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Abstract: This work studies the impact of a shock wave traveling with non-constant velocity over
straight surfaces, generating an unsteady and complex reflection process. Two types of shock waves
generated by sudden energy released are studied: cylindrical and spherical. Several numerical tests
were developed considering different distances between the shock wave origin and the reflecting
surface. The Kurganov, Noelle, and Petrova (KNP) scheme implemented in the rhoCentralFoam
solver of the OpenFOAMTM software is used to reproduce the different shock wave reflections and
their transitions. The numerical simulations of the reflected angle, Mach number of the shock wave,
and position of the triple point are compared with pseudo-steady theory numerical and experimental
studies. The numerical results show good accuracy for the reflected angle and minor differences
for the Mach number. However, the triple point position is more difficult to predict. The KNP
scheme in the form used in this work demonstrates the ability to capture the phenomena involved
in the unsteady reflections.

Keywords: shock wave; reflection; OpenFOAM

1. Introduction

A blast wave is a strong perturbation generated by the sudden release of a large
amount of energy. Among the different phenomena associated with research on shock
wave propagation and their interactions and effects [1–5], the reflection of spherical shock
waves over straight surfaces bears technical and scientific applications [6–9]. The reflections
of spherical or cylindrical shock waves over straight surfaces represent unsteady reflection
processes, and there is no analytical theory to describe them (p. 297 in [10]).

Brode numerically studied the propagation of a blast wave from the detonation
of a spherical charge of TNT [11,12]. The peak over-pressures as a function of the shock
radius were asymptotically obtained for a point source and an isothermal sphere. Some
years later, Dewey and their collaborators used a photogrammetrical experimental tech-
nique to study the interaction of two identical spherical shock waves. They compared
this interaction with the reflection of one of the spherical shocks from the ground [13,14].
They found that a smooth surface induces a stronger Mach stem and a higher triple-point
trajectory. Furthermore, in 1981 Takayama and Sekiguchi [15] investigated the interaction
problem of a spherical blast wave with a flat plate. In addition to the work of Dewey
et al., Colella et al. [16] numerically studied the flow field of strong blast wave interactions
with a plate considering different values for the height of burst (HOB). They observed
the transition from a regular reflection to a double Mach reflection in these interactions.
More recently, the problem of an unsteady cylindrical blast wave interaction with a flat
plate was numerically investigated by [17,18]. Both works aim to understand the blast wave
propagation, reflection, and its transition phenomenon as well as the flow features induced
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by the blast wave using a high-resolution Euler/Navier–Stokes solver. Previously, Ref. [15]
studied a similar problem where the blast wave was generated by a shock tube. The authors
found that analytical results did not agree well with those obtained from the experiments.

The shock wave reflection presents a very complex phenomenon. Ref. [10] defines
the transitions and reflections of the Old State-of-the-knowledge (p. 154) and the New
State-of-the-knowledge (p. 178). However, in this paper, we focus on the work of Hu
and Glass [19] who theoretically analyzed the interaction of a spherical blast wave (in
pseudo-steady flow) with a planar surface in perfect air under standard ambient conditions.
When the height of burst (HOB) value is greater than a given limit, there are only two types
of shock-wave reflection: regular reflection (RR) and single Mach reflection (SMR). When
the HOB value is less than this limit, there are four types of shock-wave reflection: RR,
SMR, transitional-Mach reflection (TMR), and double-Mach reflection (DMR). The un-
steady interactions of shock waves propagating in gases are extensively studied in the work
of Gvozdeva et al. [20–22]. Shock wave interactions with concave and convex corners
as well as with curved surfaces are described along with the transitions between RR and IR.
Dixon-Hiester et al. [23] experimentally investigated the RR to MR transition region and its
flow characteristic. More recently, Kleine [24] presented an experimental and numerical in-
vestigation into the unsteady process of blast wave reflection from straight smooth surfaces.
They found significant discrepancies between the numerical and experimental results.
However, they conclude that further improvement and enhancement in the resolution
and experimental detection of the Mach stem will reduce this discrepancy to acceptable
levels. Recently, a study by Ridoux et. al [25] presented a simplified model for simulating
blast wave propagation in different geometries at a low computational cost. They provide
several comparisons with experimental results, including a case describing the reflection
over a straight surface.

We are particularly interested in the reflection processes of an unsteady shock wave
over a straight surface. The classic book of Ben-Dor [10] extensively studies these phenom-
ena in steady, pseudo-steady, and unsteady flows, presenting analytical, numerical, and
experimental results.

The main objective of this work is the evaluation of the Kurganov, Noelle, and Petrova
(KNP) scheme [26–28] in simulating the unsteady shock wave reflection on a straight
solid wall and for capturing the different shock wave reflection transitions. For this pur-
pose, the solver rhoCentralFoam of the OpenFOAMTM software is employed. It is worth
noting that this scheme has shown to be a useful tool for simulating supersonic flow pat-
terns [29–32]. This software is widely used by the scientific community, and its validation
will therefore be useful for many working groups scattered among various universities
and research centers. Different relevant aspects of the numerical scheme can be found
in reference [3]. This approach assumes that the shock wave is generated by an instanta-
neous release of energy concentrated in one point (spherical shock wave), or along a line
(cylindrical shock wave). The verification processes of the KNP scheme on simulating
the unsteady reflection processes of shock waves were performed by considering results
from the pseudo-steady theory (There are no unsteady theoretical results.) [10,19] (The
pseudo-steady result in Ben-Dor’s book [10] is found in p. 299.) and using other numerical
studies [17]. Finally, a validation procedure was performed by using the experimental data
for the triple point trajectory from [25].

This paper is composed of eight sections. Section 2 briefly describes the physical
model and the implemented numerical scheme. In Section 3, a theoretical description
of the reflections over straight surfaces generated by spherical and cylindrical shock waves
is introduced. Section 4 presents the numerical results comparing them with the pseudo-
steady results from [10,19]. Section 5 introduces a comparison between the OpenFOAMTM

simulations with numerical results from [17], while a comparison with experimental data
from [25] is performed in Section 6. Finally, a brief description and a discussion of the
results are presented in Section 7, while the main conclusions are described in Section 8.
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2. Physical Model and Numerical Scheme

This section briefly introduces the fundamental equations of the gas dynamics and
the finite volume method implemented.

