previous

section, E = X−α1 + θX−α1 . Let H+ ∈ tR be such that α(H+) > 0 for all α ∈Δ+(m, t). We say

that H+ is k-regular if in addition α(H+) �= 0 for all α with α̃ ∈Δ(k, hk). Since μ is the

only root in Δ+(g, h) that vanishes on t and since μ̃ is a noncompact root, it follows that
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The Classifying Ring 13

k-regular vectors exist. Given a k-regular vector H+ consider the positive system

Δ+(k, hk)= {α̃ ∈Δ(k, hk) : α(H+) > 0}.

If λ0 = α1|a is the simple restricted root and H+ is a k-regular vector, we consider the

following set:

P+(λ0)
− = {α ∈ P+ : α|a = λ0 and α(H+) < 0}.

Definition 4.1. A positive system Δ+(k, hk) defined by a k-regular vector H+ (see (4)) is

said to be compatible with E if α − α1 is a root for every α ∈ P+(λ0)
− such that α �= α1. �

The k-regular vectors in tR, for go � f4, are all of the form H+ = (0, t2, t3, t4) with

t2 > t3 > t4 > 0 and t2 �= t3 + t4. Different vectors H+ define two different positive systems,

they depend only on whether ±(t2 − t3 − t4) > 0, and they are both compatible with E .

From now on, fix a k-regular vector H+ = (0, t2, t3, t4) with t2 > t3 > t4 > 0 and t2 > t3 + t4.

The corresponding positive system in Δ(k, hk) is,

Δ+(k, hk)= {ε̃i ± ε̃ j : 2 ≤ i < j ≤ 4} ∪ {ε̃i ± ε̃1 : 2 ≤ i ≤ 4}

∪ { 1
2 (±ε̃1 + ε̃2 ± ε̃3 ± ε̃4) : even number of minus signs},

and bk = hk ⊕ k+ is the associated Borel subalgebra. A simple system in Δ+(k, hk) is

given by,

Π(k, hk)= {ε̃4 + ε̃1, ε̃3 − ε̃4, ε̃4 − ε̃1,
1
2 (ε̃1 + ε̃2 − ε̃3 − ε̃4)}. (11)

Hence k � so(9,C).

Fix nonzero root vectors Xεi+ε1 (2 ≤ i ≤ 4), Xεi±ε j (2 ≤ i < j ≤ 4) and define,

Xε̃i+ε̃1 = χ(Xεi+ε1), Xε̃i−ε̃1 = χ(θXεi+ε1), Xε̃i±ε̃ j = χ(Xεi±ε j ). (12)

Then it follows from [6, Proposition 2.4] that,

Xε̃i±ε̃ j = Xεi±ε j ,

Xε̃i+ε̃1 = 1
2 (Xεi+ε1 + [Xμ, θXεi+ε1 ] + θXεi+ε1),

(13)
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14 A. Brega et al.

and

Xε̃i−ε̃1 = 1
2 (Xεi+ε1 − [Xμ, θXεi+ε1 ] + θXεi+ε1).

Hence,

Xε̃i+ε̃1 − Xε̃i−ε̃1 = [Xμ, θXεi+ε1 ] = Xεi ∈ m+. (14)

Then from (13) and (14) it follows that:

m+ = 〈{Xε̃i±ε̃ j : 2 ≤ i < j ≤ 4} ∪ {Xε̃i+ε̃1 − Xε̃i−ε̃1 : 2 ≤ i ≤ 4}〉, (15)

where 〈S〉 denotes the linear space spanned by the set S.

Next we define, as in the case of Sp(n,1) (see [3, Section 3]), a Lie subalgebra g̃

of g that it is both σ and θ stable and its real form g̃o = go ∩ g̃ is isomorphic to sp(2,1).

Recall that α1 = 1
2 (ε1 − ε2 − ε3 − ε4) is the only simple root in P+. Let g̃ be the complex Lie

subalgebra of g generated by the following nonzero root vectors:

{X±ε2 , X±α1 , X±(ε3+ε4)}.

Then g̃ is a simple Lie algebra stable under σ and θ . Therefore, g̃ is the complexification

of the real subalgebra g̃o = go ∩ g̃ and g̃ = k̃ ⊕ p̃ is a Cartan decomposition of g̃, where

k̃ = k ∩ g̃ and p̃ = p ∩ g̃. Moreover, h̃ = (t ∩ g̃)⊕ a is a Cartan subalgebra of g̃ and m̃ = m ∩ k̃

is the centralizer of a in k̃. That g̃o � sp(2,1) follows from the Dynkin–Satake diagram

of g̃o,

Since the root vectors Xμ and θXμ are in g̃, it follows that g̃ is stable under the Cayley

transform χ of the pair (g, h). Hence the restriction of χ to g̃ is the Cayley transform

associated to (g̃, h̃). Then hk̃ = χ(h̃)= hk ∩ k̃ is a Cartan subalgebra of k̃ and g̃. The positive

system Δ+(k, hk) determines a positive system Δ+(k̃, hk̃)= {α̃|h
k̃

∈Δ(k̃, hk̃) : α̃ ∈Δ+(k, hk)} in

Δ(k̃, hk̃). Moreover,

Π(k̃, hk̃)= {δ= ε̃2 − ε̃1, γ1 = 1
2 (ε̃1 + ε̃2 − ε̃3 − ε̃4), γ2 = ε̃3 + ε̃4}

is a simple system in Δ+(k̃, hk̃) and the corresponding Dynkin diagram is
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The Classifying Ring 15

Then Δ+(k̃, hk̃)= {δ, γ1, γ2, γ3, γ4}, where γ3 = γ1 + γ2 = 1
2 (ε̃1 + ε̃2 + ε̃3 + ε̃4) and γ4 = 2γ1 +

γ2 = ε̃1 + ε̃2. Hence, k̃ � sp(1,C)× sp(2,C).

A simple calculation shows that χ(θX−α1)=
√

2
2 E , thus E is a root vector in k̃+

corresponding to γ3. Then set Xγ3 = E . Now define ϕ1 = ε̃3 + ε̃1, δ1 = ε̃3 − ε̃1, ϕ2 = ε̃4 + ε̃1

and δ2 = ε̃4 − ε̃1. Then in view of (12) we have,

Xγ4 = χ(Xε2+ε1), Xδ = χ(θXε2+ε1), Xϕ1 = χ(Xε3+ε1) (16)

and

Xδ1 = χ(θXε3+ε1), Xϕ2 = χ(Xε4+ε1), Xδ2 = χ(θXε4+ε1). (17)

It follows from (14) that Xγ4 − Xδ and Xϕi − Xδi are in m+ for i = 1,2.

Normalize X−γ4 , X−δ, X−ϕi , and X−δi so that 〈Xγ4 , X−γ4〉 = 〈Xδ, X−δ〉 = 〈Xϕi , X−ϕi 〉 =
〈Xδi , X−δi 〉 = 1, for i = 1,2. Then it follows that:

〈Xγ4 − Xδ, X−γ4 + X−δ〉 = 〈Xϕi − Xδi , X−ϕi + X−δi 〉 = 0. (18)

Hence, X−γ4 + X−δ and X−ϕi + X−δi (i = 1,2) are in (m+)⊥, the orthogonal complement of

m+ in k with respect to the Killing form of k.

To simplify the notation set, X±1 = X±γ1 , X±2 = X±γ2 , X±3 = X±γ3 , and X±4 = X±γ4 .

Let H1 ∈ [kγ1 , k−γ1 ] be such that γ1(H1)= 2, and normalize X1 and X−1 so that {H1, X1, X−1}
is an s-triple. Next normalize X2 and X4 (and accordingly Xδ), so that

[X1, X2] = E and [X1, E ] = X4.

From this, and the fact that γ2(H1)= −2, it follows that

[X−1, E ] = 2X2 and [X−1, X4] = 2E .

Now choose H2 ∈ [kγ2 , k−γ2 ] such that γ2(H2)= 2 and normalize X−2 so that

{H2, X2, X−2} is an s-triple. Since [kγ2 , k−γ2 ] ⊂ t and γ1(H2)= −1, if we define

H = 1
2 H2, (19)

we obtain a vector H ∈ t such that Ḣ(E)= 1
2 E . This vector H is the one used in (7). Also,

since δ(H2)= 0, we have [Xδ, H ] = 0.
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16 A. Brega et al.

As in the previous sections, set Z = Zα1 , Y = Yα1 and Ỹ = Y + H . From Lemma 3.1,

it follows that Ė(Y)= 3
2 E , hence Ė(Ỹ)= E . Now, since (ε1 + ε2)(Hα1)= 0, we have (ε1 +

ε2)(Y)= −(ε1 + ε2)(Z)= −1 because (ε1 + ε2)|a = 2α1|a and α1(Z)= 1
2 (see Lemma 3.1).

Then Ẋδ(Y)= Xδ, and therefore Ẋδ(Ỹ)= Xδ.

5 The M-Spherical K-Modules

In this section, we describe the main properties of the K-modules in the classes Γ and Γ1

(see (6)). In the following proposition, we collect several results that will be very useful

later on, and in Proposition 5.3 we will prove some important properties of the Kostant

degree d(u) for u∈ U (k)M that make use of these results.

Proposition 5.1. Let Go be isomorphic to F−20
4 and let bk = hk ⊕ k+ be the Borel subalge-

bra of k defined before. Then m+ ⊂ k+ and E is a root vector in k+. Moreover:

(i) For any γ ∈ K̂ let ξγ denote its highest weight. Then, γ ∈ Γ if and only if

ξγ = k
2 (γ4 + δ)+ �γ3 with k, � ∈ No. In this context, we write γ = γk,�, ξγ = ξk,�

and Vk,� for the corresponding representation space. Also we shall refer to

any v ∈ V M
k,� as an M-invariant element of type (k, �).

(ii) For any γk,� ∈ Γ, we have d(γk,�)= k + 2�.

(iii) If γ ∈ Γ, we have γ ∈ Γ1 if and only if ξγ = ξk,� with k even.

