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We analyze exact ground state (GS) separability in general N-particle systems with two-site couplings. General
necessary and sufficient conditions for full separability in the form of one- and two-site eigenvalue equations are
first derived. The formalism is then applied to a class of SU(n)-type interacting systems where each constituent
has access to n-local levels, and where the total number parity of each level is preserved. Explicit factorization
conditions for parity-breaking GSs are obtained, which generalize those for XY Z spin systems and correspond
to a fundamental GS multilevel parity transition where the lowest 2n−1 energy levels cross. We also identify a
multicritical factorization point with exceptional high degeneracy proportional to Nn−1, arising when the total
occupation number of each level is preserved, in which any uniform product state is an exact GS. Critical
entanglement properties (such as full range pairwise entanglement) are shown to emerge in the immediate
vicinity of factorization. Illustrative examples are provided.
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I. INTRODUCTION

The ground state (GS) of strongly interacting spin systems,
whereas normally entangled [1–3], can exhibit the remarkable
phenomenon of factorization when a suitable magnetic field
is applied [4–12]. This means that for such a field, the spin
system admits a completely separable exact GS, i.e., a product
of single spin states, despite the presence of nonnegligible
couplings between the spins and the finite value of the ap-
plied field. Moreover, such a product state is not necessarily
trivial, in the sense that it may break fundamental symme-
tries of the Hamiltonian. In this case, factorization signals
in finite systems a special critical point where two or more
levels with definite symmetry cross and the GS becomes de-
generate [9–11,13,14], allowing for such symmetry-breaking
exact eigenstates. The exact GS then typically undergoes in
this case a transition between states with distinct symmetry
as the factorization point is traversed, leading to visible ef-
fects in system observables [9,10,13,14]. Furthermore, critical
entanglement properties emerge in the immediate vicinity
[7,9,10,13,14], stemming ultimately from the product nature
of the closely lying eigenstate.

Most studies of GS factorization have so far been re-
stricted to interacting spin systems (see also Refs. [15–18]),
where factorization conditions remain analytically manage-
able due to the small number of parameters required to
specify an individual spin state. The main aim of this pa-
per is to investigate exact GS factorization in more general
interacting systems, i.e., beyond the standard SU(2) spin
scenario, where already the characterization of a single com-
ponent state is more complex. With this goal, we first derive
the necessary and sufficient conditions for factorization in
the form of eigenvalue equations, either for effective pair

Hamiltonians or for the mean-field (MF) Hamiltonian and
residual couplings.

We then apply the formalism to a general N-component
interacting system in which each constituent has n accessible
local levels such that the Hamiltonian can be expressed in
terms of operators satisfying an U(n) algebra. For n = 2 it
reduces to a general anisotropic XY Z spin system [19] in an
applied transverse field [4,6,10,18], sharing with the latter the
basic level number parity symmetry. For full range couplings
it comprises schematic SU(n) models employed in nuclear
physics for describing collective excitations [20–22], while
for first neighbor couplings and special choices of parame-
ters it reduces to the SU(n) Heisenberg model also known
as the Uimin-Lai-Sutherland model [23–25]. The study of
interacting many-body systems with global SU(n) symme-
try has aroused great interest in recent years, becoming
an active research topic that links the fields of condensed-
matter and atomic, molecular, and optical physics [26–31].
Systems possessing high-dimensional symmetry can unveil
exotic many-body physics and are suitable for describing
a wide range of nontrivial phenomena. The paradigmatic
SU(n) Heisenberg model [23–25], first employed in solid-
state physics in connection with the integer quantum Hall
effect [32,33], played also an important role in identifying
unconventional magnetic states and phases [28,34–41]. Inter-
est on the subject has been stimulated by the unprecedented
advances in quantum control techniques, which offer the pos-
sibility of realizing strongly interacting many-body systems
with high symmetry in alkaline-earth atomic gases in optical
lattices [27,28,31]. These platforms have also received atten-
tion in relation with high-precision atomic clocks [42] and
quantum computation [43].

2469-9926/2022/105(3)/032212(13) 032212-1 ©2022 American Physical Society

https://orcid.org/0000-0002-9001-2325
https://orcid.org/0000-0002-5439-467X
https://orcid.org/0000-0003-3827-2274
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.032212&domain=pdf&date_stamp=2022-03-28
https://doi.org/10.1103/PhysRevA.105.032212


FEDERICO PETROVICH, N. CANOSA, AND R. ROSSIGNOLI PHYSICAL REVIEW A 105, 032212 (2022)

The general factorization formalism is presented in Sec. II,
whereas its application to a general SU(n)-type model for N
components is described in Sec. III. Explicit equations for
the existence of uniform parity-breaking factorized GSs are
determined and shown to correspond to a multilevel parity
transition occurring for any size N and coupling range where
the GS becomes 2n−1-fold degenerate (if N � n − 1). A crit-
ical factorization point with exceptionally high degeneracy
(which increases with size N) is also identified in systems with
full level number symmetry, where any uniform separable
state is an exact GS. Entanglement properties in the vicinity
of factorization together with signatures of factorization in
small systems are as well discussed. Conclusions are drawn in
Sec. IV. Appendices discuss further details including the MF
approximation in the model, which admits an analytic solution
in the uniform case for arbitrary n.

II. FORMALISM

A. General factorization conditions

We consider a system described by a Hilbert space H =⊗N
p=1 Hp such that it can be seen as a composite of N sub-

systems with Hilbert spaces Hp. In this scenario we assume
a general Hamiltonian containing one-site terms hp plus two-
site interactions Vpq,

H =
∑

p

hp + 1

2

∑
p�=q

Vpq, (1)

hp =
∑

μ

bp
μoμ

p, Vpq =
∑
μ,ν

J pq
μνoμ

poν
q, (2)

where {oμ
p} denotes a complete set of linearly independent

operators over Hp and J pq
μν = Jqp

νμ are the coupling strengths
of the interaction between sites p and q. In particular, any
spin array with two-spin interactions in a general applied
magnetic field fits into this form. We use the notation oμ

p ≡
1 ⊗ · · · ⊗ 1 ⊗ oμ

p ⊗ 1 ⊗ · · · ⊗ 1 when operators are applied
to global states.

We are here interested in the conditions which ensure that
a completely separable state,

|�〉 =
⊗

p

|ψp〉 = |ψ1, . . . , ψN 〉, (3)

possibly breaking some fundamental symmetry of H is an
exact eigenstate of H ,

H |�〉 = E |�〉. (4)

When applied to |�〉, H can just connect it with itself and with
superpositions of one- and two-site excitations,

|�p〉 = |ψ1, . . . , φp, . . . , ψN 〉, (5)

|�pq〉 = |ψ1, . . . , φp, . . . , φq, . . . , ψN 〉, (6)

where 〈φp|ψp〉 = 〈φq|ψq〉 = 0. Then Eq. (4) implies the nec-
essary and sufficient conditions,

〈�p|H |�〉 = 0, p = 1, . . . , N, (7)

〈�pq|H |�〉 = 0, 1 � p < q � N, (8)

to be satisfied ∀ |φp〉, |φq〉 orthogonal to |ψp〉, |ψq〉, respec-
tively. Since,

〈�p|H |�〉 = 〈φp|h̃p|ψp〉, h̃p = hp +
∑
q �=p

v(q)
p , (9)

where h̃p is the local MF Hamiltonian at site p and

v(q)
p = 〈ψq|Vpq|ψq〉 =

∑
μ,ν

J pq
μν

〈
oν

q

〉
oμ

p, (10)

the average potential at p due to the coupling with site q
(〈oν

q〉 = 〈ψq|oν
q|ψq〉), Eqs. (7) imply 〈φp|h̃p|ψp〉 = 0 ∀ |φp〉

orthogonal to |ψp〉 and, hence, the eigenvalue equations,

h̃p|ψp〉 = λp|ψp〉, p = 1, . . . , N. (11)

As expected, each local state |ψp〉 in |�〉 should be an eigen-
state of the local MF Hamiltonian h̃p determined by the same
|�〉, implying self-consistency.