2.1. Gas Dynamics Equations

To simulate supersonic and non-viscous flows of gases, the Euler equations can be
applied. These are a system of non–linear hyperbolic conservation laws that govern
the dynamics of gases for which the effects of viscous stresses, body forces, and heat
flow by conduction and radiation are neglected (p. 3 in [33]). This system can be written
in a Cartesian coordinate system as

∂u
∂t

+
∂Fc

∂xi
= 0 , i = 1, 2, 3 (1)

where the vector of conservative variables is

u =


ρ

ρU1
ρU2
ρU3

E

 , (2)

and the flux vector is given by

Fc =


ρVc

ρU1Vc + n1 p
ρU2Vc + n2 p
ρU3Vc + n3 p
(ρE + p)Vc

 . (3)

where U = [U1, U2, U3]
T is the velocity vector, p the pressure, E the total energy, ρ the den-

sity, Vc = U · n̂ the contravariant velocity [34], and n is the unit normal vector to the cell face.
The total energy for a perfect gas is

E =
∫ T

T0

cv dT − RT0 +
1
2
‖U‖2 (4)

where cv is the specific heat for constant volume, and R is the gas constant.
To close the system, the state equation for perfect gases is utilized (thermally ideal

gases, p. 7 in [33])
p = ρRT (5)

Physically, the system (1)–(3) arises from the application of the fundamental laws
of conservation. The first equation corresponds to the mass conservation or continuity
equation, the Second Law of Newton or momentum conservation is given by the second,
third, and fourth equations, and finally, the fifth equation is the First Law of Thermody-
namics or energy conservation.

2.2. Finite Volume Formulation

The system of equations described in the previous subsection, Equations (1)–(5), are
solved using the finite volume method in a non-structured framework [35]. The physical
domain is discretized in cells over which an approximated solution for transport equa-
tions will be obtained. All geometrical information related to the employed cell-centered
discretization framework is presented in Figure 1, in which all the flow variables and
the thermo-physical properties are stored in each cell’s centroid.
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Figure 1. Finite volume discretization framework.

Then, utilizing the finite volume method, the system (1) is written as:

∂

∂t

∫
V

udV +
∫

s
FcdS = 0 (6)

where the surface integral is approximated by∫
s

FcdS ≈∑
f

φfuf (7)

in which φ = VcS f is the volumetric flux through the face, u f denotes the value of any field
(i.e., pressure, velocity, density, etc.), the subscript f refers to the variable values at the face
centroid, and V is the volume of the cell.

In high-speed flow, the flow properties are also transported by waves. This transport
needs to be considered properly to obtain an accurate description of the flow behavior.
Thus, the flux interpolation procedures are constructed using biased information to be
more “upwind” of the query point. Here, convective terms are evaluated using the second-
order central-upwind of Kurganov, Noelle and Petrova (KNP) [27]. The solver employs
the adapted version to unstructured meshes of the KNP scheme. It is worth noting that
this scheme has shown to be accurate for several supersonic flow patterns [29–31,36,37].
Therefore, the convective terms are evaluated as

∑
f

φfuf = ∑
f
[α+φf+uf+ + α−φf−uf− + ωf(uf− − uf+)] (8)

where the first two terms correspond to flux evaluated in outward (+) and inward (-)
directions of the cell’s face. The weighting factors, α±, confer to this method an upwinding
degree accounting for the local propagation rates of discontinuities [28]. The diffusive
volumetric flux (third term) only arises in cases where the convective term to be calculated
is part of a substantial derivative, which occurs in most cases. However, it is interesting
to note by way of example that in the energy equation when calculating ∇ · (Up) this
term will not be necessary. For the KNP scheme, the diffusive volumetric flux (ω f ) and
the weighting factors (α±) are as follows [28]

ω f = ζf+ζf−(ζf+ + ζf−)
−1

α± = ζf±(ζf+ + ζf−)
−1 ,

(9)
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where ζf± are the local volumetric fluxes, which are determined by the propagation ve-
locities of the discontinuities at the interfaces. These fluxes in the + and − directions,
respectively, are

ζf+ = max(cf+Sf + φf+, cf−Sf + φf−, 0)

ζ f− = max(cf+Sf − φf+, cf−Sf − φf−, 0)
(10)

where cf± =
√

γRTf± is the sound velocity in incoming and outgoing directions of the in-
terface, respectively.

Note that α± is evaluated based on one-sided local propagation velocities (biased
in the upwind direction), while ωf is based on the maximum of the propagation velocity
of any discontinuity that may exist at a face between interpolated values in the + and −
directions.

The reconstruction in unstructured meshes, used in the OpenFOAMTM software,
in the outward (+) direction is given by:

uf+ = (1− gf+)uP + gf+uN (11)

where the subscripts P and N refer to the centroids of the owning and neighboring cells,
respectively, (Figure 1). The function

gf+ = β(1− wf) (12)

where
wf = |Sf · dfN |/|Sf · d| (13)

defines the shape of the reconstruction of β, allowing a wide range of schemes to be covered
in a compact form. Where N is the neighboring cell, d is the vector between the centroids
of the local and neighboring cells, dfN is the vector between the centroid of the face and
that of the neighboring cell and Sf is the face surface vector (Figure 1).

If β = β(r), that is, the limiting functions are defined by successive gradients r
of the reconstructed variable, which for an unstructured mesh results

r = 2
d · (∇u)P
(∇du) f

− 1 (14)

where (∇u)P is the evaluated gradient at P and (∇du) f is the normal to the face gradient
projection of u scaled by the magnitude of d. As noted, it is possible to switch between
schemes of different orders by selecting the appropriate limiting function β(r) with r ≥ 0.