(iv) For any γk,� ∈ Γ, we have Xk
δ E�(V M

k,�)= Vk+
k,� and X p

δ Eq(V M
k,�)= {0} if and only if

p> k or p+ q> k + �. �

For a proof of this proposition, we refer the reader to [6]. The construction of the

Borel subalgebra bk is contained in [6, Section 3] and the statements in (i), (ii) and (iv)

follow from [6, Proposition 4.4, Theorem 4.5 and Theorem 5.3], respectively. On the other

hand (iii) is a well-known general fact. We point out that some of these results were first

established in [8], others were proved in [5] and they were generalized in [6] to any real

rank 1 semisimple Lie group.

The following proposition is the analog of part (ii) of [3, Proposition 3.11]. We

omit its proof since, up to minor changes, is the same as that of Proposition 3.11.

Proposition 5.2. Let Go be isomorphic to F−20
4 . Let γk,� ∈ Γ and let Vk,� be a K-module in

the class γk,�. Then if 0 �= v ∈ V M
k,�, the set

{Xk− j
δ E�+ j(v) : 0 ≤ j ≤ k}
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The Classifying Ring 17

is a basis of the irreducible {H1, X1, X−1}-module of dimension k + 1 generated by any

nontrivial highest weight vector of Vk,�. Moreover, Xk− j
δ E�+ j(v) is a weight vector of

weight ξk,� − jγ1 and the following identities hold:

X1 Xk− j
δ E�+ j(v)= ( j + �)

2
Xk− j+1
δ E�+ j−1(v), 0 ≤ j ≤ k, (20)

X−1 Xk− j
δ E�+ j(v)= 2( j + 1)(k − j)

�+ j + 1
Xk− j−1
δ E�+ j+1(v), 0 ≤ j ≤ k, (21)

X j
−1(uk,�)= 2 j j!

(
k

j

)(
�+ j

�

)−1

Xk− j
δ E�+ j(v), 0 ≤ j ≤ k, (22)

where uk,� is the highest weight vector Xk
δ E�(v). �

In the following proposition, we prove some important properties of the Kostant

degree d(u) for u∈ U (k)M. Even though we give the proof for F−20
4 , since our argument

relies heavily on Proposition 5.1, the same proof hold for the other real rank 1 groups,

SO(n,1), SU(n,1) and Sp(n,1), with the appropriate changes. These result will be used in

Section 8.

Proposition 5.3. Let Go be isomorphic to F−20
4 . If u, v ∈ U (k)M are nonzero vectors,

then

(1) d(u+ v)≤ max{d(u),d(v)},
(2) d(uv)= d(u)+ d(v),

(3) d(u)= 0 if and only if u∈ U (k)K . �

Proof. The assertions (a) and (c) follow directly from the definition of the Kostant

degree. We start the proof of (b) by showing that d(uv)≤ d(u)+ d(v) for any 0 �= u, v ∈
U (k)M. Let us begin by considering u∈ Vr,s ⊂ U (k)M and v ∈ Vr′,s′ ⊂ U (k)M where Vr,s and

Vr′,s′ are, respectively, irreducible finite-dimensional K-modules in the classes γr,s and

γr′,s′ of Γ1. Then u⊗ v ∈ (Vr,s ⊗ Vr′,s′)M and we decompose it as follows:

u⊗ v =
∑
i, j

wi, j, (23)
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18 A. Brega et al.

where wi, j �= 0 is the γi, j-isotypic component of u⊗ v. We recall that if γi, j ∈ Γ, then its

highest weight is ξi, j = i
2 (γ4 + δ)+ jγ3 and d(γi, j)= i + 2 j, see Proposition 5.1. We will

show that d(wi, j)≤ d(u)+ d(v) for any wi, j that occurs in (23).

In view of (11) a simple system of roots in Δ+(k, hk) is given by

Π(k, hk)= {ε̃4 + ε̃1, ε̃3 − ε̃4, ε̃4 − ε̃1, γ1 = 1
2 (ε̃1 + ε̃2 − ε̃3 − ε̃4)}. (24)

Then it follows that

γ4 + δ= (ε̃4 + ε̃1)+ 2(ε̃3 − ε̃4)+ 3(ε̃4 − ε̃1)+ 4γ1

and

γ3 = (ε̃4 + ε̃1)+ (ε̃3 − ε̃4)+ (ε̃4 − ε̃1)+ γ1.

If Vi, j ⊂ U (k)M occurs in the decomposition of Vr,s ⊗ Vr′,s′ it is known (see [7]) that its

highest weight ξi, j = i
2 (γ4 + δ)+ jγ3 is given by

ξi, j = ξr+r′,s+s′ − [c1(ε̃4 + ε̃1)+ c2(ε̃3 − ε̃4)+ c3(ε̃4 − ε̃1)+ c4γ1], (25)

where ci ∈ No for 1 ≤ i ≤ 4. Hence comparing the coefficients of the simple root ε̃4 + ε̃1 on

the left- and the right-hand sides of (25) it follows that

i

2
+ j = r + r′

2
+ s + s′ − c1.

Then, since c1 ≥ 0, we have

d(wi, j)= r + r′ + 2(s + s′)− 2c1 = d(u)+ d(v)− 2c1 ≤ d(u)+ d(v).

Therefore, using the definition (5) and (23) it follows that:

d(u⊗ v)= max{d(wi, j)} ≤ d(u)+ d(v).

Now, using that the map u⊗ v ∈ U (k)M ⊗ U (k)M → uv ∈ U (k)M is a K-homomorphism it

follows that d(uv)≤ d(u)+ d(v).

Now let u∈ Vr,s ⊕ · · · ⊕ Vr,s (m summands) and v ∈ Vr′,s′ ⊕ · · · ⊕ Vr′,s′ (n summands),

where Vr,s and Vr′,s′ are irreducible finite-dimensional K-submodules of U (k)M as above.
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The Classifying Ring 19

Write u= u1 + · · · + um with uk ∈ Vr,s (1 ≤ k≤ m) and v = v1 + · · · + vn with v� ∈ Vr′,s′ (1 ≤ �≤
n). Then using the above calculation, we obtain:

d(uv)= d

(∑
k,�

ukv�

)
≤ max{d(ukv�) : 1 ≤ k≤ m, 1 ≤ �≤ n}

≤ max{d(uk)+ d(v�)) : 1 ≤ k≤ m, 1 ≤ �≤ n} = d(u)+ d(v). (26)

Consider now u, v ∈ U (k)M such that d(u)= p and d(v)= q. It follows from (5) that,

u=
∑

d(γ )≤p

uγ and v=
∑

d(τ )≤q

vτ , (27)

where uγ and vτ denote, respectively, the K-isotypic components of u and v correspond-

ing to the classes γ and τ of Γ1. Then using (26), we obtain,

d(uv)= d

(∑
γ,τ

uγvτ

)
≤ max{d(uγvτ ) : uγ �= 0, vτ �= 0}

≤ max{d(uγ )+ d(vτ ) : uγ �= 0, vτ �= 0}

= max{d(γ )+ d(τ ) : uγ �= 0, vτ �= 0}

≤ p+ q = d(u)+ d(v).

Our next goal is to show that d(uv)= d(u)+ d(v) for any u, v ∈ U (k)M. Assume

that d(u)= p and d(v)= q. Then, using (27) and the fact that d(uv)≤ d(u)+ d(v) for any

u, v ∈ U (k)M it follows that:

uv =
∑

d(γ )=p, d(τ )=q

uγvτ + w,

where w ∈ U (k)M is such that d(w) < p+ q. Then, in view of (5), we may assume that

u=
∑

i+2 j=p

ui, j and v=
∑

r+2s=q

vr,s, (28)

where ui, j and vr,s denote, respectively, the K-isotypic components of u and v corre-

sponding to the classes γi, j and γr,s of Γ1. Let k= max{i ∈ No : ui, j �= 0 for some j} and
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20 A. Brega et al.

�= max{r ∈ No : vr,s �= 0 for some s}. Then using (28), Leibnitz rule and part (iv) of Propo-

sition 5.1 it follows that:

Ė (p+q−k−�)/2 Ẋk+�
δ (uv)=

(
k + �

�

)⎛⎜⎝
p+ q − k − �

2
q − �

2

⎞
⎟⎠ Ė (p−k)/2 Ẋk

δ (uk, p−k
2
)Ė (q−�)/2 Ẋ�

δ (v�, q−�
2
) �= 0.

(29)

We point out that the right-hand side of (29) is different from zero because, in view of

(iv) of Proposition 5.1, it is a product of two dominant vectors. Also using Leibnitz rule,

Proposition 5.1(iv) and (29) it follows that:

Ẋk+�
δ (uv)=

(
k + �

�

)
Ẋk
δ (uk, p−k

2
)Ẋ�

δ (v�, q−�
2
) �= 0 (30)

and

Ẋk+�+1
δ (uv)= 0. (31)

To finish the proof, write

uv =
∑
i, j

bi, j,

where bi, j denote the K-isotypic components of uv corresponding, respectively, to the

classes γi, j ∈ Γ1. Then from (29)–(31), we obtain,

Ẋk+�
δ (uv)=

∑
j

Ẋk+�
δ (bk+�, j)

and

0 �=
∑

j

Ė (p+q−k−�)/2 Ẋk+�
δ (bk+�, j).

Therefore, from Proposition 5.1(iv) it follows that there exists bk+�, j �= 0 such that (p+
q − k − �)/2 + k + �≤ k + �+ j. Thus

d(uv)≤ d(u)+ d(v)= p+ q ≤ k + �+ 2 j = d(bk+�, j)≤ d(uv).

This completes the proof of the proposition. �
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The Classifying Ring 21

6 Transversality Results

In this section, we prove several results that will allow us to deal with the congruence

modulo U (k)m+ that occur in the equations that define the algebra B (see (4)). In par-

ticular, we reduce the congruence modulo U (k)m+ to a congruence modulo U (k)y, where

y ⊂ m+ is the abelian subalgebra defined as follows:

y = 〈{Xε̃3+ε̃4 , Xε̃2+ε̃3 , Xε̃2+ε̃4}〉. (32)

Before stating the main results, we introduce the following notation:

S23 = Xε̃2+ε̃3 , S24 = Xε̃2+ε̃4 , and Tij = Xε̃i−ε̃ j (2 ≤ i �= j ≤ 4). (33)

Let q+ be the linear span of {Xα : α ∈Δ+(k, hk) and α �= γ1}. Since γ1 is a simple

root in Δ+(k, hk) (see (24)) it follows that q+ is a subalgebra of k+. We are interested in

considering weight vectors u∈ U (k)m+ of weight λ= a(γ4 + δ)+ bγ3 (a,b ∈ Z), and such

that Ẋ(u)≡ 0 mod (U (k)y) for every X ∈ q+.