It is now convenient to rewrite H as

H =
∑

p

h̃p + 1

2

∑
p�=q

Ṽpq, (12)

where Ṽpq = Vpq − v
(q)
p − v

(p)
q is a residual coupling satisfying

〈�p|Ṽpq|�〉 = 〈�q|Ṽpq|�〉 = 0. Then,

〈�pq|H |�〉 = 〈φp, φq|Ṽpq|ψp, ψq〉, (13)

and Eqs. (8) together with previous property imply that |�〉
should be an eigenstate of all Ṽpq,

Ṽpq|ψp, ψq〉 = λpq|ψp, ψq〉, 1 � p < q � N, (14)

with λpq = 〈Ṽpq〉 = −〈Vpq〉. As λp = 〈hp〉 + ∑
q �=p〈Vpq〉, the

total energy verifies E = ∑
p λp + 1

2

∑
p�=q λpq = 〈H〉.

Therefore, we can state the following theorem:
The product state |�〉 is an exact eigenstate of the Hamil-

tonian (1) iff |�〉 is a simultaneous eigenstate of all one-site
MF Hamiltonians h̃p and all residual couplings Ṽpq.

Once Eqs. (11) and (14) are fulfilled, additional single-site
terms having |ψp〉 as GS (�hp|ψp〉 = �λp|ψp〉) can be added
to H without affecting the product eigenstate. They can be
used to remove the eventual degeneracy and bring down its
energy (E → E + ∑

p �λp), making it a nondegenerate GS
for sufficiently large �λp < 0 ∀ p.

B. Pair equations and the uniform case

Equations (11) and (14) imply that H can be written as a
sum of pair Hamiltonians Hpq = Hqp (p �= q) having the pair
product state |ψp, ψq〉 as eigenstate,

H = 1

2

∑
p�=q

Hpq, (15)

Hpq|ψp, ψq〉 = Epq|ψp, ψq〉, 1 � p < q � N. (16)

For instance, we can set Hpq = rpq(h̃p + h̃q) + Ṽpq with rpq =
rqp numbers satisfying

∑
q rpq = 1 ∀ p (and rpp = 0) in which

case Epq = rpq(λp + λq) + λpq. The converse is trivially true:
Eqs. (15) and (16) imply Eq. (4) for state (3) with

E = 1

2

∑
p�=q

Epq. (17)
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Moreover, if |ψp, ψq〉 is a GS of Hpq ∀ p �= q, |�〉 will clearly
be a GS of H since it will minimize each average 〈Hpq〉 in
(15), and, hence, the full average 〈H〉.

The pair Hamiltonians will have the general form

Hpq = h(q)
p + h(p)

q + Vpq, (18)

with
∑

q �=p h(q)
p = hp. Then, when multiplied by 〈ψq|, Eq. (16)

leads to (h(q)
p + v

(q)
p )|ψp〉 = λ

(q)
p |ψp〉 with λ

(q)
p = Epq − 〈h(p)

q 〉,
implying Eq. (11) when summed over q (with λp = ∑

q λ
(q)
p )

and also Eq. (14) (with λpq = Epq − λ
(p)
q − λ

(q)
p ). Equa-

tions (15)–(16) and (11)–(14) are then equivalent.
By expanding the local states |ψp〉 in an orthogonal basis

|ψp〉 = ∑
i f p

i |ip〉 with f p
i = 〈ip|ψp〉,

∑
i | f p

i |2 = 1, Eq. (16)
becomes, explicitly,∑

j,l

[
δkl〈ip|h(q)

p | jp〉 + δi j〈kq|h(p)
q |lq〉 + 〈ipkq|Vpq| jplq〉

]
f p

j f q
l

= Epq f p
i f q

k , (19)

to be fulfilled ∀, i, k. For dim Hp(q) = np(q) � 2 and general
couplings, Eq. (19) imposes m = npnq − 1 complex equa-
tions to be satisfied by product states |ψp, ψq〉 having l =
np + nq − 2 < m free complex parameters f p

i , f q
j , hence, en-

tailing restrictions on the feasible coupling strengths J pq
μν and

fields bp
μ. Factorization will then take place at special “points”

or “curves” in parameter space. In particular, If Hpq is real in
the previous pair product basis, one could always satisfy (19)
by adjusting the diagonal elements 〈ipkq|Vpq|ipkq〉.

A simple realization of Eqs. (15) and (16) is the case
of a uniform system where all local Hilbert spaces Hp and
operators oμ

p are identical, whereas couplings between sites
are all proportional (or zero) such that J pq

μν = rpqJμν and

Vpq = rpqV, V =
∑
μ,ν

Jμνoμ ⊗ oν, (20)

h(q)
p = rpqh, h =

∑
μ

bμoμ, (21)

in (18), with V and h independent of p and q (and Jμν = Jνμ).
Here rpq = rqp determines the relative strength of the coupling
between p and q and, hence, the range of the interaction.
Eqs. (20) and (21) imply

hp = rph, rp =
∑
q �=p

rpq, (22)

Hpq = rpq(h ⊗ 1 + 1 ⊗ h + V ), (23)

such that all Hpq become proportional.
Then a uniform product eigenstate with |ψp〉 = |ψ〉 ∀ p

may become feasible for special couplings as all pair equa-
tions (16) reduce in this case to the single equation,

(h ⊗ 1 + 1 ⊗ h + V )|ψ,ψ〉 = E2|ψ,ψ〉, (24)

after setting Epq = rpqE2. The total energy (17) becomes

E = 1

2
E2

∑
p

rp. (25)

Here E2 represents a common pair energy whereas rp a sort of
coordination number for site p. In uniform cyclic systems rp

is constant ∀ p and E = rp
N
2 E2, whereas in open systems rp

is typically smaller at the borders due to the smaller number
of coupled neighbors, entailing edge corrections in hp = rph.
We will normalize the factors rpq such that rp = 1 for inner
“bulk” sites (e.g., rpq = 1

2δp,q±1 for first-neighbor couplings
in a linear chain, rpq = 1

N−1 for fully and equally connected
systems).

C. Formulation for fermion and boson systems

Previous equations admit a second quantized formulation
for systems of fermions or bosons. For N of such particles
at N distinct (orthogonal) sites labeled by p, having each
np = dim Hp accessible local states labeled by i, we can de-
fine the corresponding creation and annihilation operators c†

pi,
cpi satisfying

[cpi, c†
q j]± = δpqδi j, [c†

pi, c†
q j]± = [cpi, cq j]± = 0 (26)

for fermions (+) or bosons (−) ([a, b]± = ab ± ba). Setting
oμ

p = gi j
p = |ip〉〈 jp| and replacing it with c†

picp j , we can ex-
press the equivalent of Hamiltonian (1) as

H =
∑
p,i, j

bp
i jc

†
picp j + 1

2

∑
p�=q

∑
i, j,k,l

J pq
i jkl c

†
pic

†
qkcql cp j, (27)

with bp
i j = b̄p

ji, J pq
i jkl = Jqp

kli j , and J pq
i jkl = J̄ pq

jilk for H Hermitian.
It preserves the total occupancy at each site,

[H, Np] = 0, Np =
∑

i

c†
picpi, (28)

(where [a, b] = [a, b]−). We will consider the single occu-
pancy sector Np = 1 ∀ p where the formulation in the previous
form (1) is equivalent. The commutators,

[c†
picp j, c†

qkcql ] = δpq(δ jkc†
picpl − δil c

†
pkcp j ) (29)

are the same for fermions and bosons and are identical
to those satisfied by gi j

p = |ip〉〈 jp| ([gi j
p , gkl

q ] = δpq(δ jkgil
p −

δil g
k j
p )), defining an U(np) algebra at each site.