For the evaluation of the gradients, to maintain consistency, the Kurganov schemes
are also used [28]:∫

V
∇udV =

∫
s

u f ds ≈∑
f

ufsf = ∑
f

[
α+u f+s f + α−u f−s f

]
(15)

If all the approximations previously introduced for convective terms and gradients are
replaced in the finite volume discretization, a semi-discrete form of the transport equations
is achieved: ∫ t+∆t

t

{(
∂u
∂t

)
p
Vp + ∑

f
ufsf + ∑

f
φfuf

}
dt = 0 (16)

To complete the discretization, an evaluation of the temporal term is needed.
If the time derivative is integrated, and all the spatial terms are denoted f (t, u(x, t)),
the last equation can be written:

ut+∆t =

[
f (t, u(x, t)) + ut]

Vp
(17)
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According to the information in time used to evaluate f (t, u(x, t)), a particular time
integration scheme is attained. Here, the explicit Euler scheme has been used.

The explicit Euler scheme was implemented and studied in [3] to simulate the propa-
gation of intense shock waves generated by explosions. In that paper, it was established
that:

• To obtain better stability of the solutions, upwind reconstruction functions were
recommended. Upwind reconstructions produce accurate results, and they do not
generate non-physical oscillations.

• Time-accurate solutions are obtained when CFL≤ 0.5.

3. Spherical and Cylindrical Shock Wave Reflections over Straight Surfaces

For steady and pseudo-steady flows, the flow fields generated by the shock wave
reflection phenomena depend on two independent variables, (x, y) in steady flows, and
(x/t, y/t) in pseudo-steady flows. However, the reflection of a cylindrical and spherical
shock wave on a straight solid wall produces unsteady flow fields, which are dependent
on three variables (x, y, t), where x and y are the space coordinates and t denotes the time
(Cartesian coordinate system). Therefore, the analytical and numerical evaluation of the re-
flection phenomenon in unsteady flow conditions is more difficult than in steady or pseudo-
steady flows (p. 246 in [10]).

There are three ways to generate unsteady shock wave reflections (p. 246 in [10]):

(1) Reflecting on a non-straight surface of a shock wave moving with constant velocity.
(2) Reflecting on a straight surface of a shock wave moving with variable velocity.
(3) Reflecting on a non-straight surface of a shock wave moving with variable velocity.

Here, case (2) is studied using the finite volume method described in the previ-
ous section. The shock waves with non-constant velocity are spherical and cylindrical.
They are generated by the sudden release of energy.

In general, the shock wave reflection configuration can either present as a regular
reflection RR or an irregular reflection IR. The RR�IR transition occurs when the flow
Mach number behind the reflected shock wave, with respect to the reflection point, verifies
(p. 159 in [10]):

MR
2 = 1, (18)

where M2
R is the flow Mach number in the state (2), behind the reflected shock wave

(see Figure 2), concerning the reflection point R.
The irregular reflection can either be a von-Neumann reflection vNR or a Mach reflec-

tion MR. Courant and Friedrichs [38] theoretically described three different types of Mach
reflection. These depend on the propagation direction of the triple point of the Mach
reflection concerning the solid reflecting surface:

• If the triple point moves away from the reflective surface, then the MR is a direct Mach
reflection: DiMR;

• If the triple point moves parallel to the solid surface, then it is a stationary Mach
reflection: StMR;

• If the triple point moves closer to the surface, then it is an inverse Mach reflection: InMR.

Note that the three configurations for the Mach reflection (DiMR, StMR, and InMR)
were theoretically described by Courant and Friedrichs in 1948 [38]. However, its ex-
perimental verification occurred almost 40 years later through the work of Ben-Dor and
Takayama [39]. Furthermore, the StMR and InMR reflections only occur in unsteady flows.
However, the DiMR reflections can be generated in pseudo-steady and unsteady flows and
the DiMR are divided into three different types:

• A single-Mach reflection (SMR);
• A transitional-Mach reflection (TMR);
• A double-Mach reflection (DMR).
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R

Mach
stem

TT'

i

Contact
Discontinuity

(2) (3)

(0)
Secondary
Mach stem

Reflected
shock wave

Figure 2. Case of pseudo-steady transitional Mach-reflection. The position of the reflection point R,
the triple point T and the second triple point T’ is shown. Adapted from [10], p. 148.

Additional wave configurations may occur in the DMR depending on the direction
of the triple point. Further discussion can be found in the book of Ben-Dor (p. 167 in [10]).
In this paper, we are interested when a cylindrical or spherical shock wave reflects over
a straight surface. Initially, a regular reflection (RR) is produced, which then, depending
upon the strength of the shock wave, changes into a DMR, a TMR, and/or an SMR as it
propagates outwards. Furthermore, as the wave propagates outward, then the point where
the wave touches the reflecting surface encounters an ever-decreasing effective reflecting
wedge angle. Thus, the instantaneous shock wave Mach number, Ms, decreases with time.

To predict the transition between these reflections, different criteria were established
in [10] (To better understand the shock reflections and their transition criterion, see Chapter
3 (p. 136) of [10].):

• The first transition is from RR to IR. In this study, the IR can be a DMR, TMR or SMR
depending on the value of HOB (height of burst). According to [19], for example:

– If HOB = 0.8, the transition will be from RR to DMR;
– If HOB = 1.25, the transition will be from RR to TMR;
– If HOB = 2.0, the transition will be from RR to SMR.

The transition criterion for RR�IR was established in Equation (18).
• The SMR�TMR criterion transition is (p. 161 in [10])

MT
2 = 1 (19)

where MT
2 is the flow Mach number in region (2) in a frame of reference attached

to the first triple point T (see Figure 2).
• The TMR�DMR transition criterion is (p. 176 in [10])

MT′
2 = 1 (20)

where MT′
2 is the flow Mach number in region (2) in a frame of reference attached

to the second triple point T′ (see Figure 2).

Hu and Glass [19] showed different types of reflections for air (in pseudo-steady
flows) in the (Ms, θw) plane. They presented a figure which relates the Mach number
of the shock wave, Ms, the angle between the shock and the surface, the non-dimensional
height of burst, HOB, and the non-dimensional distance between the first contact point
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and the local instantaneous contact point, x̂. The non-dimensional height of burst, HOB, is
defined as

Ĥ =
HOB(

W
Wr

par

pa

)1/3 (21)

where W is the weight (equivalent to TNT) of the explosive charge used to generate the blast
(spherical shock) wave, Wr = 1kg of TNT, par = 1 atm, and pa the atmospheric pressure.
Furthermore, the x̂ is

x̂ =
x(

W
Wr

par

pa

)1/3 (22)

Hu and Glass also showed the position of the triple point YT/HOB. However, these
results should be considered only as an approximation, since the pseudo-steady transition
lines are not entirely applicable for unsteady flows. Differences of up to 10◦ have been
verified in experiments (p. 300 in [10]).