Consider the subalgebra q ⊂ k defined as follows:

q = q+ ⊕ hr ⊕ q−, (34)

where

hr = ker(γ4 + δ) ∩ ker(γ3)= 〈{Hε̃3−ε̃4 , Hε̃4−ε̃1}〉 (35)

and

q− = 〈{X−(ε̃3−ε̃4)}〉. (36)

Then a simple calculation shows that

[q, y] ⊂ y.

Moreover, q = r ⊕ u where r = 〈hr ∪ {X±(ε̃3−ε̃4)}〉 � gl(2,C), hr is a Cartan subalgebra of r and

u is the following nilpotent subalgebra:

u = 〈{Xε̃2±ε̃ j : 3 ≤ j ≤ 4} ∪ {Xε̃i±ε̃1 : 2 ≤ i ≤ 4} ∪ {Xγ2 , Xγ3 , Xψ1 , Xψ2}〉,
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22 A. Brega et al.

where

ψ1 = 1
2 (−ε̃1 + ε̃2 − ε̃3 + ε̃4), ψ2 = 1

2 (−ε̃1 + ε̃2 + ε̃3 − ε̃4). (37)

The proof of the next two lemmas follow from a direct application of Poincaré–

Birkhoff–Witt theorem. Let g be an arbitrary finite-dimensional complex Lie algebra

and let l be a subalgebra of g. If {X1, . . . , Xp} is an ordered basis of l complete it to an

ordered basis {Y1, . . . ,Yq, X1, . . . , Xp} of g. Now, if I = (i1, . . . , iq) ∈ N
q
o and J = ( j1, . . . , jp) ∈

N
p
o define as usual YI XJ = Yi1

1 · · · Y
iq
q X j1

1 · · · X
jp
p in U (g). Then we have the following lemma:

Lemma 6.1. Any u∈ U (g)l can be written in a unique way as u= a1 X1 + · · · + apXp where

ak =
∑

aI, j1,..., jkY
I X j1

1 · · · X jk
k for k= 1, . . . , p,

and the coefficients aI, j1,..., jk are complex numbers. �

Lemma 6.2. Let g and l be as above. Let u∈ U (g) and X ∈ g − l be such that Ẋ(l)⊂ l. If

uXn ≡ 0 mod (U (g)l) for some n∈ N, then u≡ 0 mod (U (g)l). �

Let y⊥ be the orthogonal complement of y in k with respect to the Killing form

of k. For any Z ∈ (m+)⊥ consider the linear map TZ : q × (m+)⊥ → y⊥ given by

TZ (X,Y)= [X, Z ] + Y, X ∈ q and Y ∈ (m+)⊥. (38)

Since [q, y] ⊂ y and (m+)⊥ ⊂ y⊥ it follows that Im(TZ )⊂ y⊥, where Im(TZ ) denotes the image

of the map TZ . The following proposition will be used in Theorem 6.4 to prove one of the

main results of this section.

Proposition 6.3. There exists Zo ∈ (m+)⊥ such that Im(TZo)= y⊥. �

Proof. Using (15) and the notation introduced in (16), (17) and (33) it is easy to check

that

y⊥ = (m+)⊥ ⊕ 〈{X−δ, X−δ1 , X−δ2 , T32, T42, T43}〉. (39)

It is clear, from the definition of TZ , that (m+)⊥ ⊂ Im(TZ ) for every Z ∈ (m+)⊥. Now,

consider the vector,

Zo = X−γ4 + X−δ + X−ϕ2 + X−δ2 + X−γ3 + Hε̃4−ε̃3 , (40)
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The Classifying Ring 23

where Hε̃4−ε̃3 ∈ hk is such that (ε̃4 − ε̃3)(Hε̃4−ε̃3)= 2. Using (15) and (18), it follows that

Zo ∈ (m+)⊥. In view of (39), to prove that Im(TZo)= y⊥ we need to show that 〈{X−δ, X−δ1 ,

X−δ2 , T32, T42, T43}〉 is contained in Im(TZo). In fact, using that Xϕ1 , Xϕ2 , Xψ1 , Xψ2 , Hε̃4−ε̃1 , and

T43 are in q (see (16), (17), (33), and (37) for the notation) a simple calculation shows that

TZo(Xϕ2 ,0)≡ c1T42, TZo(Xϕ1 ,0)≡ c2T32,

TZo(Xψ2 ,0)≡ c3 X−δ2 , TZo(Xψ1 ,0)≡ c4 X−δ1 ,

TZo(Hε̃4−ε̃1 ,0)≡ c5 X−δ, TZo(T43,0)≡ c6T43,

where, in all cases, the congruence is modulo the subspace (m+)⊥ and ci �= 0 for 1 ≤ i ≤ 6.

This completes the proof of the proposition. �

Theorem 6.4. Let u∈ U (k)m+ be a vector of weight λ= a(γ4 + δ)+ bγ3, with a,b ∈ Z, and

such that Ẋ(u)≡ 0 mod (U (k)y) for every X ∈ q+. Then u≡ 0 mod(U (k)y). �

Proof. Let U (k)=⋃
j≥0 U j(k) be the canonical ascending filtration of U (k). If v ∈ U (k) and

v �= 0, define

deg(v)= min{ j : v ∈ U j(k) and v /∈ U j−1(k)}, (41)

where it is understood that U−1(k)= {0}. Let S be the set of all v ∈ U (k)m+ of weight λ=
a(γ4 + δ)+ bγ3 (a,b ∈ Z), so that Ẋ(v) ∈ U (k)y for every X ∈ q+ and v /∈ U (k)y. The theorem

will be proved if we show that S = ∅. Assume on the contrary that S �= ∅ and choose

u∈ S such that deg(u)= min{deg(v) : v ∈ S}. Set r = deg(u) and let pr : Ur(k)→ Ur(k)/Ur−1(k)

denote the quotient map. The map pr intertwines the representations of K on Ur(k) and

on Ur(k)/Ur−1(k), and since u /∈ Ur−1(k) we have pr(u) �= 0.

Let S(k) be the symmetric algebra of k and let S(k∗) denote the algebra of poly-

nomial functions on k. Let Sr(k) and Sr(k
∗) denote the corresponding homogeneous sub-

spaces of S(k) and S(k∗) of degree r. There is an algebra isomorphism between S(k) and

S(k∗) defined by the Killing form of k, this isomorphism maps Sr(k) onto Sr(k
∗) and inter-

twines the canonical representations of K on Sr(k) and on Sr(k
∗). Composing this iso-

morphism with the natural K-isomorphism between Ur(k)/Ur−1(k) and Sr(k), we obtain a

K-isomorphism,

Ur(k)/Ur−1(k)� Sr(k
∗). (42)
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24 A. Brega et al.

Hence, we can think of pr(u) as a homogeneous polynomial function on k of degree r, and

regard pr as a K-homomorphism from Ur(k) to Sr(k
∗).

Let (m+)⊥ be the orthogonal complement of m+ in k with respect to the Killing

form of k. Since u∈ U (k)m+ and the isomorphism given in (42) is defined by the Killing

form of k it follows that:

pr(u)(Y)= 0 for every Y ∈ (m+)⊥. (43)

Now let X ∈ q+. Since [q+, y] ⊂ y, we have Ẋk(U (k)y)⊂ U (k)y for every k∈ N. Then,

since by hypothesis Ẋ(u) ∈ U (k)y, it follows that Ẋk(u) ∈ U (k)y for any k∈ N. Therefore,

using that (m+)⊥ ⊂ y⊥ and that pr is a K-homomorphism it follows by induction on k

that

Xk(pr(u))(Y)= pr(Ẋ
k(u))(Y)= 0 for Y ∈ (m+)⊥ and X ∈ q+, (44)

where X(pr(u)) denotes the action of X on the polynomial function pr(u).

Since u is a vector of weight λ= a(γ4 + δ)+ bγ3, it follows from the definition of

hr that Ḣ(u)= 0 for every H ∈ hr. Then,

Hk(pr(u))(Y)= 0 for Y ∈ k, H ∈ hr and k∈ N. (45)

Let 0 �= ū∈ U (k)/U (k)y be the image of uunder the quotient map. Normalize Xε̃3−ε̃4

and X−(ε̃3−ε̃4) so that {Xε̃3−ε̃4 , Hε̃3−ε̃4 , X−(ε̃3−ε̃4)} is an s-triple. Since Xε̃3−ε̃4 ∈ q+ and Hε̃3−ε̃4 ∈ hr,

and by hypothesis ū is a dominant vector of weight zero with respect to above s-triple,

we obtain that Ẋ−(ε̃3−ε̃4)(ū)= 0. Hence, from (36), we obtain that Ẋ(u) ∈ U (k)y for X ∈ q−.