The product state (3) corresponds in the fermionic or
bosonic scenario to an independent particle state,

|�〉 =
(∏

p

a†
p1

)
|0〉, a†

p j =
∑

i

U p
jic

†
pi, (30)

where U p
ji’s are the elements of a unitary matrix U p such that

the same relations (26) are fulfilled by the new operators a†
p j ,

api. Then the one- and two-site excitations (7) and (8) can be
written as

|�p〉 = a†
piap1|�〉, |�pq〉 = a†

pia
†
q jaq1ap1|�〉 (31)

for |φp〉 = a†
pi|0〉, |φq〉 = a†

q j |0〉, and i, j � 2. Thus, we can
employ expression (19) with f p

i = U p
1i and

〈ipkq|Vpq| jplq〉 = J pq
i jkl . (32)

III. APPLICATION TO n-LEVEL MODELS

We will now consider the problem of factorization in a
general n-level model with two-site interactions. It can be
formulated as a system of N particles at N-distinct sites p,
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FIG. 1. Schematic diagram of the U , V , and W couplings in the
Hamiltonian (33).

having each access to n-local levels with unperturbed energies
ε

p
i . The Hamiltonian reads

H =
∑
i,p

ε
p
i c†

picpi − 1

2

∑
p�=q

rpq

∑
i, j

(Ui jc
†
pic

†
q jcq jcpi

+Vi jc
†
pic

†
qicq jcp j + Wi jc

†
pic

†
q jcqicp j ), (33)

where Ui j = Uji, Vi j = Vji, and Wi j = Wji are real coupling
strengths and rpq = rqp determines the coupling range. The
Vi j terms promote two particles at sites p, q from level j to
i, whereas the Wi j terms interchange the occupancies of these
levels at these sites (Fig. 1). For i = j both are identical to
the Uii term so we set Vii = Wii = 0 in what follows. The Ui j

terms just favor joint occupancy of levels i, j at sites p, q. The
operators c†

picp j satisfy an U(n) algebra at each site [Eq. (29)].
As discussed in Appendix A, for full range couplings

(rpq = 1
N−1 ∀ p �= q) the present model comprises the fully

connected SU(n) fermionic nuclear models employed in
Refs. [20–22], which are a n-level generalization of the well-
known two-level Lipkin model [44,45]. Some SU(n) spin
models and magnets [38,46,47] also correspond to special
cases of (33), with the SU(n) invariant Heisenberg cou-
pling [23–25,29,39,40] recovered for Vi j = Ui j = 0 (i �= j)
and Wi j = Uii = J . In its distinguishable formulation, (33) is
an n-level extension of the anisotropic XY Z spin-1/2 Hamil-
tonian in an applied magnetic field [4,6,10,14,48], recovered
from (33) for n = 2. Besides, for n = 2s + 1 Eq. (33) can be
formulated as a system of spins s with couplings depending
on powers of the spin operators (see Appendix A).

Since particles are moved in pairs between levels, the
Hamiltonian (33) has, for any value of the coupling strengths
and range, the number parity symmetries,

[H, Pi] = 0, i = 1, . . . , n, (34)

Pi = exp[−iπNi], Ni =
∑

p

c†
picpi, (35)

where Pi is the parity of the total occupation Ni of level i. Since∏n
i=1 Pi = e−iπN is fixed, just n − 1 parities are independent.

The exact eigenstates of H will then have definite parities
when nondegenerate and can be characterized by their n − 1
values σi = ±1 for i = 2, . . . , n.

In the MF approximation, which in the uniform attractive
case can be determined analytically (see Appendix B), the
GS of (33) will typically exhibit a series of transitions as
the coupling strengths increase from 0, from the unperturbed
phase with all particles in the lowest i = 1 level to a final full

parity-breaking phase where all n levels are occupied, with in-
termediate steps where just m < n levels are nonempty. These
transitions become smoothed out in the actual entangled exact
GS for finite N , which may instead exhibit number parity
transitions (Secs. III B and III E). The parity-breaking MF GS
becomes, however, exact at the factorization point, discussed
below.

A. Uniform factorized GS

We now determine the conditions for which the Hamilto-
nian (33) possesses a uniform factorized GS,

|�〉 =
∏

p

a†
p1|0〉, a†

p1 =
∑

i

fic
†
pi, (36)

with fi p-independent and
∑

i | fi|2 = 1. We set ε
p
i = rpεi with

rp = ∑
q �=p rpq according to (22) such that factorization is

determined by the single Eq. (24).
It is then seen that for k = i, Eq. (19) leads here to∑

j

[(2εi − Uii )δi j − Vi j] f 2
j = E2 f 2

i , (37a)

for i = 1, . . . , n, which is a standard eigenvalue equation for
the vector f 2 of elements f 2

i (i.e., for the “squared wave
function”) and matrix Mi j = (2εi − Uii )δi j − Vi j ,

M f 2 = E2 f 2. (37b)

It represents the n × n ii- j j block in (19).
On the other hand, for k = j �= i, Eq. (19) leads here to the

2 × 2 i j- ji block,(
εi + ε j − Ui j −Wi j

−Wi j εi + ε j − Ui j

)(
fi f j

f j fi

)
= E2

(
fi f j

f j fi

)
. (38)

Equation (38) entails for fi f j �= 0 the constraint,

Ui j + Wi j = εi + ε j − E2. (39)

Hence, given an arbitrary single-site spectrum εi and cou-
plings Vi j , Uii, the factorized eigenstate and pair energy E2 are
first determined from the eigenvalue Eq. (37b). The couplings
Wi j or Ui j for which such a state becomes an exact eigenstate
are then obtained from (39). These conditions are independent
of coupling range rpq and system size N , implying that this
factorization will emerge for any N � 2 and range rpq if (39)
is satisfied. The total energy is determined by E2 through
Eq. (25).

For GS factorization, the lowest eigenvalue E2 of (37)
should be chosen. In this case, as the eigenvalues of the matrix
in (38) are εi + ε j − Ui j ∓ Wi j , i.e., E2 and E2 + 2Wi j when
(39) is fulfilled, the uniform factorized state will be a GS of
the full pair Hamiltonian (and, hence, of the full H) for any
signs of the Vi j’s if

Wi j � 0 ∀ i �= j, (40)

i.e., E2 � εi + ε j − Ui j ∀ i �= j. Since the lowest eigenvalue
of (37) satisfies E2 � Mini[2εi − Uii] � 2εi − Uii ∀ i, a suffi-
cient condition for the validity of (40) at fixed Ui j is

Ui j � (Uii + Uj j )/2, (41)

∀ i �= j. In particular, (40) will be always satisfied for the
lowest eigenvalue E2 if Ui j = 0 ∀ i, j and (39) is fulfilled.
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The factorized GS obtained from (37) coincides, of course,
with the MF GS for the couplings (39), lying within the full
parity-breaking MF phase (see Appendix B).

For n = 2, the factorization conditions (37), (39) reduce
to those for the XY Z spin Hamiltonian (see Appendix A),
leading to a factorizing field. And for n = 3 it is still possible
to satisfy (39) by adjusting just the one-site energies εi for
given values of Ui j and Wi j ,

εi = 1
2 (Ti j + Tik − Tjk + E2), (42)

where T = U + W and i �= j �= k. In this case a constant
diagonal term �Uii = U0 remains to be added in (37) in order
that E2 matches the original value.

In the attractive case Vi j � 0 ∀ i, j, the eigenvector f 2 of
(37) associated with the lowest eigenvalue E2 will have all
components f 2

i of the same sign (in order to yield the lowest
eigenvalue) and, hence, all fi can be chosen as real. Otherwise
some of the f 2

i can be negative, implying imaginary compo-
nents fi.

In systems that can be divided into even and odd sites
such that any site p is coupled (rpq �= 0) just to sites q of
opposite parity (such as first-neighbor couplings in a linear
chain or cubic lattice), the uniform factorized GS can be used
to generate, through local unitaries, alternating factorized GSs
for associated Hamiltonians. For instance, if c†

pi → −c†
pi for

some level i at odd sites p, then Vi j → −Vi j , Wi j → −Wi j ,
and |�〉 is changed into an alternating product GS |� ′〉 with
f p
i → (−1)p fi.

