
 Final Report

Developing Optimal Peer-to-Peer Ridesharing
Strategies

Young-Jae Lee, Ph.D.

Professor, Dept. of Transportation and Urban Infrastructure Studies
Morgan State University, 1700 E. Cold Spring Ln, Baltimore, MD 21251, USA

Email: youngjae.lee@morgan.edu

Amirreza Nickkar, Ph.D.
Adjunct Faculty Lecturer, Dept. of Transportation and Urban Infrastructure Studies

Morgan State University, 1700 E Col Spring Lane, Baltimore, MD 21251
Email: amirreza.nickkar@morgan.edu

Date
August 1, 2023

Prepared for the Urban Mobility & Equity Center, Morgan State University, CBEIS 327, 1700 E Coldspring Ln,
Baltimore, MD 212

mailto:youngjae.lee@morgan.edu

ACKNOWLEDGMENT
This research was supported by the Urban Mobility & Equity Center at Morgan State University

and the University Transportation Center(s) Program of the U.S. Department of Transportation.

Disclaimer
The contents of this report reflect the views of the authors, who are responsible for the facts and

the accuracy of the information presented herein. This document is disseminated under the

sponsorship of the U.S. Department of Transportation’s University Transportation Centers

Program, in the interest of information exchange. The U.S. Government assumes no liability for

the contents or use thereof.

1. Report No. UMEC-022 2. Government Accession No. 3. Recipient’s Catalog No.

4. Title and Subtitle
Developing Optimal Peer-to-Peer Ridesharing
Strategies

5. Report Date
August 2023

6. Performing Organization Code

7. Author(s)
Young-Jae Lee, Ph.D.
https://orcid.org/0000-0002-1422-7965
Amirezza Nickkar
https://orcid.org/0000-0002-1242-3778

8. Performing Organization Report No.

9. Performing Organization Name and Address
Morgan State University 1700 E. Cold Spring Lane. Baltimore,
MD 21251

10. Work Unit No.

11. Contract or Grant No.
69A43551747123

12. Sponsoring Agency Name and Address
US Department of Transportation
Office of the Secretary-Research
UTC Program, RDT-30
1200 New Jersey Ave., SE Washington, DC 20590

13. Type of Report and Period Covered

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract
Thanks to recent developments in ride-hailing transit services, the Peer-to-Peer (P2P)
ridematching problem has been actively considered in academia in recent years. P2P ride-
matching not only reduces travel costs for riders but also benefits drivers by saving them
money in exchange for their additional travel time and costs. However, assigning riders to
drivers in an efficient way is a complex problem that requires a focus on maximizing the
benefits for both riders and drivers. This study first aims to formulate a multi-driver multi-
rider (MDMR) P2P ride-matching problem based on rational preferences and cost allocation
for both driver and rider. This model also enables riders to transfer between multiple drivers
to complete their journeys if needed. To solve the ride-matching problem, a Tabu Search (TS)
for system optimum ride-matchings and Greedy Matching (GM) algorithm for the stable ride-
matchings were created to produce stable ride-matchings.

17. Key Words: 18. Distribution Statement
No restrictions.

19. Security Classif. (of this
report):
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages

22. Price

https://orcid.org/0000-0002-1422-7965
https://orcid.org/0000-0002-1242-3778

Developing Optimal Peer-to-Peer Ridesharing Strategies

Young-Jae Lee, Ph.D.

Professor

Department of Transportation and Urban Infrastructure Studies

Morgan State University

1700 E. Cold Spring Lane, Baltimore, MD 21251

Tel: 443-885-1872; Fax: 443-885-8324

Email: YoungJae.Lee@morgan.edu

ORCiD: 0000-0002-1422-7965

Amirreza Nickkar, Ph.D.

Adjunct Faculty Lecturer

Department of Transportation and Urban Infrastructure Studies

Morgan State University, 1700 E Col Spring Lane, Baltimore, MD 21251

Email: amirreza.nickkar@morgan.edu

ORCiD: 0000-0002-1242-3778

ABSTRACT

Thanks to recent developments in ride-hailing transit services, the Peer-to-Peer (P2P) ride-

matching problem has been actively considered in academia in recent years. P2P ride-matching

not only reduces travel costs for riders but also benefits drivers by saving them money in

exchange for their additional travel time and costs. However, assigning riders to drivers in an

efficient way is a complex problem that requires a focus on maximizing the benefits for both

riders and drivers.

 This study first aims to formulate a multi-driver multi-rider (MDMR) P2P ride-matching

problem based on rational preferences and cost allocation for both driver and rider. This model

also enables riders to transfer between multiple drivers to complete their journeys if needed. To

solve the ride-matching problem, a Tabu Search (TS) for system optimum ride-matchings and

Greedy Matching (GM) algorithm for the stable ride-matchings were created to produce stable

ride-matchings.

 The results show that the developed algorithm could successfully solve the proposed P2P

MDMR ride-matching problem. MDMR P2P ride-matching can be used in areas where not much

demand for ridesharing demands is available or for a long-distance travel. It can also be applied

to design for on a more efficient demand transit network design which can allow for transfers

between routes. Moreover, the comparison of results between two implemented approaches

shows that system optimum centralized ride-matching can bring more cost savings for all

participants in the system, although it may not always be stable when riders and drivers can

choose their ride-matching for their maximum benefit.

 Using the algorithm that we developed for the P2P ride-matching problem, we also

developed an algorithm for on-demand transit network which allows transfers. On-demand

transit systems aim to improve mobility in the transportation network. Recent technological

advancements in communications and intelligent transportation systems have provided many

opportunities to make the conventional transit systems more effective and efficient. Although on-

demand services have already shown better performance than traditional fixed-route transit

services in reducing total travel costs in low demand areas, additional attributes may further

increase the usability of on-demand systems.

 This study aims to develop an algorithm for optimal on-demand network design by

accommodating transfer points for users. The proposed optimization problem also considers time

windows and simultaneous pickup/delivery as constraints. An example was developed and tested

to demonstrate the algorithm in two different networks (with and without transfer points). The

algorithm successfully assigned riders to the transit system while considering transfers points for

users. A comparison between the two networks shows that considering transfer points can save

up to 2.73% in total travel costs in the whole transit system.

I. DEVELOPING AN OPTIMAL PEER-TO-PEER RIDE-MATCHING

PROBLEM ALGORITHM WITH RIDE TRANSFERS

I.1 INTRODUCTION

In recent years, ridesharing has become an important element of urban transportation.

Thanks to emerging smart phones and mobile apps, it has become easy to connect travelers and

drivers offering ridesharing through these on-demand transit services [1]. In the United States,

major ride-hailing companies like Uber and Lyft have invested substantial funding toward

improving shared services to travelers. For example, Uber, a ride-hailing company, has the

ridesharing option called UberPool, which offers cheaper prices compared to ride-hailing

services.

Although many studies have shown that shared ride-hailing services provide financial

advantages and benefits to transportation networks over regular ride-hailing services, shared

ride-hailing mobility services still have some issues that raise questions about their efficiency

[2]. Shared ride-hailing mobility may also increase deadheading travels for the ride provider and

consequently a longer travel time for ride requesters, which makes the system less efficient with

higher vehicle-miles traveled (VMT) [3]. Recently, scholars have considered peer-to-peer

ridesharing services to solve these issues.

A peer-to-peer ride-matching service (P2P RMS) is similar in many aspects to ride-

hailing services; however, some fundamental differences make it more profitable in certain

situations. Mainly, shared ride-hailing services are provided by transportation network

companies (TNC); both the operator and ride provider should financially benefit from the

service, and ride providers make trips just for the money without any other purpose. In P2P

RMSs, ride providers have their own trips and need to be compensated for the additional travel

to provide a service, so trip costs for the ride requester will be cheaper than the trip costs of the

ride-hailing company [4]. Moreover, the stability of matching is an issue that is highlighted in

P2P RMSs where drivers and riders can only be matched when there is a reasonable cost saving

for them. The flexibility of the ridesharing system is a key factor that makes the system

profitable for both drivers and riders, and in the current market, this flexibility is more easily

achieved than at any time before, thanks to app-based platforms and developed algorithms [5].

This study proposes a novel, stable P2P ride-matching system to optimize the multi-

driver, multi-rider matching, and routing problem, allowing riders to transfer between drivers

(vehicles) and share rides with other riders. It then develops optimal algorithms to solve the

proposed problems based on Tabu Search (TS), and Greedy Matching (GM) approaches. This

study also compares the performance of the model for stable and unstable matchings. The main

motivation of this study is to have better insights toward practical comparison between stable and

non-stable matching algorithms and also using transfer points to optimize matching drivers and

riders (whether short-distance travel or long-distance) in the transportation network. Allowing

riders to transfer between vehicles may increase the chance of having more possible feasible

matches between participants, and also, it will reduce the cost by decreasing the total traveled

distance in the system that will benefit both the rider and the driver. Furthermore, considering

transfer points can be useful in areas with a low ridesharing demand and less access to public or

paratransit systems. The results of this study could be utilized by TNCs and on-demand shared

mobility service agencies. The organization of this study is as follows: The next section provides

a comprehensive review of background studies. The third section describes the proposed

problem and two algorithms to solve the model. Section four discusses the developed algorithms’

performance in a hypothetical example, and, finally, the last section concludes this research.

I.2 LITERATURE REVIEW

With the emergence of shared transit modes in urban areas, scholars have studied the

ride-matching problem (RMP) widely in recent decades. The RMP is basically a combinatorial

optimization problem that aims to find matches between drivers who are willing to provide rides

and riders who need rides by considering feasibility and profitability constraints. RMPs are

mainly associated with transit modes that can deliver and pick up passengers simultaneously by

request; therefore, RMPs are often considered as demand responsive and dial-a-ride problem

(DARP) studies.

In the past few decades, DARPs have been widely considered by scholars [6-8].

Generally, the homogeneity of the variables and the status of passengers’ request orders are the

main challenges that motivate scholars to optimize DARPs [9]. The homogeneity of the problem

is related to adding some variables that make the model more realistic, like multi-hubs [10], the

various capacity of the vehicles, transferring of passengers [11], and the degree of circuity

(DOC) [12, 13]. Alternatively, the system's flexibility in serving passengers was introduced by

transforming the problem from static to dynamic, so the transit system can accept a new request

while operating [14].

In DARPs, ride providers are considered as a separate entity as an operator, while in P2P

RMP the ride operator can be considered as a user of the systems [15]. Furthermore, with

DARPs, the availability of vehicles and ride requests are known in advance, while in a P2P

RMP, this availability is not deterministic as riders would be matched to drivers by considering

their spatial-temporal readiness and the feasibility of matching. This special attribute makes the

P2P RMP more complicated than DARP, especially when some other constraints should be

considered, such as allocating riders with special needs to specific ride providers [16] or

considering the time window constraint for each rider [17]. Stiglic et al. [18] introduced the

concept of meeting points in the ride-matching problem. An optimal algorithm has been

developed to maximize the number of matched drivers and riders to save drivers' driving

distance. The concept of the transfer station, applied by Masoud and Jayakrishnan [16], can

make the ride-matching system more efficient by increasing the chance of matching between

more riders and drivers. The transfer stations work as given spots where riders would be

switched to another driver to continue their trips. The transfer stations are not necessarily located

at drivers’ starting or end points; however, serving riders at transfer stations could be more

acceptable to drivers as it makes for less complexity and confusion [16].

Generally, in past related studies, the ride-matching problems in terms of complexity

have been categorized as Single-Driver Single-Rider (SDSR), Single-Driver Multiple-Riders

(SDMR), and Multiple-Driver Multiple-Riders (MDMR). Agatz et al. [19] investigated a single

driver and single rider P2P ride-matching problem to optimize unmatched announcements

aiming to maximize the saved traveled distance of the drivers. They believed the performance of

driver-rider matching is highly dependent on the spatial-temporal status of the ride requesters.

Boyacı et al. [20] solved a one-way vehicle sharing problem using a simulation approach aimed

at maximizing the net revenue for the operator and net benefits for users.

Considering the ability of riders to transfer between drivers makes the problem more

complicated. A few scholars have considered the MDMR ride-matching problem. Masoud and

Jayakrishnan [16] developed a multi-hop P2P ridesharing system as a binary optimization

problem in which a rider was able to transfer between multiple drivers. They used a

decomposition algorithm to solve the model optimally. In another work by these authors [15],

they developed a flexible ridesharing system as a dynamic, real-time, and multi-hop system with

the ability to find itineraries for a rider by means of optimally routing drivers. Following this

study, Tafreshian and Masoud [21] proposed a one-to-many ride-matching problem based on a

graph partitioning algorithm that grouped travels into several sub-problems.

Recently, some studies focused on rational aspects of ridesharing participants (both ride

provider and ride requester). Preferences considering saving money for riders and drivers are the

main focus of these studies. Silva et al. [22] considered a Quota Travelling Salesman Problem

with Passengers (QTSP) to solve the ride-matching problem in order to increase the flexibility of

the model for serving riders in meeting points (alighting and boarding). Although their model

aimed to increase satisfaction for both riders and the driver, the proposed model neglected the

match stability. Wang et al. [23] developed a stable ride-matching model to fairly distribute cost

allocation between driver and rider; however, they considered an average cost-savings between

driver and rider, which is unfair in some matches. Furthermore, their proposed model was an

SDSR problem that is limited to realistic and substantial service. Ma et al. [24] modified the

algorithm by introducing the theory of two-sided matching to solve the ridesharing stable

matching problem by considering cases in which a driver may receive identical benefits for a

match with a rider, which turned the problem into a stable matching problem with incomplete

preferences. Also, their developed model was an SDMR problem which is more useful than

SDSR.

