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PREF.~CE 

This Mmual was written to provide practical assista11Ce ond guidelines to structural 

engineers engaged in the design of plastics and reinforced plastics structural compo

nents. In the first phase of the work, the structural ~ior of plastics-based 

m,1terials is chorocterized in general; the significant types of structural plastics in 

current use ere listed and described; and practical design criteria ore synthesized and 

proposed for use in the design of structural plastics. Design approaches that lead to the 

mos~ efficient use of plastics for structural applications ore described and illustrated by 

design exan•oles. These ore presented in Volume I of the Manual, published in 1979 by 

the United States Governm,;:nt Printing Office, and available for distribution through 

ASCE. 

This volume presents the results of Phases 2 and 3 in the development of the Manual, 

consisting of Chapters 5 through I 0. Chapter 5 presents a brief review of fundamental 

concepts of structural behavior. Chapters 6 through 9 provide quantitative methods for 

analysis and design of plates, beams and axial stressed members, sandwich components 

and ~hin rings and shells that are fabricated from plastic materials with either isotropic 

or orthotropic elastic properties. Chapter IO presents general information about the 

fire resistunce of structural plastics and th~ tests and standards used for evaluating this 

aspect of their behavior. These chapters complete the Structural Plastics Design 

Manual. 

The :Amuol is intended as a basic text for engineers interested in o wide variety of 

structural applications for plastics; in porticular, the applications discussed include 

those commonly used in building construction, transportation structure~ and vehicles, 

process industries, sanitary facilities, and marine structures and vessels, It is assumed 

that engineers and structural designers using the Manual have a basic knowledge of 

strength of materials, but do not necessarily ho'lle a background in plastics and 

reinforced plastics. 

The Monuol hos been prepared by Simpson Gumpertz & Heger Inc., of Cambridge, 

Massachusetts, under a research ond development contract from the ASCE, with the 

Society's Structural Plastics Research Council monitoring the effort, The undersigned, 

a Senior Principal in the consulting engineering firm of Simpson Gumpertz & Heger Inc., 

developed the conceptual outline for the content of the Manual, and is principal author 
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of Chapters 4, 5, 6, 7 and 9. Richard E. Chambers, Senior Associate, Simpson 

Gumpertz & 1-teger, Inc., is principal author of Chapters 2, 3 and 8. Albert G. H. Dietz, 

Professor Emeritus, Deportment of Architecture and Planning, Massachusetts Institute 

of TechnolQgy, was re.toined as o consultant to assist with certain portions of the 

Manual and is principal outrur of Chapters I and 10. The text was typed by Cynthia 8. 

Topping and other word processing staff at Simpson Gvmpertz & l-leger Inc. The 

illustrations were prepared by the drafting deportment at Simpson Gumpertz & Heger 

Inc. 

The financial support and technical review of the ASCE Structural Plastics Re~~arch 

Council and its task committee, whiC'h hos mode possible the development of the 

Manual, is gratefully acknowledged. 1-bward Browne, chairman of the Council, was an 

early initiator of the project to develop a Structural Plastics Design Manual and hos 

been, over the yecu, the prime mover in the effort to obtain financial support. Dr. 

Timothy Fowler, original chairman of the Council's task committee for the project, and 

Eugene Gray, current chairman have mode volooble suggestions on the scope, organiza

tion, and content of the Manual - as hove other members of the committee. 

Financial support far the project has been provided to the ASCE from the U.S. 

Deportment of Housing and Urbon Development, the U.S. Departmen• of Transporta

tion, Monsanto Co., Owens-Corning Fiberglas Corporation, Manufacturing Chemists' 

Association, lnr., Dow Chemical U.S.A., Rohm and 1-ba., Company, and E.I. duPont de 

Nemours & Co. Inc. 

The development of a proctiC<JI plastics design manual specifiC<Jlly designed to meet the 

needs of structural engineers is the first project to result from the efforts of the ASCE 

Structural Plastics Research Council. The Manual wus initiated to accomplish one of 

the Council's primary objec!ives - to further the rational use of plastics in structural 

applications. It is hoped that the Manual will serve as a guide that indicates the type of 

structural design data needed by structural engineers for rational design with structurol 

plastics, as well as a catalyst to foster increased cooperation between industry, 

govemment, cwld the engineering profession in behalf of the future work of the Council. 

Frank J. Heger, ScO, P.E., F.ASCE 
Simpson Gumpertz & Heger Inc. 
Cambridge, Massachusetts 

September 1981 
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NOTATION - Ompter 5 

a diameter of hole; distance from concentrated load to support; long 

radius of ellipse; crack length; dimensions 

af crack length at failure 

A section area 

An section area of port n 

AP area encloSEd by the centerline of a closed thin-wall section 

Aw section area of web (l,r:, or box beams) 

b, bf' bw' b
0 

width; width of flange; width of web, wk.Ith of port n 

b 

C 

C 

c-, , C 
- m 

C r 

C s 

d 

D 

DLF 

spacing between holes; distance to concentrated load from support; 

short radius of ellipse; dimension 

transformed width used in transformed section 

constant coefficient 

dimension; damping coefficient 

effective load (or force) coefficient, effective moss coefficient 

critical dompincJ coefficient 

shape factor for maxim•Jm shear stress 

dimension; reduced width between notches (Fig. 5-9) 

overall width without notches (Fig. S-9) 

dynamic load foctor 
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e 

E 

E 
V 

f 

F, F 
e 

G 

C 

h 

H 

strain in x and y directions 

strain; eccentricity 

elastic modulus 

viscoelastic modulus (Chapters 2 and 3) 

elastic modulus in x direction 

elastic modulus in materials direction I, or 2, for normol str~ss in 

direction I, or 2 

natural frequency of vibration, correction factor for stress inten

sity 

dynamically applied force, effective dynamically applied force 

force at time t 

force at time I 

shear modulus 

~r modulus for shear in plane of materials axes I and 2 

energy release rate when cracks extend 

height of rectangle; height of notch 

horizontal reaction on loading diagram 

moment of inertia of section 

moment of inertia about x and y axes, respectively 

moment of inertia about centroidol axis, a'ld about centroidal axis 

parallel to x axis of part n 
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J 

k 

K 

rnoment of inertia about u and v axes, respectively 

moment of inertia about principal axis, upx 

moment ot i •ertia about axes I and 2, respectively, in member 

cross section 

product of inertia about axes x and y, and product of inertia about 

centroidal axes parallel to axes x and y 

polar moment of inertia 

torsion constant for cross section 

part generalized designation; stiffness (spring constant) 

stiffness, or spring constant 

stress intensity factors 

Km' I<' v• Ka coefficients for bending, shear ll'ld axial deflections, reSJ)f!Ctively 

Kt, Ktx' Ktg stress concentration factor; stress concentration factor for stress 

in direction of x-axis; stress concentration factor for nominal 

stress on gross section 

Kc' Kie, critical stress intensity factors for stoticolly applied load 

KIie' KIiie 

Kid critical stress intensity factor for dynomicaliy applied load 

L member length 

LP length of periphery of closed tubular sec~ion 

m dimension to centroid from reference axis 
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M 

M 
s 

n 

N 

N 
X 

p 

p 
er 

Q 
sy 

r 

r 
0 

rx' ry 

r, R 

bend il'l(J moment 

bending moment due to load, P 

bending moment in spring 

bending moment at a point along reference axis x about centroidal 

axe.i 1-1 c.nd 2-2, respt.ctivelt, '.n member section 

moss; effective moss 

modular ratio, E /E ; dimension; general port designation n V 

axial force per unit width 

axial force in x direction 

concentrated lood 

critical '>uckling lood 

shear floN at centroidal axis 1-1 (usually maxim1Jm for section) 

first moment of the area of section above (or below) a distance y 

from the centroidal axis about the centroidal axis 

first moment of the entire area above (or below) centroidol axi~ I

I about axis 1-1 

radius of notch or fillet 

polar radius of gyration 

r"Xlius of gyration about x and y ,1xes 

radial distance from centr'>id of section to point stressed in shear 

due to twisting; and maximum radial distance 
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R 

s 

OIJTer radius of circular sectiO'l; reaction on loading diagram 

section modulus 

section modulus for top and bottom of section with respect to x
0 

axis 

section modulus with respect to centroidol axes I and 2, respec

tively 

t, tf, tw, tn thickness; thickness of flange; thickness of web; thickness c,f part n 

t 

T 

V 

w 

w 

X 

x, y 

time 

torsional reaction in loading diagram; natural period of vibration 

torque at point along x axis 

transverse shear force 

transverse shear force at point along x axis for bending about 

centroidol axis 1-1, 2-2 

uniformly distributed load per unit length 

total uniformly distributed load 

distance in direction of x axis, from o reference point 

distance in direction of x axis from reference y axis to centroid; 

some in direction of y axis 

distance form y axis parallel to x axis to centroid of area, and 

distance from x axis parallel toy axis to centroid of area 
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y, z distance in y, and x axes directions, respectively, fron, section 

centroid to another point in a member cross sect ion 

Yi initial displacement in y direction 

Ymox' zmc.x dist-:JnCe in y and z axes directions, respectively, from section 

cPntroid to the extreme point on member cross section 

a 

y 

6, 6 
0 

coefficient in equation for twisting shear; angle of principal normol 

stress with beam axis 

sheor strain 

elastic surface energy of material when crock extends 

deflection, initial deflection 

6 m' 6 v' 6 
0 

bending, shear and axial deflections, respectively 

6 
s 

6 , 6 
X y 

A 

n 

w 

static deflection 

deflection in direction of x, and y oxes, respectively 

lateral deflection of frame 

Poisson's Ratio 

Poisson's Ratio for stress in materials direction I and strain in 

direction 2 

percent of critical damping 

circular natural frequency of harmonic vibration 

circular forcing freqvency of harmonic vibration 

total angle of twist due to to,que 
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p 

CJ 

Jn.ax' 0 nom 

T 

g 

coefficient for estimating natural frequency 

curvature (change in slope) 

radius of curvature 

radius of curvature associated with '1x 
I 

normal stress 

maximum normal stress; nominal normal stress 

stress in direction x 

critical buckling stress in direction x 

nominal tensile failure stress in direction x 

ultimate strength of material in direction x 

shear stress 

shear stress at point along x axis, and maximum shear stress at this 

point 

shear stress at distance r from centroid due to torque at a point 

along x axis 

angle of axis, U, from reference axis, x; slope; angle of twist per 

unit length due to torque; angle of rotation per unit length 

angle of principal axis, UP, from reference axis x 

initial rotation 

slope of e'1stic beam axis at point x, angle of twist per unit length 

at point x 
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OiAPTER S - R.N>AMENT ALS OF ELASTIC RESPONSE OF STRUCTURES 

F.J. Heger 

S. I INTRODUCTION 

The Chapter summarizes certain basic concepts and important geometric proper

ties of 11.embers that define elastic structural behavior. These should be familiar 

to the practicing structural engineer, but for reoders less familiar with conven

tional structural practice, they should serve as a review and summary of bosics 

needed to understand structural onalysi~ and desigr. methods :,resented in 

subsequent chapters. First, the stress resultants that represent the eftects of 

applied loads on members in a structural system ore defined. Determination of 

stress resultants is illustrated by a table covering certain common beam coses, 

as well as by solving on example problem. Next, important geometric properties 

of a member cross section are described, and equations are given for determining 

these sectional properties. Finally, conventional elastic ''beom theory" is 

described and used to show how stresses ond deflections are determined from 

stress re5'Jltants, member section properties and member support conditions. In 

later chapters, these concepts are employed to determine stresses and deflec

tior1s in common types of structural members such as plate~, columns, tension 

members, beams and she I ls. 

Tht-- Chapter also presents a summary of the effects of notches, holes and other 

changes in geometry on structural behavior of plastics which is another topic of 

critical importance for design. These produce sharply increased local stresses, 

called stress concentrations, with on increased potential for brittle fracture in 

plastics materials. Next, the concepts of non-linear response and buckling are 

introduced. These ore needed to determine effects of large deformations end 

instability o, the behavior and design of practical members. The problem of 

brittle fracture is further examined in an introductory discussion of fracture 

toughness and the effects of flaws in the presence of tension. Finally, o brief 

discussion of structural vibration is presented to fomiliurize the reoder with the 

effects of rapidly applied loads. 
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S.2 STRESS RESULT ANTS 

When a system of loads is applied tom assembly of beams and columns, as shown 

Idealized in Fig. 5-1, the members resist these loads and transfer them to the 

structural supports by bending and extension. Such bending and extension 

produces internal stresses whose overall effects at any cross section are termed 

the stress resultants at that section. Stress resultants that ore considered in this 

Chapter are bending moments, Mx I and Mx2, thrust, "lx, shears Vx I and Vx2, and 

twisting moment, TX, as shown in Fig. 5-1. The planes in which these stress 

resultants act are also shown in Fig. 5-1. The concepts that ore explained here 

with respect to linear members may also be applied to more complex systems of 

stress resultants that occur in two and three dimensional components like plates 

and ~hells. These are discussed in Chapters 6 md 9. 

Statically DP.terminate and Indeterminate Systems 

Stress resultants are determined from the lows of statics and compatibility of 

deformation at joints and supports. Two dimensional assemblies of linear 

members (hors) and supports are statically determinate when oil of the supoort 

reactions to a system of ~lied loads con be determined by the thr~ e<JJ<]tions 

of static equilibrium: 

• Sum of load o,d reaction components in both the x end y directions ore 
zero. (two equa·tions) 

• Svm of momen1s of loads and reactions about any point in the plane of 
forces is zero. (one equation) 

For three-dimensionol assemblies, six equations of equilibriu!Tt ore available: 

• Sum of load and reaction components in each of x, y and z dlrections ore 
zero. (three equations) 

• Sum of moments of load and reaction components in each of the x-y, x-2, 
and y-z planes about any point in the respective planes are zero. (three 
equations) 
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Exon.,le 5-1 illustrates the determination of stress r~sultonts for the statically 

determinate assembly of men,ben and <1pplied loaciings shown in f-"ig. 5-1. 

Whenever the number of unknown reaction components, er the interncl restraints 

at joints in a structure exceeds the number of unknowns needed to satisfy the 

static lows, thi.:: structure and its supports, or the structural assembly, is 

statically indetermino~P.. In such assemblies, stress resultants must be deter

mined so that deformations of joints between connected slructurol members 

ond/or between members and their supports are compatible. This requires a 

more complex molysis that is usually based on elastic bending theory. Methods 

of elastic analysis for indeterminate structurP.s ore well established and they are 

presented in many textbooks on structural theory. The most widely used 

methods for manual calculations ore the "Method of Superposition" (5.1) and the 

"Method of Moment nistribution" (5.1, 5.2). The most widely used method for 

computer analysis is the "stiffness method" (5.1, 5.3). Analysis methods frr 

indeterminate structures wil I not be treated in detail here. 

Determination of Stress Resultants 

Stress resultants in the form of shear and bending moment diagrams, or 

coefficients for maximum sheor, thrust and bending moment for many different 

loading cases and assemblies of beams, columns, and frames ore found in various 

llondbooks (5.2, 5.4, 5.5, 5.6, S. 7). A few of the most comrnol"' ctJses for 

individual beams ore given in Table 5-1 to ;11ustrate the type of information that 

is available and for use in the examples presented later. See (S.S) for more 

information about these coses and for other common coses. 

Stress resultants for more complex loading cases frequently CtJl'l be determined 

by resolving the total load to combino~ions of simpler coses, for which solutions 

for stress resultants ore ovailoble. The stress resultants for each loadinQ ca,e 

may be superimposed to obtain stress resultants for the combined cose. The law 

of superposition for elastic deformations is an important tt-,eorem that rnoy also 

be used to determine the stress resultants that produce compatible deformations 

at joints and supports in indeterminate structures (Method of Superposition (5.1 )). 
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I Example S-1: Determine the reactions and the maximum bending moment, twisting 
I momen~, sheor force and thrust force in the beam member 1-4 shown in Fig. 5-1, if w = I 
I kip/ft. (I kip= 1000 lbs), P3z = Sk, PJx = 4k, L = 20 ft., a= 8 ft., b = 12 ft., c = 2 ft.* 

I I. Determine reactions using equations of equilibrium, since the structure is "statically 
I determinate". 

I IFz = O Ri +R4 =
2
wL + PJz = I.Ox~0+5 = 25k I IMY = tM4 = O; 20R 1 = wl /2 + P Jzb = 1.0 x 20 /2 + 5 x 12 = 260'1< 

I R i = 13k; R4 = 25 -13 = 12k 

I tF x = 0 N 4 = P3x = 4.0k 

I IF y = 0 HI - H4 = O; HI = H4 I 1:Mz = tM4 = 0 20H 1 = 2P3x = 2 x 4; H1 = 0.4k; rl4 = 0.4k 

I IMx = 0 T 1 = 2PJz = 2 x 5 = IO'k 
I 2. Stress resultants at distance x from origin, point I; 

I V I = RI - wx; 0 < x < 8 V I = RI - wx - P3 I x 2 -- x 2z 
I Mxl =R 1x-wx /2 O~x.!,8 Mxl =R 1x-wx /2-P32(x-8) 

I V x2 = H 1 0 _<_ x _<_ 20 

I Mx2 = HI x - P Jxc 8 _<_ x ~ 20 Mx2 = HI x 
I 

n z ~ 

8 _<_ X _<_ 20 

8 _<_x _<_ 20 

I T = T I - P3 c = 0 8 _<_ x ~ 20 T -= TI 

I Nxx = N 1 - P Jx = -P 3x 8 _<_ x _<_ 20 Nxx = N 1 = 0 O _<_ x 1. 8 
I See Fig. 5- ; for plots of above equations giving variGtion of stress resultants with >.. 

