THE PERCEPTION OF AUTONOMOUS DRIVING IN RURAL COMMUNITIES

FINAL PROJECT REPORT

by

Kevin Chang, University of Idaho Jade Williams, University of Idaho

for

Center for Safety Equity in Transportation (CSET)
USDOT Tier 1 University Transportation Center
University of Alaska Fairbanks
ELIF Suite 240, 1764 Tanana Drive
Fairbanks, AK 99775-5910

In cooperation with U.S. Department of Transportation, Research and Innovative Technology Administration (RITA)

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the U.S. Department of Transportation's University Transportation Centers Program, in the interest of information exchange. The Center for Safety Equity in Transportation, the U.S. Government and matching sponsor assume no liability for the contents or use thereof.

TECHNICAL REPORT DOCUMENTATION PAGE				
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No		
4. Title and Subtitle		5. Report Date		
The Perception of Autonomous Driving in	Rural Communities	June 2023		
		6. Performing Organization	on Code	
7. Author(s) and Affiliations		8. Performing Organization	on Report No.	
Kevin Chang, University of Idaho		INE/CSET 23.03		
Jade Williams, University of Idaho				
9. Performing Organization Name and Address	ss	10. Work Unit No. (TRAIS	5)	
Center for Safety Equity in Transportation				
ELIF Building Room 240, 1760 Tanana Driv	ve	11. Contract or Grant No	•	
Fairbanks, AK 99775-5910		Grant # 69A3551747129		
12. Sponsoring Organization Name and Addre	ess	13. Type of Report and Period Covered		
United States Department of Transportation				
Research and Innovative Technology Administration		14. Sponsoring Agency Co	ode	
1200 New Jersey Avenue, SE Washington, DC 20590				
15. Supplementary Notes				
Report uploaded to:				
16. Abstract				
Autonomous, or self-driving, vehicles have the destination. To better understand how recepti trust in autonomous vehicles (AVs) by rural dri perspectives of drivers was developed and diswere collected and analyzed. Based on the resdriving vehicles with human-driven vehicles, the driving vehicles. The outcomes from this study skeptical about the overall safety benefits of the	ve society will be to these types of vehicles, the vers and passengers. An online survey that extributed to respondents across the United Statults, rural (and non-rural) respondents had simough older people and those with less educated to support targeted outreach effects.	nis study focused on the p amined the behavioral an tes, and a total of 1,247 va nilar levels of trust when o tion tended to have less tr	erceived level of d value-based alid responses comparing self- rust in self-	
17. Key Words		18. Distribution Staten	nent	
Autonomous vehicles, driver perception, rural	trust			
19. Security Classification (of this report)	20. Security Classification (of this page)	21. No. of Pages	22. Price	
Unclassified.	Unclassified.	61	N/A	

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized.

SI* (MODERN METRIC) CONVERSION FACTORS

in inc fit fee yd ya mi inc fit fee yd ya mi mi inc fit fee yd ya mi inc a squar fit squar	ards ards alles quare inches quare feet quare yard cres quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces punds nort tons (2000 lb) TEM ahrenheit out-candles out-Lamberts FORC pundforce pundforce per square inch	Multiply By LENGTH 25.4 0.305 0.914 1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 nes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact do 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m²	mm m m km m km m km² m² m² ha km² ha km² mL L m³ m³ C lx cd/m²				
ft fee yd ya mi n² sq ft² sq yd² sq yd² sq ac ac mi² sq fl oz flu gal gal ft² cu yd³ cu bb po T sh PF Fa fc fo fo fl fo fo fo fl fo	ards ards ards ards ards ards ards ards	25.4 0.305 0.914 1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 nes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters all be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	m m km mm² m² m² ha km² ha km² mL L m³ m³ m³				
ft fee yd ya mi n² sq ft² sq yd² sq yd² sq ac ac mi² sq fl oz flu gal gal ft² cu yd³ cu bb po T sh PF Fa fc fo fo fl fo fo fo fl fo	ards ards ards ards ards ards ards ards	0.305 0.914 1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	meters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters all be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	m m km mm² m² m² ha km² ha km² mL L m³ m³ m³				
yd ya mi ya mi ya mi ya mi mi na² sq nt² sq yd² sq yac sq ac sq ac sq fi oz flu ga	ards ards alles quare inches quare feet quare yard cres quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces punds nort tons (2000 lb) TEM ahrenheit out-candles out-Lamberts FORC pundforce pundforce per square inch	0.914 1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters all be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	m km mm² m² m² m² ha km² mL L m³ m³ g kg Mg (or "t") °C				
mi mi mi mi mi mi mi mi mi mi m	quare inches quare feet quare yard cres quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces punds nort tons (2000 lb) TEM ahrenheit FORC pundforce pundforce pundforce per square inch	1.61 AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 nes greater than 1000 L sha MASS 28.35 0.454 0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters milligrams megagrams (or "metric ton") egrees) Celsius Lux candela/m² *STRESS newtons	km mm² m² m² ha km² mL L m³ m³ Mg (or "t") °C				
in² sq ft² sq yd² sq ac ac mi² sq fl oz flu gal ga ft² cu yd³ cu bb po T sh PF Fa fc fo fo fl fo Symbol W mm m m me m me km kile mm² sq m²	quare inches quare feet quare yard cres quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces bunds nort tons (2000 lb) TEM ahrenheit vot-candles tot-Lamberts FORC bundforce bundforce per square inch	AREA 645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters lil be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	mm² m² m² m² ha km² mL L m³ m³ C L N N				
ff² sq yd² sq ac	quare feet quare yard cres quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces bunds nort tons (2000 lb) TEM ahrenheit vot-candles tot-Lamberts FORC bundforce bundforce bundforce per square inch	645.2 0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters lil be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	m² m² ha km² mL L m³ m³ m³ CC				
ft² sq yd² sq	quare feet quare yard cres quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces bunds nort tons (2000 lb) TEM ahrenheit vot-candles tot-Lamberts FORC bundforce bundforce bundforce per square inch	0.093 0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact de 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters lil be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	m² m² ha km² mL L m³ m³ m³ CC				
yd² sq ac ac mi² sq fl oz flu gal gal gal gal oz ou lb po T sh °F Fa fc fc foc fl foc mm m m m m m km kil mm² sq m² sq ma he km² sq mL mi L litte m³ cu	quare yard cres quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces ounds nort tons (2000 lb) TEM ahrenheit oot-candles oot-Lamberts FORC oundforce oundforce per square inch	0.836 0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact do 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters lil be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	m² ha km² mL L m³ m³ m³ C L lx cd/m²				
ac ac ac ac ac mi² sq ac ac mi² sq ac	cres quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces ounds nort tons (2000 lb) TEM ahrenheit oot-candles oot-Lamberts FORC oundforce oundforce per square inch	0.405 2.59 VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	hectares square kilometers milliliters liters cubic meters cubic meters cubic meters ll be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	ha km² mL L m³ m³ cg kg Mg (or "t") °C lx cd/m²				
mi² sq fl oz glu gal ga ft³ cu yd³ cu oz ou lib po T sh °F Fa fc foc fl foc lbf/in² po Symbol W mm mi m me m me km kilk mm² sq m² sq ma he km² sq m² s	quare miles uid ounces allons ubic feet ubic yards NOTE: volun unces ounds nort tons (2000 lb) TEM ahrenheit vot-candles ot-Lamberts FORC oundforce oundforce per square inch	2.59 VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	square kilometers milliliters liters cubic meters cubic meters lil be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	km² mL L m³ m³ g kg Mg (or "t") °C				
fl oz flu gal ga ft³ cu yd³ cu oz ou lb po T sh °F Fa fc fc fo fo fl fo foc lbf/in² po lbf/in² po lbf/in² po lbf/in² po mm m me km kile mm² sq m² sq m	uid ounces allons allons abic feet ubic yards NOTE: volun unces bunds nort tons (2000 lb) TEM ahrenheit vot-candles tot-candles tot-Lamberts FORC bundforce bundforce per square inch	VOLUME 29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	milliliters liters cubic meters cubic meters cubic meters lit be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	mL L m³ m³ g kg Mg (or "t") °C				
gal ga ft³ cu yd³ cu oz ou lb po T sh °F Fa fc fo fl foc lbf po lbf/in² po Symbol W mm mi m me km kile mm² sq m² s	allons ubic feet ubic yards NOTE: volun unces bunds nort tons (2000 lb) TEM ahrenheit oot-candles oot-Lamberts FORC bundforce bundforce per square inch	29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	liters cubic meters cubic meters cubic meters ll be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	L m³ m³ g kg Mg (or "t") °C Ix cd/m²				
gal ga ft³ cu yd³ cu oz ou lb po T sh °F Fa fc fox fl fox lbf po lbf/in² po Symbol W mm m m m m m km kilc mm² sq m² sq m	allons ubic feet ubic yards NOTE: volun unces bunds nort tons (2000 lb) TEM ahrenheit oot-candles oot-Lamberts FORC bundforce bundforce per square inch	29.57 3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	liters cubic meters cubic meters cubic meters ll be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	L m³ m³ g kg Mg (or "t") °C Ix cd/m²				
gal ga ft³ cu yd³ cu oz ou lb po T sh °F Fa fc fo fl foc lbf po lbf/in² po Symbol W mm mi m me km kile mm² sq m² s	allons ubic feet ubic yards NOTE: volun unces bunds nort tons (2000 lb) TEM ahrenheit oot-candles oot-Lamberts FORC bundforce bundforce per square inch	3.785 0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	liters cubic meters cubic meters cubic meters ll be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	L m³ m³ g kg Mg (or "t") °C Ix cd/m²				
yd³ cu oz ou lb po T sh °F Fa fc fc foc fl foc lbf po lbf/in² po Symbol W mm mi m me km kile mm² sq m² sq	unices unices unict tons (2000 lb) TEM ahrenheit out-candles out-Lamberts FORC bundforce bundforce per square inch	0.028 0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 IPERATURE (exact do 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	cubic meters cubic meters cubic meters Il be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	m³ m³ m³ g kg Mg (or "t") °C lx cd/m²				
yd³ cu oz ou lb po T sh °F Fa fc fc foc fl foc lbf po lbf/in² po Symbol W mm mi m me km kile mm² sq m² sq	unces bunds bunds bunds bunds bundt tons (2000 lb) TEM ahrenheit bot-candles bot-Lamberts FORC bundforce bundforce per square inch	0.765 mes greater than 1000 L sha MASS 28.35 0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	cubic meters II be shown in m³ grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	g kg Mg (or "t") °C lx cd/m²				
oz ou lb po T sh Symbol W Symbol W mm mi me me km kile mm² sq m²	NOTE: volunum unces punds nort tons (2000 lb) TEM ahrenheit oot-candles oot-candles oot-Lamberts FORC pundforce pundforce per square inch	MASS 28.35 0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² STRESS newtons	g kg Mg (or "t") °C lx cd/m²				
lb po T sh PF Fa fc foc foc fl foc lbf po lbf/in² po Symbol W mm mi m me km kilc mm² sq m² sq ma he km² sq mL mi L litte m³ cu	unces punds nort tons (2000 lb) TEM ahrenheit oot-candles oot-Lamberts FORC pundforce pundforce per square inch	MASS 28.35 0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	grams kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² *STRESS newtons	kg Mg (or "t") °C Ix cd/m²				
lb po T sh PF Fa fc foc foc fl foc lbf po lbf/in² po Symbol W mm mi m me km kilc mm² sq m² sq ma he km² sq ma	ounds nort tons (2000 lb) TEM ahrenheit ot-candles ot-Lamberts FORC oundforce oundforce per square inch	28.35 0.454 0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² STRESS newtons	kg Mg (or "t") °C Ix cd/m²				
lb po T sh PF Fa fc foc foc fl foc lbf po lbf/in² po Symbol W mm mi m me km kilc mm² sq m² sq ma he km² sq ma he km² sq ma he km² sq	ounds nort tons (2000 lb) TEM ahrenheit ot-candles ot-Lamberts FORC oundforce oundforce per square inch	0.454 0.907 MPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	kilograms megagrams (or "metric ton") egrees) Celsius lux candela/m² STRESS newtons	kg Mg (or "t") °C Ix cd/m²				
T sh	nort tons (2000 lb) TEM ahrenheit ot-candles ot-Lamberts FORC oundforce oundforce per square inch	0.907 IPERATURE (exact di 5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	megagrams (or "metric ton") egrees) Celsius lux candela/m² STRESS newtons	Mg (or "t") °C Ix cd/m²				
°F Fa fc fox	ahrenheit oot-candles oot-Lamberts FORC oundforce oundforce per square inch	(Exact diagram) 1/2 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 (F.45) (F.4	egrees) Celsius lux candela/m² STRESS newtons	°C lx cd/m²				
fc for	ot-candles ot-Lamberts FORC oundforce oundforce per square inch	5 (F-32)/9 or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	Celsius lux candela/m² STRESS newtons	lx cd/m²				
fc fox	ot-candles ot-Lamberts FORC oundforce oundforce per square inch	or (F-32)/1.8 ILLUMINATION 10.76 3.426 EE and PRESSURE or 4.45 6.89	lux candela/m² • STRESS newtons	lx cd/m²				
fl footblack floor	ot-Lamberts FORC coundforce coundforce per square inch	ILLUMINATION 10.76 3.426 E and PRESSURE or 4.45 6.89	candela/m² • STRESS newtons	cd/m ²				
fl footblack floor	ot-Lamberts FORC coundforce coundforce per square inch	10.76 3.426 EE and PRESSURE or 4.45 6.89	candela/m² • STRESS newtons	cd/m ²				
fl footblack floor	ot-Lamberts FORC coundforce coundforce per square inch	10.76 3.426 EE and PRESSURE or 4.45 6.89	candela/m² • STRESS newtons	cd/m ²				
fl footblack floor	ot-Lamberts FORC coundforce coundforce per square inch	3.426 E and PRESSURE or 4.45 6.89	candela/m² • STRESS newtons	cd/m ²				
lbf po lbf/in² po lbf/	FORC pundforce pundforce per square inch	E and PRESSURE or 4.45 6.89	STRESS newtons	N				
Symbol W mm mi me me km kile mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu	oundforce oundforce per square inch	4.45 6.89	newtons					
Symbol W mm mi me me km kile mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu	oundforce per square inch	6.89						
Symbol W mm mi m me m me km kile mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu			KIIOPASCAIS	KFa				
mm mi me me km kile mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu	APPROXIMA'	TE CONVERSIONS	•	•				
mm mi me me km kile mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu		APPROXIMATE CONVERSIONS FROM SI UNITS						
mm mi me me km kile mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu	Vhen You Know	Multiply By	To Find	Symbol				
m me me me km kile mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu		LENGTH						
m me me me km kile mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu	illimeters	0.039	inches	in				
m me km kilo kilo mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu								
km kill mm² sq m² sq m² sq ha he km² sq mL mi L litte m³ cu	eters	3.28	feet	ft				
mm² sq m² sq m² sq ha he km² sq mL mi L lite m³ cu	leters	1.09	yards	yd mi				
m² sq m² sq ha he km² sq mL mi L litte m³ cu	lometers	0.621	miles	mi				
m² sq m² sq ha he km² sq mL mit L litte m³ cu		AREA						
m² sq ha he km² sq mL mi L lite m³ cu	quare millimeters	0.0016	square inches	in ²				
ha he km² sq mL mi L lite m³ cu	quare meters	10.764	square feet	ft ²				
km² sq mL mi L lite m³ cu	quare meters	1.195	square yards	yd²				
mL mi L lite m ³ cu	ectares	2.47	acres	ac				
L lite m ³ cu	quare kilometers	0.386	square miles	mi ²				
L lite m ³ cu		VOLUME						
L lite m ³ cu	illiliters	0.034	fluid ounces	fl oz				
m ³ cu		0.264	gallons	gal				
	ubic meters	35.314	cubic feet	ft ³				
	ubic meters	1.307	cubic reet cubic yards	yd ³				
Cu	22.5 1100010		ouble julius	, ,				
200		MASS						
	rams	0.035	ounces	oz				
	lograms	2.202	pounds	lb —				
Mg (or "t") me	negagrams (or "metric ton")	1.103	short tons (2000 lb)	Т				
	TEM	IPERATURE (exact de	egrees)					
°C Ce	elsius	1.8C+32	Fahrenheit	°F				
		ILLUMINATION						
lx lux		0.0929	foot-candles	fc				
	Y	0.0929	foot-Lamberts	fl				
cariii Ca		0.2313						
	andela/m²	E and DDECCUDE	DIKESS					
	andela/m² FORC	E and PRESSURE or		lbf				
kPa kilo	andela/m² FORC ewtons	E and PRESSURE or 0.225 0.145	poundforce poundforce per square inch	lbf/in ²				

