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Abstract: Coastal regions and surface waters are among the fundamental biological and social
development resources worldwide. For this reason, it is essential to thoroughly monitor these
regions to determine and characterize their geographical features and environmental health. These
geographical regions, however, present several monitoring challenges when using remotely sensed
imagery. Small water bodies tend to be surrounded by swamps, marshes, or vegetation, making
accurate border detection difficult. Coastal waters, in turn, experience several phenomena due to
winds, undercurrents, and waves, which also hamper the detection of environmental hazards like
oil spills. In this work, we propose an automated segmentation algorithm that can be applied to
these targets in airborne and spaceborne SAR images. The method is based on pointwise detection
in fuzzy borders using a parameter estimation of the G0 distribution, which has been successfully
used in similar contexts. The underlying assumption is that the sought-for border separates regions
with different textures, each having different distribution parameters. Then, stochastic distances can
identify the most likely point where this parameter change occurs. A curve interpolation algorithm
then estimates the actual contour of the body given the detected points. We assess the adequacy of
eight stochastic distances that are mostly applied in the literature. We evaluate the performance of
our method in terms of similarity between true and detected boundaries on simulated and actual
SAR images, achieving promising results. The performance of our proposal is assessed by Hausdorff
distance and Intersection over Union. In the case of synthetic data, the selection of the best stochastic
distance depends on the parameters of the G0

I distribution. In contrast, the harmonic-mean and
triangular distances produced the best results in detecting borders in three actual SAR images of
lagoons. Finally, we present the results of our proposal applied to an image with oil spills using
Bhattacharyya, Hellinger, and Jensen–Shannon distances.

Keywords: Border detection; segmentation; water bodies; SAR images; stochastic distances

1. Introduction

Coastal and surface waters are vital environmental resources in ecological systems
and for human activities such as agriculture, industrial production, public health and
safety, tourism, and human life settlement. Although there is no strict definition to
the concept of a small water body, it has been used in the literature to consider small
lakes, ponds, low-order streams, ditches, and springs [1]. Small water bodies play a
fundamental role in providing habitats for animals and plants, and their environmental
interaction generates beneficial weather conditions. Understanding surface water bodies’
behavior is crucial in water resources assessment, weather conditions modeling, crop
improvement, flood mitigation, aquifer monitoring, wetland recording, and ecosystems
studies, among many others. Coastal waters, in turn, are the interface between complex
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geographic and geomorphologic environments, giving rise to unique ecological systems.
A large proportion of human settlements and activities are very close to coastal regions,
exerting potentially or actually negative anthropic effects. Thus, adequate monitoring of
these regions is essential to understand and mitigate these adverse effects.

Traditional monitoring and surveying techniques to acquire relevant information are
known to be costly and cumbersome, and for this reason remote sensing has emerged as
a feasible option since it produces adequate spatial and temporal information about the
Earth’s surface. Optical satellite imagery provides satisfactory spectral information, which
facilitates land cover determination, among other purposes. However, freely available
satellite imagery usually lacks fine enough spatial and temporal resolution for small water
body monitoring, or for the determination of small targets, e.g., oil spills, and also strongly
depends on adequate daylight and weather conditions during acquisition. Synthetic
Aperture Radar (SAR) sensors, in turn, emit active microwave pulses and then sense the
energy that bounces back, with which it is possible to obtain backscatter information
of the surface, regardless of daylight or weather conditions, and with arbitrary spatial
resolution. SAR sensors can also “see” through canopy and vegetation layers, which is
also necessary during an accurate detection of the actual surface of shallow water bodies
(fresh or coastal), whose surface may be obscured by vegetation, either natural (mangroves,
swamps, marshes, to name a few) or in waterlogged fields (rice crops, sugar cane, willows,
and birches).

Water is characterized by a high dielectric constant that affects the backscatter intensity.
Since SAR sensors can detect differences in geometric and dielectric properties, this tech-
nology appears adequate for studying surface water bodies, which can be distinguished
in SAR images as dark regions. Data provided by SAR sensors have been widely used in
recent years to detect and extract water patterns and to quantify their changes [2–10].

Another vital area of research concerns the detection of oil spills in water. According
to the European Space Agency (ESA), the coastal environment is being damaged because of
tanker accidents and illegal ship discharges that spill large amounts of oil into the sea. One
of the major problems is the difficulty in identifying the whole affected area, the degree
of smoothness, and the direction of its movement. Oil spills are a threat to naval activity,
human beings, and animal life, and they are of interest in public, political, and scientific
fields. Since the speed of oil slicks ranges from 0.4 cm−1 to 0.75 cm−1 [11], a timely detection
methodology is crucial to prevent pollution and preserve natural resources.

SAR sensors also have the advantage of producing images of difficult to access zones,
being a tool widely used in oil spill detection [12]. However, this kind of image shows
patches such as eddies, upwelling, internal waves, rain cells, and wind shadows, which
are oil lookalikes but not actual oil features [13]. Both phenomena appear as black spots in
SAR images. Moreover, supervised algorithms face the problem of the scarcity of training
samples [14]. One of the most popular and simple techniques used in this task is visual
inspection and manual delineation [15], whose reliability strongly depends on the expertise
and experience of personnel trained in photointerpretation. So far, the lack of robust identi-
fication techniques still raises the requirement of professionally trained supervision [16]. In
this sense, semi-automatic methods can be a good complement, alleviating the burden of
humanly supervised tasks.