I 3. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Maximum stress resultants 

Vxlmax is at dVx/dx = O. This occurs at x = 0, or at x = 20; Vxl mox = R 1 or R4 
Vxlmax = R1 = 13k 

M I is at dM I /dx = O; R I - wx - P3 = 0 x max x z 
Thus M I is at point of zero shear; x = 8' 

x max 2 M 1 = 13 x 8 - I x 8 /2 = 72'k x max 
V 2 = HI = 0.4k x max 
Mx2 max at dMxifdx = O, but there is no singular solution. At x = 8': 

Mx2 max = 8H 1 = 8 x 0.4 = 3.2'k, or 

M 2 = 8H I - 2P3 = 3.2 - 2 x 4 = -l♦.8'k x max x 
T = T1 = IO'k xx max 
N = -P3 = -4k, from x = 8' to x = 20' xx max x 

Note: I ft = o.3048m; I kip-force= 4.4481cN; I tt-kip = 1.356 kN-m; I kip/ft = 14.593 kN/m I 
I I • Design loads, design criteria (such as safety factors, load factors and capacity 
I reduction factors, etc.) and materials properties used in design examples ore for 

illustrative purposes only. The user of this Manual is cautioned to develop his own loads, 
I criteria and materials properties based on the requirements and conditions of his specific 
I design project. 
I 
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Table S.-1 

Stress Raultants In Beams cnt Columns 
for Cammon Loading md ~t Coses 

Member and ioacl Mciiilmum 1trt• rttultants Maximum bendlng,sheor, and axial 
arrangement• and location deflection coefficients*" 

Bending, Km sheor,Kv 
M @ • = V ~ X: N at>- = L/2 ot x = L/2 

I. [l@Om - uniformly distributed load 

, - t' WL L w 5 I (a) 0,L !111 ft I Oil T T ..,. l81i B 

-----
w w:.. L w 0,L 

I I 

lb) )111111111111 
♦ "'1{' 7 7 '.J8li 8 

- WL l=-• L ., 1T 0,L 

2, 8Nrn - coni:..,,trated I~ when a = b = L/2: 

ra p b Pob Pb I I 
(a) I 1 •-r 0 T 0 lift' 1j 

I 
4 h Po 

T L 

2Pa2t,2 Pb2 
0 when a = b = L/21 

~p 
b ."7 a ~(la• b) -

1 L 

bl I Pati2 ~F=• L 
0 I I 

~ -7 m 1j 

- Po2t, p 2 
7· L 7 (a• lb) L 

L L 

J. Column with axial load 

p~ A" p 
0 0 p 

·~ =#4' Pe ~tont 0 p e 

G· L 
a:: 

---------
~ 
• SN (5.5) fo, bending-I ond .,_ diagrams, equations of mon-,t, sho!I!,, and dellection t« 42 common 

.....,_, and load candi ♦I-

H Oefl« lion !!!!!!1~1 

Bendi,,q ,_fl«tion, a . I( 
Wll 

or I( 
Pl.3 

m mEI mTr 

Shew dPfl«tlen, av I< Wl Pl 
v~ or Km CA 

w 

AJlial .,.,..,,. •a . I< PL 
0 EA 
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Once the stress resultants that act ot various points along structural members 

ore determined, the designer con determine the expected member stresses and 

deflections when member sections and structural properties ore known, or he con 

proportion member sections to safely resist the applied stress resultants. I-low 

this is accomplished conceptually is presented in the nex1 two sections of this 

chapter. However, detailed explanations of design procedures for various types 

of members in actual components ore deferred to later chapters. 

Methods for determining the properties of cross sections that are either simple 

solid shapes, or assemblies of thin plates, ore presented in the next section. 

These section 1,,roperties, together with the stress resultants caused by applied 

loads, or environmental conditions, ore needed in the analysis for stresses and 

deflections for the many structural configurations considered in subsequent 

chapters. 

5.3 SECTION PROPERTES 

Section properties ore structural characteristics of members that ore defined by 

geometric properties of their cross sect ions. The principal section properties 

needed for design of mo~t columns, tension members, betims, and ribbed panels 

ore summorizP.d in Tobie S-2. Member cross sections used for such components 

usually hove at least one axis of symmetry and this results in :.impler behavior in 

flexurfl!, compression and buckling than occurs with unsymmet.-ical cross 

sections. Common sections used for plastics component~ ore illustrated in 

Fig. S-2. 

Symmetrical Sections 

The generalized cross section shown in Table 5-2 has one axis of symmetry. 

Various reference oxes and dimensional parameters that relate to the calculation 

of the section prop,!rties are shown. The x - y oxes are arbitrary rectangular 

reference axes, They are often chosen to take advantage of symmetry, and/or to 

pass through the centroid of local ports of a composite section. This reduces the 

calculations required to locate the centroid of complex, or composite sections. 

The Xo - Yo oxes ore the oxes parallel to the >< - y oxes that pass through the 

centroid (center of gravity) of the area. 
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bl 5llCJ!IM with Ono Axil of Symmetry 

Fig. >2 TYPICAL CROSS-SECTION SHAPES 

When o section i'IOS an axis of symmetry, several theorems con be applied to 

simplify calculations for section properties: 

I. An axis of symmetry is always a centroido! axis. 

2. If one axis of a pair of rectangular oJCes is on axis of symmetry, these axe~ 
ore Principal axes. Princpol axes of on area, wit" respect to a point in t'i'! 
plane of the area, ore mutually perpendicular oxes, lying in the plane with 
origin at the point, thot give the lorge~t moment of inertia for one of the 
axes and the smallest ror the other. Determination of principal oxes is 
discussed later with respect to properties of non-symmetrical sections. 

A cross section COMJ)Osed of requlor elements is also shown in Tobie 5-2. The 

calculation of the moment of i:iertia of such sections con be simplified by using 

the transfer theorem, as given by Eqs. S.4o and 5.So in the Tobie. The transfer 

theorem relates moment of inertia about any axis, I, to moment of inertia about 

a parol lel centroidal axis, o, as fol lcws: 

2 
= Eq. 5.10 

where 10 is ttw- moment of inerti~ of area A <?bout a centroidal axis o, 9 is the 

perpendicular distance between centroidal axis o and a porollel axis I, and 11, is 

5-9 

• • 



the moment of Inertia of area A about axis I. Thus, in l::qs. S.4o in the Tobie, 

1,con is the moment of inertia about the centroid of port n, and lxn is the 

contribution of the area of port n to the totul moment of inertia about the 

centre.id -,f the composite section, lxo• 

The area, location of centroid and moment of inertia about centroidol axes of 

regular shapes are found in hCl"ldbooks (5.4) (S.S). 5ome common cases are given 

in Table S-3 as a design aid to the reader. Since plastic ports frequently contain 

flllets, properties cf quarter circles, ellipses and parabolas ore included to 

facilitate calculations of section properties when these elements ore present. 

The Tobie also contains equations for section modulus with res~ct to the edges, 

of the element (Eq. 5.9}. Section properties for various standard I, L:: and tubular 

shapes are often given in handl-ooks prepored by manufacturers or trade 

associations. Where plastic members are manufactured tc match common steel 

shapes, section proper•ies of such shapes ore found in (5.5). 

Eaample 5-2 illustrates the calculation of section properties for a section 

composed of rectangular elemen1s. Note the selection of reference axes and 

orgor,ization of calculation steps that are used to obtain the needed properties 

with a minimum of numerical operations. The transfer theorern is used to 

determine moment of inertias about the centroidol axes of the compo:.ite 

section. 

TrGNfor111ed Section Concept for Elements with Different Stiffnesses 

When a cross section is comprised of moteri'lls having different elastic modulii, 

It is convenient to work with c.; psuedo cross section that is termed the "trans

formed section". A reference elastic modulus for the transformed section is 

established, and this is usually token as the elastic modulus of one of the 

moterlols In the cross-section. Furthermore, the or.tool width of each element is 

estoblished parallel to the axis about which the moment of inertia is to be 

deter:nined. The transformed width of each element is obtained by multiplying 

the actual width by o ratio of the element modulus to the reference modulus, n = 

En/Eref• The ration is termed the "modular ratio". 
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I Example S-2: Locate the centroiri and determine the moment of inertia and section 

I modulus about borh the >< and the y centroidal oxes for the thin wall hat section shown.* 
0 0 

I 
I 
I 
I Refer to Tobie 5-2 for 
I nomenclature and equations. 

I 
I 
I 

0.l"t 2.2• 

0. 

---ft--Y~ "o 

_____ x_ 

2.0-

I I. Properties about x : Set up tabular solution to deterrnine y and 'xo· Use half the 
I symmetricol secti~. 

I Centroid Moment of Inertia 
I - 2 bh:; I f" Area, A A A - I = .,...,... n Yn nYn Yn nYn xon 1L 

I ---------------~.;....._--"-'-------------'---'-'-------
I 
I 
I 2 

I • 5 x 0.2 = 0.3 

2,0 X 0.1 = 0.2 

2.2 0.66 

I • I 0.22 

1.22 0.447 3 1.5 x2 /12=,001 

0.12 0.003 3 0.1 x.2 /12:,067 

I 3 2.0 x 0.2 = 0.4 0 0 -0.98 0.383 2.0 x 23112 .-: .001 I _1: _____ ..,...o....,. 9....------....,o~ . ..,,.,aa,,....,_-----o .......... a"""'33 ........ -----...... 06-=9 

I 
I 
I 
I 
I 
I 
I 2. 
I 
I n 
I 
I 
I 
I 2 
I 
I J 

- - I:AnYn 0 88 . - -
Y - f.A = 1r.9 = 0.978 ,n.; y n = y n - y 

n 2 4 
I = 2 (rl 

00 
+ f.A y ) = 2 x 0.902 = 1.804 in. 

XO X n n 
1xo 1.804 3 1xo I 804 3 

Sxt = Yot = T.]21" : 1.365 in, ; Sxb = yob = f.trnr = 1,673 in. 

Properties about y : Set up tabular solution to determine I • 
symmetrical section~ _

2 
xo 

bh3 Anx n 
An I an = 1T 

0.3 0.2 X 1,53/12 = 

0.2 = 

0.4 :: 

0.0563 

0.0002 

0.1333 

2 0,J X 2.65 

2 0.2 X 1,95 

0,4 X 12 

Use holf the 

2.1068 

= .7605 

= 0.4000 -------------------------------1 t 0.190 
I 
I 
I 
I 

I :: 2(tl ... rA x_2 ) = 2.0 x 3.457 = 6.914 in. 4; Sy edge yo yon nn 

I Note: I in • = 2.S4 inn,. 

I * See note on Example 5-1, page 5-4. 
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Table 5-3 

Section Properties for Common Shapes 

I l--- -- ----- --- -

I Distance from I~, Moment of Section 
centroid to edge I rtio about Modulus 

Shope Area m n centroidol oxis, x
0 about Sx axis 

bhJ I 

bh2 I. Rectangle bh h b 
1 1 iT ~ I 0 

hr[!f; I 

I ~ 

! 2. Trimgle bh h bh3 bh2 bottom 
T j - y ·rr 

I h~ bi .4 top I '77i" 
I i ~ m 

I 

I 
- -: 3. Solid Circle 

or Ellipse 

®2 wR2 R 
l'R4 wR3 
-~- lj 

---~ I 

'{0 
I 

I tab b 
wbo3 l'bo2 I a --r ---i.-

I ~ 
I 

~--- ---- --
4. Quarter Circle• 

or Ellipse 

ofGtic wob 4o 4b :i .:. 
T 1i" 1i" o b <¼ - J"i) 

~ m 

Note: for circle a : b 

s. Complement of 
quarter circle• 
or ellipse 

X 
ob(I - i·J 0 b 

o\ (~ - "I? - I • ) -~ 6(1. T 6(1 - -¼-> 36(1 - ..,., 

1..,,..,~ '"'~• "';" • m I 
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Table S-3 (cont'd) 

Distance from •xo• Moment of Section 
centroid to edge Inert io obout Modvlus 

Shol)f! Areo m ,, centroi-iol axis, x
0 about Sx axis 

Half porobolo 2 ob 2 Jb ~oJb ,. 'J 50 II 

•llii; 
(Iyo s 19 ati3) w, 

w,_j m 

r ,. ~=.~· --- -- -- . --- -••·--·- ... -·----····· - ___ ... -
- i-- .• -----. -··· 

I 7 Jb 37 Jb jOb -mo t non n ! 

I -+t- (Iyo . I 'lb3) 

·[rjf 
BO 

I,.; ~ 
-- - ---- -1---------- - -- . ·----- - b2- -- ... ------- -· . -- -- -· - ---- ----- - . - ·- --· -- ,- . 

a. Porobnlic fi llrt 4b 4b II b4 
T s s TIM -~ 

I 9. Vert thin 
--- -··•--- ---- - ·•. -~ - . -- --

,~tongulor 
h b th2 

~(h + Ji>) I tube ~t(h + b) ., '2 T (h + Jb) 

-rf~ I 
I 

i:-:, 
------ - ----·-···- .. -- - - --- ···----10. V""ry thir, 

,.R3t 11R2t annulus 211Rt R 
t 

& -II. Sector of 
R(~ R3t (a • sinaco,a 

l . 2 I thin anriulus 2aRt . COIG) . ~ ! Q Q 

:~ _J Ca in rodiO!IS) 
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Thus, the transforl'T\{_>d width, for use in calculating the section properties of the 

transformed section, is: 

= 
En 

nb=- b 
Eref 

Eq. 5.11 

Sin~ this concept is very useful in the analysis of sandwich sections, it is 

de~cribed ii, more detail in Section 8.4 of Chapter 8. Its use is illustrated in 

Exomples 8-1 to 8-4. The effect of time-dependent variations in material 

stiffness prooerties is illustrated in Example 8-3. 

Unsymmetrical Section 

For those cases where ~tion prc;,erties are required refenmced to axes that 

are not principal axes ii, syminetrical shapes, or that ore either principal or 

arbitrary axes in non-symmetrical shapes, additional sec1ion properties are 

needed, along with the properties given in Table 5-2. Reference axes, 

dimensions, and section properties for a generalized unsymmetrical cross section 

are given in Table 5-4. As in the symmetrical case given in Tobie 5-2, the x - y 

axes are arbitrary rectangular reference axes, and the Xo - y0 oxes are parallel 

reference axes with ti,~ir origin at the centroid of the area. The rectangular 

axE-s, u - v, have the sar,1e origin as the x - y axes, but ore rotated un angle Q, 

and the rectangular axes, up - vp, at on angle Op, ore the principal oxes through 

point a. The rectangular oxes upo - vpo, are the principal central axes through 

point b, the centroid of the area. 

Again, there is a transfer theorem for product of inertia, lxy, that is similar to 

the transfer theorem for moment of inertia: 

Eq. 5.18 

This theorem is used to calculate the product of inertia of each regular element . 
of a cross section composed of on assembly of regular elements abou.t the 

centroid of the composite section. Note that for regular elements with an axis 

of symmetry, such as rectangles, lx
0

y
0 

= 0. 
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y 

a 

Table S-4 

Additional Section Properties l"leeded with 
Lhsynvnetricol or Complex Shapes 

V 

t 
V 

\ po y 

\ 
\ 

\ 
\ 

-) 

Gen~ral Section Section Composed of Reg-Jlar Ports 

Property 

I. Product of 
inertia 

~: If either the y axis or 
the x axis is an axis of 
sym~try: 

2. Moment of inertia 
about axes u-v at 
angle, Q, with 
refererw:e axes x-y 

3. Polar moment 
of inertia 

4. Poler radi1Js of 
gyroticn 

s. Angl~ of principal 
axes, g , from 
1eferde axes ,c-y. 

&. Moment of inertia 
d>out principal 
oxes, up-vp 

F.-~uotion 
General 

For cross section 
with regular parts 

lxy = J xy dA 

n "k 

~ 1xon yon+ AxnYn 
n = I 

I = 0 xy 

= 

Ix cos2o + IY sin
2o - lxy sin 20 

Ix sin2g + IY cos
2g + lxy sin20 

I ./1 2 2 
7 (Ix + ly) !JV 1i (ly - 1x> + 1xy 

+ if max. ·I 
- if min. I 

Equation 
N.Jmber 

S.12 

S.12a 

5~13 

S.13a 

S.14 

S.IS 

S.16 

S.17 



Exmnple S-3 illustrates the use of the equations in Table 5-4 to determine the 

angle of principal oxes and section properties of a Z-section. With a Z-section, 

the load axis frequently lies in the plane of the web, while the direction of the 

principal axes is unrelated tu the direction of leads. 

StW!ClfCentN" 

The shear center, or center of twist, of a cross section is a point through which 

the transverse shear stress resultant, V, must be applied to avoid twisting a 

member. This is the point about which the sum of moments p1oduced by the 

internal shear stress is zero. (See Eq. 5.30 in the next Section for internal sheor 

stress.) ~termination of the shear center is presented in more detail in (5.8), 

where it is shown that the shear center is a property of tM cross section. Also, 

if o section hos an axis of symmetry the shear center is always localed on thi,; 

symmetry axis, Thus, for doubly symmetriL: sections, the shear center always 

occurs ot the intersection of the symmetry axes, This is also the centroid. For 

other sections, the shear center and the centroid do not coincide. Equations for 

the shear centers of some common sections with a single axis of symmetry ore 

given in Table 5-5. See (5.4) for a Table that gives the location of the shear 

centers of additional sections. 

5.4 BASIC RELATIONS FOR STRESS AN:> DEFORMATION 

Member design requires an evaluation of basic response to load in terms of stress 

and deformotion. Stresses within c member are a function of the member 

section properties and the stress resultants caused by the applied loading. 

Usually, stresses at the locations of moximum stress resultants govern the 

design, although if section properties vary with length, other stress resultants 

that ore not maximum may produce maximum s!'resses. 

The design of plastic structural components is usually based on the assumption 

that member response is elastic (5.9), (i.e., stress is proportional to strain at all 

point~ along a member length and over the entire member cross sec1 ion). The 

some type of simplifying as<umption is usually mode for reinforced plastics, 

except that these materials often ho,1e elastic properties that vary with 

direction, requiring the consideration of onisotropic elasticity. See Chapters 2, 3 

ood 4 for discussions of complexities introduced by variation in elastic properties 

with time, temperature, environment and directional characteristics. 
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I Example S-3: Deterrr.ine the angle of principal axPs and the moment of inertia about both 
I the x and y axes and the principal axes of the Z section shown.• 
I o o . 
I I. Properties about x0 ~ The centroid and 1.5" I 
I lxo ore the some as determined for the r , -;1 , y 

half s--dion in Example 5-2, since in 0.2" ------ o 
I this direction the Z section has the 
I .;ome configvrotior and dimensions of 
I half the hot section of the previous 
I example. 2.2" 

I 
I 
I 
I 
I I 2. 

y = 0.978 in.; lxo = I .804/2 

Properties about y 
0 

= 0.902 in.4 

I Centroid Moment of lnertio 

I 
I n Areo, An 

I 
I 0.3 -0.70 

I 2 0.2 0 

-,J. 21 -0.889 

0 -0.189 

-2 
~x n 

0.2371 

0.0071 

3 0.2 X 1.5 /12: ).0563 

0.0002 

Product 
of Inertia 

1.22 .0.32::i4 

0.12 .u.0045 

I 3 0.4 +0.95 0.38 0.761 0.2316 

2.0 x. 0.1 3112 = 

0.2 x. 23112 = 0.1333 .C.98 -0.2983 
I 
I 
I 
I 
I I 3. 