TABLE OF CONTENTS

Disclaime	er		i
Technical	l Repo	rt Documentation Page	ii
SI* (Mod	ern M	etric) Conversion Factors	. iii
List of Fig	gures		V
List of Ta	bles		v
Executive	Sumr	mary	1
CHAPTER	1.	INTRODUCTION	3
1.1.	Resea	arch Objectives	3
1.2.	Repo	rt Organization	4
CHAPTER	2.	LITERATURE REVIEW	5
2.1.	Back	ground	5
2.2.	Level	s of Autonomy	5
2.3.	Confi	dence in Technology	6
2.4.	Likeli	hood of Adoption	7
2.5.	Influe	ence on Current Lifestyle	8
2.6.	Next	Steps	9
CHAPTER	3.	METHODS	10
3.1.	Surve	ey Components	10
3.2.	Surve	ey Distribution and Data Collection	12
3.3.	Analy	rtical Strategy	13
CHAPTER	4.	RESULTS	15
4.1.	Gene	ral Demographics	15
4.2.	Beha	viors and Characteristics of Drivers	17
4.3.	Auto	nomous Vehicle Demographics	18
4.4.	Opini	ons	19
CHAPTER	5.	ANALYSIS	23
5.1.	Theo	retical Ownership of AVs and Commute Distances	23
5.2.	Facto	ors Affecting Trust in Self-Driving Vehicles	24
5.3.	Dete	rmining Likelihood to Adopt an Autonomous Vehicle	29
CHAPTER	6.	CONCLUSIONS	35
CHAPTER	7.	REFERENCES	38
CHADTER	Q	ΔΡΡΕΝΟΙΧ	1 1

LIST OF FIGURES

Figure 2.1 Evolution of Automated Safety Technology in Vehicles	5
Figure 2.2 Levels of Automation, provided by NHTSA	6
Figure 3.1 Survey Demographic Topics	10
Figure 3.2 Survey Behavior Topics	11
Figure 3.3 Survey Value Questions	11
Figure 3.4 Survey Value Topics	12
Figure 4.1 Geographic distribution of respondents	15
Figure 4.2 General demographics of respondents	16
Figure 4.3 Driver characteristics and behaviors	18
Figure 4.4 Timeline of respondents to purchase an AV	19
Figure 4.5 Levels of Agreement with statements about Self-Driving Vehicles	20
Figure 4.6 Common Concerns (part 1)	21
Figure 4.7 Common Concerns (part 2)	21
LIST OF TABLES	
Table 4.1 Internet connection types by rural and non-rural responses	17
Table 4.2 Levels of Agreement with the statement "I trust that self-driving vehicles will be safer	
than human driven vehicles."	
Table 5.1 Summary of T-Test for Mean Difference	24
Table 5.2 Linear regression analysis for "trust that self-driving vehicles are safer than human	
driven vehicles" (subset)	26
Table 5.3 Linear regression analysis for "trust that self-driving vehicles are safer than human	
driven vehicles" (all responses)	
Table 5.4 Multinomial Logistic Regression Model A	
Table 5.5 Multinomial Logistic Regression Model B	
Table 5.6 Multinomial Logistic Regression Model C	
Table 5.7 Multinomial Logistic Regression Model D	
Table 5.8 Multinomial Logistic Regression Model C results	
Table 5.9 Multinomial Logistic Regression Model D results	32

EXECUTIVE SUMMARY

Autonomous, or self-driving, vehicles have the capability to either fully or partially replace a human driver. To better understand how receptive society will be to these types of vehicles, this study focused on the perceived level of trust in autonomous vehicles (AVs) by domestic drivers. An online survey that examined the behavioral and value-based perspectives of drivers was developed and distributed to respondents across the United States, and a total of 1,247 valid responses were collected and analyzed. Based on the results, rural (and non-rural) respondents had similar levels of trust when comparing self-driving vehicles with human-driven vehicles, though older people and those with less education tended to have less trust in self-driving vehicles. The outcomes from this study can be used to support targeted outreach efforts for those drivers who remain skeptical about the overall safety benefits of this evolving transportation technology area.

In the United States, 97 percent of the land area is considered rural and is home to 19 percent of the population. Rural communities tend to have lower average household income, longer commute distances, and a higher rate of aged community members. For this study, the definition used to separate rural and urban responses was based on a USDA definition. It referred to rural areas as those in open-countryside and settlements with less than 2,500 people. All other areas were considered urban. For this survey, no distinction was made between urban and suburban, and respondents were asked to self-identify if they lived in a rural area.

The user survey was broken into three main sections, demographics, behavior, and values. The questions from the demographics section were used to identify personal characteristics about the survey respondent. For the behavior section, respondents were asked questions relating to their actions with vehicles like how many years of driving experience they had or their level of comfort with nighttime driving. Respondents were also asked questions to determine the level at which they would value certain features or activities relating to autonomous vehicles.

With regard to the results, one outcome measured the general timeline of autonomous vehicle adoption. While 41% answered that they would adopt within five years, 16% identified an adoption window of between 6 and 10 years. Nearly 23% would never adopt, and another 14% were unsure. In terms of the trust placed by the public in self-driving vehicles, the percentages between rural and non-rural respondents were very similar. For example, 12% of respondents that identified as non-rural strongly agreed with the statement, whereas 13% of rural respondents strongly agreed.

Measures of central tendency and frequency analyses were determined for most of the questions and linear regression and multinomial logistic regression analyses were developed for more in-depth analysis. One regression model included the full population of respondents (n=1,247) and another model included a subset (n=772). The subset was comprised of respondents who currently use autonomous vehicle features. In the full model, a higher education level lent to a stronger trust in self-driving vehicles. In the subset model, age was a significant predictor. Those who were older were less likely to trust self-driving vehicles over human drivers. Higher educated people were also more likely to trust AVs (with self-driving capabilities).

A model was developed to determine the likelihood of adopting a fully self-driving vehicle. Two comparisons were made in the model. One comparison tested the categories "buy at some point" and "never" and the other compared "buy at some point" to "unsure." In the first comparison, it was found

that male respondents were more likely to "buy at some point" than to choose to "never" buy a self-driving vehicle if they had the same living location, age, and familiarity with AVs. There was a 200% increase in likelihood that respondents that were older would choose to "never" purchase a self-driving vehicle rather than "buy at some point." Those that were more familiar with AVs were more likely to "buy at some point" than choosing to "never" buy a self-driving vehicle.

In a second comparison, the categories "buy at some point" and "unsure" about buying a self-driving vehicle were compared. Male respondents were less likely than non-male respondents to be "unsure" whether they would buy a self-driving vehicle. There was a 66.5% increase in relative probability in those that were "unsure" over "buy[ing] at some point" with a change in age categories from "18-49" to "50+." This means older respondents were more "unsure" than being sure they would "buy at some point." Respondents who were more familiar with AVs were more likely to buy a self-driving relative to people of the same age, gender, and living location.

To improve the outlook of those with lower levels of education and the older population, more work can be done to understand how autonomous vehicles are perceived, both in the present and in the future. Older drivers are a demographic that should be the focus of more educational outreach to increase comfort levels and outlook. With regard to the overall adoption of self-driving vehicles, rural driver wariness seemed to be comparable to that of non-rural drivers.

CHAPTER 1. INTRODUCTION

In the United States, 97 percent of the land area is considered rural and is home to 19 percent of the population. Conversely, urban areas make up 3 percent of the entire land area but represent over 80 percent of the population (Ratcliffe et al. 2016). Rural communities tend to have lower average household income, longer commute distances, and a higher rate of aged community members. Rural communities are further from large metropolitan areas, resulting in their definition from the United States Department of Agriculture (USDA) as "open countryside and settlements with fewer than 2,500 residents." According to the same source, rural communities can be "based on administrative, land-use, or economic concepts, exhibiting considerable variation in socioeconomics" (Cromartie and Bucholtz 2008). Rural areas tend to be "sparsely populated, have low housing density, and are far from urban centers" (America Counts Staff 2017).

According to the Insurance Institute for Highway Safety (IIHS), rural areas account for more passenger and large vehicle occupant fatalities, as well as fatalities on high-speed roads, than urban areas. There are more pedestrian and bicyclist deaths in urban areas. Due to increased speeds, crashes in rural areas tend to be deadlier. Most of the total mileage traveled in vehicles (vehicle-miles) occur in urban areas, but almost half of crash fatalities occur in rural areas (IIHS.org 2021). The Bureau of Transportation Statistics found that the fatality rate per 100 million vehicle-miles for rural areas (1.68) is higher than urban areas (0.86).

Drivers may be able to rely on advancements in vehicle technologies to avoid crashes in the future. To understand the next advancements in vehicle technologies, one must understand the goals that the advancements are trying to achieve and the problems they will help solve. A technological advancement that is currently on the horizon is autonomous or self-driving vehicles. Autonomous vehicles (AVs) strive to replace a human driver partially or entirely in the navigation to a destination, along with a response to traffic conditions and avoidance of road hazards (Center for Sustainable Systems, University of Michigan 2021).

More information needs to be provided to the public to bridge the gap in knowledge for what autonomous vehicles will bring in the future. Understanding the likelihood and timing of adoption of AVs by rural drivers and passengers will help both policy makers and manufacturers.

1.1. Research Objectives

The fatality statistics suggest that autonomous vehicles (AVs) could make a significant difference in the crash rates by reducing the number of crashes caused by driver error at higher speeds. In this study, researchers focused their efforts on rural residents and their perspectives and perceptions of AVs. It was hypothesized that rural drivers would be more hesitant to adopt self-driving or autonomous vehicles. There was also a belief that people would think autonomous vehicles are more dangerous than human drivers due to factors such as technology failures and differing roadway geography. Finally, it was hypothesized that older respondents would be less likely to adopt due to their perceived hesitation associated with new technologies.

1.2. Report Organization

This report uses chapters to identify larger sections that are divided into smaller subsections within each chapter. Chapter 2 provides an in-depth background of autonomous vehicles and explores personal confidence in autonomous vehicles based on prior literature. It also draws together the impact of AVs on the lives of their users. Chapter 3 details the data collection methods, including required criteria set forth by researchers for response gathering and the statistical methods used. It also gives a description of the statistical tests. Chapter 4 provides general frequencies from the data and descriptive results. Chapter 5 describes the statistical models and the inferences that researchers made from their results. Finally, Chapter 6 provides a conclusion of the study and the survey gaps. It also provides recommendations for areas of future research.

CHAPTER 2. LITERATURE REVIEW

This chapter will cover the study background, including the five eras of safety and levels of automation. Studies focused on confidence in technology and likelihood of adoption will be detailed. A description as to how AVs could impact the current lifestyles of potential users will also be discussed.

2.1. Background

There are five eras of safety according to the National Highway Traffic Safety Administration. As vehicle technology has advanced, the duration of the eras has shortened in years. The eras and their titles are shown in Figure 2.1.

