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ABSTRACT

The spectral reflectance of vegetation obtained from opti-
cal sensors provides information on their biophysical and
biochemical properties. However, in remote sensing, re-
flectance is typically computed with respect to the top-of-
canopy (TOC) surface, resulting in an apparent reflectance
due to the differences between the illumination conditions
between the observed vegetation elements and the TOC sur-
face. While the TOC reflectance is useful for data with coarse
spatial resolution, it leads to erroneous estimates of the vege-
tation properties when applied to very high spatial resolution
(VHR) data where individual leaves are visible. An illumina-
tion correction is required to retrieve the true leaf reflectance
from the TOC reflectance. The present work investigates an
illumination correction method for retrieving the true leaf
reflectance from VHR hyperspectral TOC reflectance images
based on the spectral invariant theory and a simple mathe-
matical model for the leaf reflectance. The method is tested
on simulated and measured data. The results show that the
leaf reflectance can be accurately estimated from both data
(average RMSD between 0.02 and < 0.12).

Index Terms— hyperspectral, imaging spectroscopy, re-
flectance, p-theory, spectral invariant, inversion, radiative
transfer

1. INTRODUCTION

The spectral reflectance of vegetation obtained from optical
sensors enables the retrieval of their biophysical and biochem-
ical properties. The hemispherical-directional reflectance fac-
tor (hereafter called reflectance unless otherwise specified) in
a pixel corresponding to a vegetation canopy element such
as a leaf or a tree crown is calculated as the ratio of radi-
ance reflected by the canopy element towards the sensor to
the theoretical radiance reflected by a reference surface under
identical illumination and observation geometry. However, in
practice, the latter is commonly calculated using the known
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spectrum of solar radiation and radiative transfer in the atmo-
sphere or taken from the reflectance of a reference panel next
to the vegetated area. Therefore, the reflectance of a pixel is
not calculated using the irradiance conditions for the element
in the pixel but using that on a top-of-canopy (TOC) surface.

For spectral data recorded by traditional environmental
satellites with a medium spatial resolution larger than 10 m,
this approach produces reasonable results: reflectance factors
for a vegetation canopy. For images with a very high spa-
tial resolution taken from aircraft and drones, where the pixel
size is below 1 m, the approach becomes less justified: at such
scales, individual canopy elements such as leaves become vis-
ible. The illumination conditions on the canopy elements can
be considerably different from those at the TOC [1, 2]. Hence,
the reflectance calculated for a pixel with respect to the TOC
surface does not represent the true reflectance of the canopy
element in a pixel.

Previous research has shown that the local illumination
conditions for vegetation elements can be accounted for by
the spectral invariant theory [3]. Indeed, the spectral in-
variant theory links the TOC reflectance to the true leaf
reflectance via wavelength-independent parameters, which
are directly related to the illumination conditions, namely the
direct solar irradiance and diffuse ambient irradiance [4].
Recently, [5] demonstrated accurate retrieval of the true
leaf reflectance from VHR hyperspectral images using the
spectral invariant theory and the PROSPECT-D leaf radia-
tive transfer model [6]. However, PROSPECT is ill-suited
for this illumination correction method, as it models the
leaf directional-hemispherical reflectance rather than the
hemispherical-directional reflectance. Thus, an alternative
model for the leaf reflectance is needed.

The main objective of this work was to investigate us-
ing a sigmoid function as a leaf reflectance model in the red
edge wavelengths (710 to 790 nm) when performing illumi-
nation correction on TOC reflectance with the spectral invari-
ant theory. The method enables the retrieval of the true leaf
reflectance for visual to near-infrared wavelengths using the
spectral invariants retrieved from the red edge.



2. MATERIALS

2.1. Simulated data

We used eight synthetic hyperspectral TOC reflectance im-
ages by [5], where the true leaf reflectance of each pixel is
known a priori. The data were generated using Monte Carlo
ray tracing with cyclic boundary conditions such that the sim-
ulated vegetation scenes had identical geometric properties
but varying leaf optical properties. More specifically, each
scene had of a non-reflecting forest floor and 138 randomly
positioned and oriented disk-shaped identical bi-Lambertian
leaves with a 0.15 m radius within a 1 m × 1 m area. The
ANGERS database was used for the leaf spectra [6]. For one
half of the scenes, the reflectance and transmittance factors of
leaves 74, 126, 202, and 245 of the ANGERS database were
used (Fig. 1a–d). For the other half of the scenes, the corre-
sponding biochemical traits of the leaves from the ANGERS
database were used as input for the PROSPECT-D model to
generate the leaf spectra (Fig. 1e–h). The simulated wave-
lengths ranged from 450 nm to 900 nm at 5 nm intervals and
the spatial resolution was 1 cm resulting in images with 100
rows and 100 columns.

a) P74 b) P126 c) P202 d) P245

e) A74 f) A126 g) A202 h) A245

Fig. 1. RGB images of the simulated data scenes. Each leaf
in a given scene has the same optical properties.

