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Executive summary 

Maintaining safe operations during the landing phase of an aircraft flight has consistently ranked 

as one of the most challenging issues for airlines, pilots, and regulators. According to the Flight 

Safety Foundation, a runway excursion is the most frequent type of landing incident or accident. 

Studies regarding runway excursions have shown that a significant contributor is the runway 

surface condition at the time of landing and the potential for degraded braking performance.  

Runway conditions such as wet, standing water or other contaminants are the most variable and 

difficult to quantify, in particular when it comes to the creation of predictive modeling tools of 

aircraft performance at the time of arrival. 

In this report, techniques leveraging machine learning and real-world data are explored to gain 

insights into critical parameters and conditions of potentially elevated levels of risk during a 

degraded braking event. Several distinct, yet related, topics regarding landing safety are 

investigated and presented. 

First, the collection and processing of various sources of data are presented, and a data fusion 

pipeline that integrates heterogeneous data sources is built as a foundation for subsequent 

studies. 

Second, data analyses are conducted with respect to subsets of the fused dataset, and insights are 

drawn about how different runway/weather factors might affect braking performance. 

Third, a statistical model is established based on Flight Operations Quality Assurance (FOQA) 

datasets to simulate the spool-down time of thrust reversers. This provides a demonstration of 

how select data could be inferred when a direct measurement of aircraft behavior is not available. 

Then, various machine learning techniques are applied to the available datasets to study the 

degraded aircraft wheel braking performance on contaminated runways. Clustering, an 

unsupervised machine learning technique, is used first to group landing flights and explore 

various flight metrics related to the aircraft performance during approach and landing. Decision 

trees, a supervised learning technique, is used next to interpret the results of the clustering 

process, and analyses regarding outliers in the landing flights are conducted. Other supervised 

learning techniques, such as random forest and extreme gradient boosting, are subsequently used 

as classification methods to quantitatively assess the pilot braking actions and runway 

conditions. Artificial neural networks are also built to evaluate aircraft acceleration during 

landing based on relevant flight data. 
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Finally, a “gap analysis” roadmap is developed to identify critical paths of future avenues for 

research on aircraft degraded braking on contaminated runways as part of the wider topic of 

runway safety. It includes four main areas (airport, aircraft, pilot, and weather) with a focus on 

the “Airport” area, and explores topics such as data collection, instrumentation, testing and 

validation, and data analysis/machine learning techniques application and development. 
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1 Introduction 

1.1 Background and motivation 

Aircraft landing safety is a major focus in the aviation industry. According to information from 

the Federal Aviation Administration (FAA) and the National Transportation Safety Board 

(NTSB), runway overruns during the landing phase of flight account for approximately ten 

incidents or accidents every year with varying degrees of severity, with many accidents resulting 

in fatalities1. Among the common conditions identified are the dynamics of a tailwind approach; 

improper pilot technique for the conditions; or landing on non-dry runways that lead to increased 

stopping distances during the landing phase. It is therefore important to study the effectiveness of 

aircraft braking on contaminated runways to quantify increases in the landing field length 

required to successfully stop an aircraft on the available runway. 

On December 8th, 2005, Southwest Airlines Flight 1248 overran runway 13C at Chicago 

Midway Airport (MDW) after landing on a runway contaminated with snow and slush. The 

Boeing 737-700 aircraft exited the end of the runway and went through an airport perimeter 

fence, striking an automobile and resulting in a fatality. This accident brought into focus the 

disparities on operational procedures and the need for improvements to existing practices. The 

FAA launched a review of existing procedures with the collaboration of airports, operators, and 

aircraft manufacturers. The resulting Takeoff and Landing Performance Assessment (TALPA) 

Aviation Rulemaking Committee (ARC) produced significant changes to the way aircraft 

braking is evaluated and operationally addressed. 

Bolstered by the availability of on-board sensors and data collection programs, large amounts of 

data are being collected from routine aviation operations. There exists an opportunity to leverage 

large volumes of routine flight data in order to enhance the understanding of aircraft performance 

on dry and non-dry runways to further improve safety. This research effort addresses the 

application of big data analytics/machine learning techniques to address the problem of aircraft 

wheel braking performance on contaminated runways. 

The purpose of this research is to develop new analysis tools and techniques leveraging machine 

learning and real-world data to obtain insights into critical parameters and conditions that 

proactively point towards potentially elevated levels of risk of degraded braking performance. 

The main idea is to use unsupervised machine learning techniques to identify and classify 

 

1 Federal Aviation Administration, “Runway Overrun Prevention,” Advisory Circular 91-79A, Nov. 2007 



 

 2 

degraded braking scenarios versus normal conditions. Following this classification, supervised 

learning methods can be used to potentially predict when an aircraft has an increased risk of 

experiencing degraded braking prior to touchdown on a contaminated runway. The machine 

learning approach is expected to complement full-scale testing and other efforts to identify 

reduced aircraft wheel braking effectiveness seen on contaminated runways. 

1.2 Research objectives and benefits 

Considering the aforementioned motivating factors, the overall objective of this research is to: 

▪ Develop new analysis tools and techniques leveraging machine learning and real-world 

data to gain insights into conditions that proactively point towards potentially elevated 

levels of risk of degraded aircraft braking on contaminated runways. 

The main elements of this research are thus identified as follows: 

▪ Use of unsupervised machine learning techniques to identify degraded braking scenarios 

versus normal conditions. 

▪ Use of supervised machine learning methods to potentially predict when an aircraft has 

an increased risk of experiencing degraded braking on a contaminated runway. 

▪ Identification of critical parameters for degraded aircraft braking scenario. 

The main benefits expected from this research effort are the derivation of metrics from data and 

models to provide insights into the operational aspects of aircraft braking performance; a data-

driven model to categorize and potentially predict risk factors and better characterize increased 

landing field length requirements on non-dry runways; and comparisons between aircraft braking 

performance in controlled flight tests versus routine operations. 

1.3 Major areas of research 

Six major areas of research depicted in Figure 1 have been identified and conducted to satisfy the 

research objectives identified earlier. 
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Figure 1. Major areas of research 

In the subsequent sections of the report, each major area of research is elaborated further along 

with the corresponding results and findings. 

2 Review of research and literature 

The investigation of aircraft braking on non-dry surfaces goes back to the early 1960s, when 

actual aircraft testing was conducted by the National Aeronautics and Space Administration 

(NASA) using the Convair 880 as a testbed. The data gathered was a component of the work 

done in this area for the next 40 years. The seminal work by Mr. Thomas Yager of NASA 

Langley Research Center has resulted in over 50 articles and papers (starting in 1968) about 

runway friction, tire wear, and wheel braking effectiveness. Much of this early work in addition 

to data internally developed by Boeing, McDonnell Douglas, and Airbus became the basis for the 

Takeoff and Landing Performance Assessment (TALPA) operational procedure guidance. It 

should be noted that all of these materials were physics-based, Newtonian mechanics models 

supplemented with limited parametric testing. 
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This research is meant to extend these previous works by applying state-of-the-art data fusion, 

data analytics, and machine learning techniques to the large amounts of data made available by 

the collection of routine aviation operations, as well as various other sources of publicly 

available data. 

The following sections summarize the literature review performed to obtain a solid 

understanding of existing runway safety related research, including braking characteristics and 

physics modeling, event prediction and metrics modeling, runway safety characteristics, as well 

as machine learning methods, and previous work performed at the Aerospace Systems Design 

Laboratory (ASDL) at the Georgia Institute of Technology that could be leveraged for this 

project. This review aims to provide sufficient knowledge about runway safety from both the 

physics and data science perspectives. 

2.1 Physics of braking and braking characteristics 

The Engineering Sciences Data Unit (ESDU) in the United Kingdom developed tire-force 

prediction methods based on the physics and chemistry of visco-elastic materials (rubber) and 

structural and fluid dynamics theory, which applied to single and multi-wheel undercarriages and 

correlated well with data from aircraft testing (ESDU, 2017). 

In the report (ESDU, 2017), the ESDU discusses detailed formulas and figures for estimating 

braking force and summarizes various types of hydroplaning, including dynamic, viscous, and 

rubber reversion hydroplaning. This provides the basis for the U.S. Department of Transportation 

to promote a standardized way of analyzing takeoff performance and a standardized vocabulary 

for concepts related to takeoff performance in AC_25-31 (FAA, 2015). Braking coefficient 

estimates for different surface conditions, and presence of loose contaminants was also provided 

in this Advisory Circular, as shown in Figure 2 (FAA, 2015). 
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Figure 2. Wheel braking coefficients as a function of runway surface condition 

 

The International Grooving and Grinding Association (IGGA) (IGGA, 2009) also reported 

experiments with grooved runways and concluded that runway groove reduces all types of skids 

on wet or flooded runways, and prevents drift at touchdown in flooded areas due to high 

cornering forces. The European Aviation Safety Agency (EASA) further showcased a lack of 

standards and requirements on operational friction and runway condition reporting at airports, 

reviewed a variety of issues on in-person runway condition reporting, offered solutions for 

airports to implement, and conducted comprehensive analyses on current practices for assessing 

runway performance  (EASA, 2010). EASA also discussed operational friction under different 

temperatures and precipitation types. 

Yager (Yager, 2013) described several promising means for improving tire/runway water 

drainage capability, brake system efficiency, and pilot training to help optimize aircraft traction 

performance on wet runways. Gerard Van Es (Es G. V., 2017) obtained and analyzed flight test 

data on braking performance on water contaminated runways to derive effective braking friction 

for different ground speeds and establish contamination drag levels. This provided several 

insights into the hydroplaning characteristics under un-braked and braked conditions. The same 
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author also investigated the modeling of dynamic hydroplaning speed, and showed that it 

improves with surface texture.  

Several prediction models for various tires were also generated (Es G. V., 2001).  Daidzic 

(Daidzic, 2017) developed a theoretical model of the maximum braking energy and the related 

VMBE (Maximum Brake Energy speed) speed for T-category airplanes and showed the effects 

of elevated temperatures on brake usage, and consequently braking time and distance. Pasindu 

(2011) developed a simulation model to calculate braking distance on wet pavement based on 

engineering mechanics and fluid dynamics theory. The simulation results illustrated the 

calibration and validation of the tire model, followed by computation of braking distances under 

different operating conditions of wheel load, tire inflation pressure, landing speed, and water-

film thickness. Wahi (Wahi, 2012) developed a simulation model to represent the airplane 

dynamics under braking action, where the basic equations of motion for a rigid-body airplane 

with the forward, vertical, and pitch degrees of freedom were used. 

Roginski (2012) took a manufacturer’s perspective to discuss runway friction and aircraft 

performance. Definitions such as microtexture providing frictional properties for aircraft 

operating at low speeds and macrotexture providing frictional properties for aircraft operating at 

high speeds were described. He also explained that deviations in speed, wind, touchdown point, 

and delayed use of deceleration devices may become an issue in combination with worse than 

expected braking. 

2.2 Event prediction and metrics modeling 

Lv (2018) used several machine learning models to analyze 6,395 flight data records between 

March to December in 2016 and understand the risk of runway overrun. An “overrun dangerous 

line” was constructed to evaluate the overrun risk, which was then used to classify flights as 

“risky” and “normal”, and determine in what regions of the runway the risk of the overrun was 

the largest. Machine learning techniques such as Support Vector Machine (SVM), logistic 

regression, and random forest were used to build the statistical models. Lv concluded that 

random forest was the most suitable model, and that the approach phase and the brake 

application (or thrust reversers application) phase are associated with the largest overrun risk 

after touchdown or before taxiing on the runway. 

Nanduri (2016) used recurrent neural networks (RNN) with long short-term memory (LSTM) 

and gated recurrent unit (GRU) architectures on FOQA-like datasets to detect 11 canonical 

anomalies. RNN with LSTM and with GRU were used and Multiple Kernel Based Anomaly 

Detection (MKAD) was chosen as the anomaly detection method. It was concluded that all RNN 
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models are able to detect 9 out of 11 anomalous cases with no false positive. Janakiraman (2017) 

used a deep temporal multiple-instance learning (DT-MIL) model (weakly-supervised learning) 

to perform precursor mining for approach flights. High-speed exceedance (HSE) during landing 

phase was considered as the safety incidence and variables that are highly correlated to speed 

such as airspeed and ground speed were ignored. 

Klein-Paste (2012) collected data to aid in Norway's initiative for an alternative operational 

decision support system to assess runway surface, where large and unique datasets correlating 

aircraft braking performance of commercial aircraft during “normal” operation on winter 

contaminated runways with detailed runway information reports and meteorological data were 

explored. Klein-Paste (AlexKlein-Paste, 2015) proposed a decision support model to help 

runway inspectors assess aircraft braking performance on winter contaminated runways. He 

showed that the model performed better than the predictions made by the runway inspectors or 

the friction measurements. Campbell (Campbell, 2016) developed a model validated using 

Global 5000 flight data to evaluate runway excursion based on the accuracy of the braking force 

in terms of reverse thrust. The uncertainty in the thrust reverser calculation is evaluated 

considering sensor error, and Monte Carlo simulation was used to determine how uncertainties 

propagate to the reverse thrust calculation. The results showed that the thrust reverser 

performance is mostly influenced by ambient temperatures. 

2.3 Runway safety characteristics 

Flight Safety Foundation published a report with a list of recommendations to flight operators, 

airport operators, air traffic management, and regulators regarding runway excursion mitigation  

(FSF, 2009). The report characterized runway excursion using worldwide statistical data from 

1995 to 2008 for turbojet and turboprop aircraft as shown in Figure 3 (FSF, 2009), and quantified 

risk factors associated with takeoff and landing excursions. The report showed that determining 

whether any pair of associated factors has a causal connection would require a deeper study and 

analysis. 
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Figure 3. Runway excursion worldwide statistics from 1995 to 2008 

 

The European Aviation Safety Agency (EASA) published a report  summarizing a list of 

precursor factors for several types of runway excursion accidents, including runway overrun 

after a rejected take-off (RTO), runway overrun on takeoff without RTO, runway veer-off on 

takeoff without RTO, runway veer-off after RTO, runway overrun after landing, and runway 

veer-off after landing (EASA, 2017). Precursors to each scenario were ranked by increasing 

“proximity” to the airport and by contribution to safety events. The report concluded with a list 

of recommendations to mitigate the impact of each precursor. 

Jenkins (Jenkins, 2012) described a runway overrun mitigation tool developed by Boeing, called 

the runway mitigation situation awareness tool (RSAT) which goal is to determine runway 

overrun characteristics and potential causes as shown in Figure 4 (Jenkins, 2012). The tool 

further provides recommendations in order to mitigate overrun such as calculating the required 

runway length, determining the go-around point, and adding the thrust reverser call-out. 
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Figure 4. Causes of landing overrun excursions 

 

2.4 Machine learning methods 

Jasra (2018) conducted feature selection through unsupervised learning based on the single 

solution method, the multiple solution method, stochastic pruning, and node pruning. Then, 

anomaly detection was performed using unsupervised learning and distance-based, density-

based, and probability-based approaches. It was shown that the density-based approach is more 

sensitive to detect flights with moderate to severe exceedance events compared to the 

probability-based method. 

The results also showed that using a combination of both methods at a tight detection threshold is 

most likely to detect severe exceedance events compared to using either method alone. 

Memarzadeh (2021) developed a model based on convolutional variational auto encoders for 

expanding the labels of a sample data to the entire data population. The author performed a 

binary anomaly detection test (takeoff speed drop) and showed that, out of 16,000 samples, 
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100~1000 samples were labeled. He also performed a multi category classification test (normal, 

highspeed, path high, and flaps late classification for approach). 

A comparison of the results based on precision and recall was conducted between the models 

built, namely Compact Clustering via Label Propagation (CCLP), two deep semi-supervised 

classification models (M1+M2 models), and Deep Temporal Multiple Instance Learning (DT-

MIL). It was concluded that the CCLP and M1+M2 models performed similarly but better than 

DT-MIL, as shown in Figure 5 (Memarzadeh, 2021). 

 
Figure 5. Performance of M1+M2 and CCLP vs. DT-MIL models on the binary anomaly 

detection task 

 

Kirkland (2003) focused on properly modifying/normalizing the performance data for runway 

exceedance accidents. Data corrections are made based on the type of terrain, the aircraft 

performance, and the required distance to brake. The study derived wreckage location data 

relative to the end of the minimum required distance as well as the actual hard runway available 
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and allowed data for different types of aircraft to be consolidated into a dataset that has relevance 

for all aircraft types.  