Unsupervised processing is advantageous over human-assisted processing, being
less expensive and less affected by the typical human inaccuracies that arise due to fa-
tigue, distractions, and other factors [17,18]. A notable disadvantage of human-assisted
detection in this application domain is the difficulties and intra- and intersubject vari-
ance of the human vision in distinguishing fuzzy boundaries. These issues increase the
execution costs and times, and demand more than one operator to achieve trustworthy
results [19]. In this context, edges play a fundamental role in image processing and
computer vision. Although usually understood as “changes in intensity or color along a
border”, the notion of an edge can be more general. Edges are important because they
can be used as simple descriptors of complex objects. Blake and Isard [20] discussed
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their importance in applications that range from robotics to computer-based animation.
In particular, in remote sensing applications, edge detection allows for fast delineation
of features of interest as, for instance, shores. Detected edges can be later refined and
used as feature descriptors in high-level interpretation procedures. Even though edges
behave locally as lines, in some cases, there are only transition zones (fuzzy edges),
which are relevant in the cases considered in this work. Most edge detection techniques
employ local operators, i.e., operations that enclose a small region around each image
position. In other words, the evidence of edge occurrence is assessed on a spatially
limited region around each point. Remarkable examples of this approach are the Lapla-
cian, Marr–Hildreth, and Canny operators, which find features as approximations of
the unobserved continuous image gradient [21].

Gambini et al. [22] proposed a novel approach, (here termed “Gambini Algorithm”
or GA). They analyzed a thin strip of pixels, finding evidence of a change of textural
properties along the strip in an iterative fashion. If the strip crosses an edge between
regions with different characteristics, the border is where such differences are maximal.
The original proposal used the likelihood of univariate amplitude SAR data under the
G0 model and obtained excellent results even in the presence of strong noise levels [23].
This statistical line-search approach was then extended to fully polarimetric SAR data [24].
Although very successful in some cases, in this approach, the border detection depends
on computing a likelihood function several times, thus imposing a heavy computational
burden. Nascimento et al. [25] used stochastic distances between PolSAR samples in the
GA approach, obtaining excellent results while reducing the computational cost. Naranjo-
Torres et al. [26] used a different class of distances, namely geodesic measures, on intensity
data. This was the first attempt to use distances between intensity samples in the GA. It
was computationally affordable and successful for SAR images with one or two looks (very
noisy images).

Figure 1 shows a chronological overview of the use of the three main components
that characterize an edge detection approach using GA, namely: (i) the model (the G0

model, its Harmonic G0
H version, the Wishart distribution W , or distribution-free as in

Ref. [27]); (ii) the type of data (Amplitude, Intensity, Polarimetric); and (iii) the function to
maximize (likelihood, non-parametric tests SNP, geodesic distances dG, or features derived
from H-φ divergences dH

φ ). This figure also shows this paper’s contribution, namely the
use of intensity data under the G0 model and a statistical test based on dH

φ divergences.
Nascimento et al. [28] used stochastic distances between intensity samples. Stochastic

distances were not used in the GA until Revollo et al. [29] proposed a technique to detect
oil spills based on change detection over data strips. The expressions in [28] are more
general than the geodesic distance and produce a wealth of distances that can be turned
into statistical tests. In some cases, they rely on numerical integration.

The novelty of our approach is to combine the GA with a hypothesis test whose
statistic is defined, for intensity data, in terms of stochastic distances derived from the
dH

φ -family of divergences. Gambini et al. [22] used probabilities to detect edges at distances
no larger than k pixels from the correct position. This quantitative measure is present
in all subsequent studies. Instead, we propose a different quality assessment evaluating
two measures, the Hausdorff distance between the estimated and actual edges and the
Intersection over Union (IoU) of the corresponding areas. These measures are more relevant
to the problem we are dealing with. Moreover, we also analyze the impact of the number
of strips on the results, and propose a technique which adapts this parameter. Finally, we
use eight stochastic distances and evaluate their performance with simulated and actual
imagery. We tackle two problems, namely the recognition of oil spills and of water bodies
boundaries with a unified approach. Both aim at delineating boundaries between targets
with disparate (often unseen) properties, and suffer from different sources of confusion.
The former, by waves and low wind; the latter, by shadows. Our solution relies on statistical
features that are little disturbed by these issues.
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2014
Nascimento et al.

2017
Naranjo-Torres et al.

Figure 1. Chronological overview of the main edge detection approaches in SAR imagery using the
Gambini Algorithm [22,24–27]. The contribution of this work is shown in bold lines.

This manuscript unfolds as follows. Section 2 describes the required theory, including
the multiplicative model (Section 2.1) and hypothesis tests based on stochastic divergences
(Sections 2.2 and 2.3). Section 3 is devoted to the methodology; the proposed algorithm
is presented in Section 3.1, and the test cases are described in Section 3.2. In Section 4
we present results obtained with simulated data and images from an operational sensor.
Section 5 concludes the article with an analysis of the results.

2. Theoretical Framework
2.1. Multiplicative Model

The analysis of SAR images is challenging due to the presence of speckle, a non-
additive, non-Gaussian interference process that arises during the image formation. The
multiplicative model is one of the most successful statistical descriptions of this data. The
intensity of the SAR data is a random variable Z, called return. Under the multiplicative
model, it is the product of two independent random variables: X, the actual backscatter and
Y, the speckle. See further details in Ref. [30]. The family of G0

I distributions was introduced
in Ref. [31] as a model devised to understand and quantify the statistical parameters of
local regions in SAR images. This distribution arises assuming that X can be modeled by
an Inverse Gamma distribution, X ∼ Γ−1(α, γ), with texture parameter α < 0 and scale
parameter γ > 0. Multilook speckle can always be described as a Gamma distribution
with shape parameter L ≥ 1 (the number of looks) and unitary mean, denoted Y ∼ Γ(L, L).
Then, the distribution of Z is characterized by the probability density function

fZ(z; α, γ, L) =
LLΓ(L− α)

γαΓ(−α)Γ(L)
zL−1(γ + Lz)α−L

1R+
(z), (1)

in which −α, γ > 0 and L ≥ 1. This situation is denoted as Z ∼ G0
I (α, γ, L).