B. Parity breaking and degeneracy at factorization

Equations (37) just determine the squared coefficients f 2
i ,

leaving the sign of each fi free. This degeneracy of the uni-
form factorized eigenstate (36) reflects its breaking of all
number parity symmetries Pi if fi �= 0 ∀ i: Its expansion in the
standard product basis,

|�〉 =
∑

i1,...,iN

fi1 · · · fiN c†
1i1

· · · c†
Nin

|0〉, (43)

clearly contains terms with all possible parities Pi. As

Pic
†
piP

†
i = −c†

pi, (44)

Pi|�〉 just changes the sign of fi. Hence, if |�〉 is an exact
eigenstate, all 2n−1 parity transformed states,∣∣�i1···im

〉 = Pi1 · · · Pim |�〉 (45)

obtained by changing the signs of fi1 · · · fim in (43) with m �
n − 1, are also exact eigenstates with the same energy due to
(34). These parity-breaking product eigenstates can then only
arise at a point where levels with different parities cross and
become degenerate. Factorization then signals a fundamental
parity level crossing taking place for any size N and range rpq

whenever Eq. (39) is fulfilled.
If N � n − 1, we obtain from (45) 2n−1 nonorthogonal but

linearly independent degenerate product eigenstates, implying
a D = 2n−1 degeneracy at factorization, which indicates the
number of distinct parity levels exactly crossing at this point.

On the other hand, for small systems with N < n − 1, the
number D of linearly independent states obtained with such

sign changes in the fi, and, hence, the degeneracy at factor-
ization is smaller. We obtain, in general,

D =
{

2n−1, N � n − 1∑N
k=0

(n−1
k

)
, N � n − 1,

(46)

such that signs are to be changed in just k � N levels. For a
single pair (N = 2), D = (n

2

) + 1.
We have so far assumed that the matrix M in (37) has a

nondegenerate GS with a full rank eigenvector f 2. If fi = 0
for some i, then factorization (and the ensuing degeneracy)
becomes equivalent to that for n → n − 1. And if the GS of
M is itself degenerate, the coefficients f 2

i will no longer be
unique (after normalization). The GS of H will then exhibit
additional degeneracy since a continuous set of factorized GSs
becomes feasible. We will consider below a special extreme
case.

C. The W case: Number symmetry and exceptional degeneracy
at factorization

We now consider the special case where Vi j = 0 ∀ i �=
j in (33). For n = 2 it corresponds to the XXZ model
(see Appendix A) which conserves the total Sz and, hence,
has eigenstates with definite magnetization. Accordingly, for
Vi j = 0 Eq. (33) exhibits an additional symmetry: not only
parity, but also the total occupation of each level is conserved

[H, Ni] = 0, i = 1, . . . , n, (47)

since the U and W couplings preserve all Ni’s. The exact
eigenstates can then be characterized by the occupations Ni

of each level, existing N!
N1!···Nn! orthogonal states with the same

set of occupations (N1, . . . , Nn).
This higher symmetry entails, first, a trivial factorization:

the n states with all particles in just one level,

|�i〉 =
∏

p

c†
pi|0〉, i = 1, . . . , n (48)

are clearly exact eigenstates: H |�i〉 = Ei|�i〉 with Ei = (εi −
1
2Uii )

∑
p rp. For n = 2 they become the fully aligned spin

states with maximum magnetization |M|.
But in addition, nontrivial symmetry-breaking uniform

factorized eigenstates of the form (36) may also arise:
Eqs. (37)–(39) remain valid, but Eq. (37) becomes trivial,
implying, for a full rank solution with fi �= 0 ∀ i,

Uii = 2εi − E2, i = 1, . . . , n, (49)

Wi j + Ui j = εi + ε j − E2 = Uii + Uj j

2
. (50)

Thus, fi remains here completely arbitrary: For vanishing
Vi j any uniform factorized state (36) is an exact eigenstate
with the same energy (25) when (49)–(50) are fulfilled, as
the matrix M becomes proportional to the identity. And if
Wi j � 0 ∀ i �= j, i.e., if Eq. (41) holds ∀ i �= j, they will be
GSs by the same previous arguments. The ensuing GS energy
(25) is then independent of the number n of levels for a given
fixed value of E2.

Such a continuous set of factorized exact GSs reflects their
breaking of all number symmetries (47) when 0 < fi < 1 ∀ i
as they lead to nonzero fluctuations 〈N2

i 〉 − 〈Ni〉2 = N fi(1 −

032212-5



FEDERICO PETROVICH, N. CANOSA, AND R. ROSSIGNOLI PHYSICAL REVIEW A 105, 032212 (2022)

fi ) > 0. Moreover, since they contain terms with all possi-
ble values 0 � Ni � N when fi �= 0 ∀ i, all number projected
states with definite values Ni = ni ∀ i derived from such prod-
uct state |�〉, ∣∣�n1···nn

〉 ∝ Pn1 · · · Pnn |�〉, (51)

satisfying Ni|�n1···nn〉 = ni|�n1···nn〉 with
∑n

i=1 ni = N , will
also be exact eigenstates with the same energy due to
(47). Here Pni = 1

2π

∫ 2π

0 e−ıφ(Ni−ni )dφ are number projectors
([Pni , H] = 0 ∀ i).

Remarkably, when normalized these projected states be-
come independent of the arbitrary coefficients fi determining
the product state |�〉 since each term in their expansion (43)
will have exactly ni particles in level i and, hence, all co-
efficients become identical: fi1 · · · fiN = ∏n

i=1( fi )ni = Cn1···nn .
Therefore, the states (51) become∣∣�n1···nn

〉 = |n1 · · · nn〉, (52)

where |n1 · · · nn〉 is the fully symmetric state having Ni = ni

particles in each level i. The total degeneracy at factorization
is then given by the number of distinct projected states (52),
which is just the number of ways of distributing N undistin-
guishable particles on n levels,

D =
(

N + n − 1

n − 1

)
, (53)

with D ≈ Nn−1

(n−1)! for N  n. Then factorization arises at an ex-
ceptional critical point where the D lowest levels with distinct
values of the Ni’s cross and become degenerate. The ensuing
degeneracy grows with system size, in contrast with previous
N-independent parity degeneracy.

Since any uniform factorized state is an exact GS at the
factorizing point, the GS subspace is here clearly invariant
under arbitrary U(n) unitary transformations,

U = exp

[
−i

∑
i, j

Ti j

∑
p

c†
picp j

]
, (54)

where T is an arbitrary Hermitian matrix, as U transforms any
product state (36) into another uniform product state and these
states span the GS subspace,

|�〉 → U |�〉 �⇒ f → exp[−iT ] f . (55)

It corresponds to U = e−iT ⊗ · · · ⊗ e−iT in the distinguishable
formulation.

The question which now arises is whether the full H also
becomes SU(n) invariant when the factorizing conditions (49)
and (50) are fulfilled. For n = 2 this is indeed the case: as
shown in Appendix A, they lead to a Heisenberg Hamilto-
nian H ∝ −∑

p<q rpqsp · sq plus constant terms, where sp is
the (dimensionless) spin operator at site p. Such H is ob-
viously invariant under arbitrary global rotations exp(−iφk ·∑

p sp) with k an arbitrary unit vector, and admits any aligned

product state |k, . . . , k〉 with 〈k|sp|k〉 = 1
2 k as exact GS for

arbitrary k.
However, for n � 3 only the GS subspace remains invari-

ant, in general, i.e., [H,U ] �= 0, with [H,U ] having just D
zero eigenvalues, corresponding to the GS subspace. There-
fore, for n � 3 the general SU(n) Heisenberg Hamiltonian

[23–25],

H = −J
∑
p<q

rpq

∑
i, j

c†
pic

†
q jcqicp j (56)

is just a particular case of present factorizing Hamiltonian,
corresponding to εi = 0 ∀ i and, hence, Uii = J = −E2 =
Wi j ∀i �= j, according to Eqs. (49) and (50).