Then, since [q−, y] ⊂ y, it follows that:

Xk(pr(u))(Y)= 0 for Y ∈ (m+)⊥, X ∈ q−, and k∈ N. (46)

Now recall that for k∈ K and f ∈ Sr(k
∗) the action of k on f is given by (kf)(Y)=

f(Ad(k−1)Y) for every Y ∈ k . Then, from (43)–(46) it follows that

pr(u)(Ad(exp X)Y)= 0 for X ∈ q+ ∪ hr ∪ q− and Y ∈ (m+)⊥. (47)

Let Q be the connected Lie subgroup of K with Lie algebra q (see (34)). Since the set

exp q+. exp hr. exp q− generates Q, we obtain that

pr(u)(Ad(g)Y)= 0 for g ∈ Q and Y ∈ (m+)⊥. (48)
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The Classifying Ring 25

Now consider the map Φ : Q × (m+)⊥ → y⊥ defined by Φ(g,Y)= Ad(g)Y. The fact

that the image of Φ is contained in y⊥ follows from a simple calculation using that

[q, y] ⊂ y and that y ⊂ m+. Let e ∈ Q be the identity element and Z ∈ (m+)⊥, then (dΦ)(e,Z) is

the map TZ : q × (m+)⊥ → y⊥ defined in (38). It follows from Proposition 6.3 that (dΦ)(e,Zo)

is surjective. This implies that the image of Φ contains an open set of y⊥, then in view of

(48) we obtain that,

pr(u)(Y)= 0 for every Y ∈ y⊥. (49)

Recall that y = 〈{X2, S23, S24}〉 (see (32)). Extend the basis of y to a basis B =
{Z1, . . . , Zq, X2, S23, S24} of k, where q = dim k − 3. If I = (i1, . . . , iq) ∈ N

q
o and J = ( j1, j2, j3) ∈

N3
o, set |I | = i1 + · · · + iq, |J| = j1 + j2 + j3 and Z I = Zi1

1 . . . Z
iq
q in S(k). If we regard pr(u) as

an element in Sr(k), we can write

pr(u)=
∑

bI,J Z I X j1
2 Sj2

23Sj3
24,

where bI,J ∈ C and the sum extends over all I and J such that |I | + |J| = r. Now, identify-

ing k∗ with k via the Killing form of k and considering a basis B̃ of k dual to B it follows

from (49) that bI,0 = 0, for all I such that |I | = r. Therefore,

pr(u)=
∑
|J|>0

bI,J Z I X j1
2 Sj2

23Sj3
24, (50)

where the sum extends over all I and J such that |I | + |J| = r. On the other hand,

since pr is a K-homomorphism from Ur(k) to Sr(k) it follows that pr(u) has weight

λ= a(γ4 + δ)+ bγ3 with respect to hk. Then, (50) implies that

u=
∑
|J|>0

bI,J Z I X j1
2 Sj2

23Sj3
24 + u′, (51)

where the monomials Z I X j1
2 Sj2

23Sj3
24 are in U (k), the sum extends over all I and J such that

|I | + |J| = r and u′ is a vector of weight λ in Ur−1(k). Moreover, since the sum in the first

term of (51) is a vector in U (k)y and Ẋ(U (k)y)⊂ U (k)y for X ∈ q+, it follows by hypothesis

that Ẋ(u′) ∈ U (k)y for every X ∈ q+. Also, since u∈ U (k)m+ and u /∈ U (k)y the same facts

hold for u′, therefore u′ ∈ S. This is a contradiction since deg(u′) < deg(u). Then S = ∅ and

the proof of the theorem is completed. �
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26 A. Brega et al.

Corollary 6.5. Let u∈ U (k)m+ be a q+-dominant vector of weight λ= a(γ4 + δ)+ bγ3 with

a,b ∈ Z. Then u∈ U (k)y. �

Next theorem will be used in an important way in Section 8. Its proof is similar

to that of Theorem 6.4. Consider the following subalgebra of k,

q̃ = {X ∈ k : Ẋ(Vk+
γ )= 0 for every γ ∈ Γ1}. (52)

It is easy to see that,

q̃ = k+ ⊕ hr ⊕ 〈{X−ε̃3+ε̃4 , X−ε̃4+ε̃1 , X−ε̃3+ε̃1}〉,

where hr is as in (35). Let Q̃ denote the connected Lie subgroup of K with Lie algebra q̃.

If Z ∈ (m+)⊥ consider the linear map T̃Z : q̃ × (m+)⊥ → k given by

T̃Z (X,Y)= [X, Z ] + Y, X ∈ q̃ and Y ∈ (m+)⊥. (53)

Next proposition is the analog of Proposition 6.3 and will be used in the proof of

Theorem 6.7.

Proposition 6.6. If Zo ∈ (m+)⊥ is as in (40), it follows that Im(T̃Zo)= k. �

Proof. Using the definition of y (see (32)) it is easy to see that,

k = y⊥ ⊕ 〈{X−ε̃2−ε̃3 , X−ε̃2−ε̃4 , X−ε̃3−ε̃4}〉. (54)

Now, since q ⊂ q̃ it follows from Proposition 6.3 that,

T̃Zo(q × (m+)⊥)= TZo(q × (m+)⊥)= y⊥.

Hence, it follows from (54) that to complete the proof we need to show that X−ε̃2−ε̃3 ,

X−ε̃2−ε̃4 , and X−ε̃3−ε̃4 are in the image of T̃Zo. In fact, a simple calculation shows that,

T̃Zo(X−ε̃4+ε̃1 ,0)≡ a1 X−ε̃2−ε̃4 , T̃Zo(Xγ1 ,0)≡ a2 X−ε̃3−ε̃4 (55)
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The Classifying Ring 27

and

T̃Zo(X−ε̃3+ε̃1 ,0)≡ a3 X−ε̃2−ε̃3 + a4 X−ε̃3−ε̃4 , (56)

where, in all cases, the congruence is modulo the subspace y⊥ and the constants ai are

nonzero for 1 ≤ i ≤ 4. This completes the proof. �

Theorem 6.7. Let u∈ U (k)m+ be a k+-dominant vector of weight λ= a(γ4 + δ)+ bγ3 with

a,b ∈ No. Then u= 0. �

Proof. Let U (k)=⋃
j≥0 U j(k) and let u∈ U (k)m+ be a k+-dominant vector of weight

λ= a(γ4 + δ)+ bγ3 with a,b ∈ No. Assume that u �= 0 and set r = deg(u) (see (41)). Let

pr : Ur(k)→ Sr(k
∗) be the K-homomorphism defined in the proof of Theorem 6.4. Observe

that pr(u) �= 0 because u /∈ Ur−1(k).

Since u∈ U (k)m+, and the K-homomorphism pr : Ur(k)→ Sr(k
∗) is defined via the

Killing form of k, it follows that

pr(u)(Y)= 0 for every Y ∈ (m+)⊥. (57)

Also, since u is a k+-dominant vector of weight λ= a(γ4 + δ)+ bγ3, it follows from

Proposition 5.1 that u∈ Vk+
γ for γ ∈ Γ1 with highest weight λ. Hence, Ẋ(u)= 0 for every

X ∈ q̃. Then since pr is a K-homomorphism, we have

Xk(pr(u))(Y)= pr(Ẋ
k(u))(Y)= 0 for X ∈ q̃, Y ∈ k and k∈ N. (58)

Now, since {exp X : X ∈ q̃} generates Q̃, it follows from (57) and (58) that

pr(u)(Ad(g)Y)= 0 for g ∈ Q̃ and Y ∈ (m+)⊥.

That is, pr(u) vanishes on the image of the map Φ̃ : Q̃ × (m+)⊥ → k defined by Φ̃(g,Y)=
Ad(g)Y. Now, if e ∈ Q̃ is the identity element and Z ∈ (m+)⊥, then (dΦ̃)(e,Z) = T̃Z : q̃ ×
(m+)⊥ → k. Then it follows from Proposition 6.6 that (dΦ̃)(e,Zo) is surjective. This implies

that the image of Φ̃ contains an open set of k, hence pr(u)= 0 as a polynomial function

on k, which is a contradiction. Therefore, u= 0 as we wanted to prove. �
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28 A. Brega et al.

Before stating the next results we define the following subalgebra of k,

s = k− ⊕ hk ⊕ 〈{Xε̃3+ε̃1 , Xε̃4+ε̃1 , T34, X1}〉. (59)

The following result is the analog of [3, Proposition 4.9]. Although its proof uses

the same idea as that of Proposition 4.9 we include it here because of some technical

differences.

Proposition 6.8. Let u0,u1 ∈ U (k) be such that Ẋ1(u0)= Ẋ1(u1)= 0. If u0 + u1 E ≡ 0 mod

(U (k)y), then u0 ≡ u1 ≡ 0 mod (U (k)y). �

Proof. Let s be the subalgebra of k defined in (59). If {S1, . . . , St} is an ordered basis of s,

the following is an ordered basis for k

{S1, . . . , St, T23, T24, Xδ, Xψ2 , Xδ1 , Xψ1 , Xδ2 , X4, X3, X2, S23, S24}, (60)

we refer the reader to (16), (17), (33), and (37) for the notation.

Let U1 (respectively, U2) be the subspace of U (k) spanned by those monomials

that, when written in the Poincaré–Birkhoff–Witt bases of U (k) associated to (60), end

with powers of X2 (respectively, S23) or before. Using that Ẋ1(s)⊂ s and taking a close

look at the action of Ẋ1 on the other elements of the basis (60) it follows that Ẋ1(U1)⊂ U1

and Ẋ1(U2)⊂ U2.

Since u0 + u1 E ∈ U (k)y in view of Lemma 6.1, we can write

u0 + u1 E = aX2 + bS23 + cS24, (61)

with a∈ U1, b ∈ U2 and c ∈ U (k). Then applying Ẋ1, we obtain that,

u1 X4 = Ẋ1(a)X2 + aE + Ẋ1(b)S23 + Ẋ1(c)S24, (62)

and for every k≥ 2, we obtain

0 = Ẋk
1(a)X2 + kẊk−1

1 (a)E +
(

k

2

)
Ẋk−2

1 (a)X4 + Ẋk
1(b)S23 + Ẋk

1(c)S24. (63)
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Now set ỹ = 〈{S23, S24}〉. If n is sufficiently large so that Ẋn
1(a)= 0, using

Equation (63) and decreasing induction on j it follows that Ẋ j
1(a)= 0 for every 0 ≤

j ≤ n. In particular, a= 0. Hence, from (61) and (62), we obtain that u1 X4 ∈ U (k)ỹ and

u0 + u1 E ∈ U (k)ỹ. Now, using Lemma 6.2 and the fact that Ė(y)= 0 it follows that u0 ≡
u1 ≡ 0 mod (U (k)ỹ), therefore u0 ≡ u1 ≡ 0 mod (U (k)y) as we wanted to prove. �

Next proposition will be used in Theorem 8.6 of Section 8.