Figure 2.1 Evolution of Automated Safety Technology in Vehicles

During the first era, cruise control, seat belts, and antilock brakes became the norm in vehicles. As the path for driverless vehicles was not clear at this time, there were not many studies that researched the topic. One publication from the early 1990s discussed features like autonomous intelligent cruise control. The study found that communication between vehicles was not required because the intelligent cruise control system operated only on information from its own sensors (Rao and Varaiya 1993). This article was limited in the depth and scope because traditional cruise control had only recently been introduced in vehicles.

By 2010, electronic stability control (traction control), blind spot detection, forward collision warning, and lane departure warnings were available. Between 2010 and 2016, advanced features like rearview video systems, automatic emergency braking, rear cross traffic alert, and lane centering assist became standard in higher end brands. From 2016 to the present, lane keeping assist, adaptive cruise control, traffic jam assist, and self-parking are now or will become available. Fully automated safety features, like highway autopilot, are expected to hit the market post-2025 (NHTSA n.d.).

2.2. Levels of Autonomy

There are six levels of vehicle automation, which are shown in Figure 2.2.

0 - No Automation

•Zero autonomy: the driver performs all driving tasks

1 - Driver Assistance

• Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design.

2 - Partial Automation

• Vehicle has combined functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

3 - Conditional Automation

•Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4 - High Automation

• The vehicle is capable of performing all driving functions under certain conditions. The drivers may have the option to control the vehicle.

5 - Full Automation

• The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

Figure 2.2 Levels of Automation, provided by NHTSA

Currently, most vehicles are already equipped with autonomous features at Levels 1 and 2, like lane assist and cruise control. Some vehicles, like the 2023 Tesla Model S, have Level 3 automation, including the autopilot feature that can switch lanes and functions from on-ramp to off-ramp in interstate scenarios (Tesla n.d.). For Level 5 automation, manufacturers could choose to forego a steering wheel. Future policy will determine whether or not this would be acceptable.

It is still not completely clear when self-driving vehicles will be introduced to the public, but certain studies are relevant to helping understand the timeline of adoption. Some studies were done in survey form to gauge public perceptions, while others were interviews or a combination of a field study and interviews. The following sections present a summary of research related to perceptions of autonomous vehicles.

2.3. Confidence in Technology

To understand personal confidence in technology, some studies examined the beliefs of potential users. In one internet poll, only 21% of U.S. adults surveyed were willing to ride in a self-driving car. The survey was weighted using age, gender, and region factors similar to the population estimated by the U.S. Census Bureau (West 2018).

Transportation users, planners, and government officials in another survey were asked if they knew about the classifications of AVs, and roughly 70% of them did not. The same study found that 59% of the respondents had deemed AVs beneficial. More than half of respondents also said that they would be afraid of AVs (Alsalman et al. 2021). The sample for this study was ninety-five participants.

Older drivers have been surveyed about their perceptions and ideas regarding autonomous vehicles. Researchers found that after exposure to AV technology, using autonomous shuttles or simulations, older drivers had increased positive perceptions in safety, trust, and perceived usefulness. The

researchers recommended that future studies should investigate geographical contexts and how that may influence opinions of older drivers (Classen et al. 2021).

Participants of all ages (20 to 75 years old) were surveyed by Hilgarter and Granig in a similar study to the previous one. Participants rode in an autonomous shuttle on a closed course and were then interviewed. More older adults perceived benefits to AVs when compared with younger adults after riding in the shuttle. The same study identified a pattern in which autonomous vehicles were regarded more positively in rural areas than in urban areas (Hilgarter and Granig 2020). This study had a limited sample size of 19 people, although the authors explained that because it was a qualitative study, the sample size was sufficient.

One rural Nebraska study found that a shift in public opinion is needed before AVs can succeed. Part of the study assessed farmers that have implemented auto navigation and self-driving features on farm equipment. Some of the participants had firsthand experiences where the technology failed, either with GPS and/or a cellular signal. Issues often occurred in inclement and severe weather. These failures led to a wariness in adoption of self-driving vehicles on highways and other public roads. There was a concern as to how the systems would handle roads that were not paved, like gravel roads, or had obstacles in the road, like deer. There are numerous households along unpaved roads in rural areas, which may present an issue with adoption of vehicles with this technology. One respondent expressed a concern that if an AV encountered a mechanical or system issue, the lay person would be unable to diagnose or fix it, leaving them stranded (Piatkowski et al. 2020).

In their study of public perception after riding in an autonomous shuttle, Hilgarter and Granig (2020) found that autonomous vehicles carry perceived societal, legal, economic, and technological challenges, like lack of social justice and reliability. An example of social justice would be the prioritization of the life of a vehicle passenger versus that of a pedestrian. The prioritization could happen in a scenario when a vehicle had to choose between hitting a pedestrian or veering off the road, potentially endangering its passengers. Reliability was referenced by the individuals that participated in the study performed on rural Nebraska farmers (Piatkowski et al. 2020).

2.4. Likelihood of Adoption

In the study by Classen et al. (2021), the intention to use AVs by older drivers was not found to be statistically significant before and after exposure to autonomous vehicle technology. Lack of statistical significance suggests that while people will perceive autonomous vehicles as beneficial, perceptions may not be an indication of their intent to use. While many people will rightfully have concerns, their concerns should lessen with exposure to AVs, allowing automakers to target other ways to encourage communities to adopt AVs, like making them more attractive than human driven vehicles.

Another study that followed the applicability of mobility on demand systems noted that adoption could be limited by financial constraints rather than road network capacity constraints in rural areas (Sieber et al. 2020). Decreasing the purchase price and operating costs is one way automakers could encourage rural community members to adopt their autonomous vehicles.

2.5. Influence on Current Lifestyle

The benefits of AVs only come after their adoption, so opinions on the likelihood of adoption must be gauged to understand how large the benefit could be and how adoption would influence the current lifestyles of rural dwellers.

Not all the comments from the rural Nebraska survey were negative. When asked about adoption of self-driving features in their farm equipment, some respondents found that they were pleasantly surprised by the features and abilities that they did not know they needed, like more accuracy in locating the tractor in the field. Another positive aspect mentioned was the lowering of driver fatigue, which is a statistic that contributes to numerous crashes yearly on US roads (Piatkowski et al. 2020). Lowering the fatigue allows drivers to drive for longer periods of time. Fully autonomous vehicles could lend to higher productivity since there does not need to be too much focus on driving, if any at all. While the focus was on farmers in the Nebraska study, the opinions of others who live in rural areas are also needed.

There are potential benefits for road users that are older. According to Smith and Trevelyan (2019), of the older people in the US, there is a higher percentage of elderly in rural areas compared to those that live in urban areas, even though the number of older people living in rural areas is smaller than those living in urban areas. With an increase in the average age of Americans, the aged members of society may be among those that benefit most from the introduction of AVs. The elderly in rural areas could especially benefit from more mobility options and having more freedom that would come with fully autonomous vehicles may encourage some older community members to move to more rural areas.

In a 2020 study by Hilgarter and Granig, the results suggested that AVs may shift transportation modes from personal vehicles to public or shared transportation. The shift may be true in urban areas as work and personal schedules may align more people to use shared or public transportation through AVs. They also hypothesized that AVs would be an alternative versus a substitute for existing means of transportation. Since more older adults perceived benefits of AVs after riding in the shuttle, the positive perceptions support the fact that AVs can provide mobility for the elderly (Hilgarter and Granig 2020).

While driverless vehicles may be perceived as safe, this perception is not consistent across the board. To some pedestrians, AVs are viewed as safer than driver-controlled vehicles. By comparison, some vehicle passengers thought that driver-controlled vehicles would be safer than driverless AVs (Hulse, Xie, and Galea 2018).

A study specifically done to estimate commuter value of travel time estimated that time spent in the vehicle would become more productive and appealing. The travel time could be more productive in a situation where passengers could do tasks such as work while traveling or more appealing by enjoying a past time like reading or sleeping. Urban sprawl would be more likely with AVs. While the overall value would be changed, there was a perceptible difference between rural, urban, and suburban areas (Zhong et al. 2020). Comparable results were found from the study done in Nebraska which showed that individuals believed that operator fatigue is less common with driver assistance and that individuals could travel for longer distances (Piatkowski et al. 2020).

2.6. Next Steps

The results from these studies suggest a higher perceived benefit and acceptance of autonomous vehicles, particularly among older adults and those living in urban areas. The possibility of using AVs as part of daily transport is a question that can be answered by further exploring the viewpoints of the public, and specifically of rural respondents. In the next chapter, the methods for examining these viewpoints will be discussed.

CHAPTER 3. METHODS

A survey was created to acquire autonomous vehicle opinion data in rural areas. The first step in creating the survey included identifying questions that researchers would like to have answered. To brainstorm questions, a group of three individuals with experience relating to transportation topics and social data analysis met regularly over a twenty-two-week period.

3.1. Survey Components

The final survey was broken into three main sections, demographics, behavior, and values. The demographic section asked general questions such as, "What is the highest level of education you have completed?" Respondents were also asked which state they lived in. If the response of "I do not reside in the United States" was selected, then respondents would be shown the final screen of the survey thanking them for their time in taking the survey. The demographic topics are shown in Figure 3.1. The full survey questionnaire is provided in the Appendix.

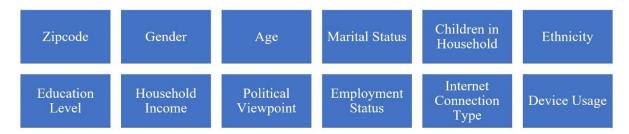


Figure 3.1 Survey Demographic Topics

The definition used to separate rural and urban responses was from the USDA. It referred to rural areas as those in open-countryside and settlements with less than 2,500 people. All other areas were considered urban. For this survey, no distinction was made between urban and suburban. Respondents were asked to self-identify if they lived in a rural area.

For the behavior section, respondents were asked questions relating to their actions with vehicles like how many years of driving experience they had or their level of comfort with nighttime driving. Past, present, and future behavior questions were asked. An example of a present behavior question was, "Do you own or have daily access to a vehicle?" For a past behavior question, an example was, "Recall your last vacation in which you traveled by vehicle. How many miles did you travel one way?" To test future timelines to purchase an autonomous vehicle, respondents were asked, "If a fully self-driving vehicle (i.e., a vehicle that does not need driver input or attention) was available, then how long would you wait to buy after the first model was released?" The response options for the question were "'1 year or less', '2 to 5 years', '6 to 10 years', '11 years or more', 'I would never buy a self-driving vehicle', and 'Unsure'." This question ties back to information found during the literature review, where adoption of AVs or mobility on demand systems could be limited by financial constraints rather than road network capacity constraints in rural areas (Sieber et al. 2020). Figure 3.2 shows the topics covered in the behavior section.

Figure 3.2 Survey Behavior Topics

For the last section, respondents were asked questions to determine the level at which they would value certain features or activities relating to autonomous vehicles. There were seven questions, and most consisted of multiple parts using a Likert scale. For example, the sample question shown in Figure 3.3 was used. The Likert scale options were, "'extremely unlikely', 'somewhat unlikely', 'neither likely nor unlikely', 'somewhat likely', and 'extremely likely'."

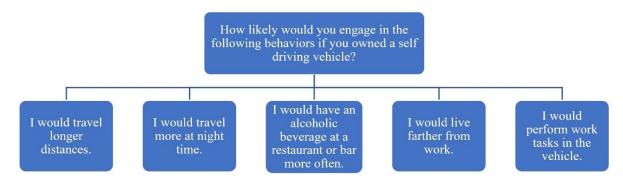


Figure 3.3 Survey Value Questions

One part asked respondents to ponder if they would have an alcoholic beverage at a restaurant or bar more often. If respondents wanted to be able to enjoy alcohol without worrying about the possibility of driving intoxicated, then they may be more likely to buy an AV. The responses can be used to understand what motivates potential buyers of AVs.

Another question that was asked in the values section of the survey was about common concerns relating to self-driving vehicles, or those vehicles that do not need driver input or attention. Respondents chose a level of concern for each category. The categories were technology failures, sensor failures, hacking, moral concerns, maintenance costs, effect on driver employment, no human interaction, and cost of purchase. The choices for each category were "extremely concerned, 'somewhat concerned,' 'neither concerned not unconcerned,' 'somewhat unconcerned,' and 'extremely unconcerned." Figure 3.4 shows some of the topics covered in the values section of the survey.

General Vehicle Trust in Self-If Self-Driving Common Convenience Vehicle is Owned **Driving Vehicles** Concerns • Road Tripping Technology Travel Longer Auto Emergency Safe in General Distances Braking Failutes · Being a · Safer than Travel More at Blindspot **Human Drivers** Sensor Failures Passenger Detection Night Long Road Trips • Handle Winter Hacking Drink Alcohol at Roads • Being a Driver Lane Keeping Moral Concerns Restauants Parking Assist Safer on Winter • Making/Taking Maintenance Roads than Live Farther Phone Calls Traffic Jam Costs **Human Drivers** from Work Assist No Human Sleeping in • Work in Vehicle Vehicle Vehicle to Interaction Vehicle Watching the Cost of Purchase Awareness Scenery

Figure 3.4 Survey Value Topics

During the iteration process some questions were removed and others were changed from the initial question. A question that was removed was, "What is your preferred mode of travel?" and respondents would have been given the option to choose from "'car', 'train', 'plane', 'bus', 'bicycle', or 'walking'". The question was removed because the focus was on rural areas and while many may prefer to ride a bus or train, those modes are typically unavailable in rural areas. Another question that was removed was, "What is your immigration status?" The options were "'Foreign born' or 'U.S. born'" and while this could show the effects of area of origination on attitudes towards autonomous vehicles, it was argued that response rate for the question could be low due to the sensitivity of the subject. Researchers decided it was a question that was best left out.

The question of "What was your total household income from all sources before taxes last year?" was reworded. It was changed to "What was your total household income last year?" There were minor tweaks made to questions like the income question to improve readability. Some questions were adjusted to include a definition. For example, "a vehicle that does not need driver input or attention" was added to a question following the words "fully-self driving" to inform survey takers.