D. Definite parity eigenstates and entanglement
at the border of factorization

We now examine the GS in the immediate vicinity of
factorization. We consider first the V �= 0 case. Since away
from factorization the exact GS is normally nondegenerate for
finite N , it will have definite parities Pi. The same holds for the
other levels which meet at the factorization point. Therefore,
their side limits at factorization will be given by the parity
projected states,∣∣�σ2···σn

〉 ∝ (1 + σ2P2) · · · (1 + σnPn)|�〉, (57)

where σi = ±1, satisfying Pi|�σ2···σn〉 = σi|�σ2···σn〉 ∀ i. This
projection just selects from the expansion (43) those terms
with the specified level parities. The GS will then exhibit a
parity transition as the factorization point is crossed [9,10,14]
(when some Hamiltonian parameter is varied), having distinct
parities σi at each side.

These projected states are entangled, i.e., they are no
longer product states. They exhibit critical entanglement prop-
erties since the product state |�〉 from which they are derived
is uniform and has lost all information about the range rpq of
the coupling and the distance between sites. Accordingly, the
exact side limits at factorization of GS entanglement entropies
will be range independent. Moreover, pairwise entanglement
will be independent of the separation |p − q| between sites,
although it will remain small in compliance with monogamy
[49,50].

These properties can be seen, for instance, in the reduced
state of site p, ρp = Trp′ �=p|�0〉〈�0|, of elements,

(ρp)i j = 〈c†
p jcpi〉, (58)

and eigenvalues λpi. Its entropy,

Sp = −Tr ρp log2 ρp = −
n∑

i=1

λpi log2 λpi (59)

is a measure of the (mode) entanglement between this site
and remaining sites. In the fermion case it is also a measure
of fermionic entanglement [45,51] in the sense of indicating
the deviation of the state from an independent fermion state
[Slater determinant (SD)], since it is the p block of the one-
body density matrix ρ (1),

ρ
(1)
pi,q j = 〈c†

q jcpi〉 = δpq〈c†
p jcpi〉, (60)

whose blocked structure is due to the fixed fermion number
Np at each site. Its entropy S(ρ (1) ) = ∑

p Sp is a quantity
which vanishes iff |�0〉 is a SD, i.e., (ρ (1) )2 = ρ (1) [51,52],
and is just NSp in the uniform case. In the factorized state |�〉,
〈c†

p jcpi〉 = f p∗
i f p

j , implying obviously ρ2
p = ρp, i.e., λpi = δi1

as directly seen in the MF basis (〈a†
p japi〉 = δi jδi1), and, hence,

Sp = 0.
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In contrast, in states |�0〉 with definite parity all off-
diagonal elements in the standard basis are canceled by parity
conservation ([ρp, eiπc†

picpi ] = 0 ∀ i), implying,

〈c†
p jcpi〉 = δi j〈c†

picpi〉. (61)

Hence, the eigenvalues of ρp are just the average occupations
λpi = 〈c†

picpi〉 and Sp > 0 whenever 〈c†
picpi〉 ∈ (0, 1).

In the projected states (57), these occupations depend on
the parities σ2, . . . , σn. For instance, for n = 3 in the uniform
case, we obtain for i = 1, . . . , 3,〈

�σ2σ3

∣∣c†
picpi

∣∣�σ2σ3

〉
= | fi|2

1 + ∑
j (−1)δi j σ j (1 − 2| f j |2)N−1

1 + ∑
j σ j (1 − 2| f j |2)N

, (62)

where σ1σ2σ3 = (−1)N . Hence, for large N, λpi ≈ | fi|2 plus
corrections of order (1 − 2| f j |2)N−1, which depend on the
parities σ j .

For finite N these corrections are, nonetheless, appreciable
and their parity dependence originates the splitting of the
degeneracy in the immediate vicinity of factorization (Ap-
pendix C). Moreover, the occupations (62) determine the exact
side limits of the single-site entanglement entropy (59) at
factorization, which will then remain finite at this point and
exhibit a discontinuity due to the change in the GS parities
σi. For large N this discontinuity becomes small as λpi ≈ | fi|2
approaches the MF value at both sides, but the side limits of
Sp remain finite.

On the other hand, the entanglement between two sites
p �= q is determined by their reduced pair state ρpq =
Trp′ �=p,q|�0〉〈�0|, also a mixed state. For general n it can be
measured through the negativity [53–55],

Npq = 1
2

(
Tr

∣∣ρTp
pq

∣∣ − 1
)
, (63)

where ρ
Tp
pq is the partial transpose of ρpq. Equation (63) is

just minus the sum of the negative eigenvalues of ρ
Tp
pq, with

Npq > 0 ensuring entanglement of ρpq according to the Peres
criterion [56]. The side limits at factorization of the exact GS
negativities will be determined by the projected states (57)
and will be nonzero for finite N , and, hence, independent of
the separation between the sites and the coupling range for
a uniform |�〉, undergoing there a discontinuity due to the
transition in the GS parities.

Although visible in small systems (see Sec. III E), the com-
mon value of Npq at factorization decreases as N increases, in
agreement with monogamy: The projected states (57) involve
a sum over 2n−1 product states σi1 Pi1 · · · σim Pim |�〉 having
the signs of fi changed at levels i1, . . . , im, which for suffi-
ciently large N become approximately orthogonal (e.g., for
n = 3 their overlaps are proportional to terms (1 − 2| f j |2)N

as seen in (62), which decrease rapidly with N if | f j | �= 0
or 1. Neglecting these overlaps, the two-site reduced states
ρpq derived from (57) become essentially a convex mixture
of 2n−1 product states ρp ⊗ ρq and are then separable [56],
implying Npq ≈ 0 ∀ p, q. Thus, for large systems pairwise
entanglement vanishes at factorization, although it will still
show long range in its vicinity [7,10,14].

We remark, however, that the exact GS side limits at fac-
torization of other entanglement measures do remain finite
for large N as was seen for the single-site entropy (59). In
fact, previous argument entails that the reduced state ρM ≡
ρp1···pM of M < N sites derived from (57) will be mixed with
rank 2n−1 (for M � n − 1) such that its entropy, measuring
their entanglement with the rest of the system, will also have
nonzero side limits for any N . They will be bounded, however,
by this rank,

S(ρM ) = −Tr ρM log2 ρM � n − 1, (64)

at the border of factorization. This bound at this point is then
another signature of factorization in these systems.

Similar considerations hold for the V = 0 case. The level
number projected states (51)–(52) represent the exact side
limits at factorization of the D crossing states. Except for
the states (48) with just one level occupied, all remaining
states are entangled and lead again to critical entanglement
properties (independence of coupling range and separation)
due to their fully symmetric nature. In particular, they lead
again to single-site reduced states ρp diagonal in the standard
basis,

〈n1 · · · nn|c†
picp j |n1 · · · nn〉 = δi jni/N, (65)

implying λpi = ni/N and, hence, a single-site entropy S(ρp) >

0 if 1 � ni � N − 1 for some i.

E. Factorization signatures in small systems

We discuss here typical illustrative results in small n-level
systems. We examine first the case with both V and W
couplings of Secs. III A and III B. We consider a uniform
single-site spectrum εi = ε

2 (i − n+1
2 ) for i = 1, . . . , n, and

couplings Ui j = 0, Vi j = v, and Wi j = (v/vc)(εi + ε j − E2c),
chosen such that GS factorization is reached at v = vc, ac-
cording to Eq. (39) (E2c is the pair energy obtained from (37)
at v = vc). For n = 2 these parameters lead to an anisotropic
XY Heisenberg coupling in a uniform field [Eq. (A2) with
Jz = 0], whereas for general n it is an extension of the n-level
model used in Refs. [21,22]. Figures 2–5 show results for the
n = 3-level case with vc = 2

5ε (for which E2c ≈ −1.26ε).
We first depict in Fig. 2 the spectrum of H for a single

pair (N = 2, r12 = 1) and for a cyclic four-particle chain with
first-neighbor couplings (N = 4, rpq = 1

2δq,p±1) as a function
of v/vc. In both cases there is a GS band of 2n−1 = 4 states
which cross exactly at the factorization point v = vc where
a GS number parity transition takes place: The GS changes
from the (σ1, σ2) = (+,+) state for v < vc to the (σ1, σ2) =
(−,−) state for v > vc. These states form the border of the GS
band, the remaining crossing levels (σ1, σ2) = (±,∓) lying in
between.