Since the P2P ride-matching problem was recognized as an NP-hard problem [25], most

of the past studies used heuristics and metaheuristics to solve the problem; however, some other

studies focused on the goal and scale of the problem using a simulation-based approach [25-29].

The objective functions of the previous related researches included maximizing the number of

rider and driver matches [17, 18, 27, 30-33], maximizing the total number of assignments [34-

36], optimizing system costs and benefits [17, 20, 33, 37], travelers’ mode choice [38-40], and

optimizing total distance savings [19, 25, 27].

Although various types of the P2P ride-matching problem have received considerable

attention in recent years, little knowledge is available about the stable MDMR problem allowing

transferring riders between multiple vehicles. Only one study by Peng et al. [36] considered a

stable MDMR problem to optimize matching assignment and pricing; however, their model was

unable to permit riders to transfer between multiple drivers. Therefore, this study has two main

contributions rather than the reviewed studies. First, it proposes a novel 2-stage integer

programming model for the MDMR problem according to the SDMR matching problem's

extension. Second, it develops an optimal algorithm to solve the stable MDMR problem

considering rational preferences and cost allocation for drivers and riders while allowing a rider

to transfer between multiple drivers. The other contribution of this study is to solve the proposed

model for both stable and non-stable forms and compare them in terms of total cost savings.

I.3 METHODOLOGY

As discussed in the literature review section, two main approaches for the ride-matching

strategies are stable matching and non-stable matching. The stable matching system is a

decentralized system, while a non-stable matching system is a centralized system. Although the

stable matching approach provides a more stable solution, it may not provide the most efficient

peer-to-peer ride-matching for the entire system because of the smaller total number of matches

due to the only rational matches for both the rider and the driver. Therefore, in general, non-

stable matching provides more matches in the system, while this may not be individually optimal

for both drivers and riders in some circumstances. Figure 1 shows the simple example network

with two drivers (D1 and D2) and two riders (R1 and R2). Assume that the cost of trips is

commensurate with the shortest distance traveled to reach the destinations. In Figure 1, the

vertices represent the location related to origin (shown with “O”) or destination (shown with

“D”) of the rider (R)/driver (D) and the arrows show the connection between locations, and the

value on the arrows indicates the cost of a ride between the two vertices which is directly related

to distance between the two locations. Without ridesharing, each rider/driver rides from its origin

to its destination (with routs, D1
O-D1

D, D2
O-D2

D, R1
O-R1

D, R2
O-R2

D), consequently, each trip costs

$6 (total system cost is $24). However, with ride-matching, if R1 and D1, as well as R2 and D2

are matched, for system optimization, the cost per match is $10 (with route DO-RO-RD-DD,

accordingly cost of $2+$6+$2) and total system cost becomes $20 ($10+$10), which lowers $4

from the individual trips.

Although the system optimal ridesharing solution ensures the system cost minimization,

those ride-matchings are not stable because D1 and R2 ride-matching lowers their travel costs

from $10 to $9.2 (with route D1
O-R2

O-R2
D-D1

D, accordingly cost of $1.6+$6+$1.6), and they will

not accept the optimal system ride-matching. Considering the ride-matching of D1 and R2, it is

optimal for R1 and D2 to ride individually with a total cost of $12 rather than to have ride-

matching. Thus, in this case, the total system cost increases to $21.2 ($6+$6+$9.2) from the

system optimal solution of $20. This ride-matching that makes the individual cost minimization

is called stable ride-matching. It is a more realistic ride-matching solution when the individuals

choose their ride-matching.

Figure 1 Example of Ridesharing Network

I.3.1 Problem

In this paper, a many-to-many ridesharing system is considered in which the centralized

system matches groups of riders and drivers and offers itineraries to drivers. The system begins

its work when a set of participants requests trips as drivers or riders. Each participant selects an

origin and a destination within an allowable time window. All origins and destinations of drivers

and riders are considered as potential transfer stations. A transfer station is a meeting location

where a rider can be transferred to another driver in order to complete his/her trip. Furthermore,

riders can choose their maximum allowed transfers between vehicles, and drivers can decide the

maximum number of passengers on board at the same time during their entire trip. Therefore,

each time a rider or a driver applies for a trip in the system, the information about these

preferences is asked and registered.

The model should be able to consider a case in which a driver can provide a ride to a

rider from their origin to their destination and from their origin to their transfer point. We

assumed that the participants cooperated with the system for the financial efficiency of the

service as well as for self-interest goals like the effect on the environment. Hence, the objective

of the problem is considered to maximize the total travel distance savings of all participants,

which also corresponds to minimizing total travel costs. In this problem, a rider can take all of

his/her trip with one driver or can be switched to another driver in the middle of his/her trip at a

transfer station. According to minimizing total travel costs, the mathematical model decides

whether a rider should be switched to another driver in the middle of his/her trip. In this regard,

the model considers all possible cases of matchings (a set with n drivers and m riders that has at

most 2n × 2m possible matchings) where the number of participants in the match is less than a

predefined value and calculates the optimal costs of these matching; therefore, the model chooses

the best case by comparing the total costs of each matching.

In many-to-many ridesharing systems, riders may be assigned to multiple drivers,

transferring between multiple vehicles. Therefore, the system sets the location where each driver

picks up and drops off the rider. When the system matches a set of riders with a set of drivers, it

means that the trip timing of all participants becomes coordinated as itineraries. Matches and

trips offered by the system should satisfy the participants, although they may choose not to

accept the offer and instead decline using the system. Two important aspects of participant

satisfaction are the timing and cost of their trip. We assume that matches and itineraries are

feasible only if they fulfill the timing requirements of all participants as a constraint. There may

be ridesharing matches that satisfy the participants' timing constraints but do not generate

positive vehicle-mile savings. Indeed, to consider a match as feasible, the involved participants

should also benefit with respect to the travel cost when accepting the offer. As mentioned earlier,

when the system matches a set of riders with a set of drivers, the trip timing of all participants

becomes coordinated as the itineraries. In cases of participant delay, the dependence of the time

scheduling of participants for the match to each other may result in delays experienced by other

participants grouped in a match. To overcome this issue, the maximum number of participants in

each match is restricted. When a set of drivers is matched with a set of riders, an optimization

problem is solved to determine each of the participants’ itinerary and the start and end time of

the trip. We assume that the vehicle-mile savings (cost savings or benefits) of sharing a ride are

divided equally between the ride’s participants. Another option is to divide the cost-savings of a

ride among the participants in the match according to each participant’s trip distance when

driving alone.

A good ridesharing system should produce matches that are stable; we define stability as

the concept noted in cooperative game theory. In fact, we call a solution stable when no groups

of riders and drivers prefer to depart from their current match. This also includes the case in

which a subset of riders and/or drivers prefer to reject some of their current partners. Riders

and/or drivers may not use the system if they believe they can establish a better match with

higher cost saving on their own. The following are the known parameters of the problem.

Parameters:

𝑃: The set of participants in the system including riders and drivers

𝑅: The set of riders

𝐷: The set of drivers

𝑇𝑆: The set of meeting points/transfer stations, where participants can start and end their trips,

and riders can change vehicles in these points

𝑂𝑝: The transfer station where participant 𝑝 ∈ 𝑃 starts his/her trip.

𝐷𝑝: Destination of the participant 𝑝 ∈ 𝑃

𝑡𝑡𝑚𝑛: Travel time between each pair of locations 𝑚, 𝑛 ∈ 𝑇𝑆

𝑑𝑖𝑠𝑚𝑛: Distance between each pair of locations 𝑚, 𝑛 ∈ 𝑇𝑆

𝑒𝑑𝑝: The earliest time participant 𝑝 ∈ 𝑃 can start her/his trip in her origin 𝑂𝑝

𝑙𝑎𝑝: The latest time when participant 𝑝 ∈ 𝑃 must arrive at his/her destination 𝐷𝑝

𝑓𝑟: The maximum number of transfers between vehicles acceptable for rider 𝑟 ∈ 𝑅

𝐶𝑎𝑑: Maximum number of passengers driver 𝑑 ∈ 𝐷 can carry in his/her vehicle

Let A and B represent the set of all non-empty subsets of R and D, respectively. We

introduce the set A𝑟 as the set of members of 𝐴, which include 𝑟 ∈ 𝑅 and Β𝑑 as the set of

members of 𝐵, which includes 𝑑 ∈ 𝐷. In this way, 𝐴 = ⋃ 𝐴𝑟𝑟∈𝑅 and = ⋃ 𝐵𝑑𝑑∈𝐷 .

To model the problem, the preference lists of all groups of participants should be known.

The preference list of a group of riders/drivers consists of the set of feasible matches ranked

based on the corresponding best ride-share cost savings. The best share-ride with the maximum

cost-savings between any two groups of drivers and riders and the associated cost-savings can be

determined through the model (11)-(30) in the next subsection. The solution of the model also

determines whether a match is feasible or not.

We denote the preferences with the following notation: a >𝑐 b denotes that person c

prefers person a to b, and a ≥𝑐 b denotes that either a >𝑐 b or person c is indifferent to person a

or person b. If the cost-savings of two share-rides for a group of drivers/riders is the same, the

riders/drivers are indifferent to the two matches. Thus, preference lists may contain ties.

Moreover, some matches may be infeasible, so the preference list may be incomplete as well.

By defining sets A and B, the problem can be modeled as a generalized matching

problem between members of sets A and B. Whenever a match is established between two

groups of riders and drivers, the members of the two sets share rides together and the trip timing

of all participants becomes correlated with their itineraries. To the best knowledge of the current

authors, the MDMR ridesharing problem has not yet been formulated as a matching problem,

unlike SDMR. Let 𝑥𝑎𝑏, a binary decision variable, be equal to 1 if: a ride-share match between

riders of the set 𝑎 ∈ 𝐴 and drivers of the set 𝑏 ∈ 𝐵 is established and 0. Otherwise, let 𝑔𝑎𝑏

represent the corresponding cost-savings. Moreover, Let 𝐵(𝑎) be the set of all members 𝑏 of the

set 𝐵 where matching 𝑎 with 𝑏 is feasible and let 𝐴(𝑏) be the set of all members 𝑎 of the set 𝐴

where matching 𝑎 with 𝑏 is feasible. As mentioned earlier, the feasible matches and the

parameter 𝑔𝑎𝑏 are determined by solving another model (equations 11 to 30), which is described

later in the document.

𝑀𝑎𝑥 ∑ ∑ 𝑔𝑎𝑏𝑥𝑎𝑏𝑏∈𝐵(𝑎)𝑎∈𝐴 (1)

s.t.

∑ ∑ 𝑥𝑎𝑏𝑏∈𝐵(𝑎)𝑎∈𝐴𝑟
≤ 1 ∀𝑟 ∈ 𝑅 (2)

∑ ∑ 𝑥𝑎𝑏𝑎∈𝐴(𝑏)𝑏∈𝐵𝑑
≤ 1 ∀𝑑 ∈ 𝐷 (3)

𝑥𝑎𝑏 + ∑ ∑ 𝑥𝑎′𝑏′𝑏′∈𝐵:𝑏′≽𝑎′𝑏𝑎′≠𝑎⊂𝑎 + ∑ ∑ 𝑥𝑎′𝑏′𝑎′∈𝐴:𝑎′≽𝑏′𝑎𝑏′≠𝑏⊂𝑏 ≥ 1; ∀𝑎 ∈ 𝐴; ∀𝑏 ∈ 𝐵(𝑎) (4)

𝑥𝑎𝑏 ∈ {0; 1} ∀𝑎 ∈ 𝐴; ∀𝑏 ∈ 𝐵 (5)

The objective (1) maximizes the total cost-savings of the system, which coincides with

minimizing the total travel cost. Constraint sets (2) and (3) force each rider (driver) to be

matched with at most one group of drivers (riders). Constraint (4) forces the model to generate a

stable solution. These constraints state that each pair of riders (set 𝑎 ∈ 𝐴) and drivers (set 𝑏 ∈ 𝐵),

matched or a subset of the members of the set 𝑎 ∪ 𝑏, prefers their current match to this one.

In fact, at least one of the three outcomes below must happen for each pair of riders a ∈ A

and drivers b ∈ B:

• “a” is matched with “b” and therefore xab = 1.

• Members of the set a are not united for pairing with set b. Therefore, a proper subset

a′ ≠ a ⊂ a exists where a′ is paired with b′ ∈ B ie. xa′b′ = 1, and the members of set

a′ prefer their current match to pairing a with b, ie. b′ ≽a′ b and
g

a′b′

|a′|+|b′|
>

gab

|a|+|b|
 .

• Members of the set b are not united for pairing with set a. Therefore, a proper subset

b′ ≠ b ⊂ b exists where b′ is paired with a′ ∈ A ie. xa′b′ = 1, and the members of

set b′ prefer their current match to pairing a with b, ie. b′ ≽a′ b and
g

a′b′

|a′|+|b′|
>

gab

|a|+|b|
.

To be detailed, the stability constraints (4) can be replaced with the following constraints,

where 𝑧𝑝 is the cost-savingS of participant 𝑝 ∈ 𝑃 in the current match and 𝑞𝑝
𝑎𝑏 is a binary

variable that if equal to one, the participant 𝑝 saves less when 𝑎 is matched with 𝑏 than its cost-

saving in the current match. Furthermore, the set 𝑎 is matched with the set 𝑏 if the binary

variable 𝑞0
𝑎𝑏equals to one.