3.2. Survey Distribution and Data Collection

The primary focus of the survey was rural community members, and as such, respondents were from rural states across the United States to represent a broad geographic region and to provide a more comprehensive view into the opinions of rural community members.

An online company was used to create and distribute the survey. This company, Qualtrics, was hired to find respondents that matched criteria set by researchers. The criteria included the following parameters:

- minimum of 1200 respondents
- 70-80% from rural areas
- 20-30% from urban areas
- minimum of 800 responses from Idaho, Montana, Wyoming, Oregon, Washington, Nevada, Colorado, and Utah
- 400 responses representing the remaining United States
- no more than 250 responses from one state

- at least 40% of the survey takers were male (or female)
- 18 years of age or older to avoid legal issues

Before the survey was sent to respondents, the University of Idaho Institutional Board of Research (IRB) reviewed and approved the survey.

The survey included multiple choice questions, single choice questions, and matrix style questions. There were two fill-in the blank questions. One question asked for respondents' zip code for further categorization of the area where the respondent lived. The second question provided a space for clarification to an "other" response in the occupational field.

Qualtrics performed a professional data scrub to identify and remove inadequate quality responses, such as choosing the same response for every question, partial responses, or duplicates. There was no length limit placed on the survey. The research team was less worried about respondent fatigue because the survey company provided a small stipend to the survey takers.

3.3. Analytical Strategy

Once the survey period expired, results were sent to researchers in a comma separated values (.csv) format. Due to the population size, Microsoft Excel was not the ideal choice for data management. A statistical program, SPSS (by IBM, Statistical Package for the Social Sciences), was used to parse data and perform statistical analysis. The data were then summarized and are presented in the following sections.

Measures of central tendency and frequency analyses were conducted on most questions and multiple linear regression and multinomial logistic regression analyses were used for more in-depth analysis. Student T-Tests were also applied based on some questions of the survey. Examples of central tendency included mean, mode, median, and standard deviations. Multiple linear regression, multinomial logistic regression, and chi-squared analyses were used to answer questions that were posed by researchers before analysis began.

As part of the regression analysis, multiple independent variables were held constant to determine strength of effect of each variable on the dependent variable and were used to compare one dependent variable with one independent variable. An alpha of 5% or 0.05 was used in most tests, which is standard practice in survey-based studies. This means that researchers were willing to accept a 5% chance of making a type 1 error in analysis. This is a common value because an alpha of 1%, or 0.01, is difficult to achieve, especially in social and behavioral data analysis.

The survey results, including frequencies, were examined to determine the types of analysis to be used and how to present the data. Several of the frequencies are discussed in Chapter 4. Measures of central tendency included mean, median, and mode. The mean values were used in the T-Test and to obtain Chi-Square values.

The purpose of the T-Test for Independence is to determine if there is a difference in the means of two independent groups on a continuous dependent variable. This test is also called the Student's T-Test or the Independent Samples T-Test and can be used on Likert Scale questions. There are six assumptions for this test: a continuous dependent variable, a categorical independent variable with two groups, independence of observations, no significant outliers in the independent variable, a

normally distributed dependent variable, and an equal variance in each group of the independent variable.

The purpose of a Chi-Square Test of Independence is to determine if there is a significant association between two variables in the population. An assumption of the test is that no more than 20% of cells will have a value less than 5 in the cross-tabulation table. Another assumption of the Chi-Square test is that both variables are categorical.

Multiple linear regression tests are useful in determining the relationship between one dependent variable and multiple independent variables. The dependent variable is also called the outcome and the independent variables can be called the predictors. The relationships are turned into weighted values that explain the effect of the independent variables on the dependent variable. The multiple linear regression model provides an overall effect as well as a relative contribution of each predictor. There are several assumptions that apply to a linear regression model:

- 1. one dependent continuous variable,
- 2. two or more continuous or categorical variables,
- 3. independence of observations,
- 4. linear relationship between dependent variable and each independent variable,
- 5. equal error variances,
- 6. no multicollinearity,
- 7. no significant outliers, and
- 8. approximately normally distributed errors.

Multinomial Logistic Regression is a type of logistic regression model that is used to predict outcomes of a nominal dependent variable. There are six general assumptions for this test:

- nominal dependent variable,
- 2. continuous, ordinal, or nominal independent variables,
- 3. independence of observations,
- 4. no multicollinearity,
- 5. a linear relationship between continuous independent variables and the logit transformation, and
- 6. no outliers or highly influential points.

Pertaining to this test, the chi-square statistic is the "difference in -2 log-likelihoods between the final model and a reduced model. The reduced model is formed by omitting an effect from the final model. The null hypothesis is that all parameters of that effect are zero" (SPSS 2021).

CHAPTER 4. RESULTS

4.1. General Demographics

A total of 1,247 valid responses were collected from the survey. One of the first questions asked was whether respondents self-identify as living in a rural area. "Rural areas can be defined as settlements with less than 2,500 people or open countryside. Based on this definition, do you live in a rural area?" Respondents were also asked to provide home zip codes. A map showing the county of the response's zip code area is shown in Figure 4.1.

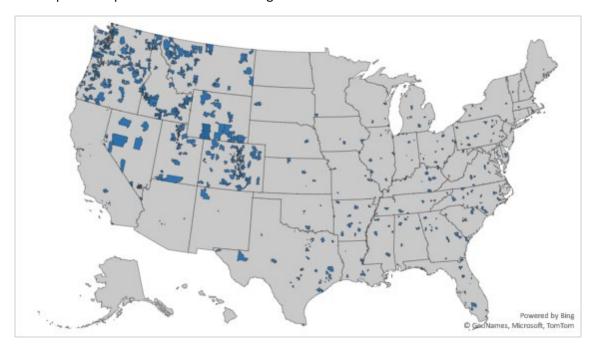


Figure 4.1 Geographic distribution of respondents

In the general demographic section, questions about age, ethnicity, and gender were asked. A summary of the questions asked and responses is provided in Figure 4.2. For example, 913 (73.2%) respondents were from rural areas, 334 (26.8%) were non-rural, and 737 (59.1%) were female. While demographic questions are normally provided at the end of surveys, they were placed near the beginning of this survey to allow Qualtrics to initially screen respondents before they proceeded too far into the survey. Geographic location and gender were among the criteria that Qualtrics used to fill pre-determined quotas. In comparison to US Census data, where 50.5% of the population is female, the survey was 8.6% different (US Census 2022). According to the USDA only 14% of the country's population lives in a rural area (Dobis 2021). The difference in female respondents to US population is expected as more women answer surveys than men. The focus of the study was rural respondents, so the overall percentage of rural residents in the US and rural respondents in the survey were not planned to be the same.

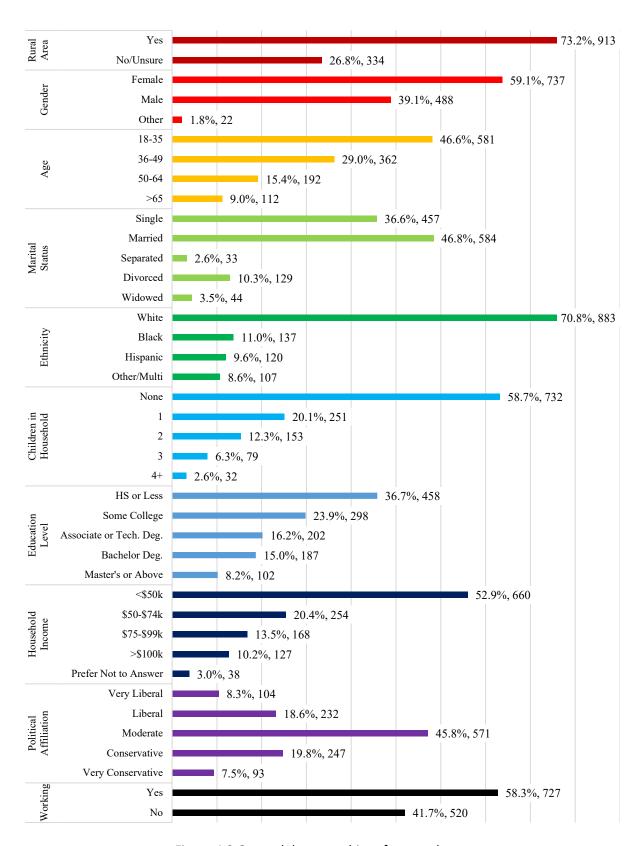


Figure 4.2 General demographics of respondents

Internet connection can be indicative of how connected and likely autonomous vehicle infrastructure will be in rural areas. Table 4.1 shows the internet connection types of rural and non-rural survey-takers. Cable had the most responses, whereas dial up had the fewest. A crucial factor to keep in mind is that some rural areas are limited on the types of internet connection available.

Table 4.1 Internet connect	tion types by rura	al and non-rura	l responses

Connection Type	R	ural	Non	-Rural	To	otal
Cable	303	(33%)	126	(38%)	429	(34%)
Fiber Optic	161	(18%)	51	(15%)	212	(17%)
DSL	110	(12%)	44	(13%)	154	(12%)
Satellite	96	(11%)	20	(6%)	116	(9%)
Hotspot	81	(9%)	16	(5%)	97	(8%)
Dial Up	17	(2%)	4	(1%)	21	(2%)
No Internet	33	(4%)	6	(2%)	39	(3%)
Unsure What Kind	112	(12%)	67	(20%)	179	(14%)
Total	ç	913	3	334	1	247

The table shows that cable (n=429, 34%), fiber optic (n=212, 17%), and DSL (n=212, 12%) were the most popular choices of internet connection. The same order was realized for rural and non-rural residents, with 33% (n=303) of rural residents having a cable connection to internet and 38% (n=126) of non-rural residents having cable. A fairly substantial number of respondents (n=179, 14%) were "unsure what kind" of internet connection type they had. The "non-rural" category includes respondents that selected "no" and "unsure" when asked about whether they live in rural areas.

4.2. Behaviors and Characteristics of Drivers

Respondents were asked about their driving behaviors and characteristics. Figure 4.3 provides a summary of the questions asked and the total number of responses in each category. The figure includes a question about ownership of vehicles, type of vehicle, number of vehicles, years of driving experience, comfort driving at night, type of driver, and number of traffic infractions. Most of the respondents owned vehicles or had daily access (n=1115, 89.4%) and 69.1% (n= 862) said their primary vehicle was a passenger car or SUV. Most respondents (n=632, 50.7%) owned one vehicle. Nearly the same number (n=633, 50.8%) had 16+ years of driving experience. There was variation in the level of comfort in nighttime driving, but the largest number of responses felt "very comfortable" with 407 (32.6%) responses. A shape similar to a bell-curve occurred in the responses to passive or aggressive driving with a slight skew towards passive driving.

In addition to those questions, respondents were asked about the number of miles they traveled on their last vacation by vehicle. Sixty-two people (37.0%) said they traveled "101-500 miles" one way and 25.4% (n=317) traveled "501+ miles" one way. The survey also inquired about weekly commutes to work or school and 63.3% (n=789) travel 0 to 20 miles in a week. A total of 36.8% (n=459) said that they travel to a healthcare facility (i.e., doctor's office, dentist, hospital, or pharmacy) once a month and 30.4% (n=379) do not travel to at least one healthcare facility each month. Finally,

respondents were asked about health issues or disabilities that affect their ability to drive and only 13.2% (n=165) said yes.

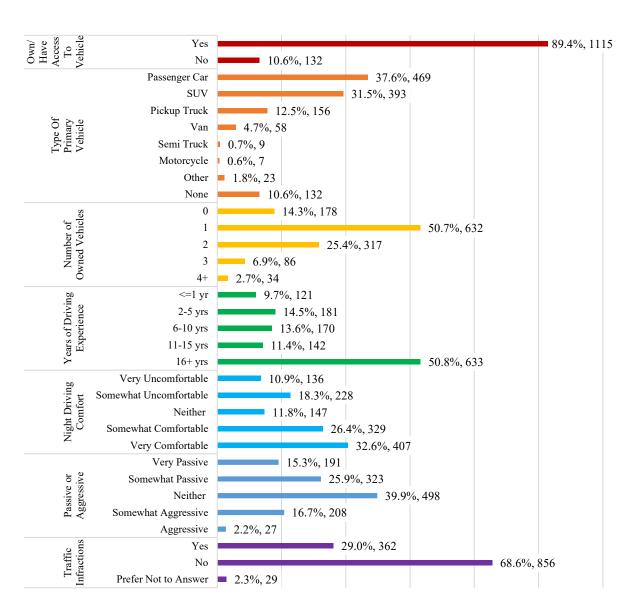


Figure 4.3 Driver characteristics and behaviors

4.3. Autonomous Vehicle Demographics

Following the demographic questions, respondents were asked questions about autonomous vehicles. Of the 1,247 respondents, 42.2% (n=526) said they were "familiar" or "somewhat familiar" with autonomous vehicles, and the remaining 57.8% (n=721) said they were "neither familiar nor unfamiliar", "somewhat unfamiliar", or "unfamiliar". Respondents were asked about whether their current vehicle has AV features like cruise control, lane assist, or self-parking. A total of 69.2% (n=772) said that their current vehicle(s) had those features and 30.8% (n=343) said no. Vehicle owners that responded yes to the previous question were asked specifically about use of

autonomous features. The most used autonomous feature was traditional cruise control. Another question asked about features available in autonomous vehicles and respondents were asked to share their usage level from the choices of "'never', 'rarely', 'sometimes', 'often', or 'always'." Cruise control had the highest usage at 92.1% (n=711) and only 7.9% (n=61) chose "never". For lane assistance, 53.6% (n=414) of survey responders said they "never" use it. By comparison, 546 people (70.7%) said they "never" use self-parking, and 52.8% (n=408) said the same about adaptive cruise control use.