Proposition 6.9. Let {η j : j ∈ N0} be a sequence in U (k) such that η j �= 0 for a finite num-

ber of j′s, Ẋ1(η j)= 0 for every j ∈ N0 and
∑

j≥0 η j E j ≡ 0 mod (U (k)y). Then

∑
i≥0

η2i E
2i ≡ 0 and

∑
i≥0

η2i+1 E2i+1 ≡ 0,

where the congruence is mod(U (k)y). �

Proof. Let Δ= 2X4 X2 − E2. Since X2, X4, and E commute with each other it follows

that (−1) jΔ j ≡ E2 j mod(U (k)y) for every j ∈ N0. Also observe that Ẋ1(Δ)= 0. From now

on the proof follows in the same way as that of [3, Proposition 4.11], simply changing

the congruence mod(U (k)X2) for a congruence mod(U (k)y). �

7 An Estimate on the Kostant Degree

In this section, we introduce the degree property and show that every b ∈ P (U (g)K)

has the degree property. This result is used in Proposition 7.11. We also show that to

prove Theorem 2.7, and therefore our main result Theorem 1.1, it is enough to prove

Theorem 7.12.

Definition 7.1. Let b = bm ⊗ Zm + · · · + b0 ∈ U (k)M ⊗ U (a) with bm �= 0. We say that b has

the degree property if d(bm− j)≤ m + 2 j for every 0 ≤ j ≤ m. �

We begin by recalling a few facts about s-triples in g. Recall that an s-triple is a

set of three linearly independent elements {x, e, f} in g such that [x, e] = 2e, [x, f ] = −2 f,

and [e, f ] = x. The s-triple {x, e, f} is called normal if e, f ∈ p and x ∈ k. A normal s-triple

{x, e, f} is called principal if e (and hence f ) is a regular element in p. Theorem 3 of [10]

guarantees that principal normal s-triples exist, and in Theorem 6 of the same paper
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it is proved that any two principal normal s-triples are Kθ -conjugate, where Kθ is the

subgroup of all elements in G that commute with θ .

Fix a principal normal s-triple {x, e, f} in g and set z= x/2. In [14, Proposition 1],

it is proved that the map ad(z) : p → p is diagonalizable with eigenvalues 1, −1, and pos-

sibly 0. Since in our case g is the complexification of the Lie algebra of F−20
4 , the eigen-

values of ad(z) in g are −2, −1, 0, 1, and 2 (see the [14, proof of Proposition 1]), then the

next result follows.

Lemma 7.2. The map ad(z) : k → k is diagonalizable and its highest eigenvalue is 2. �

In [14, Corollary 9], it is shown that if go is a semisimple Lie algebra over R,

different from sl(2,R), and Vγ is an irreducible K-module of type γ ∈ Γ, then d(γ ) is the

highest eigenvalue of z in Vγ . From this result, we have the following lemma:

Lemma 7.3. Let V be a finite-dimensional K-module and let nbe the highest eigenvalue

of z in V . If u∈ V M and u �= 0, then d(u)≤ n. �

As an application of Lemmas 7.2 and 7.3, we obtain the following result that will

be useful in what follows.

Lemma 7.4. If u∈ Um(k)
M and u �= 0, then d(u)≤ 2m. �

Recall that P : U (g)−→ U (k)⊗ U (a) is the projection on the first summand of the

direct sum U (g)= (U (k)⊗ U (a))⊕ U (g)n, associated to an Iwasawa decomposition g =
k ⊕ a ⊕ n adapted to k. The proof of the following result follows easily by choosing an

appropriate Poincaré–Birkhoff–Witt bases of U (g).

Lemma 7.5.

P (Um(g))=
∑

0≤�≤m

Um−�(k)⊗ Z � for every m ≥ 0. �

Let σ : S(g)−→ U (g) be the symmetrization mapping. It is known that σ is a

K-linear isomorphism. Let ϕ : U (k)⊗ S(p)−→ U (g) be the K-linear isomorphism defined

by ϕ(u⊗ p)= uσ(p). Then we have,

U (g)K =
∑
m≥0

(U (k)σ (Sm(p)))
K .
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Theorem 7.6. Let u∈ (U (k)σ (Sm(p)))
K where m is the smallest possible. Then P (u)=

bm ⊗ Zm + · · · + b0 ∈ U (k)M ⊗ U (a), bm �= 0 and d(bm− j)≤ m + 2 j for 0 ≤ j ≤ m. �

Proof. Let ũ∈ (U (k)⊗ Sm(p))
K be such that ϕ(ũ)= u. Write Sm(p)=

∑
Wτ where the sum

runs over a finite set J ⊂ Γ . Then by Schur’s Lemma we have,

(U (k)⊗ Sm(p))
K =

∑
τ∈J

(U (k)τ ∗ ⊗ Wτ )
K , (64)

where τ ∗ is the contragradient representation of τ , and U (k)τ ∗ denotes the τ ∗-isotypic

component of U (k).

Let q be a subspace of p such that p = a ⊕ q and let {X1, . . . , Xr} be an ordered

bases of q. If a= (a1, . . . ,ar)with ai ∈ N0, and Xa = Xa1
1 · · · Xar

r in S(p), it follows that {Z �Xa :

0 ≤ �+ |a| ≤ m} is a bases of Sm(p), where |a| = a1 + · · · + ar. Then, in view of (64), we can

write

ũ=
∑

0≤�+|a|≤m

u�,a ⊗ Z �Xa,

where u�,a belongs to the K-module V =∑
τ∈J U (k)Mτ ∗ for every pair (�,a). Then,

P (u)=
∑

0≤�+|a|≤m

P (u�,aσ(Z
�Xa))=

∑
0≤�+|a|≤m

u�,aP (σ (Z �Xa)). (65)

Now, since σ(Z �Xa) ∈ U�+|a|(g), it follows from Lemma 7.5 that

P (σ (Z �Xa))=
∑

0≤ j≤�+|a|
v�,a, j ⊗ Z j,

with v�,a, j ∈ U�+|a|− j(k). Hence from (65) we have,

P (u)=
∑

0≤ j≤m

⎛
⎝ ∑

j≤�+|a|≤m

u�,av�,a, j

⎞
⎠⊗ Z j.

Then from the uniqueness of the coefficients bj it follows that

bj =
∑

j≤�+|a|≤m

u�,av�,a, j for 0 ≤ j ≤ m, (66)
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where v�,a, j ∈ U�+|a|− j(k)⊂ Um− j(k) for every pair (�,a). Hence from (66), we obtain that,

bj ∈ 〈V · Um− j(k)〉M ⊂ U (k)M for 0 ≤ j ≤ m. (67)

Recall that 〈S〉 denotes the linear space spanned by the set S. Observe that in this case

〈V · Um− j(k)〉 is a K-module.

Now, since the highest eigenvalue of z in p is 1, it follows that the highest eigen-

value of z in Sm(p) is m. Then d(τ )≤ m for every τ ∈ J, and therefore d(τ ∗)≤ m for every

τ ∈ J. This implies that the highest eigenvalue of z in V is less or equal to m. On the other

hand, we know that the highest eigenvalue of z in Um− j(k) is less or equal to 2(m − j),

hence the highest eigenvalue of z in 〈V · Um− j(k)〉 is less or equal to m + 2(m − j). Then,

from Lemma 7.3 and (67) it follows that d(bj)≤ m + 2(m − j) for 0 ≤ j ≤ m, and therefore

d(bm− j)≤ m + 2 j for 0 ≤ j ≤ m, as we wanted to prove. �

Theorem 7.7. Let b ∈ P (U (g)K) be such that b = bm ⊗ Zm + · · · + b0 with bm �= 0, then

d(bm− j)≤ m + 2 j for every 0 ≤ j ≤ m. �

Proof. Let u∈ U (g)K be such that P (u)= b. Since bm �= 0, it follows from [11, Corollary

7.3] that u∈ (U (k)σ (Sm(p)))
K and m is the smallest possible. Hence the result follows

from Theorem 7.6. �

Our next goal is to show that Theorem 2.7 follows from Theorem 7.12. In the

next lemma, we single out a particular element ω ∈ B. This element is a scalar multiple

of P (Ω), where Ω is the Casimir of g.

Lemma 7.8. There exist ω=ω2 ⊗ Z2 + ω1 ⊗ Z + ω0 ∈ P (U (g)K)⊂ B such that ω2 = 1, ω1

is a nonzero scalar, ω0 is a scalar multiple of the Casimir element of m and d(ω0)≤ 4. �

Proposition 7.9. For any b ∈ U (k)M ⊗ U (a), there exist n∈ N0 such that bωn has the

degree property. �

Proof. Let b = bm ⊗ Zm + · · · + b0 ∈ U (k)M ⊗ U (a). Fix n∈ N0 sufficiently large so that

d(bm− j)≤ m + 2n+ 2 j for every 0 ≤ j ≤ m. A simple calculation shows that

ωn =
2n∑

k=0

ω̃k,n ⊗ Z2n−k, (68)
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where ω̃k,n =∑[k/2]
i=0

( n
k−i

)(k−i
i

)
ωk−2i

1 ωi
0 for 0 ≤ k≤ 2n, and that

bωn =
m+2n∑

j=0

⎛
⎝min{ j,2n}∑

k=0

bm+k− jω̃k,n

⎞
⎠⊗ Zm+2n− j. (69)

Then if (bωn)� denotes the coefficient of Z � in bωn, we have

d((bωn)m+2n− j)≤ max{d(bm+k− jω̃k,n) : 0 ≤ k≤ j}

= max{d(bm+k− j)+ d(ω̃k,n) : 0 ≤ k≤ j}

≤ max{m + 2n+ 2( j − k)+ 2k : 0 ≤ k≤ j}

= m + 2n+ 2 j,

for every 0 ≤ j ≤ m + 2n. Hence bωn has the degree property. �

It is now convenient to introduce the following notation, for any m ∈ N0 and

0 ≤ r ≤ m define dr as follows:

dr =
[

3m − 2r + 2

2

]
. (70)

In the next lemma, we obtain an upper bound on the Kostant degree of the coefficients

br of certain b ∈ U (k)M ⊗ U (a).