I 
I 
I 
I 
I 
I 
I 4. 
I 
I 
I I s. 
I 
I 
I 
I 

0.9 

0.17 
)( = u· = 

0.17 

0.189 in.; I 
yo 

Product of inertia 

0.4758 0.190 

~ 0.190 + 0.476 ~ o.~06 in.4 

Parts I, 2 and 3 all are rectangles with oxes of symmetry, I 
part; thus: xon yon 

I = >:An"l:.nY n = -0.628 in~ 
)(oYo 

Direction of two principal axes, with x
0 

axis 

.0.6282 

= 0 for each 

Eq. 5.16; tan 2~ = -u-.i~2·~~~~2 = 5.322; 2~ = 79.36°; ~ = 39.68° 
0 

Moment of inertia about principal oxes 

_fl 2 2 4 Yli (0.666 -0.902) + C-0.628) = 1.423 iri 

✓¼ (0.666 .o.;02)2 + (-0.628)2 = 0.145 in 4 

Eq. 5.17; I 
lupo = 1 (0.902 + 0.666) + 

I I = 1 (0.902 + 0.666) -
vpo 

~ * See nott: on Example 5-1, poge S:4. 

I in. = 25.4 mm 
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Tobie S-5 

Shear Center for Some Common Thin-Woll 
Sections with One Axis of Symmetry 

Section 

2. Tee 

X 
0 

dL. 

3. I with unequal fla,ges, 
thin web 

4. Equal leg mgle 

h 

Location of 
Shear Center 

e 

I.lo/ is product of inertia of half section 

(above x
0

) with respect to x
0 

and y axes. 

3 
d2 ti 

I+ -:-T:;""" 
t2 di 

l\bte: for thin tee section, e~O 

12 
b r--r· 

11 + 12 

11 and 12 ere moments of inertia of flanges 

I ond 2 respectively about x-axis, 

Sheor center is ot 0 

J\bte: If leg thickness, t, is small relative to 
leg width, shear center is also at O for unequal 
leg CS\gles 
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For a lineor botropic elastic member. the basic relation of !'tress to strain is: 

= Eq. 5.19 

Deformations of a member ore a function of the magnitude and variatior. of 

applied stress resultants, the section properties providPd along its length, lenqth 

dimensions, cc"'lditions of end restraint and the elastic modulus, Ex (stiffness), of 

the material in the direction of stress. 

The basic equations for deterrnining ~tress and deformation at a cross section in 

terms of stress resultants produced by the application of external loading to 

linear members ore presented below, ond used in later chapters for the analysis 

and design of various srructural compc,nents. The deri..,.ations of these expres

sions are fot,nd in textbooks on elementary mechanics of materials and are not 

included here. 

l'bmal Str~ss 

Normal stress is stress that acts in a direction perpenclicular (normol) to a cross 

section. Normal stress is produced by thrust and bending stress resultants. 

Equations for normal stress are derived based on the assumption that "plane 

~tions before bending remain plane after bending." Normal stresses produced 

by axial force (thrust) are constant over a member cross section as shown ii" Fig. 

5-3, and normal stresses produced by bending moment vary lineorly across the 

depth of a beam in the plane of bending as shown in Fig. 5-4. Bending 

compresses the cross section above a plane of zero longitudinal displacement, 

called the neutral nxis, and elongates it below the neutral axis. Under pure 

bending without axial load, the neutral axis posses through the centroid (center 

of gravity) of the section. 

Equations for calculating normal Jtress at any p..,int a distance y and z from the 

centroid (Fig. 5-4) of a section which is located at x along the member ore (S.8): 
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_________ . ______ _S9!:,__ 

Thrusr, N 
X 

Aending, Mx 
I 

Combined tn'\Jst a,d 

bending, N aid M 
lC X 

5.20 

5.21 

5.22 

5.23 

Since y and z may be plus or minus, tnrust may increase or Jecreose tne bending 

st:-esses. 

The rnaximum bending stres~s occur ot the extreme fibers (farthest points from 

the neutral axis), where y and z attain their maximum values. The section 

modulus, S, is defined os the cross section property: 

For symmetricol sections, where S for eoch edge is the some: 

Stress Resultant 

Bending, MX I 

Bending, Mx2 

C~ined thrust and 

bending, Nx and Mx 

Maximum Normal Stress --------
MX 

I ., = r.-·x 
I 

M 
= x2 

X ½ 

llX 
Nx 

= -,;:+ 

Fqs. ----

5.25 

5.26 

5.27 

See Tables 5-2 and 5-3 for methods and equations for determining I and S. 
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2 

I 
Symmetry 
Axis 

a) crGN-section 
o-o 

b) oxiol 
deformation 

c) oiciol stress 
ono -o 

Fig. S-3 UNIFORM AXIAL NORMAL STRESS 

)( 

6 

'I 

Symmetry Axis 

2 

a) cross-section 

-
d) equal "erticol md 

horizontal shear ot 
at r,oint, m 

b) flexural deformation 

e) shear deformation 

c) flexural stress 

f) shear stress 

Fig. ~ ELASTIC FLEXUW.. NORMAL AN> St-EAR STRESSES IN BEAMS 
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~le ~ gives calculations for the fl'klXimum normal stresses produced in 

member 1-2 of Fig. 5-1 by the thrust and bending stress rE>sultonts determined in 

Example 5-1. The maximum compressive and tensile normal stresses produced 

by the combined effects of thrust and moments ore also given. 

Deformation Due to Normal Stress 

A:.cial force, or thrust, produces the following linear deformation in a member 

having a length, L, and constant area, A {Fig. 5-3): 

Eq. 5.28 

tlanent procu:es curvature, defined as a change in slope over a unit length (Fig. 5-4): 
M ci2 x, 

-; = -· 
d )( EI I 

Eq. 5.29 

,x is the curvature, andp the radius of curvature, about axis I at point x. 
I x, 

Transverse deflectiora*, y, and slope, 0, at a point x along a beam depend on the 

length of the member, the variation of moment olong the length and the 

conditions of end restraint. The conjugate beam analogy {5.1} (5.8) is useful for 

determining the slope of the tangent to the elastic curve on<i the deflection at 

points on a bent elastic member·. In order to use the method, the bending stress 

resultants (moments) in the member must first be determined. This includes a,y 

Indeterminate moments at supports ti-tat hGve rotational restraints. 

~ conjugate beam hos the some length and support locations as the actual 

beam, but with all support points allowed to rotate (regardless of end fixity 

conc;itions in the octucl beam). Apply a distributed load intensity on the 

conjugate t:>eam ti-tat is equal, at any point to the bending stress resultant along 

the beam divided by the section bending stiffness (El) at each point. Thus, the 

loading diagram for the conjugate beam is the some as the bending moment 

diagram of the actual beam, divided by El at each section. 

* Note: In accordance with common usage, y is also used to denote tronsverSP. 

deflection of the beam, which is not to be confused with the y distance from the 

section centroid as used in Eqs. 5.21 & 5.23 and in Fig. 5-4 a ond c. 
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Example S-4: Determine the ma>eimum compressive and tensile normal stresses in member 
1-4 of Fig. 'i-1. Use the dimensions and loads given in Example 5-1. The thrust and 
bending stress resultants are cakulated in that e>eample. The member is a hollow tubular 
member as shown below.* 

I. Member properties - Refer to Table 5- 3, Shape l/9: b -- 9.5"; h = 19.5" 

I 
I 
I 
I 
I 2. 
I 
I 
I I 3. 

I 
I 
I 4. 
I 
I 
I I 5. 

I 
I 
I 6. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

0. 5" 

0,5" o.s•, 7- A = 2 x 0.5 (9.5 + 19.5) = 29 in.2 

2 
1
1 

= 0.5 x..p.~- (19.5 + 3 X 9,5) 

SI : 0.5~ (19.5 + 3 X 9,5) = 

20" 

0.5" 

( c: I 521 I 52 I . 3) or • 1 = -rrr- = • ,n. 
2 

'2 = o.5 ~ 9•
5 

(9.5 + 3 >e 19.5) = 

l I 011 

. 1 

511 . 3 s2 = T = 102.3 in • 

Mo..cimum thrust, Nx = -4.0k at points 2 to 4 

I E 5 20 -4000 138 · norma stress: q. • ox = ~- = - ps, 

Maximum betiding, Mxl = 72'k at point 2 

max normal stress: Eq. 5.25: ox = ±. 72•ffl.i 12 = 

Maximum bending, Mx2 = +3.2'k. or -4.8'k at point 2 

max. normal stress: Eq. 5.26: o>e = ±. ~o2!/ = 

! 5680 psi 

±. 563 psi 

Maximum combined compressive stress just to right of point 2 

Eq. 5.27: max. a = -138 - 5680 - 563 = -6381 psi (compression) 
)( 

= 1521 in.4 

1 :,o in3; 

511 

Muximum combined tensile stress either just to right, or just to left of point 2 

6.1 Just to right of point 2: Same stress resultants as for max. compression 

ox = -138 + 5680 + 563 = 6105 psi 

6.2 Just to left of point 2: N>e = O; Mxl = 3.l'k 

a O CLOO 3200 Y. 12 6055 • 
X = + JOV + I02,J : psi 

6.3 Location just to right of point 2 governs. 

I Note: I in. = 25.4 mm; I kip-force = 4.448 kN; I ft-kip = 1.356 kN-rn; I psi = 6.8~5 kPa. 
I .. 
I 

See note on Example 5-1, page 5-4. 
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The deformations of the actual beam are deterrnined from certain stress 

resultants in the conjugate beam as follows: 

• The slope (angle of tangent to elastic curve with original axis of beam 
before bending) at any point on tLt: actual beam is the sheor at that point 
in the conjugate beam. 

• The bending deflection at ony point on the actual beam is the bending 
moment at that point in the conjugate beam. 

The above is summarized in Fig. 5-5. The areas and centroid locations given in 

Tobie 5-3 for parabolas ore useful for determining areas and momen~s of the 

loads (parabolic moment diagram) on the conjugate beam. Also, calculations ore 

often simplified when moments used as loads on a conjugate beam ore broken 

down to reflect the separate application of each applied load, os well as the 

separate application of each end moment due to support restraints. 

The conjugate beam method for determining deflections ond slopes is further 

illustrated in Example S-5, which gives the deflections and slopes at certain 

points in beam 1-4 shown in Fig. 5-1. 

Deflection of specific types of members and componel"lts is discussed in eoch of 

the Chapters that follow. Also, see Tobie 5-1 for the maximum bending and 

axial deflections for certain common loading ond support coses. 

Flexural Shear Stress 

In addition to bending momt:nt, transverse loads also produce shear stress 

resultants that act on the plane of the heom cross section. Stresses caused by 

shear force ore termed "flexural shear" stresses or simply "shear" stresses. 

The1e may also be determined using the elastic beam theory. Shear stresses act 

as shown in Fig. 5-4; they ore usually maximum at the neutral axis and reducing 

to zero at the upper and lower extremities of the sections. However, in sections 

of variable width, maximum shear stress moy not always be at the neutral axis. 

Shear force is related to the change in bending moment along the beam. Al50, 

equilibrium demands that at any point in the beam, the vertical shear stress 

produced by shear force on the section hove on equal horizontal shear stress as 

shown in sketch (d) of Fig.5-4. 

I 



X 

y = deflect ion at x x = L/2 

)( 

Parabola 

elastic curve due 
only to bending 

loading and Elastic Curve 

Sirr,ple Span Mon ,ent 

a ________ b 

WLI: -----------T~ 

Moment Due to End Restraint 

ACTUAL BEAM & BEl'OING 
MOMENT DIAGRAM IN 
2 PARTS 

CONJUGATE BEAM 

WL2 WL2 
Slope at a: MT - 2litT = 0 

WL2 WL2 WL2 
SIOJ)(~ at b: 27itT' - liSET = ti8EJ 

Deflection at x = l/2: 

WL J WL J WL J WL J 
rty = '""1iS'- - "T28- - ~ - + 384 

Fig. S-5 CON.LCA TE BE/ .M ANAL OCY FOR BEI\DING 

DEFLECTIONS AI\O SLOPES 
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I E>mmple S-5: Determine bending deflections ot mid-i.pon of member 1-4, Fig. 5-1, in the 
I z and y directions. Refer to Example 5-1 for loads, dimensions and stress resultants and 
I to Example 5-4 for member section properties. Assume E = 2000 kips per sq. in.* 

I I I. 

I I.I 
I 
I 
I 
I <a> 
I 
I 
I (b) 
I 
I 
I 
I 
I 1.2 

I fo> 
I 
I (b) 
I 
I 
I 

Mid-span deflection ir. z direction, procivc~d by Mx 1 

Consider conjugate beom loaded by Mx 1 /El, diogr am due to each load type 
separately. 

Porobo,o 

U,iformly distributed load 

Conce-1tro .. ~d load 

Moment (.'~\ 1) ordinates on conjugute heams 

202 
Mm = 1.0 x 8 = SO'k 

M 5,0 X 8 X 12 
2 = 20 

M _ 24 x IO _ 20'1< 
m - 12 -

11.3 Reactions on conjugate beams 

I 2 2 

I 
(o) E1,o, = EIQ4 = j x 50 x 10 = 333.3 k-ft 

I (b) 

I 
I 
I 
I 1,4 

I <a> I 
I 
I 
I (b) 

I 
I 
I 

El n 24 x 8 x (8x0.33+ 12) 24 x 12 12 x .67 
l"I = 2 x 20 + 2 x 20 

El104 = 24 x 20 x 0.5 - 128.0 = 112.0 k-ft 2 

2 ;;: 70.4 + 57 .6 = 128.0 k-ft 

Deflection at m, & zm = bending moment in conjugate beom at m 

From Table 5-3, Case 6: ~.g. for half parabola, n =ix 10 = 3.75 

El 1 6 zm = 333.3 x IO - 333.3 x 3. 75 = 2083 k-ft 3 

f:11 6 = 128. x IO - 24 x 8 x <2 + 9l3> - 20 x 2 x I ix 2 2 x 2 - 786 7 k ft3 
zm - 2 X ....,- - • -

6 zm (2083 + 78.J. 7) x 1728 
= 2 X 103 X 1521 = 

1
"
63 

in, 

I -------------------------------
1 * I See note on Example 5-1, page 5-4. 
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I 
I 

Example 5-5 (continued) 

I 2. 
I I 2.1 

I 
I 
I 
I 
I 
I 
I 
I 
1 2.2 

I 
I 
I 
I 
I 2.3 
I 
I 
I 
I 
I 
I 
I 
IV· 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Mid-span deflection in y direction produced by Mx2 

Consider conjugate beam loaded by Mx/E12 diagram 

3.2'K m 

El 4 
I 

-I 

Moment ordinates 

at 2: From Example 5-1 M2 = 3.2'k; M2 = -4.8'k 

10 
at m: Mm = -4.8 x 12 = -4.0'k 

Conjugate beam reactions 

El n _ 3.2 X 8 ( 4.67 4.3 X ( 2 
"'I - 2 x ---iu-- - 2 

8 2 
x 2U = -2.13 k-ft 

El n _ 3.2 X 8 X 5.)) 
"'4- 2 """lo 

4,8 X (2 (2 2 
2 x '20 =-13.86k-ft 

check: 3,2 X 8 
2 

4.8 X (2 
2 = -16.0; o.k. 

Deflection at m, o ym = bending moment in conjugate beam at rn 

El ~ 2 13 IO 3•2 x B (8 2) 4 0 2 I 0•8 x 2 x 2 x 2 72 0 k tt3 
2 <.J ym = - ' X - 2 X J' + + • X X + 2 X 3 : - • -

6 ym 
-72.0 X (728 = --'-...-----''--
2 X 103 

X 5 ( I = -0.12 in. 

I 
I Note: I in. = 25.4 mm; I ft = 0.3048 m ; I kip-force = 4.448 kN; I ft-kip = 1.356 kN-m. 
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Shellr stress at any distance y from the neutral axis is (5.8): 

'fx = Eq. 5.30 

~ is the first moment of the area above (or below) a distance y from the 
""sy 
neutral axis, about the neutral axis. The maximum vC1lue of Qsy occurs when y = 

0 and is called l\ 1, the first moment of the area above or below the neutral axis 

about that axis. 

In thin wall sections, "Shear flow" is a term used for the force represented by the 

shear stress times the width of a cross section at a distance y from the neutral 

axis, and thus, equals Txb. Also, it follows from the above discussion that the 

maximum value of shear flow occurs at the neutral axis. 

max shear flow, q = T b = m -xm 

vxl as, 

'1 
Eq. 5.31 

Shear flow is the force per unit length required to connect eierrents such as 

flanges to webs of beams. 

When thin wall cross sections, such as I, C or tubular sections, ore used for 

beams, a simpler relation for determining the approxir.10te maximum shear stress 

in the web of beom is useful (5.8) (5.10): 

vx 
I 1xm = --,;:- Eq. 5.32 

w 

A is the cross section area of the thin web from inside to inside of flanges. 
w 

With sections having more than one web, include all the webs when calculating 

Eq. 5.32 is only valid for sections that hove substantial flanges connectE-d by thin 

webs. In these sections, most of the bending normal stress is carried in the 

flanges. Since the sheor flow equilibrates the change in 1otal bending force 

above or below the shear plane for a unit length of member, the shear stress in 

the web of such o beam is nearly constant between the inside edges of the 

flanges. Eq. 5.32 may be used for ot.-.er cross sections if Aw is replaced by 
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A/cs where A is the total area of the cross section and cs is a shape factor that 

relates the maximum shear stress at the neutral axis to the average shear stress 

on the entire cross section, A. For solid rectangular sections, c = 1.5, and for s 
solid circular sections, cs = 1.33. 

Sheer Deformution 

Shear stress deforms a square ~lement into a rhombic shape (Fig. 5-4e). The 

shear strain is the angle change imposed during this deformation. The basic 

elastic relation between shear stre~ and shear strain is: 

T = G-y Eq. 5.33 

Shear deformation produces transverse deflection in members that are subject to 

shear force. For most practical beams, frarnes, plates, and shells, shear 

deflection is small relative to bending deflection and is usually neglected when 

calculating deflections and rotations of typical members. In fact, the usual 

assumption of beam flexure theory given previously that ''plane sections before 

bending remain plane after bending" is based on neglect of shear deformation. 

An exception is sandwich panels with "shear flexible" plastic foom cores. Sheor 

deflection can be very signific.ant in such structures, and methods for calculating 

this deflection are given in Section 8.6 of Chapter 8. Maximum shear deflections 

for some common loading and support arrangements are given in Table 5-1. 