Jarry (2020) used a LSTM (long short-term memory) recurrent neural network model and simple 

dense models to estimate fuel flow rate, landing gear settings, and flaps configuration. The 

model predicted each metric for up to 70 nm with a normalized root mean square error (RMSE) 

below 10%. Li (2015) used clustering-based detection and multiple kernel anomaly detection 

methods to identify significant anomalies and concluded that the cluster-based model 

(ClusterAD-Flight) is able to categorize large numbers of flights quickly and performs better 

with continuous parameters. Zhang (2018) compared the performance of LSTM, SVM (support 

vector machine), BP (back propagating neural network), LoR (logistic regressions) to classify the 

prediction of a hard landing. He concluded that the LSTM model generated a prediction model 

with the highest F1 accuracy. Odisho (Odisho, 2020) used predictive models to determine pilot 

misperceptions of runway excursion risk associated with unstable approaches, and suggested that 

the ability to predict the probability of pilot misperception of runway excursion risk could 

influence the development of new pilot simulator training scenarios and strategies. Kang (2020) 

compared LSTM with common machine learning models such as decision tree (DT), linear 

regression (LiR), gradient boosting decision tree (GBDT), random forest (RF), neural network 

(NN), and SVM to generate a sequential ground speed prediction, both online and offline. The 

results are shown in Figure 6 (Kang, 2020).  

Tong (2018) also compared LSTM, SVM, and Neural Network machine learning models to 

generate a sequential to point prediction of the ground speed, and performed a sensitivity study 

of the LSTM model based on the number of hidden layers. The author showed that the LSTM 

model allows an extremely accurate prediction of the metric of interest, but has a very short 

prediction interval that makes it hard to use for online applications. 
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Figure 6. Performance comparison between ML models to predict ground speed 

 

2.5 Related works at the Aerospace Systems Design Laboratory 

Puranik et al. (2020) evaluated the performance of the approach and landing phases of flight by 

choosing airspeed and ground speed as the significant parameters. A random forest regression 

algorithm was used to predict the most significant parameters to predict performance during 

approach and landing with an accuracy of RMSE below 2.62 and 2.98 knots. 

The study confirmed that a global prediction model can be used to predict most significant 

parameters even when the model is generated from data collected from multiple airframes. Lee et 

al. (2020) developed a framework based on random forest classification to identify the ranking of 

significant parameters for a given flight event, and Tableau was utilized to identify anomalous 

events (such as “tire speed exceedance”). 

The authors concluded that speed, weight, thrust, and air density have the highest contribution to 

the “tire speed exceedance” event. Other events such as “high roll” and “landing distant” were 

also studied. Mangortey et al. (2020) developed a framework to select a reduced set of 

significant parameters for a given event. The methodology consists of several steps, including a 

correlation analysis step to reduce duplicate parameters, a pre-processing step to remove 

parameters based on metadata and subject matter experts’ input, a clustering step to group 

similar flights and identify abnormal operations, a retrospective analysis step performed to 
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identify characteristics by cluster, and an Analysis Of Variance (ANOVA) to identify significant 

parameters for each cluster. 

Ackley et al. (2020) created a framework based on sequential backward selection using random 

forest to identify precursors to flight events with multiple contributing factors. High frequency 

events were then identified for precursor identification evaluation. The significance of features 

was then aggregated from each feature vector as shown in Figure 7 (Ackley, 2020). The study 

concluded that energy management is a precursor for unstable approach events. 

 
Figure 7. Aggregate cumulative feature importance 

 

3 Data sources and fusion 

To facilitate the data-driven analysis of degraded aircraft braking on contaminated runways, 

various sources of data are collected and processed. 

3.1 Description and processing of data sources 

This section describes in detail each data source utilized in the current research and the 

associated processing or cleaning. 
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3.1.1 Flight Operations Quality Assurance (FOQA) data 

The first set of data of interest includes the metadata associated with flights. The metadata is 

unique to each flight and contains information such as aircraft type, date of operation, take-off 

and landing airport, airport elevations, runway length and width, runway slope, etc. The metadata 

can add context to the quantitative metrics of interest and also enables fusing or merging the 

flight data with other sources of data such as runway conditions, prevailing weather, etc. 

The other set of data of interest consists of time series measurements obtained from on-board 

sensors and recorders. This data is recorded at frequencies of up to 16 Hz and may contain a 

large number of parameters. The various flight parameters may be organized in a hierarchical 

manner, going from groups of parameters to each individual parameter recorded in various units 

when possible. A notional illustration of a part of this hierarchical parameter tree is provided in 

Figure 8. 

 

 
Figure 8. Notional Hierarchical breakdown of recorded flight data parameters 
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Only unique flight parameters (independent of their units) associated with the approach, landing, 

rollout, and taxi phases are retained for analysis in this study. Extracted flight parameters may be 

classified into the following six broad categories:  

1. Structure Parameters 

2. Aerodynamics Parameters  

3. Operational Parameters 

4. Ambient Conditions 

5. Engine Parameters 

6. Controls Parameters 

There are other parameters that are also recorded or available that have not been used in this 

research and are therefore not discussed in this report. 

Under the Structure Parameters category are brake pressure, normal force through gear, weight, 

wheel speed, and load factor. These parameters represent the stress experienced by the aircraft, 

wheels, and the landing gear system. For the landing and takeoff performance analysis, the 

normal force through the gear defines the type of dynamics experienced by the aircraft (air 

versus ground). It can also be used to identify when the aircraft has touched down on the ground 

along with parameters such as weight-on-wheels (WOW).  

Under the Aerodynamics Parameters category are parameters such as drag, lift, angle of attack, 

pitch angle, etc. These parameters are representative of the aerodynamics performance of the 

aircraft and may have significant implications in the braking performance of the aircraft. 

The Operational Parameters category contains parameters such as accelerations (normal, lateral, 

longitudinal), kinetic energy, potential energy, rate of descent, previous waypoint, altitude limits, 

etc. Some of these parameters represent the response of the aircraft to various actions by the 

cockpit crew while others represent the target state desired based on the aircraft configuration. 

As such, they are also used as threshold bounds that should not be exceeded during the operation 

of the aircraft. 

Under the Ambient Conditions category are density, pressure, wind speed, and wind direction. 

These atmospheric parameters are external factors that cannot be controlled by the pilot but that 

have an impact on the aircraft performance. For example, wind speed and direction may define 

the aircraft heading during touchdown.  
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The Engine Parameters category is composed of parameters such as thrust, N1%, fuel flow rates, 

etc. These parameters are the direct result of the pilot's inputs, and they exist for each engine. 

Depending on the situation, aggregate or differential engine measurements may be used. 

Under the Controls Parameters category are thrust reverser position, speed brake position, and 

various control surface positions (flaps, slats, etc.). These parameters record the pilot's inputs and 

may be further classified into braking devices and control devices. The parameters mentioned in 

this subsection do not represent the full list of parameters that are available, but the ones that are 

of importance for this research. 

3.1.2 Weather data from ASOS/NOAA 

Automated Surface Observing System (ASOS) units are automated sensor suites that are 

designed to serve meteorological and aviation observing needs. There are currently more than 

900 ASOS stations in the United States with most of them located at or near airports. The system 

sensor data is publicly accessible through the official website of the National Oceanic and 

Atmosphere Administration (NOAA) National Centers for Environmental Information (NCEI)2, 

which is “responsible for preserving, monitoring, assessing, and providing public access to the 

Nation’s treasure” of climate and historical weather data and information. The NOAA data 

repository provides ASOS weather data with both one-minute and five-minute intervals. In this 

research, the one-minute ASOS data has been chosen due to the rapid pace at which runway 

conditions and aircraft operations might deteriorate with adverse weather. 

The NOAA weather data repository covers the time range from January 2000 to the most recent 

month and is split into two parts. The first part contains station ID, year, month, day, hour, 

minute (both local and Universal Time Coordinated (UTC)), visibility, extinction coefficient, 

speed of two-minute average wind (knots), direction of two-minute average wind (knots), speed 

of five-second average wind (knots), direction of five-second average wind (degrees), and 

runway visual range (hundreds of feet). The second part contains station ID, year, month, day, 

hour, minute (both local and UTC), precipitation amount (hundredths of inches), precipitation 

type, station pressure from three sensors (inches of Mercury), average one-minute dry bulb 

temperature (degrees Fahrenheit), and average one-minute dew point temperature (degrees 

Fahrenheit). Both parts of the information are stored as data files in a monthly .dat format, while 

the first part follows the name convention: "64050XXXXYYYYZZ.dat", and the second part 

follows the name convention: "64060XXXXYYYYZZ.dat", where XXXX is the four-digit 

International Civil Aviation Organization (ICAO) identifier for the ASOS station, YYYY is the 

 

2 National Centers for Environmental Information (NCEI) (noaa.gov) 

https://www.ncei.noaa.gov/
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year in two-digit format, ZZ is the month in two-digit format, and the leading four digits 

distinguish the file from containing the first part of the weather information or the second (6405 

for the first and 6406 for the second). 

3.1.3 Field Condition Report (FICON) data 

In late 2016, the FAA alongside the TALPA ARC produced a new set of recommendations 

guiding aircraft performance and surface condition assessment and reporting. One of the most 

significant of these recommendations was the introduction of a consistent method for assessing 

runway conditions, known as the Runway Condition Assessment Matrix (RCAM). The proper 

application of the guidance in the RCAM is predicated on adhering to the limitation and 

assumption notes associated with the RCAM as found in AC 150-5200-30D (FAA, 2020). Figure 

9 (FAA, 2020) displays the RCAM. 

This matrix is visually divided into two sections, Runway Assessment Criteria and Downgrade 

Assessment Criteria. The Runway Assessment Criteria, applicable to paved runways (no turf, 

dirt, gravel, or waterways), provides airport operators the ability to connect runway contaminant 

types and depths to a Runway Condition Code (RwyCC). Airport operators may use the 

Downgrade Assessment Criteria, involving friction coefficient measurements, Pilot Reports 

(PIREPs), and their best judgement and experience to downgrade RwyCCs to a more 

conservative report. 

The RwyCCs, along with runway specific information, are reported and distributed in Field 

Condition (FICON) Notices To Airmen (NOTAM). In the FICONs, a RwyCC value is reported 

for each third of the runway. Time is reported in the format: year, month, day, hour, minute. The 

general format for FICONs with italicized variables is as follows: 

!Airport NOTAM_Number Airport Location Identifier FICON RwyCCs 

Contaminant_Type OBSERVED AT Observed_Time. Start_Time-Expiration_Time 

An example FICON follows: 

!ADQ 01/492 ADQ RWY 01 FICON 5/5/5 100 PRCT WET OBSERVED AT 

1801312351. 1801312351-1802012351 

From each NOTAM and metadata from the NOTAM Manager, the following metrics have been 

extracted: Airport, NOTAM Number, Runway, RwyCCs, Contaminant Description, Start Time, 

End Time, and Cancel Date/Time. 
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Figure 9. Runway condition assessment matrix 

 

3.1.4 Runway and airport data 

The FAA provides public access to a repository with airport and runway data that can be used for 

this research3. The data repository covers all Federal Aviation Regulation (FAR) 139 certified 

airports in the United States. This source is selected due to its high reliability and expansive 

coverage. Additionally, the repository is maintained by the FAA, so the data is up-to-date and 

includes a description of when it was last updated. 

Five Microsoft Excel files are accessible in this database, four of them being data files and the 

other a description file. The four data files are airport facilities data, airport runways data, airport 

 

3 https://adip.faa.gov/agis/public/#/airportSearch/advanced 
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remarks data, and airport schedules data. The airport facilities data file contains basic 

information such as location, status, repair service availability, etc. The airport runway data file 

contains information such as runway ID, surface type and condition, runway treatment, runway 

end elevation, runway length and width, runway crossing height, etc. The airport remarks data 

file contains text data with other information about airports. The airport schedules data file 

contains the availability information about airports. Lastly, the description file, also known as the 

airport dictionary file, contains a detailed explanation regarding the four data files. Within the 

scope of this research, the airport facilities and airport runways files are of primary interest. 

3.2 Data fusion pipeline 

A data fusion pipeline has been built to integrate the heterogeneous data described in Section 3.1, 

namely FOQA flight data, ASOS/NOAA weather data, FICON data, and FAA runway and 

airport data. A consolidated database that covers all aspects of landing flights is produced by the 

pipeline and is used for building machine learning models. The data fusion pipeline is 

implemented using the Python programming language and its Pandas library. 

Figure 10 depicts the overall process of the data fusion pipeline and specifies the content and the 

number of flights within each output file. 

 
Figure 10. High-level data fusion pipeline 
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Figure 11 provides the details of the data fusion pipeline, such as the keys used for merging 

different data sources and expansion of time intervals. 

 

 
Figure 11. Details of data fusion pipeline 

 

The final output of the data fusion pipeline is shown in Figure 12. The output file contains time 

series data with an interval of one second, wherein each row in the output represents the state of 

a particular flight (specified by the “Flight ID” column) at a particular second (specified by the 

“Time” column). Therefore, the entire landing procedure of a flight extends across multiple 

rows. 
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Figure 12. Data fusion final output 

 

4 FICON data analysis 

4.1 Dataset description 

The data available for this study includes FICON reports from the winter months between the 

years 2016 and 2019. The weather conditions and airport and runway data for the corresponding 

time frames are obtained and fused. It is noted that during the time frames that the FICON 

reports are collected, a small proportion of the reports also contain the pilot reported braking 

action. 

By default, in the dataset available, FICONs expire 24 hours after their effective time begins. 

However, designated observers can cancel or amend a FICON prior to the default expiration 

period. For the FICONs reported, 84.68% are cancelled and 15.32% expired. 

4.1.1 Data distribution 

In the fused data set, there are 683,145 rows and 25 columns of enhanced FICON data. Of this 

enhanced data, 568,791 rows (83.26%) contain RwyCCs and only 11,899 rows (1.75%) contain 

pilot reported braking actions. The intersection of these is 9,906 rows (1.45%) with RwyCCs and 

pilot reported braking actions. The data is largely distributed across the winter months, as seen in 

Figure 13(a). This is consistent with the expectation that the winter months are when degraded 

braking operations might be expected to occur. 

4.1.2 Runway condition types 

Runways with a consistent distribution of contaminants down the length of the runway being 

evaluated will typically have the same RwyCC for all three thirds (each RwyCC represents the 
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condition on one third of the runway). In this report, these will be referred to as Uniform 

FICONs. In the current dataset, as seen in Figure 13(b), nearly all (98.08%) FICONs are 

uniform. The remaining non-uniform FICONs have a dispersed distribution among the various 

non-uniform FICON combinations possible. 

As observed from Figure 13, among the uniform FICONs, the majority contain the RwyCC 5/5/5 

followed by 3/3/3 and 1/1/1. 4/4/4 and 2/2/2 make up the remaining small proportion of uniform 

FICONs. Any runway reported as “NIL” (meaning there is an empty data field) is closed for 

operations until the weather improves or contaminant removal is completed. 

 
Figure 13. FICON data inspection 

 

4.2 Univariate analyses with FICON data 

In the enhanced FICON dataset, there are 1,951 distinct airports. Of these airports, 976 (50.1%) 

are located within the United States. The airports located domestically account for 613,448 of the 

682,757 FICON reports with locations (89.85%). The remainder of this subsection contains the 

results of the analysis of the enhanced fused datasets and their implications on runway safety. It 

is divided into two parts, one subset which contains RwyCCs amounting to 568,791 samples, and 

the other subset which contains the pilot reported braking actions (PIREP BA) amounting to 

9,906 samples. 
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4.2.1 Subset 1 

This subset provides a basis for making a correlation between the physical construction of a 

runway and its associated surface characteristics. To describe the construction characteristics of a 

runway, three descriptor categories are commonly used in the regulatory and research literature: 

1. Runway treatment: refers to modifications to the surface to reduce standing water and 

hydroplaning potential (Es G. V., 2001). Modifications may be: Grooved (GRVD), no 

treatment (NON), and porous friction course (PFC). 