𝑧𝑟 = ∑ ∑
𝑔𝑎𝑏𝑥𝑎𝑏

|𝑎|+|𝑏|𝑏∈𝐵(𝑎)𝑎∈𝐴𝑟
 ∀𝑟 ∈ 𝑅 (6)

𝑧𝑑 = ∑ ∑
𝑔𝑎𝑏𝑥𝑎𝑏

|𝑎|+|𝑏|𝑎∈𝐴(𝑏)𝑏∈𝐵𝑑
 ∀𝑑 ∈ 𝐷 (7)

𝑥𝑎𝑏 ≥ 𝑞0
𝑎𝑏 ∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵(𝑎) (8)

𝑧𝑝 ≥ 𝑞𝑝
𝑎𝑏 ×

𝑔𝑎𝑏

|𝑎|+|𝑏|
 ∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵(𝑎); ∀𝑝 ∈ 𝑎 ∪ 𝑏 (9)

𝑞0
𝑎𝑏 + ∑ Π∀𝑝∈a′∪𝑏′∀a′⊂a,𝑏′⊂𝐵(𝑎′) 𝑞𝑝

𝑎𝑏 + ∑ Π∀𝑝∈a′∪𝑏′∀𝑏′⊂𝑏,𝑎′⊂𝐴(𝑏′) 𝑞𝑝
𝑎𝑏 ≥ 1 ∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵(𝑎)

(10)

Constraints (6) and (7) define 𝑧𝑝 as the cost-savings of participant p in the current match.

Constraint set (8) forces the set of drivers 𝑎 to be matched with the set of riders 𝑏 if 𝑞0
𝑎𝑏 equals

one. Constraint set (9) forces the variable 𝑞𝑝
𝑎𝑏 to be equal to zero if the cost-savings of

participant 𝑝 is increased when the set of drivers a is matched to the set of riders b. Constraint

(10) forces each set of riders 𝑎 and set of drivers 𝑏 to be matched or at least two sets a′and

𝑏′ exist where a′ ⊂ a, b′ ⊂ B(a′) or b′ ⊂ b, a′ ⊂ A(b′), and for all members of the sets a′ and b′,

the cost-saving is decreased if the match between sets a and b happens.

I.3.2 Feasibility and Profitability Conditions of Ride-matching

When a set of drivers b is matched with a set of riders a, the problem of finding the best

itinerary for each driver is modeled by restricting the set of drivers and riders to the members

included in sets a and b denoted by SD and SR and by using four sets of decision variables as

defined below. Moreover, the set of stations is restricted to the ones included in the largest

polyhedral generated by connecting the riders and drivers in the match. In fact, the model (11)-

(30) inputs a subset of stations 𝑆 ⊆ 𝑇𝑆, a subset of riders 𝑆𝑅 ⊆ 𝑅, and a subset of drivers 𝑆𝐷 ⊆
𝐷 as a matched group and finds the best itinerary for each driver in SD such that all riders and

drivers start their trips from their corresponding origins and end in their destinations in the

allowed timing while the total cost-savings is maximized. Therefore, the model assigns drivers to

each rider and determines the stations where each rider should get on or off.

In the proposed formulation, an equal number of stops is considered for each driver

denoted by 𝐾𝑚𝑎𝑥, and we allow the model to repeat the destination of the driver at the end of

their itinerary to consider all possible solutions to the problem. It is assumed that a driver, unlike

a rider, may visit any transfer station more than once in their itinerary. Besides, although this is

not a usual case, it was assumed a rider may change the vehicle but return to the same one later.

𝑣𝑚𝑛𝑘
𝑑 Driver d travels from 𝑚 to 𝑛 and m is the k-th stop of the driver d, 𝑛 ≠ 𝑚 ∈ 𝑆

𝑦𝑚𝑛𝑘
𝑟𝑑 Rider r travels with driver d from transfer station m to n when m is the k-th stop of the

driver d, 𝑛, 𝑚 ∈ 𝑆

𝑧𝑘
𝑟𝑑 Rider r starts a partial path with driver d in the driver’s k-th stop

𝑡𝑘
𝑑 Trip starting time of driver d at the k-th stop in the driver’s itinerary, the service starting

time at the first point is just the earliest departure time of driver d.

Then the formulation is as follows:

Min ∑ ∑ ∑ ∑ 𝑣𝑚𝑛𝑘
𝑑

𝑘 × 𝑑𝑖𝑠𝑚𝑛𝑛∈𝑆𝑚∈𝑆𝑑∈𝑆𝐷 (11)

s.t.

𝑡𝑘+1
𝑑 ≥ 𝑡𝑘

𝑑 + ∑ 𝑡𝑡𝑚𝑛𝑣𝑚𝑛𝑘
𝑑

𝑚,𝑛 ∀𝑑 ∈ 𝑆𝐷; 𝐾𝑚𝑎𝑥 ≥ 𝑘 ≥ 1 (12)

𝑡𝑘
𝑑 + 𝑡𝑡𝑚𝐷𝑟

− 𝑀(1 − 𝑦𝑚𝐷𝑟𝑘
𝑟𝑑) ≤ 𝑙𝑎𝑟 ∀𝑑 ∈ 𝑆𝐷; ∀𝑟 ∈ 𝑆𝑅; ∀𝑚 ∈ 𝑆; 𝐾𝑚𝑎𝑥 ≥ 𝑘 ≥ 1 (13)

𝑡𝑘
𝑑 ≥ 𝑒𝑑𝑟 − 𝑀(1 − ∑ 𝑦𝑂𝑟𝑚𝑘

𝑟𝑑
𝑚) ∀𝑑 ∈ 𝑆𝐷; ∀𝑟 ∈ 𝑆𝑅; 𝐾𝑚𝑎𝑥 ≥ 𝑘 ≥ 1 (14)

𝑡𝐾𝑚𝑎𝑥

𝑑 ≤ 𝑙𝑎𝑑 ∀𝑑 ∈ 𝑆𝐷 (15)

𝑡1
𝑑 ≥ 𝑒𝑑𝑑 ∀𝑑 ∈ 𝑆𝐷 (16)

∑ 𝑣𝑚𝑛,𝑘+1
𝑑

𝑛 = ∑ 𝑣𝑛𝑚,𝑘
𝑑

𝑛 ∀𝑑 ∈ 𝑆𝐷; ∀𝑚 ≠ 𝑂𝑑, 𝑚 ≠ 𝐷𝑑 ∈ 𝑆; 𝐾𝑚𝑎𝑥 − 2 ≥ 𝑘 ≥ 1(17)

∑ 𝑣𝑂𝑑𝑛,𝑘+1
𝑑

𝑛 = ∑ 𝑣𝑛𝑂𝑑,𝑘
𝑑

𝑛 ∀𝑑 ∈ 𝑆𝐷; 𝐾𝑚𝑎𝑥 − 2 ≥ 𝑘 ≥ 2 (18)

∑ 𝑣𝐷𝑑𝑛,𝑘+1
𝑑

𝑛 = ∑ 𝑣𝑛𝐷𝑑,𝑘
𝑑

𝑛 ∀𝑑 ∈ 𝑆𝐷; 𝐾𝑚𝑎𝑥 − 3 ≥ 𝑘 ≥ 1 (19)

∑ 𝑣𝑛𝐷𝑑,𝐾𝑚𝑎𝑥

𝑑
𝑛 = 1 ∀𝑑 ∈ 𝑆𝐷 (20)

∑ 𝑣𝑂𝑑𝑛,1
𝑑

𝑛 =1 ∀𝑑 ∈ 𝑆𝐷 (21)

∑ ∑ ∑ 𝑦𝑚𝑛,𝑘
𝑟𝑑

𝑘𝑛𝑑∈𝑆𝐷 = ∑ ∑ ∑ 𝑦𝑛𝑚,𝑘
𝑟𝑑

𝑘𝑛𝑑∈𝑆𝐷 ≤ 1 ∀𝑟 ∈ 𝑆𝑅; ∀𝑚 ≠ 𝑂𝑟 , 𝑚 ≠ 𝐷𝑟 ∈ 𝑆 (22)

∑ ∑ ∑ 𝑦𝑂𝑟𝑛,𝑘
𝑟𝑑

𝑛𝑘𝑑∈𝑆𝐷 = 1 ∀𝑟 ∈ 𝑆𝑅 (23)

∑ ∑ ∑ 𝑦𝑚,𝐷𝑟,𝑘
𝑟𝑑

𝑘𝑚𝑑∈𝑆𝐷 =1 ∀𝑟 ∈ 𝑆𝑅 (24)

∑ 𝑦𝑚𝑛,𝑘
𝑟𝑑 ≤ 𝐶𝑎𝑑 × 𝑣𝑚𝑛,𝑘

𝑑
𝑟∈𝑆𝑅 ∀𝑑 ∈ 𝑆𝐷; ∀𝑛, 𝑚 ∈ 𝑆; 𝐾𝑚𝑎𝑥 − 1 ≥ 𝑘 ≥ 1 (25)

𝑧𝑘
𝑟𝑑 ≥ ∑ ∑ 𝑦𝑚𝑛,𝑘+1

𝑟𝑑
𝑛𝑚 − ∑ ∑ 𝑦𝑚𝑛,𝑘

𝑟𝑑
𝑛𝑚 ∀𝑟 ∈ 𝑆𝑅, ∀𝑑 ∈ 𝑆𝐷, 𝐾𝑚𝑎𝑥 − 2 ≥ 𝑘 ≥ 1 (26)

∑ ∑ 𝑧𝑘
𝑟𝑑

𝑘𝑑∈𝑆𝐷 − 1 ≤ 𝑓𝑟 ∀𝑟 ∈ 𝑆𝑅

 (27)

∑ ∑ ∑ 𝑡𝑘
𝑑 × 𝑦𝑠𝑚𝑘

𝑟𝑑
𝑚𝑘𝑑∈𝑆𝐷 ≥ ∑ ∑ ∑ (𝑡𝑘

𝑑 + 𝑡𝑡𝑚𝑠) × 𝑦𝑚𝑠𝑘
𝑟𝑑

𝑚𝑘𝑑∈𝑆𝐷 ∀𝑟 ∈ 𝑆𝑅, ∀𝑠 ≠ 𝑂𝑟 , 𝑠 ≠ 𝐷𝑟 ∈

𝑆 (28)

𝑣𝑚𝑛𝑘
𝑑 , 𝑦𝑚𝑛𝑘

𝑟𝑑 , 𝑧𝑘
𝑟𝑑 ∈ {0,1} ∀𝑟 ∈ 𝑆𝑅; ∀𝑑 ∈ 𝑆𝐷; ∀𝑛, 𝑚 ∈ 𝑆; 𝐾𝑚𝑎𝑥 − 1 ≥ 𝑘 ≥ 1 (29)

𝑡𝑘
𝑑 ≥ 0 ∀𝑑 ∈ 𝑆𝐷; 𝐾𝑚𝑎𝑥 ≥ 𝑘 ≥ 1 (30)

Equation (11) presents the objective function of the problem, minimizing the total

distance traveled by all drivers. Constraints (12)-(16) force the model to satisfy the rider’s and

driver’s latest arrival and earliest departure times. Constraint sets (17) to (19) enforce that the

number of times a driver enters a transfer station equals the number of times they leave the

transfer station. Constraint set (20) directs the drivers out of their original transfer stations, and

constraint (21) ensures that drivers end their trips at their destination transfer stations. Constraint

sets (22)-(24) route riders in the network. Constraint set (25) ensures that vehicle capacities are

not exceeded and ensures that riders are accompanied by drivers throughout their trips.

Constraints (26) and (27) limit the total number of transfers between vehicles for each rider.

Constraint (28) ensures that a rider leaves a transfer station after they have arrived at it.

Then, 𝑔𝑎𝑏 can be determined simply using equation (31) and the solution of the model

(11) to (30) for the feasible match between sets 𝑎 and 𝑏. Note, that,

 𝑔𝑎.𝑏 = 𝑔𝑆𝐷.𝑆𝑅 = (∑ 𝑑𝑖𝑠𝑂𝑑𝐷𝑑𝑑∈𝑆𝐷 + ∑ 𝑑𝑖𝑠𝑂𝑟𝐷𝑟𝑟 − ∑ ∑ ∑ ∑ 𝑣𝑚𝑛𝑘
𝑑

𝑘 × 𝑑𝑖𝑠𝑚𝑛𝑛∈𝑆𝑚∈𝑆𝑑∈𝑆𝐷) (31)

The designed problem may have unmatched riders and drivers if the timing constraint is

not satisfied. In this case, the match between the set of riders and the set of drivers is considered

as infeasible. Moreover, as mentioned earlier, there may be ride-share matches that satisfy the

participants' timing constraints but do not generate positive vehicle-mile savings, which are also

considered infeasible matches. Thus, preference lists can be incomplete. Furthermore, when a set

of riders is matched with a set of drivers, one does not expect the solution to generate disjoint

itineraries for a subset of riders. However, in the optimal solution of presented formulations (11)

to (31), disjointed itineraries can be generated and the output of these formulations is used as an

input for formulations (1) to (4). For example, let D={d1,d2,d3}t and R={r1,r2,r3}. The solution

may result with drivers d1 and d2 routing riders r1 and r2 to their destinations and driver 3

accompanying rider 3 throughout his/her trip. In this circumstance, the drivers routes are alike, r3

is matched with d3 and the set {r1,r2} is matched with the set {d1,d2}. Indeed, the disjointed

itinerary is infeasible for formulations (1) to (4). Thus, this solution is unstable and will not be

chosen in the matching problem. This is because the trip cost associated with one of the

disjointed sets can be increased in comparison of matching r3 with d3 and the set {r1,r2} with

the set {d1,d2}. Therefore, the match will be considered infeasible in the second phase of the

solution process. In fact, the solution process consists of two stages. In the first stage, parameter

𝑔𝑎𝑏 should be determined by applying formulation (11)-(30) for any set of riders a and drivers b.