Lemma 7.10. Let b = bm ⊗ Zm + · · · + b0 ∈ U (k)M ⊗ U (a) with bm �= 0. If bω has the degree

property, then d(br)≤ 2dr for every 0 ≤ r ≤ m. �

Proof. Let (bω)� denote the coefficient of Z � in bω. It follows from (68) and (69), or

directly by computing bω, that

bm− j = (bω)m+2− j − bm− j+1ω1 − bm− j+2ω0 (71)

for 0 ≤ j ≤ m, with the understanding that bm+1 = bm+2 = 0. Then, since ω1 is a scalar and

d(ω0)≤ 4, from (71) we obtain that

d(bm− j)≤ max{d((bω)m+2− j),d(bm− j+1),d(bm− j+2)+ 4}. (72)
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Hence, using (72) and the fact that bω has the degree property, it follows by induction

on j that d(bm− j)≤ m + 2 + 2 j for every 0 ≤ j ≤ m. Now, since the Kostant degree of any

element of U (k)M is even (see (ii) and (iii) of Proposition 5.1), it follows that d(br)≤ 2dr for

every 0 ≤ r ≤ m. �

Let b = bm ⊗ Zm + · · · + b0 ∈ B be such that d(br)≤ 2dr for 0 ≤ r ≤ m, where dr is

as in (70). Using Proposition 5.1 and the above bound on d(br) we can decompose the

coefficients br of b as follows:

br =
2dr∑
t=0

∑
max{0,t−dr}≤i≤[t/2]

br
2i,t−2i for 0 ≤ r ≤ m, (73)

where br
2i,t−2i is the component of br in the isotypic component of U (k)M of type (2i, t − 2i).

Consider now the following linear subspace of B:

B̃ = {b ∈ B : b2k
2i, j = 0 if i + j ≤ k and 0 ≤ 2k≤ deg(b)}. (74)

That is, B̃ consists of the elements b ∈ B such that the K-types b2k
2i, j that occur in the

coefficient b2k of b, have Kostant degree > 2k for all k such that 0 ≤ 2k≤ deg(b).

Proposition 7.11. Let b = bm ⊗ Zm + · · · + b0 ∈ B, bm �= 0, and d(br)≤ 2dr for 0 ≤ r ≤ m.

Then there exist b̃ ∈ B̃ such that d(b̃r)≤ 2dr for 0 ≤ r ≤ m, b̃m = bm if m is odd, and

d(bm − b̃m)≤ m if m is even. Moreover b̃r
2i, j = br

2i, j if i + j = dr for every 0 ≤ r ≤ m. �

Proof. Let b = bm ⊗ Zm + · · · + b0 ∈ B be such that bm �= 0 and d(br)≤ 2dr for 0 ≤ r ≤ m.

Set p= 2[m/2] and using (73) define,

cp =
p∑

t=0

∑
max{0,t− p

2 }≤i≤[t/2]

bp
2i,t−2i.

That is, cp contains all the K-types of bp of Kostant degree smaller or equal to p. Hence,

cp ∈ U (k)M and d(cp)≤ p. Since p is even cp ⊗ Z p ∈ (U (k)M ⊗ U (a))W. Then from Proposi-

tion 2.6 it follows that cp ⊗ Z p is the leading term of an element c(p) = cp ⊗ Z p + · · · ∈
P (U(g)K). Now define b(p) = b − c(p) ∈ B. All the K-types that occur in the p-coefficient of

b(p) have Kostant degree > p and, since c(p) ∈ P (U(g)K), it follows from Theorem 7.7 that
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d(b(p)r )≤ 2dr for 0 ≤ r ≤ m. Moreover, the K-types of Kostant degree 2dr of b(p)r and br are

the same for 0 ≤ r ≤ m.

Considering now the (p− 2)-coefficient of b(p) we construct, in a similar way,

elements c(p−2) ∈ P (U(g)K) and b(p−2) = b(p) − c(p−2) ∈ B, such that the coefficients of b(p−2)

corresponding to degrees > p− 2 are the same as those of b(p), and all the K-types

that occur in the (p− 2)-coefficient of b(p−2) have Kostant degree > p− 2. Moreover,

since c(p−2) ∈ P (U(g)K), Theorem 7.7 implies that d(b(p−2)
r )≤ 2dr for 0 ≤ r ≤ m, and that

the K-types of Kostant degree 2dr of b(p−2)
r and br are the same for every 0 ≤ r ≤ m.

Continuing in this way, we obtain a sequence b(p),b(p−2), . . . ,b(0) of elements in B

of degree at most m. If we set b̃ = b(0), it is clear that b̃ ∈ B̃ and that b̃ has all the required

properties. �

Finally, in Proposition 7.14, we show that next theorem implies Theorem 2.7 (and

therefore Theorem 1.1). The proof of Theorem 7.12 will be done in the next section.

Theorem 7.12. Let b = bm ⊗ Zm + · · · + b0 ∈ B̃ be such that d(br)≤ 2dr for every

0 ≤ r ≤ m. Then b = 0. �

If we assume that Theorem 7.12 holds, we obtain the following corollary.

Corollary 7.13. Let b = bm ⊗ Zm + · · · + b0 ∈ B be such that bm �= 0 and bω has the degree

property. Then m is even and b has the degree property. �

Proof. Since bω has the degree property, it follows from Lemma 7.10 that d(br)≤ 2dr

for 0 ≤ r ≤ m. Then Proposition 7.11 implies that there exist b̃ ∈ B̃ such that d(b̃r)≤ 2dr

for 0 ≤ r ≤ m, b̃m = bm if m is odd and b̃r
2i, j = br

2i, j if i + j = dr for 0 ≤ r ≤ m. On the other

hand, Theorem 7.12 implies that b̃ = 0. Hence, m must be even and br
2i, j = 0 if i + j = dr

for 0 ≤ r ≤ m, which implies that b has the degree property. �

Proposition 7.14. Let b = bm ⊗ Zm + · · · + b0 ∈ B with bm �= 0. Then, m is even and b has

the degree property. In particular d(bm)≤ m, and therefore Theorem 2.7 holds. �

Proof. Let b = bm ⊗ Zm + · · · + b0 ∈ B be as in the statement of the theorem. It follows

from Proposition 7.9 that there exist n∈ N0 such that bωn has the degree property.

Now, since bωn−1 = bm ⊗ Zm+2(n−1) + · · · ∈ B and bm �= 0, it follows from Corollary 7.13

that m + 2(n− 1) is even and bωn−1 has the degree property. Hence m is even, and from
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Corollary 7.13 and induction on k it follows that bωn−k has the degree property for every

0 ≤ k≤ n. In particular, b has the degree property, as we wanted to prove. �

8 Proof of Theorem 7.12

Our goal in this section is to prove Theorem 7.12. To do this, given any b = bm ⊗ Zm +
· · · + b0 ∈ B such that d(br)≤ 2dr for 0 ≤ r ≤ m, we will construct a linear system of equa-

tions in U (k)where the unknowns are k+-dominant vectors associated to certain K-types

of the coefficients of b (see Theorem 8.6). This system will allow us to carry out a decreas-

ing induction process that, when applied to b ∈ B̃, will lead to the proof of Theorem 7.12.

Let b = bm ⊗ Zm + · · · + b0 ∈ B be such that d(br)≤ 2dr for 0 ≤ r ≤ m. As indicated

in (73), we can decompose the coefficient br of b as follows:

br =
2dr∑
t=0

∑
max{0,t−dr}≤i≤[t/2]

br
2i,t−2i for 0 ≤ r ≤ m. (75)

We find it very convenient to keep in mind the following array of the K-types that occur

in br.

br = br
2dr ,0 + br

2dr−2,1 + br
2dr−4,2 + br

2dr−6,3 + · · · + br
0,dr

+ br
2dr−2,0 + br

2dr−4,1 + br
2dr−6,2 + · · · + br

0,dr−1

+ br
2dr−4,0 + br

2dr−6,1 + · · · + br
0,dr−2

+ br
2dr−6,0 + · · · + br

0,dr−3 + · · · + br
0,0. (76)

Observe that the parameter t used in (75) may be regarded as a label for

the skew diagonals of the array (76). In fact, for 0 ≤ t ≤ 2dr we shall refer to the set

{br
2i,t−2i : max{0, t − dr} ≤ i ≤ [t/2]} as the skew diagonal associated to t. Also observe that

the Kostant degree is constant along the rows of the array (76), it takes the values

2dr,2dr − 2, . . . ,0 from the top to the bottom row of the array corresponding to br.

Let T ∈ No denote the label of the skew diagonals in the array corresponding to

b0. We will use T as a parameter for a decreasing induction. For m ≤ T ≤ 2d0 if m is even,

and m − 1 ≤ T ≤ 2d0 if m is odd, consider the following propositional function associated

to b:

P (T) : br =
min{T−r,2dr}∑

t=0

∑
max{0,t−dr}≤i≤[t/2]

br
2i,t−2i, 0 ≤ r ≤ m. (77)
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Observe that P (T) holds if and only if br
2i,t−2i = 0 for t>min{T − r,2dr} for every 0 ≤ r ≤ m.

Also, in view of (73), it follows that P (2d0) holds. This will be the starting point of our

inductive argument.

Let E , Xδ, H , Y, and Ỹ be as in Section 4. Recall that Ė(H)= − 1
2 E , Ẋδ(Ỹ)= Xδ and

Ẋδ(H)= Ė(Xδ)= 0. In the following lemma, we state some properties of the derivations

Ė and Ẋδ, we refer to [3, Lemma 6.1] for their proof.

Lemma 8.1.

(i) Ėk(Hk)= k!(− 1
2 E)k and Ėk(H j)= 0 if k> j.

(ii) Ėkϕk(H)= (− 1
2 E)k, where ϕk is as in (9).

(iii) Ẋk
δ ((−Ỹ)k)= k!(−Xδ)k and Ẋk

δ ((−Ỹ) j)= 0 if k> j.