After asking about features that are commonly available, respondents were asked about features that will be available in future vehicles or those that are brand new. The features were self-driving (driver takeover option) and a vehicle without a steering wheel. Of the 772 respondents, 349 (45.2%) said that they would be "extremely unlikely" or "somewhat unlikely" to use a vehicle that has self-driving with a driver takeover option and only 12.4% (n=96) said they would be "extremely likely" to use that kind of vehicle. For the vehicle that has no driver takeover option (no steering wheel), 57.9% (n=447) said they would be "extremely" or "somewhat" unlikely to use the vehicle. The percentage that would be "extremely likely" to use the vehicle with no steering wheel was 10.0% (n=77), a slight decrease from the percentage that provided a positive response to the previous question.

4.4. Opinions

Individuals that did not have autonomous features in their vehicle were also asked about autonomous features that are or will be available in the future. For adaptive cruise control, 177 of the 343 (51.6%) said they would be "extremely likely" or "somewhat likely" to use. Lane assist and self-parking had 48.1% (n=165) and 48.6% (n=167) positive responses, respectively. When asked about self-driving vehicles, 42.0% (n=144) said they would be unlikely to use a vehicle with a takeover option and 50.4% (n=173) said they would be unlikely to use a vehicle with no takeover option.

The survey contained a question to determine a general timeline of adoption. The responses were spread out among six options. There were 179 (14%) responses that were "Unsure." The remaining response answers and their occurrences are shown in Figure 4.4.

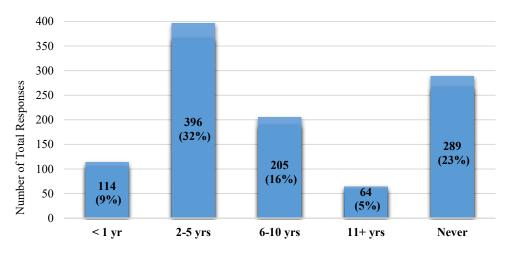


Figure 4.4 Timeline of respondents to purchase an AV

When asked the question, "How comfortable would you be if your rearview or sideview mirror was replaced with a camera image?", 41.9% (n=523) respondents said they were comfortable and 30.8% (n=386) said they were uncomfortable. The remaining 19.9% (n=340) said they were "neither comfortable nor uncomfortable." Figure 4.5 shows a visual comparison of respondents' level of agreement with other statements relating to self-driving vehicles.

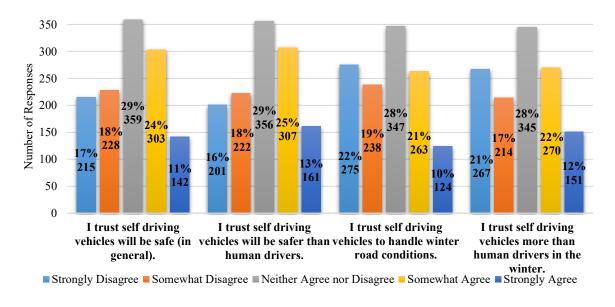


Figure 4.5 Levels of Agreement with statements about Self-Driving Vehicles

For a comparison between rural and non-rural respondents, Table 4.2 shows the level of agreement that respondents felt with the statement "I trust that self-driving vehicles will be safer than human driven vehicles."

Table 4.2 Levels of Agreement with the statement "I trust that self-driving vehicles will be safer than human driven vehicles."

Level of Agreement	vel of Agreement Rural Non-F		Total
Strongly Disagree	148 (16%)	53 (16%)	201 (16%)
Somewhat Disagree	163 (18%)	59 (18%)	222 (18%)
Neither	256 (28%)	100 (30%)	356 (29%)
Somewhat Agree	225 (25%)	82 (25%)	307 (25%)
Strongly Agree	121 (13%)	40 (12%)	161 (13%)
Total	913	334	1247

The percentages between rural and non-rural respondents are very similar. For example, 12% (n=40) respondents that identified as non-rural strongly agreed with the statement, whereas 13% (n=121) of rural respondents chose "strongly agree". Drivers were asked about common concerns relating to self-driving vehicles. The results are summarized in Figure 4.6 and Figure 4.7.

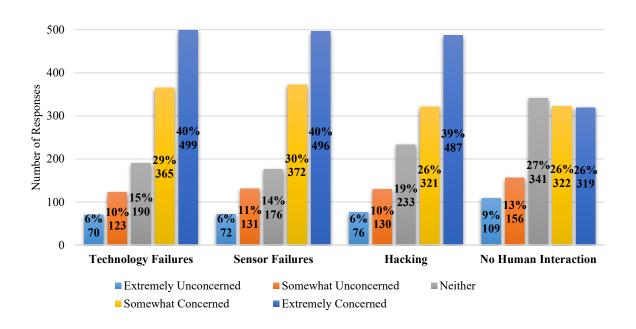


Figure 4.6 Common Concerns (part 1)

Figure 4.6 shows that many respondents were worried about technology and sensor failures as well as hacking. There was less extreme concern expressed when it came to lack of human interaction (such as having no steering wheel). In Figure 4.7, the cost of purchase is something that several respondents (541 out of 1,247 respondents) are extremely concerned about. Moral concerns are comparably less of a concern. An example of a moral concern would be a situation where an autonomous vehicle had to choose between the lives of passengers and those of pedestrians or other drivers. The programming of the vehicle can be a cause for concern.

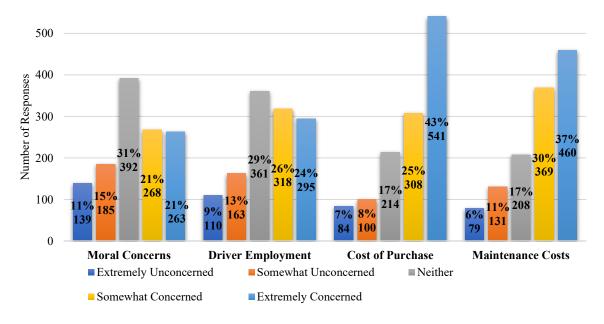


Figure 4.7 Common Concerns (part 2)

Finally, respondents were asked about their preference of sharing the road with autonomous vehicles. First, they were asked about their level of agreement with the statement, "I would prefer to share the road with self-driving semi-trucks over driver controlled." Of the 1247 respondents, 564 (45.2%) did not agree with the statement and 305 (24.4%) did agree. Exactly 30.3% (n=378) neither agree nor disagreed. Pertaining to sharing the road with self-driving passenger vehicles, 36.8% (n=459) had negative reactions and 32.2% (n=401) had positive reactions to the statement.

CHAPTER 5. ANALYSIS

In this section, an analysis of the original research hypotheses is presented. As a reminder, the hypotheses are:

- 1. rural drivers would be more hesitant to adopt self-driving or autonomous vehicles
- 2. people would think autonomous vehicles are more dangerous than human drivers (due to moral concerns, technology failures, differing geography of roads)
- 3. older respondents would be less likely to adopt

Researchers also tested variables that seemed to be stereotypically bound to living in rural areas, such as longer commute distances, to provide a beginning for further analysis and to provide quality assurance that they were on target with their assumptions. A longer commute distance may increase the likelihood of adoption.

5.1. Theoretical Ownership of AVs and Commute Distances

Student's t-tests were performed on various variables to predict whether respondents were "'extremely unlikely,' 'somewhat unlikely', 'neither likely nor unlikely', 'somewhat likely', and 'extremely likely'" to act a certain way if they theoretically owned a self-driving vehicle, depending on place of residence. There were three different behaviors that were compared with place of residence including "likelihood to travel longer distances," "live farther from work," and "travel more at night." A summary of the test outcomes is provided in Table 5.1.

There were 913 rural respondents and 334 non-rural/unsure respondents. While the "likelihood to travel longer distances" and "travel more at night" tests did not yield statistically significant results, the "live farther from work" test did. For this test, the values were normally distributed on a quartile Q-Q plot and there was homogeneity of variances from Levene's test for equality of variance (p=.151). It was determined that there were no outliers in either category of yes or no/unsure from inspection of a boxplot. Rural respondents were more likely to live farther distances from work (1.53 \pm 1.290) than non-rural/unsure (1.33 \pm 1.206) if they owned an autonomous vehicle. The rural respondents mean response was .202 (95% CI, 0.043 to 0.361) higher than non-rural/unsure respondents where the results were statistically significant, t (1245) = 2.494, p = .013. The p-value for the t-test significance was two sided (tailed).

Table 5.1 Summary of T-Test for Mean Difference

Test Number	Dep. Variable	Ind. Variable	Category	Mean	STD	N	p-val
1	Travel Longer	Place of	Rural	2.159	1.294	913	0.970
1	1 Distances*	Residence	Non-Rural/Unsure	2.156	1.240	334	0.970
2	Live Farther from	Place of	Rural	1.534	1.290	913	0.012
2	2 Work*	Residence	Non-Rural/Unsure	1.332	1.206	334	0.013
2	Travel More	Place of	Rural	2.123	1.298	913	0.467
3	at Night*	Residence	Non-Rural/Unsure	2.063	1.252	334	0.467
Notes	* denotes behavior of theoretical ownership of self-driving vehicle						
Notes:		bolded denote	es significance at 95% conf	fidence lev	el		

To assess the relationship between weekly commute to work or school and place of residence (rural or not) a Chi-Square Test of Independence was performed. There was a significant relationship between the two variables, χ^2 (4, N=1247) = 30.517, p = < .001. Longer commute distances were more likely tied to selecting rural residence areas. Only one cell (10.0%) had an expected count of less than five. The minimum expected was 4.29.

Based on the results from the t-tests and Chi-Square test, rural residents, who already live farther from work than their urban counterparts, may choose to live even further if they own a self-driving vehicle. However, it is important to keep in mind that a mean of 1.534 implies that most rural residents are still "unlikely" to choose to live farther from work.

In summary, pertaining to theoretical ownership of a self-driving vehicle, respondents that live in rural areas are slightly more likely to live farther from work than respondents that do not live in rural areas. It was shown that rural residents already have a comparably longer distance to commute than their non-rural counterparts. While living farther away, a little more distance might not feel like it would make a difference. The differences in likelihood to travel more at night or travel longer distances (in general) were not statistically significant between rural and non-rural respondents.

Previous literature has suggested that while people will perceive AVs as beneficial, perceptions may not be an indication of intent to use (Classen et al. 2021), and the results of this analysis seem to support that observation. Even when provided with theoretical ownership of AVs, respondents were unlikely to live farther from work or school.

5.2. Factors Affecting Trust in Self-Driving Vehicles

A multiple linear regression model (n=772) was developed to predict the level of "trust that self-driving vehicles are safer than human driven vehicles" using the independent variables listed in Table 5.2. The independent variable was measured using a five-point Likert scale. It was found that there were no non-linear relationships by assessment of partial regression plots and a plot of studentized residuals (quotient from division of a residual by an estimate of standard deviation) against the predicted values. There was independence of residuals (observations), and the Durbin-

Watson statistic was 2.084 (a number close to two shows no correlation between residuals). There was homoscedasticity from a plot of studentized residuals versus unstandardized predicted values, but there were no collinearity problems (VIF values were all less than 10, and no correlations were greater than 0.7). There were no residuals more than three standard deviations away from the mean in a positive or negative direction and the residuals were all normally distributed from an assessment of Q-Q plots. The model predicted a statistically significant relationship between the dependent variable and independent variables, F(12,759) = 26.611, p < 0.001, adj. $R^2 = 0.285$. The regression coefficients, standard errors, and significant variables (bolded) can be found in Table 5 2.

This model contained a subset of the respondents who currently use autonomous vehicle features, and there was a positive correlation between these users and their trust that self-driving vehicles would be safer than human driven vehicles. Cruise control, lane assist, and self-parking were the features that respondents were using. Those respondents felt positively toward self-driving vehicles. This indicates a correlation between current use of AV features and feelings of safety toward self-driving vehicles. If drivers have already adopted autonomous features, then they will likely accept bigger changes in the future. Respondents in the subset that were older had less trust in self-driving vehicles than those that were younger.

Table 5.2 Linear regression analysis for "trust that self-driving vehicles are safer than human driven vehicles" (subset).

	Variable	β (unstandardized)	Std. Error	β' (standardized)	Sig.
	Constant	1.225	0.165	-	<0.001
Rural (0=No/Unsure, 1=Yes)		-0.076	0.092	-0.026	0.411
	Gender (0=Other,1=Male)	-0.004	0.083	-0.001	0.963
(0=	Age 18-35, 1=36-49, 2=50-64, 3=65+)	-0.081	0.040	-0.065	0.045
Te	Education or Less, 1=Some College, Associate's, chnical Deg., 2=Bachelor's Deg, Master's, PhD, Professional Deg)	0.025	0.043	0.018	0.570
`	Political Affiliation . Liberal, 1=Somewhat Liberal, 2= te, 3= Somewhat Conservative, 4=V. Conservative)	-0.102	0.040	-0.081	0.011
•	Familiarity with AVs nfamiliar, 1=Somewhat Unfamiliar, Neither, 3= Somewhat Familiar, 4=Familiar)	0.092	0.030	0.104	0.002
(0=Nev	Cruise Control* er, 1=Rarely, 2=Sometimes, 3=Often, 4=Always)	0.080	0.036	0.070	0.029
(0=Nev	Lane Assist* er, 1=Rarely, 2=Sometimes, 3=Often, 4=Always)	0.093	0.036	0.096	0.010
(0=Nev	Self-Parking* er, 1=Rarely, 2=Sometimes, 3=Often, 4=Always)	0.118	0.041	0.107	0.004
Unco	Technology Failure** remely Unconcerned, 1=Somewhat ncerned, 2=Neither, 3=Somewhat cerned, 4= Extremely Concerned)	-0.262	0.038	-0.239	<0.001
Moral Concerns** (0=Extremely Unconcerned, 1=Somewhat Unconcerned, 2=Neither, 3=Somewhat Concerned, 4= Extremely Concerned)		-0.041	0.037	-0.041	0.270
Unco	No Human Interaction** remely Unconcerned, 1=Somewhat ncerned, 2=Neither, 3=Somewhat cerned, 4= Extremely Concerned)	-0.194	0.037	-0.191	<0.001
Notes:	bolded denotes significance at 95% confidence level	* denotes current use of AV features		ANOVA p-val: <0.001	
confidence level		** denotes level of concern		adjusted R ² : 0.285	

A second multiple linear regression model (n=1247) was run to predict the level of "trust that self-driving vehicles are safer than human driven vehicles" from the independent variables listed in Table 5.3. This test removed three variables that measured the current use of "Cruise Control," "Lane Assist," and "Self-Parking." This revised model was run so researchers could see how all respondents answered, rather than just the subset of 772 respondents that currently use autonomous vehicle features. The adjusted R² value decreased from 0.285 to 0.245.