4. Numerical Simulations

In this section, the test of study, the method to obtain the meshes, the boundary
conditions, the mesh sensibility analysis and the comparison with the theoretical results
of Ref. [19] are described.

4.1. Test of Study

Consider Figure 3 where a spherical (or cylindrical) shock wave at two different times
is drawn. The shock wave propagates outwards to the point where it touches the reflecting
surface, and it encounters an ever decreasing effective reflecting wedge angle θw2 < θw1.

Figure 3. Schematic illustration of the instantaneous Mach number for the incident shock wave and
the wedges angles of the spherical shock wave propagating over a straight surface.

For simplicity, the denominator of Equation (21) is equal to one if the pressure outside
of the explosion is chosen as pa = 1 atm and the energy is W = 1 kg of TNT, so Ĥ = HOB
in Equation (21). Air is used in all numerical simulations in this paper.

In addition, a cylindrical shock wave with an initial radius of R(0) = 10 cm is
considered. The released energy is equal to 1.1936 kg of TNT (E0i = 4.186 MJ), and
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the initial density of the undisturbed field is 1 kg/m3. The initial pressure is computed
in the same way as [3]:

p0i =
3(γ− 1) E0i

(β + 1)π R(0)β
(23)

where β = 2 for a cylindrical geometry and β = 3 for a spherical shock wave. Conse-
quently, the pressure inside the high energy zone is pi = 53.3 MPa and the temperature is
155,524.02 K (considering that ρ0i = ρ0e = 1.1936 kg/m3 and the temperature outside
the high energy zone is Ti = 294.84 K).

To validate the solver, several simulations are performed varying the value of the height
of burst. The following parameters are compared with the results of refs. [10,19] (The
pseudo-steady result in Ben-Dor’s book [10] is found in p. 299.): the reflecting angle θw,
the distance of the reflecting shock x from the initial point of the explosion, the value
of the Mach shock wave, and the position of the triple point (YT).

4.2. Meshes and Boundaries

OpenFOAMTM always implements three-dimensional meshes. However, two dimen-
sional simulations can be developed by using only one element in the flow normal direction
and applying the empty boundary condition [35]. This approach was applied in all 2D
cases here studied. Because of physical symmetry conditions, only 1/4 of the full domain
was simulated as Figure 4 shows. An explosive 2D region (liberation zone) is centered
on the origin of coordinates with an initial radius of R(0) = 0.1 m. The size of the do-
main varies according to the value of the HOB from 0.3 m to 2.0 m. All the numerical
simulations are performed using the blockMesh utility included in the OpenFOAMTM

software. For the grid independence analysis, performed in Section 4.3, structured meshes
ranging from 87,600 to 2,180,000 cells were used. All the other numerical tests, described
in Section 4.5, were performed with a fine mesh of 1.4 million of elements.

Figure 4 shows the geometrical domain configurations and the boundary conditions.
Due to the symmetry of the problem, symmetryPlane condition is used on the bottom and
left patches. Since a supersonic flow is guaranteed after the blast passes, only a simple
extrapolated boundary condition is allowed in the top and right boundaries. Therefore,
the zeroGradient condition is imposed on all flow variables for the pressure and tem-
perature. For the velocity, the boundary condition in the right patch is fixedValue equal
to zero.

The values of pressure p and temperature T for the high energy zone are determined
as a function of the liberated energy, keeping the densities outside and inside equal. The util-
ity setFields is used for setting these initial conditions.

HOB

High energy
zone

symmetryPlane

zeroGradient

fixedValue

Undisturbed
zone

3.
5 

m

Figure 4. In the left figure, the domain configurations and boundary conditions for all the numerical
simulations are sketched. The figure on the right shows the initial pressure for the case of HOB = 0.8 m.
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4.3. Grid Independence

Firstly, a grid independence study is performed. The reflection angle θw for the three
different transitions described in Section 3 is compared with the pseudo-steady results
of Refs. [10,19] for HOB = 0.8 mx. Figure 5 shows this study for the three transitions when
the HOB = 0.8 m. The solid line shows the pseudo-steady result of [10], while the circles
indicate the numerical simulations. Figure 5a shows the reflection angle from the RR�DMR.
Figure 5b exhibits the same information but for the DMR�TMR. Finally, Figure 5c display
the the TMR�SMR. In all cases, as the number of elements is increased, differences between
the pseudo-steady arise and the numerical results decreases.

Therefore, a mesh of 1,440,000 (800 × 1800) cells will be used in the following sections.
This mesh presents an adequate balance between grid sensibility and CPU time.

(a) Values of θw for the RR�DMR transition. (b) Values of θw for the DMR�TMR transition.

(c) Values of θw for the TMR�SMR transition.

Figure 5. Values of the reflection angle θw for different numbers of elements in the mesh for
HOB = 0.8 m. The solid line shows the value of [10], while the circles indicate the numerical
simulations.

4.4. Time Step Sensitivity Analysis

The reflection angle θw for the three different transitions described in Section 3 is
compared with the pseudo-steady results of refs. [10,19] for HOB = 0.8 m. Instead of fixing
a time step, we defined in OpenFOAMTM a maximum CFL number and the software
automatically computes the ∆ t. A mesh of 1,440,000 (800 × 1800) elements is used for all
the simulations. Figure 6 shows the reflection angle for the three transitions RR�DMR,
DRR�TMR, and TMR�SMR. Note that there is convergence for CFL < 0.5.
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(a) Values of θw for the RR�DMR transition. (b) Values of θw for the DMR�TMR transition.

(c) Values of θw for the TMR�SMR transition.

Figure 6. Values of the reflection angle θw for different CFL maximum in the mesh for HOB = 0.8 m.
The solid line shows the value of [10], while the circles indicate the numerical simulations.