Given the random sample Z = (Z1, Z2, . . . , Zn), and assuming that L is known, the
likelihood function for (α, γ) is

L(α, γ; Z) =
[

LLΓ(L− α)

γαΓ(−α)Γ(L)

]n n

∏
i=1

ZL−1
i (γ + LZi)

α−L. (2)
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The maximum likelihood estimator (MLE) is commonly employed to estimate α, γ due
to its optimal asymptotic properties [32]. Moreover, the number of looks can be estimated
as the reciprocal square of the coefficient of variation on data with fully developed speckle,
as in Ref. [33]:

L̂ =

[
Z′

sd(Z′)

]2

, (3)

using Z′, samples from textureless areas where α→ −∞, e.g., pastures and bare soil, and
it can be assumed fixed for the whole image, and denoting its sample mean and sample
standard deviation as Z′ and sd(Z′), respectively. Alternatively, the user may use the
nominal number of looks (which we do not recommend, as it is usually an optimistic
measure of quality), or a regression model to estimate L.

2.2. Stochastic Divergences and Distances

We recall here the main stochastic divergences which form the statistical tests for
the hypothesis of changes in properties. Without loss of generality, let U and V be two
continuous random variables defined over the same probability space with the same
support R ⊆ R, and with densities fU(u; θU) and fV(v; θV) where θU and θV are the
parameter vectors. Consider the functions φ, H : R>0 → R≥0 satisfying that φ is convex
and H is strictly increasing with H(0) = 0. The (H, φ)-divergence [34] between fU and
fV is

DH
φ (U, V) = H

(∫
R

φ

(
fU(x; θU)

fV(x; θV)

)
fV(x; θV)dx

)
. (4)

Since the triangular inequality does not necessarily hold [35], this measure is not a
metric in the strict sense. Even though some of them are not even symmetric, a possible
solution is to consider the distances

dH
φ (U, V) =

DH
φ (U, V) + DH

φ (V, U)

2
. (5)

Table 1 shows some H and φ functions that give rise to well-know divergences. The
last column is the constant τ = (H′(0)φ′′(1))−1, which will be used later.

Table 1. Stochastic divergences and their H-φ functions.

Name H φ τ

Arithmetic-geometric x [(x + 1)/2] log[(x + 1)/(2x)] 4
Bhattacharyya − log(1− x) (x + 1)/2−

√
x 4

Hellinger x/2 (
√

x− 1)2 4
Harmonic-mean − log(1− x/2) (x− 1)2/(x + 1) 2
Jensen–Shannon x x log[2x/(x + 1)] 4
Kullback–Leibler x x log x 1

Rényi log[(β− 1)x + 2]/(β− 1) [xβ − β(x− 1)− 2]/(β− 1),
0 < β < 1

β−1

Triangular x (x− 1)2/(x + 1) 1

Some well-known measures arise with the following selection of H and φ in the
previous symmetrized versions:

Arithmetic-geometric (AG) [36]

dAG(U, V) =
1
2

∫
( fU + fV) log

fU + fV

2
√

fU fV
. (6)

Bhattacharyya (B) [37]
dB(U, V) = − log

√
fU fV . (7)
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Hellinger (H) [38]

dH(U, V) = 1−
∫ √

fU fV . (8)

Harmonic mean (HM) [39]

dHM(U, V) = − log
∫ 2 fU fV

fU + fV
. (9)

Jensen–Shannon (JS) [40]

dJS(U, V) =
1
2

[∫
fU log

2 fU
fU + fV

+
∫

fV log
2 fV

fU + fV

]
. (10)

Kullback–Leibler (KL) [41]

dKL(U, V) =
1
2

∫
( fU − fV) log

fU
fV

. (11)

Rényi (R) [42] of order 0 < β < 1

dβ
R(U, V) =

1
β− 1

log
[

1
2

(∫
f β
U f 1−β

V +
∫

f 1−β
U f β

V

)]
. (12)

Triangular (T) [39]

dT(U, V) =
∫

( fU − fV)
2

fU + fV
. (13)

Although interesting and widely used in the literature, these distances do not have
intrinsic interpretability and are not comparable. The work by Salicrú et al. [34] solves both
issues by turning them into test statistics with the same asymptotic distribution.

2.3. Hypothesis Test

The most frequent comparison is between samples with the same distribution, possibly
indexed by different parameters. Let U and V be such random variables, whose distribu-
tions are characterized by the densities f (u; θU) and f (v; θV) with parameter vectors in
Θ ⊂ RM. In this case, the distance between them can be indicated by dh

φ(θU , θV). We are in-
terested in testing the null hypothesis H0 : θU = θV using the samples U = (U1, U2, . . . , Um)
from U and V = (V1, V2, . . . , Vn) from V. Salicrú et al. [34] proved that, under H0,

SH
φ (θ̂U , θ̂V) =

2mnτ

m + n
dH

φ (θ̂U , θ̂V) (14)

converges to a χ2
M-distributed random variable, where θ̂U and θ̂V are the maximum like-

lihood estimators based on U and V , respectively, provided m, n → ∞ at the same rate.
Table 1 provides the values of τ for each case. This result holds for a large class of H-φ
functions, particularly for all the ones defined in Section 2.2.