2. Runway Surface Type: describes the material used in the runway construction, which may 

be: Asphalt, Asphalt/Concrete, and Concrete. 

3. Runway Condition: refers to the quality of the runway surface and is an indication of 

proper maintenance by the airport operator. Condition may be: Excellent, Good, Fair, 

Poor. 

The detailed impact of Runway Condition on aircraft braking performance is deferred to future 

investigations. Runway Surface Type is quantified for reference, but our main analysis focuses on 

the influence of Runway Treatment on aircraft braking performance. These two attributes are 

visualized in Figure 14(a). 

From the larger dataset in Figure 14(a), a down-selection is conducted to evaluate only events 

that contain both a Runway Treatment value and a reported RwyCC. The results are shown in 

Figure 14(b). This figure illustrates that there is a significant trend correlation between the type 

of runway treatment and the history of RwyCCs reported.  It can be observed that larger values 

of the RwyCC (RwyCC >= 3) are  more commonly reported for treated runway surfaces (PFC 

and GRVD) compared to no treatment runway surfaces (NON). Since larger RwyCCs 

correspond to better runway conditions, this indicates that having runway treatment would 

improve runway conditions. 
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Figure 14. FICON subset 1 visualization 

 

4.2.2 Subset 2 

Using current “time of arrival” best practices guidance, one of the most important sources of 

braking action information for cockpit crews is from the reported RwyCCs. The RwyCCs are 

derived from the RCAM guidance using the runway contaminant type and depth observed at a 

limited number of sampling points on the airport property. While contaminant descriptors may 

be the primary determinant in the braking action reported, other static variables such as runway 

longitudinal slope, polished/rutted wheel tracks, or runway lateral slope (crown) may impact the 

braking action achieved. The sum of the RwyCC braking action plus runway variances should be 

reasonably reflected in the PIREP BA reports. This subsection presents the comparison of the 

reported RwyCC with the reported PIREP BA for the purpose of validating expected versus 

actual braking action. 

▪ Reported braking action for contaminants and FICONs 

FICONs can contain both a RwyCC and additional descriptive text of a contaminate or 

level of coverage. To validate the consistency of this reporting, several visualizations are 

created. As seen in Figure 15(a), the expected trend of fewer GOOD / GOOD-MEDIUM 

/ MEDIUM PIREP reports for the lower RwyCCs is confirmed. However, this does raise 

the question of why there are so many reports of GOOD even when the FICON reports 

1/1/1 (POOR). It could perhaps indicate that the RwyCCs might be overly conservative 

or the PIREPs are overly optimistic. The data provides no clear basis for this apparent 
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bias. This points towards the need for potential additional criteria to be developed to 

understand and isolate these variations. 

Figure 15(b) provides the closest correlation between contaminate descriptor and PIREP 

BA report, but with approximately 15 % of landings on ICE reported as MEDIUM or 

better, some questions remain as to the source(s) of the variance. 

▪ Pilot braking action and non-contaminant variables 

This subsection analyzes the way the pilot reported braking action interacts with different 

variables for different runways. In the enhanced FICONs dataset, information regarding 

runway length, start elevation, and end elevation is available. This data and the following 

formula are used to calculate the longitudinal slope of each runway in the dataset. 

 

𝑠𝑙𝑜𝑝𝑒 =
𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑒𝑛𝑑 − 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑎𝑟𝑡

𝑙𝑒𝑛𝑔𝑡ℎ
 ∗  100    1 

 

 

In Figure 15(c), runway slopes are grouped into bins of 0.1 degrees and plotted against pilot 

reported braking action. Although the domain of the chart includes [-0.3, 0.3] degree slopes, the 

segment [-0.2, 0.2] degree slopes is where most data is available, as runway slopes tend to follow 

a binomial distribution around 0. More positive slopes (uphill) have a strong positive relationship 

with ‘good’ reported braking action. This is best explained by the fact that positive slopes result 

in a force of gravity against the direction of motion. 

From Figure 15(c), runway slope bins of -0.2, 0.0, and 0.2 degree have “good” braking action 

reports of 49.9%, 57.1%, and 68.4% respectively. As such, we find that there is a respective -

12.6% and 19.8% change of “good” braking action reports for slopes of -0.2 and 0.2 degree in 

comparison to level ground.  

Lastly, as referenced in the discussion of Figure 15(c), Figure 14(b) also shows the correlation 

between runway treatment and braking action and provides a validation of the RwyCCs. 
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Figure 15. FICON Subset 2 visualization 

 

4.3 Multivariate analyses with FICON data 

To quantitatively explore the multivariable relationship between runway-related metrics and 

PIREPs, a series of analysis of variation (ANOVA) tests have been conducted. One-way 

ANOVA is typically used to investigate whether variations of a single factor have a measurable 

effect on a dependent variable4. Similarly, N-way ANOVA can be used to determine if there is 

 

4 One-Way ANOVA | Introduction to Statistics | JMP 

https://www.jmp.com/en_ca/statistics-knowledge-portal/one-way-anova.html
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an interaction effect between n independent variables on a continuous dependent variable 

(IGGA, 2009). 

The runway-related variables are runway condition code, treatment, and slope. A subset of the 

dataset is selected for the analyses. It consists of 4,420 samples and contains full information 

about the three runway-related variables and pilot reported braking actions. 

ANOVA requires the dependent variable to be numerical, so the text contents of PIREP BA are 

replaced by numbers from 0 to 5, where larger numbers correspond to more positive reports. For 

instance, “NIL”, which means no braking, is represented by 0, while “GOOD”, which means 

good braking performance, is represented by 5. Additionally, ANOVA requires the independent 

variables to be categorical, so runway slope has been converted to such a variable by grouping 

the runway slope values into bins of 0.1-degree width. 

Figure 16(a) to Figure 16(c) depict the heatmaps of Enumerated Pilot Reported BA against 

different combinations of RwyCC, Runway Slope, and Runway Treatment. An individual cell in 

a heatmap represents the mean value of enumerated PIREP BA for a specific combination of 

runway variables. High PIREP BA values are represented by green while low PIREP BA values 

are represented by the color red. The grey cells in the heatmaps indicate there is no sample for 

the given combination. 
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Figure 16. Heatmaps for PIREP BA vs. runway variables (slope and treatment) 

 

Three-way, two-way, one-way ANOVA tests are performed, and the results are summarized in 

Table 1. After looking at the reduced model which includes all possible 2-factor interactions, the 

only significant interaction found is between runway condition code and runway slope (p <= 

0.01). One-way ANOVA tests indicate that runway condition code and slope have very 

significant effects on braking action (p<= 0.01), while runway treatment only has a significant 

effect on braking action (p <= 0.05). 
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Table 1. Results of ANOVA tests 

 SUM_SQ DF F P 

RwyCC 632.95 4 153.45 < 0.01 

Treatment 10.06 2 4.88 < 0.05 

Slope 35.19 5 6.83 < 0.01 

RwyCC + Treatment 0.07 8 0.01 0.93 

RwyCC + Slope 63.40 20 3.07 < 0.01 

Treatment + Slope 0.09 10 0.01 0.93 

RwyCC + Treatment + Slope 54.27 40 1.34 0.26 

 

Post-hoc tests (Tukey HSD5) are performed to further investigate the effects of the three runway 

variables and the interaction between RwyCC and Slope on braking action. These tests yield the 

following statistical results: 

1. PIREP BA is significantly higher when RwyCC is higher. 

2. PIREP BA is significantly higher when Treatment is PFC or GRVD compared to NONE. 

3. PIREP BA is significantly higher when Slope has a larger positive value. 

The tests also reveal the statistically significant interaction of RwyCC and Slope on PIREP BA. 

When Runway Slope is around zero (that is, -0.1 < Slope < 0.1), RwyCC has a significant effect 

on PIREP BA. However, when Runway Slope has a large absolute value, the correlation of 

RwyCC with PIREP BA becomes less robust. This observation can be explained by the fact that 

as the runway becomes steeper, the force of gravity starts to have more effect on the braking 

action, and the effect of RwyCC is diminished. 

4.4 Correlation study with FICON and weather data 

Runway braking conditions are affected by weather, specifically during rain or snow events.  

Quantifying the correlation between active weather events and reported braking action is the 

primary benefit of this investigation. It is acknowledged that reduced braking action reports 

unrelated to active weather are also possible, most notably for cold climate airports where 

compacted snow or ice may remain on a runway surface for weeks or months during the winter 

season (Klein-Paste, 2012). 

 

5 https://methods.sagepub.com/reference/encyc-of-research-design/n478.xml 

https://methods.sagepub.com/reference/encyc-of-research-design/n478.xml
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The correlation between weather and RwyCCs is investigated and an example is presented below 

to give more details. The example covers all FICON records and weather data for Bangor 

International Airport in Maine (ICAO: KBGR) during the time range from 1/1/2018 to 

12/31/2019. 

Although a FICON record consists of 3 RwyCCs for the first, middle, and last thirds of the 

runway, most of the FICON records have uniform codes. As a result, the RwyCC representing 

the minimum of the ones having non-uniform codes will be used as a representative for a FICON 

record in our analysis. Also, while each FICON record covers a time span, only the start 

timestamp is used to represent the time of the record in the analysis. The correlation analysis of 

weather and FICONs addresses the relationship between temperature, precipitation type, and 

RwyCCs. In this report, all precipitation types that can lead to non-dry runway conditions (rain, 

snow, sleet) or dry runway conditions (no precipitation) are being considered. 

Figure 17 displays the distribution of RwyCC with respect to temperature (air temperature and 

dew point temperature). In the ASOS system, ‘R’ stands for rain, ‘S’ stands for snow, and ‘NP’ 

stands for no precipitation, whereas ‘+’ and ‘-’ stand for heavy and light precipitation intensities. 

Each subplot in the relational plot shows the distribution of codes under one specific 

precipitation type. Within each subplot, the lower left part can be considered as the ‘low 

temperature area’ and the top right part can be considered as the ‘high temperature area’. Each 

dot in the plot represents one FICON record, with its lowest RwyCC indicated by a color 

gradient: greenish colors represent better runway conditions, while reddish colors represent 

worse conditions. 

Figure 17 shows that dots are spread over the ‘low temperature area’ under snow precipitation 

type, over the ‘high temperature area’ under rain precipitation type, and across the entire 

temperature area when there is no precipitation. This indicates that the temperature is usually 

low during snowy days and relatively higher during rainy days, and no precipitation can occur 

regardless of the temperature of the day. Moreover, several red dots are seen under snow 

condition, while green dots are the majority under rain condition, which indicates that snow can 

be more detrimental to runway condition compared to rain. Lastly, in the no precipitation 

subplot, it can be observed that most red dots appear in the ‘low temperature area’, which 

suggests that runway condition can be poor for temperatures near or below freezing even when 

there is no precipitation. Indeed, there are many other factors (besides contaminants) that can 

come into play for poor runway conditions (such as time of the day, dew conditions, tire 

‘hardness’ vs. temperature, etc.). These observations, while straightforward, corroborate the 
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expected trends of correlations between adverse weather conditions and runway condition codes 

at a high level. 

 
Figure 17. Relational plot of weather and runway condition codes at KBGR in 2018-2019 

 

4.5 Conclusions 

The results presented in the previous sections provide statistical support for the accuracy of 

existing best practices predictions for aircraft “time of arrival” braking effectiveness. Overall, the 

intention of this research is to present and collate available data in an understandable and 

functional manner to be useful for future studies. 
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The data also suggests that while the overall accuracy is reasonable, precision is more 

problematic. In aviation, conservative solutions are an essential part of safety. However, the 

RwyCC predictions appear to be significantly skewed towards a conservative performance level 

when compared to PIREPs during actual operations. The analysis of large datasets as performed 

in this research, may provide the only method to effectively reveal improved precision for 

performance predictions. 

In this research, the relationship between runway surface conditions, airport and runway 

characteristics, prevailing weather conditions, and pilot reported braking action are studied over 

a large period of time using collected data. A robust and repeatable data fusion framework is 

developed to integrate data from various sources in order to analyze aircraft braking performance 

on contaminated runways. A statistical analysis is conducted to study the effect of prevailing 

weather conditions, runway treatment and slope, contaminant types, and other factors on the pilot 

reported braking actions and the runway condition codes. 

The developed data fusion framework and FICONs are intended to be used in conjunction with 

real-world flight data. The eventual aim of the project is to be able to understand and infer 

runway conditions based on the collected and processed data using big data/machine learning 

techniques (Sheridan, et al., 2020; Mangortey, et al., 2020). 

5 Reverse thrust analysis 

5.1 Task and approach 

Aircraft use multiple braking devices to maximize braking potential. These devices include 

thrust reversers, spoilers, wheel braking, and aerodynamic drag. Aerodynamic drag and spoilers 

contribute to aircraft deceleration by generating friction at the aircraft surface. Wheel brakes 

generate friction at the main gear to decelerate the aircraft. Thrust reversers generate thrust in the 

direction of motion to decelerate the aircraft. The way thrust reversers apply braking is different 

from other devices in that there is a delay between zero and full application due to the engine 

spool-down time. For this reason, the engine spool-down time for thrust reverser application 

needs to be modeled based on existing flight data to accurately model the real thrust reverser 

behavior in a simulation environment. The goal of this section is to model the spool-down time 

of thrust reversers until max braking application. 

Flight Operations Quality Assurance (FOQA) data collected between the years 2013 and 2019 is 

used for this study. There is a total of 19,500 flight data categorized into 9 flight phases. For 

proprietary purposes, airframes are categorized as Narrow-Body (or single aisle) denoted NB, 
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and Wide-Body (or twin-aisle) denoted WB, and are numbered depending on their type and 

variant. For example, NB-B1/1 is narrow-body B1, variant 1. Data for the NB-B2/2 airframe 

with CFM International6 engines is selected to narrow the data scope. This airframe and engine 

combination has the highest amount of data available for analysis. Also, this study focuses only 

on the approach and rollout phases of flight since these phases have a higher relevance to thrust 

reverser application. In terms of data parameters, the FOQA data contains over 2,000 parameters 

per flight. The relevant parameters are selected and listed in Table 2. 

 

Table 2. FOQA parameter of interest for reverse thrust analysis 

Thrust Lever Angle N1 % Reported Thrust 

Thrust Reverser Position Ground Speed Height Above Touchdown 

Ground Track Position Latitude Longitude 

Corrected Gross Weight Speed Brake Position True Airspeed 

Wind Speed Wind Direction Brake Pressure 

Flight ID City Pair Acceleration 

MSL Altitude Lateral Distance from 

Runway Centerline 

 

 

These parameters are chosen based on their availability for the approach and rollout flight 

phases. They are time-variant quantitative data since most modeling algorithms require 

quantitative data for training. The data types include continuous, discrete, and binary types. The 

recording frequency of the FOQA data ranges between 0.25 to 16 Hz. For this study, the 1 Hz 

data frequency is used across all parameters since the minimum recording frequency of the 

selected parameters is 1 Hz. Note that flight ID and city pairs are metadata that are not time-

variant, so they are repeated for the full data length for each flight. Some empty data points are 

observed due to errors in recording in real-time. These empty cells are kept empty. Some 

parameters such as ground track position over full runway length are augmented based on the 

existing data to better represent the braking progress. Braking control parameters, such as % 

runway position at thrust reverser application, are augmented so that zero represents extremely 

late use of thrust reverser or no use of thrust reverser. 

 

6 See: About CFM - CFM International Jet Engines CFM International (cfmaeroengines.com) 

https://www.cfmaeroengines.com/about/
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The data is compiled such that each column represents the recording of a specific parameter and 

each row represents a timestamp of any given flight. An illustration of this structure is shown in 

Table 3. 