4.5. 2D Case. Comparisons with Pseudo-Steady Results

Let us start with the analysis by studying the case where HOB = 0.8 m. This HOB is
interesting because there are three transitions: RR � DMR � TMR � SMR.

4.5.1. HOB = 0.8 m
Transition from RR to DMR

According to the results of Hu and Glass [19], the three different reflections described
in Section 3 will occur. None of them are instantaneous as they occur in very short time
periods.

Figure 7 shows the different times when the first transition occurs. Figure 7a–b shows
the incident and reflected shock wave. Figure 7c–f displays the phenomenon very close
to the wall. As soon as the shock wave arrives at the wall, an RR occurs. Graphically, it
is possible to observe that the triple point T from Figure 2 has begun to set up together
with the Mach stem, which may indicate that the reflection process has begun. However,
the transition criterion from [10] states that the Mach number in the reflection point near
the wall must be MR

2 = 1. Table 1 shows the MR
2 = 1 for different times. Considering this,

the RR�DMR transition takes place in t ≈ 550 µs.

Table 1. Values of the Mach Number in the reflection point MR
2 = 1 for different times to determine

the RR�DMR transition.

Time [µs] MR
2 = 1

540 1.073
550 1.071
560 1.079
600 1.085
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Figure 7. Numerical schlieren images of the pressure in the RR�DMR for HOB = 0.8 m.

Table 1 shows the MR
2 = 1 for different times. Considering this, the RR�DMR

transition takes place in t ≈ 550 µs.
Table 2 shows the comparison between the pseudo-steady results and the numerical

simulation for t = 550 µs and t = 600 µs. The difference between numerical and theo-
retical results, except for the Mach of the shock wave, is lower for the case t = 550 µs.
Note that Table 1 shows similar results. A difference of 2.25% exists between the pseudo-
steady result and the numerical result for the reflecting angle θw. This percentage is
higher when the position of the triple point YT/HOB is compared. This analysis should be
considered descriptive from a phenomenological point of view since the pseudo-steady
results are not completely applicable for unsteady flows. However, for the tests here
studied the velocity of the shock wave at the straight surface changes only up to 12%.
Therefore, the pseudo-steady results could approximate the unsteady ones.

Table 2. Comparison between the pseudo-steady results and the numerical simulation for the
RR�DMR (HOB = 0.8 m) transition.

Ben-Dor [10] t = 550 µs t = 600 µs

θw [deg] 50.78 49.635 46.85
Ms 2.77 2.88 2.77

x [m] 0.65 0.68 0.75
YT/HOB 0.0005 0.0006 0.0065

Transition from DMR to TMR

As the shock wave continues colliding with the reflecting surface, the DMR transitions
to a TMR. From Figure 7f, it is possible to observe that near the triple point the reflected
wave has changed its slope, which denotes that the second triple point is in the train
to be formed. Once again, the transition criteria will give us the approximate time
(Mach number in the second triple point is MT′

2 = 1) where the transition takes place.
Figure 8 shows the reflection for three different times. The right side of Table 3 depicts



Symmetry 2022, 14, 2048 13 of 25

the values of the Mach number at the second triple point T′. Therefore, the transition occurs
at t ≈ 620 µs.

I

R

I

R

Triple
Point

I

R

Triple
Point

Double
Triple
Point

Figure 8. Wave structure obtained as numerical schlieren images of the pressure in the DMR�TMR
transition for HOB = 0.8 m.

Table 3 also shows the difference between the pseudo-steady results and the numerical
simulation. Again, a good agreement can be noted in the reflecting angle and position
x from the center of the shock wave. However, major differences exist in the position
of the triple point.

Table 3. Values of the Mach Number in the double triple point MT′
2 = 1 for different times to deter-

mine the DMR�TMR transition.

Time [µs] MT′
2 = 1 Ben-Dor [10] t = 620 µs

610 1.0191 θw [deg] 45.05 44.12
620 1.0082 Ms 2.49 2.62
630 1.0258 x [m] 0.8 0.825
640 1.0264 YT/HOB 0.01 0.01625

Transition from TMR to SMR

The last transition is the TMR�SMR transition. As mentioned in Section 3, the tran-
sition occurs when the Mach number in the triple point verifies MT

2 = 1. The Mach
numbers for different times are listed in Table 4 and the transitions occur in t ≈ 950 µs.
Figure 9 shows the wave structure at these times and the position of the triple point.
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Table 4. Values of the Mach Number in the triple point MT
2 = 1 for different times to determine

the TMR�SMR transition.

Time [µs] MT
2 = 1 Ben-Dor [10] t = 950 µs

940 1.0464 θw [deg] 33.19 33.25
950 1.0264 Ms 1.99 2.306
960 1.0313 x [m] 1.25 1.22
970 1.0345 YT/HOB 0.05 0.0687

I

R

Triple
Point

Figure 9. Wave structure obtained as numerical schlieren images of the pressure in the TMR�SMR
transition for HOB = 0.8 m.

4.5.2. HOB = 2.0 m

According to [10,19], for HOB = 2.0 m, only one transition takes place: from RR
to SMR. This transition occurs when MR

2 = 1. Figure 10 shows the triple-point formation
between t = 2900 µs and t = 3100 µs, and the Mach stem is observed. Figure 10a–c shows
the incident and reflected shock wave before the formation of the triple point. In Figure 10d
(t = 3600 µs), the triple point has already been formed.

I

R

Triple
Point

Figure 10. Wave structure obtained as numerical schlieren images of the pressure in the RR�SMR
transition for HOB = 2.0 m.

Values of the MR
2 are summarized in Table 5, so it is considered that in t ≈ 3000 µs

the transition takes place. The comparison between the pseudo-steady results and the nu-
merical ones is also shown in Table 5. A good agreement in the reflection angle and distance
x is observed.
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Table 5. Values of the Mach Number in the reflection point MR
2 = 1 for different times to determine

the RR�SMR transition (HOB = 2.0 m).