The null hypothesis is, thus, rejected with significance level η, if

Pr
(
χ2

M ≥ SH
φ (θ̂U , θ̂V)

)
≤ η.

Such a rejection, or the p-value associated to the samples, is our indicator of a change
of properties: our estimator of the edge location.

When this test is applied to an image, it provides a statistical tool to refute the claim
that the same distribution can model two samples obtained from different regions.
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3. Methodology
3.1. Algorithm to Detect Boundary Pixels

We consider a specific region of interest (ROI) within the image, which is selected
by the user and which should include a small water body such as a lake, seawater, or
similar. This target should be approximately centered on the RoI. In order to apply the
proposed algorithm, a pixel c = (xc, yc) is fixed as a rotation center and a number of
rays or strips nr is set. Since nr also sets the number of detected points in the border,
the selection of an adequate value for this parameter should be based on a balance
between a significant number of points to find the border’s approximating curve and
the required computational cost. First, a segment of pixels s̄ is built using Bresenham’s
algorithm [43] from the initial point c to the final point (w, 1) (above right corner), where
w and h indicate respectively the width and height of the ROI. Let dx = (w− xc) and
dy = (h− yc). For simplicity, it is assumed that w > h, meaning a slope dy/dx < 1. If
(x, y) ∈ s̄, the next pixel pxnext in the segment is chosen from the decision parameter
∆ = 2dy− dx as follows:

pxnext =

{
(x + 1, y) if ∆ ≤ 0 (below the true line),
(x + 1, y + 1) if ∆ > 0 (above the true line),

(15)

and the decision parameter is updated as:

∆updated =

{
∆ + 2dy if ∆ ≤ 0,
∆ + 2(dy− dx) if ∆ > 0.

(16)

This process is replicated for x = xc, . . . , w. In case the slope is greater than 1, the
methodology is analogous but the sampling is made using the coordinate y.

From the segment s̄ = {(xi, yi)}, it is considered that the ray strip S̄ ∈ Z#s̄×6 such
that the ith row of S̄ is of the form (pxi,−1, pxi,0, pxi,1) where pxi,j = (xi, yi + j) and #s̄
denote the number of pixels in the segment. Then, the ray strip is rotated with center c and
angle θk = 2πk/nr, for k = 1, 2, . . . , nr, producing a set of ray strips formed by elements
S̄k ∈ Z`k×6 whose ith row is of the form (px′i,−1, px′i,0, px′i,1) where px′i,j is the rotation of
pxi,j. The number of rows `k is determined by the fact that S̄k must lie in the image. The
number of looks is estimated using (3), and one of the stochastic distances from (6)–(13) is
selected and indicated by d in what follows.

For every rotated ray strip S̄k, let zi,j be the intensity value of the pixel px′i,j. Thus, zi,j

is the ith row of the array of intensity values z ∈ R`k×3. For each p = 10, . . . , `k − 10, the
set of intensity values is divided into two samples: s1 = {zi,j : i = 1, . . . , p ∧ j = 1, 2, 3} and
s2 = {zi,j : i = p + 1, . . . , `k ∧ j = 1, 2, 3}. The MLE θ̂a = (α̂a, γ̂a) is computed using the
sample sa for a = 1, 2. The selected stochastic distance d(θ̂1, θ̂2) is allocated in a vector of
distances. Then, suppose pmax is the value of p that maximizes these distances. In this case,
we split the ray strip about this point, and consider the two sample sets at each side of the
strip, for which the statistic test (14) is computed to apply the hypothesis test introduced in
Section 2.3. Then, if the null hypothesis is rejected, the pixel (xpmax , ypmax) is considered a
part of an edge. This approach is summarized in Algorithm 1.
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Algorithm 1: Algorithm for estimating the edge points.
Input:

d a stochastic distance // from (6)–(13)

nr number of rays
c = (xc, yc) centre of rotation

Output: Set of detected points
Data: ROI of a SAR image

1 L← estimated number of looks // using (3)

2 w← ROI width
3 h← ROI height
4 if h > w then
5 ROI← transpose of ROI
6 w← ROI width
7 h← ROI height

8 s̄← {(xi, yi)} points in the segment from c to (w, h) // using Bresenham’s algorithm

9 S̄← array of size #s̄× 6 // #s̄ number of pixels in s̄

10 S̄[i, ]←
(

xi yi − 1 xi yi xi yi + 1
)

11 for k = 1, 2, . . . , nr do
12 S̄k ← rotation of S̄ with center c and angle 2πk/nr

13 for each S̄k do
14 `k ← number of rows of S̄k
15 z← {zi,j : i = 1, . . . , `k ∧ j = 1, 2, 3} intensity values of the pixels in Sk
16 for each p ∈ 10 : `k − 10 do
17 s1 ← {zi,j : i = 1, . . . , p ∧ j = 1, 2, 3} first sample
18 s2 ← {zi,j : i = p + 1, . . . , `k ∧ j = 1, 2, 3} second sample
19 θ̂1 ← (α̂1, γ̂1) MLE using s1

20 θ̂2 ← (α̂2, γ̂2) MLE using s2

21 dp ← d(θ̂1, θ̂2)