Table 3. Illustration of data structure for each flight thrust reverser analysis 

Offset Arpt 

Elevation 

(ft) 

Arpt 

Latitude 

(degrees) 

Arpt 

Longitude 

(degrees) 

EGT 

left 

(deg C) 

EGT 

right 

(deg C) 

N1 left 

(%) 

N1 right 

(%) 

N2 left 

(%) 

15571 1026.2 33.6367 -84.4279 476.5 469 47.71875 47.125 75.1875 

15572 1026.2 33.6367 -84.4279 476.5 471.5 47.8125 46.96875 75.40625 

15573 1026.2 33.6367 -84.4279 471 468.5 47.96875 47.34375 75.21875 

15574 1026.2 33.6367 -84.4279 467.5 465.5 47.71875 46.9375 74.78125 

15575 1026.2 33.6367 -84.4279 467.5 466.5 47.5625 47.125 74.875 

15576 1026.2 33.6367 -84.4279 468 462.5 47.625 47.125 75.125 

 

The data flow is illustrated in Figure 18. The process starts by combining Meta and FOQA data 

used for the thrust reverser modeling. This process includes augmenting the metadata to the 

length of each approach and rollout phase of flight, then concatenating the data horizontally. The 

combined data is then used to augment new parameters that represent the ground track position 

and braking progress. Augmented parameters include progress for full approach and rollout, 

progress from 50 ft altitude to end of the rollout (when the aircraft exits the runway), and 

temporal progress for full approach with timestamp (= 0 at touchdown). 

 

 
Figure 18. Data flow for thrust reverser spool-down time modeling 

 

Samples of the modified data are depicted in Figure 19 to show the overall trend in the 

touchdown and braking behavior. 
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Figure 19. Observation of ground speed, wind speed, and various braking devices application 

 

Figure 20 shows that, for a typical flight when the thrust reverser is used, the N1 % parameter 

goes up to 70%. Brake pressure data contains a lot of noise. The point of braking application 

may however be identified due to the fact that before brake application the recorded, pressure is 

close to zero with some noise. The braking devices are applied approximately at 20% from 50 ft 

height above touchdown to runway exit. Significant ground speed deceleration is observed 

during the ground roll where thrust reverser and wheel braking are applied, which is expected. 

Wind speed is an external factor that may influence the braking performance, but a simple 

observation of the wind speed and ground speed trajectory does not show a significant 

relationship between the two parameters. 

To get a deeper understanding of the flight data, recordings of aircraft control parameters are 

observed and compared. An illustration of control parameters over ground roll progress are 

shown in Figure 20. 
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Figure 20. Observation of braking control parameters during braking rollout 

 

Simple observation shows that the thrust reverser surface deflection and N1 % typically deploy 

simultaneously. However, this does not mean the two are turned off simultaneously. The same 

applies to the spoiler and the brake pressure turn off where these braking devices are applied at a 

similar time as thrust reversers. However, for a typical flight, the spoiler remains deflected and 

brake pressure remains applied past the end of the rollout. 

The data is further analyzed to observe the thrust reverser spool-down behavior. The frequency 

of minimum N1 % and maximum N1 % from touchdown is observed to determine how the 

spool-down needs to be modeled. This data was collected from the final time index when 95% of 

the maximum N1% is reached (referred to as t1) to the first time when 105% of the minimum 

N1% is reached from t1, for each flight. This way the ranges of N1 % and time that need to be 

modeled for the spool-down behavior are determined. As shown in Figure 21, approximately 

95% of flights have a minimum N1 % below 30%. 
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The upper bound for maximum N1 % application during braking is 90% while a few flights have 

maximum N1 % application below 40%. For these few flights, it is assumed that thrust reversers 

were not applied. 

 
Figure 21. N1 % distribution during braking rollout for the NB-B2/2 airframe with CFM engines 

 

To model the spool-down time in terms of N1 %, the timestamps of N1 % at 10% interval are 

subtracted from the time stamp of N1 at 30 %. To analyze the complete spool-down time, the 

model is trained to represent spool-down time for N1% between 90% and 30%. There are two 

ways to collect the spool-down time from N1 % of 30%. One way is to collect time for N1 % 

from 80 % to ~ 30 % in 10 % increments. This means finding the time for N1% from 80 % to 30 

% with a small margin (+/- 1%) at the 80 % mark, then finding the time for N1 % from 80 % to 

30 % with the same margin at the 80 % mark, and so on. The other way is to collect the expected 

time of N1 % distribution at 10 % interval at 10 % increments. This means finding the 

expectation of the distribution of time from N1 % between 80% ~ 89% to 30 %, then finding the 

expectation of the distribution of time from N1 % between 70% ~ 79% to 30 %. The first data 

collection method would result in a smaller number of data to train the spool-down time model 

since spool-down time data is not collected from flights that do not reach a specific N1 % 

threshold. For example, some flights that deployed thrust reverser did not deploy N1 % up to 

80%. However, this spool-down time represents the time to a specific N1 % value so the model 

may be more accurate. The second data collection method would result in a larger number of 

data to train the spool-down time model since the expectation of the spool-down time 

distribution is found when reaching any point in the N1 % intervals. However, there may be 

some error in the spool-down time model based on the N1 % that each interval may represent. 
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5.2 Results 

The first data collection method is used to generate spool-down time buckets that correspond to 

N1 % going from 80% to 30% in 10% increments (first time corresponds for N1 % from 80% to 

70%, second time corresponds to N1 % from 80% to 60%, etc.). Average and median values of 

the time difference for reaching N1 % of 30% from N1 % of 40 % to 80 % thresholds are used to 

create a regression model on spool-down time. This model and the data distribution are 

illustrated in Figure 22. 

 
Figure 22. Median and average time to spool-down from N1 % of 30% to various levels of N1 % at 

10% increments 

 

A linear relationship between the median of reaching each N1 % trigger for each flight is 

observed. This linear model is defined by T = 0.1 N1 – 1 where T is the spool-down time and N1 

is the N1 %. A nonlinear relationship between average time to reaching each N1 % trigger for all 

the flights is observed. For the average model, an S-shaped relationship is observed where there 

is a steeper increase in time to spool-down for reaching N1 of 40 % to 60 %. The relationship 

flattens out between 60 % to 70 % and then steepens again between 70 % and 80 %. When this 

relationship is modeled with a linear model, a parallel line is observed between the average and 

the median model with a small offset. This indicates that overall, a linear relationship can 

summarize the spool-down time model. 

The second data collection method is used to generate the spool-down time model. The spool-

down time model is generated based on the expectation of the distribution of time for each N1 % 

interval. The expectation can be found with the median or the average of the distribution. The 

expectation of time to N1 % at each N1 % interval can be connected to model the spool-down 

time. This model and the data distribution are illustrated in Figure 23. 
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Figure 23. Median or average time to spool-down until N1 % reaches the expectation of N1 % 

interval, in 10 % increments 

 

Again, a linear relationship between median and each N1 % window is observed with the median 

data. This linear model is defined by T = 0.1 N1 – 2 where T is the spool-down time and N1 is 

the N1 %. A nonlinear relationship between average time to N1 % and N1 % is observed. 

However, a linear regression line, T = 0.081 N1 – 0.295, does fit the average time to N1 % 

model as well. This indicates that overall, there is a linear relationship between N1 % and time to 

reach that N1 %. 

6 Unsupervised learning 

6.1 Identification and implementation of metrics 

Prior to diving into the details, it is important to define some pertinent terms that are used 

frequently in order to avoid ambiguity. The following definitions from ASTM International 

Standard Terminology for Aircraft Braking Performance are used in this research. 

1. Aircraft braking coefficient: the ratio of the deceleration force from the braked and 

unbraked wheels of a braked aircraft relative to the sum of the vertical (normal) force 

acting on the aircraft. The aircraft braking coefficient is determined by using the weight 

of the aircraft (W-L) and encompasses all the braking forces of all the gear, even those 

that are not braked. 

2. Wheel braking coefficient: the ratio of the deceleration force from the braked 

wheels/tires relative to the sum of the vertical (normal) forces acting on the braked 

wheels/tires. The wheel braking coefficient is the result of the combination of all 

functioning braked wheels. 

3. Braking action: a means of describing the maximum capability of a vehicle braking 

system on a wet or contaminated surface that references a standardized reporting scale. 
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4. Pilot braking action report (PIREP), Aircraft Reports (AIREP): a report describing a 

level of braking action resulting from the observations of a pilot. 

5. Airport friction measurements: the value obtained through ground measurement 

devices approved for use in measuring runway surface friction characteristics. 

Flight parameters from the recorded data are used to define metrics of interest for assessing the 

braking performance of aircraft on contaminated runways. These metrics may be divided into 

three categories: 

1. Single point metrics: calculated directly from fused data at a single point; might need 

metadata information to find that point; used in more complex metrics 

2. Metadata metrics: calculated by extracting the metadata information and then encoding 

it as categorical information 

3. Calculated metrics (includes time series measurements if any): calculated using fused 

flight data and metadata to obtain the required value(s); potentially using single point 

metrics 

Table 4 summarizes single-point metrics and their descriptions. Table 5 summarizes metrics 

based on metadata and their descriptions. Table 6 summarizes metrics calculated from FOQA 

flight parameters and metadata, and their descriptions. 

Table 4. Single point metrics 

No. Metric Description 

At Touchdown 

1 Ground Speed Ground speed of the aircraft at touchdown (kts) 

2 True Airspeed Airspeed of the aircraft at touchdown (kts) 

3 Vertical Speed Vertical speed of the aircraft at touchdown (ft/s) 

4 Weight Weight of the aircraft at touchdown (lbs.) 

5 Fuel Weight Weight of the fuel left in the aircraft at touchdown (lbs.) 

6 Specific Kinetic Energy Specific kinetic energy of the aircraft at touchdown (lbs ft2) 

7 Number of g’s Vertical acceleration experienced by the aircraft at touchdown 

8 Flap Setting Angle of the flaps used at touchdown (degrees) 

9 Headwind/tailwind Wind experienced by the aircraft at touchdown (kts) 

During Rollout on Runway 

10 Ground Speed at 

Runway Exit 

Ground speed of the aircraft as it exits the runway after 

landing (kts) 
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11 Ground Spoilers Armed Use of spoilers on the ground after landing 

12 Autobrakes Armed Use of autobrakes after landing 

13 Thrust Reversers 

Deployed 

Use of thrust reversers after landing 

14 Thrust Reversers 

Stowed 

Stop use of thrust reversers after landing 

15 Thrust Reversers Peak 

Usage 

Maximum engine rotation rate when thrust reversers are in 

use after landing 

 

Table 5. Metadata Metrics 

No. Metric Description 

Airport Information 

1 Airport ID Airport identification and information 

2 Landing Airport ID Identification of the information about the airport where the 

aircraft lands 

3 Outside Air Temperature Outside air temperature at the airport considered 

4 Elevation Elevation of the airport considered 

5 Visibility Visibility at the airport considered 

Runway Information 

6 Runway ID Runway identification and information 

7 Runway Type Treatment of the runway on which the aircraft lands (can be 

porous friction course (PFC), grooved, non-grooved, etc.) 

8 Runway Condition Code Condition code of the runway on which the aircraft lands 

9 Runway Slope Longitudinal slope of the runway on which the aircraft lands 

Aircraft Information 

10 Airframe ID Airframe identification and information 

 

Table 6. Calculated Metrics 

No. Metric and Description 

Approach 

1 Average Crab Angle during Approach (degrees) 

2 Approach Stability 

3 Altitude when Autopilot is Disconnected (ft) 

Touchdown 

4 Speed Bleedoff Between 500 ft Above Ground and Runway Threshold (kts) 
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5 Height at Runway Threshold (Actual, Operational) (ft) 

6 Speed Bleedoff Between Runway Threshold and Touchdown Point (kts) 

7 Difference Between Published Touchdown Point and Height at Runway Threshold (ft) 

8 Distance Between Runway Threshold and Touchdown Point (ft) 

9 Seconds to Reach 40kts after touchdown (s) 

10 Distance of Runway Used for Flare (ft) 

Braking 

11 Average Aircraft Deceleration During Rollout (ft/s2) 

12 Standard Deviation of Deceleration During Rollout (ft/s2) 

13 Thrust Reverser Usage During Rollout 

14 Time to Reach Maximum Reverse Thrust after Touchdown Point (s) 

15 Ground Spoiler Deployment During Rollout 

16 Seconds to Brake Use (Manual or Autobraking) (s) 

17 Distance to Runway Used for Braking (ft) 

18 Average Brake Pressure During Rollout (psi) 

19 Standard Deviation of Brake Pressure During Rollout (psi) 

20 Brake Pressure Peak (using 2 seconds before and after peak) (psi) 

21 Location of Runway Exit Compared to Runway Length 

22 Main Gear Normal Force (time series from touchdown to runway exit) (lbs. ft2) 

 

The metrics identified in Table 4, Table 5, and Table 6 can be evaluated for each individual 

flight operation in the dataset. Figure 24 provides a notional representation of how this process 

works. 
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Figure 24. Notional representation of the extraction of metrics from routine flight operations 

 

For single point and calculated metrics, the appropriate segments of the approach and landing 

phases are identified within the flight data recording. The metric is then calculated using the data 

recorded from each individual flight. The metadata metrics are constant for a particular flight 

operation independent of the data collected during the flight. The metrics collected for each 

flight record can be collated into a large high-dimensional feature vector as shown in Figure 25. 

 

 
Figure 25. Notional depiction of feature vector matrix and its assembly 

 

Each row in Figure 25 represents a unique flight operation that has been characterized by its 

extracted metrics rather than other parameters. All the flight operations in the datasets available 

may thus be collected together as a large matrix containing the values of the metrics as columns. 
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This allows for an easy comparison of the values of different metrics across flight operations and 

enables the visualizations that were shown earlier in Figure 13 and Figure 14. Additionally, this 

feature vector matrix is also the basis for building machine learning models using the data which 

will be the subject of future research. Collection and organization of the data in such a manner 

allows for data from flights operating at different airports, in different weather conditions, with 

different airframes, etc. to be easily compared against each other and existing standards. 

6.2 Benchmark of clustering algorithms 

Analyzing braking behavior during ground roll is important for evaluating runway safety. 

Conventional methods of analyzing braking behavior include measuring braking coefficient 

experimentally or estimating braking coefficient based on the physics behind the braking 

process. Both of these methods provide a general evaluation of the braking performance which 

can be used to find the performance limits or norm. However, they do not provide an analysis of 

braking performance sensitivity to flight parameters and runway condition deviations from the 

idealized aircraft braking scenario. This problem can be resolved by characterizing the braking 

behavior with machine learning from real flight data. This is made possible by the explosion of 

flight data available for analysis from an increased number of flights and improved 

computational power onboard the aircraft. 

Machine learning algorithms can be categorized as unsupervised or supervised algorithms. 

Supervised machine learning relies on truth data to train a model to predict or explain behavior. 

The benefit is that supervised algorithms can provide a targeted analysis of the features of 

interest. However, the truth data may be difficult to obtain. Unsupervised machine learning 

utilizes the input data to create a model that formulates assumptions about the data. These 

assumptions may be related to the distance, sequence, or any noticeable feature recognized by 

the algorithm. Because truth data is not provided during the model training process, the analysis 

may or may not be relevant to the features of interest. However, the unsupervised algorithm can 

provide foundational knowledge about the data at hand. One such unsupervised learning method 

is able to cluster flights based on their similarities to derive knowledge about potential anomalies 

in the data. 

The similarity of two datasets may be defined based on distance, density, or probability of the 

data distribution between samples. Symbolic dynamic filtering is an example of a distance-based 

anomaly detection method that calculates the pairwise distance between points in two data 

samples through the K-nearest neighbor method. Considering that all the flights landed safely 

and the goal of this study is to identify outliers, a one-to-one comparison of all the flights may be 
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a suboptimal choice for the analysis. Probability-based anomaly detection methods find the 

probability of point p outside of dataset S. The probability of a dataset with large dimensional 

data may be mapped to a lower dimension with algorithms such as support vector machines. The 

position of point p from a pre-defined threshold in this alternate dimension will determine 

whether the data point is an anomaly.  

An example of probability-based algorithms is the Multiple Kernel Anomaly Detection (MKAD) 

algorithm. Studies show that MKAD is more sensitive to discrete parameters. Since the available 

flight data contains both discrete and continuous parameters, probability-based algorithms may 

not be the best choice for analysis. Density-based anomaly detection algorithms such as the 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) rely on spatial 

clustering of data at a lower dimension. The clusters are applied such that a minimum number of 

samples lie within proximity. Density-based algorithms are known to perform better with 

continuous parameters. Considering that a larger number of data features used to represent the 

braking performance of the aircraft are continuous, density-based algorithms are chosen for this 

analysis. 