Time [µs] MR
2 = 1 Ben-Dor [10] t = 3000 µs

2800 1.00817 θw [deg] 46.01 47.231
2900 1.00523 Ms 1.321 1.6
3000 1.02218 x [m] 1.95 1.85
3100 1.0673 YT/HOB 0.001 0.0015

4.5.3. HOB = 1.5 m

In this case, the phenomenon is similar to HOB = 2 m. Only exists one transition:
RR�SMR. Table 6 summarizes the results of this case and the Mach number in the reflec-
tion point.

Table 6. Values of the Mach Number in the reflection point MR
2 = 1 for different times to determine

the RR�SMR transition (HOB = 1.5 m).

Time [µs] MR
2 = 1 Ben-Dor [10] t = 3000 µs

1700 1.0186 θw [deg] 48.96 48.118
1725 1.0095 Ms 1.6 1.872
1750 1.0032 x [m] 1.4 1.345
1775 1.0086 YT/HOB 0.0005 0.0003

4.5.4. HOB = 1.0 m

This case is similar to HOB = 0.8 m (Section 4.5.1), but with the difference that
the RR�DMR does not exists, and a RR�TMR transition takes place. In Figure 11,
the Mach stem can be observed in t = 850 µs, which indicates that the transition is taking
place. The Mach number in the reflection point MR

2 of Table 7 shows that the transition
occurs in t ≈ 825 µs.

I

R

Mach
Stem

Triple
Point

Figure 11. Wave structure obtained as numerical schlieren images of the pressure in the RR�TMR
transition for HOB = 1.0 m.

The differences between spherical and pseudo-steady with cylindrical and numerical
results for the reflection angle and the distance are around 5%. However, it is higher
in the position of the triple point, as observed in the other cases studied.

Table 7. Values of the Mach Number in the reflection point MR
2 = 1 for different times to determine

the RR�TMR transition (HOB = 1.0 m).

Time [µs] MR
2 = 1 Ben-Dor [10] t = 825 µs

800 1.02084 θw [deg] 50.98 48.65
825 1.0084 Ms 2.13 2.235
850 1.01458 x [m] 0.81 0.88
875 1.02164 YT/HOB 0.0006 0.0005
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Table 8 shows the results for the TMR�SMR transition. Note that the transition occurs
between t = 1300 µs and t = 1325 µs. To compare with the spherical and pseudo-steady
results, it is assumed that the transition occurs in t = 1325 µs. Differences of approximately
10% are observed for θw, x, and Ms.

Table 8. Values of the Mach Number in the reflection point MT
2 = 1 for different times to determine

the RR�TMR transition (HOB = 1.0 m).

Time [µs] MT
2 = 1 Ben-Dor [10] t = 1325 µs

1275 1.01899 θw [deg] 39.0791 35.34
1300 1.00382 Ms 1.805 2.051
1325 0.9996 x [m] 1.3 1.051
1350 0.9933 YT/HOB 0.05 0.06

Figure 12 shows the numerical schlieren images for the pressure and Mach number.
It allows us to observe the classic contact discontinuity near the triple point for some
irregular reflections [10].

Contact
discontinuity

I

R

Figure 12. Wave structure obtained as numerical schlieren images in t = 1325 µs in the RR�TMR
transition for HOB = 1.0 m of (a) pressure and (b) Mach number.

4.5.5. HOB = 0.4 m

The transitions and the wave structures are similar to those depicted for the HOB = 0.4 m
case where the three transitions occur. The results for the three transitions are in Table 9.

Table 9. Values of the Mach Number in the reflection point MT
2 = 1 for different times to determine

the RR�TMR transition (HOB = 0.4 m).

RR�DMR Ben-Dor [10] t = 95 µs

θw [deg] 31.16 31.6
Ms 5.73 5.2

x [m] 0.35 0.36
YT/HOB 0.0005 0.0006

DMR�TMR Ben-Dor [10] t = 275 µs

θw [deg] 49.61 48.01
Ms 4.13 3.85

x [m] 0.62 0.65
YT/HOB 0.07 0.1

TMR�SMR Ben-Dor [10] t = 500 µs

θw [deg] 19.25 21.22
Ms 3.02 4.058

x [m] 0.95 1.03
YT/HOB 0.2 0.425
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4.6. 3D Case. Spherical Shock Waves

In this section, the results obtained for spherical configurations are presented.
For the 3D computational domains, symmetry boundary conditions were employed, which
allows simulating an octave of the physical domain. Dimensions of the computational
domain were defined by considering the results from Ref. [19] in the following way:
for a given height of burst and the transition angles, the lateral size of the computa-
tional domain can be determined by considering the HOB as the hypotenuse, and then
the opposite side is determined as L = HOB tan(θ), where θ is the reflecting wedge angle.

A spherical region with high-pressure and high-temperature gas was used as an igniter.
The explosive charge energy is equivalent to 1 kg of TNT (4.184 MJ), and the pressure and
temperature for non-perturbed regions are 101, 325 Pa and 300 K, respectively. The sim-
ulation is performed for a HOB of 0.8 m. This HOB with the non-perturbed conditions
produces a blast wave with a strength equivalent to Ms ≈ 3.7.

According to theory, the initial reflection is an RR which changes to a DMR, then
to a TMR, and finally, to an SMR [10]. To obtain all possible reflections, L = 1.75 m was
employed. Figure 13 shows the computational domain. For the 3D simulation, an octave
of the domain is employed, as previously mentioned. Therefore, in the surfaces given by
the vertices ache, abfh and cabd the symmetryPlane boundary condition was utilized. The
reflecting conditions were imposed on the other three surfaces.

The initial conditions considered here generate an incident wave that first impacts
the surface defined by the vertices cdih. Thus, given the domain dimensions, all the possi-
ble reflections mentioned have to be observed.

High energy 

    zone

HOB

z

z
y

Undisturbed 

    zone

a

b

c

d

h

f

e
i

Figure 13. 3D domain for the case of HOB = 0.8 m.

First, to examine the grid convergence in 3D configurations we consider three meshes:
M1 (2.7 × 106 cells), M2 (5.4 × 106 cells) and M3 (7.3 × 106 cells). As a first comparison,
we present the reflected wave structure on the plane ache at t = 550 µs in Figure 14.
At this time, the RR � DMR transition has already begun. As expected, a coarser grid (M1)
gives the most diffusive results, and on the finer one, the structure of the reflected wave is
better captured.
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(a) M1-3D                  (b) M2-3D                   (c) M3-3D     

R R R

I I I

Figure 14. 3D domain for the case of HOB = 0.8 m.