22 pmax ← argmax{dp}
23 s∗1 ← {zi,j : i = 1, . . . , pmax ∧ j = 1, 2, 3} first sample
24 s∗2 ← {zi,j : i = pmax + 1, . . . , `k ∧ j = 1, 2, 3} second sample
25 θ̂1

∗ ← (α̂∗1 , γ̂∗1) MLE using s∗1
26 θ̂2

∗ ← (α̂∗2 , γ̂∗2) MLE using s∗2
27 S← Sh

φ(θ̂
1
∗, θ̂2
∗) statistic // using (14)

28 Apply the hypothesis test
29 if H0 is rejected then
30 (xq, yq) is estimated as an edge point

31 else
32 there is no evidence of edge on the strip

There may be cases in which a strip crosses the target’s border more than once. This
situation may arise in complex, non-convex, shapes. Our current implementation does not
handle these cases, since Algorithm 1 will identify the edge of the strongest transition. In
future enhancements of this work we will consider an odd amount of border crossings
per ray strip and a modification of the interpolation algorithm to cope with these cases.
However, as will be shown in the examples, the net effect of this simplified detection is
not significant.

3.2. Test Cases

To assess the dependence of the proposed technique on the stochastic distances in its
performance, the experimental study consists of both synthetic and actual SAR images. In
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the former case, we used the G0
I distribution to generate a single look (L = 1) and a L = 2

image. The image obtained in the multilook case and the actual border of the simulated
surface water are shown in Figure 2. The parameter values are α = −20 for the simulated
lagoon (darker area) and α ∈ {−3,−1.5,−5,−8} for the quadrants QI (highly textured
zones), QI I (extremely textured regions), QI I I (middle textured regions), and QIV (low
textured regions) in which the background is divided. The scale parameter is γ = 0.5 for
the whole image.

Figure 2. Synthetic image (left) with L = 2 and the actual border (right).

The application to actual SAR images consists of two examples:

1. Three lagoons in the south of Buenos Aires, Argentina, acquired from the SAOCOM
mission (see https://catalog.saocom.conae.gov.ar/catalog/, last accessed date: 8 Octo-
ber 2022), 9.22 m resolution, located within the rectangle with geographic coordinates
38°57′41′′S 61°27′31′′W (left bottom corner) and 38°51′8′′S 60°58′20′′W (right top cor-
ner); see Figure 3. The sizes of the images are 951× 401, 216× 106, and 471× 150
pixels. These lagoons were selected to have a variety of representative examples of
different characteristics, such as edge shape, spectral distribution of the backscatter in
the water, area, and type of surroundings;

2. Oil spill detection in the zone of the Valdés peninsula, Chubut, Argentina, acquired
from COSMO-SkyMed and provided by CONAE; see Figure 4. The image has
1853× 2111 pixels.

An expert technician manually marked the actual border of the lagoons using high-
resolution optical images with full spatial and temporal consistency. Using the same dates
is essential in a dynamic problem such as oil spill detection. In this study, we used the
option “Historical Imagery” available on the desktop version of Google Earth, to obtain the
ROI’s view in the desired time.

Algorithm 1 produces a set of points with which the estimated border will be
generated using a B-spline approximation. We used two measures to quantify the
performance of the estimation in terms of the considered stochastic distance. First, the
Hausdorff distance defined as Hd = maxp∈P minp′∈P′‖p− p′‖, where P and P′ represent
the points in the true border and points obtained by applying our proposal. The smaller
Hd is, the better is the edge. Second, the Intersection over Union (IoU) is the quotient
between the number of pixels in the intersection among the areas defined by the true
border and the B-spline curve, and the total of pixels in the union of both areas. The
larger IoU is, the better is the edge.

https://catalog.saocom.conae.gov.ar/catalog/
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Figure 3. SAOCOM images of lagoons in the south of Buenos Aires, Argentina (left), and their true
borders (right).

Figure 4. COSMO-SkyMed image of an oil spill.

Since our methodology might detect outliers, we first clean the points obtained in
the first execution of the algorithm: we consider the Euclidean distances between two
detected points in consecutive rays, and reject those that lie at a distance larger than a
specific threshold. The remaining points are considered as inlier estimates. The relevance
of rejecting outliers is quantified in Section 4. Figure 5 summarizes the general workflow
in the treatment of simulated data. In the case of actual data, the process is the same
except that the analysis considers the background as a whole area rather than being divided
into quadrants.
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Center c and segment s̄.

Ray strip S̄.

Rotated strips S̄k.

Detected border points.

B-spline approximation.

Neat points.

QUALITY MEASURES

Hausdorff distance

Actual and estimated
borders.IoU

Intersection. Union.

Ground truth. Estimation.

Figure 5. Complete workflow to find the target’s border, together with quality assessment.

We used the R platform version 4.1.0 [44] to implement Algorithm 1 and all the
additional computations on a personal computer with Intel© Core™ processor, i7-6700K
CPU 3.40 GHz, 16 GB RAM, and System Type 64 bit operating system.

4. Results and Discussion
4.1. General Behavior

We first analyze the interplay between texture parameter (α = −1.5,−3,−5,−8),
number of ray strips (nr = 32, 64, 128), and all points versus “neat” points. The results are
shown in Figure 6. Table 2 summarizes these results in the form of recommendations. If
the improvement of both quality indicators is balanced, it is recommended to use the neat
points to find the B-spline curve.
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Figure 6. Hausdorff distance (Hd) and Intersection over Union (IoU) for simulated data. Blue and
red points represent detected and “neat” points, respectively. Only one line is shown when these
results coincide.