Further results for a ring of N = 4 particles are shown
in Fig. 3. It is verified that the first three exact excitation
energies together with the difference with the mean-field (HF,
see Appendix B) GS energy, exactly vanish just at v = vc

(top left), confirming factorization. The exact average occu-
pations 〈ni〉 of each level are shown in the top-right panel
(solid lines). As v increases the two upper levels start to be
populated with all exact occupations undergoing a steplike
discontinuity at the factorizing point, reflecting the associated
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FIG. 2. The exact spectrum of Hamiltonian (33) for a single
pair (N = 2, top) and for N = 4 sites (bottom) with first-neighbor
couplings and n = 3 levels at each site as a function of the scaled
coupling strength v/vc (see text). In both cases factorization takes
place at the same value v = vc where Eqs. (37)–(39) are fulfilled and
the four levels with distinct parities forming the GS band cross.

GS parity transition. The side limits at this point coincide with
those determined by the projected states (57) through Eq. (62).
Present factorization can then be detected and verified through
the magnitude of these occupation jumps.

HF results reproduce qualitatively the general trend but
miss the jump at factorization: Although exact at this point,
the HF GS corresponds to a superposition of the crossing
definite parity exact eigenstates. It exhibits instead transitions
at v/vc ≈ 0.44 and 0.65 (∀ N) where the second and third
level, respectively, start to be populated in the approach (see
Appendix B) and parity symmetry becomes broken. Thus,
factorization lies within the full parity-breaking HF phase (and
not at a HF transition).

Entanglement properties are depicted in the lower panels.
The exact single-site entanglement entropy (59) (bottom right)
increases monotonously as v/vc increases and displays a step-
wise increase precisely at the factorizing point due to the
transition in the average level occupations. The negativities
N1 and N2 (bottom left), measuring the pairwise entangle-
ment between first and second neighbors exhibit instead a
stepwise decrease at factorization, indicating multipartite en-
tanglement effects of the parity projected states. They are
also verified to approach the same side limits at factorization,
confirming the independence from separation in its immediate
vicinity as predicted by the projected states (57).

In Fig. 4 we show the same quantities for a ring of N = 6
particles with the same parameters to view the trend for larger
systems. Their behavior remains similar with factorization

FIG. 3. Results for the N = 4 chain of Fig. 2. Top left: The first
three exact excitation energies �Ei0 = Ei − E0 and the difference
EHF − E0 with the Hartree-Fock (HF) GS energy. All vanish at the
factorization point v = vc (1). Top right: Exact (solid lines) and HF
(dotted lines) values of the GS average occupations 〈ni〉 = 〈c†

picpi〉
of the three levels. The exact values represent the eigenvalues of the
single-site reduced density matrix and exhibit a discontinuity at v =
vc. Bottom: The exact one-site entanglement entropy (59) (right),
which shows a stepwise increase at factorization, and the exact
negativities between first (N1 = Np,p+1) and second (N2) neighbors
(left), measuring pairwise entanglement. Both reach the same side
limits at factorization, exhibiting there a stepwise decrease.

located at the same point where the four lowest levels with
distinct parities cross (top left). However, the GS now ex-
hibits in the range considered two further parity transitions
at vc2 ≈ 1.52vc and vc3 ≈ 1.74vc, not related to factorization,
where just two levels cross and the GS parity changes from
(σ2, σ3) = (+,+) for v < vc to (−,−) for vc < v < vc2,
(+,−) for vc2 < v < vc3 and back to (+,+) for v > vc3.

FIG. 4. Results for an N = 6 chain with n = 3 levels at each
site. Details are similar to those of Fig. 3. Top left: The first three
excitation energies �Ei0 together with EHF − E0. Points 2 and 3
indicate other GS parity transitions. Top right: Exact and HF average
occupations 〈ni〉. Bottom: The one-site entanglement entropy (59)
(right) and the exact negativities between first, second, and third
(N3) neighbors (left). All Ni’s reach the same side limits just at
factorization (v = vc).
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FIG. 5. The exact eigenvalues of the two-site reduced density
matrix for first neighbors (left) and the mutual information I (ρpq )
for first (I1), second (I2), and third (I3) neighbors (right) in the chain
of Fig. 4. All Ii’s exactly merge at the side limits of the factorizing
point v = vc.

These transitions lead to further steps in the single-site
occupation numbers and entropy (right panels), although the
larger step occurs again at the factorizing transition. All three
pair negativies Ni are verified to reach the same side limits at
the factorizing point, a characteristic signature of uniform fac-
torization, exhibiting there a stepwise decrease. These patterns
are not repeated at the other GS parity transitions, where N1

increases but N3 decreases vanishing for v > vc3. Full range
pairwise entanglement is, thus, centered at the factorizing
point where it becomes independent of separation. However,
the side limits of N at factorization are smaller than for N =
4, in agreement with monogamy and previous considerations.

In Fig. 5 we show the eigenvalues pi (entanglement spec-
trum) of the two-site density matrix ρpq (left panel), which
determine the entanglement of the pair with the rest of the
chain (just four of them are nonnegligible). They also exhibit
steps at the parity transitions with the larger step again at the
factorizing point. The ensuing mutual information,

Ipq = S(ρp) + S(ρq) − S(ρpq), (66)

where S(ρp) = Sp is the single-site entropy is shown in the
right panel for the first three neighbors. It is a measure of the
total correlation between sites. It is seen that all three values
merge at the side limits of the factorizing point, confirming
again that in its vicinity correlations become independent of
separation. Since it does not satisfy monogamy, its behavior
is, however, different from that of the negativity, steadily
increasing up to vc2 and exhibiting at factorization a stepwise
increase.

Finally, Figs. 6 and 7 show the spectrum of H in the
special W case (Vi j = 0) of Sec. III C for N = 4 particles and
cyclic first-neighbor couplings. In Fig. 6 we consider n = 3
(top) and 4 (bottom) levels at each site with uniform spec-
trum ε1 = −ε, ε2 = 0, ε3 = 0.8ε (and ε4 = 2.2ε for n = 4),
unequally spaced in order to avoid extra degeneracy away
from factorization. We have set Ui j = δi j

w
wc

(2εi − E2) and
Wi j = w

wc
(εi + ε j − E2) with wc = ε and E2 = −5ε, such that

factorization takes place at w = wc according to Eqs. (49) and
(50) with GS energy N

2 E2 = − 5
2 Nε, independent of n.

It is verified that all
(N+n−1

N

)
levels (15 for n = 3 and 35 for

n = 4) forming the GS band cross at the factorization point
w = wc, where any uniform product state is confirmed to be
an exact GS. The side limits at w = wc of the crossing states
are the symmetric states (52) with definite occupations in all n
levels, whose energies become all identical at this point, with

FIG. 6. The exact spectrum of Hamiltonian (33) for Vi j = 0 and
first-neighbor W and U couplings (see text) for N = 4 sites and
n = 3 (top) and 4 (bottom) levels at each site, as a function of the
scaled coupling strength w/wc. Factorization arises at an exception-
ally degenerate point w = wc where 15 (35) levels cross for n = 3
(4), in agreement with Eq. (53). At this point any uniform factorized
state is an exact GS.

the GS changing at wc from |�1〉 [Eq. (48), all particles in
the first level] to |�n〉 (all particles in the last level). No other
multilevel crossing in higher excited states occurs at this point.