The preference lists of all groups of participants are also obtained. In the second phase, the

output formulations (1) to (5) defines the optimal solution of the stable ride-matching problem.

Model (11)-(30) is an NP-hard problem and solving the model within a reasonable time

for even medium sized problems is difficult. However, as mentioned before in the document, the

model (11)-(30) inputs a subset of riders SR and a subset of drivers SD as a matched group and

finds the best itinerary for each driver in SD such that all riders and drivers start their trips from

their corresponding origins and end in their destinations in the allowed timing while the total

cost-savings of the trips are maximized. To overcome the issue caused by matched participants

being dependent on one another’s schedules, the maximum number of participants in each match

is restricted. Thus, one expects the set SD and SR which are the inputs of the model to be small

sets with cardinality generally less than three.

I.3.3 Optimization methods

Two algorithms of TS and GM were selected to solve the proposed problem. The GM

algorithm is useful when matched samples with similar balanced characteristics are generated.

The GM considers one-to-one and one-to-many matched pairs, while it does not allow for

sampling with replacement [41]. This GM algorithm has been widely used in ridesharing studies

to compute maximum matchings [42-45]. The TS metaheuristics is known for its speed and

ability to escape from local minima; however, the main advantage of TS which makes this

algorithm suitable for ride-matching rests in its ability to set moving distance to search for the

optimal solution, while the algorithm can automatically adjust its parameters and change the

direction of searches. The TS metaheuristics have been implemented to solve the

ridesharing/ride-matching problem thanks to its ability to set moving distance as an integer while

searching [38, 46]. In the following, a GM heuristic is presented to solve the equations (1)-(5).

I.3.3.1 Greedy Matching (GM) Algorithm

1. Select the match (a, b) with the largest cost-savings per participant. Note that the cost-

savings per participant of a match between the set a with the set b is determined by
𝑔𝑎𝑏

|𝑎|+|𝑏|
.

2. Remove the members of the sets a and b from the set of riders and drivers, respectively.

Moreover, for each 𝑟 ∈ 𝑎 and 𝑑 ∈ 𝑏, remove the members of the sets A𝑟 and B𝑑 from A and

B, respectively.

3. Repeat step 1 and 2 until no feasible matches remain.

Theorem 1. The GM algorithm generates a stable matching solution.

Proof:

Let the algorithm solution be a Greedy Matching solution that is not stable. By definition,

there must then exist a pair (a, b) for which
𝑔𝑎𝑏

|𝑎|+|𝑏|
> 𝑧𝑝; 𝑝 ∈ 𝑎 ∪ 𝑏. This is a contradiction

because if this was true the match (a, b) would have been selected before the other matches were

considered.

Corollary 1 of theorem 1. If riders and drivers are never indifferent between any two possible

matches, the GM algorithm generates the best stable solution with the maximum cost-savings for

the system.

Pf. (by contradiction)

Let (a,b) be the first match selected in the GM solving procedure for which the set of riders a or

drivers b are not united to match in the maximum cost saving solution, eg., the set a is not

matched with set b because, a′ ⊂ a (or b′ ⊂ b) exists that are already matched with other

participants and members of a′(or b′ ⊂ b), prefer their current match to matching a with b.

Without loss of generality, consider that the set of riders a are not united. Let

(a1
′ , b1

′′), (a2
′ , b2

′′), … , (ak
′ , bk

′′) , k ≥ 1 be the match of members of a′. In this way,
g(an

′ ,bn
′′)

|an
′ |+|bn

′′|
>

g(a,b)

|a|+|b|
; for 1 ≤ n ≤ K and each an

′ prefers bn
′′ to match (a,b).

Note, that the set of riders a are the first which are not united. Therefore, participants which are

matched with set a′ that are matched already, eg., bn
′′ prefer their current match an

′ , to their match

in the maximum cost saving solution. Thus, both sides of the match (an
′ , bn

′′), prefer the match to

match (a,b) and (a,b) is unstable as a maximum cost savings solution. ▪

If riders and drivers are never indifferent between any two possible matches, the GM algorithm

generates the best stable solution with the maximum cost-saving for the system. However, in the

presence of indifferences, randomly selecting the pair with the maximum cost-saving per

participant may lead to the loss of optimality. In this circumstance, all possible outcomes of the

GM algorithm should be checked, and the one with the maximum objective value is the best

solution. Although for most cases the total number of this outcome is not large, finding the best

stable matching using the GM algorithm is possible.

I.3.3.2 Tabu Search (TS) Algorithm

To calculate the effect of the selfish behaviors of the participants, the equations (1)-(3)

and (5) are solved by employing a TS algorithm. The TS algorithm starts with a potential

solution to the problem generated by using two random permutations of riders and drivers, where

a rider and a driver with the same index in the two permutations are matched. This solution is

considered as the initial bestMatch. Next, in each iteration of the algorithm, neighbors of the

bestMatch are created in the hope of finding an improved solution. The algorithm considers

solutions as neighbors if one driver and one rider, at most, are separated from their previous

matches. The disjointed rider and driver may be matched or may join independent itineraries.

Furthermore, there is a possibility for both riders to not match with anyone in the neighbor

solution and continue their trips individually. The disjointed rider and driver and their new

positions should be selected so that the neighbor solution satisfies feasibility. For each new

solution, the objective function is calculated, and the algorithm moves to the next iteration by

selecting the neighbor with the most improvement in the objective value as the new bestMatch

solution. The iteration continues until it reaches MaxIteration. In order to determine the new

objective value, there is no need to calculate the cost-savings for all matches as the algorithm

investigates the differences of the previous solution and its neighbor. Moreover, a match score is

determined between any two pairs of the participants initialized to zero. In each iteration of the

algorithm this score is updated as neighbors are created. The difference of the objective value of

the neighbor solution and the current bestMatch is then calculated. If this value is greater

(smaller) than zero, one is added (reduced) to the match score of the new fellow travelers of the

disjointed rider and driver and one is reduced (added) from their previous co-travelers. The

match score of any two participants falls under a specific value called the MinimumMatchScore;

the two are added to the tabu list and cannot be co-travelers for the next candidate solutions, in a

particular number of iterations. Then the match score of the pair is set to zero again.

Furthermore, the algorithm allows the tabu list to include at most a constant number of tabu pairs

represented by TabuTenure. Each time a new tabu pair is added to the tabu list and makes the

list’s length greater than TabuTenure, the oldest pair in the tabu list gets removed. Finally, the

whole TS algorithm, from generating a random initial solution to reaching the MaxIteration

iterations, is repeated a specific number of times denoted by MaxAlgorithmRepeat and the best

match among these runs of the algorithm is selected as the best solution. Figure 2 shows the

developed TS algorithm to solve the proposed P2P ride-matching problem. The platform used to

program the algorithms is MATLAB 2019a.

1: tabuList = []

2: currentSolution ← initialSolution

3: bestSolution ←s

4: while ObjectiveValue(bestSolution) < 0 do

5: bestMatch ←null

6: for candidate ∈currentSolution.getNeighbourhood do

7: If (¬tabuList.contains(candidate)) then

8: If (ObjectiveValue(candidate) > ObjectiveValue(bestMatch)) then

9: bestMatch ←candidate

10: End If

11: Else If (ObjectiveValue(candidate) > ObjectiveValue(bestSolution)) then

12: bestMatch ←candidate

13: End If

14: End for

16: currentSolution ← bestMatch

17: If ObjectiveValue(bestMatch) > ObjectiveValue(bestSolution) then

18: bestSolution ←bestMatch

19: End If

20: tabuList.push(bestMatch)

21: If tabuList.size > tabuTenure Then

22: tabuList.removeFirst()

23: End If

24: End while

25: Return bestSolution

Figure 2 Developed TS algorithm to solve the problem

I.4 EXAMPLE

The proposed model was applied to a numerical experiment in a hypothetical network to

demonstrate its performance in solving the problem. The experiment considered 10 riders and 10

drivers in the problem instance. Transfer station locations and participant origins and

destinations (which are selected from the transfer stations) were generated randomly. The

algorithms were coded in MATLAB 2019a and all the models were performed on a computer

with CPU Intel® Core(TM) i5-7400 3GHz 16 GB of RAM memory. The calculation times

required to perform the GM and the TS algorithms for the hypothetical example were 34.2 and

45.1 seconds respectively.

In Figure 3, origins and destinations of the participants are shown, respectively. To

differentiate the drivers as well as the riders, each has a unique number shown in the Figure 3.

For example, D2 represents the driver number 2.

Figure 3 Destinations and origins of the participants in the generated problem instance

Next, preference lists were created for all groups of riders and drivers. To create the

preference lists, the cost-savings of the matches were determined. Moreover, in order to make

the computations faster, for each rider and a pairs of two drivers, the algorithm determines the

best interface transfer station for the rider to move between the two drivers. In this problem, the

total number of transfers between vehicles for each rider is limited to two transfers.

The TS and the GM heuristic algorithms explained earlier in the document were used to

solve the generated instance. The parameters were set as following. 𝑓𝑟 = 2, 𝐾𝑚𝑎𝑥 =
5, MaxIteration=5000, MaxAlgorithmRepeat=10, MinimumMatchScore=-10, TabuTenure =30.

As mentioned before, the optimal stable solution can be obtained using the GM

algorithm; however the TS algorithm produces an unstable solution. The difference of the

objective value of the solution generated using the two methods represents the price of anarchy

which shows the outcome of the selfish behavior of the participants in a practical ridesharing

setting.

The conclusions of the GM and the TS algorithms for the total cost-saving of the ride

sharing system is determined as 7969.3 (meters) and 7604.8 (meters), respectively. In this sense,

the Price of Anarchy is 364.5 (meters) which is a significant value in contrast to the cost-savings.

In fact, the total ridesharing system cost-saving can be increased by 4.8% if based on satisfaction

level of the riders. Table 1 represents the results of algorithms for the proposed example. The

total cost per kilometer has been considered 35 cents according to the last travel reimbursement

fees issued by the IRS [47] and also the monetary saving calculation has been considered based

on dollar per kilometer.

OR2

DD4

DR3

DR5

DR1

DR2

OD6

OR8

OR5

DR6

OR4

OD2

OR1

DD3

DD10

DR10

OD7

DR4
OR6

OD5 DR9

DD5

DD7

OR10

OR9

DD6

OD10

OD1

OD4

OD3

OR3

OD9

DD2

DR7

DD8
DR8

DD1

OR7

DD9

OD8

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40Km

Riders'

origin

Drivers'

origin

Drivers'

destinations

Riders'

destinations

As shown in Table 1, the total saving of the TS algorithm is higher than the GM

algorithm because the GM algorithm provides an exact solution through a stable model while the

TS algorithm is a metaheuristic approach and finds near to system optimal solution. Therefore,

the TS model cannot be considered stable, but it opens doors to compromise between riders and

drivers most likely to maximize the number of matching and/or the shared travel distances,

which will bring more cost savings in the system.

Table 1. Results of algorithms for the proposed example

 Approach Routes
Travel

distance (m)

Travel distance

if not matched

(m)

Saving ($)
Total

Saving ($)

Greedy

Matching

Algorithm

D3, D10, R2, R8 6870.6 11925.8 17.7

26.6

D2, D4, D5, R9, R4, R3 9771.4 12321 8.9

D1 500 500 0.0

D6 2573.9 2573.9 0.0

D7 250 250 0.0

D8 2610.1 2610.1 0.0

D9 2015.6 2015.6 0.0

R1 2761.3 2761.3 0.0

R5 2015.6 2015.6 0.0

R6 1250 1250 0.0

R7 707.1 707.1 0.0

R10 1802.8 1802.8 0.0

Tabu

Search

Algorithm

D8, D2, D4, R9, R10,

R8
10582.4 14090.7 12.3

27.9

D3, D10, R2, R4 6369.3 10830.3 15.6

D1 500 500 0.0

D5 2061.6 2061.6 0.0

D6 2573.9 2573.9 0.0

D7 250 250 0.0

D9 2015.6 2015.6 0.0

R1 2761.3 2761.3 0.0

R3 1677.1 1677.1 0.0

R5 2015.6 2015.6 0.0

R6 1250 1250 0.0

R7 707.1 707.1 0.0

In Figure 4 and Figure 5, the participants who are grouped together as a match are

connected with lines of the same color as their destinations and the transfer stations are shown in

a red circle in these figures. As shown in Figure 4, itineraries as the solution generated by TS

algorithm, the matched groups are drivers 2, 4, and 8 with riders 8, 9, and 10 and drivers 3 and

10 with riders 2 and 4. As intended, some drivers (e.g., D2) carried a single rider (e.g., R8),

while other drivers (e.g., D10) carried multiple riders (e.g., R2 & R4). Some riders (e.g., R9)

were carried by a single driver (e.g., D4), while other riders (e.g., R4) were carried by multiple

drivers (e.g., D10 & D3). Other drivers and riders not in the figure were unmatched due to two

reasons: either there was no match with cost-saving for these riders with the respective drivers,

or available matches were not possible due to the presence of at least one of the drivers in more

cost-effective groups.