Table 2. Cases in which it is recommended to use neat points for the B-spline approximation.

Distance L α nr

AG

1

−1.5 126
−3 32
−8 63

2
−1.5 63

−3,−5,−8 126

B 1
−3 32
−8 63

H 1
−3 32
−8 63

HM 1
−3 32
−8 63, 126

JS 1
−3 32
−8 63

KL 1

−1.5 126
−3 32
−8 63

R 1
−3 32
−8 63

T 1
−3 32
−8 63, 126

All the considered stochastic distances produced lower Hd when the number of ray
strips is equal to 63. On the other hand, a higher value for IoU is obtained when nr = 126,
except for α = −8 with L = 1 where the best performance is achieved by nr = 63. Thus,
nr = 63 appears to be the optimal choice for the reduction of computational cost in terms
of the required time; cf. Figure 7.
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32

0 50 100 150
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n r

Figure 7. Elapsed time (in seconds) required for the detection algorithm per number of ray strips for
synthetic data.

The point L, α for which each stochastic distance achieved the best performance is
shown in Table 3. In the single look case, the lowest Hd is reached by HM, KL, R, and T if
α = −3, and by AG, B, HG, and JS if α = −8. Meanwhile, the highest IoU is obtained for
α = −1.5 for all the stochastic distances, except for AG and KL, which stress if α = −3. If
L = 2. The best results for Hd arise if α = −8 for the stochastic distances other than AG
with a better performance if α = −3. In terms of IoU, the stochastic distances that stand
out are AG, KL, and R if α = −3, HM and JS if α = −1.5, and B and H in both quadrants.

Table 3. Texture parameter in which the results of the detection technique are better according to the
stochastic distance for synthetic data.

L = 1 L = 2

Distance Hd IoU Hd IoU

AG α = −8 α = −3 α = −3 α = −3
B α = −8 α = −1.5 α = −8 α = −1.5,−3
H α = −8 α = −1.5 α = −8 α = −1.5,−3

HM α = −3 α = −1.5 α = −8 α = −1.5
JS α = −8 α = −1.5 α = −8 α = −1.5
KL α = −3 α = −3 α = −8 α = −3
R α = −3 α = −1.5 α = −8 α = −3
T α = −3 α = −1.5 α = −8 α = −1.5

Table 4 shows the stochastic distances that have reached the best values for Hd and
IoU (see Table 5) depending on the degree of texture and with the considered number of ray
strips. In this table, the uncensored points are denoted by D ∈ {AG, B, H, HM, JS, KL, R, T},
whereas, if outliers are rejected, the “neat” points are denoted by D* with D as above.

Despite the number of possibilities, some differences are explicit. For instance, if
the background of a single look image is extremely textured (α = −1.5), then the best
alternative is to use either HM* or T*; in the case of intermediate texture (α = −5), HM
and T are more suitable. On the other hand, if L = 2 and the background has a low texture
degree, then R stems as the best option.
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Table 4. Stochastic measures with the best performance per texture for simulated data.

L = 1

α nr = 32 nr = 63 nr = 126

−1.5
Hd AG-B-H-JS-KL-R HM*-T* B-H-HM-JS-R-T

IoU HM-T HM*-T* HM*-T*

−3
Hd HM*-T* AG*-B*-H*-JS*-KL*-R* AG*

IoU HM-T R R

−5
Hd B*-H* B-H-HM-JS-T B-H-HM-JS-T

IoU HM*-T* HM-T HM-T

−8
Hd B-H HM*-T* HM*-T*

IoU HM-T JS* T

L = 2

α nr = 32 nr = 63 nr = 126

−1.5
Hd B*-H*-HM*-JS*-R*-T* R R

IoU HM*-T* B-H-HM-JS-T HM-JS-T

−3
Hd B*-H*-HM*-JS*-KL*-R*-T* AG* HM*-T*

IoU JS KL-R R

−5
Hd B-H-HM-JS-T B*-H* AG*

IoU B-H-HM-JS-T HM-JS-T HM-JS-T

−8
Hd AG* KL-R AG

IoU HM*-T* HM-T R

Table 5. Best quality measure values and the stochastic distance in which they are achieved for
simulated data.