Principal Normal Stress 

For any element in stressed body, there is a unique set of perpendicular axes on 

which only normal stresses act; shear stresses are zero. These axes are the 

principal stress axes ond the corresponding stresses are the principal normal 

stresses acting on the element. 

Element I in Fig. 5-6 has principal normol stresses shown on planes at angles, a, 

and (90 + a) with the planes that are parallel to end normal to the beam axis. 

The planes of principal stress ore not related to the principal axes of the cross 

section discussed earlier, An important characteristic of principal stresses is 

that they represent the maximum and minimum normal stresses obtainable on 

two mutually perpendicular axes within the plane of the element. Another 
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important characteristic is that the maximum shear stress acts on a set of 

mutually perpendicular axes oriented at an angle of 45° to the principal oxes. 

The principal stresse'5, and the angle of the o><es of principal stress, con be 

calculated from the stresses applied to any arbitrary axis. Eq. 6.69 in Chapter 6 

give the angle of the planes of principal stresses and the magnitude of these 

stresses when the stress state on any two mutually perpendicular planes at thP 

point is known. See also (5.8). 

-- ~ 
Planes of 
Principal Stress Compression Tension 

T "[ 

~ ~ ,,~ 
1

~ft o, -•J11 ., T 

. a al 
s• II 

0 

-;-e)t:.. - 4a 
"1 ~;~ •~, 

-::-:':\ Cl -. 
G) ' 

Fig. 5-6 PRINCIPAL NORMAL STRESS 

For the majority of bending problems, t~ mcl><imum normal stress occurs at the 

extremity of the cross section, ond since shear stress is zero at this point, the 
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normal stress there is a principal stress. The principal stresses at other points 

within the beam are all lower. In a few cases, such as the diaphragms, and deep 

beams discussed in Chapter 6, principal stresses must be calculatl"d at points 

away from the extreme fibers. Another case where principal stress governs 

design is in the evaluation of web bUCkling in beams with thin webs. Element 2 

in Fig. 5-6 illustrates this condition where the principal compressive stress at tt,e 

neutral axis of a beam acts at 45 degrees to the planes of maximum shear stress, 

This is discussed further in Section 7 .4 

Torsion 

Torsion also produces shear stress and shear deformation. The simplest model of 

torsion behavior is the response of a solid or hollow circular shaft under axial 

torque. The hollow circular tube is also the most efficient section for resisting 

torsion, Other compact shapes such as solid square, or single-cell and multi-cell 

cloS£,j tubular sections (Fig, 5-7) also provide efficient torsional resistance. 

Sheor stresses produced by a simple primary torque, T x' applied to a solid, or 

tubular circular shaft (Fig. 5-7) are determined by the elastic theory for torsion 

(5.8): 

Eq. 5.34 

where r is the radial distance to the location of the point stressed in shear, and 

lz is the polar moment of inertia of the shaft. The maximum shear occurs at the 

extreme fibers of the shaft. 

The deformation of the twisted circular shaft results in an 'll'l9le of twist per unit 

length of (5.8): 

Eq. 5.35 

lz' the polar moment of Inertia of the circular area, is termed the torsion 

constant and is designated, J, for use with other shapes that exhibit more 

5-31 



complex behavior in torsion. Thus, the general relations for moximvm shear 

str~ss, and angle of twist per unit length are: 

't,cm 

o'I( 

T>< R 
= -J-

TX 
= -r."T 

Solid 

Circula 
Solid 

Eq. 5.34 o 

Eq. 5.35 o 

c @: - : :_ € <?Y 
ol Twisted Shaft 

I en 
Closed Thin Wall Open Thin Wo!I 

b) Cr~ Sections 

Center 
of Twist 

Rectmgulor 
Solid 

n-, :r-· 
~ ~:::er 
Closed Open 
Thin Wall Thin Woll 

c) Variation in Streu 

Fig. ~7 PURE TORSION OF SOLID At<l lH~WALL 5tiAFTS 

If the twisting moment is constant over a shaft length, L, the total twist of the 

shaft is: 

= TL 
GJ 

Eq. 5.36 

When the shaft cross section is a closed thin walled section of constant thickness 

t having any closed shape (Fig. 5-7), the torsional shear stress is constant around 

the perimeter of the shaft and is (5.10): 

TX 
= 

2 Apt 
Eq. 5,37 
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where Ap is the area enclosed by the centerline of the closed thin wall section. 

The torsion constant for any closed thin wall tube of constant wall thickness, t, 

Is: 

Eq. 5.38 

where LP is the length of the periphery of the tube. If the wall thickness of the 

tube varies, replace lp/t in Eq. S.38 with the integral from o to LP of d(Lp)/t. 

Excln1>1e 5-6 illustrates the calculation of combined fle~urci and torsional shMr 

stresses in the hollow tubular section used for member I-'.! ~Fig. 5-1) in previous 

examples showing calculation of stress resultants (Example 5-1), normal stresses 

(Example 5-4) and deflections (Example S-5). 

The torsional behavior of non-circular sections that are not thin-walled closed 

tubular sections is more complex, involving warping of cross s~tions. The 

maximum shear stress produced by a simple primary torque applied to o shaft 

having a rectangular cross section is (S.8): 

Eq. S.39 

where b is the greater dimension ond a is a coefficient that may be calculated 

with the following approximate relation (5.8): 

t 
Cl= (I + 0,60) Eq. 5.40 

a is usually token as 1.0 for narrow rectangles having b/t ~ I 0. For such se-ctions, 

the torsional constant is: 

J = Eq. 5.41 

An open thin-walled cross section comprised of an assembly of narrow rectangu

lar sections is commonly used for various structural members. This type of 

section includes l,C, angle and hat shapes (Fig. 5-7). The torsional constant for 

such shapes is (5.11 ): 
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I 
I 
I 
I 

Elcarnple S-11 Determi~ the maximum flexural shear stress, the "'10Ximum torsional shear 
stress and the maximum combined flexural and torsiOl'lal shear stress in member 1-4 (Fig. 5-D 
for the loocls, dimensions or'CI slress resultants of Example 5-1. Also, determine the maximum 
princ:ii)OI normal stress in the flanges of this member. Dimensions and properties of the hollow 
tlobular cro~ section to be used for member 1-4 ore given in Example 5-4 (See sketch).• 

I I. 

I i.: 
I 
I I 1.2 

I 
I 2. 

I 
I 2.1 
I 
I 
I 
I 
I 
I J. 

I 3.1 

I I 4. 

I 4.1 

I 
I 
I 
I 
I 
I 
I 

4,2 

4.3 

I s. 
I 
I S.I 

I 
I 
I 
I 
I 
I 
I 
I 
I 

S.2 

5.3 

Mox. flexural shear stress caused by V x I occurs at point I, where max. V x 1 = I3k. 

Mox. shear stress occurs at neutral axis 1-1, where a'
5
Y I in Eq. 5.30 is maximum. 

:'!syl = 0.5 >c 10 x ~ + 0.5 x 2 x 1; x ~ = 93.9 in. 3; 11 is given in Example 5-4. 

E 5 Jo T I 3~000 dJ.9 802 · 
q. • xm I = O. x 2 x I 521 = psi 

E 5 32 T 13,000 684 . ( . t I t' ) or q. • xr,, I = 0•5 >< 2 x 19 = psi opprox1mo e so u ,on 

Mox. flexural shear stress caused by V ,,, occurs anywhere between points I and 4, 
since vx2 = 0.4k at all points on the be<in'i. 

Mox. lJsyZ in Eq. 5.30 occurs at neutral axis 2-2: 

asy2 = 0.5 X 20 X ¥ + 0.5 X 2 X; X 1 = 57.6 in3; 12 is given in Example 5-4 

E 5 30• T 400 x 57.6 45 . 
q. • • xm2 =- 0.5 x 2 x 5 I I = psi 

or Eq. 5.32: T xmi = O.S ~ x 9 = 44 psi (approximate solution) .. 
Mox. torsional shear stress caused by T xx= 10 ft-k occurs between paints I and 2: 

Eq. 5•37: T xml = T xm2 = 2 x1?~'fx \!! x 0.5 = 648 psi 

Mox. comb,r.ed shear stress; 

At point I: T xm 1 ~ 1 xm I fle>'ure • T xm 
I 

torsion = 802 + 648 = 1450 psi 

Anywhere between points I and 2: T i.m2 = 45 + 648 = 693 psi 

At point I corner: V x 1 = 1300 lbs. 

~ 05 10 19.5 488, 3 T IJ00x48,4 417 . 
'-" sx = • x x T"" = • 111 ; x I = 0.5 x 2 x I 52 I = psi 

Q 0 5 19 9.5 '5 I . 3 T 400 x 45,f 35 . 
Sy : • X X z= Cf • In ; X2 : ,5 X 2 X S22 = pSI 

T x = !l' x 1 + t xl) flexure + T x torsion = 4 i 7 + 35 + 648 = I I 00 psi 

Mox. principal stress in flange occurs at left of paint 2 where ma,cimum flexural 
tension combines with torsional shear stress: 

Mox. normal stress ot left of point 2 at the corner of the tube (from l:xample 5-4): 
ax = +&055 psi 

Shear stress at corner of t·.Jbe ot left of point 2: 

V SOOO • S000 X 48,8 
x I "' lbs, T x i = O.S x 2 x I 521 = 160 psi 

Vx2 : 11()() lbs;T xi: 35 psi 

T x • (t x 1 + T x2> flexure + t x torsion :: 160 + 35 + 648 = 843 psi 

Referring to Eq. 6,690 in Section 6.8 of the next Chgpter: 

T ,. o.s (6055 • o> + o.5 Jc&05s - Ol2 + 4 x 8432 = 61 10 psi m -

I 
I 
I 

Note1 I in. = 25,4mm; I kip-force = 4.448KN; I ft-kip : I .3S6kN-m; I psi = 6.895 kPa 

• See note on E.xarT-9le 5-1, page 5-4. 
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Eq. 5.42 

The ma"<imvm torsional shear stress produr.ed by a simple applied torque on o 

shaft of open thin-wall section that is free to warp (Fig. 5-7) is (5.10): 

flange ; 

web 

Any part, n, with flange, tn: 

Tx tn 
1 xnm ~ --r 

Eq. 5.43 

Eq. 5.44 

Eq. 5.45 

The torsional constant, J, will be increased by the presence of fillets in a thin

walled cross section, ond the maximum she<ir stress will also increase somewhat 

from the value given by Eq. 5.45. If a rnore exact evaluation is not made, the 

possibility of increased shear in the fillets can be taken into account in the 

safety factor. 

In general, open section~ do not r,rovide efficient resistance to c~lied torque; 

henci,, they ore seldom used as shafts designed to resist torsion. However, 

shapes with open sections frequently ore used as beams or columns. When 

applied loads produce twist, torsional behavior of the thin-wall open shapes must 

be evaluated. This requires consideration of lateral bending associated with 

restraint of warping, as well as consideration of torsional sheor. 

Torsion with Warping Restraint 

When warping of an open thin-walled section is restrained, some ports of the 

section resist twisting by bending (Fig. 5-8). This reduces the portion of the 

twisting moment resisted by torsion. The total twisting moment produces 11 

combination of torsional and flexural shear stress and flexural normal stresses on 

the cross section, as shown in Fig. 5-8. A detailed solution for these s~resses is 

complex and outside the scope of this elementary presentation. Detailed 

explanations and equations for warping flexural and torsional stresses ore found 

in (5.10 <n:t 5.11 ). 
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A useful approximation that accounts for the warping res:stance of o doubly 

symmetric I section is discussed and illustrated with a design example in Section 

7.4 of Chapter 7. Equations are provided for calculating the flexural norl'l'llll and 

shear stresses that ar:se when the flanges bend as the beam is twisted, and also 

for determining the torsional shear stresses, as reduced by the restraint of 

warping. The reduced twisting deformation resulting becau~ of warping 

resistance is also given. 

The warping resistance of closed sections is ,..,uch smaller than their torsional 

resistance, except for very short members. Thus, warping streSSE:s ore not 

usually investigated for closed thin-walled sections such as rectangular tubes and 

hollow ribs thot ore subject to twist (5.10). 

Shear center 

A transversely loaded beam will not be subject to torsion if the applied loads 

poss through the "shear center" (also sometimes called "center of twist" or 

"flexural center"). Loads thot ore applied in a plane of symmetry of the cross 

section (Fig. 5-20, oxes Yo and ><o, Fig. 5-2b, axis ><o except Yo in sketch on right) 

always poss through th~ shear center. When load oction lines poss through the 

shear center, the equation~ presented previously 'or flexural normal stress and 

sheor stres.<1 may be applied for both symmetrical and non-symmetric:::il cross 

~tions. When load action lines do not pass through the shear center, loods may 

be resolved into a direct load applied at that lccotion, and a twisting moment 

equal to the direct load times the perpendicular distance from its line of action 

to the shear center. 

The location of the shear center is determined from the geometry of the cross 

section. For sections wilh two axes of symmetry, the shear center is locotf!d at 

the intersection of the symmetry oxes, and therefore it coincides with the 

centroid. For sections, with one symmetry axis, it is located on this axis, as 

discussed in Section 5.3. See Tobie 5-5 in tnot Section for the location of the 

shear center for some common cross $eetions with one axis of symmetry. See 

(5.8) for the genera! case of sections without symmetry axes. 
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5.S STRESS CONCENTRATIONS 

When local discontinuities occur at member cross sections subject to stresses, 

maximum stresses may be substantially higher than the stress levels calculated 

for the general stress field. Examples of significant discontinuities include 

holes, notches, cracks and abrupt changes in thickness, width or depth. Failure 

to account for such effects has been a major foctor in the failure of plastics 

structural components, but the problem has not been unique to plastics. 

An evaluation of the increased stresses at points of stress concentration is 

particularly important when materials do not exhibit a ductile stress-strain 

relation prior to rupture. Since sorne plastics and reinforced plastics behove 

esseritially elastically to rupture, consideratic,n of the effects of stress concen

trations ore crucial in design. Even those plastics that exhibit large ductility and 

yielding before failure under short-term load may in effect lose much of this 

ductility under long-term stress, particularly when exposed to various aggressive 

environments (including daylight). 

'itress concentrlltions ore also significant when plastic materials arc subject to 

cydic stress or strains weli below their short-term yield values. Also, ports 

subject to only a few cycles oi reversing stresses and strains ab.:>ve yield may fail 

prematurely by low cycle fatigue. 

Design deta;ls that produce stress concentrations should be avoided whenever 

possible. The more brittle the material, the more careful the designer should be 

to eliminate or reduce stress concentrations. These effects ore reduced Ly the 

use of fillets of ode(luate size when cro.;s sections chonge size or shape, by the 

proper spacing of holes for connections, and by the design of bonded joints for 

gradual transfer of forces. See Section 4.5 for guidelines that minimize stress 

concentrations in molded components. 

Most plastics cunnot be characterized as completely brittle or as completely 

ductile materials. Many thermoplastics hove a yield point in short term tests, 

but also often have scffered micro crocking and other structural damage at 

stresses below yield, This moy result in dramatic reductions in strength md 

ductility under long term stress and/or in aggressive environments. Reinforced 

plastics generally do not exhibit a marked yield in short term tests, but n,oy also 
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develop micro cracks that damage and alter the stroctural properties of the resin 

matrix at stress levels well below the ultimate strength of the composite. See 

Chapters 2 and 3 for a detailed description of the mechanical behavior of 

thermoplastics and reinforced plastics. 

The structural changes that occur prior to ultimate strength complicate the 

accurate consideration of stress concentrations at structuroi discontinuities. 

The emerging science of fracture mechanics provides o means for developing 

more precise and generally less conservative assessments of the quantitative 

effects of stress concentrations in plastics. Some elementary concepts of 

fracture mechanics are presented later in Section 5.8, but detailed analysis of 

specific pla~tics and composites is beyond the scope of this Design MonlKII. The 

following elementary summary of information about the effects of several 

common types of stress concentrations in materials that behave elastically up to 

ultimate is presented to guide the designer toward an u,derstanding of structural 

behavior under this often simplified assumption. He con then assess the need for 

o more thorough analysis using refin~ theoretical or experimental approaches. 

The existence of bi-ox1al or tri-oxial stress conditions also complicates assess

ment of behavior at stress concentrations. Some stress raisers produce bi-axial 

or tri-oxial stresses even when the general stress field is uniaxial. Again, 

fracture mechanics and/or careful experimental work is needed for an accurate 

consideration of the impact of the s1:-ess raiser on structural behavior with 

specific materials. This more detailed treatment is not within the sr:ope of this 

Manual. 

Stress concentrations in homogeneous elastic materials may not be occurate for 

non-homogeneous materials such as layered fiber reinforced composites. For 

example, limited research on the effect of hales in infinitely wide plates that 

show much lower stress concentration for small holes than for large holes, while 

the elastic theory for homogeneous materials indicates that the maximum stress 

concentration at a hole in an infinitely wide plate is not o function of hole size. 
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Str-.. Concentration Factor 

The degree of stress concentration is usuolly expressed by the "stress concentra

tion factor," Kt, (5.12) whf!re: 

I< _ peak stress _ 
t - nominal stress on net sedion = Eq. 5.46 

onom is obtained from the elementary formulas given in the previous Section 
using the section properties of the net cross section. (Occasionally stress 

concentration factors ore related to stresses on the gross section, instead of the 

net section.) The nominal ond :-naximum stresses for axial tension and bending in 

a notched bar ore shown in Fig. 5-9. 

Actual Streu 
Dlmibutian far 
N,tdled Section 

r Computed from Flexure 
Formula Based on 

a Minimum Depth, d 
nom 

Actual Stress 
Distribution 
for Strai!llt 
Section (Linear) 

Fig. s.., NOMINAL AI-E MAXIMUM NORMAL STRESS AT NOTCH 

The peak stresses caused by stress concentration usually ore of most concern in 

elements subject to axial or flexural tension, ond to diogonai tension resulting 

fr~ shear. Peak stresses at discOiitinuities could also reduce compressive 

str'-"lgth if materials behavior in compression remains linear elastic up to 

crushing. For most materials, however, yielding, creep or locol instability tend 

to dissipate peak compressive stresses, and thus to reduce the severity of stress 

concentrations in compression. 