Figure 4 Itineraries of the matched drivers and riders in the solution generated running the

TS algorithm

As shown in Figure 5, the GM algorithm consists of two groups of matched drivers and

riders. In one group, drivers 2, 4, and 5 are matched with riders 3, 4, and 9. In the second group,

drivers 3 and 10 are matched with riders 2 and 8. In the third group, drivers 9 and 7 are matched

with riders 2 and 7. Like the results from the TS algorithm in Figure 5, some drivers (e.g., D10)

carried a single rider (e.g., R2), while other drivers (e.g., D2) carried multiple riders (e.g., R9 &

R4). Some riders (e.g., R4) were carried by a single driver (e.g., D2), while other riders (e.g., R2)

were carried by multiple drivers (e.g., D3 & D10).

Figure 5 Itineraries of the drivers and single riders’ paths in the solution generated

running the GM algorithm

I.5 CONCLUSION

In recent years, shared mobility has become more available and attractive due to its

economic efficiency, environmental advantages, and social equity aspects, especially where

traditional transit service is not available. Among the shared mobility modes, peer-to-peer (P2P)

ridesharing is considered the most economical and desirable because each individual involved in

the ridesharing has a purpose for their travel, and drivers only need to be compensated for the

additional travel distance and costs, which make the ridesharing more affordable for riders,

compared to ride-hailing or shared ride-hailing services. P2P ridesharing not only requires trust

between drivers and riders, but it also requires technological advancement to match drivers and

riders efficiently. Recent studies have improved ride-matching algorithms; however, this

problem still has room for improvement due to its complexity regarding consideration of spatial

and temporal constraints with financial feasibility – to achieve minimization of total travel

distance while maximizing the benefits for both drivers and riders.

In this research, a multi-driver, multi-rider (MDMR) P2P ride-matching problem based

on rational preferences and cost allocation for both driver and rider was developed, and the

algorithms using Tabu Search (TS) and Greedy Matching (GM) algorithms were formulated.

Due to the multi-driver, multi-rider algorithm, not only can drivers transport multiple riders in

their trips but also riders can transfer between multiple drivers for their travels if needed. A

hypothetical example was developed to evaluate the performance and the computational

efficiency of the proposed algorithms, and the developed algorithms could successfully solve the

proposed P2P multi-driver, multi-rider ride-matching problem.

One important result of this study comes when we compare the results of the models in

two forms of stable matches and non-stable matches. The TS algorithm provides a near-optimal

solution in terms of system cost savings in which a better matching performance between riders

and drivers is expected rather than the stable form of the model by the GM algorithm. Obviously,

the metaheuristic approach using Tabu Search is seeking to minimize the total costs by relaxing

stability constraints of the model; therefore, more cost savings and matchings are expected in this

approach rather than a stable model. The maximization of the total cost saving of the system

depends on how the rider and driver(s) can compromise on costs and trade-off. Therefore,

ridesharing should consider incentive policies and reduce some constraints to boost the flexibility

of the non-stable approach to maximize the number of matchings.

In most short-distance travel, ride transfer may not look practical, but for the long-

distance travel, finding feasible ride-matching may be very difficult, and with a ride transfer

option, it is possible to increase ride-matching and reduce total costs. Also, this ride-matching

with ride transfer algorithm can be used for multiple on-demand flexible transit routings. Since

the proposed algorithm has a main focus on long distance trips, this makes the algorithm more

applicable in rural areas where fewer transportation options are available and travel distances are

relatively longer. The results showed that a centralized ride-matching system may convince the

driver to have profitable service in rural areas and it eventually makes the whole system more

profitable (or less costly) in rural areas.

Future research could add more specific matching constraints between drivers and riders,

such as same-gender matching and also use other metaheuristics and solving approaches. In

addition, other heuristic methods could be tested so that the efficiency of the algorithm can be

improved. Moreover, the proposed P2P ride-matching problem introduces a set of transfer

stations randomly before matching the drivers and riders and then finds the optimal transfer

station among the existing stations. Future studies should find the optimal locations of transfer

stations before the matching and also consider more factors such as the waiting time for the

vehicles and transfers in the model.

II. TRANSFER-ENABLED ON-DEMAND BUS NETWORK DESIGN WITH

METAHEURISTIC APPROACH

II.1 INTRODUCTION

On-demand transit services have gained notoriety among transportation authorities and agencies

in recent decades with the rapid growth of communication technologies. Currently, on-demand

transportation services represent more than 30% of all daily commutes in North America, and

this figure is expected to grow by 14% annually through 2026 [48]. New generations of

transportations systems are trying to provide effective mobility services that are economically-

competitive, compatible with emerging vehicle technology (like automated vehicles), and

conscious of the needs of both the user and operator. Traditional fixed-route bus service is one of

the transportation modes that has been most impacted by emerging on-demand services. A study

by Rayle [49] discovered that ride-hailing services are responsible for 30% of the decline in

public transit ridership in San Francisco. Carpooling services also decreased public transit

ridership, as 75% of carpooling activity in the Bay Area shifted away from the public

transportation system [50]. Compared with traditional bus transit service, on-demand bus service

may offer several advantages that make it more efficient and attractive, route flexibility, lower

travel costs for both the user and the operator, and increased network mobility. Figure 6

represents a comparison between possible advantages of on-demand services over fixed-route

services.

Figure 6. Potential benefits of on-demand services Compared with fixed-route services

Transfer points are a highly applicable concept in on-demand transit service that distinguish it

from conventional ride-hailing services and make on-demand service more efficient and

effective. Transfer points enable riders to be served by more than one vehicle from their origin to

the destination, allowing for less travel time and shorter travel distances in the process. However,

transfer points can only be effective when passengers can be served within operational time

windows. Transfer points can be more efficient for riders with a longer traveling distance;

therefore, considering time windows might help the rider be served better. This study aims to

develop an optimal algorithm for an on-demand transit network that considers deploying transfer

points and time windows for riders at the same time. This study first reviews the existing

literature and finds the potential area that needs to be covered. Then the study proposes

optimization problem goals to minimize the total traveled distances. After that, an algorithm

based on the metaheuristic method will be developed to solve the proposed problem. Finally, the

performance of the proposed optimal algorithm will be evaluated on a hypothetical network with

and without consideration of transfer points to show the performance of the approach. The

results of this study could be utilized by transportation authorities, transport investment agencies,

and collaborators in urban and suburban transportation systems.

II.2 LITERATURE REVIEW

The literature with respect to this topic can be categorized into two main parts: vehicle routing

problems with simultaneous delivery and pickup and on-demand transit network design. The

vehicle routing problem (VRP) is the basis of algorithms for ridesharing. The VRP algorithms

are combinatorial optimization and integer programming problems that aim to find the optimal

set of routes for vehicles to service a given number of customers. In past studies, the VRP

algorithms have been divided into various classes to address specialized cases. The vehicle

routing problem with pickup and delivery (VRPPD) is an extension of the VRP that has been

used to address problems related to public transit and freight transportation. Researchers have

further extended the VRPPD to the routing problem with pickup and delivery with time window

(VRPPDTW), which is specialized for demand-responsive transit systems. The demand-

responsive transit (DRT) or passenger-oriented transit system has the same structure as the

VRPPDTWs. The main goal of the VRPPDTW is to propose a holistic routing optimization

approach that minimizes total transportation network costs by considering the integration of

vehicles and passengers’ requests within space-time restrictions. Similar objective functions such

as maximization of the total profits [51, 52] and service quality [53, 54] have been used in some

studies. Generally, VRPPDTWs are designed to optimize vehicle routing and scheduling;

however, this objective has often been expanded to assign passengers to vehicles more

effectively (many-to-one or many-to-many) and determine optimal pricing.

Psaraftis [55, 56] introduced single vehicle VRPPDTW by developing a dynamic programming

algorithm that aimed to minimize total waiting and riding times; however, this model was only

able to run in small networks. Other studies tried to develop VRPPD as a linear program to

minimize inconvenience to passengers. Their main shortcomings were that they only considered

a single vehicle and one-sided time windows [57, 58].Considering multiple vehicles was a

noticeable improvement that was introduced by Dumas et al. [59]. Their model aimed to

minimize total vehicle costs using a column generation heuristic method. After developing this

model, many scholars tried to develop a multiple vehicle VRPPDTW by adding more realistic

constraints, modifying the objective function of the model by considering total vehicle fixed

costs and route costs, and implementing different heuristic approaches such as Branch-and-cut-

and-price and set-partitioning [60-68]. More recent studies have mainly focused on developing a

VRPPDTW that overcomes the aforementioned shortcomings by using larger networks, state-

space-time networks, and new heuristic and metaheuristic methods.

The on-demand transit network design considers the advantages that technology and real-time

data may provide to the transportation system’s route and scheduling flexibility. Addressing the

on-demand transit problem is complicated by the dynamic nature of passengers’ locations and

time-windows. This complexity may vary depending on the scale of the network and the

structure of communication between the user and the operator. In the existing literature,

researchers have explored two primary approaches to address this complexity. In both cases, the

problem is treated as static. In the first approach, passenger demand is assumed to remain

constant, requiring real-time data updates for each solution. On the other hand, the second

approach employs metaheuristics and heuristic methods, enabling the solution to be continuously

updated [14]. The insertion heuristic has been widely used to deal with the dynamic structure and

randomness of passenger demand [69]. In terms of considering constraints, most of the studies

considered time windows and the ability to pick up and deliver passengers at the same time.

However, a few studies have considered transfer points for on-demand service.

The collaborative design of a transfer Customized Bus (CB) operational network, combined with

passenger-route assignments encompassing transfer operations and a modular fleet, represents a

relatively nascent area of study. Gong et al. [70] designed a transfer-based CB network utilizing

a modular fleet while concurrently optimizing the assignment of passenger routes. They sought

to ascertain the optimal network structure under this innovative design paradigm by employing a

linearization approach in conjunction with a particle swarm optimization (PSO) algorithm.

However, their approach did not take into account the passengers' travel time window. This

study attempts to cover this gap. Therefore, the main contribution of this study is to consider

transfer points for riders along with time windows and the ability to pick up and deliver

passengers at the same time. Table 2 represents a summary of relevant studies on on-demand

transit network design.

Table 2. Summary of selected, relevant, and recent studies on the design of on-demand

transit networks

Study Solving method Objective function

Constraints

Vehicle

capacity

Time

windows

Pickup

and

delivery

Transfer

point

Tong et al.,

2017 [54]

Heuristics,

lagrangian

decomposition

Min. the number of

unserved passengers
 X X X

Mahéo et al.,

2017 [71]

Heuristics,

benders

decomposition

Min. the total

operating cost
 X X X

Guo et al.,

2018 [72]

Metaheuristics,

Genetic

Algorithm

Min. the total

operating cost
 X X

Wang, 2019

[73]

Metaheuristics,

Tabu search

Min. the total in-

vehicle travel time
 X X X

Lyu et al.,

2019 [52]

Heuristics for a

non-linear

problem

Max. the total profit X

Huang et al.,

2020 [51]

Heuristics,

insertion

Min. the total cost,

Max. profit
 X X X

Wu et al.,

2021 [74]

Heuristics,

A* algorithm

Min. the total number

of passenger transfers
 X X X

Chen et al.,

2021 [75]

Heuristics,

Modified sweep-

based algorithm

Min. the total

operating cost
 X X X

Dou et al.,

2021 [76]

Heuristics,

branch-and-price
Max. the total profit X X X

Wang et al.,

2021 [77]

Heuristics, step-

wise searching
Max. the total profit X X X

Ma et al.,

2023 [78]

Metaheuristics,

genetic and large

neighborhood

search algorithms

Max the profit minus

the operational costs
 X X X

This study
Metaheuristics,

Tabu search

Min. the total

operating cost
 X X X X

II.3 PROBLEM DEFINITION

This study presents a Vehicle Routing Problem with Pickup and Delivery and Transfer points

(VRPPD-T) in which the centralized system offers itineraries to drivers in order to deliver all

passengers from their origins to their destinations while minimizing the total cost of

transportation. The cost of transportation is defined as the weighted sum of total travel times of

all participants and the total distance traveled by the vehicles. Furthermore, a constraint which

implies that all passengers must be delivered to their destinations within an allowable time

window is considered. Riders may transfer between multiple vehicles. Therefore, the system sets

the location where vehicles transfer passengers from one vehicle to another.

In this section, a Mixed Integer Programming(MIP) formulation is presented to solve the

VRPPD-T. In this approach, some dummy points are added to the set of points represented by T

where these points are representative of transfer points between each pair of vehicles. In fact, we

consider a transfer point between any two vehicles that may be visited if needed. The

geographical position of these transfer points is calculated as the middle of the two clusters

visited just before the transfer point. The service time of transfer points is considered to be zero.

The distance of the two clusters is determined through the Euclidian distance between the last

point visited in the first cluster and the first point visited in the second cluster. The MIP model,

parameters, and variables are as follows:

Sets and parameters

𝑃: The set of passengers

𝑆: The set of points including the passengers’ origins and destinations and vehicles’ start

positions

𝑐𝑜𝑠𝑡𝐷: The cost of distance traveled by vehicles per meter

𝑐𝑜𝑠𝑡𝑇: The cost of customers’ travel times per minute

𝑑𝑖𝑠𝑖𝑗: The distance between each pair of locations 𝑖 ∈ 𝑆 and point 𝑗 ∈ 𝑆 in meter

𝑜𝑝: The point where passenger 𝑝 ∈ 𝑃 starts his/her trip.