The model predicted a statistically significant relationship between the dependent variable and independent variables, F (9,1237) = 44.617, p < 0.001, adj. R² = 0.240. The regression coefficients, standard errors, and significant variables (bolded) can be found in Table 5.3.

This statistically significant model was created to predict how much respondents trusted the safety of self-driving vehicles versus human driven vehicles. The variables that were used were "rural," "gender", "age", "education level", "political affiliation", "familiarity with AVs", and level of concern of "'technology failures', 'moral concerns', and 'no human interaction.'" The statistically significant indicators (independent variables) were "education level," "political affiliation", "familiarity with AVs", and level of concern of "'technology failures' and 'no human interaction.'" Education level had a positive correlation where respondents with higher education levels had stronger trust in AVs. Political affiliation showed that the more conservative respondents were less likely to trust self-driving vehicles. Those that were more familiar were more likely to have trust in self-driving vehicles. Finally, pertaining to levels of concern, the higher the level of concern respondents had for technology failures or no human interaction, the less likely they were to agree that self-driving vehicles would be safer than human driven vehicles. The variables "rural," "gender," "age," and "moral concerns" were not statistically significant, so a postulation cannot be made.

Table 5.3 Linear regression analysis for "trust that self-driving vehicles are safer than human driven vehicles" (all responses).

	Variable	β (unstandardized)	Std. Error	β' (standardized)	Sig.
	Constant	3.509	0.140	-	<0.001
	Rural (0=No/Unsure, 1=Yes)	-0.011	0.071	-0.004	0.874
	Gender (0=Other,1=Male)	-0.026	0.067	-0.010	0.699
(0=18	Age 3-35, 1=36-49, 2=50-64, 3=65+)	-0.051	0.033	-0.040	0.128
Associa	Education =HS or Less, 1=Some College, te's, Technical Deg., 2=Bachelor's :Master's, PhD, Professional Deg)	0.074	0.035	0.054	0.036
	Political Affiliation Liberal, 1=Somewhat Liberal, 2= rate, 3= Somewhat Conservative, 4=V. Conservative)	-0.092	0.032	-0.074	0.004
	Familiarity with AVs amiliar, 1=Somewhat Unfamiliar, either, 3= Somewhat Familiar, 4=Familiar)	0.106	0.023	0.122	<0.001
1=Som	Technology Failure** 0=Extremely Unconcerned, lewhat Unconcerned, 2=Neither, lewhat Concerned, 4= Extremely Concerned)	-0.297	0.029	0.283	<0.001
1=Som	Moral Concerns** 0=Extremely Unconcerned, lewhat Unconcerned, 2=Neither, lewhat Concerned, 4= Extremely Concerned)	-0.058	0.030	0.058	0.053
1=Som	No Human Interaction** 0=Extremely Unconcerned, lewhat Unconcerned, 2=Neither, lewhat Concerned, 4= Extremely Concerned)	-0.198	0.031	0.195	<0.001
Notes:	bolded denotes significant at 95% confidence level	* Denotes current use of AV features		ANOVA p-val: <0.001	
	33/0 COMMUNICE TEVEL	** denotes level of	concern	adjusted R ² :	0.245

Between the two models, one with the full value of respondents (n=1247), and one with a subset (n=772), they mostly had the same statistically significant independent variables. The difference

between the two came from the variables "age" and "education level". In the full model, a higher education level lent to a stronger trust in self-driving vehicles. For the model with a subset of respondents (those that currently use AV features) age was a significant predictor. The older a respondent was, the less likely they were to trust self-driving vehicles over human driven vehicles.

While it came from a subset of respondents, the results of this analysis align with previous literature that find older drivers are more hesitant to trust AVs, particularly those with self-driving capabilities. It also shows that a second hypothesis that researchers developed was correct, in which higher educated people were more likely to trust AVs (with self-driving capabilities).

5.3. Determining Likelihood to Adopt an Autonomous Vehicle

To determine the independent variables that would influence the likelihood to buy an autonomous vehicle, multinomial logistic regression models were developed. Survey takers were asked, "If a fully self-driving vehicle (i.e., a vehicle that does not need driver input or attention) was available, then how long would you wait to buy after the first model was released?" The options were "'1 year or less', '2 to 5 years', 6 to 10 years', '11 years or more', 'I would never buy a self-driving vehicle', and 'Unsure'". For the models, the dependent variable was combined into three categories, "'buy at some point', 'never', and 'unsure.'" This combination made the variable nominal and the first assumption of the model.

While many models were run, only four had viable results. The remaining models had some dependent variable levels by subpopulation with zero frequencies. This created an error and rendered the results of the model unreliable and incorrect. The four models (A, B, C, and D) that were viable are shown as Table 5.4 through Table 5.7.

The reference category for these models (which is dropped from the model to see the effects of other variables) was "buy at some point". The purpose of the reference category is to leave a category out so that the regression model does not provide a redundant result that comes from multicollinearity. This category was selected because it had the most observed frequencies. For example, Model B used the independent variables, "rural" (which asked if respondents lived in a rural area), "gender", and "age."

For each model, the model significance was <0.001, and p-values that are bolded denote significance at 95% confidence levels. Some independent variables were categorical. While "gender" and "age" are demographic factors that are typically considered as controls in models measuring attitudes/beliefs, the current models treated them as covariates given the theoretical reasons to expect gender and age-based variations in attitudes towards novel technologies. Based on a study done in Florida, males were less likely to have concerns with AVs and more likely to have an eagerness to adopt them. They also had a higher level of willingness to relinquish control of the vehicle. For age, younger people had a lower level of concern with AVs and a higher eagerness to adopt than those in a middle-aged group. There was also a higher willingness to relinquish control to the driving system than those that were middle aged (Charness et al. 2018). For these reasons, age and gender were treated as covariates. "Education level" and "familiarity with autonomous vehicles" were treated as continuous variables which follows the standard covariate definition.

Table 5.4 Multinomial Logistic Regression Model A

Variable	P-Val (likelihood)
Rural (0=No, 1=Yes)	0.138
Gender (0=Other, 1=Male)	<0.001

Each of the working models had gender and area of residence as independent predictor variables. Model A was used as a baseline for the other models and its -2 log likelihood was 44.759. After this model was developed other variables such as "age", were added for Model B, which had a -2 log likelihood value of 82.294.

Table 5.5 Multinomial Logistic Regression Model B

Variable	P-Val (likelihood)
Rural	0.142
(0=No, 1=Yes)	0.142
Gender	40.001
(0=Other, 1=Male)	<0.001
Age (0=18-49,1= 50+)	<0.001

With the higher value, Model B represented a better fit of the variables than Model A. For Model C, the variable of "age" was switched with "education level" to compare results. The variables included in Model C are shown in Table 5.6.

Table 5.6 Multinomial Logistic Regression Model C

Variable	P-Val (likelihood)
Rural	0.083
(0=No, 1=Yes)	
Gender	<0.001
(0=Other, 1=Male)	
Education Level	
(0=HS or Less, 1=Some College, Associate's, Technical Deg., 2=Bachelor's Deg, 3=Master's, PhD, Professional Deg)	<0.001

Between Models C and D, the predictor (independent) variable "education level" was switched out for "familiarity with AVs" to determine how a driver's personal experience with this technology would perform in the model. Model C had statistically significant variables for "gender" and "education level," whereas Model D included "gender," "age," and "familiarity with AVs" as statistically significant variables.

Table 5.7 Multinomial Logistic Regression Model D

Variable	P-Val (likelihood)
Rural (0=No, 1=Yes)	0.145
Gender (0=Other, 1=Male)	0.018
Age (0=18-49,1= 50+)	<0.001
Familiarity with AVs (0=Unfamiliar, 1=Neither, 2=Familiar)	<0.001

For Model C, the variables "gender" and "education level" were significant for those respondents who plan to "never" adopt a self-driving vehicle. For those who were "unsure" about adoption, "place of residence", "gender", and "education level" were significant. The -2 log likelihood for Model C was 147.69.

Table 5.8 Multinomial Logistic Regression Model C results

						95% Confiden	ice Int. Exp(B)	
Ind. Vars.	В	Std. Error	Wald Coeff.	Sig.	Exp(B)	Lower Bound	Upper Bound	
	Never							
Intercept	-0.444	0.171	6.76	0.009				
Rural	-0.014	0.162	0.01	0.929	0.986	0.717	1.355	
Gender	-0.495	0.147	11.32	0.001	0.610	0.457	0.813	
Education Level	-0.390	0.083	22.29	<0.001	0.677	0.576	0.796	
			Unsu	re				
Intercept	-0.626	0.190	10.84	0.001				
Rural	-0.404	0.183	4.89	0.027	0.667	0.466	0.955	
Gender	-0.542	0.178	9.23	0.002	0.581	0.410	0.825	
Education Level	-0.395	0.100	15.65	<0.001	0.674	0.554	0.819	
Notes:	reference category is "at some point" -2			-2	2 Log Likelihood: 147.69			
ivotes.	bolded	bolded denotes significance at 95% confidence				Model Sig: <0.001		

In Model D, statistically significant variables that would predict someone never adopting a self-driving vehicle were "gender", "age", and "familiarity with AVs." The same predictor variables were significant for those respondents who were unsure. For the four models, the -2 log likelihood increased from Model A to D, with Model D having the highest, or best, value. The -2 log likelihood was 199.60.

Table 5.9 Multinomial Logistic Regression Model D results

						00,100,111	dence Int. o(B)
Ind. Vars.	В	Std. Error	Wald Coeff.	Sig.	Exp(B)	Lower Bound	Upper Bound
Never							
Intercept	-0.757	0.169	20.02	<0.001			
Rural	0.015	0.166	0.01	0.929	1.015	0.734	1.404
Gender	-0.332	0.155	4.59	0.032	0.717	0.529	0.972
Age	1.101	0.156	49.85	<0.001	3.006	2.214	4.080
Familiarity w/ AVs	-0.458	0.082	31.42	<0.001	0.632	0.539	0.742
			Unsur	е			
Intercept	-0.862	0.183	22.09	<0.001			
Rural	-0.346	0.182	3.61	0.058	0.708	0.495	1.011
Gender	-0.418	0.184	5.18	0.023	0.658	0.459	0.943
Age	0.510	0.196	6.77	0.009	1.665	1.134	2.446
Familiarity w/ AVs	-0.325	0.095	11.68	0.001	0.722	0.599	0.870
Notos	referen	reference category is "at some point"			-2	2 Log Likelihood: 199.60	
Notes:	bolded	bolded denotes significance at 95% confide			idence	Model Sig: <0.001	

As the reference category was "buy at some point," two equations were created for the other categories of the dependent model. The equations were based on the exp(B) values and the significance of variables. For the variables that are significant (bolded), predictions of the population can be made. Exp(B) values that are less than one indicate a higher likelihood of falling into the reference category than the comparative category. The predictions are only accurate for respondents who have the same responses to other independent variables than those being compared.

An example scenario would be a dependent variable of favorite type of ice cream with the options strawberry, chocolate, and vanilla and the reference category as vanilla. The predictor (independent) variables could be age, gender, and enjoyment of games (on a scale of 1 to 5). A comparison between those that liked vanilla or chocolate could be made or a comparison of those that liked vanilla or strawberry could be made. A comparison could not be made between those that like strawberry or chocolate. While making comparisons within types of ice cream, the independent variables, age, gender, and enjoyment of games, would be tested for significance and then assumptions could be made based on the significant variables. For example, if age was a significant factor in the comparison of chocolate to vanilla and the exp(B) value of age was 1.10, then it could be said that regarding respondents with the same gender and level of enjoyment of games, older respondents would be more likely to like chocolate over vanilla. The relative probability of choosing chocolate over vanilla would be 10% higher per increase in age of respondents with the same

gender and level of enjoyment of games. The comparative category was chocolate for that example and vanilla was the reference category.

For the model pertaining to level of trust in self-driving vehicles, the first equation was for those that selected "Never" (comparative category) when asked about their intent to purchase an autonomous vehicle in the future. Based on Model D (Table 5.9), the relative probability of "never" purchasing a fully self-driving vehicle rather than "buy[ing one] at some point" was 28.3% lower for male respondents than non-male respondents with the same choices in rural, age, and familiarity with AVs. More generally, if a respondent were male, it is expected that they would be more likely to "buy at some point" versus "never" buying. For age, the older a respondent was, the more likely they were to "never" buy a self-driving vehicle than "buy at some point." There was a 200.6% relative probability that respondents would choose "never" over "buy[ing] at some point" with the change from age groups "18-49" to "50+." Finally, with age, gender, and living location constant, each one-point increase in familiarity with AVs had a decrease of 0.632 in relative risk of choosing "never" versus "buy at some point." In other words, those that were more familiar with AVs were more likely to buy at some point than choosing to never buy a self-driving vehicle.