(iv) Ẋk
δ ϕk(a − Ỹ)= (−Xδ)k for any a∈ C. �

The following proposition is the analog of [3, Proposition 6.2]. Its proof is the

same as that of Proposition 6.2 and it is obtained by applying ẊT−n−�
δ to ε(�,n) of

Theorem 3.6, and using Lemma 3.3 and Lemma 8.1. Also observe that the derivation

Ẋδ preserves the ideal U (k)m+.

Proposition 8.2. Let b = bm ⊗ Zm + · · · + b0 ∈ B be such that d(br)≤ 2dr for 0 ≤ r ≤ m, and

assume that P (T) holds for m ≤ T ≤ 2d0. Then for every (�,n) such that 0 ≤ �,nand �+ n≤
T we have

(−1)nΣ1 En − (−1)�Σ2 E� ≡ 0 mod (U (k)m+), (78)

where

Σ1 =
∑
(i,r)∈I1

Ai,r(T,n, �)Ẋ
T−�−i
δ Ė�+i−r(br)E

r−i Xi−n
δ ,

Σ2 =
∑
(i,r)∈I2

Ai,r(T, �,n)Ẋ
T−n−i
δ Ėn+i−r(br)E

r−i Xi−�
δ ,

(79)

and

Ai,r(T,n, �)=
(

−1

2

)r−i

(−1)i−nr!

(
T − n− �

i − n

)(
�

r − i,

)
,
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I1 = {(i, r) ∈ N2
0 : n≤ i ≤ min{m, T − �}, i ≤ r ≤ min{m, i + �}},

I2 = {(i, r) ∈ N2
0 : �≤ i ≤ min{m, T − n}, i ≤ r ≤ min{m, i + n}}. �

Next proposition is the analog of [3, Proposition 6.3] and its proof is the same

as that of Proposition 6.3. It is obtained by replacing br in (79) by its decomposition

in K-types given in (77), then one uses Proposition 5.1(iv) to simplify the sums Σ1 and

Σ2, and finally one multiplies both sums on the right by XT
δ and then changes in each

term a certain number of Xδ’s by the same number of X4’s so that Σ1 and Σ2 become

weight vectors with respect to hk. Here, we use that Xδ ≡ X4 mod (U (k)m+) and that the

derivation Ẋδ preserves the ideal U (k)m+.

Proposition 8.3. Let b = bm ⊗ Zm + · · · + b0 ∈ B be such that d(br)≤ 2dr for 0 ≤ r ≤ m, and

assume that P (T) holds for m ≤ T ≤ 2d0. Then for every (�,n) such that 0 ≤ �,n and

�+ n≤ T we have

(−1)nΣ1 En − (−1)�Σ2 E� ≡ 0 mod (U (k)m+), (80)

where

Σ1 =
∑
(i,r)∈I1

max{0,T−r−dr}≤k≤[ T−r
2 ]

Ai,r(T,n, �)Ẋ
T−�−i
δ Ė�+i−r(br

2k,T−r−2k)× Er−i XT−k
δ Xk+i−n

4 ,

Σ2 =
∑
(i,r)∈I2

max{0,T−r−dr}≤k≤[ T−r
2 ]

Ai,r(T, �,n)Ẋ
T−n−i
δ Ėn+i−r(br

2k,T−r−2k)× Er−i XT−k
δ Xk+i−�

4 ,

with the understanding that the K-types br
2k,T−r−2k that do not occur in br are assumed to

be zero. Moreover, in Equation (80) all the terms of the left-hand side are weight vectors

of weight (2T − �− n)γ1 + T(γ2 + δ). �

Equation (80) may be regarded as a system of linear equations where the

unknowns, ẊT− j−i
δ Ė j+i−r(br

2k,T−r−2k), are derivatives of the K-types that occur in the T − r

skew diagonal of the coefficient br of b (see (76)). Since the unknowns in this system

are, in general, not k+-dominant, we are going to replace the system by an equivalent

one where all the unknowns become k+-dominant vectors associated to the K-types

br
2k,T−r−2k.
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Let ε̃(�,n) be the left-hand side of Equation (80). For 0 ≤ n≤ min{2dm, T} and 0 ≤
L ≤ min{2m, T} − n consider the following linear combination:

EL(n)=
L∑
�=0

(−2)�
(

L

�

)
ε̃(�,n)E L−�X�+n

4 . (81)

Under the hypothesis of Proposition 8.3, we have EL(n)≡ 0 mod (U (k)m+). Also set,

E1
L(n)=

L∑
�=0

(−2)�
(

L

�

)
Σ1 E L−�X�+n

4 and E2
L(n)=

L∑
�=0

2�
(

L

�

)
Σ2 X�+n

4 .

Then it follows that

EL(n)= (−1)nE1
L(n)E

n − E2
L(n)E

L . (82)

The following lemma is the analog of [3, Lemma 6.5]. For the symplectic group

Sp(n,1) the vectors Dk(b2i, j) are k+-dominant, however, in F4 this property does not hold.

Lemma 8.4. Let b2i, j ∈ U (k)M be an M-invariant element of type (2i, j). For 0 ≤ k≤ 2i

define,

Dk(b2i, j)=Σk
�=0(−2)�

(
k

�

)(
j + �

�

)−1

Ẋ2i−�
δ Ė j+�(b2i, j)E

k−�X�
4. (83)

Then Dk(b2i, j) is a vector of weight i(γ4 + δ)+ ( j + k)γ3 with respect to hk, Ẋ(Dk(b2i, j))≡
0 mod(U (k)y) for every X ∈ q+ and Ẋ1(Dk(b2i, j))= 0. �

Proof. Recall that q+ is the linear span of {Xα : α ∈Δ+(k, hk)− {γ1}}. Since γ1 is a simple

root in Δ+(k, hk), if α is a positive root it follows that α − γ1 is either a positive root

different from γ1 or it is not a root. Hence if u∈ U (k) is a k+-dominant vector, we have

Ẋα(Ẋ
�
−1(u))= 0 for every α ∈Δ+(k, hk)− {γ1} and � ∈ N0.

Then, in view of (22), it follows that

Ẋ(Ẋ2i−�
δ Ė j+�(b2i, j))= 0 for every X ∈ q+. (84)
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On the other hand, since Ė(y)= Ẋ4(y)= 0 and [q+, y] ⊂ y it follows that

Ẋ(En)≡ 0 and Ẋ(Xn
4)≡ 0 mod (U (k)y) for every X ∈ q+. (85)

Hence, from (83) to (85), we obtain that

Ẋ(Dk(b2i, j))≡ 0 mod(U (k)y) for every X ∈ q+. (86)

Now, since Ẋ1(E)= X4 and Ẋ1(X4)= 0, using (20) it follows that Ẋ1(Dk(b2i, j))= 0.

The details of this calculation can be found in [3, proof of Lemma 6.5]. Finally, it is

easy to check that each term of Dk(b2i, j) is a vector of weight i(γ4 + δ)+ ( j + k)γ3 with

respect to hk. �

As indicated at the beginning of the section, we are interested in proving that

P (T) implies P (T − 1) for m ≤ T ≤ 2d0. To do this, we need to show that the K-types

br
2i,T−r−2i that occur in the T − r skew diagonal of br are equal to zero for 0 ≤ r ≤ m.

That is,

br
2i,T−r−2i = 0 if 0 ≤ T − r − 2i ≤ min{T,2d0 − T} − r,

for 0 ≤ r ≤ m. For this purpose, we introduce another propositional function Q(n) defined

for 0 ≤ n≤ min{T,2d0 − T} + 1 as follows:

Q(n) : br
2i,T−r−2i = 0 if 0 ≤ T − r − 2i <n for 0 ≤ r ≤ m. (87)

Clearly, Q(0) is true. Also, since we have that d(br)≤ 2dr for 0 ≤ r ≤ m, we obtain that (87)

holds if T − r − 2i >min{T,2d0 − T} − r.

Next theorem is the analog of [3, Theorem 6.6] and its proof is the same as that of

Theorem 6.6, it consist in rewriting the sum E1
L(n) in terms of the vectors Dk(b2i, j) defined

in Lemma 8.4, and the sum E2
L(n) in terms of k+-dominant vectors. We refer the reader to

[3, Section 6] for the details.
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Theorem 8.5. Let b = bm ⊗ Zm + · · · + b0 ∈ B be such that d(br)≤ 2dr for 0 ≤ r ≤ m, let

m ≤ T ≤ 2d0 and 0 ≤ n≤ min{T,2d0 − T}. Then if P (T) and Q(n) are true, we have,

∑
r,k

T−L≤2k+r≤T−n

Br,k(T,n, L)DL+2k+r−T (b
r
2k,T−r−2k)(XδX4)

T−kEn

−
∑
r,�

r≡T−n

(−2)�
(

L

�

)(
T − n− �

r − �

)
ur

T−r−n,n(XδX4)
(T+r+n)/2 E L ≡ 0, (88)

for all L such that 0 ≤ L ≤ min{2m, T} − n. Here, the congruence is module the left ideal

U (k)m+, ur
T−r−n,n = r!(−1)r ẊT−n−r

δ Ėn(br
T−n−r,n) and

Br,k(T,n, L)= r!(−1)T2T−r−2k

(
L

T − r − 2k

)(
T − L − n

r − n

)
.

Moreover, the left-hand side of Equation (88) is a weight vector of weight T(γ4 + δ)+
(n+ L)γ3. �

We are now in a good position to obtain the system of equations that we are

looking for. Using the notation introduced in (33) define

U = XδX4 − T23S23 + T24S24. (89)

Then U is a k+-dominant vector of weight γ4 + δ with respect to hk and U ≡ XδX4 mod

(U (k)y). For any T and n such that m ≤ T ≤ 2d0 and 0 ≤ n≤ min{T,2d0 − T} consider the

following sets:

L(T,n)= {L ∈ N0 : 0 ≤ L ≤ min{2m, T} − n, L �≡ n},

RF (T,n)= {r ∈ N0 : 0 ≤ r ≤ min{m,min{T,2d0 − T} − n}, r ≡ T − n},

the congruence is mod(2) and the subindex F stands for F−20
4 . Let |L(T,n)| and |RF (T,n)|

denote the cardinality of these sets. The set L(T,n) was also considered for the symplec-

tic group Sp(n,1) while RF (T,n) is the analog of the set R(T,n) defined in [3, Section 6].