Stress concentration factors are obtained from the theory of elasticity ood/or 

from experimental methods such as photoelasticity, precision strain gages, and 

membrane and electrical analogies for torsion, Much of the available informa

tion on stress concentration factors for elastic homogeneous isotropic materials 

is summarized in (5.12). 
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Notches 

Notches cart cause very high peak stresses in structural members. Crocks ore a 

particularly severe type of notch. Deep scratches, gouges and similar damage 

caused by improper handling can reduce the load-resisting capacity of a member 

because ''notch effects" result from such damage. Threads also ore notches and 

reduce the strength of materials to a greater extent than the loss of cross 

section becuuse of the stress concentration effect. Threads in shafts also cause 

torsional stress concentrations. 

The information given below for notch effects is not intended for evaluating the 

effects of cracks in plastics. Fracture mechanics provides a quCJ1titative 

approach that may be used in conjunction with the proper tests and experiments 

to assess the behavior of plastics that hove been subject to various stages of 

cracking. See Section 5.8. 

Approximate values of Kt for determining peak stresses covering a range of 

notch proportions are given in Fig. 5-10 for notched flat bar tension and bending 

in homogeneous isotropic members. Additional charts giving more accurate 

values of Kt and values of Kt for larger ratios of r/d are given in (5.12). Also, 

see (5.12) for chart!! for notches on one side, multiple notches and notches in 

circular members. 

Fillets 

When member cross sections change, fillets are usually needed to reduce the 

peak stress caused by stress concentrations. The effect of changing the fillet 

radius at changes in the width of a thin flat bar -subject to tension or to bending 

is shown in Fig. 5-11. The reduction in stress concentration that occurs with 

larger radii is readily apparent from the shorp reduction in Kt with increasing 

r /d. Fig. 5-11 applies to cases where the section having the larger dimension, D, 

extends for a considerable distance along the member axis beyond the fillets, and 

the material is homogeneous and isotropic. 

Graphs for Kt with short lengths of shoulder ore also given in (5.12), as are 

graphs for round members, shafts stressed in torsion and other conditions. 

Fillets with variable radii, os shown in Fig. 5-12, produce lower stress o.=oncen

trotions thal the circular fillets shown in Fig. 5-11. Some of these optimized 

fillets ore discussed in (5.12). 
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r ig. 5-12 COMPQU,,ID FILLET 

Holes 

1-ioles ore another common type of rliscontinuity that causes stress concen1ra

tions. A single circular hole in an infinite plate produces Kt = 3.0 for uniaxiol 

tension in homogeneous, isotropic materials. For biaxial stresses, a and a , 
X y 

calculate: 

E:q. 5.47 

to obtain maximum tension stress in the x direction. 

For a homogeneous orthotropic plate of infinite width under uniaxial stress in 

direction 1-1, the stress concentration factor at a hole is (5.23): 

Eq. 5.48 

For l.l homogeneous isotropic plate of finite width, b, and a single hole of 

diameter, a, subject to uniaxial tension perpendicular to b, a good approximation 

for Kt' to be applied to stress on the net section, is: 

Eq. 5.49 

A more useful factor f.>r static design purposes is Ktg' to be applied to stress on 

the gross section, where: 

Kt 
K = -- Eq. 5.49 a 

tg (l-5) 

Graphs giving Ktg for eccentrically located circular holes, for various patterns 

of multiple circular holes, for plates with circular holes subject to shear, and for 

holes in solid ond tubular cylindrical elements are given in (5.12). Fig. 5-13 is a 

graph that Qives Kt for shear stress in an infinite plate of homogeileous, isotropic 
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material with 2 holP.s, as well as for a plate with infinite number of holes in a 

single llne. 
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The above stress concentration factors, based on completely elastic behavior, 

may be too severe for small holes in reinforced plastics. At such discontinuities, 

a relatively minor degree of micro crocking at the very localized points of ~ak 

stress may relieve much of the stress concentration caused by the hole (5.23). 

Thus, for smoll holes in fiber reinforced composites, the overall ~trength 

reduction can be li:!ss than the factor Ktx given by Eqs. 5.47 or 5.48 for the peak 

elastic stress at a hole. For example, in experiments on one example plate 

cu-nprised of a glass fiber epoxy laminate of uni-directional layers •~t o0 and 

!.45°, Kt was found to equal abuut 2.0 for a 1/8 inch diameter hole, 2.45 for a 1/4 

inch diameter hole and 3.07 for a 1/2 inch diameter hole (5.24). In contrast to 

the above findings, stress concentration factors, presented in (5.25), based on 3-

dimensionol finite element analyses, are larger for the relatively thick example 

plates of boron epoxy laminah."s with holes of varying sizes, than for similar 

plates of isotropic materials. 

See also (5.26) for detailed consideration ond equations for stress co;icentration 

factors for holes in plates comprised of advanced fiber laminates. 

Reference (5.12) gives Kt values for hole shapes other than circular, including 

elliptical, rectangular with rounded corners, and narrow slits. The graphs 

provided cover uniaxial tension, biaxial stress ond shear stress, Also, see Section 

5.8 for an equation for stress concentration with a particular elliptical hole. 

Other Types 

Stress concentration factors ore also given in (5.12) for a number of common 

structural and mechanical components that have been investigated for stress 

concentrations. Included ore bolts loaded in tension where threads, nuts and 

heads cause severe stress concentration. Kt values ranging from 2 to 9 ore 

reported for bolts of various types. 

Comments on Desig, Practice 

Because high peak stresses caused by stress conc1:ntrations con cause premature 

failure of some plastics materials, design practice for structural use of materials 

such as acrylic is to avoid completely the use of holes, notches or other such 

discontinuities in connections or other details of strucurol components. With 

reinforced plastics, strength at holes used for connections is determined by 

mechanical testing as discussed in Section 4.1 I. For any materials that behove 

elastically, at peak stresses the types of s•ructural discontinuities described in 
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this Section con be estimated with the stre~ concentration factors given herein, 

or in (5, 12), and component design developed to hold these stresses below 

appropriate materials strength limits. 

Stress concentrations con severly reduce the fatigue strength of plastics; thus, it 

is :1articulorly important to minimize stress concentrations by careful detailing 

of components subject to fatigue to avoid notches, holes and change~ in cross 

section as much as possible. 

See Example 7-1 in Section 7.2 for en illustration of the use of stress 

concentration factors in the design of a tension member. 

Fracture Mechanics 

Fracture mechanics provides a rational approach to account for the effects of 

stress concentrations caused by flows, crocks, and sharp notches. These cause 

very localized maximum stresses that usually exceed the theoretical ultimate 

tensile strength of materials, However, most materials can accomodate such 

effects by plastic yielding of local material near the crack tip or by other 

mechanisms inheront to various r,iaterials. See Section 5.8 for a summary of 

Fracture Mechanics concepts that provide a rational approach for r:letermining 

the fracture strength of members with sharp cracks, flows or other crock-like 

discontinuities. The effects of such discontinuities on fatigue strength ond on 

stress-corrosion crocking in hostile environments are olso treated in that 

Section. 

5.6 NON-ll~AR RESPONSE 

The stresses and deformations described in the preceding sections ore de

termined based on the elastic response of structures whose initial geometry is 

assumed to remain •.mchanged after deformation. This assumption facilitates 

sirf1)1e structural analyses that give results of acceptable occuracy for the large 

majority of design applications with structural plastics materials. 

There are im·portant structural applications, however, where the above as

sumption may not produce designs of acceptable accuracy. An example is the 

behavior of transversely loaded thin plates with edges held agoinst tror.~lation. 

Here, changes in geometry o:. the platP. deflects enable it to develop a significant 

increc.se in resistance to transverse loading. The some ber.avior occurs with 
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flexible tension members such as cables. In Chapter 6, charts are provided which 

facilitate o simple evaluation of both bending and mtmbrone {in-plane) stresses 

In plates with edges held against lateral translation. f.:quotions ore also giv~n for 

stresses and deflections of membranes, or flexible plates without bending 

stiffness. Eqvotions given for long rectangular rnemhro,,e'> also apply to cables 

held at their ends. 

Changes in initial geometry can also result in significant reduction in load 

supporting capability of slender linear members subject to the combined effects 

of bending and compression. When these members deflect in bending, the 

bending deflection results in on eccentric application of cornpressive thrust that 

amplifies the initial bending effect. This problem is treated lat~r in Section 7.5 

which covers the design of beam-columns. It is also treated in Section 6.9 

relative to behavior of plates subject to combined direct compression and lateral 

load. 

Non-linear response also occurs when a flexible moment resisting frame deflects 

under lateral load. Any vertical load on the frame amplifies bending cf:Jt: to 

lateral loads because of the eccentricities introduced by the lateral deflection of 

the frame. This is termed the P-A effect and is also discussed further in Section 

7.5. 

Buckling is a special type of non-linear structural response in members subject to 

compression. This is discussed in the next Section. 

Non-linear behavior may ol"IO result from non-linear stress-strain behavior of 

plastics materials. As noted pre'liously, most conventional methods for deter

mining stres.5es and deflections are based upon thP linear rf>lation between stress 

c:rid strain represented by E, the elastic modulu~. However, plastics materials do 

not always ev.hiblt a lin~ rE:lotion between stress and strain. Two types on l'lon

lineorities may occur: (I) E reduces with increasing stress in short-tirr.e tests; 

(2) E reduces with time under load at a constant stress (or strain). The above 

coses ore con::idered in detail in Chapters 2 and 3. 
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Exact analysis of materials with a non-linear stress-strain relation, where E 

reduces with increasing stress, or strain, is complex. When the stress-strain 

curve car, be approximated by two straight lines at different slopes (bi-linear, 

with two values of E), simplifications me ;:,ossible ,;uch as those developed for 

steel, o material idealized us having o constant stress for all values of strain 

above the yield point. Computer solutions have been developed to provide more 

general solutions for stresses ond deformations in members with non-linear 

materials. Som€ of these are discussed in Chapter 4. ~wever, they are seidom 

used in p;acticol design and ore not considered here. 

When E reduces with time under load, pseudo-elastic onolyses ore possible if the 

reduced E is 11ot stress-dependent also. As explained in Chapters 2 and 3, the 

reduced E is terrned the viscOP.lastic modulus, Ev· In this approach, elastic 

methods ore used to determine stresses end deflections, with E (for the 
V 

appropriate duration of load and expected service conditions of temperature and 

exposure) used in place of E. 

5.7 BUCKLING l.N)ER COMPRESSIVE STRESS 

Except for tension members, all components of structl•res, as well as structures 

in their entirety, can be subject to buckling. Therefore, the designer of plastic 

structures must thoroughly understand of the nature of structural instability. 

The fundamental concept of buckling or structural instobiity is illustrated by the 

simple model in Fig. 5-14 (5.10). This elementary structure is comprised of two 

very stiff struts connected at their midheight by a rotatiooclly flexible spring 

having a stiffness or spring constant, K, where K is the mornent in the spring 

required to rotate each adjacent strut through on angle O = I radian. Thus, by 

definition: 

Eq. 5.49 

If the structure is subject to on axial load, P, as shown in the Fig. 5-14a, there 

appears to be no force that would make the elastic hinge move horizontally (i.e. 

buckle the column), regardless of the magnitude of P. However, further 

investigation reveals that this is not true, and that at some load, P , the column 
er 

will buckle loterolly at the spring. 
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The critical load may be determined by investigating equilibriu:n of the column 

in a slightly deflected position witn the hinge point deflected an amount, 6, 

cousing the hinge to undergo a total rotation of 20. In this position, the bending 

moment applied by the load, P, at the spring is: 

M = p~ 
p 

Also, the spring has rotated on amount: 

Thus: 

6 o = en 

The lows of statics require that MP= .'v\- Thus: 

= 4 K cS --r:-
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Eq. 5.53 can be satisfied in two '~'oys: (I), 6 = 0, and any value of P; and (2), 6 /0 

and a unique value of P = Per' where 

p _ 4 K 
er - T Eq. 5.54 

In the second case, Eq. 5.53 is satisfied for any value of 6. 

The above analysis shows that up to the critical load, the column stays straight. 

If it is deflected horizontally o small amo•Jnt, 6, the spring stiffness, K, is high 

enough to return the column to a s1 raight position as long as P < Per· When P 

equals Per' any arbitrary deflection may be applied and the column will not be 

returned to a straight position by the spring because the spring stiffness is not 

high enough to return the structure to its initially straight position. Of course, if 

initially, the column was perfectly straight and no external force, however 

slight, occurred to produce horizontal deflection, then the structure would 

continue to carry the axial force P. In any real structure, however, slight 

imperfections, such as initial crookedne!.'i and load eccentricities, would 

inevitably lead to buckling at a load at, or just below, P • 
er 

If the idealized column shown in Fig. S-14(b) is assumed to have been assembled 

with en initial deflection 6 
0

, the equality of external moment at midheight to 

internal moment in the spring, under a larger deflection, 6, becomes: 

P6 = 2(Q-Q )K = (6 .6) ~ = (6 -6 )P o o L. o er 

Solving this equation for 6 : 

6 = 6 __ I __ 
o ( I - P/P ) 

er 
Eq. 5.55 

Eq. S.SS shows that if the structure starts with an initial deformation 6 
0

, that 

deformation will be magnified by any axial load P < Per on the structurn to 

become 6. The quantity, 1/(1 - P/Pcr), is termed the "magnification," or 

''amplification" factor. Also, if a member that supports axial compression is also 

subject to lateral load (Fig. 5-14b), or to end moments (Fig. 5-14c), the 

deflection and bending stresses caused by the lateral load or end moment will be 
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magnified by the factor 1/(1 - P/Pcr>• Eq. 5.55 is plotted in Fig. 5-15. The 

Figure shows that the amplification of 15 
0 

is fairly small until the axial load 

approaches 0.6 Per· 

1.0 

.7S 
~r" -

( , 
.2s ·-

0 
O 1.0 s.o 10.0 15.0 20.0 

fJ/6 
0 

Fig. S-IS LOAD-DEFLECTION PLOT FOR MEMBER WITH 

AXIAL LOAD Al'-0 INITIAL DEFLECTION 

The concept of determining the approximate non-linear deflection or bending 

moment by applying the amplification factor to the linear deflection or bending 

moment is extremely useful in a wide variety of problems involving combined 

bending and axial compression. It also applies to ca!:es of combined bending and 

axial tension, where the presence of tension reduces the linear bending deflec

tions and stresses. 

In oroctice, the stiffness of structural members is not concentrated at ~ 

point, os in the case of the idealized column in Fig. 5-14. For linear members, 

the stiffness, El is distributed over the length of the member. Buckling of 

centrally loaded columns is treated in Section 7.3 of Choptei 7. The magnifica

tion of bending effects in beams ond frames that also carry axial compression is 

covered in Section 7 .S. 

Laterally unbraced beams that ore bent about their strong axis may become 

unstable and deflect laterally at their compression flange while rotating about 
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their tension flange. This is termed lateral-torsional buckling and is treated in 

Sectior1 7.4. 

In-Plane compressive stresses develop in plates from constant or variable in

plane com[lressive stress resultants directed along either or both plate oxes, or 

from in-Plane shear stress resultants. Resistance to buckling is a function of 

flexural stiffness in both directions. Longitudinally compressed long plates, 

4J!Jpported along edges parallel to the load, resist buckling by virtue of their 

transverse flexural stiffness. Buckling of plates is treated in Sections 6.9 and 

6.10. The results presented there ore used in Chapter 7 for determining the local 

buckling resistance of thin flanges and webs of column and beam members. 

Plates exhibit post-buckling strength. After initial elastic buckling occurs, the 

compressed plate does not collapse, but additional compressive load capacity 

develops as the stress continues to increase along the edges of tht> plate. Even 

through the interior region of the plate has buckled, compressive for;es can 

continue to be resisted in regions close to transversely supported edges so long as 

the ultimate strength of the edge region is not exceeded, In the post buckling 

range, the plate is consider~ to support in-Plane compressive load on a reduced 

effective width, Thii; is explained in Section 6.9. 

Thin faces of sandwich panels may buckle if the cc.re does not provide sufficient 

elastic support. Buckling resistance of sandwich facings and requirements for 

core stiffness ore given in Section 8.8. Buckling of sandwich columns and plates 

is also covered in that Sect ion. 

The buckling resistances of shells depends upon a combination of axial, or in

plane, stiffness in one direction and flexural stiffness i11 the other. Because axial 

stiffness is reduced by local imperfections and eccentricities in stress, shells do 

not develop the full buckling resistance predicted by the "linear elastic" buckling 

theory exemplified by the simple model described above. ''Large ~flection" 

theory is ,.,eeded for accurate anal:,ses of shell buckling. Because of the 

complexity of such analyses, however, the results of linear elastic analyses ore 

often used together with semi-empirical "knockdown" factors that account for 

the effects of large deflections. These ore determined from model tests on<!/or 
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from a limited number of "large deflection" solutions for simplified basic coses. 

Equations for buckling resistance of uniform thickness, ribbed and sandwi-:h 

shell~ ore given in Section 9.10. 

5.8 BRITTLE FRACTURE lH)ER TENSILE smESS 

All structural members contain crock-like flaws that cause local increases in 

stress. Guo"'ttitative methods for determining the magnitude of these stress 

concentration~ for certain types of discontinuities such as holes, notches with 

rounded ends and changes in cross section are presented in Section S.S. In 

general, the magnitude of the stress concentration increases with the length and 

sharpness of the flow or discontinuity. For example, the stress concentrat!cn 

factor for an elliptical hole in on infinite plate subject to a tension stress field, 

os shown in Fig. 5-16, is (5.14): 

I 2o 
== + b Eq. 5.56 

The radius of curvature at the end of on ellipse is 

Eq. 5.57 

Thus, the maximum stress adjacent to on elliptical hole is 

a = o + 2 -Ja/P- > mox Eq. 5.58 

where a is the overage or nominal stress on the gross area. 