𝑑𝑝: The point related to passenger’s 𝑝 ∈ 𝑃 destination

𝑜𝑘: The point where the driver of vehicle k starts his trip

𝑄: Maximum number of passengers that vehicles can carry

𝐾: The set of vehicles

TW: All participants should be serviced within TW.

𝐶: The set of clusters

T: The dummy set of transfer points where each member defines a transfer point between two

vehicles

𝑆𝑃: The set of origins and destinations of all passengers

𝑆𝐷: The set of points where drivers of vehicles start their trips

𝑆: The set of points, where passengers and drivers start and passengers end their trips, 𝑆 = 𝑆𝑃 ∪

𝑆𝐷

𝑇𝑟𝑘.𝑙: Transfer point related to vehicle 𝑘 ∈ 𝐾 and 𝑙 ∈ 𝐾

A+: The set of arcs (𝑖. 𝑗): (𝑖. 𝑗 ∈ 𝐶) ∪ (𝑖 ∈ 𝑆𝐷. 𝑗 ∈ 𝐶) ∪ (𝑖 ∈ 𝑇. 𝑗 ∈ 𝐶) ∪ (𝑖 ∈ 𝐶. 𝑗 ∈ 𝑇)

A: The set of arcs (𝑖. 𝑗): (𝑖. 𝑗 ∈ 𝐶) ∪ (𝑖 ∈ 𝑆𝐷. 𝑗 ∈ 𝐶)

𝑆𝑐𝑘: service time of cluster 𝑐 ∈ 𝐶 ∪ 𝑆𝐷 ∪ 𝑇 when visited by vehicle 𝑘 ∈ 𝐾, the service time of

points related to drivers’ positions and transfer points are considered zero.

𝑐𝑜𝑝: Cluster which includes the origin of passenger 𝑝 ∈ 𝑃

𝑐𝑑𝑝: Cluster which includes the destination of passenger 𝑝 ∈ 𝑃

𝑑𝑖𝑠(𝑖−𝑗)𝑚: The distance between the middle of last points visited in clusters 𝑖 ∈ 𝐶 and 𝑗 ∈ 𝐶 with

the first point visited in cluster 𝑚 ∈ 𝐶

𝑑𝑖𝑠𝑖: The distance traveled inside cluster 𝑖 ∈ 𝐶 which is determined at the second step based on

the best order of points included in the cluster

𝑇𝑇𝑖: sum of travel time of passengers inside cluster 𝑖 ∈ 𝐶 which is determined at the second step

based on the best order of points included in the cluster

𝑐𝑎𝑖: Change in the capacity of a vehicle after visiting point 𝑖 ∈ 𝐶 ∪ 𝑆𝐷 ∪ 𝑇

𝑀𝑐𝑎𝑖: Maximum number of passengers accompanied with each other visiting cluster 𝑖 ∈ 𝐶

𝑠𝑝𝑒𝑒𝑑𝑘: Speed of vehicle 𝑘 ∈ 𝐾

𝑀: A big Number

Variables

𝑥𝑖𝑗𝑘: A binary variable equal to 1 if vehicle 𝑘 ∈ 𝐾 travels from cluster 𝑖 to cluster 𝑗 where

(𝑖. 𝑗) ∈ 𝐴

𝑦𝑖𝑘: A binary variable equal to 1 if cluster 𝑖 ∈ 𝐶 with vehicle 𝑘 ∈ 𝐾

𝑇𝑇𝑝: Travel time of passenger 𝑝 ∈ 𝑃 between clusters.

𝐴𝑇𝑖𝑘: Arrive time of vehicle 𝑘 ∈ 𝐾 to the starting point of cluster 𝑖 ∈ 𝐶 or transfer point 𝑖 ∈ 𝑇.

𝑐𝑢𝑝𝑖: Capacity of the vehicle used when visiting point 𝑖 ∈ 𝐶 ∪ 𝑆𝐷 ∪ 𝑇

𝐷𝑖𝑠𝑇𝐶𝑘𝑙𝑐: Distance traveled from the transfer point 𝑇𝑟𝑘𝑙 to cluster 𝑐 ∈ 𝐶 in the route of vehicles

𝑘 ∈ 𝐾 and 𝑙 ∈ 𝐾

𝐷𝑖𝑠𝐶𝑇𝑘𝑙: Distance traveled from clusters to transfer point 𝑇𝑟𝑘𝑙 in the route of vehicles 𝑘 ∈ 𝐾 and

𝑙 ∈ 𝐾

MIP Formulation (1)

Min 𝑐𝑜𝑠𝑡𝐷 × ∑ ∑ 𝑥𝑖𝑗𝑘𝑘 × 𝑑𝑖𝑠𝑖𝑗(𝑖.𝑗)∈𝐴 + 𝑐𝑜𝑠𝑡𝑇 × ∑ 𝑇𝑇𝑝𝑝∈𝑃 + ∑ 𝑐𝑜𝑠𝑡𝐷 × 𝑑𝑖𝑠𝑖𝑖∈𝑐 + ∑ 𝑐𝑜𝑠𝑡𝑇 ×𝑖∈𝑐

𝑇𝑇𝑖 + 𝑐𝑜𝑠𝑡𝐷 × ∑ 𝐷𝑖𝑠𝐶𝑇𝑘𝑙𝑘.𝑙∈𝐾 +𝑐𝑜𝑠𝑡𝐷 × ∑ ∑ 𝐷𝑖𝑠𝑇𝐶𝑘𝑙𝑐𝑐∈𝐶𝑘.𝑙∈𝐾 (32)

s.t.

𝐴𝑇𝑗𝑘 ≥ 𝐴𝑇𝑖𝑘 + 𝑆𝑖𝑘 + 𝑑𝑖𝑠𝑖𝑗/𝑠𝑝𝑒𝑒𝑑𝑘 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ∀(𝑖. 𝑗) ∈ 𝐴,∀𝑘 ∈ 𝐾 (33)

𝐴𝑇𝑇𝑟𝑘𝑙𝑘 ≥ 𝐴𝑇𝑖𝑘 + 𝑆𝑖𝑘 + 0.5 × 𝐷𝑖𝑠𝐶𝑇𝑘𝑙/𝑠𝑝𝑒𝑒𝑑𝑘 − 𝑀(1 − 𝑥𝑖𝑇𝑟𝑘𝑙𝑘) ∀𝑘. 𝑙 ∈ 𝐾; ∀𝑖 ∈ 𝐶 (34)

𝐴𝑇𝑖𝑘 ≥ 𝐴𝑇𝑇𝑟𝑘𝑙𝑘 + 0.5 × 𝐷𝑖𝑠𝑇𝐶𝑘𝑙𝑖/𝑠𝑝𝑒𝑒𝑑𝑘 − 𝑀(1 − 𝑥𝑇𝑟𝑘𝑙𝑖𝑘) ∀𝑘. 𝑙 ∈ 𝐾; ∀𝑖 ∈ 𝐶 (35)

𝐴𝑇𝑐𝑑𝑝𝑘 ≥ 𝐴𝑇𝑐𝑜𝑝𝑘 ∀𝑘 ∈ 𝐾; ∀𝑝 ∈ 𝑃 (36)

𝐴𝑇𝑐𝑑𝑝𝑘 ≥ 𝐴𝑇𝑇𝑟𝑘𝑙𝑘 + 𝑀(𝑦𝑐𝑜𝑝𝑙 + 𝑦𝑐𝑑𝑝𝑘 − 2) ∀𝑘. 𝑙 ∈ 𝐾; ∀𝑝 ∈ 𝑃 (37)

𝐴𝑇𝑐𝑜𝑝𝑘 ≤ 𝐴𝑇𝑇𝑟𝑘𝑙𝑘 + 𝑀(𝑦𝑐𝑜𝑝𝑙 + 𝑦𝑐𝑑𝑝𝑘 − 2) ∀𝑘. 𝑙 ∈ 𝐾; ∀𝑝 ∈ 𝑃 (38)

𝑦𝑖𝑘 = ∑ 𝑥𝑗𝑖𝑘(𝑗.𝑖)∈𝐴+ ∀𝑘 ∈ 𝐾; ∀𝑖 ∈ 𝐶 (39)

∑ 𝑦𝑖𝑘𝑘 = 1 ∀𝑖 ∈ 𝐶 (40)

𝐴𝑇𝑖𝑘 + 𝑆𝑖𝑘 ≤ 𝑇𝑊 ∀𝑘 ∈ 𝐾; ∀𝑖 ∈ 𝐶 ∪ 𝑇 (41)

∑ 𝑥𝑜𝑘𝑗𝑘𝑗∈𝐶 = 1 ∀𝑘 ∈ 𝐾; ∀𝑖 ∈ 𝐶 (42)

𝐷𝑖𝑠𝐶𝑇𝑘𝑙 ≥ 𝑑𝑖𝑠𝑖𝑗 + 𝑀(𝑥𝑖𝑇𝑟𝑘𝑙𝑘 + 𝑥𝑗𝑇𝑟𝑘𝑙𝑙 − 2) ∀𝑘. 𝑙 ∈ 𝐾; ∀𝑖. 𝑗 ∈ 𝐶 (43)

𝐷𝑖𝑠𝑇𝐶𝑘𝑙𝑚 ≥ 𝑑𝑖𝑠(𝑖−𝑗)𝑚 + 𝑀(𝑥𝑇𝑟𝑘𝑙𝑚𝑘 + 𝑥𝑇𝑟𝑘𝑙𝑚𝑙𝑥𝑖𝑇𝑟𝑘𝑙𝑘 + 𝑥𝑗𝑇𝑟𝑘𝑙𝑙 − 3)∀𝑘. 𝑙 ∈ 𝐾; ∀𝑖. 𝑗. 𝑚 ∈ 𝐶(44)

𝑐𝑢𝑗 ≥ 𝑐𝑢𝑖 + 𝑐𝑎𝑖 − 𝑀(1 − ∑ 𝑥𝑖𝑗𝑘𝑘∈𝐾) ∀(𝑖. 𝑗) ∈ 𝐴 +,∀𝑘 ∈ 𝐾 (45)

𝑐𝑢𝑖 + 𝑀𝑐𝑎𝑝𝑖 ≤ 𝑄 ∀𝑖 ∈ 𝐶 (46)

∑ 𝑥𝑖𝑇𝑟𝑘𝑙𝑙(𝑖.𝑗)∈𝐴+ = ∑ 𝑥𝑖𝑇𝑟𝑘𝑙𝑘(𝑖.𝑗)∈𝐴+ ∀𝑘. 𝑙 ∈ 𝐾 (47)

𝑦𝑖𝑘 ∈ {0,1}; 𝑥𝑖𝑗𝑘 ∈ {0,1} ∀𝑖. 𝑗 ∈ 𝐶; ∀𝑘 ∈ 𝐾 (48)

𝐷𝑖𝑠𝐶𝑇𝑘𝑙 ≥ 0; 𝐷𝑖𝑠𝐶𝑇𝑘𝑙 ≥ 0; 𝑇𝑇𝑝 ≥ 0; 𝐴𝑇𝑖𝑘 ≥ 0 ∀𝑖 ∈ 𝐶; ∀𝑘. 𝑙 ∈ 𝐾; ∀𝑝 ∈ 𝑃 (49)

Equation (32) represents the objective function of the presented model, minimizing the total cost

of passengers’ travel times inside and between clusters. The cost of total distance traveled is

included in the objective function as well. Constraints (33)-(35) define the trips' time flow.

Constraints (36)-(38) force the model to satisfy precedence constraints and ensure that

passengers' destinations are visited after their origin in each vehicle. Constraint (39) defines the

relationship between two sets of variables. Constraint (40) ensures that all clusters are visited on

the vehicle routes. Constraint (41) forces the model to satisfy time window constraints.

Constraint (42) directs the drivers out of their original positions. Constraints (43)-(44) define the

distance traveled from clusters to transfer points and vice versa. Constraints (45) and (46) ensure

that vehicles capacities are not exceeded. Constraints (47) ensures that if a transfer point is used

in the solution, both vehicles are passed through it.

II.4 ALGORITHMS

In the first step of the solution process, a Simulated Annealing (SA) metaheuristic algorithm is

executed to reach a good solution as a start point for the rest of the solving procedure. The

detailed steps of the SA algorithm are provided in Figure 7. In the second step, the solution

generated by the SA algorithm is refined by separately solving a common VRPPD for each

vehicle. However, the set of customers serviced by each vehicle remains constant, as established

by the solution produced by the SA algorithm, while taking into account the constraints related to

capacity and time windows. In step three, based on the solution returned in the second step, the

set of points including the passengers’ origins and destinations are clustered into disjointed

groups by running the clustering algorithm presented in Figure 8. The clustering algorithm

searches for the passengers who are delivered directly or with a little increase in their travel

times but have origin and destination points that are far away. Transferring these passengers may

increase the feasible solution space and enhance the objective value of the problem. Furthermore,

it separates the customers with the most increase in their travel times into disjoint clusters in the

hope of achieving better travel times using transfer points.

In the third step, we fix the order of points visited inside each cluster based on the solution

produced by the clustering algorithm in the second step (Figure 9). As result, the size of the

original problem reduces to a smaller one where we can solve it with a common MIP solver. In

fact, instead of solving a VRPPD-T with a size of 2*|P| points where |P| is the number of

passengers, a VRP with the size of |C| points is solved where |C| is the number of clusters

returned in the second step. The new problem tries to find the order of clusters visited by each

vehicle, minimizing the cost, considering the capacity and time window constraints, and ensuring

the origin of each passenger is visited before its destination (precedence constraint). The sets,

parameters, formulation, and details of solving the VRPPD-T are presented in section 2.