2.2. Measured data

For the measured data, we used a hyperspectral image of
a Diervilla lonicera Mill. canopy located in the Otaniemi
campus, Finland (60◦11′ N, 24◦49′ E) by [5]. The image
was recorded using a Specim IQ imaging spectrometer (serial
number 190-1100152, Specim, Oulu, Finland; 512 × 512
pixels, spectral resolution 7 nm) from a nadir view geometry
on a cloudless day with the Sun at a 47° zenith angle. The
instrument was placed approx. 1 m above the canopy, result-
ing in a spatial resolution of approx. 1 mm. The image was

calibrated to TOC reflectance using Spectralon white diffuse
reflectance standard (99%) panel placed above the canopy
such that it was visible in one corner of the image. The ref-
erence reflectance spectra of two sunlit leaves visible in the
image were collected using an Avantes SensLine spectometer
(AvaSpec-ULS-2048x64TEC-EVO, Avantes, Netherlands)
with a bare fiber optic cable in a cross-plane geometry at 45°
view zenith angle. As with the simulated data, the wave-
lengths between 450 nm and 900 nm were selected.

3. THEORY

Let us consider a measurement of the radiance Is scattered
by a sunlit leaf within a vegetation canopy toward the in-
stantaneous field of vision of a sensor above the canopy.
The hemispherical-directional reflectance factor of the leaf is
given by Rleaf = πIs/ϕ, where ϕ is the incident irradiance
on the leaf [7]. Similarly, the TOC reflectance of the leaf is
given by RTOC = πIs/ΦTOC, where ΦTOC is the irradiance
on the TOC from the above. By decomposing the irradiance
on the leaf into direct solar irradiance, ϕ⊙, and diffuse irradi-
ance from the sky and from within the canopy, ϕA, the TOC
reflectance can be written as

RTOC(λ) =

[
ϕ⊙(λ)

ΦTOC(λ)
+

ϕA(λ)

ΦTOC(λ)

]
Rleaf(λ) (1)

= [ρ+ pRTOC(λ)]Rleaf(λ), (2)

where ϕ⊙
ΦTOC

= ρ and ϕA

ΦTOC
= pRTOC, and ρ and p are indepen-

dent of the wavelength [1, 3, 4]. Assuming the leaf reflectance
can be parameterized by a vector ϑ⃗leaf and rearranging Eq. (2),
we get a forward model for the TOC reflectance

Rmod
TOC(ϑ⃗TOC;λ) =

ρRmod
leaf (ϑ⃗leaf;λ)

1− pRmod
leaf (ϑ⃗leaf;λ)

+ ε, (3)

where ϑ⃗TOC = [p, ρ, ϑ⃗leaf]
T is the model input vector and ε

is the measurement and model uncertainty. The present work
uses a sigmoid function with three input parameters for mod-
eling the leaf reflectance in the red edge wavelength region
(710 to 790 nm)

Rmod
leaf (ϑ⃗leaf;λ) =

A

1 + exp[k(λ− λ0)]
, (4)

where A is the upper right asymptote of the logistic curve, k
is the logistic growth rate, and λ0 is the midpoint of the curve.
The lower left asymptote of the curve is zero.

4. METHODS

Given the forward model for the TOC reflectance (Eq. (3)),
the parameters ϑ⃗TOC are estimated by minimizing the resid-



ual sum of squares between the measured and modeled re-
flectances in the red edge, λ̃

⃗̂
ϑTOC = argminϑ⃗TOC

n∑
i=0

(
Rmea

TOC(λ̃i)−Rmod
TOC(ϑ⃗TOC; λ̃i)

)2

,

(5)

where n is the number of measured wavelengths. The param-
eter inversion (Eq. 5) was performed using the trust region re-
flective algorithm implemented in the SciPy library of Python.
The initial guess values and the lower and upper bounds of
ϑ⃗TOC are given in Table 1.