If on elliptir.al hole becomes severly elongated, the radius at the end approaches 

zero and the ellipse represents a modtl for the cr!'lck-like discontinuity shown in 

Fig, 5-17. Since for sm<JII radii of curvature, 2/2/P is large c~rripared to 1.0: 

Eq. 5.59 

As the cr·ock tip radius approaches zero, the peak stress adjacent to the crack 

opprooche~ Infinity. 
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Fig. S-16 ELLIPTICAL HOLE IN Ir-FINITELY LARGE PLATE UN)ER Pl.At£ STRESS 

a 

t t t I t 

a 

Fig. ~ 17 A TYPICAL CRACK-Ll<E DISCONTNJITY IN A STRESSED BODY 
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Because the "Stress Concentration Factor" in Eq. 5.59, Ktg = 2 ..[r.Jp, approaches 

infinity for sharp crocks, the elastic ana!yses used to develop stress 

concentration factors (Section 5.5) do not provide adequate information to define 

the behavior of practical materials in the presence of notches. In order to 

ove:-come the shortcomings of elastic stress concentration analysis applied to 

crack-like discontinuities, Griffith (5.1 J) first examined the behavior of a local 

zone at the tip of a :c.moll crack in a large component in terms of the energy 

balance required to propagate a crack. His pioneering work provided a 

foundation for the science of Fracture Mec:hcriics. Inglis (5.14) postulated tt,at 

fracture proceeds in a brittle material when the stress at the crack tip exceeds 

the theoretical cohesive strength of the material (which can be very high, 

possibly of the order of E/ I 0), breaking atomic bonds ahead of the crack tip, to 

create new fracture surfaces. Irwin (5.15) used the above concepts to define a 

parameter known as the "stress Intensity Factor", K. This factor is a measure of 

the magnitude, extent, and distribution of stress intensification at sharp notches 

of various types, and C"•Jn be used to characterize the materials susceptibility tu 

brittle fracture. It con be used with brittle materials, as well as with materials 

where fracture is preceded by some yielding and redistribution of stress at the 

crack tip. 

While Griffith's approach was widely used in the early development of Fracture 

Mechanics, it hos largely bef.n replaced by Irwin's concept of "Stress Intensity 

Factor". The Stress Intensity Factor approach will be described first in this 

section ana then later compared with the Griffith theory of brittle fracture. 

~wever, the approoc~s of Inglis, Irwin and Griffith's all leoo to the same 

general conclusions about the fracture behavior of brittle and pseudo-brittle 

materials. 

Frac:t,xe mechanics provides concepts for as."'essing the safety and reliability of 

ten~ion members or tension ports of members against failure by brittle fracture. 

The "Stress Intensity Factor" provides a measure of the overall magnitude of the 

applied stress field around a crack (as related to a stress ond crock length). In 

applying ''fracture mechanics", a limiting or "Critical Stress Intensity Factor" is 

defined as the the limit of a ma1erial's capability to resist frc.cture through lc,col 

increase in strength, plostir. deformation, or other energy dissipating 

mechanisms. 
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The magnitude of the "Critical Stress Intensity Factor" is on important measure 

of a material's toughness. Under this concept, toughness is defined as the ability 

of a material to carry tensile load in the presence of notches. 

Analyses to be described later show that if the relationship between nominal 

tensile stress, (without the presence of a crock), a, and crack length, a, given by 

Eq. 5.60 is termed the "Stress Intensity Factor", K, a limiting or maximum value 

of K can be establihed as a basic property of most materials. In this approach: 

K = Ca /a Eq. 5.60 

C is a constant that is a function of a particular specimen and crack geometry. 

One type of geometry ood load configuration is shown in Fig. 5-17. For this 

crock and load configuration, C = n. Other test conditions result in different 

values of C. This will be discussed later. 

A given material will foil by tensile rupture when a particular combination of 

tensile stress, cr xf' and crock length, af, produce a critical value of stress 

intensity factor, Kc, K le' or K Id' that represents a fracture condition. Thus: 

Eq. 5.61 

The stress intensity factors, Kc, Klc and Kid are defined below. 

Other variables that affect the critical stress intensity factor include the 

presence or absence of restraint of deformation normal to the plane of the 

primary stress field, the rate of lood application, the duration of lood, and the 

temperature of the stressed ~mb'!r. 

Members that con freely deform normal to the stress field plane ore loaded in 

"plane stress" and a critical stress intensity factor for plane stress, Kc, applies. 

Members with a small thickness perpendicular to the plane of stress are usually 

considered as ''plane stress" cases. When deformation normal to the plane of the 

stress field is completely prevented, ''plane strain" conditions prevail and a 

critical stress intensity factor for "plane strain", K le' applies. Members that 

hove appreciable thickness perpendicular to the plane of the stress field are 
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considered as ''plane strain" cases. Because prevention of deformation normal to 

the plane of the primary stress field produces ten,ile stresses in this direction, 

K le critical stress intensity factors are lower than Kc factors. For thi~ reason, 

the K le critical stress intensity factor is usually used as the principa! measure of 

fracture toughness. 

The toughness of ,:i material also varies with rate of load application and 

temperature. The critical stress intensity factor for dynamically applied load, 

Kid' is less than Kie for most rnaterk:ls. Also, Kid and Kie values should be 

related to specific temperatures or temperature ranges. 

Thus, fracture mechanics shows that there are three primary factors that control 

the susceptibility of a structural component to brittle fracture (5.16): 

• Material toughness, as defined by critical stress il"tensity tractors such as 
Kc, Kie or Kid• In theory, these critical stress intensity factors ore only 
applicable to linearly elastic homogeneous materials, although they find 
practical use in coses where some plastic deformation occurs in the 
vicinity of the crack tip, as well as with some composites which are not 
homogt!neous. Much more complex elastic-plastic theories (5.16) have 
been developed to define the toughness ot elastic-plastic materials such 
as mild steel and some plastics. Some of these hove also been applied to 
composites such as reinforced plastics (5.17, 5.18). 

• Crack size, as defined by lengtt-, a. Brittle fractures initiate from 
discontinuities. These can be present initially due to fabrication and 
handling (air voids, surface scratches, etc.), or they con result from resin 
crazing or micro-crocking at low levels of stress. Crocks con grow by 
fatigue under cyclic loads, and by stress corrosion in hostilt environmer,ts. 

• Stress level. Brittle fractures occur only as a result of tensile stresses. 
These may result from residual stresses caused by differential shrinkage 
in manufacture or fabrication, and restraint of thermal deformation in a 
component configuration, as well as from applied loads. 

A few important results of stress analyses for members with cracks are 

presented below to introduce the reader to fracture mechanics concepts. This 

treatment is limited to homogeneous elastic materials. The fu;·ther development 

of these concepts to account for the behavior of many actual plastics materials 

that are not homoge!'leOUs md/or completely elos1 ic is not incl-1-kd in tf-.e scope 

of this elementary presentation. Referencf!s given in this Sectior. provide much 

more extensive treatment ot fracture mechanics for actual opplicotio.1s. 
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Linear-Elastic Fracture Mechmlics 

Linear-elastic fracture mechanics (LEFM) provides the analyse.,; required to 

relate stress field magnitude and distribution in the vicinity of a crack tip to the 

nominal applied tension stress (without the presence of the crack) and to the 

size, shape and orientation of the crock or crack-like discontinuity. As explained 

above, the stress intensity factor, K, represents the effect of stress field 

magnitude and distribution in the vicinity of the crack tip. The ability of a 

member to resist a given nominal stress with a given type and size of crack is 

determined by comparing ihe stress intensity factor, K 1, produced by these 

conditions with the critical stress intensity factor, Kie, for the material and 

configuration. The critical stress intensity factor represents the fracture 

toughness of the material. Thus, stress intensity factor, K 
1
, is to fracture 

toughness, K I c' as stress, o is to yield or ultimate strength, oy or Ou• 

In LEFM, three types of relative movements of two crock surfaces are usually 

defined. These ore shown in Fig. 5-18. 

• Mode I - opening mode, where crack surfaces move away from each 
other. This is the most commonly investigated type of 
crack propogot ion. 

• Mode II - shear mode, where two surfaces slide over eorh other in a 
direction perpendicular to the line of the c -~ tip. 

• Mode Ill - tear mode, where two crack surfaces slide uver each other 
in a direction parallel to the line of the crack tip. 

Equations for stresses and displacP.ments at any point in the vicinity of the crack 

tip,; are given in (5.16) for each of the 3 modes of relative crock surface 

movement with on isotropic material. See (5.18) for similiar equations for a 

specially orthotropic material (as defined in Sections 4.9, 6.6 and 6.7). These 

equations contain the stress intensity factor, K 
1
, K11 or K111 , for the particular 

mode, and are applicable to the case of plane strain (Modes I and II) where no 

deformation is permitted in the z direction (Fig. 5-18). The analysis show:; that 

the magnitude of the elastic stress field con be described by the singlf term 

parameters K 1, KIi' K:u- Also, dimensional analysis and consideration of 

"Griffith's" analysis for crack propog;ition (to be discussed later in this Section), 

shows that K a: a ra. as given by Eq. 5.60. 
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Crad< c;,pening Crack sliding Crack taoring 

Fig. ~18 BRITTLE FRACTURE FAILURE MOOES 

Relationships between the stress ;ntensity factor for ''plain strain" and various 

member configurations, crack orientations and shapes, and loading conditions ar~ 

available in the literature (5.16, 5.17, 5.19, and 5.27). These provide nurnerico. 

values for the constant C in Eq. 5.60. Values of C for some simple common 

configurations are given in :able 5-6. The configurations shown in the table are 

important because they frequently provide the ba:;is for tests and analyse·s used 

to determine the critical stress intensity factor, K I c or K I d' that defines a 

material's thoughness. 

Correction factors given in the Table enable the designer to improve estimates 

of stress intensity factors for a ft:w common practical componenls. 

See (5.27) for a more comprehensive presentation of an approach for obtaining 

stress intensity factors applicable fo actual components by applying appropriate 

correction factors that account for the effect of stress concentrations such as 

holes, fillets and other changes in cross section to the basic coefficients, C. The 

important influence of residual.stresses is also explained in (5.27). 

Eq. 5.60 and the constants given in Tobie 5-6 apply for specially orthotropic 

materials (Section 4.9, 6.6 and 6.7), as well as for isotropic materials (5.17). The 

stress intensity factors, K I and KIi' for specially orthotropic material may be 

used to characterize crock extension behavior and fracture in o manner that is 

idf:ntical to their use with isotropic material. However, as stated obave, the 

actual stress field around a crock tip in on orthotroplc material differs from that 

associated with isotropic materials. 
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Coefficient, C, in Stress .,tensity Equation 
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When several types of loads such as uniform tensile loaJs, concentrated tensile 

loads, or bending loads act on a component that contains a crack, the total stress 

intensity factor con be obtained by adding the shess intensity factors tnat 

correspond to each load. In order for this to apply, however, eoch load must 

cause the some type of displacement of crack surfaces (i.e., oil be Mode I, or all 

Mode II, etc,), Stress intensity factors for different modes of deformation 

cannot be added, One approach when both sheor and tensiun stress fields may 

cause crock extension is to calculate o total energy release rate for eocn mode 

of deform'ltion (to be described later in this Se.:tion) and to odd these for each 

mode. 

Modificotions for Elastic-Plastic and Non~·brnogeneous Materials 

In theory, the stress intensity factor applies only to homogeneous materials that 

runoin elasti-::. In application, however, the critical stress intensity factor is 

determined experimentally, and the concept of maintaining calculated stress 

in '.ensity factors, K 1, etc. bE-low a critical experimentally-determined stress 

intensity factor ;, generally valid for materials that develop srnull plos1ic zones 

around the tip. For tougher materials having lorgP.r plastic zones near the crack 

tip, several advanced methods ore available for characterizing 1oughness (5.16), 

but space precludes their presentation here. The simple stres.o; inteilsity 

approach developed for homogeneous elastlc materials has also been applied with 

reasonable success to composites such as fibergloss reinforced plastics (5.17). 

Some of the more advanced methods deviSP.d for elastic-plastic materials have 

ulso been applied to fibernus composites witn some success (5.18). 

Q-iffith Theory of Fracture 

Since Griffith's anclysis (5.13) of the frocture behavior of ideally brittle 

materials has been widely discussed and applied, the following brief presentation 

is included to summarize the equations that define the onset of fracture and to 

show their relation to the stress intensity factor- approach presented earlier in 

this Section. Griffith's theory is based upon the assumption that fractures will 

propagate in or, ideally brittle material when the elastic surface energy required 
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for the formation of new surfaces ahead of a crack is less than the elastic energy 

releo;;ed from the stressed body when the crock extends. 

Considerlng the infinite piote with crack shown in Fig. 5-17, for the case of 

''plane stress": 

• 
02 02 

Energy released by crock extension=¾-

• Elastic surface energy required to extend crack = 2 (2a y ), where y is e e 
the elastic surface energy of the material. 

• Thus: 

o -{no = (2 y E)l/2 
e 

Eq. 5.62 

The quantity 2Y is termed the energy release rate for the moterial, G. Thus, 
e 

for ''plane stress": 

G = = Eq. 5.63 

Similarly, for "plane strain": 

G = Eq. 5.64 

Determination of Critical Stress Intensity Factor 

Critical stress intensity factors ore determined from vorious standa:-d tests that 

hove been developed to provide sufficiently accurate doto about material 

toughness, consistent with the accuracy of data needed for desi,JO, for a 

reasonable cost. As in the case of other materiol properties, the bulk of 

quantitative research and testing hos been done for metals. For plastics and 

composites, th,,.rP. is limited understanding of the effect of important variables 

like duration of load, stress corrosion in various environments, non-homogeneity 

of composi1es, etc. on the t01.;;:,hness of materials. Thus, there ore no widely 

accepted standards for Sf:'eCimen configuration und test conditions, as hove bePrl 
developed for metols. However, application 01 fracture mechanics to plastics 
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and composites pro"ides a quantitative approoch for assessing material toughness 

that should be on important tcol for developing improved engineering materials, 

as well as for the rational u~e of existing materials in structural applications. 

See (5.20) and (5.21) for consideration of some of the problems associated with 

fracture toughness testing of glassy plastics, and application of fracture 

mechanics with SL•ch materials. See (5.17), (5.18), and (5.23) for discussion of the 

application of fracture mechanics with fibrous-resin composites. 

C,-clic L..oodlng and Fatigue 

The strength of most plastics is reduced when critical stresses are orplied as 

cyclic loads. Fatigue strength of plastics is discussed in Sections 2.11 and 3. 7, 

Stress intensification at notches and discontinuities (Section 5.5) can severly 

reduce fatigue life compared to un-notched (flaw free) members. Cyclic loading 

rnoy produce crocks at discontinuities that initially are not large enough to result 

in fracture, but which will propagate under continued cyclic loading until 

fracture fi'lolly occurs at a higher number of load cycles. Fracture mechanics 

provides quantitative aJJProaches for describing the mechanisms of crock initia

tion and crack propagation under cyclic loads. Criteria for defining fract Jre 

behavior and a basis for predicting fotig~ life con be developed with the aid of 

fracture mechanics. The details of such onal)'ses ore found in texts such as 

(5.16). 

Stress-Corrosion Crocking 

Hostile environments may produce delayed failure of structural components 

under statically applied stresses that are well below material strength in o 

standard test environment. Such failures are due to stress-corrosion cracking. 

In studies of stress-corrosion cracking, the stress intensity factor, KI' is used to 

cha.-acterize the mechonicol component of the crock driving force. Environ

mental conditions con degrade the stressed moterial at the tips of cracks and 

flaws and can cause crock extension with time under exposure until the c.-ocks 

are large enough to result in fracture. 

Fracture mechanics studies of the resistance of materials to stress-<.:orrosiort 

cracking u,uolly are ba.seJ on a critical "stress-corrosion cracking threshold" 
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stress intensity factor for plane strain, K 1 . (5.16). This factor is determined sec 
by subjecting several precrocked test specimens to o particular hositle 

environment at different coflstant stresses and at various levels of initial stress 

intensity factors, KI i" The highest K I i that does not produce crack extension 

ofter o long test tirie is the stress-corrosion cracking threshold, KI sec' for the 

particular material and environment. Statically loaded structural components 

exposed to the tested environment are expected to have an infinite life when 

their K I value is less than KI sec· 

Application to Design 

For the designer of plastics structures, fracture mechanics provides the possibil

ity of an important tool for the sel~ction of appropriate materials, based on 

resistance to brittle fracture (toughness), and for the determination of safe 

design stress levels and allowable flaw sizes for given materials. The relation

ship of these three variables are illustrated graphically in Fig. 5-19. The family 

of curves that relate nominal tensile ~tress at brittle fracture, a xf' to maximum 

flaw length, a, are similar to the curves that relate critical buckling stress,a , 
XC 

to column slenderness, L/r, (Fig. 7-3). The critical stress irtensity factor, Kie' 

is onalogous to the elastic modulus, E, in column buckling. When viewed this 

way, whenever the combination of tensile stress and flaw size produces a value 

of a f that is less than a , tension or flexural member design is governed by 
X XU 

tensile instability (brittle fracture) , just as a compression member design may 

be governed by compressive instability (buckling) wherever a is less thana • 
XC XU 

Practical methods for applying the above described basic concepts of fracture 

mechanics to evaluation of components with common details are given in (5.27). 

Procedures for correcting basic stress intensity factors for various stress raisers 

such as holes, fillets or changes in cross section are presented and illustrated b)' 

application to practical details in steel structures. 

Unfortunately, the liitate of the art in the application of fracture mechanics to 

plastics ond co"1)0sites hos not yet made available an 11dequate body of reliable 

materials tougtvless parameters for use in design. Furthermore, more applied 

research should be undertaken to determine the extent to which LEFM can be 

applied to various plastics and composite moterials that ere of interest in 

structural applications. Thus, the above-described fracture mechanics approach 

is not yet available for widespread use by designers. Prudent part design in the 

absence of fracture toughness dota is characterized by the eliminatic-n of a!I 
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potential stress concentrating geometries, and over-design of critical dimensions 

to compensate for stress concentrations in tl-ie for n of flows that rnoy develop 

Juring the service life of ti,e strxtural co·nponent. 

0 

a 
u 

Definitions 

axu " static tensile strength of material 

axf = overage tensile stress at fracture 

au = mo,dmum crack length when fracture 
occurs at axf = c,xu 

af = maximum crock length at fracture 

Curvt's for various 
values of Kie 0 

xf = 
~ 

XU 

-- ........ -- ----
..!!._ 

= 0 
XU c, 0xu-Jo 
I I : : 
) 4 5 6 7 d 9 10 

Fig. s.1, DIMENSION.ESS RELATION BETWEEN TENSION STRESS 
AT FRACTURE,oxf' AN> CRACK LENGTH, of 

Hopefully, the industry will recognize the need for quantitative brittle fracture 

criteria and manufacturers of specific materials ,'::'ill undertake the research 

needed to demonstrate whether LEFM will characterize the toughness of their 

materials. Where this approach con be used, reliablf! values for Kie' Kid and 

other important critical s~ress intensity factors that characterize the fracture 

toughness of specific plastics and composites must then be developed. If LEFM 

cannot characterize specific mnteriols, u,:="'r criteria for fracture t°'9lfless 

must be developed to assist designers to attain safe structural designs for 

members subject to axial or flexural tensit)r'I. 
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5.9 S fqUCTURAL VIBRATIONS 

Whe"I a structural component or on assernbly of components with a m<1ss, f:J, is 

given a certain type of S'l'loll instantaneous displacement and then released, it 

will initially oscillate about its neutral position with (1 frequP.ncy, f, that is 

terme-<l the "natural frequency of vibration". Frequency is measured in cycles 

per unit of time (usually seconds). The time required to complete one complete 

cycle is termed the natural period, T. The period is related to the natural 

frequency by: 

T -= I /f F.q. 5.65 

Natural frec:p!nCy of idealized systems 

The simplest model to illustrate this behavior is the spring supported moss shown 

in Fig. S-20o. If this mass is moved on arbitrary amount y. and released, it will 
I 

oscillate in accordance with the following sirnple equation of motion: 

y = y. cosWt 
I 

Fq. S.6~ 

T M2 

' ~ Ri-ry YI 

I Yo 
Y2 k,) (b) 

Fig. 5-20 IDEALIZED "MOOELS" FOR VIBRATING SYSTEMS 

w is termed the c1rcular natural frequency and is related to the natural 

frequency, f, liy: 

l;J : 2'r, f Eq. 5.67 
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f, the noturol frequency is: 

f = 1w-f; Eq. 5.68 

in which k is the stiffness of the spring. 