L = 1 Stochastic Dist. Lowest Hd Stochastic Dist. Highest IoU

α = −1.5 HM*-T* 15.63 HM*-T* 0.984

α = −3 AG*-B*-H*-JS*-
KL*-R* 17.39 R 0.980

α = −5 B-H-HM-JS-T 19.90 HM-T 0.963
α = −8 B-H 27.32 JS* 0.939

L = 2 Stochastic Dist. Lowest Hd Stochastic Dist. Highest IoU

α = −1.5 R 16.83 HM-JS-T 0.983

α = −3 B*-H*-HM*-JS*-
KL*-R*-T* 17.30 R 0.987

α = −5 B*-H* 17.18 HM-JS-T 0.963
α = −8 KL-R 14.66 R 0.972

4.2. Behavior with Actual Imagery

In the case of SAOCOM data, the estimated number of looks for the images of Figure 3
(left) from top to bottom are L̂ = 11, 13, 11. The quality measures are presented in Tables 6–8,
where the best values are in bold. The smallest (best) values of Hd for the top left image
in Figure 3 are 52.55, if nr = 32, 55.40 if nr = 63, and 64.93 if nr = 126, considering JS.
In the case of the middle left image in Figure 3 this minima are 25.35 if nr = 32, 23.87 if
nr = 63 and 21.41 if nr = 126, considering HM and T. For the bottom left image in Figure 3
AG* is the stochastic distance that produces the smallest values of Hd for every nr: 43.98 if
nr = 32, 54.15 if nr = 63, and 57.04 if nr = 126. On the other hand, the largest (best) values
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of IoU can be summarized as follows. For the top left image in Figure 3: 0.872 (nr = 32)
and 0.891 (nr = 63) for HM* and T*; and 0.893 (nr = 126) for JS*. For the middle left image
in Figure 3: 0.748 (nr = 32) and 0.734 (nr = 63) for HM and T; and 0.759 (nr = 126) for HM.
For the bottom left image in Figure 3: 0.758 (nr = 32) for B and H; 0.767 (nr = 63), and
0.786 (nr = 126) for JS. The Bhattacharyya and Hellinger distances show the same results
for Hd and IoU for the three images. The same relation holds between harmonic-mean and
triangular distances.

We conclude that the best performance for the images in Figure 3 (left) from top to
bottom, are achieved by HM* and T* with nr = 63, HM with nr = 126, and JS with nr = 126,
respectively. The estimated borders obtained in these cases are shown in Figures 8–10. The
relatively low performance of the SNAP toolbox may be related to excessively conservative
algorithms that require strong evidence to identify edges.

Table 6. Quality measure results for the image in Figure 3 top left, for each stochastic distance (SDist).

nr SDist Hd IoU SDist Hd IoU

32

AG 88.92 0.843 AG* 60.93 0.854
B 89.24 0.857 B* 53.89 0.871
H 89.24 0.857 H* 53.89 0.871

HM 89.24 0.859 HM* 53.89 0.872
JS 89.24 0.858 JS* 52.55 0.872
KL 88.92 0.835 KL* 60.93 0.846
R 106.64 0.797 R* 61.33 0.841
T 89.24 0.859 T* 53.89 0.872

63

AG 96.21 0.850 AG* 56.65 0.851
B 96.21 0.879 B* 56.03 0.888
H 96.21 0.879 H* 56.03 0.888

HM 96.21 0.871 HM* 57.32 0.891
JS 96.21 0.879 JS* 55.40 0.889
KL 96.21 0.853 KL* 56.65 0.859
R 99.65 0.838 R* 56.65 0.865
T 96.21 0.871 T* 57.32 0.891

126

AG 95.06 0.861 AG* 67.83 0.872
B 116.37 0.868 B* 139.14 0.868
H 116.37 0.868 H* 139.14 0.868

HM 116.37 0.861 HM* 133.73 0.863
JS 94.96 0.880 JS* 64.93 0.893
KL 95.06 0.865 KL* 67.83 0.877
R 95.06 0.845 R* 66.72 0.880
T 116.37 0.861 T* 133.73 0.863

SNAP 78.52 0.813 - - -

(a) Ground truth and detected border points. (b) B-spline approximation.

Figure 8. Results of HM* and T* with nr = 63 when the proposed algorithm is applied to the first
lagoon in Figure 3 (left).
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Table 7. Quality measure results for the image in Figure 3 middle left, for each stochastic
distance (SDist).

nr SDist Hd IoU SDist Hd IoU

32

AG 38.97 0.572 AG* 55.81 0.528
B 29.44 0.683 B* 55.81 0.639
H 29.44 0.683 H* 55.81 0.639

HM 25.35 0.748 HM* 25.35 0.748
JS 29.44 0.680 JS* 55.81 0.636
KL 37.78 0.602 KL* 55.81 0.557
R 29.44 0.674 R* 55.81 0.630
T 25.35 0.748 T* 25.35 0.748

63

AG 27.76 0.616 AG* 34.89 0.568
B 28.96 0.704 B* 28.96 0.704
H 28.96 0.704 H* 28.96 0.704

HM 23.87 0.729 HM* 25.51 0.734
JS 28.96 0.705 JS* 28.96 0.705
KL 28.96 0.645 KL* 33.89 0.618
R 28.96 0.694 R* 28.96 0.694
T 23.87 0.729 T* 25.51 0.734

126

AG 26.87 0.678 AG* 28.95 0.708
B 25.59 0.748 B* 25.59 0.748
H 25.59 0.748 H* 25.59 0.748

HM 21.41 0.759 HM* 29.22 0.751
JS 25.24 0.749 JS* 25.24 0.749
KL 25.24 0.693 KL* 27.33 0.705
R 25.59 0.735 R* 25.59 0.735
T 21.41 0.758 T* 29.22 0.750

SNAP 21.40 0.755 - - -

(a) Ground truth and detected border points. (b) B-spline approximation.

Figure 9. Results of HM with nr = 126 when the proposed algorithm is applied to the second lagoon
in Figure 3 (left).

(a) Ground truth and detected border points. (b) B-spline approximation.