6.3 Clustering framework implementation and results 

The goal of this study is to explore the calculated and single-point metrics of 11,620 flights using 

unsupervised machine learning. The first attempt to visualize this data at a surface level is 

through the T-distributed stochastic neighbor embedding (t-SNE) algorithm. The t-SNE 

algorithm maps the n-dimensional data to 2-dimensional space. The augmented dimension itself 

is meaningless. However, the relative distance of each data point in this dimension can be used to 

identify similar flights. The t-SNE algorithm does a surface-level analysis of the similarity 

between samples because it utilizes the input data features directly to augment the lower 

dimensions. Since t-SNE uses the input data features directly, the magnitude of values will 

contribute to the result. Hence, the input data is normalized by the min-max range of each 

feature. An illustration of the data flow is shown in Figure 26. 
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Figure 26. Illustration of the data flow for obtaining results from the t-SNE algorithm 

 

A significant benefit of the t-SNE algorithm is that the lower dimensions generated can be 

mapped to the rectangular coordinate plane to visualize how the data gets clustered. And just like 

any other machine learning algorithm, the results from the t-SNE algorithm are dependent on the 

hyperparameter values. A grid search algorithm is used to find the optimal hyperparameter 

values based on its simplicity and success in optimizing various machine learning algorithms. 

The main hyperparameters optimized for the t-SNE algorithm are perplexity and number of 

iterations. A 3 by 3 search grid of perplexity and number of iterations is used to find the optimal 

configuration. The final values for these hyperparameters are found to be 100 and 1000, 

respectively. The final results are mapped with Boolean labels of various runway events to see if 

the clusters are formed based on known accident precursors. The runway events used in this 

analysis are unstable approach, long landing, high energy descent (at threshold), and hard 

landing. The events are flagged by definitions made by the data provider and are assumed to be 

true. The t-SNE results are also mapped with the airframe data to see if the clusters are airframe-

specific. 

An illustration of the t-SNE results mapped with the long landing precursor event and airframes 

is shown in Figure 27. 
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Figure 27. Results from unsupervised clustering t-SNE algorithm mapped with long landing 

precursor event and airframe type 

 

Figure 27 shows that the t-SNE results are almost independent of the accident precursors since 

the precursors exist in all of the major clusters. This is expected since the features generated for 

unsupervised learning analysis are purposefully defined to characterize the braking performance. 

These features are not directly used for defining the precursors selected. However, the t-SNE 

results do have some relationship with the airframe type. This is expected since various airframes 

land and brake with specific system configurations. For example, the spoiler deflection during 

braking rollout is airframe-specific and the spoiler deflection is included in the input data. So 

even though the data features are normalized by the min-max range, there are many more 

features in the input data which are airframe-specific. This means the braking performance 

clustering analysis may need to be done per airframe so that airframe-specific feature variations 

do not dominate the clustering results. Note: On the right of Figure 27, the NB-B1 airframe data 

is removed to match the airframes used to generate the t-SNE clusters based on raw FOQA data. 

Since density-based algorithms are selected for unsupervised machine learning, two algorithms, 

DBSCAN and Ordering Points To Identify the Clustering Structure (OPTICS) are selected based 

on their frequent use in anomaly detection. DBSCAN uses core distance and reachability 

distance to identify clusters. When a core data point is selected based on the relative proximity of 

nearby data points, the cluster is generated based on the predefined max range from the core 

point. 
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OPTICS hierarchically ranks the reachability of data points and a new cluster is defined at the 

point where the jump in reachability is observed. An illustration of the two algorithms is shown 

in Figure 28. The left-side of Figure 28 illustrates the process of finding the neighboring data 

points from the core data point based on a maximum distance threshold, denoted as epsilon (eps). 

The right-side of Figure 28 shows the hierarchical ranking of the data points based on proximity 

used to cluster similar flights. In this case, red, blue and green samples are clustered flights, and 

orange samples are outlier flights. Outliers are unique flights that do not show similar behavior 

against any other, leaving them unclustered. In terms of runway safety, outliers are flights that 

landed in an unusual manner (i.e., in a way not seen in other flights). Considering that aircraft are 

strongly encouraged to land in a specific configuration, outliers may represent flights that violate 

these guidelines and this indicates potential risk. Once the flights are clustered, the analysis 

focuses on determining the reason why clusters are formed and on generating a detailed 

breakdown of what makes the outliers unique. 

 
Figure 28. Illustration of DBSCAN and OPTICS algorithms and how clusters are generated 

 

6.3.1 NB-B2 group 

Since aircraft landing configuration varies significantly with airframe type, the clustering 

analysis is performed for each airframe group. The NB-B2 airframe group is selected because it 

represents the largest number of flights in the dataset. The data includes 83 NB-B2/1 variants, 

1,243 NB-B2/2 variants, and 2,726 NB-B2/3 variants. The DBSCAN and OPTICS clustering 

algorithms are used to generate clusters and the hyperparameters are varied until the largest 

number of clusters are formed while maintaining the outlier percentage below 5%. This is 

because outliers represent unique landing configurations that potentially landed slightly 

differently from the other, nominal operations. However, it is known that all of the flights used in 
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this analysis landed safely. Therefore, it would not make sense to cluster them so that a larger 

portion of the flights are un-clustered. The DBSCAN and OPTICS clustering results for the NB-

B2 airframe group are depicted in Figure 29. 

The top graph shows the OPTICS results based on the hierarchical ordering of the data points in 

terms of proximity. The green and red dots are the clustered flights, while the black dots are the 

outliers. The bottom three graphs show the t-SNE results for the NB-B2 airframe flights mapped 

with OPTICS clusters (left), airframe type (middle), and DBSCAN clusters (right). As can be 

seen in Figure 29, DBSCAN and OPTICS generate very similar clusters because they use the 

same fundamental technique for clustering the flights. It is interesting to notice that the clusters 

are not formed based on the airframe type, so they need to be further analyzed to identify trends 

in the landing process. It should also be pointed out that the t-SNE results generate similar 

clusters as DBSCAN and OPTICS, thus indicating the potential for some features having a 

dominant contribution to the landing configuration. 

 
Figure 29. DBSCAN and OPTICS analysis results for flights of the NB-B2 airframe group 

 

In order to determine why these specific clusters are formed, we need to look at the distribution 

of all the features used to generate the clusters. It can be observed that the clusters may be due to 

poor energy management. A significant deviation in true airspeed and ground speed at 

touchdown are also observed, as shown in Figure 30, potentially causing the smaller clusters 2 

and 3 in Figure 29. 
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Figure 30. Distribution of true airspeed and ground speed at touchdown for flights of the NB-B2 

airframe group 

 

The difference between clusters 2 and 3 may be based on the level of wind experienced at 

touchdown, which indicates that poor management in the case of cluster 2 may be associated 

with unexpected wind. However, this alone does not have any implication on the fact that 

clusters 0 and 1 are generated, and no significant deviations in the features are observed. This 

may indicate an accumulation of small differences in multiple metrics between clusters 0 and 1 

causing them to be differentiated. Further analysis focused on each airframe type may be 

required to differentiate the braking performance of each flight. Also, at this point, it is difficult 

to pinpoint why the outlier flights, denoted cluster -1, are un-clustered. Thus, an alternate 

analysis method is introduced in the next chapter to deep dive into each outlier. 

6.3.2 NB-A1, NB-A2, NB-A3 group 

A similar analysis is performed on the NB-A1, NB-A2, NB-A3 airframe group. The DBSCAN 

and OPTICS results are shown in Figure 31. This time, although the t-SNE analysis shows three 

distinct clusters of flights, both OPTICS and DBSCAN did not find significant differences from 

the two largest clusters and only found significant differences from the third small cluster. Again, 

the clusters are not associated with the airframe type which is beneficial considering that the 

focus of this research is on landing performance for any given airframe. The difference between 

the OPTICS and the DBSCAN algorithms is that DBSCAN treats the small third cluster as an 

actual cluster, whereas OPTICS treats it as a group of outliers. This is because the algorithm tries 

to find a jump in the reachability, and although the third cluster flights are further away from the 

others, they are not so far that they can be treated as separate from the main group. Instead, they 

are treated as outliers compared to the main cluster. It is interesting to point out that the third 

smaller cluster obtained from DBSCAN is divided into two even smaller clusters. 
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Figure 31. DBSCAN and OPTICS analysis results for flights of NB-A1, NB-A2, NB-A3 airframe 

group 

 

To reduce the number of outliers to below 5%, the epsilon parameter is increased to 0.9. This 

results in an interesting behavior depicted in Figure 32. The new DBSCAN results show that a 

higher epsilon value, the smaller set of the third cluster seen in Figure 31 is treated as a separate 

cluster. The rest of the flights are grouped into a single larger nominal cluster. It is also worth 

noticing the scatter of the data points obtained from the t-SNE algorithm, for which the 

hyperparameters are kept constant. The shift in the scatter is due to the random number generator 

used by the t-SNE algorithm to generate the clusters: each time the algorithm is run, a slightly 

different scatter plot is generated. The question is then: “what makes these 12 flights so unique 

from the other flights.” 
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Figure 32. DBSCAN clusters generated with Epsilon = 0.9 for flights of the NB-A1, NB-A2, NB-A3 

airframe group mapped to the t_SNE results 

 

A quick look at the acceleration data distribution in Figure 33 shows a strange behavior in both 

lateral and normal average acceleration during rollout. 

 

 
Figure 33. Average lateral and normal acceleration distribution during ground roll for flights of NB-

A1, NB-A2, NB-A3 airframe group 

 

The recording indicates a significant lateral motion which points to the potential of strong 

crosswind. However, there is a possibility of erroneous recording since, at a strong crosswind, 

the lateral deviation from the wind is corrected by a similar lateral deviation by deflecting the 

rudder. Another possibility is that these flights were assigned to an exit close to the runway 

threshold, so they only had a shorter portion of the runway to brake and exit.  
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Because the average acceleration is calculated between the touchdown point and the point when 

the aircraft speed reaches 40 kt, it is possible that in the scenario where an aircraft has to exit the 

runway early, it actually exits before slowing down below 40 kt. This theory is supported by the 

distribution of distance to threshold and percent ground track used to reach 40 kt from the 

touchdown point. Only a very small portion of the runway is then used to slow down, and these 

few flights need to touch down close to the runway threshold indicating that they may have to 

exit the runway early. This is observed in Figure 34. 

 

 
Figure 34. Distance from touchdown to threshold and percent runway used to slow down to 40 kt from 

touchdown for flights of the NB-A1, NB-A2, NB-A3 airframe group 

 

Unlike the flights for the NB-B2 group, there are many indications as to why the outlier flights in 

the NB-A1, NB-A2, NB-A3 group are not clustered. Many control parameters vary significantly 

from the clustered flights as shown in Figure 35. 
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Figure 35. Max N1% and time to full spoiler deployment during ground roll for flights of the NB-A1, 

NB-A2, NB-A3 airframe group 

 

The distribution indicates that the outlier flights may have not used thrust reverser or had delayed 

deployment of spoilers compared to the other flights. Since all the flights landed safely, the 

difference in the braking behavior must come from the piloting technique instead of from an 

error by the pilot. The percent runway used to slow down to 40 kt from the touchdown point 

metric seems to indicate this to be true, and the outlier flights used a similar amount of runway to 

stop as the nominal flights in cluster 0. 

6.4 Observations and insights 

An overall conclusion of the aforementioned analysis is that clustering the flights based on 

metrics that define the approach and landing performance may provide information on the 

overall landing pattern. These patterns are largely related to the decisions made during flight for 

energy management, available runway before exit, approach configuration, and more. However, 

a simple study based on unsupervised learning does not seem to be sufficient for reaching the 

goal of this study, which is identifying degraded braking with runway contamination. A few 

factors may be considered to improve the analysis. 

First, we need to understand why flights are clustered in a specific way and which flight is 

associated with which cluster. Pilots need to follow a few general procedures for landing that 

may be slightly different for different airframe or airframe groups, so looking at metrics that 

summarize the overall landing behavior may not be enough for clustering algorithms to 

differentiate between flights with good or bad braking performance. For example, landing 

behaviors can include the level of control surface deflection, energy drained during final 

approach, and altitude at threshold crossing which may be associated with the pilots' expectation 
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of the braking performance, but not necessarily the braking experienced by the aircraft on 

specific segments of the runway. 

Second, we need to evaluate the flights individually. Looking independently at each metric that 

significantly contributes to the way any given flight is clustered may point to the association of 

certain parameters. This kind of relationship is found for metrics that have larger deviation such 

as the level of control surface deflection and the amount of energy/speed drained during flare; or 

the percent runway used to slow down and the distance from the threshold to touchdown for 

early runway exit. Therefore, there is no doubt that clustering algorithms can differentiate flights, 

but the differentiation is sensitive to noise such as other metrics that are less relevant for the 

analysis. It is worth mentioning that this is why the unsupervised machine learning analysis is 

performed on each airframe group separately because initial studies showed that when all the 

flights are clustered simultaneously, the clusters are highly related to the airframe type. 

7 Supervised learning Models 

7.1 Decision trees and model interpretability 

Decision trees classify a set of data based on a parameter threshold which is defined based on the 

“Gini” value. This value represents the cleanness of the classification (the lower the value, the 

better the split). This process is repeated until each leaf only contains data for a single cluster. It 

goes through multiple decision layers and at each layer it divides the data based on one data 

feature at one threshold. The divided data is passed to the next decision layer separately to go 

through the same process. A decision tree allows us to analyze high-dimensional data based on 

the interaction between the decisions made at each layer. These complicated interactions capture 

the few samples at the lower level, that would otherwise be difficult to categorize, which is 

representative of a typical flight event with multiple contributing factors. This benefit of the 

decision tree is used to pass the clusters obtained by the density clustering techniques to better 

interpret the clusters. An illustration of how the decision tree goes through multiple decisions to 

cluster flights is shown in Figure 36. 
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Figure 36. Illustration of decision tree clustering process 

 

In the next section, we will showcase sample clustering results for the NB-B2/2 airframe and 

sample decision trees for the NB-B2/2 and NB-A2 airframes. Additional results for these and 

other airframes are provided in Appendix A: Remaining airframes clustering results and 

Appendix B: Remaining airframes decision tree results. 

7.2 Decision tree for the NB-B2/2 flight data 

Clusters generated by DBSCAN for the NB-B2/2 airframe group data show a need to further 

break down the flight data by each airframe type to analyze the anomalies in the landing process. 

DBSCAN is used to re-cluster the flights of the NB-B2/2 variant. Then, the decision tree method 

is used to analyze the clusters generated. DBSCAN results are depicted in Figure 37 and indicate 
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that most of the flights (1,189) are clustered into a single group. Only 21 flights are considered 

outliers based on their unique landing characteristics. 

 
Figure 37. Illustration of the DBSCAN clusters generated for the NB-B2/2 airframe landing 

data mapped on the t-SNE results scatter plot 

 

The cluster label data is used to train a decision tree classification model with the input data. The 

decision tree for the NB-B2/2 airframe is shown in Figure 38. 
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Figure 38. NB-B2/2 airframe landing data clusters decision tree 

 

The immediate outliers are identified by recording errors in the acceleration data. Seven outliers 

identified at the top level and one outlier, all identified in Figure 39, have average longitudinal, 

lateral, and normal acceleration beyond physical possibility. This indicates an important 

characteristic where the tree is sensitive to false recordings. 
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Figure 39. Outliers identified by the decision tree from erroneous recordings of acceleration for the NB-

B2/2 airframe landing data 

 

At the next level, the landing performance parameters are used to identify outliers. Ground track 

distance to runway exit from touchdown is an indication of how far on the runway the aircraft 

rolled before exiting the runway. It is also an indication of how long it took for the aircraft to 

slow down to 40 kt. However, a long rollout is not necessarily an indication of an anomalous 

behavior, but the decision tree identified that this combined with early application of thrust 

reverser is anomalous. The flights that did not take too long to brake or exit the runway from 

touchdown are further classified by the engine N1 %. Three outliers were marked with extremely 

low N1 % values (<= 15.14 %) indicating that these aircraft did not utilize thrust reversers at all, 

and the engine was kept at idle instead. At this point, the threshold values used by the decision 

tree come into question. The decision tree algorithm finds these values based on the resulting 

“Gini” value. However, when there are large gaps between two data sets that are clustered 

differently, any threshold values between these two clusters would result in a good “Gini” value. 