As mentioned earlier, the transition process is not instantaneous. In Figure 15, the tran-
sition from a RR to a DMR can be observed, and the triple point is clearly defined. The tran-
sition criterion states that the Mach number in the reflection point near the wall must be
MR

2 = 1. Values from the 3D simulation are presented in Table 10, according to this criterion
the RR � DMR transition takes place at t = 550µs. As in the 2D cases, comparisons with
the pseudo-steady results are presented in Table 11. It should be noted that the numerical
results from the 3D simulation are in good agreement with the pseudo-steady predictions.

Figure 15. RR � DMR transition on 3D configuration HOB = 0.8 m.
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Table 10. Values of the Mach Number in the reflection point MR
2 = 1 for different times to determine

the transition RR�DMR on the 3D configuration.

Time [µs] MR
2 = 1

540 0.9993
550 1.004
600 1.073

Table 11. Comparison between the pseudo-steady results and the numerical simulation
for the RR�DMR on the 3D configuration (HOB = 0.8 m) transition.

Ben-Dor [10] t = 550 µs t = 600 µs

θw [deg] 50.78 47.86 45.16
Ms 2.77 2.63 2.70

x [m] 0.65 0.693 0.797
YT/HOB 0.0005 0.0085 0.009

The DMR�TMR transition process can be observed in Figure 16. The figure presents
a 3D contour plot of the Mach number distribution. From this figure can be appreciated
the formation of a second triple point, also it can be observed that at the triple point location
the Mach number approaches unity. The second triple point is wholly defined at t = 640µs.
The right side of Table 12 shows the values of the Mach number at the second triple point
T′. Therefore, the transition occurs at t ≈ 620 µs. Table 12 also shows the difference
between the pseudo-steady results and the numerical 3D simulation. Again, it is observed
a good agreement with the reference data for the position of the triple point (YT/HOB)
and the position of the shock wave (x). However, major differences exist in the position
of the reflecting angle.

Figure 16. DMR � TMR transition on 3D configuration HOB = 0.8 m.
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Table 12. Values of the Mach Number in the double triple point MT′
2 = 1 for different times

to determine the DMR�TMR transition.

Time [µs] MT′
2 = 1 Ben-Dor [10] t = 620 µs

610 0.9930 θw [deg] 45.05 43.89
620 1.039 Ms 2.49 2.1
630 1.052 x [m] 0.8 0.77
640 1.046 YT/HOB 0.01 0.0157

Finally, results for the transition TMR�SMR are presented. This transition takes place
when the Mach number in the triple point verifies MT

2 = 1. The mach numbers for different
times are listed in Table 13. From this information, it can be accepted that the transition
occurs when M = 1.032 at t = 950µs. Figure 17 shows the wave reflection configuration
at four time steps. It is observed that, at this stage there is a single triple point that is
completely defined. The results obtained are in well agreement with those provides by
the pseudo-steady theory.

Table 13. Values of the Mach Number in the triple point MT
2 = 1 for different times to determine

the TMR�SMR transition on 3D configuration.

Time [µs] MT
2 = 1 Ben-Dor [10] t = 6950 µs

940 1.064 θw [deg] 33.19 34.75
950 1.032 Ms 1.99 2.11
960 1.075 x [m] 1.25 1.026
970 1.076 YT/HOB 0.05 0.0817

Figure 17. TMR � SMR transition on 3D configuration HOB = 0.8 m.

5. Comparison with other Numerical Simulations

Liang et al. [17] solve the compressible and two-dimensional Euler/Navier–Stokes
equations in a finite volume approach using a fifth-order weighted essentially non-oscillatory
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scheme with a fourth-order Runge–Kutta method. The numerical method was tested in [18]
showing that the solver could resolve the four types of shock wave reflection: RR, SMR,
TMR, and DMR.

The variation of the triple-point trajectory is shown in Figure 18 for two different
initially incident shock Mach number Ms = 4 and Ms = 5. The black dots are the results
of ref. [17] and the red crosses are the OpenFOAMTM results. If we compare both figures
for a given HOB, the higher the shock Mach number, the higher the triple point. The differ-
ences of the transition point (from RR�IR) have a difference of less than 8% between our
simulation and [17].

To develop the OpenFOAMTM simulations, we have used the same methodology
described in the previous section. The CFL ≤ 0.5, and a mesh of 1,440,000 (800 × 1800)
elements is used.
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(a) Height of the triple point for Ms = 4.
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(b) Height of the triple point for Ms = 5

Figure 18. Height of triple point for HOB = 3 m. The black dots show the value of [17], while the red
crosses are the numerical simulations with OpenFOAMTM.

6. Comparison with Experimental Data

In this section, we present the comparison between the experimental data given
in Ref. [25] and the numerical results calculated using OpenFOAMTM. Ridoux et al. in [25]
studied the dynamics of shock wave propagation (blast waves) and their interaction with
straight surfaces.

Figure 19 shows the numerical results here obtained and the experimental data [25]
for an explosion of 1 kg of TNT at a HOB of 1.59 m. The black dots represent the exper-
imental data and the red crosses are the numerical results. After the transition RR�IR,
which is well predicted by the numerical simulation, the difference between the numerical
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results and the experimental results increases from differences up to 10% (in x ≈ 4 m)
to a maximum of 20% in x ≈ 4.5 m. These differences seem to continue growing in time
as the shock wave continues with the reflection. A mesh of 1,440,000 (800 × 1800) elements
is used for the simulation.

Figure 19. Comparison of the triple point trajectory between the experiment presented in [25] and
the simulations with OpenFOAMTM. The black dots represent the experimental data. The red crosses
are the numerical results.

7. Discussion of Results

The reflections on straight surfaces of cylindrical and spherical shock waves are
studied in this paper. The shock waves are generated by the sudden release of energy
(blast waves). These types of reflections produce unsteady flow fields. To validate and
analyze the numerical results here calculated, they are compared with theoretical studies
on pseudo-steady reflections, numerical data obtained by other authors, and experimental
results.