After solving formulation (1), we once again solve a common VRPPD for the vehicles while the

visiting points of vehicles are fixed based on the solution provided by formulation (1) in hopes of

reducing total transportation costs. Here, the geographic positions of transfer points and the

origin and destination of each passenger in each vehicle are also known and fixed as the one

returned by solving formulation (1). Moreover, we give the VRPPD a starting solution which is

the solution returned by solving formulation (1). Then the cost returned by the solver is returned

as the cost of the original problem.

Step 0: Run the Simulated Annealing (SA) algorithm and save the routes returned by the

algorithm

Step 1: Solve a VRPPD for each vehicle separately, considering that points visited by vehicles

are fixed and known based on the solution returned in step 0

Step 2: Run the clustering algorithm and save the clusters and the order of points in each

cluster

Step 3: Solve the VRPPD-T with reduced size using formulation (1) and save the returned

solution

Step 4: Solve a VRPPD considering that points visited by vehicles are fixed and known based

on the solution returned in step 3

Step 5: Return the solution of the VRPPD as the best solution to the problem

END

Figure 7. The algorithm of solving VRPPD-T

Step 0: Initialization:

T0=0.01, T=T0, alpha=0.995, Max_it=5000, it=1

Step 2: Create random solution

Set x as a random solution, by generating a random permutation, with the length of n, i.e,

number of riders +buses-1.

Step 3: Calculate cost of x

Step 3.1: Considering the sum of traveled distances of buses and sum of travel time of

riders, and penalty costs (penalty for capacity and time window constraints) calculate the

cost of solution x.

Step 3.2: Set BestSolution=x and Best Cost=Cost of solution x

Step 4: IF It< Max_it, THEN

go to step 4.1, otherwise go to step 5

END IF

Step 4.1: Creating neighborhood:

Random= Generate a random value within [0,1]

 Step 4.1.1: IF Random < 0.75, THEN

go to step 4.1.2, otherwise go to step 4.1.3

END IF

Step 4.1.2: set xnew = a neighborhood of x by changing the visiting order of the

rider(s) through a bus and go to step 4.2

Step 4.1.3: set xnew = a neighborhood of x by changing the assigned bus of a

rider

Step 4.2: IF best cost for x< best cost for xnew, THEN

set x=xnew and go to step 4.5, otherwise, go to step 4.3

END IF

Step 4.3: p= exp(cost xnew – cost x)/T*Cost x

Step 4.4: Accept x= xnew by p -probability and reject- and x= xnew by (1-p) and go to

step 4.5

Step 4.5: Cost calculation for xnew

Step 4.6: IF Cost for xnew > best cost, THEN

set bestsol= xnew

END IF

Step 4.7: Reducing the temperature: set T = alpha*T0 (0<alpha<1)

Step 5: Set It=It+1 and go to step 4

Step 6: END

Figure 8. SA algorithm

Step 0: Initialization:

Make vector “All” by concatenating routes returned in step 1 for vehicles and insert

-1 before the start position and after the end position of the route of each vehicle in

“All”

Step 1: Calculate the difference of each passenger’s travel time in the returned solution

and its travel time when delivered directly

For each passenger

Calculate the difference between the passenger’s travel time in the returned

solution and its travel time when delivered directly. Save the value as 𝑑𝑖𝑓[𝑖].
End For

Step 2: Separate passengers with the most increase in travel times into disjoint clusters

 For the first n1 customers with the greatest 𝑑𝑖𝑓[𝑖]
Insert -1 before and after the position of the passenger’s origin and

destination in vector “All”

 End For

Step 3: Find the passengers with the least travel times and the most distance between

their origin and destination points

Find the n2 passengers with the greatest values of 𝑐𝑜𝑠𝑡𝐷 × 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜𝑖. 𝑑𝑖) −
𝑐𝑜𝑠𝑡𝑇 × 𝑑𝑖𝑓[𝑖]

Step 4: Separate passengers found in the last step into disjoint clusters

For each passenger found in step 3:

Insert “-1” before and after the position of the passenger’s origin and

destination in vector “All”

End For

Step 5: In the routes returned by the SA algorithm, find the n3 arcs with the greatest

distance between the two edges of the arc

Step 6: Cut the routes by inserting “-1” between the two edges of each arc found in step 5

Step 7: Eliminate one of each two -1 right after each other in vector “All”

Step 8: Consider the points between each two “-1” in vector “All” as a separate cluster

and save the order of points visited in each cluster the same as the order of points

in vector “All”

Step 9: Return the clusters and the order of points in each cluster.

END

Figure 9. Clustering algorithm

II.5 EXAMPLE

A hypothetical rail transit line that has four stations fitted to urban and suburban conditions was

considered to examine and evaluate the efficiency of the algorithm. In this example, a transit

system with three buses and 30 riders (passengers) has been considered. The time window for

passengers was assumed to be 45 minutes, and 15 seats were assigned to each bus. Two different

networks (with and without transfer points) were designed to evaluate the performance of

transfer points in the on-demand network design problem. The total cost of each bus per

kilometer (including the bus driver and the vehicle traveling costs) has been calculated as 7.31

$/km [79] and the value of time for each passenger has been calculated as $20 per hour [80].

The proposed algorithm was coded in C++, and the Formulation (1) and the VRPDD models

were solved by CPLEX 12.3. Figure 10 shows the origin of riders and drivers including the

stations, and Figure 11 represents the destination of riders including the stations.

Figure 10. Origin locations of riders and drivers including the transfer stations

Figure 11. Destination locations of riders including the transfer stations

Table 3 and 4 show the results of proposed models for two different scenarios with transfer

points and without transfer points. An essential consideration in the model when factoring in the

transfer point is the timing of the second bus's departure such that the simultaneous arrival of

both buses at the transfer point is ensured. In Table 3, the stations are denoted using the letter 's'.

The results after running each model 10 times show that the best total cost for the case without

transfer points is $454.60 and for the case with transfer point is $442.20. In addition, Table 5

provides a comparison between the final results of the two models to figure out the effect of

considering transfer points in the network

Figures 12 and 13 show the itineraries of the matched buses and riders with and without

considering transfer points. One noticeable outcome in the model that considered transfer points

was that the second bus started its travel later, but it arrived to the transfer point with the third

bus at the same time. In this way, the waiting time of the riders can be decreased in a way that

reduces the total costs in the model.

Table 3. Results of algorithms for the proposed example with transfer points

Bus Route Cost

B1 R9 R6 R29 R28 R15 R17 R22 R3 R1 R23 R13 R4 R20

191.753

B2 R5 R11 R27 R24 R14 R18 R30 R10 R12 R8 S R2 R16 R7 175.478

B3 R25 R21 S R26 R19 75.0115

Table 4. Results of algorithms for the proposed example without transfer points

Bus Route Cost

B1 R9 R6 R29 R28 R15 R17 R22 R3 R1 R23 R13 R4 R20 191.75

B2 R5 R24 R25 R21 R8 R2 R16 R7 133.67

B3 R11 R27 R14 R18 R30 R10 R12 R26 R19 129.23

Table 5. Comparison of results of algorithms for the two cases

 Fleet

Total traveled

distance without

considering transfer

points (km)

Total traveled

distance with

considering transfer

points (km)

Total cost without

considering transfer points

($)

Total cost with

considering transfer

points ($)

B1 22.2 22.2 191.8 191.8

B2 15.7 19.5 133.7 175.5

B3 15.4 9.4 129.2 75.0

Total 454.653 442.243 454.6 442.2

Figure 12 (a). Itineraries of the matched buses and riders in the solution with considering

the transfer points (bus 1)

Figure 12 (b). Itineraries of the matched buses and riders in the solution with considering

the transfer points (bus 2)

Figure 12 (c). Itineraries of the matched buses and riders in the solution with considering

the transfer points (bus 3)

Figure 13 (a). Itineraries of the matched buses and riders in the solution without

considering the transfer points (bus 1)

Figure 13 (b). Itineraries of the matched buses and riders in the solution without

considering the transfer points (bus 2)

Figure 13 (c). Itineraries of the matched buses and riders in the solution without

considering the transfer points (bus 3)

II.6 CONCLUSION

This study focused on improving on-demand transit systems. Emerging advanced

communication technologies have opened new doors and allowed public transportation systems

to incorporate intelligent approaches that boost their efficiency and performance. On-demand

services have already demonstrated noticeable efficiency gains compared to conventional fixed-

route transit services. However, applying these emerging technologies to on-demand services

may drive even greater improvements in performance and efficiency while reducing total travel

costs. This study developed an algorithm for an optimal on-demand network design

accommodating transfer points for the users. This integrated design approach included two main

challenges: a complex structure in which passenger boarding, alighting, and transferring

activities occur simultaneously at a single station and the joint network design and passenger-

route assignment which ostensibly expands the solution space. The proposed optimization

problem considered time windows and simultaneous pickup/delivery in its constraints. As the

results of an example on a hypothetical network showed, an algorithm that considers transfer

points can save up to 2.73% of total costs in the whole transit system.

Future studies can add multi-modal features to the model by using various modes of

transportation with different characteristics. Considering other algorithms and solving methods

for the model may also increase the quality of the final results.

REFERENCES

1. Dailey, D.J., D. Loseff, and D. Meyers, Seattle smart traveler: dynamic ridematching on

the World Wide Web. Transportation Research Part C: Emerging Technologies, 1999.

7(1): p. 17-32.

2. Ordóñez, F. and M.M. Dessouky, Dynamic Ridesharing, in Leading Developments from

INFORMS Communities. 2017. p. 212-236.

3. Mohamed, M.J., T. Rye, and A. Fonzone, Operational and policy implications of

ridesourcing services: A case of Uber in London, UK. Case Studies on Transport Policy,

2019. 7(4): p. 823-836.

4. Liu, X., et al., A passenger-to-driver matching model for commuter carpooling: Case

study and sensitivity analysis. Transportation Research Part C: Emerging Technologies,

2020. 117: p. 102702.

5. Ashkrof, P., et al., Understanding ride-sourcing drivers' behaviour and preferences:

Insights from focus groups analysis. Research in Transportation Business &

Management, 2020: p. 100516.

6. Nickkar, A., Y.-J. Lee, and S. Dadvar, Impact of Automated Vehicles on Optimal

Demand-Responsive Feeder Transit Network Design. International Journal of Urban

Planning and Smart Cities (IJUPSC), 2021. 2(1): p. 84-100.

7. Nickkar, A., Y.-J. Lee, and M. Meskar. Sensitivity analysis for the optimal automated

demand responsive feeder transit system. in 17th International Conference on Automated

People Movers and Automated Transit Systems. 2020. American Society of Civil

Engineers Reston, VA.

8. Nickkar, A., Y.-J. Lee, and M. Meskar, Developing an optimal algorithm for demand

responsive feeder transit service accommodating temporary stops. Journal of Public

Transportation, 2022. 24: p. 100021.

9. Cordeau, J.-F. and G. Laporte, The dial-a-ride problem: models and algorithms. Annals

of Operations Research, 2007. 153(1): p. 29-46.

10. Braekers, K., A. Caris, and G.K. Janssens, Exact and meta-heuristic approach for a

general heterogeneous dial-a-ride problem with multiple depots. Transportation Research

Part B: Methodological, 2014. 67: p. 166-186.

11. Masson, R., F. Lehuédé, and O. Péton, The Dial-A-Ride Problem with Transfers.

Computers & Operations Research, 2014. 41: p. 12-23.

12. Lee, Y. J., & Nickkar, A. (2021). U.S. Patent Application No. 17/017,084.

13. Lee, Y.-J., et al., Development of an Algorithm for Optimal Demand Responsive

Relocatable Feeder Transit Networks Serving Multiple Trains and Stations. Urban Rail

Transit, 2019. 5(3): p. 186-201.

14. Berbeglia, G., J.-F. Cordeau, and G. Laporte, Dynamic pickup and delivery problems.

European Journal of Operational Research, 2010. 202(1): p. 8-15.

15. Masoud, N. and R. Jayakrishnan, A real-time algorithm to solve the peer-to-peer ride-

matching problem in a flexible ridesharing system. Transportation Research Part B:

Methodological, 2017. 106: p. 218-236.

16. Masoud, N. and R. Jayakrishnan, A decomposition algorithm to solve the multi-hop Peer-

to-Peer ride-matching problem. Transportation Research Part B: Methodological, 2017.

99: p. 1-29.

17. Herbawi, W. and M. Weber. The ridematching problem with time windows in dynamic

ridesharing: A model and a genetic algorithm. in 2012 IEEE Congress on Evolutionary

Computation. 2012.

18. Stiglic, M., et al., The benefits of meeting points in ride-sharing systems. Transportation

Research Part B: Methodological, 2015. 82: p. 36-53.

19. Agatz, N.A.H., et al., Dynamic ride-sharing: A simulation study in metro Atlanta.

Transportation Research Part B: Methodological, 2011. 45(9): p. 1450-1464.

20. Boyacı, B., K.G. Zografos, and N. Geroliminis, An optimization framework for the

development of efficient one-way car-sharing systems. European Journal of Operational

Research, 2015. 240(3): p. 718-733.

21. Tafreshian, A. and N. Masoud, Trip-based graph partitioning in dynamic ridesharing.

Transportation Research Part C: Emerging Technologies, 2020. 114: p. 532-553.