This means the exact threshold value used may not be meaningful. However, the sequence of 

decision parameters selected by the algorithm to cluster the data may introduce a coupling effect 

between parameters that are difficult for experts to identify without the aid of machine learning. 

So far, the decision tree in Figure 40 shows that the proper thrust reverser application is related 

to how long the aircraft needs to brake, which is an expected result. The first two decisions made 
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with regards to the acceleration parameters may be ignored since all they do is neglect extreme 

outliers from consideration. 

 
Figure 40. Outliers identified by the decision tree from proper application of thrust reversers and 

runway exit position for the NB-B2/2 airframe landing data 

 

The next set of parameters that goes into identifying outliers in landing is related to wind speed 

and energy management, as depicted in the decision tree in Figure 41. At the lower levels, the 

wind speed parameters are used to find flights with high wind speed. It is worth noting that the 

direction of the wind speed is not important for the decision tree. Thus, as long as the headwind 

or tailwind is strong, the flights are tagged as outliers. Also, the decision tree generates clusters 

purely based on the data distribution instead of a reference. Therefore, 5 knots of wind may not 

be large in terms of the aircraft dynamics, but for the data set provided to the decision tree, this 

may be considered large. In terms of energy management, flights with high true airspeed at 

touchdown and long flare indicators are both used to flag outliers. 
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Figure 41. Outliers identified by the decision tree from wind speed, true airspeed, and time to 

touchdown from 1000 ft height above touchdown for the NB-B2/2 airframe landing data 

 

Features of significance can be found from the decision tree based on the cleanness of the split 

from each feature. The significance order has some correlation to the level of depths that the 

decision parameter is used, as shown in Figure 42. 

 

 
Figure 42. Feature significance values for the NB-B2/2 airframe data based on the cleanness of split 

from each decision parameter 
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Overall, the analysis from the first decision tree shows that the key takeaway is the potential 

metrics that contribute to the DBSCAN cluster generation. The coupling of these potential 

metrics may be considered for future flights to identify anomalies in terms of erroneous data 

recording, long landing, energy management, and proper braking device application. 

7.3 Decision tree for NB-A2 flight data 

The decision tree generated for the NB-B2/2 airframe data shows a deep tree with multiple 

couplings potentially impacting the landing performance. This may not always be the case as 

shown for the NB-A2 airframe flight data in Figure 43. 

 
Figure 43. Decision tree for the NB-A2 airframe landing data clusters 

 

The decision tree in Figure 43 shows a wide tree with multiple clusters. It is worth noting how 

each cluster typically lies within a single branch, while the outliers are leaves that fall out of each 

branch. This implies that outliers, in general, do not share a common characteristic. Thus, it is 

necessary to analyze each outlier or each small outlier group separately. 

The first branch in light blue in Figure 43 represented by cluster 0 is flights that used full flap 

deflection and thrust reversers. This means that cluster 0 represents flights that followed the 

typical operating procedures and used all braking potential to slow down the aircraft. What 

makes cluster 1 flights unique from cluster 0 flights is their flap deflection. As shown in Figure 

44, the flap deflection of cluster 1 flights is below 27.4 degrees which is lower than the 

recommended landing flap configuration. This is because some flights, when safe landing is 

expected, use lower flap deflection to save fuel. Besides this difference, cluster 1 also used thrust 

reversers, and had small acceleration and wind speed readings, which are indications of a typical 

safe landing. This shows that the clusters generated by DBSCAN do not only represent errors in 
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the recording and performance of the landing but also the pilot technique involved. Like cluster 1 

flights, cluster 2 flights also show the ability of DBSCAN to identify variation in data due to 

pilot technique. More specifically, cluster 2 represents a difference in operation. The average 

acceleration is measured by acceleration recordings from touchdown to aircraft speed reaching 

40 kt or exiting the runway. 

 
Figure 44. NB-A2 airframe flights DBSCAN cluster decision tree  

With data distributions for flap deflection and runway exit lateral acceleration parameters, used to 

identify cluster 1 flights 

 

An aircraft that exits the runway at the first few exits may exit the runway without reaching 40 

kt. Also, the definition of “exit” is based on lateral deviation from the runway centerline beyond 

a threshold. When the two definitions combine, the large average lateral acceleration is due to 

the aircraft turning just before the exit. This is especially true when no significant lateral wind 

speed is recorded during ground roll. This is depicted in Figure 45. 
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Figure 45. NB-A2 airframe flights DBSCAN cluster decision tree  

With data distributions for average lateral acceleration and time to touchdown from threshold, used 

to identify cluster 2 flights 

 

Based on this analysis, the outliers for the NB-A2 airframe flights are mainly determined by lack 

of braking device usage, large lateral acceleration when the aircraft exit is far from the threshold, 

and large wind speed. As depicted in Figure 46, another interesting trend is observed for cluster 2 

flights. The height above touchdown metric shows a sudden jump just before the touchdown. 

This issue is found from the final decision layer for cluster 2 because the time to touchdown 

from threshold for these flights is less than a typical flight, as shown on the left of Figure 46. If 

the recording is accurate, then cluster 2 flights contacted the runway surface at high vertical 

touchdown speed followed by an immediate exit on the runway. This indicates a risk of 

operationally exiting the runway too early so there is a need to investigate the minimum distance 

to ground roll before runway exit. 
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Figure 46. Sample height above touchdown trajectories for cluster 0 and 2 flights illustrating 

abnormal height above touchdown for cluster 2 flights 

 

7.4 Frequently identified metrics and feature importance 

The decision parameters and thresholds for various airframe flight clusters are shown in Table 7. 

This table indicates that 75% of all the calculated/single point metrics generated are used to 

determine the clusters according to the decision trees, while 30% of all the calculated/single 

point metrics generated are used by multiple airframes to generate the data clusters. Features of 

significance are calculated from the decision tree models based on the cleanness of splits 

generated by each decision parameter. The results show that 12 calculated and single-point 

metrics have a higher association to the landing performance and potentially degraded braking. 
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Table 7. Features and thresholds used by the decision tree to cluster the five airframe flight data based on 

DBSCAN results 

 

 

The second iteration of decision trees is generated by removing flights with poor recordings to 

observe if different clusters are generated. An example of this study is shown in Figure 47 for 

flights of the NB-B2/2 airframe. Table 8 indicates the decision parameters and thresholds used to 

identify the main cluster and the outlier flights. It is worth noting how acceleration metrics are 

still present but no longer used to identify poorly recorded flights. This is an important finding 

because some clustering information may be lost when fitting the decision tree model if certain 

parameters are used to make decisions for meaningless reasons. Besides this change, decision 

parameters similar to the ones used in the old model are observed. This indicates that similar 

decisions are still used to cluster outliers even after removing the poorly recorded flights. Based 

on the cleanness of the split made by each decision parameter, the decision tree is capable of 

evaluating the significance of each parameter. 
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Figure 47. Second iteration of decision tree fitted with the NB-B2/2 airframe flights without bad 

acceleration recordings 
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Table 8. The NB-B2/2 decision parameters and thresholds for first and second iteration of decision 

trees 

 

 

8 Supervised Learning Applications 

8.1 Aircraft braking performance and runway condition modeling 

Factors such as weather condition, pavement texture characteristics, and runway slope all play 

critical roles in determining aircraft braking performance (OCallaghan, 2016). While past studies 

have explored how these factors may impact aircraft braking, they have not investigated the 

creation of quantitative models for evaluating braking action reports or runway friction 

characteristics. This section discusses using data fusion and statistical methods to quantitatively 

assess runway condition and aircraft braking action on contaminated runways. 

The goal is to quantitatively assess pilot braking action reports (via Pilot Reports or PIREPs) and 

runway condition codes (RwyCCs). This is done by fusing multiple sources of data related to 

pilot braking actions, runway condition codes and characteristics, and prevailing weather 

conditions, and then building classification models using a machine learning approach. 

Supervised machine learning techniques are effective to build classification models (Mair, et al., 

2000; Hanyu, et al., 2018). According to the literature, random forest (Ali, Khan, Ahmad, & 
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Maqsood, 2012; Sekhar & Minal, 2016) and extreme gradient boosting (XGBoost) are identified 

as two supervised machine learning models that can achieve good classification results with a 

reasonably large training dataset and a set of fine-tuned hyperparameters (Chen & Guestrin, 

2016; Zhang, et al., 2018; Chen, He, Benesty, & Khotilovich, 2019). 

Supervised machine learning techniques are used to build classification models for two purposes: 

1. To classify PIREPs given runway conditions and characteristics and weather conditions, 

denoted as Model #1 in this section. 

2. To classify RwyCCs given pilot braking actions and runway characteristics, and weather 

conditions, denoted as Model #2 in this section. 

8.1.1 Data description 

The research presented in this section is based on the data source described in Section 3.1. 

However, since the supervised learning tasks in this section do not require the FOQA flight data, 

different approaches from the pipeline in Section 3.2. are used to obtain the actual input datasets 

used for the present tasks. 

Two methods are used to fuse expanded FICON data shown in Figure 11 with ASOS data, 

resulting in two final fused datasets: 

1. In the first case, expanded FICON is fused with concurrent weather data (weather 

corresponding to the FICON start time), known as “fused Dataset #1” in this report 

2. In the second case, expanded FICON is fused with historical weather data (weather prior 

to the FICON start time, with a 1-hour time window), known as “fused Dataset #2” in 

this report. 

In this second dataset, the fact that the ASOS data is recorded at 1-minute intervals results in 60 

weather data points for each FICON record. The mean value of these points is fused with the 

expanded FICON. It is believed that the averaged ASOS data in the time window would make a 

reasonable representation of the weather condition prior to the FICON issuance and using this 

weather source can benefit the machine learning tasks afterwards, especially the RwyCC 

assessment task. 

Figure 48 demonstrates the process of obtaining the two datasets. Figure 49 shows the format of 

their structures. Since they cover the main aspects of aircraft landing and braking procedure, the 

fused Datasets #1 and #2 are used as the foundation for building the classification models. 
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Figure 48. Data fusion for braking and runway condition modeling 

 

 
Figure 49. Format of fused dataset #1 and #2 
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8.1.2 Model overview 

Two types of classification models are described in the subsequent sections. 

1. PIREP Forecasting (Model #1) 

This model aims to infer PIREPs based on RwyCCs, weather data, and runway 

characteristics. In practice, it can be used to forecast a PIREP before the aircraft lands 

and provide the results to pilots to enhance situational awareness prior to landing. Figure 

50 provides an overview of this model. 

 
Figure 50. PIREP forecasting model (Model #1) 

 

2. RwyCC Assessment (Model #2) 

This model aims to infer RwyCCs based on weather data, PIREPs, and other runway 

metadata. In practice, it can be used to assess RwyCCs and compare them against the 

RwyCCs that are manually assigned to determine how conservative the assignments are 

compared to pilot reports. Figure 51 provides an overview of this model. 

 
Figure 51. RwyCC assessment model (Model #2) 
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8.1.3 Implementation 

Data preprocessing, including data cleaning, encoding, and feature engineering are conducted 

first to generate and clean the input data (training and testing sets) required for the machine 

learning models. Then, random forest and XGBoost are explored to build Models #1 and #2. 

▪ Data cleaning 

Many records in the fused Datasets #1 and #2 are missing either weather or runway 

characteristics information. This is because the FICON data has a much broader coverage 

of airports than the ASOS and the FAA runway and airport data. These records which are 

missing data are not considered further since weather and runway characteristics are 

indispensable for building machine learning models and it is too difficult to recover these 

missing data. This step results in 4,499 records (from the original 683,145 FICON 

records, with and without PIREPs), which have complete information about the PIREPs, 

RwyCCs, weather, and runway characteristics. 

▪ Data encoding 

The fused datasets contain both numerical and textual values. However, machine learning 

algorithms typically take only numerical values as inputs. Thus, data encoding is used to 

convert the textual data into numbers. 

The textual data in the fused datasets is of two types, ordinal and nominal, and two 

strategies are used to encode these two different types. The ordinal data (such as PIREPs 

and runway surface condition) has a natural order, so the string values are simply 

converted into a sequence of integers. The nominal data (such as precipitation type and 

runway surface type) does not have a natural order, so one-hot encoding is used to 

convert the nominal data into numbers. Multi-valued one-hot encoding is used for the 

precipitation type. 

For the precipitation type, there exists several labels that are not explicitly described in 

the ASOS documents, such as “--" and “?0”. Therefore, these labels are merged into one 

“unknown” label. Thus, the precipitation type has eight labels: ‘unknown’, ‘NP’ (no 

precipitation), ‘R-’ (light rain), ‘R’ (rain), ‘R+’ (heavy rain), ‘S-’ (light snow), ‘S’ 

(snow), ‘S+’ (heavy snow). Data analysis indicates that snow is the most common 

precipitation type in the dataset. This is because the FICON data used is collected mostly 

from November to February (during the wintertime). Furthermore, for rain and snow 

cases, multi-valued one-hot encoding is used in which a sequence of integers represents 
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the rain and snow precipitation types, and larger values indicate higher intensity of 

precipitations.  

The multi-valued one-hot encoding effectively converts the original precipitation type 

(represented as a string) into integer numbers. This can mitigate the increase of 

dimensionality caused by a simple one-hot encoding. Table 9 shows the results of the 

multi-valued one-hot encoding for the precipitation type (PType). 

 

Table 9. Multi-valued One-hot Encoding Results for Precipitation Type 

PType_NP PType_Unknown PType_Rain PType_Snowa 

0 1 0 0 

0 0 2 0 

0 0 0 1 

0 0 0 3 

1 0 0 0 

0 0 0 2 

a.  In this column, “0” means no snow, “1” means “S-”, “2” means “S”, and “3” means “S+”. 

 

▪ Feature engineering 

An increase in the dimensionality of the input data to a machine learning algorithm would 

result in an exponential increase in computational efforts. This phenomenon is known as 

the “curse of dimensionality” (Sheridan, et al., 2020; Verleysen & François, 2005). 

Consequently, the dimensionality of the problem is reduced by removing redundant 

information from the input dataset. The multi-valued one-hot encoding applied to the 

precipitation data is one way of reducing the dimensionality of the problem. 

Data analysis has shown that although each FICON record has three elements for runway 

condition codes (i.e., RwyCC1, RwyCC2, RwyCC3, representing the three 

segments/thirds of the runway), ~96% of the records have the same values for these 

elements. Therefore, only the lowest value among the three is retained for each record. In 

addition, each record has both a “liftoff elevation” element and a “brake release 

elevation” element that have very close values.  
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For convenience, both elements are removed from the dataset, while their mean values 

are used to create a new feature which represents airport elevation, although the two 

elevations may be needed in other detailed runway studies. 

▪ Building and selecting machine learning models 

The preprocessed and fused Datasets #1 and #2 are inputs to the machine learning 

models. Each dataset is divided into two sets such that 80% of the dataset is the training 

set and the remaining 20% is the testing set. The random forest and the XGBoost 

machine learning algorithms are then used to build the classification models. 

The scikit-learn library in Python is used to create the eight machine learning models 

(Pedregosa, et al., 2011). Scikit-learn is a powerful machine learning toolbox that 

provides frameworks for researchers to efficiently build various machine learning 

models. 

Models #1 and #2 are two multiclass classification models, where Model #1 classifies 

PIREPs, and Model #2 classifies RwyCCs. Originally, a PIREP has six textual labels, 

which are then converted into integers from 1 to 6, where a larger value indicates a better 

braking action. A RwyCC has six integer labels, ranged from 1 to 6, where a larger value 

indicates a drier/safer runway condition. 

For each model, the choice of hyper-parameters can significantly affect the performance 

of the classification algorithm. Therefore, a grid-search algorithm is used to optimize the 

model performance, where the algorithm exhaustively generates candidates from a grid of 

parameter values specified by the user and performs experiments on every resulting 

combination to determine which one leads to the optimal objective value (Belete & 

Huchaiah, 2021). A 5-fold cross-validation approach is used during the grid-search 

algorithm to ensure the robustness of the resulting machine learning models. 