Figure 10. Results of JS with nr = 126 when the proposed algorithm is applied to the third lagoon in
Figure 3 (left).
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Table 8. Quality measure results for the image in Figure 3 bottom left, for each stochastic
distance (SDist).

nr SDist Hd IoU SDist Hd IoU

32

AG 43.98 0.752 AG* 43.98 0.750
B 43.98 0.758 B* 149.36 0.579
H 43.98 0.758 H* 149.36 0.579

HM 279.32 0.014 HM* 279.32 0.014
JS 43.98 0.756 JS* 149.57 0.577
KL 43.98 0.752 KL* 43.98 0.750
R 43.98 0.754 R* 43.98 0.752
T 279.32 0.014 T* 279.32 0.014

63

AG 54.74 0.740 AG* 54.15 0.726
B 55.01 0.766 B* 55.26 0.751
H 55.01 0.766 H* 55.26 0.751

HM 55.01 0.758 HM* 55.26 0.744
JS 54.74 0.767 JS* 54.15 0.752
KL 54.74 0.762 KL* 54.15 0.747
R 55.01 0.761 R* 55.26 0.746
T 55.01 0.758 T* 55.26 0.744

126

AG 57.04 0.756 AG* 57.04 0.756
B 58.05 0.786 B* 58.52 0.770
H 58.05 0.786 H* 58.52 0.770

HM 58.05 0.778 HM* 58.52 0.763
JS 57.04 0.786 JS* 57.09 0.763
KL 57.04 0.776 KL* 57.06 0.773
R 58.05 0.783 R* 57.63 0.780
T 58.05 0.778 T* 58.52 0.763

SNAP 58.94 0.669 - - -

To compare the performance of our proposal with other available methods, we applied
the fractional Land/Water mask provided by SeNtinel Applications Platform (SNAP) from
the European Space Agency (ESA) (https://step.esa.int/, last accessed date: 8 October
2022). The estimated borders are shown in Figure 11 and the quality measures at the bottom
row of Tables 6–8. Even though the results are good, they do not succeed as the best ones
obtained by our methodology.

(a) Top left figure. (b) Middle left figure. (c) Right left figure.

Figure 11. Estimated borders and quality measures obtained with the SNAP toolbox applied to the
images of Figure 3.

It is noteworthy that, in Table 7, the smallest best IoU is 0.759. The user may decide to
increase or decrease the number of points if he/she uses IoU as the definitive measure of
performance. The estimated number of looks equals 3 in the image shown in Figure 4. The
results obtained when applying our proposal with nr = 63 and using the neat points are
shown in Figure 12. It can be noticed that the performance of AG and KL is not acceptable.
The behavior of B and H is the same; meanwhile, HM and T produce identical results. By
visual inspection, the performance of B, H, and JS are suitable to detect the contour of the
oil spill.

One aspect of the methodology is determining an appropriate amount of radii as a
trade-off between the effectiveness and the computational cost. Increasing this number
above 63 radii in all the experiments did not generate any further enhancement, so

https://step.esa.int/
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nr = 63 was selected as the best parameter. In monopolarimetric images, the selection of
the stochastic distance strongly depends on the degree of the texture of the area around
the water body. The Harmonic-Mean, Rényi, and Triangular distances are the best
options for extremely textured regions, while the Kullback–Leibler distance is the best
for the highly textured zones. In the case of mildly textured areas, the optimal distance
evaluation does not point to any preferred choice. Finally, applying the proposal to
actual SAR images produced the best results with the Harmonic-Mean and Triangular
distances in all the regions of interest concerning lagoons. In the case of dealing
with oil spill detection, Bhattacharyya, Hellinger, and Jensen–Shannon distances are
recommended. It is worth remarking that the procedure to neat points for the B-spline
approximation generated better results in general, without a significant increase in the
computational cost.

(a) AG (b) B (c) H (d) HM

(e) JS (f) KL (g) R (h) T
Figure 12. B-spline curves from the inlier points obtained by the proposed algorithm applied to the
image of Figure 4, for each stochastic distance and nr = 63.

Since the G0
I distribution is based on the product of the backscatter and the speckle

noise, this effect is inherent to our proposal. Notice that we do not reduce the speckle but
use the information provided by it. On the other hand, our approach uses a test statistic; if
there is no evidence of change, no point will be detected and the edge will be estimated
by an approximation with those points that provide evidence of change. We provide an
assessment of the performance of the technique after approximating the edge with a spline
curve, and not of the accuracy of individual points.

5. Conclusions

Water recognition is an essential task in diverse fields of knowledge, such as biological
environment, climate, earthly disasters, agriculture, and tourism, among others. This
information can be used either to improve the production of natural resources or to prevent
damages caused by contamination, floods, and droughts.

The present work proposed an automated segmentation algorithm suited for small
water bodies. First, candidate border points are detected along radial transects, taking
into account the change in statistical properties of the images, implemented through
a hypothesis test based on stochastic distances between G0

I distributions. Then, the
estimated border is obtained when these points, or the set of these points that are not
rejected as outliers, are used to define the B-splines curves. To select the most suitable
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stochastic distance, the suggested technique was performed using Arithmetic-Geometric,
Bhattacharyya, Hellinger, Harmonic-Mean, Jensen–Shannon, Kullback-Leibler, Rényi,
and Triangular distances. The method was tested both with simulated SAR images
comparing different roughness levels and with four actual COSMO-SkyMed SAR images
obtained from the SAOCOM/SIASGE constellation. Considering the ground truth border
marked by an expert (in those cases, an optical version of the image was available) and
the approximation attained, the results obtained were evaluated by computing the
Hausdorff distance and the Intersection over Union.

The results suggest Harmonic-Mean and Triangular as the most suitable stochastic
distances for lagoons’ border detection, and Bhattacharyya, Hellinger, and Jensen–Shannon
for oil spill, using 63 ray strips and only points that are not rejected as outliers in all cases.
Our approach relies on the assumption that different targets exhibit distinct statistical
properties. If the models cannot retrieve such information, other features must be used. In
future work, we are interested in studying this methodology’s extensions and modifications
to other regions in SAR imagery with the purpose of a general segmentation algorithm. In
addition, we will extend our proposal to handle non-convex targets.
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