The simple structure shown in Fig. S-20(a) is termed a "single degrae-or

freeclom" system, and it hos only one possible mode (displacement pattern) of 

natural vibration and one natural frequency. The idealized structure with 2 

spring supported masses shown in Fig. S-20(b) is termed a "two degree-of

freedom" system, and it exhibits more complex vibrational behavior. It hos two 

•·modes" of free vibration, and a n.Jtural frequency for each of these modes. 

When the structure vibrates in one of its modes, all points vibrate in phase; that 

is, all points reach the maximum travel simultaneously. Texts on structural 

dynamics such as (5.22) present equations of motion, and both approximate and 

rigorous methods for determining natural frequencies and other characteristics 

involved in vibration analysis. Often, srructura; systems ore approximated as 

one degree-of-freedom systems, and the general conclusions and methods of 

analysis of behavior of such systems are used for the approximate determination 

of vibration effects for a more complex structure. 

Damping 

When a member is left freely vibrating, the amplitude gradually reduces because 

of the inherent damping of the material and the additional damping due to 

friction at structural supports and connections. In viscous damping (the usual 

assumption), the damping force is proportional to the velocity of motion. A 

damping coefficient, c, is defined as: 

c _ Dom~i"Si force on moss 
- Ve oc,ty of moss 

Eq. S.69 

The d'lmping coefficient is a function of the material's characteristics, shape of 

struc1ural member and arrangements of structural system, as well as other 

variables such as level of stress. It is difficult to measure c with great precision. 

The amplitude decoy in one cycle of a vibrating system gives on approximate 

estimate of clomping which is usually satisfactory for use ir. procticC'.I design. 
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Damping is generally defined in quantitative terms as a percent ratio of the 

amount of damping beyond which the structure does not vibrate harmonically. 

Thus: 

Eq. 5.70 

in which c is termed the "critic11I damping", and the percent of critical damping r 
is n. For a o.,e degree-of-freedom syste1n, the critical damping is: 

Eq. 5.71 

and thus, 

c = 2 nMw Eq. 5.72 

Dynamic load factor 

Strnctural vibrations occur when a member, or assembly of members is suddenly 

looded or unloaded, when a structure is subject to certain types of cyclic loading 

or motion, or when the load varies with time. Sudden loads occur in impact and 

b!asts; cyclic loads occur as a result of ground shaking in earthquakes, moving 

loads like vehicles on a bridge, machinery with ports that rotc.te or oscillate, 

forces from random wind g,Jsts, or any loading conditions involving changes in 

applied forces over short time periods. 

Structural vibrations often amplify the defledions and stresses produced by 

loods that ore applied st'lticolly. In practical design, amplified stresses that 

result from dynamically applied loading ore usually determined by multiplying 

the stresses caused bt the design loads, as applied statically, by a dynamic lood 

factor (DLF). In coses where dynamic loads occur because a structure is 

subjec: J to motion from external effects, such as an earthquake, equivalent 

static forces are often determi,ied for use witt, conventional static design 

methods. 
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When on applied load is varied over a timt! spon thot is less thon about four times 

the naturol period of a structurlll system, dynamic amplificotion of stresses may 

be significon1-, The magnitude of the DLF depends on the variation of npplied 

lood with time (forcing function) and the natural period of the stt ucture. 

f}uantitotive values of DLF for various forcing functions are presented in texts 

on dynamics such as (5.22). Two limiting cases are useful for qualitative 

evaluation of certain important dynamic effects: 

• An instantaneously opp!ied lood that remains on the structure produces a 
maximum DLF of 2.0 for a linearly elastic system without clomping. 
Damping reduces the DLF but the reduction is usually not significant for 
this type of forcin~ function. If the "rise time" (i.e. time to recch 
maximum load) of a rapidly applied lood is less than about one-quarter of 
the natural period, the DLF is essentially 2.0, the some as for on 
instantaneously applied load. If the ''rise time" is more than about 4 or 5 
times the natural period, the response is essentially static becausP the 
DLF is close to 1.0 and dynamic effects ore negligible. Thus, loads with a 
''rise time" that is more than about 4 times the natural period are slowly 
applied loads. 

• If a forcing function is pulsating such that i!s value at any time, t, may be 
approximated by: 

Ft = F I sin n t 

the maximum DLF is approximated by (5.22): 

max DLF = + - I 
- I - (n/w)2 

Eq. 5.74 

It is evident from the above equations that the appiicaton of pulsating loads to 

structure~ whose natural period is close to the period of the pulsating lood 

(forcing function) can result in very large deflections and stresses. This 

condition is termed ''resonance", Thus, it is important to ovoid vibrating loadings 

that may produce resonant vibration, 

Approximate lowest natural frequency of actual structures 

~ significance of the natural frequency (or period) of a structure is evident 

frorr. the above discussion of the effects of loads that vary over short time 

periods. The natural frequency of a single d~ree-of-freedom system is given by 

Eq. 5.68. The approximate lowest natural frequency of any structure whose 

dynamic behavior coo be simulated by a single degree~f-freedom system can be 
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determined using Eq. 5.68 if the stiffness, k, the effective mass, '~e' and the 

dynamically applied forces, Fe are determined by assuming that ~ and Fe are 

concentrated at a single point on the structure that best represents its motion in 

its lowest vibration mode. For members with distributed mass and distributed 

dynamic forces, such as beams, this point is often the point where the deflection 

is maximum. In this approach: 

k = I 
°s 

Eq. 5. 75 

where 6 s is the static deflection of the structure at the point of application of 

equivalent mass and force when the structure is subject by a unit load having the 

some distribution as the applied dynamic force. The effective mass, fJi , can be 
e 

defined in terms of the total mass, M, as: 

Likewise, the effective force, Fe' can be defined in terms of the total 

distributed force, F, as; 

Procedures for determining crn and cl for single degree-of-freedom approxima

tions of common structural systems are given in (5.22). 

For beams, the unit load deflection, ~ s, at the point where the equivalent moss 

and dynamic force are assumed to be concentrated tokes the form given in Table 

5-1 for bending and shear deflection, with load, W = I. Thus: 

L3 L ~ s = Km Er + Kv C°Aw Eq. 5.78 

Values of Km and Kv for midspan deflection are given in Tobie 5-1, for simply 

supported ond rotationally fixed ended beams under concentrated and uniformly 

distributed loads. Substituting Eqs. 5.75, 5.76, 5.77 and .5.78 into 5.68, the lowest 

notL•rol frequency for beams where shear deflection is small relative to bending 

deflection (the usual case except for some :.andwich beams, Chapter 8) is given 

by: 
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I 
f = ~ Eq. 5.79 

Eq. 5.80 

Examples of midspan concentrated masses that are equivalent to combinations of 

concentrated or distributed mass systems and dynamically applied force systems 

on beams with several conditions of end restraint are given in Tobie 5-7. The 

coefficient, rS 1, for approximate lowest natural frequency obtained using the 

tabulated equivalent single midspan concentrated moss and force and the static 

midspan deflection for the appropriute distribution of dynami::all/ applied force 

is also given in the Table for each load arrangement. Only bending deflection is 

included in these examples. Note that the lowest natural frequency coefficient, 

•i• is approximatel/ the sarne for beams with different distributions of applied 

dynamic force, but the some mass distribution and end restraint condition (i.e. 

Cases 2, 6 and 7 and Cases 4 and 8 have approximately the same , 1 ). 

Approximate dynamic analysis of actual structures 

ApProximate methods are often used in dyno,nic analyses of practical structures. 

As olreay discussed for determining natural frequencies, the simplest methods 

involve idealizing a multi-degree-of-freedom structure, such as a beam or frame 

with distributed moss and distr:buted dynamically applied force, as an equivalent 

one degree-of-freedom system. Appropriate approximate analyses for determin

irg dynamic response of practical structures ore described in (5.22). This 

reference :Jlso gives design <1ids, .iUCh as charts of DLF for various forcing 

functions on single degree-of-freedom systems, and tabulations of equivalent 

masses, loads, or,(I resistances for ap;:,roximating resp.:,n~e of multi-degree of 

freedom systems by single degree-of-freedom systerr,s. It also gives design 

examples covering response of various common structural components and 

systems to several types of dynamic loads and resistances, including considera

tion of ductility and plastic behavior. 

In the approach developed in (5.22), the static deflection and the static stress 

resultants proouceJ by the maximum dynamically applied forces are multiplied 
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by the maximum DLF to determine the moximum dynamic response. The static 

deflections and stress resultants produced by the mass loading on the structure 

urc added to the dynamic response produced by the applied dynamic force. This 

approach is used for the evaluation of maximum stresses in a reinforced plastic 

beam in Example 5-7. 

Note that the dynamic reactions of the actual structural member hove no direct 

counterpart in the e-1uivalent single degree of freedom system (i.e. equivalent 

spring force is not the some as the real reaction since the simplified system was 

selected to produce the some deflection as the actual system, rather than the 

same force). Methods for obtaining the maximum reactions (and, ~nee, the 

maximum shear) are given in (5.22). 

Table 5-7 

Equivalent Masses & Coefficient for Lowest Natural Frequency for Beams 
(For use in Eq. 5.78) 

Oynumocolly Applied 11\ws 
Force Arrong,nent L>i~tribution 

_____ ,.. ___ ,___ 

,s 
f I I I :r. ,s ~ 

Ail 
l Some OS I iIIITHIIij 

3' 1 • ' 
fii 

l a 
-----

M 
4 Same aa l 11111111111 

F/2 F/2 Xl/2 M/2 

L,31 !:£3 ' 
L/l L/3 L/3 

s IS ~ /J • B 11 

' xo.neosS 
M 

!111111111 l 
F ~ 

7 !111111111 ll .{II O ii I "l 
··-

I lflflff•Ot 
li 

8 ,1111111111 
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qoiv, Looc 
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1.0 

1.0 
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0.87 
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0.5J 
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(From Tobi• \ 

1/48 
.._ _____ 

'/48 

1/192 

11192 

f«Jturnl 
f-rt>qu1:ncv, 

.I) 4 I' lq. ~.00 

1 .10 

1,,7 

J.ll 

I J.,J 

0. 76 k l ,----t.l8 

I 
! 

0.52 

I 
1/:, ... 4 I. 5S 

! 
o.so S/184 I.SB 

----·----·· 

O,ltl 1/184 



• 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Example S-7: Determine the lowest natural frequency and the maximum combinttd static 
and dynamic flexural stress in the beam shown in sketch 110 11 subject to a maximum 
dynamic force of 600 lbs per foot (from blast pressure) uniformly distributed over the 
length of the beam, if the weight on the beam is 400 lbs per foot, also uniformly 
distributed over the ler19th of the beom. The section shape and properties of the beom are 
shown in sketch ''b". (The beam is the same as the beam designed for static load in 
Example 7-3). The "blast pressure" forcing function that defines the vari(]tio1 of the 600 
lbs/ft maximum applied furce with tiine is sho-Nn in sketch "c".* 

w = 400 lh\/ft 
Max. F = 600 lbs/ft 

: - I ' ' l ' ' l ' : weight 

! ' I I II I II I I I I r 
I 20• I . - , 
a) Beam ArrCJO<Tment and Load 

F 
Dynamic 

Force 

T, l,me 

Td = 0.2 sec 

c) Dynamic Force Variation 
with Time 

0.7" 

b) Beom Section 

Section Properties 

11 = 2197 in 4 

s1 = 183 in3 

Moterial Properties 

El I = 1,400,000 psi 

I I. 
I 

Natural frequency of beam with 0.4 k per ft. dead IOJd. 

f = d 1 ✓{:~•~-; E = El I = 1,4M ksi; Using inch units, L = 20 x 12 " 240 in. I 
I 
I 
I 
I 

M = : ; W = 0.4 x 20 = Bk; g = 386/in/sec2; M = ½ = 0.0207 kip-sec2 /in. 

I 
I 

1,4()(} X 2197 _ 
= 

(24()}3 X 0.0207 
3.28',4 I; From case 7, Table 3-7, , 1 = 1.58 

I 
I 
I .. See note on ExamplP. 5-1 , page 5-4. 
I 
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I 
I 
I 

Example 5-7 (continued) 

I I 2. 

I 
I 
I 
I 3. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

f = 3.28 x 1.58 = S.? cycles/sec; T = t 
Max. rlynomic load factor, (DLF) max: 

I = TI = 0.1 9 sec. 

From Fig. 2-8 in Ref. 5.22 (reproduced below) for the triangular pulse forcing 
function show11 and T - 0.19 sec., tiT = 0.2/0.19 = 0.96: (OLF) max. = 1.5 

Static stresses: 

Due to weight: 
0.4 X 20 X 20 = __ 8 ___ = 

M 20 x 12 . 
crx = "5' = -un- = 1,311 ks1 

Q,6 X 20 X 20 
Due to max. forcing function: Mx - ---- 8--

cr 10 :.c I 7. I 967 k . X = --rg_r : , SI 

20'k 

= 30'k 

Maximum stress = max. dynamic stress + max. static stress: 

1.967 x (DLF)+- 1.311 = 1.967 x 1.5 t 1.111 - 4.262 ksi 

1.6 

-·· 
1.4 

I. 2 

t.O 

i 
i: 0.8 _, 
0 

0.6 

,:>,4 

0.2 

0 
0 

j 

I 

·- I ........ 

I 
! 

I 

J I 

I I 

I/ 
11 

I 

1.0 

\ 
\ 
' -..... --'\ ~v "'i'-.. 

r,.;: , 

"lli_ 
...,,, t, 

-I--

I 

3.0 4.0 

DLF from (5.22) 

I 
I 
I 

Note: I in. = 25.4 mm; I ft = 0.3048 m; I kip = 4.448 kN; I ft-kip = 1.356 kN-m; I ksi = 

6.894 MPa; I lbf-sec2/ft = 14.589 kg. 
I 
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NOTATION - Chapter, 

a 

a. 
I 

-a 

A 

A .. 
IJ 

I, 

b .. 
IJ 

C 

d 

D 

DI I' D22' or Dr 

D .. 
IJ 

Do 

e 

e , e 
X y 

er 

E,E
0 

Ev 

EI I' E22' Er, 
or E9 

long dimension of rectangular plate; diameter of circular plate 

diameter of interior concentric openinc; in circular plate 

width of support for diophra~m rlab 

crass se,:."~ionol area of unit width cross section 

crnss sectional are\l 

in-plane stiffness of plate along axis i in direction j 

short dimension of rectangular plate, e,:cept v 'iere noted for 
wide plate 

stiffness coefficient as defined by E<1s. along axis i in direction 
j 

dimension of effective width of plate 

maximum unbroceci length 

correction coefficient for modifying buckling coefficient for 
various effect!- of biaxial stress and edge restraint 

distance from neutral axis to point of lood application, affect
ing lateral stability of beam 

flexural rigidity 

flexural rigidity in I, 2, and radial directi"lls 

flexural rigidity of plate along material axis i in airecti-,n j 

flexl•ral twisting constont as defined by Eq, 6.6 

strain 

strain in x md y directions 

strain resulting from restraint of deformation due to tempera
ture change 

modulus of elasticity 

viscoelnstic modulus of elasticity (Chapters 2 and 3) 

modulus .>f elasticity in I, 2, radial, and circumferential dirt.-t:
tions 
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f, f. 
I 

g 

k 

kl I k21 k3, k4, 

k5, k6' k7 

m 

m 

M 

M,M 
,:: e 

M 
er 

M , M 
o a 

M 
u 

M,M 
X y 

., 
N 

sog; initial sag 

frequency of noturol vibration in nth 1st , and 2nd rnodts 

area of vibrating membrane 

ocrelerotion of gravity 

modulus of shearing rigidity 

modulus of shearing rigidity in plane of directions I cYld 2 

moment of inertia of unit width cross section 

moment of inertia of cross sec. tion 

buckling coefficier,t; as subscript, indicates layer rumber in 
lominoted plate 

coefficient for adjusting plate bending resu1~s when v varies 
from 0.3. k -= 1.0 when v -= 0.3 

0 

coefficients in plate bending equations obtained from graphical 
plots of plate oending solution'> 

stiffness coefficient for axial, rotational and torsional edgt; 
restraints 

wove length of buckle 

m(J(Jnificotion factor for deflection .rid rnorr.ent for members 
subject to combined axial load and bending 

integer 

bending moment per unit width 

maximum bending n.c.,rr.ent at center and at edge of plate 

bending moment which causes lateral ~kling 

bending moment without effect of axial load and with effect of 
axial load. 

ultimate bending moment 
,. 

bending moment in x and y directions 

integral exponent, mode ,.._,mber, or integer 

oxiol force per unit width 
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N N x' )' 