The random forest model has four main hyper-parameters (Ali, Khan, Ahmad, & 

Maqsood, 2012): n_estimators describing the number of trees in the classifier; max_depth 

describing the maximum height up to which the trees inside the forest can grow; 

min_samples_leaf describing the minimum number of samples that a leaf node must hold 

after getting split, which helps to reduce overfitting; and min_samples_split describing 

the minimum number of samples a tree node must hold to split into further nodes. 

The XGBoost model also has four main hyper-parameters (Chen & Guestrin, 2016): 

learning rate which represents the decrease in the step size between iterations to prevent 
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overfitting; subsample which represents the fraction of observations to be randomly 

sampled for each tree; max_depth which represents the maximum depth of individual 

trees; and min_child_weight which represents the minimum sum of weights of all 

observations required in a child, which can be used as an indirect way to control the 

depths of trees. 

Before the execution of the grid-search algorithm, the range of each hyper-parameter and its 

search step size need to be defined. The range should be sufficiently large for the search space to 

contain the optimal result, but not too large to avoid long run times. Thus, we use a heuristic 

approach to define the range: 

▪ Start from baseline values found in the literature. 

▪ Alter the hyper-parameter values one at a time and observe the resulting change in the 

objective function. 

▪ Select hyper-parameter ranges of values that correspond to reasonable variations in the 

objective function. 

The output of this process is a complete search space for a particular machine learning model. As 

mentioned previously, we create two classification models, Model #1 and #2, using fused 

Datasets #1 and #2 independently for each model. Additionally, two machine learning algorithms 

are considered to build each model.  

This results in a total of eight optimized models, each characterized by a unique combination of 

classification task, dataset, and machine learning algorithm. Table 10 displays an example search 

space for Model #1 based on the XGBoost algorithm and the fused Dataset #1. 

 

Table 10. Example of Hyper-parameters Search Range 

Hyper-parameter Range Step size 

Learning_rate [0.2, 0.4] 0.05 

Max_depth [10, 20] 2 

Min_child_weight [1, 2, 4, 8] N/Aa 

Subsample [0.5, 1] 0.1 

a. For this hyper-parameter, the values to be explored are listed in “Range”, so there is no step size. 
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8.1.4 Results 

8.1.4.1 Model performance metrics 

To evaluate the performance of the machine learning models, we use two reference metrics 

widely found in the literature: accuracy and F1 score (Yacouby & Axman, 2020). “Accuracy” 

measures the number of correctly identified cases and is defined in Equation 2, “F1 score” is 

defined as the harmonic mean of “precision” and “recall”, as defined in Equation 3 and Equation 

4. It measures the number of incorrectly classified cases and is provided in Equation 5. Both the 

“accuracy” and “F1 score” metrics are expected to be large (with a maximum value of 1) for 

machine learning models with good performance. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   2 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    3 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
     4 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
     5 

 

In addition, confusion matrices are used to provide more details on the multi-classification 

results. Each model also has a feature importance plot showing how well the model represents 

the input data. 

Analyses on the classification results have shown that the type of weather data considered 

(concurrent in fused Dataset #1 versus historical in Dataset #2) does not significantly affect the 

model performance. In addition, the optimized random forest and XGBoost models all achieve 

excellent performance on their training sets (with accuracy and F1 score ≥ 0.98). While this 

indicates overfitting, experiments have shown that no further regularization can be done. As a 

result, the rest of the section will be focusing on comparing the results of four classification 

models applied to their testing sets: Model #1 and Model #2 based on either random forest or 

XGBoost, with fused Dataset #1 in each case. 
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8.1.4.2 Discussion of weather data timeliness 

The only time information available in the FICON data corresponds to when the FICON records 

are being issued. Therefore, the weather data, both concurrent and historical, is with respect to 

the FICON issuance time. The actual landing operation could have happened any time during 

which the FICON was active. 

This works well for Model #2, since it is used to infer RwyCCs, which are typically assigned at 

the FICON issuance time. However, the weather data for Model #1 should ideally be with 

respect to the aircraft landing operation. Unfortunately, the aircraft landing operation time is 

unavailable in the current data, so the weather data associated with the FICON issuance time is 

used for both models. 

8.1.4.3 Model #1 

Figure 52(a) and Figure 52(b) demonstrate the optimized performance of Model #1 based on the 

random forest and XGBoost machine learning algorithms respectively. The optimized Model #1 

with random forest has the following hyper-parameter set: 

▪ number of trees = 80  

▪ max_depth = 25  

▪ min_samples_leaf = 1  

▪ min_samples_split = 2 

The optimized Model #1 with XGBoost has the following hyper-parameter set: 

▪ learning rate = 0.3 

▪ max_depth = 18 

▪ min_child_weight = 0.5 

▪ subsample = 0.8 

We observe that the two models have very similar performance in terms of accuracy and F1 

score. 

In a confusion matrix, each cell represents the number of samples that share the same classified 

value and the same truth value. For instance, in Figure 52(a), the cell on the second row and the 

last column with a value of 6 indicates that there are 6 samples that are classified to be “GOOD” 

by the model, when in fact they are “POOR”. Additionally, the six cells on the matrix diagonal 

represent samples that are correctly classified by the model. In turn, the cells not on the matrix 
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diagonal represent samples that are misclassified. Moreover, the farther away a cell is from the 

diagonal, the worse the classification is in that cell.  

Finally, the matrix “upper triangle” (excluding the diagonal) represents the “over-estimated” 

cases, for which the forecasted PIREPs are better than the actual PIREPs, while the matrix 

“lower triangle” represents the “under-estimated” cases, for which the forecasted PIREPs are 

more conservative than the actual PIREPs. In practice, under-estimation is preferred to over-

estimation, since an overly optimistic signal may mislead pilots and lead to potentially dangerous 

conditions. 

By comparing the individual cells in the two matrices depicted in Figure 52, we observe that the 

two models achieve the same level of performance in terms of confusion matrix. 

 
Figure 52. Classification results for Model #1 

 

Figure 53(a) and Figure 53(b) depict the feature importance for Model #1 based on random 

forest and on XGBoost respectively. Feature importance describes which variables (in our 

dataset, which elements) are most relevant to evaluate the objective function. The higher the 

importance of a feature, the more the variable plays a role in the value of the objective function 

when evaluated from the machine learning model considered. 

We observe that the random forest-based model ranks “air pressure” as the most important 

feature, followed by “wind direction” and “dew/air temperature”, while “RwyCC” is ranked at 
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the 5th position. In addition, the variance of feature importance scores is large, and features 

related to precipitation, runway surface, and runway treatment have very small importance 

scores, which indicates the model interprets them as having little correlations with PIREPs. 

However, the XGBoost-based model ranks “RwyCC” as the most important feature to evaluate 

PIREPs and produces a more balanced distribution for other feature importance scores. 

It is reasonable for “RwyCC” to be ranked as the most important feature with a significantly 

large score, since it is a holistic representation of runway condition. It would also make more 

sense to assign the other features relatively large scores, especially those related to runway 

surface and treatment. Overall, the feature importance of the XGBoost-based model is more 

reasonable in the context of evaluating PIREPs. Therefore, although the random forest-based 

model achieves the same level of performance in terms of accuracy and F1 score, XGBoost is 

considered as the most appropriate machine learning algorithm to build Model #1. 

 
Figure 53. Feature importance in Model #1 

 

8.1.4.4 Model #2 

Figure 54(a) and Figure 54(b) demonstrate the performance of Model #2 based on random forest 

and XGBoost respectively. We observe that the two models achieve the same level of 

performance in terms of accuracy, F1 score, and confusion matrix. 

Overall, the performance of Model #2 is slightly better compared to Model #1. The accuracy and 

F1 score are around 0.78 for Model #2, while they are around 0.75 for Model #1. This may be 

due to the timing of the weather data, since it is concurrent with the FICON issuance time (when 

RwyCCs are assigned), and therefore it is closely related to the issuance of RwyCCs. However, a 

PIREP is reported by the pilot after the aircraft has landed, and thus the weather data should 

ideally be concurrent with the aircraft landing time when evaluating PIREPs. Unfortunately, the 
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aircraft landing time is not available, so we use weather data concurrent with the FICON 

issuance time for both Model #1 and Model #2. This can result in a more accurate classification 

for RwyCCs than for PIREPs. 

 
Figure 54. Classification results for Model #2 

 

The feature importance analysis is also carried out for the aforementioned two models. We 

observe that the XGBoost-based model again results in a better interpretation of the input data, 

since it ranks PIREPs as the most important feature, followed by “runway treatment type”, 

“surface type and condition”, and “air temperature”, which follows the common sense of 

physics. 

The results for Model #2 are similar to those for Model #1 in terms of model performance and 

data interpretation. For Model #1, the PIREP is the objective function and the RwyCC is a 

feature, whereas for Model #2, the RwyCC becomes the objective function and the PIREP a 

feature. The other features remain the same. Therefore, the input datasets for the two models are 

very similar to each other. 

8.1.4.5 Summary of results 

The results are summarized as follows: 

▪ Tree-based machine learning algorithms, namely random forest and XGBoost, are 

suitable for building Models #1 and #2. 
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▪ Although random forest achieves the same level of performance as XGBoost, the 

interpretation of the input data by the XGBoost-based model is more reasonable, which 

makes XGBoost the most suitable algorithm for both Model #1 and Model #2. 

▪ The performance of Model #2 is consistently better than that of Model #1 due to the 

timeliness of weather data. 

▪ The results do not change significantly when switching between concurrent and historical 

weather data. 

8.1.5 Conclusions 

Supervised machine learning models are built by using an integrated dataset resulting from the 

fusion of various relevant data sources required to infer PIREPs and RwyCCs. The models, 

especially those built using the XGBoost algorithm, have reasonably good performance, and thus 

demonstrate that it is possible to build classification models for aircraft braking performance and 

runway condition predictions. The classification model for forecasting PIREPs can be used to 

enhance the situational awareness of pilots prior to actual landing operations, whereas the model 

for predicting RwyCCs can be used to compare machine learning results with manual 

assignments to study the conservativism in a retrospective manner. 

8.2 Aircraft acceleration evaluation 

The goal of this task is to evaluate aircraft braking performance based on flight data. The aircraft 

braking performance is represented by aircraft longitudinal acceleration. Both the longitudinal 

acceleration and the relevant flight data come from FOQA data described in Section 3.1.1. 

8.2.1 Overview 

The evaluation of aircraft longitudinal acceleration can be considered a regression task. 

Supervised machine learning models such as Random Forest, XGBoost, and Artificial Neural 

Networks (ANN) (Abadal, Jain, Guirado, López-Alonso, & Alarcón, 2021), can be utilized to 

solve the regression problem. Random Forest and XGBoost are used for classification purposes 

in Section 8.1 and for regression in this task. 

The target for the regression is aircraft longitudinal acceleration, and the following nine columns 

in the FOQA data are selected as the features for regression: 

▪ N1 of the left engine (%) 

▪ Speed brake position (degree) 
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▪ Airspeed (knots) 

▪ Ground speed (knots) 

▪ Brake pressure (psi) 

▪ Gross weight (lb) 

▪ Total fuel quantity (lb) 

▪ Ground track distance to touchdown (nm) 

▪ Ground track distance to threshold (nm) 

8.2.2 Data description 

The data used in this task is a subset of the available FOQA dataset. In total, 217 landing flights 

of the NB-B2/3 airframe at the Harry Reid International Airport (LAS) in Las Vegas are 

collected. All flights occurred on dry runways. These flights are all processed to include only the 

segment where spoilers and thrust reversers are activated, which results in 10-20 seconds for 

each flight. Consequently, the aircraft performance considered in this task is the maximum 

braking during landing operations. The final dataset contains 2,440 records, each corresponding 

to a particular timestamp in a landing event. 

Although the size of the dataset seems to be small, considering that the scenario being studied is 

quite specific (i.e., NB-B2/3 airframe, LAS airport, and dry runways only), it would still be 

sufficient for the supervised machine learning tasks. In addition, although the statistical model 

built in this task is based on dry runways, it can be generalized to contaminated runways. This 

can be done by following the same modeling framework and replacing the input data with flights 

on contaminated runways. 

8.2.3 Implementation 

▪ Random Forest and XGBoost Models 

The scikit-learn library in Python is used to implement the Random Forest and XGBoost 

models. A grid-search with 5-fold cross-validation is used to tune the hyperparameters 

and obtain the optimized models. The search space of both models is summarized in 

Table 11. 
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Table 11. Hyperparameter search space for random forest and XGBoost 

Random Forest XGBoost 

Hyperparameter Search Space Hyperparameter Search Space 

Estimators 
[5, 20, 40, 60, 

80, 100, 120, 140] 
Learning rate 

[0.1, 0.15, 0.2, 0.25, 

0.3, 0.35, 0.4] 

Max tree depth 
[5, 10, 15, 

20, 25, 30] 
Max tree depth 

[4, 6, 8, 10, 12, 

14, 16, 18, 20] 

Min samples for 

splitting 
[2, 4, 6, 8] Min child weight [0.5, 1, 2, 4] 

Min samples in leaf [1, 2, 4, 8] Subsample portion 
[0.5, 0.6, 0.7, 

0.8, 0.9, 1] 

 

▪ Artificial Neural Network (ANN) 

A multi-layer perceptron (MLP) is chosen to be the architecture of the ANN model for 

regression. The Tensorflow-Keras framework is used for implementing the model. 

The hyperparameters of the ANN model are as follows: 

o Number of layers 

o Number of neurons in each layer 

o Learning rate of the optimizer 

o Number of epochs 

o Dropout rate of each layer 

In this case, an epoch is an iteration during the training process, and dropout is a 

technique used in ANN to combat overfitting in which some neurons in the neural 

network are chosen to be ignored with a given probability during the training process. 

Training an ANN model typically takes significantly more time than training a Random 

Forest or an XGBoost model. Therefore, GridSearch is not used for hyperparameter 

tuning in the case of the ANN model. Instead, the Hyperband searching technique (Li, 

Jamieson, DeSalvo, Rostamizadeh, & Talwalkar, 2017) is used where the algorithm 

attempts multiple configurations of hyperparameters for a few epochs and proceeds only 

with those configurations that have the best performance. Hyperband conducts “adaptive” 

search and thus results in a much shorter search time while maintaining a good result 
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compared to the exhaustive search. The hyperparameter search space for the ANN model 

are summarized in Table 12. 

 

Table 12. Hyperparameter search space for ANN 

Number of 

Layers 

Number of 

Neurons in each 

Layer 

Number of 

Epochs 
Dropout Rate Learning Rate 

1 [8:160, 8] 1-150 [0:0.8, 0.1] 
[1e-5, 1e-4, 

1e-3, 1e-2] 

2 
[16:160, 16] 

[8:80, 8] 
1-150 [0:0.8, 0.1] 

[1e-5, 1e-4, 

1e-3, 1e-2] 

3 

[16:160, 16] 

[8:80, 8] 

[4:40, 4] 

1-150 [0:0.8, 0.1] 
[1e-5, 1e-4, 

1e-3, 1e-2] 

4 

[16:160, 16] 

[16:80, 16] 

[8:40, 8] 

[4:20, 4] 

1-150 [0:0.8, 0.1] 
[1e-5, 1e-4, 

1e-3, 1e-2] 

 

8.2.4 Results 

8.2.4.1 Model performance metrics 

To assess the performance of the regression models, the R2 value is used, which quantitively 

measures how close the data is to the fitted regression line as shown in Equation 6. Additionally, 

predicted vs. actual plot and residual plot are used to provide more details of regression results. 

A good fit is expected to have the residual following a normal distribution around 0. 

𝑅2 = 1 −
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
     6 

 

8.2.4.2 Model comparison 

The optimized Random Forest model has the following hyperparameters: 

▪ estimators = 120 

▪ max tree depth = 15 

▪ min samples in leaf = 1 
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▪ min samples for splitting = 6 

The optimized XGBoost model has the following hyperparameters: 

▪ learning rate = 0.15 

▪ max tree depth = 6 

▪ min child weight = 4 

▪ subsample portion in each round = 0.9 

The optimized ANN has the following hyperparameters: 

▪ number of layers = 2 

▪ number of neurons at each layer = 144, 64 

▪ dropout rate at each layer = 0.1, 0 

▪ number of epochs = 539 

▪ learning rate = 10-4 

The R2 values on the testing set of the three optimized models are as follows: 

▪ Random Forest R2 = 0.70 

▪ XGBoost R2 = 0.76 

▪ ANN R2 = 0.80 

It is worth mentioning that for the ANN model, multiple hyperparameter settings can achieve the 

same result. For instance, another ANN model was observed to have R2 = 0.80 with 3 layers. We 

have selected to use the one shown above. 