To complete the description, Fig. 7 depicts the spectrum
for fixed couplings Wi j = Uii = J > 0 ∀ i, j and previous
single-site energies as a function of the spacing ε for n = 4
levels. At fixed J factorization is then reached for ε → 0,

FIG. 7. The spectrum of Hamiltonian (33) for Vi j = 0 and Uii =
Wi j = J ∀ i, j as a function of the single-particle spacing ε/J for
N = n = 4 (see text). For ε → 0 the SU(n) invariant Hamiltonian
(56) is approached. In this limit any uniform factorized state is again
an exact GS with the GS degeneracy (D = 35) given by the same
Eq. (53).
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where H becomes the SU(n) invariant Hamiltonian (56) and
Eqs. (49) and (50) are fulfilled with E2 = −J and GS energy
−NJ/2 ∀ n � 2. Again, all 35 levels of the initial GS band
merge in this limit where any uniform product state becomes
an exact GS.

However, in contrast with Fig. 6, it is seen that the re-
maining higher-energy levels also coalesce for ε → 0 into
four levels, three of them highly degenerate (the highest level
remains nondegenerate) due the high symmetry of H for ε =
0. Nevertheless, these higher-energy eigenspaces contain no
fully factorized states. As can be seen from (49) and (50), even
if nonuniform product states were considered, no further fully
separable eigenstate is feasible for ε = 0, apart from those of
the GS subspace.

For N = 4 and n � 4, the spectrum of Hamiltonian (56)
with first-neighbor couplings has just five distinct energies
with uniform spacing: Ei = −J (3 − i) for i = 1, . . . , 5. For
n = 4 the level degeneracies are (35,110,60,50,1), the highest
level corresponding to the fully antisymmetric eigenstate. We
remark, however, that whereas the same factorized GSs hold
also in the presence of long-range or nonuniform couplings,
i.e., arbitrary rpq > 0 with the same degeneracy (53) (and the
same energy if rp = ∑

q �=p rpq = 1 ∀ p), the intermediate lev-
els and degeneracies do depend on the coupling range and rpq

and are, hence, not “universal.” Only the fully antisymmetric
eigenstates, feasible for n � N , remain also unaltered with an
energy which is just the opposite of that of the fully symmetric
factorized eigenstates.

IV. CONCLUSIONS

We have analyzed the problem of GS factorization beyond
the standard interacting spin system scenario. We have first
derived general necessary and sufficient factorization condi-
tions for Hamiltonians with two-site couplings, showing that
they can be recast as pair eigenvalue equations. These con-
ditions were then applied to interacting N-particle systems
where each constituent has access to n-local levels. For the
UVW class of Hamiltonians (33) they can be worked out
explicitly, leading in the uniform case to the eigenvalue equa-
tion (37) for the squared local wave function and the constraint
(39) on the coupling strengths, valid for any number n of
levels. They are independent of size N and coupling range
and generalize those for XY Z spin systems, recovered for
n = 2. The ensuing product state is shown to be a GS when
conditions (40) are fulfilled, which are directly satisfied for
vanishing Ui j .

The full rank factorized GS breaks all level number pari-
ties, preserved by the Hamiltonian, therefore, having a 2n−1

degeneracy (for N � n − 1). Factorization then arises at a
special point where all 2n−1 definite parity levels of the GS
band cross and become degenerate, signaling a fundamental
GS level parity transition emerging for any size N and range.

We have also examined the special V = 0 case where the
Hamiltonian preserves the total occupation of each level. Here
the factorization conditions allowed us to identify an excep-
tional critical point, again emerging for any size and range
where all levels with definite occupations Ni forming the GS
band coalesce and become degenerate. This leads to a GS
degeneracy which increases with system size (D ∝ Nn−1). At

this point all uniform product states, including those breaking
all occupation number symmetries, are exact degenerate GSs,
implying a full SU(n) invariant GS subspace in a Hamiltonian
which for n � 3 is not necessarily SU(n) invariant.

Finally, we have analyzed the entanglement properties in
the immediate vicinity of factorization. For small systems,
pairwise entanglement (as detected by the negativity) reaches
there full range and becomes independent of separation, thus,
constituting an entanglement critical point. Moreover, in such
systems the parity transition occurring at the factorizing point
entails finite discontinuities in most quantities (single-site
entanglement, negativity, level occupations, mutual informa-
tion, etc.), whose magnitude can be analytically determined
through projection of the factorized GS. On the other hand, for
large systems pairwise entanglement will become vanishingly
small at factorization for any pair, but long-range entangle-
ment in its vicinity as well other effects [such as bounded
values of block entropies, Eq. (64)] will remain visible.

To summarize, in addition to providing nontrivial ana-
lytic exact GSs in strongly coupled systems which are not
exactly solvable (which could be used as benchmarks for
approximate numerical techniques), symmetry-breaking fac-
torization enables one to identify critical points in small
samples with exceptional GS degeneracy and entanglement
properties. Amid increasing quantum control capabilities,
present results open the way to explore factorization in SU(n)
many-body physics and complex systems beyond the usual
SU(2) spin scenario.
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APPENDIX A: SPECIAL CASES OF HAMILTONIAN (33)

We consider here particular cases of Hamiltonian (33).
Fully connected fermionic U(n) nuclear models as those used
in Refs. [20,21] correspond to rpq = 1

N−1 ∀ p �= q. In this
case, for Ui j = 0 and ε

p
i = εi we can rewrite (33) as

H =
n∑

i=1

εiGii − 1

2(N − 1)

∑
i �= j

Vi jG
2
i j + Wi j (Gi jGji − Gii ),

(A1)
where Gi j = ∑�

p=1 c†
picp j are collective operators satisfying

the same U(n) algebra as the operators gi j = c†
picp j ,

[Gi j, Gkl ] = δ jkGil − δil Gk j

for both fermions and bosons. Equation (A1) is a simplified
schematic model for describing collective excitations. For
n = 2 and εi = (−1)iε/2 it becomes the Lipkin Hamiltonian
[44,45],

H = εSz − 1

2(N − 1)
[V (S2

+ + S2
−)

+ W (S+S− + S−S+ − N )],

where Sz = 1
2 (G22 − G11), S+ = G21 = S†

− are collective
spin operators satisfying the SU(2) algebra ([Sz, S±] =
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±S±, [S−, S+] = 2Sz) and V = V12, W = W12. These mod-
els have been used to test several many-body techniques
[21,22,44,45,57] as the exact eigenstates can be obtained by
diagonalizing H in the irreducible representations of U(n).
For n = 2 level number parity conservation reduces to the Sz-
parity symmetry [H, Pz] = 0, where Pz = e−iπSz = P2e−iπN .

On the other hand, in the distinguishable formulation, the
Hamiltonian (33) corresponds for gi j

p = |ip〉〈 jp| to

H =
∑
i,p

ε
p
i gii

p −
∑

p<q,i, j

rpq
(
Ui jg

ii
pgj j

q + Vi jg
i j
p gi j

q + Wi jg
i j
p gji

q

)
.

For n = 2, ε
p
i = (−1)ibp/2, V12 = (Jx − Jy)/2, W12 = (Jx +

Jy)/2, and U11 = U22 = −U12 = Jz/2 with p = 1, . . . , N , it
becomes the Hamiltonian of N spins 1/2 interacting through
anisotropic XY Z couplings [6,10,19,48] of general range in a
nonuniform field bp,

H =
∑

p

bpspz −
∑
p�=q

rpq

∑
μ=x,y,z

Jμspμsqμ, (A2)

where spz = g22
p −g11

p

2 , spx = g21
p +g12

p

2 , spy = g21
p −g12

p

2i are spin oper-
ators satisfying the SU(2) algebra. For V12 = 0 we recover the
XXZ case where Jx = Jy and [H, Sz] = 0.