The second equation was for the demographic that was "unsure" (comparative category) whether they would purchase a fully self-driving vehicle. The relative probability of being "unsure" rather than "buy[ing] at some point" was 34.2% lower for male respondents than non-male respondents with the same choices in living location, age, and familiarity with AVs. In short, male respondents are associated with a decrease in the relative probability of "never" purchasing a self-driving vehicle over "buy[ing] at some point" but also a decrease in the relative probability of being "unsure" over "buy[ing] at some point." Older respondents of the same living location (rural or not), gender, and level of familiarity with AVs, had an increased likelihood of being "unsure" whether they would purchase a self-driving vehicle over "buy[ing] at some point." There was a 66.5% increase in relative probability in those that were "unsure" over "buy[ing] at some point" with a change in age categories from "18-49" to "50+." Lastly, respondents that were more familiar with AVs would be more likely to choose "buy at some point" over being "unsure" when they would purchase a fully self-driving vehicle.

While the more fitting model based on the -2 log likelihood was Model D, some insight can be gathered from Model C. A prediction about influence of educational level on likelihood of purchasing a self-driving vehicle can be made. In the comparison between respondents that chose "buy at some point" and those that chose "never", it was observed that respondents with higher levels of education would be more likely to choose the first option. There was a relative probability that each one-point increase in education level (between categories shown in Table 5.8) would lead to a 32.3% increased likelihood of choosing "buy at some point" over "never" purchasing a self-driving vehicle. In a comparison between "buy[ing] at some point" and being "unsure" about adoption time, respondents with higher levels of education were more likely to "buy at some point" than be "unsure." In conclusion, respondents with the same gender and living location (rural or not) that have higher levels of education are more likely to buy a self-driving vehicle at some point than those with lower levels of education. This may be that those with higher levels of education are more trusting of technology or that they are less skeptical of newer technologies.

Since the independent variable "rural" was not statistically significant, a conclusion about the variable could not be made. Since the data are provided in relative terms, it is important to keep in mind that general blanket statements cannot be made about the singular effect of an independent variable on likelihood to buy an autonomous vehicle without mentioning that other independent variables are held constant based on these models.

CHAPTER 6. CONCLUSIONS

In this study, the research focused on rural residents and their perceptions of autonomous vehicles. Through a literature review, a basis of understanding pertaining to rural residents and autonomous vehicles was completed. Several hypotheses were created to predict perceptions of rural residents. With the hypotheses in mind, a survey was created by a team of researchers to be distributed through the survey company, Qualtrics. Quotas were created to create a representative sample of rural respondents. Age, gender, and self-identification of living location (rural or not and states) were among the quota requirements. The survey was approved by University of Idaho's Institutional Review Board before it was distributed.

A total of 1,247 valid responses were collected with 73.2% (n=913) responding that they lived in a "settlement with less than 2,500 people or open countryside." There were 737 (59.1%) responses that chose female as their gender. This percentage is in the range of being representative of the total percentage of females living in the United States (50.5%), according to the US Census Bureau as of 2022. Most of the respondents to the survey (n=883, 70.8%) identified as white. The most common level of education was high school or less with 458 (36.7%) responses and for age, 18 to 35 years old (n=581, 46.6%) was the most popular response range.

Respondents were asked questions about their behaviors and characteristics as drivers. For example, most of the respondents owned vehicles or had daily access (n=1115, 89.4%) and 69.1% (n= 862) said their primary vehicle was a passenger car or SUV. Following the driver behaviors and characteristics section, respondents were asked questions about autonomous vehicles. Of the 1,247 respondents, 42.2% (n=526) said they were "familiar" or "somewhat familiar" with autonomous vehicles. When asked about usage of specific autonomous driving features, the most used autonomous feature was traditional cruise control. Of the 772 respondents that had autonomous vehicle features in their current vehicle, 349 (45.2%) said that they would be "extremely unlikely" or "somewhat unlikely" to use a vehicle with self-driving with a driver takeover option and only 12.4% (n=96) said they would be "extremely likely" to use that kind of vehicle.

Of the concerns that respondents expressed relating to self-driving vehicles, 43.3% (n=541) were "extremely concerned" about the cost of purchasing a self-driving vehicle. The next most concerning categories were technology and sensor failures, based on number of responses in the "extremely concerned" category.

Through statistical analysis, it was found that if respondents theoretically owned a self-driving vehicle, those that live in rural areas are slightly more likely to live farther from work than they already do when compared with respondents that do not live in rural areas. While they were slightly more likely to choose to live further, rural respondents still expressed that they were "unlikely" to live farther on average. This means that those in non-rural areas were closer to the "extremely unlikely" side of the Likert scale than rural respondents. Overall, it can be said that most respondents, regardless of living location, were unlikely to live farther from work even when owning a self-driving vehicle. For future studies, the specific distances that rural residents would be willing to live should be examined. A higher number of distance options with smaller ranges, such as 0-5 miles, 6-10 miles, etc. is recommended for investigation.

While determining the level of trust in self-driving vehicles, it was found that there was a group of people that felt that autonomous vehicles were more dangerous, or had less trust toward autonomous vehicles, than human driven vehicles. This group included those that were older and those that had lower levels of education. There was a decrease in the likelihood to trust self-driving vehicles with age and an increase in those with more education. There was a positive correlation between those that currently used autonomous features in their vehicles and their trust that self-driving vehicles would be safer than human driven vehicles.

Two statistical models were developed to determine levels of trust in self-driving vehicles. One model included the full population of respondents (n=1,247) and the other model included a subset (n=772). The subset was comprised of respondents who currently use autonomous vehicle features. In the full model, a higher education level lent to a stronger trust in self-driving vehicles. In the subset model, age was a significant predictor. Those who were older were less likely to trust self-driving vehicles over human drivers. It showed that a hypothesis that researchers developed was correct, specifically that higher educated people were more likely to trust AVs (with self-driving capabilities). Further work can be done to improve the outlook of those with lower levels of education and the older population, and more work can be done to understand how autonomous vehicles are, currently and in the future, perceived. Older drivers are a demographic that should be the focus of more educational outreach to increase comfort levels and outlooks. Looking at the initial hypothesis that rural drivers would be more hesitant to adopt self-driving vehicles, the wariness that was observed in rural drivers seemed to be comparable to that of non-rural respondents. For example, they had similar levels of trust that self-driving vehicles would be safer than human driven vehicles.

A model was developed to determine the likelihood of adopting a fully self-driving vehicle. Two comparisons were made in the model. One comparison tested the categories "buy at some point" and "never" and the other compared "buy at some point" to "unsure." In the first comparison, it was found that male respondents were more likely to "buy at some point" than to choose to "never" buy a self-driving vehicle if they had the same living location (rural or not), age, and familiarity with AVs. There was a 200% increase in likelihood that respondents that were older would choose to "never" purchase a self-driving vehicle rather than "buy at some point." Those that were more familiar with AVs were more likely to "buy at some point" than choosing to "never" buy a self-driving vehicle.

In a second comparison, the categories "buy at some point" and "unsure" about buying a self-driving vehicle were compared. Male respondents were less likely than non-male respondents to be "unsure" whether they would buy a self-driving vehicle. There was a 66.5% increase in relative probability in those that were "unsure" over "buy[ing] at some point" with a change in age categories from "18-49" to "50+." This means older respondents were more "unsure" than being sure they would "buy at some point." Respondents that were more familiar with AVs exhibited higher levels of likelihood to buy a self-driving relative to people of the same age, gender, and living location (rural or non-rural).

The final hypothesis that researchers examined was an increased likelihood to adopt self-driving vehicles in respondents that were more highly educated, and this was proven true as well. As expressed earlier, an outreach to those that have lower levels of education, such as high school

diplomas or less, could be a niche of the public who would benefit from educational outreach to improve trust and likelihood of adoption.

Tying into research that shows the influence AVs might have on respondents' current lifestyles, those that are older or disabled may be among those that could benefit the most from self-driving vehicles. This research showed that there is a greater reluctance as people age to adopt fully self-driving vehicles. Work can be done in the future to explain the benefits and to introduce people to the technology, which would in turn strengthen their trust in self-driving vehicles. Some studies have introduced self-driving technology to small populations, but a greater expansion of the effort might be beneficial in terms of adoption rates. As with any technology, those in rural areas are likely to be further down the line in adoption, but with adoption rates becoming more widespread, these communities should follow suit. This analysis was unable to determine a realistic timeline of adoption of self-driving vehicles based on location of residence, so expanded efforts on the topic will benefit prediction models. Another area that would benefit from further exploration is how autonomous vehicles would be accepted in areas with extreme weather climates, such as heavy snowfall.

CHAPTER 7. REFERENCES

- Alsalman, A., Assi, L., Ghotbi, S., Ghahari, S., and Shubbar, A. "Users, Planners, and Governments Perspectives: A Public Survey on Autonomous Vehicles Future Advancements." Transportation Engineering 3 (March 1, 2021): 100044. https://doi.org/10.1016/j.treng.2020.100044.
- America Counts Staff. "One in Five Americans Live in Rural Areas." Census.gov, August 9, 2017. https://www.census.gov/library/stories/2017/08/rural-america.html.
- Brenan, G. "Driverless Cars Are a Tough Sell to Americans." Gallup.com, May 15, 2018. https://news.gallup.com/poll/234416/driverless-cars-tough-sell-americans.aspx.
- Charness, N., Yoon, J., Souders, D., Stothart, C., and Yehnert, C. "Predictors of Attitudes Toward Autonomous Vehicles: The Roles of Age, Gender, Prior Knowledge, and Personality." Frontiers in Psychology 9 (December 18, 2018): 2589. https://doi.org/10.3389/fpsyg.2018.02589.
- Center for Sustainable Systems, University of Michigan. "Autonomous Vehicles Factsheet." 2021. Pub. No. CSS16-18
- Classen, S., Mason, J., Hwangbo, S., Wersal, J., Rogers, J., and Sisiopiku, V. "Older Drivers' Experience with Automated Vehicle Technology | Elsevier Enhanced Reader," May 2021. https://doi.org/10.1016/j.jth.2021.101107.
- Cromartie, J. and Bucholtz, S. "USDA ERS Defining the 'Rural' in Rural America." USDA.gov, June 1, 2008. https://www.ers.usda.gov/amber-waves/2008/june/defining-the-rural-in-rural-america.
- Dobis, E. 2021. "Rural America at a Glance: 2021 Edition," 18.
- Hilgarter, K. and Granig, P. "Public Perception of Autonomous Vehicles: A Qualitative Study Based on Interviews after Riding an Autonomous Shuttle." Transportation Research Part F: Traffic Psychology and Behaviour 72 (July 1, 2020): 226–43. https://doi.org/10.1016/j.trf.2020.05.012.
- Howard, F., Kral, P., Janošková, K., and Suler, P. "Risk Perception and Societal Acceptance of Autonomous Vehicle Technologies." Contemporary Readings in Law and Social Justice 12 (January 1, 2020): 44–50. https://doi.org/10.22381/CRLSJ12120206.
- Hulse, L., Xie, H., and Galea, E. "Perceptions of Autonomous Vehicles: Relationships with Road Users, Risk, Gender and Age." Safety Science 102 (February 2018): 1–13. https://doi.org/10.1016/j.ssci.2017.10.001.
- IBM Corp. Released 2021. IBM SPSS Statistics for Windows, Version 28.0. Armonk, NY: IBM Corp
- IIHS. org. "Fatality Facts 2019: Urban/Rural Comparison." IIHS.org, March 2021. https://www.iihs.org/topics/fatality-statistics/detail/urban-rural-comparison.
- Sieber, L. Ruch, C. Hörl, S., Axhausen, K., and Frazzoli, E. "Improved Public Transportation in Rural Areas with Self-Driving Cars_ A Study on the Operation of Swiss Train Lines." Transportation Research Part A: Policy and Practice 134, no. April 2020 (2020): 35–51. https://doi.org/10.1016/j.tra.2020.01.020.

- McDaniels, B., Harley, D., and Beach, D. "Transportation, Accessibility, and Accommodation in Rural Communities." In Disability and Vocational Rehabilitation in Rural Settings: Challenges to Service Delivery, edited by Debra A. Harley, Noel A. Ysasi, Malachy L. Bishop, and Allison R. Fleming, 43–57. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-64786-9_3.
- NHTSA.gov. "Automated Vehicle Safety | NHTSA." Accessed April 8, 2022. https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety#topic-road-self-driving.
- Nishihori, Y., Kimura, K., Taniguchi, A., and Morikawa, T. "What Affects Social Acceptance and Use Intention for Autonomous Vehicles --Benefits, Risk Perception, or Experience? -Meta-Analysis in Japan-." International Journal of Intelligent Transportation Systems Research 18, no. 1 (January 2020): 22–34. https://doi.org/10.1007/s13177-018-0170-x.
- Pettigrew, S., Cronin, S., and Norman, R. "Brief Report: The Unrealized Potential of Autonomous Vehicles for an Aging Population." Journal of Aging & Social Policy 31, no. 5 (October 20, 2019): 486–96. https://doi.org/10.1080/08959420.2018.1500860.
- Piatkowski, D., Pitla, S., Luck, J., Hazelton, J. "Preparing for a Driverless Future," December 1, 2020. https://rosap.ntl.bts.gov/view/dot/56446.
- Prioleau, D., Dames, P., Alikhademi, K., and Gilbert, J. "Autonomous Vehicles in Rural Communities: Is It Feasible?" IEEE Technology and Society Magazine 40, no. 3 (September 2021): 28–30. https://doi.org/10.1109/MTS.2021.3104408.
- Rao, B. and Varaiya, P. "FLOW BENEFITS OF AUTONOMOUS INTELLIGENT CRUISE CONTROL IN MIXED MANUAL AND AUTOMATED TRAFFIC." Transportation Research Record, no. 1408 (1993). https://pubsindex.trb.org/view.aspx?id=385076.
- Ratcliffe, M. Burd, C., Holder, K., and Fields, A. "Defining Rural at the U.S. Census Bureau," December 2016, 8.
- Sheela, P., and Mannering, F. "The Effect of Information on Changing Opinions toward Autonomous Vehicle Adoption: An Exploratory Analysis." International Journal of Sustainable Transportation 14, no. 6 (June 2, 2020): 475–87. https://doi.org/10.1080/15568318.2019.1573389.
- Sieber, L., Ruch, C., Hörl, S., Axhausen, K., Frazzoli, E. "Improved Public Transportation in Rural Areas with Self-Driving Cars: A Study on the Operation of Swiss Train Lines." Transportation Research Part A: Policy and Practice 134, no. 0 (April 2020). https://trid.trb.org/view/1687063.
- Smith, A. and Trevelyan, E. "The Older Population in Rural America: 2012-2016," September 2019, 21.
- Tesla. "Model S." Accessed April 10, 2022. https://www.tesla.com/models.
- "U.S. Census Bureau QuickFacts: United States." 2021. Census.Gov. July 1, 2021. https://www.census.gov/quickfacts/fact/table/US/SEX255221.
- West, D. "Brookings Survey Finds Only 21 Percent Willing to Ride in a Self-Driving Car." Brookings (blog), July 23, 2018. https://www.brookings.edu/blog/techtank/2018/07/23/brookings-survey-finds-only-21-percent-willing-to-ride-in-a-self-driving-car/.