Results show that the ANN model outperforms Random Forest and XGBoost in the regression 

task in terms of the R2 value. It can be observed in Figure 55 that the residuals in all three models 

have a roughly normal distribution around the x-axis, which indicates that all three models have 

a reasonably unbiased fit. 
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Figure 55. Regression results for random forest, XGBoost, and ANN models 
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Based on the aforementioned observations, we can conclude that the ANN model has the best 

overall performance. 

8.2.4.3 Relationship between features and target 

Study regarding the relationship between several features and the target is conducted to explore 

the interpretation of the ANN model. The study is carried out in the following manner: 

▪ Study the features one at a time, while keeping the other eight fixed by taking the mean 

values, which results in 9 experiments in total. 

▪ In each experiment, take as the input the feature values from the testing set and get the 

target values through the ANN model. 

This study has the ability to demonstrate the ANN model interpretation of the correlations 

between the features and the target. It can also show the importance of each feature in the model, 

since more importance features would lead to larger variations in the target. 

Figure 56 provides the definition of ground track distance in the FOQA dataset. According to the 

definition, ground track distance to touchdown and threshold will both have negative values in 

the segment we are interested in (spoiler deployed and thrust reversers activated), while their 

absolute values increase as the landing proceeds. 

 
Figure 56. Ground track distance definition in the FOQA dataset 

 

Figure 57(a) to Figure 57(i) are scatter plots showing the relationships between the features and 

the target. Table 13 quantitatively summarizes how each feature induces the observed variations 

in the target, which indicates feature importance. 
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Figure 57. Features vs. target scatter plots 

 

Table 13. Feature range vs. induced target range 

Feature 

Name 
Feature Unit 

Feature 

Range 

Induced 

Variance in 

Acceleration 

(ft/s2) 

Importance 

Rank 

Correlation 

to Braking 

Brake 

Pressure 
Psi 

[-16.7, 

2924.8] 
5.00 1 + 

Ground 

Track 

Distance to 

Touchdown 

Nm [-0.17, -0.83] 3.36 2 + 
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Feature 

Name 
Feature Unit 

Feature 

Range 

Induced 

Variance in 

Acceleration 

(ft/s2) 

Importance 

Rank 

Correlation 

to Braking 

Speed Brake 

Position 
Degree [40.4, 51.3] 1.73 3 + 

Gross Weight Lbs 
[112,784 -> 

156,461] 
1.32 4 -/+/- 

Ground 

Track 

Distance to 

Threshold 

Nm [-0.55, -1.36] 1.26 5 + 

N1 (Left 

Engine) 
% [70.1, 85.4] 1.25 6 + 

Fuel Quantity Lbs 
[5774.7, 

17694.0] 
1.24 7 +/NON/- 

Airspeed Knots [97.1, 141.2] 0.78 8 - 

Ground 

Speed 
Knots [61.3, 148.7] 0.54 9 + 

 

It can be observed in Table 13 that brake pressure, speed brake position, and ground distance to 

touchdown are the three most important features when evaluating acceleration, since any 

variation in these parameters cause the largest variation in acceleration. In the meantime, 

airspeed and ground speed are the least important features. These are expected behaviors because 

brake pressure and brake position are directly related to the braking action. 

It is worth mentioning that in Figure 57, a smaller value in acceleration indicates a greater 

braking, since a braking action causes a decrease in acceleration. It can be observed from Figure 

57(a), (c), and (d) that brake pressure, speed brake position, and engine N1 % have positive 

correlation to braking, which reflects real operations correctly. In Figure 57(b), braking is 

observed to be the greatest after the aircraft touchdown point and then gradually diminishes. A 

similar behavior can be observed in Figure 57(g). These are also reasonable behaviors since they 

reflect the situation where pilots would try the hardest to stop the airplane right after the 

touchdown point and then gradually release the brakes. The braking behavior is more 

complicated with respect to gross weight and fuel weight, as shown in Figure 57(e) and (f). 

Finally, it can be seen from Figure 57(h) and (i) that braking is greater when ground speed is 

larger, while the trend is opposite with respect to airspeed. 
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8.2.5 Conclusions 

In this task, three machine learning models are implemented to evaluate the aircraft braking 

performance based on relevant flight data during the landing phase. The ANN model turns out to 

be the best since it achieves the highest R2 value and has an unbiased residual plot. Thus, we 

conclude that the ANN model is preferable in the regression task. Feature studies are carried out 

based on the ANN model, and it is shown that the model interpretation of the input features 

reflects the real operations to a certain degree. 

While 0.80 is a reasonable R2 value, the ANN model could still achieve an even better 

performance. This may be obtained by increasing the size of the input data. In turn, the feature 

study based on a model with improved performance is also expected to better reflect the real 

landing operations. 

9 Phase II - Degraded Braking Research Roadmap 

9.1 Roadmap goals 

The goals of the roadmap are twofold: 

1. Quantify the conditions and performance factors associated with actual landing distances. 

This develops a foundation for the analysis of operations on reduced 

friction/contaminated runways in order to satisfy the FAA vision to go from a qualitative 

to a data-centric/quantitative approach. 

2. Evaluate the following NTSB recommendations (NTSB, 2016): 

o A-16-23: Continue to work with industry to develop the technology to outfit 

transport-category airplanes with equipment and procedures to routinely calculate, 

record, and convey the airplane braking ability required and/or available to slow 

or stop the airplane during the landing roll. 

▪ This specific issue has been partially addressed via the creation of ASTM 

standard E3266-20 “Standard Guide for Friction-Limited Aircraft Braking 

Measurements and Reporting” (ASTM, 2020). This standard in 

conjunction with draft Advisory Circular AC 91-79B covers many of the 

issues associated with low friction runway conditions - AC 91-79B is a 

significantly expanded version of AC-91-79A (FAA, 2018). Therefore, A-

16-023 will not be the focus of this roadmap. 
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o A-16-24: If the systems described in Safety Recommendation A-16-23 are shown 

to be technically and operationally feasible, work with operators and the system 

manufacturers to develop procedures that ensure that airplane-based braking 

ability results can be readily conveyed to, and easily interpreted by, arriving flight 

crews, airport operators, air traffic control personnel, and others with a safety 

need for this information. 

▪ The reporting of airplane-based braking abilities is discussed in draft AC 

91-79B.  However, this reporting is limited to current technologies and 

FAA information distribution systems (i.e., ATIS, NOTAMs, and 

FICONS).  However, comprehensive reporting and information 

distribution systems for automated reporting from aircraft has yet to be 

developed. This will be a discussion item for the roadmap. 

9.2 Roadmap purpose 

The purpose of the roadmap is to depict a gap analysis to meet the aforementioned goals, i.e., to 

identify critical paths for: 

▪ Research: data analysis, machine learning techniques investigation and development 

▪ Data gathering: amount, accuracy, resolution, source (airport, aircraft, pilot, weather, 

etc.), synchronization 

▪ Instrumentation: sensors required, locations of deployment, conditions of deployment 

(runway, weather, etc.), platform for deployment 

▪ Testing, Validation, etc. 

9.3 Roadmap focus areas 

The roadmap features four areas of investigation as described below and in Figure 58, and 

identifies interactions between focus areas and related challenges. 

▪ Airport: Main focus 

The identified gap is the centralized reporting of the wheel braking data received from the 

aircraft or the reduction in runway friction, as a function of runway condition, aircraft 

performance and state at landing, potential weather conditions (temperature, pressure, 

humidity, ceilings, etc.), and piloting. 

▪ Aircraft 
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The reporting of aircraft wheel braking using an on-aircraft system is currently defined 

using the ASTM standard E3266-20. Therefore, only critical interdependencies or 

relationships with other focus areas (airport in particular) will be highlighted on the 

roadmap. 

▪ Pilot 

The research highlighted in the roadmap will address potential gaps in training or 

standard operating procedures. 

▪ Weather 

Research in this area is probably more advanced than in other areas, so only critical 

interdependencies or relationships with other focus areas will be highlighted on the 

roadmap, along with potential requirements for data with other accuracy, resolution, 

synchronization, source, etc.  

Note: weather and FICON data fusion has been developed earlier by the Georgia Tech 

team as described in other sections of this report. 
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Figure 58. Roadmap focus areas 

 

9.4 Roadmap development process 

The roadmap is developed as follows: 

▪ Start with four aforementioned areas, with a focus on airport. 

▪ Identify data required to inform goals from various areas of interest. 

▪ Determine if data is available, sources it is available from, and if it is available in 

appropriate format, at appropriate accuracy, resolution, synchronization with other data 

sources, etc. 

▪ Identify what sensors/instrumentation would be needed to gather data if not available 

(e.g., in-runway temperature, depth sensor, etc.). 
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▪ Identify technology required to gather data if sensors/instrumentation are not available. 

▪ Determine data gathering process if data not available. 

▪ Suggest high-level data analysis and potential machine learning techniques (clustering, 

classification, etc.). 

▪ Explore interactions between airport focus area and others. 

9.5 Roadmap considerations 

In the following section that outlines the roadmap elements, each of the Focus Areas and Focus 

Items will be subject to some, if not all, of the considerations shown in Figure 59 and their 

possible interdependencies. 

 
Figure 59. Roadmap considerations 

 

9.6 Roadmap elements 

The previous Section 9 paragraphs have provided the macro components and considerations for a 

runway safety and landing performance research roadmap. This section contains a more granular 

representation of possible research areas. This material is intended for regulators and researchers 

that endeavor to create specific research projects. The topics are notional and should be 

considered a starting point for any potential future research project. 
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Focus Areas have been previously discussed in Section 9.3 and provide a basic partitioning of 

the research areas. Items were selected based on an iterative review process between the FAA 

and Georgia Tech Subject matter experts (SMEs) and an exhaustive literature review was not 

required in this case. An understanding of current best operational practices for airport and 

airlines provided a context for what may be the most beneficial safety enhancements. Best 

practices are found in FAA regulatory and operational guidance materials such as AC 91-79A. 

Obtaining the Data Required is the most challenging component for any specific Items. This 

requires either the support of airline or airport operators to supply data that is collected during 

normal operations, or a direct testing and data gathering exercise at physical locations. Operator 

data access is often constrained by Intellectual Property (IP) and commercial competitive 

concerns. Field tests and data gathering is typically constrained by budgets, manpower resources, 

and facility access approvals. These types of data gaps and challenges to the process are 

identified by orange coloring. Recommendation of solutions to those constraints is beyond the 

scope of the Roadmap proposal and is therefore not addressed in this report. 

Lastly, Bridging the Data Gap is an analysis and policy proposal exercise. The efforts involved 

could be significant and lengthy. However, this roadmap being a proposal for future avenues of 

research at the FAA, many of the issues related to data gathering do not extend to the Bridging 

the Gap step. The administrative and policy changes that may be needed to support future 

operational practices is not a technical constraint. How these gaps might be addressed is the 

purview of the applicable regulatory agency such as the FAA. 

Figure 60 shows the roadmap legend for the focus areas shown in the subsequent sections as part 

of the runway safety and landing performance research roadmap. 

 
Figure 60. Roadmap legend 
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9.6.1 Airport focus area 

Figure 61 shows the research roadmap for the airport focus area, with the following acronym 

descriptions. 

▪ RwyCC: Runway Condition Code 

▪ ABAR: Aircraft Braking Action Report 

▪ PIREPs: Pilot Reports 

▪ FICON: Field Condition Report 

 

 
Figure 61. Airport focus area roadmap 

 

9.6.2 Aircraft focus Area 

Figure 62 shows the research roadmap for the aircraft focus area, with the following acronym 

descriptions. 

▪ QAR: Quick Access Recorder 

▪ FOQA: Flight Operations Quality Assurance 

▪ ASIAS: Aviation Safety Information Analysis and Sharing 
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Figure 62. Aircraft focus area roadmap 

 

9.6.3 Pilot focus area 

Figure 63 shows the research roadmap for the pilot focus area, with the following acronym 

descriptions. 

▪ PIREPs: Pilot Reports 

▪ ABAR: Aircraft Braking Action Report 

▪ ATC: Air Traffic Control 
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Figure 63. Pilot focus area roadmap 

 

9.6.4 Weather focus area 

Figure 64 shows the research roadmap for the weather focus area, with the following acronym 

descriptions. 

▪ ASOS: Automated Surface Observing Systems 
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Figure 64. Weather focus area roadmap 
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In the following figures, the graphs to the left illustrate the clustering results of each airframe 

flight data by varying the epsilon parameter from 0.1 to 1, while the graphs to the right illustrate 

the clustering results (using the DBSCAN algorithm) with an epsilon parameter value 

corresponding to when the outlier flights represent less than 5% of the total flights. This is 

because all of the flights landed safely so the DBSCAN is set up to separate the individual flights 

that are unique from the rest of the flights. The numbers in the legend show the flight counts per 

cluster. The DBSCAN is trained with single-point and calculated parameters. The training data is 

normalized per parameter so that the magnitude of each parameter does not contribute to the 

clustering. 
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Figure A-1. DBSCAN cluster results for the NB-B2/2 airframe 
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Figure A-2. DBSCAN cluster results for the NB-B2/3 airframe 
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Figure A-3. DBSCAN cluster results for the NB-A2 airframe 
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WB-A1/2 Airframe 

 
Figure A-4. DBSCAN cluster results for the WB-A1/2 airframe 
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Figure A-5. DBSCAN cluster results for the NB-C1 airframe 
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The results below show the decision trees for each airframe generated by fitting the cluster label 

to the flight data. Each leaf of the decision tree describes the parameter name, decision threshold 

magnitude, “Gini” value (cleanness of split), number of samples/flights, number of 

samples/flights after the split, and the majority cluster representing the leaf. A feature of 

important plot is generated for each decision tree based on the “Gini” contribution of each 

parameter. Finally, the confusion matrix that shows the accuracy of the decision tree for 

representing the data cluster is displayed. The higher the values in the top left and bottom right of 

the matrix, the higher the accuracy. 
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Figure B-1. Decision tree for the NB-B2/2 airframe trained with DBSCAN clusters and sample outlier 

identified at the upper level 
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Figure B-2. Decision tree for the NB-B2/2 airframe trained with DBSCAN clusters and sample outlier 

identified at the mid-level 
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Figure B-3. Decision tree for the NB-B2/2 airframe with DBSCAN clusters and sample outlier identified 

at the lower level 

 

 
Figure B-4. Feature importance for the NB-B2/2 airframe decision tree 
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Figure B-5. Decision tree for the NB-B2/3 airframe with DBSCAN clusters and sample outlier 

identified at the upper level 
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Figure B-6. Decision tree for the NB-B2/3 airframe with DBSCAN clusters and sample outlier identified 

at the mid-level 
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Figure B-7. Decision tree for the NB-B2/3 airframe with DBSCAN clusters and sample outlier identified 

at the lower level 

 

 
Figure B-8. Feature importance for the NB-B2/3 airframe decision tree 
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Figure B-9. Decision tree for the NB-A2 airframe with DBSCAN clusters and sample outlier identified 

at the upper level 
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Figure B-10. Decision tree for the NB-A2 airframe with DBSCAN clusters and sample outlier identified at 

the mid-level 

 

 
Figure B-11. Feature importance for the NB-A2 airframe decision tree 
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Figure B-12. Decision tree for WB-A1/2 airframe with DBSCAN clusters and sample outlier identified at 

the upper level 
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Figure B-13. Decision tree for the WB-A1/2 airframe with DBSCAN clusters and sample outlier 

identified at the lower level 

 

 
Figure B-14. Feature importance for the WB-A1/2 airframe decision tree 
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Figure B-15. Decision tree for the NB-C1 airframe with DBSCAN clusters and sample outlier identified 

under first branch 

 



 

 B-13 

 
Figure B-16. Decision tree for the NB-C1 airframe with DBSCAN clusters and sample outlier identified 

under second branch 

 

 

 
Figure B-17. Feature importance for the NB-C1 airframe decision tree 
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