Besides, in the n-level case the operators gi j
p can always be

expressed in terms of powers of spin-s operators with 2s +
1 = n. For instance, for n = 3 all gi j

p can be written in terms
of spin-1 operators spz and sp± = spx ± ispy as

g
33
11
p = 1

2

(
s2

pz ± spz
)
, g22

p = 1
2 s2

p − s2
pz, (A3)

g21
p = − 1√

2
sp+spz, g32

p = 1√
2
spzsp+, (A4)

with g31
p = 1

2 s2
p+, gji

p = (gi j
p )†, and s2

p = s2
px + s2

py + s2
pz =

21p. Thus, single-site operators become, in general, quadratic
in the local spin components Spμ.

We now verify that for n = 2, factorization conditions
(37)–(39) become those for the XY Z Hamiltonian in a uni-
form field bp = b (A2). Equation (37a) leads for n = 2 to

E2 = −Jz/2 −
√

b2 + V 2
12,

for the lowest pair energy with (39) implying W12 = −E2 −
U12. We then obtain

|b| =
√

(W12 − Jz )2 − V 2
12 = √

(Jy − Jz )(Jx − Jz ),

which is the known expression for the factorizing field b at
given couplings Jμ [9,10] (valid for Jz < Jy < Jx, correspond-
ing to W12 > 0, V12 > 0). Setting now f = (cos θ

2 , sin θ
2 ) for

the local eigenvector Eq. (37a) leads to

cos θ = b − Jz/2 − E2 − V12

b − Jz/2 − E2 + V12
=

√
Jy − Jz

Jx − Jz
, (A5)

which coincides with the known expression for the spin ori-
entation angle θ of the uniform product GS [9].

In the V = 0 case of Sec. III C, factorization Eqs. (49)
and (50) imply Uii = 2εi − E2 and W12 = −E2 − U12 ≡ J for
n = 2 and ε2 = −ε1, leading to a Heisenberg Hamiltonian,

H = −
∑
p�=q

rpq(Jsp · sq + C), (A6)

with C = − 1
2 (E2 + 1

2 J ). Both E2 and U12 are free parame-
ters. It is verified that for J > 0, any uniform product state,
i.e., any state with all spins aligned in a fixed direction θ, φ

[ f = (cos θ
2 , eiφ sin θ

2 )] is an exact GS with pair energy E2

(sp · sq|ψ,ψ〉 = 1
4 |ψ,ψ〉) and total energy (25).

APPENDIX B: MEAN-FIELD APPROXIMATION

We show here that the MF approximation for the Hamil-
tonian (33) (which corresponds to the HF scheme in the
fermionic case) can be solved analytically in the uniform
attractive case for any values of n, N , and the coupling range
rpq � 0.

We look for the product state |�〉 [or, equivalently, the
independent particle state (36)] which minimizes 〈H〉 =
〈�|H |�〉 with ε

p
i = rpεi and nonegative couplings Ui j ,

Vi j , and Wi j . As 〈c†
picq j〉 = δpq f p∗

i f p
j and 〈c†

pic
†
q jcql cpk〉 =

f p∗
i f q∗

j f p
k f q

l for p �= q, it is easily seen that in this case 〈H〉
can be minimized by real uniform coefficients f p

i = fi ∈ R.
This leads, setting r = ∑

p rp = ∑
p�=q rpq, to

〈H〉 = r

(∑
i

εi f 2
i − 1

2

∑
i, j

Ji j f 2
i f 2

j

)
(B1)

= r

2

∑
i, j

M̃i j f 2
i f 2

j , M̃i j = εi + ε j − Ji j, (B2)

where Ji j = Ui j + Vi j + Wi j (and Wii = Vii = 0). Thus, MF
depends here just on the sum of coupling strengths.

In order to obtain the MF solution, we may directly mini-
mize (B2) with respect to the f 2

i with the constraint
∑

i f 2
i =

1. After introducing a Lagrange multiplier λ, this leads to the
equation

∑
j M̃i j f 2

j = λ and, hence, to f 2
i = λ

∑
j M̃−1

i j , i.e.,

f 2 = λM̃−1v with v = (1, . . . , 1)T . Enforcing the constraint
leads to λ = 1/(vT M̃−1v) and

f 2 = M̃−1v/(vT M̃−1v). (B3)

The minimum MF energy becomes

〈H〉 = r

2
( f 2)T M̃ f 2 = r

2
(vT M̃−1v)−1 = r

2
λ. (B4)

Equations (B3) and (B4) provide a closed expression for the
full parity breaking ( fi �= 0 ∀ i) MF state and energy. The sign
of each fi remains free, in agreement with parity breaking,
entailing a 2n−1 degeneracy of the MF state.

The exact factorized GS determined by Eqs. (37)–(39) is
one of these solutions: At factorization, (39) implies Ji j =
εi + ε j − E2 + Vi j for i �= j and, hence,

M̃i j = (2εi − Uii )δi j − (1 − δi j )(Vi j − E2)

= Mi j + E2(1 − δi j ), (B5)

with M the matrix in (37b). Equations (B3)–(B5) imply
Eq. (37) with E2 = (vT M̃−1v)−1 = λ as the MF pair energy.

The restriction f 2
i > 0 ∀ i implies, however, a limit on the

validity of solution (B3). The border is obtained from the
condition fi = 0 for some i (normally the highest-energy
level). Beyond this border we should set fi = 0, obtaining a
new MF solution with n − 1 occupied levels, given by (B3)
with M̃, v restricted to the occupied levels. This solution
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is valid until one of the new coefficients f 2
i vanishes. For

decreasing coupling strengths, this is to be repeated until the
trivial solution fi = δi1 (valid for sufficiently small Ji j) is
reached.

Therefore, as Ji j increases from 0, a series of n − 1 MF
transitions normally arise, associated with the onset of oc-
cupation of the ith level. For instance, for Uii = 0 and Ji j =
J (1 − δi j ), J > 0, Eq. (B3) leads to

f 2
i = 1/n − ε̃i/J, i = 1, . . . , n, (B6)

where ε̃i = εi − 1
n

∑n
j=1 ε j is the centered spectrum

(
∑n

i=1 ε̃i = 0). Equation (B6) holds insofar f 2
i � 0 ∀ i,

i.e.,

J � Jc
n = nε̃n, (B7)

where nε̃n = ∑n−1
j=1 εn − ε j is the sum of energy differences

with all lower levels. Repeating the procedure for a solution
with just the first m levels occupied, the same expressions
(B6)–(B7) are obtained with n → m.

APPENDIX C: SPLITTING OF ENERGY LEVELS AT THE
BORDER OF FACTORIZATION

Let us assume that H = Hf + δH , where Hf = H0 + Vint

is the Hamiltonian having the factorized GS and

δH0 =
∑

i

δεi

∑
p

c†
picpi, (C1)

a small perturbation of the single-particle term. For instance,
a perturbation δVint = γVint leads to δH = γ Hf − γ H0, im-
plying δεi = −γ εi plus a constant energy shift δE = γ E f .
At first order in δεi, the remaining correction on the definite
parity energy levels is

δEσ2,...,σn =
∑

i

δεi〈Ni〉σ2,...,σn , (C2)

where Ni = ∑
p c†

picpi and the average is taken on the par-
ity projected states (57). For n = 3, 〈Ni〉σ2,σ3/N is given in
Eq. (62). We then obtain, setting uj = 1 − 2| f j |2,

δEσ2σ3

N
=

∑
i δεi| fi|2

[
1 + ∑

j σ j (−1)δ ji uN−1
j

]
1 + ∑

j σ juN
j

≈
∑

i

δεi| fi|2
[

1 +
∑

j

σ j
[
(−1)δ ji + 2

∣∣ f 2
j

∣∣ − 1
]
uN−1

j

]
,

where σ1σ2σ3 = (−1)N and the last expression holds for suffi-
ciently large N . For δε3 = −δε1 = δε and δε2 = 0, this leads
to δE++ < δE−+ < δE+− < δE−− for δε > 0. This is the
case of Fig. 2, where δε = (1 − v

vc
)ε > 0 (<0) on the left

(right) side of the factorization point v = vc. In the V = 0
case, 〈Ni〉 = ni is just the occupation of level i in the projected
states (51) and (52), and (C2) becomes exact.
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