Zhong, H., Li, W., Burris, M., Talebpour, A., and Sinha, K. "Will Autonomous Vehicles Change Auto Commuters' Value of Travel Time?" Transportation Research Part D: Transport and Environment 83 (June 1, 2020): 102303. https://doi.org/10.1016/j.trd.2020.102303.

CHAPTER 8. APPENDIX

The questions from the user survey are provided below.

Opening Statement

Researchers from the University of Idaho's Department of Civil and Environmental Engineering are conducting a study that examines public perceptions of autonomous vehicles.

Your participation will involve answering an online survey that should take about eight to ten minutes to complete. Your involvement in the study is voluntary, and you may choose not to participate. You can refuse to answer any of the questions at any time. No names will be associated with your responses.

The findings from this project will provide information on various behaviors and perceptions. If published, results will be presented in summary form only with no personal identifiers.

If you have any questions about this research project, please feel free to call Kevin Chang at (208) 885-4028. If you have questions regarding your rights as a research subject, or if you want to obtain information or offer input you may call the Office of Research Assurances at (208) 885-6340 or irb@uidaho.edu.

By clicking the arrow, you certify that you are at least 18 years of age and agree to participate in the above-described research study. Thank you in advance.

Screening Questions

	as settlements with less than 2,500 people or open definition, do you live in a rural area?
◯ Yes	
ON C	
O Not sure	
Demographics	
Which state do you live in?	
	•

What is your home zipcode? What is your gender? O Female Male O Non-binary Other O Prefer not to answer How old are you? O Under 18 0 18-35 O 36-49 0 50-64 O 65 or over What is your marital status? O Single and never married Married or domestic partnership O Separated O Divorced Widowed How many children (under 18) live with you in your household? O None O 1 O^2 O 3 O 4 or more What is your ethnicity?

O White/Caucasian
O American Indian/Alaskan Native
O Asian/Pacific Islander
O Black/African American
O Hispanic/Latino
Multiple/Other
What is the highest level of formal education you have completed?
O Did not graduate high school
O High school diploma or equivalent (GED)
O Some college, no degree
O Technical Degree
O Associate's Degree
O Bachelor's Degree
Master's Degree
O Doctorate Degree
•
O Professional Degree
What was your total household income last year?
What was your total household income last year?
What was your total household income last year? Less than \$50,000
What was your total household income last year? Less than \$50,000 \$50,000 - \$74,999
What was your total household income last year? ○ Less than \$50,000 ○ \$50,000 - \$74,999 ○ \$75,000 - \$99,999
What was your total household income last year? Less than \$50,000 \$50,000 - \$74,999 \$75,000 - \$99,999 \$100,000 - \$149,999
What was your total household income last year? ○ Less than \$50,000 ○ \$50,000 - \$74,999 ○ \$75,000 - \$99,999 ○ \$100,000 - \$149,999 ○ \$150,000 or higher ○ Prefer not to answer
What was your total household income last year? Less than \$50,000 \$50,000 - \$74,999 \$75,000 - \$99,999 \$100,000 - \$149,999 \$150,000 or higher Prefer not to answer From a political viewpoint do you think of yourself as liberal or conservative?
What was your total household income last year? Less than \$50,000 \$50,000 - \$74,999 \$75,000 - \$99,999 \$100,000 - \$149,999 \$150,000 or higher Prefer not to answer From a political viewpoint do you think of yourself as liberal or conservative? Very liberal
What was your total household income last year? Less than \$50,000 \$50,000 - \$74,999 \$75,000 - \$99,999 \$100,000 - \$149,999 \$150,000 or higher Prefer not to answer From a political viewpoint do you think of yourself as liberal or conservative? Very liberal Liberal
What was your total household income last year? Less than \$50,000 \$50,000 - \$74,999 \$75,000 - \$99,999 \$100,000 - \$149,999 \$150,000 or higher Prefer not to answer From a political viewpoint do you think of yourself as liberal or conservative? Very liberal Liberal Moderate
What was your total household income last year? Less than \$50,000 \$50,000 - \$74,999 \$75,000 - \$99,999 \$100,000 - \$149,999 \$150,000 or higher Prefer not to answer From a political viewpoint do you think of yourself as liberal or conservative? Very liberal Liberal

Are	e you currently employed?
0	Yes
0	No
Wŀ	nat type of industry do you work in?
0	Private Sector
0	Public Sector
0	Self Employed
0	Retired
0	Other (may be without pay)
Wŀ	nat occupational field do you work in?
0	Agriculture
0	Architecture, Planning & Environmental Design
0	Arts & Entertainment
0	Business
0	Communications
0	Education
0	Engineering & Computer Science
0	Environment
0	Government/Military
0	Health & Medicine
0	International
0	Law & Public Policy
0	Sciences - Biological & Physical
0	Social Impact
0	Transportation
0	Trade/Construction
0	Other

General

What kind of internet connectio	n do you have?	
O Dial up		
O Cable		
O Fiber optic		
○ Sate ll ite		
O DSL		
O Hotspot		
O No internet connection		
Have internet - unsure what kind it is	;	
Do you use any of the following	devices?	
	Yes	No
Smart phone	0	0
Tablet	0	0
Laptop	0	0
Desktop computer	0	0
Television	0	0
How familiar are you with the te	rm "autonomous vehicles"?	
O Unfamiliar		
O Somewhat unfamiliar		
O Neither unfamiliar nor familiar		
O Somewhat familiar		
O Familiar		
Behavior		
Do you own or have daily acces	s to a vehicle?	
O Yes		
O No		

Wh	at kind of vehicle is your primary vehicle?
0	Motorcycle
0	Passenger car
0	SUV
0	Van
0	Pickup truck
0	Semi-truck
0	Other
Ho	w many vehicles do you own?
0	0
0	
0	2
0	3
0	4 or more
Ho	w many years of driving experience do you have?
0	1 or less
0	2 to 5
0	6 to 10
0	11 to 15
0	16 or more
Ho	w comfortable are you with driving in night time conditions?
0	Very uncomfortable
0	Somewhat uncomfortable
0	Neither comfortable nor uncomfortable
0	Somewhat comfortable
0	Very comfortable
Bas	sed on the descriptions below, would you typically consider yourself to be a

passive or aggressive driver?

What is your week	y commute d	istance (to	work or school	ol) in miles	?
O -20 miles					
21-50 miles					
O 51-150 miles					
O 151-300 miles					
O 301+ miles					
In a typical month h	now often do	you travel t	o a healthcare	e facility (i.e	e., doctor's
office, dentist, hos	pital, or pharr	macy)			
O 0					
O 1					
O 2					
O 3					
O 4+					
Do you have any he	ealth issues o	r disabilitie	s that affect y	our ability	to drive?
O Yes					
O No					
O Prefer not to answer					
Does your current	vehicle have	any autono	mous feature	s (i.e., crui	se control,
lane assist, self par	rking, etc.)?				
O Yes					
O No					
Listed below are so	me features	that are ava	ailable in auto	nomous ve	hicles.
Choose how often	you use each	feature.			
	Never	Rarely	Sometimes	Often	Always
I use cruise control	0	0	0	0	0
I use lane assist	0	0	0	0	0
I use self parking	0	0	0	0	0

	Never	Rarely	Sometimes	Often	Always
I use adaptive cruise control (keeps distance between you and vehicle in front of you by decreasing or increasing speed)	0	0	0	0	0
Listed below are sor autonomous vehicle					
	Extremely unlikely	Somewhat un l ikely	Neither likely nor unlikely	Somewhat likely	Extremely likely
Self driving (with driver takeover option)	0	0	0	0	0
Self driving (no steering wheel)	0	0	0	0	0
Listed below are sor autonomous vehicle					
	Extremely unlikely	Somewhat un l ikely	Neither likely nor unlikely	Somewhat likely	Extremely likely
Adaptive cruise control (keeps distance between you and vehicle in front of you by decreasing or increasing speed)	0	0	0	0	0
Lane assist	0	0	0	0	0
Self parking	0	0	0	0	0
Self driving (with driver takeover option)	0	0	0	0	0
Self driving (no steering wheel)	0	0	0	0	0

If a fully self-driving vehicle (i.e., a vehicle that does not need driver input or attention) was available, then how long would you wait to buy after the first

	•				
model was released	?				
1 year or less					
2 to 5 years					
O 6 to 10 years					
O 11 years or more					
I would never buy a se	elf driving vehic	de			
O Unsure					
Values					
How likely would you driving vehicle?	u engage in	the followin	g behaviors	if you owne	d a self
	Extremely unlikely	Somewhat un l ike l y	Neither likely nor unlikely	Somewhat l ike l y	Extremel likely
I would travel longer distances.	0	0	0	0	0
I would travel more at night time.	0	0	0	0	0
I would have an alcoholic beverage at a restaurant or bar more often.	0	0	0	0	0
I would live farther from work.	0	0	0	0	0
I would perform work tasks in the vehicle.	0	0	0	0	0
Listed below are sta represents your leve					wer that
	Strong l y disagree	Somewhat disagree	Neither agree nor disagree	Somewhat agree	Strong l y agree
I enjoy road tripping.	0	0	0	0	0
I enjoy being a passenger in a vehicle.	0	0	0	0	0

	Strongly disagree	Somewhat disagree	Neither agree nor disagree	Somewhat agree	Strongly agree
I enjoy traveling by vehicle for long periods of time.	0	0	0	0	0
I enjoy being the driver of a vehicle.	0	0	0	0	0
I enjoy eating in a vehicle.	0	0	0	0	0
I enjoy making personal or business calls in a vehicle.	0	0	0	0	0
I enjoy taking/receiving personal or business calls in a vehicle.	0	0	0	0	0
I enjoy sleeping in a vehicle.	0	0	0	0	0
I enjoy holding conversations in a vehicle.	0	0	0	0	0
I enjoy watching the scenery in a vehicle.	0	0	0	0	0

Listed below are features of autonomous vehicles. Select the answer that represents how you feel about the level of convenience for each feature.

	Extremely inconvenient	Somewhat inconvenient	Neither inconvenient nor convenient	Somewhat convenient	Extremely convenient
Autonomous emergency braking	0	0	0	0	0
Blindspot detection	0	0	0	0	0
Lane keeping assist	0	0	0	0	0
Reverse parking assist	0	0	0	0	0

	Extremely inconvenient	Somewhat inconvenient	Neit inconv no conve	enient or S	omewhat onvenient	Extremely convenient	
Reverse cross traffic assist	0	0	C		0	0	
Parallel parking assist	0	0	C		0	0	
Vehicle guidance system (steering without driver input)	0	0	C)	0	0	
Traffic jam assist (low speed adaptive cruise control)	0	0	C		0	0	
Vehicle to vehicle communication (creates 360 degree awareness)	0	0	C		0	0	
How comfortable would you be if your rearview or sideview mirror was replaced with a camera image? Extremely uncomfortable Somewhat uncomfortable Neither comfortable nor uncomfortable Somewhat comfortable Extremely comfortable							
Listed below are statements about self-driving vehicles. Select the answer that most closely represents your level of agreement.							
			Strongly disagree	Somewhat disagree	Neither agree nor disagree	Somewhat agree	St £
I trust self driving vehicles wil	l be safe (in gene	ral).	0	0	0	0	
I trust self driving vehicles wil drivers.	lbe safer than hu	ıman	0	0	0	0	

			Strongly disagree	Somewhat disagree	Neither agree nor disagree	Somewhat agree	St £	
I trust self driving vehicles to handle winter road conditions.			0	0	0	0		
I trust self driving vehicles more than human drivers in the winter.			0	0	0	0		
Listed below are co that don't need driv category.			_	_				
	Extremely concerned	Somewhat concerned	Neit conce no uncond	rned r S	omewhat concerned	Extremely unconcerne		
Technology Failures	0	0	C)	0	0		
Sensor failures	0	0	C)	0	0		
Hacking	0	0	C)	0	0		
Moral concerns	0	0	C)	0	0		
Maintenance costs	0	0	C)	0	0		
Affect on driver employment	0	0	C)	0	0		
No human interaction	0	0	C)	0	0		
Cost of purchase	0	0	C)	0	0		
Listed below are statements relating to "self driving" vehicles (vehicles that don't need driver input or attention). Select your level of agreement for each statement.								
	Strongly	Somewhat	Neither	agree S	omewhat	Strongly		

disagree

disagree

nor disagree

agree

agree

	Strongly disagree	Somewhat disagree	Neither agree nor disagree	Somewhat agree	Strongly agree
I would prefer to share the road with self driving semi trucks over driver controlled.	0	0	0	0	0
I would prefer to share the road with self driving passenger vehicles over driver controlled.	0	0	0	0	0

Powered by Qualtrics