Table 1. The initial guess values and upper and lower bound-
aries of parameters used in the inversion.

p ρ A k λ0

initial guess 0.50 0.90 0.45 0.10 715.00
lower bound −∞ −∞ 0.1 0.00 670.00
upper bound ∞ ∞ 1.00 0.2 790.00

Given the estimated values of the spectral invariants, p̂, ρ̂,
the illumination corrected leaf reflectance can be computed
for the entire observed spectral domain of the measured wave-
lengths, λ, from Eq. (2) as

Rleaf(λ) =
RTOC(λ)

ρ̂+ p̂RTOC(λ)
. (6)

The complete illumination correction algorithm thus consists
of two steps:

1. Parameter inversion: estimate ⃗̂
ϑTOC = [p̂, ρ̂,

⃗̂
ϑleaf]

T us-
ing wavelengths between 710 and 790 nm (Eq. (5)).

2. Illumination correction: compute the true leaf re-
flectance (Eq. (6)) for all observed wavelengths using
p̂, ρ̂.

5. RESULTS AND DISCUSSION

Overall, the the estimated leaf reflectance spectra produced
by the illumination correction algorithm were in good agree-
ment with the true leaf reflectances for both the simulated and
measured hyperspectral data. For the simulated images, we
computed the RMSD between the estimated and the true leaf
reflectances for the sunlit pixels (Fig. 2). Despite a number of
outlier values, the mean RMSDs of the scenes were between
0.02 and 0.12, and the standard deviations of the RMSDs
were between 0.002 and 0.01. The outliers were caused by
pixels where the Monte Carlo simulation noise was high such
as pixels between the leaf edges and the black forest floor.

For the measured data (Fig. 3a), the method significantly
reduced the effects of illumination conditions of the TOC re-
flectance for most of the leaves in the image (Fig. 3b). For

A74 P74 A126 P126 A202 P202 A245 P245
Simulated data scene
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Fig. 2. The distributions of the RMSD values between the
estimated leaf reflectances and the true leaf reflectances of
the simulated data scenes.

the reference leaf A, the RMSD between the estimated and
measured leaf reflectance was 0.02, (Fig. 3c), and for leaf B
the RMSD was 0.06 (Fig. 3d).

Although the results from both simulated and measured
data were promising, we found that the reflectance produced
by the illumination correction algorithm is heavily dependent
on the initial guess values for the parameters A and λ0 of
the sigmoid function (Eq. (4)). In fact, the parameter inver-
sion did not generally converge far from the initial values
of A and λ0 (data not shown) meaning that variation in the
RMSD values for the data can be partially attributed to how
closely the sigmoid function with the initial guess parameters
matches the true leaf reflectance at the red edge. E.g., for
the scene P74 the sigmoid curve with the initial guess values
was already close to the true leaf reflectance, whereas for the
scene P126 it was not. The non-uniqueness of the solution for
Eq. (5) is a hallmark of ill-posed inverse problems. A unique
solution could be sought by imposing a other regularization
strategies than setting upper and lower parameter bounds as
done in the present work. Alternative approaches are offered
by using Bayesian inference, where the unknown parameters
are treated as random variables [8], or by training a machine
learning method on simulated data for estimating the spectral
invariants.

Despite the issues caused by the ill-posedness of the in-
verse problem, these results can have major implications for
hyperspectral vegetation monitoring applications relying on
VHR data, e.g., when taken from a unmanned aerial vehi-
cle, which show strong multiple-scattering effects. In this
situation, the traditional radiative transfer models used for
vegetation (e.g., SAIL [9]) are not applicable, as the vegeta-
tion canopy cannot be considered to consist of infinitesimally
small scattering elements. The theory of spectral invariants
makes no such assumptions and can reduce the effects of the
local illumination conditions and scale the measured canopy-
level reflectance factor to that of a leaf, enabling detection of
the true physiological signals from the canopy elements.
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Fig. 3. TOC reflectance image of the Diervilla lonicera Mill.
canopy with the pixels corresponding to the in situ measured
area of leaves A and B shown respectively in cyan and fuch-
sia (a), an inverted reflectance RGB image (b), the situ mea-
sured reflectances and the corresponding averaged TOC and
inverted reflectances of leaf A (c) and leaf B (d).

6. CONCLUSION

The present work evaluated the performance of an illumina-
tion correction method for retrieving the true reflectance of
sunlit leaves from very high spatial resolution hyperspectral
TOC reflectance images. The method relates the TOC re-
flectance to the true leaf reflectance via the spectral invari-
ant theory and uses a sigmoid function to model the leaf re-
flectance. The results show that the method can accurately
retrieve the leaf reflectance under varying illumination condi-
tions. The illumination corrected true leaf reflectance spec-
trum enables the accurate estimation of leaf biochemical vari-
ables, such as leaf chlorophyll content. However, the results
depend heavily on the initial guess values for the parameters
inverted by the method. Hence, further research is should fo-
cus on increasing the robustness of the method.
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