To contrast with the pseudo-steady analysis, several numerical tests for cylindrical
shock waves were developed. These tests consider different distances between the shock
waves origin and the reflecting surface (different height of burst): HOB = 0.4, 0.8, 1.0,
1.5, 2.0. Accordingly, different types of transitions between reflections were analyzed.
To develop these numerical tests, the mesh and CFL number convergences were previously
established (see Figures 5 and 6). From this comparison, we can conclude the following
for the 2D cases:

• There was accuracy for the reflecting angle θw where the maximum difference is up to 5%.
• The greatest differences for the Mach number of the shock wave, Ms, occur

for the TMR�SMR (13%, 15%, and 20%). For other transitions, the differences are less
significant (between 3% and 6%).

• The numerical simulations could not properly predict the position of the triple point
(from the reflecting wall). The differences between the pseudo-steady and numerical
results measure approximately between 20% and 30%.

For spherical shock waves, the results show fair agreement with the pseudo-steady
theory and the two-dimensional simulations. However, it is questionable to compare
the 3D simulations with those in 2D and with the pseudo-steady results. This is because
the 3D simulation can capture the wave structure and its evolution in greater detail. It was
observed that for all the considered transitions that the simulation can correctly capture
them in a descriptive way. It is worth noting that the 3D contour plot provides an effective
way to analyze the complex reflection wave structure in detail.

For 3D simulations, we can conclude the following from the comparisons with the pseudo-
steady theory:
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• In all transitions, the poorest approximation was observed for the triple point position
(from the reflecting wall).

• The numerical predictions for the Mach of the incident wave are in good agreement,
but the highest difference was observed on the TMR�SMR (6.03%).

• The predictions of the wedge angle can be considered in fair agreement, with the poor
prediction for the RR�DMR (6.1%).

Another aspect of the 3D simulations is the involved data volume. The finer grid
(7.2 million cells) produces an output of around 24 Gb. The data quantity increases as is
needed to compute other derived variables such as pressure gradient. This implies that
the required computational resources for post-processing activities must be appropriate
configurations for proper data manipulation.

The comparison between the theoretical pseudo-steady study of refs. [10,19] and
the numerical results should be considered only as descriptive from a physical perspective
since the pseudo-steady analysis is not completely applicable to unsteady flows. How-
ever, the theoretical pseudo-steady results help to determine the sequence of transitions.
Furthermore, for the cases numerically studied in this paper, the velocity of the shock
wave at the straight surface is approximately constant (variation of less than 12%). Hence,
the pseudo-steady analysis could approximate the unsteady phenomenon.

The numerical results published in Ref. [17] were used to compare with those cal-
culated here via OpenFOAMTM. We can conclude that both numerical analyses show
similar results and indicate the same physical behavior. Furthermore, both studies show
for the same HOB that the height of the triple point increases as the Mach number of the in-
cident shock wave increases. The relative difference in the position of the triple point
between both numerical studies does not exceed 12%.

Finally, the comparison with the experimental data from [25] shows a good predic-
tion of the transition point. Minimal differences exist near the transition point between
the simulations and the experiment. However, a maximum difference of 20% is observed
for x ≈ 4.5 m. Furthermore, we note that the numerical simulations correctly describe
the physics involved in the shock wave reflection phenomenon.

8. Conclusions

In this paper, the verification of the proper behavior of the Kurganov, Noelle and
Petrova numerical scheme included in the rhoCentralFoam solver of the OpenFOAMTM

software for simulating the unsteady reflection of shock waves over straight surfaces was
achieved.
Several comparisons have been developed: with pseudo-steady theoretical results (there are
no unsteady theoretical results), with other numerical simulations, and with experimental
data. From these comparisons, the KNP scheme in the form used in this work has shown
the ability to capture the phenomena involved in the unsteady reflections.

Good accuracy between the numerical and the pseudo-steady results was obtained
for the 2D and 3D simulations. However, the numerical simulations could not properly
predict the position of the triple point. The comparison with other numerical results shows
that the difference in the position of the triple point between both numerical studies does
not exceed 12%. Similar result differences were observed in the position of the triple
point between the numerical simulation and experimental result. Therefore, this scheme
implemented in the OpenFOAMTM software is a robust tool for simulating the reflection
on a straight surface of a variable velocity shock wave and for capturing the transitions
between regular and irregular wave reflections involved in this phenomenon.
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Abbreviations
The following abbreviations are used in this manuscript:

HOB Height of burst
RR Regular reflection
IR Irregular reflection
SMR Single-Mach reflection
TMR Transitional-Mach reflection
DMR Double-Mach reflection
vNR von-Neumann reflection
MR Mach reflection
DiMR Direct Mach reflection
SiMR Stationary Mach reflection
IniMR Inverse Mach reflection
T Triple point
T’ Double triple point
Ms Mach number of the shock wave
θw Reflected angle
YT Position of the triple point
Vp Proprietary cell volume
Fc Convective flux
u Transported conservative field
f Face value

s Face surface vector
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2. Figuli, L.; Zvaková, Z.; Kavický, V.; Loveček, T. Dependency of the Blast Wave Pressure on the Amount of Used Booster. Symmetry

2021, 13, 1813.
3. L. Gutiérrez Marcantoni, L.; Elaskar, S.; Tamagno, J; Saldía, J.P.; Krause, G. An assessment of the OpenFOAM implementation

of the KNP scheme to simulate strong explosions. Shock Waves 2021, 31, 193–202.
4. Chauhan, A.; Arora, R.; Siddiqui, M. J. Propagation of blast waves in a non-ideal magnetogasdynamics. Symmetry 2019, 11, 458.



Symmetry 2022, 14, 2048 25 of 25

5. Lechat, T.; Emmanuelli, A.; Dragna, D.; Ollivier, S. Propagation of spherical weak blast waves over rough periodic surfaces. Shock
Waves 2021, 31, 379–398.

6. Cullis, I.G. Blast waves and how they interact with structures. BMJ Mil. Health 2001, 147, 16–26.
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