Next theorem gives a system of linear equations where the unknowns, ur
T−r−n,n,

are k+-dominant vectors associated to the K-types that occur in the T − r skew diagonal

of the coefficient br of b for 0 ≤ r ≤ m (see (76)).
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Theorem 8.6. Let b = bm ⊗ Zm + · · · + b0 ∈ B be such that d(br)≤ 2dr for 0 ≤ r ≤ m, and

let m ≤ T ≤ 2d0 and 0 ≤ n≤ min{T,2d0 − T}. Then if P (T) and Q(n) are true we have,

∑
r∈RF (T,n)

(∑
�

(−2)�
(

L

�

)(
T − n− �

r − �

))
ur

T−r−n,nU (T+r+n)/2 = 0, (90)

for every L ∈ L(T,n). Here, ur
T−r−n,n = r!(−1)r ẊT−n−r

δ Ėn(br
T−n−r,n). �

Proof. Let u denote the left-hand side of Equation (88). Then, in view of Theorem 8.5, u

is a vector in U (k)m+ of weight λ= T(γ4 + δ)+ (n+ L)γ3 with respect to hk. On the other

hand, using that Ẋ(Xδ)≡ 0 mod(U (k)y), for every X ∈ q+, together with (85), (86), and the

fact that E , X4, and Xδ commute with y and that [q+, y] ⊂ y, it follows that Ẋ(u)≡ 0 mod

(U (k)y) for every X ∈ q+. Then applying Theorem 6.4, we obtain that u≡ 0 mod(U (k)y),

that is,

∑
r,k

T−L≤2k+r≤T−n

Br,k(T,n, L)DL+2k+r−T (b
r
2k,T−r−2k)(XδX4)

T−kEn

−
∑
r,�

r≡T−n

(−2)�
(

L

�

)(
T − n− �

r − �

)
ur

T−r−n,n(XδX4)
(T+r+n)/2 E L ≡ 0. (91)

Since U ≡ XδX4 mod (U (k)y) (see (89)), we replace XδX4 by U in (91). Also, recall

that Ẋ1(Xδ)= Ẋ1(X4)= 0 and Ẋ1(Dk(b2i, j))= 0 for b2i, j ∈ U (k)M of type (2i, j) and 0 ≤ k≤
2i (see Lemma 8.4). Hence, since L �≡ n mod (2), it follows from Proposition 6.9 and

Lemma 6.2 that

∑
r∈RF (T,n)

(∑
�

(−2)�
(

L

�

)(
T − n− �

r − �

))
ur

T−r−n,nU (T+r+n)/2 ≡ 0, (92)

module the left ideal U (k)y. Now, since the left-hand side of Equation (92) is a k+-

dominant vector of weight T(γ4 + δ)+ nγ3, applying Theorem 6.7 we can replace the

congruence mod(U (k)y) by an equality. This completes the proof of the theorem. �

For T and n fixed, Theorem 8.6 gives a system of |L(T,n)| linear equations

in the |RF (T,n)| unknowns ur
T−r−n,n. This system is the analog of the one given in

[3, Theorem 6.7]. The main advantage of this system is that the unknowns are all
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k+-dominant vectors. Let A(T,n) denote the coefficient matrix of this system. In [3,

Section 6], a very thorough study of this matrix is being carried out (see Section 6.2). This

is done by considering a (k + 1)× (k + 1)matrix A(s)with polynomial entries Aij(s) ∈ C[s]

that generalizes A(T,n). This matrix is defined as follows:

Aij(s)=
∑

0≤�≤min{Li ,2 j+δ}
(−2)�

(
Li

�

)(
s − �

2 j + δ − �

)
,

where 0 ≤ L0 < · · ·< Lk is a sequence of integers and δ ∈ {0,1}. In [3, Theorem 6.15], we

obtained an explicit formula for det A(s) as a product of polynomials of degree 1 in the

variable s. Hence, we know the exact values of s for which A(s) is singular. Moreover,

from the proof of Theorem 6.15 it follows that whenever A(s) is singular the reason is

that it has several pairs of equal rows. In this case, the strategy consist in replacing one

equation in each one of these pairs by a new equation obtained from Theorem 8.5. We

refer the reader to [3, Section 6.3] for the details.

Since our goal in this section is to prove Theorem 7.12, we need to restate

Theorem 8.6 for elements b ∈ B̃. If b =∑m
r=0 br ⊗ Zr ∈ B̃, it follows from (74) that for r

even we have br
2i, j = 0 if d(br

2i, j)= 2(i + j)≤ r. Hence, when T − n≡ 0 and r ∈ RF (T,n) is

such that d(br
T−r−n,n)= T − r + n≤ r, we have ur

T−r−n,n = 0 in Equation (90). Then we may

consider a new index set defined as follows:

R̃F (T,n)=

⎧⎪⎨
⎪⎩
{

r ∈ RF (T,n) : r <
T + n

2

}
if T − n≡ 0,

RF (T,n) if T − n≡ 1,
(93)

where the congruence is mod(2). For b ∈ B̃, we restate Theorem 8.6 as follows. This

theorem is the analog of [3, Theorem 6.19] and it will be our main tool in the proof

of Theorem 7.12.

Theorem 8.7. Let b = bm ⊗ Zm + · · · + b0 ∈ B̃ be such that d(br)≤ 2dr for 0 ≤ r ≤ m, and

let m ≤ T ≤ 2d0 and 0 ≤ n≤ min{T,2d0 − T}. Then if P (T) and Q(n) are true, we have,

∑
r∈R̃F (T,n)

(∑
�

(−2)�
(

L

�

)(
T − n− �

r − �

))
ur

T−r−n,nU (T+r+n)/2 = 0,

for every L ∈ L(T,n). Here, ur
T−r−n,n = r!(−1)r ẊT−n−r

δ Ėn(br
T−n−r,n). �
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Now we recall the definition of the sets R(T,n) and R̃(T,n) used in the case of the

group Sp(n,1) (see [3, Section 6]). Let b = bm ⊗ Zm + · · · + b0 ∈ B̃ with bm �= 0. For positive

integers T and nsuch that m ≤ T ≤ 4m and 0 ≤ n≤ min{T,4m − T} consider the following

set:

R(T,n)= {r ∈ N0 : 0 ≤ r ≤ min{m,min{T,4m − T} − n}, r ≡ T − n},

where the congruence is mod(2). The set R̃(T,n) is defined as in (93) replacing RF (T,n) by

R(T,n) (see [3, (116)]). Next we will show that Theorem 7.12 follows from [3, Proposition

6.21 and Proposition 6.22 ].

Proof of Theorem 7.12. Let b = bm ⊗ Zm + · · · + b0 ∈ B̃ be such that d(br)≤ 2dr for 0 ≤
r ≤ m. We need to show that b = 0. Assume on the contrary that b �= 0 and that m = deg(b),

that is bm �= 0. We will obtain a contradiction by showing that bm = 0. In view of the

definition of B̃ (see (74)) to do this it is enough to show that P ( 3m
2 ) holds if m is even and

that P (m − 1) is true if m is odd. Since P (2d0) holds (see (73) and (77)) this will follow

from the fact that P (T) implies P (T − 1) for any m ≤ T ≤ 2d0.

Consider first m ≥ 1. Let m ≤ T ≤ 2d0 and 0 ≤ n≤ min{T,2d0 − T}, and assume

that P (T) and Q(n) hold. Since 2d0 ≤ 4m, it follows that min{T,2d0 − T} ≤ min{T,4m − T}
and a simple calculation shows that

min{m,min{T,2d0 − T} − n} ≤ min{m,min{T,4m − T} − n}.

Hence, RF (T,n)⊂ R(T,n) and therefore R̃F (T,n)⊂ R̃(T,n).

Now set, ur
T−r−n,n = 0 if r ∈ R̃(T,n) and r �∈ R̃F (T,n) and ur

T−r−n,n =
r!(−1)r ẊT−n−r

δ Ėn(br
T−n−r,n) if r ∈ R̃F (T,n). Then from Theorem 8.7, we obtain for every

L ∈ L(T,n) that

∑
r∈R̃(T,n)

(∑
�

(−2)�
(

L

�

)(
T − n− �

r − �

))
ur

T−r−n,nU (T+r+n)/2 = 0. (94)

Observe that, except for the fact that the vector XδX4 is replaced by U , the system of

equations given by (94) is the same as that of [3, Theorem 6.19], in particular, their coeffi-

cient matrices are exactly the same. Then that P (T) implies P (T − 1) for any m ≤ T ≤ 2d0

follows from [3, Proposition 6.21 and Proposition 6.22]. We point out that the proof of

these propositions are based on a very thorough study of the coefficient matrix of these
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system. We refer the reader to [3, Theorem 6.15, Corollary 6.16 and Proposition 6.20] for

the details.

Consider now m = 0. Assume that b = b0 ∈ B̃, b �= 0, and that d(b)= d(b0)≤ 2d0 = 2.

From the definition of B̃ (see (74)) we have b = b0 = b0
2,0 + b0

0,1, therefore b0
2,0 �= 0 or b0

0,1 �= 0,

in particular, d(b)= 2. Consider the element b2ω= b2 ⊗ Z2 + ω1b2 ⊗ Z + b2ω0 ∈ B, where

ω= 1 ⊗ Z2 + ω1 ⊗ Z + ω0 is the element in P (U (g))K defined in Lemma 7.8.

From Proposition 5.3, we have d(b2)= 4, hence the component of Kostant degree

4 of b2 is nonzero. Now, as in Proposition 7.11, we can remove the components of Kostant

degree less or equal to two from b2 and the components of Kostant degree less or equal

to zero from b2ω0. This procedure defines an element b̃ = b̃2 ⊗ Z2 + b̃1 ⊗ Z + b̃0 ∈ B̃ with

d(b̃r)≤ 2dr for 0 ≤ r ≤ 2, and such that the component of Kostant degree 4 of b̃2 is the

same as that of b2. Then b̃ �= 0, which contradicts the first part of the proof. Therefore,

b = 0, as we wanted to prove. �
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