22. Silva, B.C.H., et al., Quota travelling salesman problem with passengers, incomplete ride

and collection time optimization by ant-based algorithms. Computers & Operations

Research, 2020. 120: p. 104950.

23. Wang, X., N. Agatz, and A. Erera, Stable Matching for Dynamic Ride-Sharing Systems.

Transportation Science, 2018. 52(4): p. 850-867.

24. Ma, R., et al., A novel algorithm for peer-to-peer ridesharing match problem. Neural

Computing and Applications, 2019. 31(1): p. 247-258.

25. Aydin, O.F., I. Gokasar, and O. Kalan, Matching algorithm for improving ride-sharing by

incorporating route splits and social factors. PLOS ONE, 2020. 15(3): p. e0229674.

26. Di Febbraro, A., E. Gattorna, and N. Sacco, Optimization of Dynamic Ridesharing

Systems. Transportation Research Record, 2013. 2359(1): p. 44-50.

27. Nourinejad, M. and M.J. Roorda, Agent based model for dynamic ridesharing.

Transportation Research Part C: Emerging Technologies, 2016. 64: p. 117-132.

28. Kucharski, R. and O. Cats, Exact matching of attractive shared rides (ExMAS) for

system-wide strategic evaluations. Transportation Research Part B: Methodological,

2020. 139: p. 285-310.

29. Nourinejad, M. and M. Ramezani, Ride-Sourcing modeling and pricing in non-

equilibrium two-sided markets. Transportation Research Part B: Methodological, 2020.

132: p. 340-357.

30. Balardino, A.F. and A.G. Santos. Heuristic and Exact Approach for the Close Enough

Ridematching Problem. 2016. Cham, Springer International Publishing.

31. Najmi, A., D. Rey, and T.H. Rashidi, Novel dynamic formulations for real-time ride-

sharing systems. Transportation Research Part E: Logistics and Transportation Review,

2017. 108: p. 122-140.

32. Yang, H., et al., Optimizing matching time interval and matching radius in on-demand

ride-sourcing markets. Transportation Research Part B: Methodological, 2020. 131: p.

84-105.

33. Kumar, P. and A. Khani, An algorithm for integrating peer-to-peer ridesharing and

schedule-based transit system for first mile/last mile access. Transportation Research Part

C: Emerging Technologies, 2021. 122: p. 102891.

34. Ghoseiri, K., A. Haghani, and M. Hamed, Real-time rideshare matching problem. 2010,

Mid-Atlantic Universities Transportation Center.

35. Qian, X., et al., Optimal assignment and incentive design in the taxi group ride problem.

Transportation Research Part B: Methodological, 2017. 103: p. 208-226.

36. Peng, Z., et al., Stable ride-sharing matching for the commuters with payment design.

Transportation, 2020. 47(1): p. 1-21.

37. Özkan, E., Joint pricing and matching in ride-sharing systems. European Journal of

Operational Research, 2020. 287(3): p. 1149-1160.

38. Xia, J., et al., A New Model for a Carpool Matching Service. PloS one, 2015. 10(6): p.

e0129257-e0129257.

39. Xu, H., F. Ordóñez, and M. Dessouky, A traffic assignment model for a ridesharing

transportation market. Journal of Advanced Transportation, 2015. 49(7): p. 793-816.

40. Xu, H., et al., Complementarity models for traffic equilibrium with ridesharing.

Transportation Research Part B: Methodological, 2015. 81: p. 161-182.

41. Schuetz, P. and A. Caflisch, Multistep greedy algorithm identifies community structure in

real-world and computer-generated networks. Physical Review E, 2008. 78(2): p.

026112.

42. Wolfler Calvo, R., et al., A distributed geographic information system for the daily car

pooling problem. Computers & Operations Research, 2004. 31(13): p. 2263-2278.

43. Duan, R. and S. Pettie, Linear-time approximation for maximum weight matching.

Journal of the ACM (JACM), 2014. 61(1): p. 1-23.

44. Bei, X. and S. Zhang. Algorithms for trip-vehicle assignment in ride-sharing. in Thirty-

Second AAAI Conference on Artificial Intelligence. 2018.

45. Chen, W., et al., A Ride-Sharing Problem with Meeting Points and Return Restrictions.

Transportation Science, 2019. 53(2): p. 401-426.

46. Wang, X., M. Dessouky, and F. Ordonez, A pickup and delivery problem for ridesharing

considering congestion. Transportation Letters, 2016. 8(5): p. 259-269.

47. IRS, 2021 Standard Mileage Rates. 2020, International Foundation of Employee Benefit

Plans.

48. Transparency Market Research, Automative Market Research Report. 2019.

49. Rayle, L., et al., Just a better taxi? A survey-based comparison of taxis, transit, and

ridesourcing services in San Francisco. Transport Policy, 2016. 45: p. 168-178.

50. Shaheen, S.A., N.D. Chan, and T. Gaynor, Casual carpooling in the San Francisco Bay

Area: Understanding user characteristics, behaviors, and motivations. Transport Policy,

2016. 51: p. 165-173.

51. Huang, D., et al., A two-phase optimization model for the demand-responsive customized

bus network design. Transportation Research Part C: Emerging Technologies, 2020. 111:

p. 1-21.

52. Lyu, Y., et al., CB-Planner: A bus line planning framework for customized bus systems.

Transportation Research Part C: Emerging Technologies, 2019. 101: p. 233-253.

53. Calvo, R.W. and A. Colorni, An effective and fast heuristic for the Dial-a-Ride problem.

4OR, 2007. 5(1): p. 61-73.

54. Tong, L., et al., Customized bus service design for jointly optimizing passenger-to-vehicle

assignment and vehicle routing. Transportation Research Part C: Emerging Technologies,

2017. 85: p. 451-475.

55. Psaraftis, H.N., A Dynamic Programming Solution to the Single Vehicle Many-to-Many

Immediate Request Dial-a-Ride Problem. Transportation Science, 1980. 14(2): p. 130-

154.

56. Psaraftis, H.N., An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride

Problem with Time Windows. Transportation Science, 1983. 17(3): p. 351-357.

57. Sexton, T.R. and L.D. Bodin, Optimizing Single Vehicle Many-to-Many Operations with

Desired Delivery Times: I. Scheduling. Transportation Science, 1985. 19(4): p. 378-410.

58. Sexton, T.R. and L.D. Bodin, Optimizing Single Vehicle Many-to-Many Operations with

Desired Delivery Times: II. Routing. Transportation Science, 1985. 19(4): p. 411-435.

59. Dumas, Y., J. Desrosiers, and F. Soumis, The pickup and delivery problem with time

windows. European Journal of Operational Research, 1991. 54(1): p. 7-22.

60. Baldacci, R., E. Bartolini, and A. Mingozzi, An Exact Algorithm for the Pickup and

Delivery Problem with Time Windows. Operations Research, 2011. 59(2): p. 414-426.

61. Bettinelli, A., A. Ceselli, and G. Righini, A branch-and-price algorithm for the multi-

depot heterogeneous-fleet pickup and delivery problem with soft time windows.

Mathematical Programming Computation, 2014. 6(2): p. 171-197.

62. Cherkesly, M., et al., Branch-price-and-cut algorithms for the pickup and delivery

problem with time windows and multiple stacks. European Journal of Operational

Research, 2016. 250(3): p. 782-793.

63. Cherkesly, M., G. Desaulniers, and G. Laporte, Branch-Price-and-Cut Algorithms for the

Pickup and Delivery Problem with Time Windows and Last-in-First-Out Loading.

Transportation Science, 2015. 49(4): p. 752-766.

64. Ghilas, V., E. Demir, and T. Van Woensel, An adaptive large neighborhood search

heuristic for the Pickup and Delivery Problem with Time Windows and Scheduled Lines.

Computers & Operations Research, 2016. 72: p. 12-30.

65. Lee, Y.-J. and A. Nickkar, Optimal Automated Demand Responsive Feeder Transit

Operation and Its Impact. 2018.

66. Lu, Q. and M. Dessouky, An Exact Algorithm for the Multiple Vehicle Pickup and

Delivery Problem. Transportation Science, 2004. 38(4): p. 503-514.

67. Ropke, S. and J.-F. Cordeau, Branch and Cut and Price for the Pickup and Delivery

Problem with Time Windows. Transportation Science, 2009. 43(3): p. 267-286.

68. Torkjazi, M. and N. Huynh, Effectiveness of Dynamic Insertion Scheduling Strategy for

Demand-Responsive Paratransit Vehicles Using Agent-Based Simulation. Sustainability,

2019. 11(19): p. 5391.

69. van Engelen, M., et al., Enhancing flexible transport services with demand-anticipatory

insertion heuristics. Transportation Research Part E: Logistics and Transportation

Review, 2018. 110: p. 110-121.

70. Gong, M., et al., Transfer-based customized modular bus system design with passenger-

route assignment optimization. Transportation Research Part E: Logistics and

Transportation Review, 2021. 153: p. 102422.

71. Mahéo, A., P. Kilby, and P.V. Hentenryck, Benders Decomposition for the Design of a

Hub and Shuttle Public Transit System. Transportation Science, 2019. 53(1): p. 77-88.

72. Guo, R., W. Guan, and W. Zhang, Route Design Problem of Customized Buses: Mixed

Integer Programming Model and Case Study. Journal of Transportation Engineering, Part

A: Systems, 2018. 144(11): p. 04018069.

73. Wang, H., Routing and Scheduling for a Last-Mile Transportation System. Transportation

Science, 2019. 53(1): p. 131-147.

74. Wu, J., et al., A modular, adaptive, and autonomous transit system (MAATS): A in-motion

transfer strategy and performance evaluation in urban grid transit networks.

Transportation Research Part A: Policy and Practice, 2021. 151: p. 81-98.

75. Chen, X., et al., Customized bus route design with pickup and delivery and time windows:

Model, case study and comparative analysis. Expert Systems with Applications, 2021.

168: p. 114242.

76. Dou, X., Q. Meng, and K. Liu, Customized bus service design for uncertain commuting

travel demand. Transportmetrica A: Transport Science, 2021. 17(4): p. 1405-1430.

77. Wang, L., et al., Integrating Passenger Incentives to Optimize Routing for Demand-

Responsive Customized Bus Systems. IEEE Access, 2021. 9: p. 21507-21521.

78. Ma, H., M. Yang, and X. Li, Integrated optimization of customized bus routes and

timetables with consideration of holding control. Computers & Industrial Engineering,

2023. 175: p. 108886.

79. Litman, T., Evaluating Public Transit Benefits and Cost, in Best Practices Guidebook.

2018.

80. Victoria Transport Policy Institute, Transportation Cost and Benefit Analysis II – Travel

Time Costs 2020.

	Developing Optimal Peer-to-Peer Title
	Developing Optimal Peer-to-Peer Ridesharing Strategies

Accessibility Report

		Filename:

		Developing Optimal Peer-to-Peer Ridesharing Strategies_202308_REM.pdf

		Report created by:

		Nellie Kamau, Catalog Librarian, Nellie.kamau.ctr@dot.gov

		Organization:

		DOT, NTL

 [Personal and organization information from the Preferences > Identity dialog.]

Summary

The checker found problems which may prevent the document from being fully accessible.

		Needs manual check: 0

		Passed manually: 2

		Failed manually: 0

		Skipped: 1

		Passed: 25

		Failed: 4

Detailed Report

		Document

		Rule Name		Status		Description

		Accessibility permission flag		Passed		Accessibility permission flag must be set

		Image-only PDF		Passed		Document is not image-only PDF

		Tagged PDF		Passed		Document is tagged PDF

		Logical Reading Order		Passed manually		Document structure provides a logical reading order

		Primary language		Passed		Text language is specified

		Title		Passed		Document title is showing in title bar

		Bookmarks		Passed		Bookmarks are present in large documents

		Color contrast		Passed manually		Document has appropriate color contrast

		Page Content

		Rule Name		Status		Description

		Tagged content		Passed		All page content is tagged

		Tagged annotations		Passed		All annotations are tagged

		Tab order		Passed		Tab order is consistent with structure order

		Character encoding		Skipped		Reliable character encoding is provided

		Tagged multimedia		Passed		All multimedia objects are tagged

		Screen flicker		Passed		Page will not cause screen flicker

		Scripts		Passed		No inaccessible scripts

		Timed responses		Passed		Page does not require timed responses

		Navigation links		Passed		Navigation links are not repetitive

		Forms

		Rule Name		Status		Description

		Tagged form fields		Passed		All form fields are tagged

		Field descriptions		Passed		All form fields have description

		Alternate Text

		Rule Name		Status		Description

		Figures alternate text		Passed		Figures require alternate text

		Nested alternate text		Passed		Alternate text that will never be read

		Associated with content		Passed		Alternate text must be associated with some content

		Hides annotation		Passed		Alternate text should not hide annotation

		Other elements alternate text		Failed		Other elements that require alternate text

		Tables

		Rule Name		Status		Description

		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot

		TH and TD		Passed		TH and TD must be children of TR

		Headers		Failed		Tables should have headers

		Regularity		Failed		Tables must contain the same number of columns in each row and rows in each column

		Summary		Failed		Tables must have a summary

		Lists

		Rule Name		Status		Description

		List items		Passed		LI must be a child of L

		Lbl and LBody		Passed		Lbl and LBody must be children of LI

		Headings

		Rule Name		Status		Description

		Appropriate nesting		Passed		Appropriate nesting

Back to Top