N xy 

N 
C 

N. N . ll' V 

N 
XC 

p 

p 
u 

Q 

q 

R 

~ 

V 

va,vb 

r.v c.' r.vb 

t 

w 

axhl forces in x and y directions 

sheer for in xy plane 

axial force at edge of pla•e 

horizontal and vertical component of axial fOf'ce 

horizontal and vertical components of axial force at e•Jge 

horizontal component of axial force of edge, due to initir~I 
tension, and due to lateral load q 

axial force due to restraint of deformotiun from temperature 
change 

critical buckling axial force in x direction 

opplie.d axial force per unit ,1rea 

concentrated looc' 

ultimate r::xial compression 

shear force per unit width 

mf'Jximum trans'l"!rse shear force on edges with lengtl ,s a and b 

shear force in z direction on planes perpendicular to x md y 
oxes 

uniformly distributed lateral pressure 

reaction at comer of plate 

section modulus of cress section 

edge reaction per unit width 

maximum e-dge reaction on edges with lengths o and b 

sum of edge reactions on edges with lengths o and b 

thickness of plate 

thickness of central portion of plote 

thickness ol layer, k 

change in temperature 

deflection normal to plate 



wo,wa 

y 

a 

deflection at distance x from support, and at centP.r 

deflection without effect of axial load, and with effect of axial 
lood 

distance from centroid of plaft:- to centroid of layer k 

coefficient given by Eq. 6.40 

coefficient of thermal expansion 

axial deflection of membrane edge; edge deflection caused by 
initial pretension 

axial strain 

shear strain in x-y pion~ 

density 

dimensional ratio:; 

stiffness ratios in orthotropic plate analysis 

Poisson's ratio for isotropic materials; Poisson's ratio tor 
materials I and 2 

Poisson's ratio for stress in matuials directions I and 2 for 
rectangular plates and circumferential and radial directions for 
circular plates, orthotropic materials 

coefficietlts for rnodes n in equation for r~'ltural frequency 

angle of principal axis of materials stiffness with plate axis, x, 
for layer k 

moss 

normal stress 

axial stress 

bending stress 

ma1'imum axial (in-plane) stress at edge, center, and diagonal of 
recta.'9Vlar plate; maximum axial stress at edge and at center 
of circular membrane 

maximum combined axial and bending stress at edge, center, 
and aiogonol of rectangular plate 

maximum bending stress at edge and center of rectangular 
plate 
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olr' oyg 

0 xcc' 0 xcv 

0 
0 xc 

0 
axbc 

0 xe 

ax,, 

TLT 

T 

TXY 

Txyc 

0 
Txyc 

Txz' Tyz 

g 

ge 

maximum axial (in-plane) stress in radial and circumferential 
directions in circular plate 

maximum total stress in radial and circumferential directions in 
circular plate 

ultimate axial and bending strt:ngths for use in design (i.e., 
reduced for effects of time, environmental degradation and 
materials variation) 

stress in directions x and y 

stress in x and y directions due to axial force only 

stress in x md y directions due to bending only; also used for in

plane bending stress where indicated in text 

critical buckling stress in x direction on rectangular plate, in 
radial direction on circular plate, as shown in Fig. 6-42 on 
triangular plates 

critical buckling stress corrected for biaxial stress, for creep 

critical buckling axial stress without shear stress 

critical buckling in- plane bending stress without shear stress 

effective elastic- axial stress in x direction - Fig. 6-34 

ultimate stress in x direction 

reduction factor tor creep buckling 

shear stress 

shear stress jn x-y plane 

critical buckling shear stress in x-y plane, redongulor plate 

critical buckling shear stress without normal stress 

shear stress in z direction 

cngle of stress with x axis 

rotot ion at edge of plate 
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6. FLAT PLATES~ ~S 

F. J. Heger 

6.1 INTRODUCTION 

Plastics structural components frequently contain elements that may be ideal

ized as thin flat plates or membranes subJect to loads perpendicular to their 

surfaces and to stress resultants within their planes. In o few cases, the entire 

component is a thin plate Slich as acrylic plastic window panels in separate 

support frames. In most coses, however, the thin plate element is a portion of a 

molded or formed unit that contains integral side panels, edge ribs, intermediate 

ribs, ood the like. A very great voriety of different configurations is poss:ble. 

The first step in the structural design process described in Chapter 4 is 

structural idealization to facilitate preliminary onolysis aid proportioning of a 

component or its key ports. Frequently, such idealization involves conslderation 

of the individual flat plate elements that together comprise a structural 

component. Obvic,usly, approximations of shape, edge support, oo,j constants 

that define materials behavior C\re required. 

The purpose of this Chapter is to assist the designer to analyze and proportion 

individual flat plate or membrane elements based on iood, shape, edge support, 

and materials characteristics that commonly occur in designing plastics struc

tures. Plate structural behavior is described and methods are presented for 

analyzing and designing plate Comp0flf!l1ts. Many design aids ore presented for 

practical determination of maximum stresses and deflections and for evaluating 

bucklir.g strength under in-plane compression. It is not the purpose of the 

Chapter to present the underlying theory. This is available in mony of the source 

references given herein and in Chapter 4. 

When design problems require more comprehensive solutions, solutions involving 

variables in shape .;>f plate, load distribution, edge support conditions or 

variations in moteriols constants, or consideration of interactive effects between 

contigucus elements that cannot be bracketed by available plaie idealizations, 
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computer solutions are readily available to determine stresses and buckling 

strenyth. These usually involve either linear or no:"1-linear finite element 

analysis. In recent years, finite element analysis methods and programs have 

become practical tools; frequently, these methods can be used in day-to-day 

design situations that were heretofore considered beyond the realm of practical 

solution. Sir,ce the details of such analyses ore beyond the scope of this Manual, 

their use is not covered in this Chapter. 

Predominant considerGtions in the structural behavior of thin flat plates are 

bending and def lee ti on under lateral loads (normal to their plane), in-plane 

diophracm stresses c11used by ec!ge loading froin adjacent components, and 

stability (r"sistance to buckling) under various in-plane comprf'ssion stresses. 

These topics ore the principal subjects of this Choµter. In addi! ion, stress 

analysis of unidirectional, rectangular, and circular flat membranes is covered 

briefly. Such elements are too thin and flexible to resist load in bending, but if 

proper edge support is provided, they con support load by tensile membrane 

stresses that develop when they deflect. Finally, natural vibration fre(j\1encies 

of plates and rnembrones are briefly discussed, 

Defi11itim of Thin Plate 

This Chapter is devoted to thin plates, defined as flat structures of uniform 

thickness whose minimum span t.iirnension exceeds 4 times the plate thickness, 

and whose minimum dimension perpendicular to this span is olso at least 4 times 

thicknes!, 

Limitations of Material Chorocta-istics 

Material characteristics may be uniform through the thickness (homogeneous) or 

they may be layere(J in a bolancea symmetrical distribution of layers with 

respect to the midplane. They may be uniform in all directions (planar 

isotropic), or they may vary with respect to two principal perpendicl1lor 

directions (planar orthotropic). In oll cases, materials ore assumed to behove 

elastically, or visc~losticolly, as described in Chapters 2 and 3. 
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Design Considerations for Plastics 

Plastic plates frequently hove cl1aracteristics of behavior that offer opportuni

ties for design optimization not cvoiloble with conventional metals. Also, non

conventior.ol aspects of their behavior often rnu~t be considered in design to 

ovoid premature failure or unsatisfactory p,:rformance. 

The following characteristics of plastics de5erve special consideration when 

designing plate structures or components: 

• Time-temperature dependent effects result in significant reductions in 
stiffness and in strength under long-term load and/or elevated tempera
ture, as explained in Chapters 2 and 3. 

• Thin plates often deflect ii' excess of half their thickness <,nd resist a 
significant portion of applied lateral loads by developing in-plane or 
membrane stress resultants. This requires consideration of non-linear or 
large deflection behavior. This is particularly significant, and usuolly 
beneficial, in plates that develop restraint of in-plane edge translation. 

• Stiffness and strength properties sometimes vary with direction of plate 
oxes. Such directional characteristics of a plate 111aterial require onalyses 
of stresses ond stability that take these anisotropic prope, ties into 
account. A much simplified anisotropic analysis, terrned "specially 
ort11<>tropic" plate analysis, is used for the following commonly occurring 
special materials and stress condiL>ns: 

(I) Thin plate material hos constant elastic or viscoelastic propcrt ics 
through its thickness, or is mode up of distinct layen; of materials 
of constant thickness and properties, 

(2) elastic properties of the constant thickness plate, or its layers, 
hove maximum and minimum values coinciding with the two 
orthogonal (perpendicular) axes of symmetry of the plate, 

(3) the plate oxes of symmetry are also the principal axes of stress. 

Special orthotropic plate theory is sometimes used, even where its 
limitations are not strictly met, a~ o practical approximation of the 
expected behavior •.Jf anisotropic plastics. 

• Composites, •;~nich are mixtures of resin binder and fibr011s reinforcement, 
hove unique characteristics that, in the present state of tl,e art, usually 
cannot be determined quantitatively from the individual ch;:irocteristics of 
the resin and fiber components. In practical de-;ign, the composite is 
considered as a unique material with its own elastic Gnd strength 
properties. 
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• Some layered composites ore fabricated frorn plies having particular 
directional characteristics which ore usually orth0tropic. Analysis of 
plate stresses and deflectior,; with such materials typically requires a 
laminated plate theory. Son,,-.1 ,nes, however, behavior of layered materi
als is OiJProxim'Jted using a•1f::r.,':.:'e elastic properties determined from 
testing the overall laminute. 1n this approach, "overage stresses" are 
calculat~d from ..:onventional "uniform thick,iess" plate theory, an<1 the~e 
ore compared to "averoge strengths," determined frorn test loads and 
average "uniform thickness" section properties. 

• Most plastics and composites do not exhibit the ductile stress-strain 
behavior prior to rupture which is characteristic of metals and pr0p<:rly 
designed reinforced concrete. oecouse of their relaiively low modulus of 
elasticity, and their usually high ratio of strength to modulus, these 
plastics and composites often develop relatively high strains at failure; 
however, they do net enjoy the beneficial redistribution of stress concen
trations and other indeterrninote effects that ore characteristic of ductile 
metal structures. This non-ductile behavior requires accurate analysis of 
stresses resulting from restraints and environmental effects that are 
often i9nored with metal structures. Thus, it is frequently necessary to 
use more accurate rnethod~ to analyze effects of loads, restraints, 
moisture and temperature gradients, and similar stress-producing pht•nom
ena when designing plastic and composite plate components, compared to 
design practice with rnt·1ol µlotes. 

In many practical desiyn situations involving plate ~:ompunents, extensions or 

modification of conventional methods for onolysis and design of metal plates are 

required to account for the above characteristics of plastics and composi ~es. 

Significant results of the extended and modified theories are pres<.·nted in the 

following sections to assist the designer of plastics plates to understand their 

behavior and to develop rational plate designs for com,nonly occurring compo

nent types and arrangements. Other results, particularly the equations for plate 

buckling, are presented in this Chapter for further use in Chapter 7 covering 

behavior and design of assemblies of this plates that ore used as beams, columns, 

and ribbed f lot panels. 

Pcrameters Which Define Structural PerformalCe 

Generally, the design of plate components involves consideration of the following 

parameters which define structural performance: 

I. Deflections, bending moment, shew and in-plane axial stress resultants, 
cnl support reactions in laterally loaded plates. Laterally loaded plates 
ore plates with various shapes, edge support and restraint conditions, and 
load distributions, with load acting perpendicular to the plorie of the 
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plate. Bending moments cause fle,cural stresses and strains that are 
assumed to vary lineurlv ar.ross the plate thickness for plates of a 
homogeneous material. For plates of non-homogeneous materials, such as 
laminated plates, strains ore assumed to vary linearly across the thickness 
and stresses ore related to strains by elastic stiffness constants for each 
layer of matt-rials. In-plane axial stress resultants (membrane stre~ses) 
are significant in laterally loaded plates whose edges ere held against in
plane translation, whenever deflections exceed about hal1 the plate 
thickness. They must bf' added (algebraically) to flexural stresses. 
Transverse shear stresses con be s:gnifica;1t in materials with low shear 
strength, in layered materials with low interlaminor strength, and in low 
strength "core" layers which are sandwiched between much stiffer facing 
materials. 

2. i~lane normal and shear stresses in di..-ogm plates. Diaphragm plates 
·1re plates with variOl:s shapes, and edge suppor.- conditions which are 
loaded within their own plane. These plates frpquently transmit their 
loads to supp or ts by in-plane bending and sh ~or, thus, they behove as 
narrow deep beams. F reqvently, their proportions of width-to-span 
require considerotirm of shear, bending, and transverse strains using 
mt:thods of analysis termed "deep beam theory". 

3. Buclcling re .. istonce of plates sA>ject to in-plonf' compressive stress. 
Stress distributions of greatest interest in rectangular plates incl11de 
unioYially uniformly C'lmpressed plates, unioxiolly compressed plates with 
1;neorly varying stress, diagonally compressed plates (res ,lt11,g from in
plane shear), and biaxially uniformly compressed plates. The first three 
cases represent: 

• compressed flanges of beams, columns, and panels; 

• web bendin~ in bearns; 

• web shear in beams or facing shear in panels. 

Natural frequency of free vibration. Dynamically applied loads cause re
sp::nses which are greatly influenced by the natural frequency <1f free 
vi'>ration of plctes. Generally, ~he lowest mode is of greatest interest, 
but knowledge of high<'r modes i~ sometimes also necessary to evaluate 
dynamic behavior. 

In order to evaluate the above types of structural per :orrnance, it is necessary to 

determine plate stiffness. Stiffness is a function of the materials properties: 

modulus of elusticity and Poisson's ratio, the materiJls directional characteris

tics, ond the material varioticn through th:ckness (homogeneous or layered 

construction). It is also related to various geometrical and support parameters. 

Stiffness relations for plate cross sections ore presented in the next Section for 

plates of homogeneous mater iols and in Section 6. 7 for lorninote<l plot es. 
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6.2. h .. \ TE CROSS SECTION STIFF"-ESS 

Pl<W! c•o:;.~ S<"cfion sfirfric,;5 is a function of rnoteriols properties and cross 

secti:x,ul ,~,•o,r,dry. In the equations presented in this Chapter, rnoteriuls 

properri<'!<. <!rl' .,:;st•1;1ed to bt elostic and to be either isotropic or orthotropic. 

Thesf• ter111~ or1• ,1e1:r.- i in ~ection 2.'>, Chai->ter 2, with further explanations in 

Section 3.'> and T .it,;!. '.:-4 of Chooter 3 and Section 4.9 of Chapter 4. 

Uostic constonts define the relationship o·; stress to strain in a 111ofrrial that 

exhibits el'1stic .,,1havior. Pseudo-elastic constants ore used to relate stress and 

strain approxirr,ately for certain defined conditions with viscoelastic materials 

which exhioit time-depenJent relationships between stress and strain. See 

Sections 3.3 and 3.5 for a discussion of the materials elastic stiffnes~ constant; 

modulus of ela:o;ticity, l~, and ~'oisson's ratio, v. Methods for estimating elastic 

constants for viscoelastic plastics materials :;ubject to various <.lurutions of 

looding ore also given in these Sections, E.lastic con<:tants for short-term loading 

of some representative plastics mate,ials are given in Section I.'>, Tabk 1-1, Jnd 

Section 1.9, Tables 1-5 through 1-9. 

Stiffness Constmts for Isotropic Ptotes 

Stiffness constants relate load tc, deformation. The axial stiffness constant, A, 

i;; a me<;sure of the axial force required to p,·oduce CJ unit axial c!eforrnation in a 

1:late of unit length. The flexural stiffness const<Jnt, D, is a meus:.1re of the 

lateral force required to produce a unit bending deflection on a plate of unit 

span. These stiffness constants are determined from elastic constants thot 

define stress-strain behavior opd cross sectional propertie~ that relate force to 

stress. 

Stres-stroin relationships must account for bi-directional inte~'lctions when thin 

plates are stressed, For plate structures, stressed in direction x, stiffness is 

increased, compared to bars of similar sectional properties, because of the 

restraint of Poisson's deformation in the perpendicular direction y. This behavior 

requires stiffness and stress-strain equations for plate!>, that differ from 
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equations for stiffness of norrow beams. The following stress-strain relations 

apply for isotropic homogeneous plates: 

rJ )( 
E vE Eq. 6. la ; 

I - v 2 ex+ ~2 
e y 

IJ 
vE e E Eq. 6.1 b ; 

~"L 
♦ --1 e 

y X 
I - v 

y 

G-Y E 
r xy Eq. 6.lc t = = 2 o + vJ xy xy 

Thus, for isotropic materials, two basic independent materials constants, E, 

modulus of elasticity, and v, Poisson's ratio, define strf'ss-strain re lotions. 

Based on the above stress-strain relations, the materials and cross sectional 

stiffness properties ore defined in Tobie 6-1, port a, for plates of isotropic 

materials with the some cross section in all direct:ons. The stiffness properties 

ore given for both the more general case of non-homogeneous cross sections for 

later use in Chapter 8 on sandwich plates, and for the case of plates having 

uniform homogeneous thickness treated in this Chapter. Stiffness properties 

specifically organized for use with layt-red or laminated plates ore presented in 

Section 6. 7 of this Chapter. 

Stiffnea Constants for Specially Orthotropic Plates 

As defined previously, the term orthotropic refers to plates whoi,e elustic 

material constants hnve maximum and minimum values in two perpendicular 

directions. The orthotropic plates treated here are further limited to the special 

case where the two principal oxes of materials properties, I and 2, coincide with 

the two principal plate oxes, x and y, as shown in Fig. 6-1. Th-1'se plates are 

termed herein "specially orthotropic." 
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Table ►I 

Stiffness Praperties of lmtrapic Old 
Specially Orthotropic Pt~ Cross Sections (6.1, 6.1.) 

StiffN• Property Nan-homogeneous t-bmogeneous, 
uniform thlckneu 

Eq, No. 

.. Plarw liiut1oplc platltl 

In-plane axial, J; Ea Et ,.2a • - ..,z> (I~ ( I 

ln-planeahear, \,, - Ea Et 6.2b • Ga• 2 (I + v) Ct = nr;-,;J 

'!'ranswr• ber,-Jlng, D El E i 3 
6.3a • «-7> 12(1- v2) 

TransVlltr• twisting, Do 
El E t3 ,.lb ,. 

(I~ 120-,-1> 

b. Sp.:lolly cw llutroplc plain 

In-plane axial, All 
El I ax t:11 t 

&. 'ia • I - "12 "21 1-v,2 "21 . 
E22al 

In-plane axial, Az2 
E22 t 

• I - "12 "21 I - "12 "21 

In-plane axlal, A12 • Ail • "21 Ell ax "21 E11 t ...Sc 
,_ "12 "21 I - "12 "21 

I 

'"1,lcine axial, A12 • c,2,/axiy c,2t 6.5d 

e,, 'x 
l 

FleJM'GI I D11 
Eu t 

• I - "12 "21 12 (I - v 12 vijl 

E22 II E t 3 
6.6b Flelual, D22 

• 22 
" I - "12 "21 12 (I - "12 "21> 

":1 El I 1x 
l 

FleJM"CI ,, 0 12 • 0 21 
"21 Eu t 

6.'4: • 1- "12 "21 IZ (I - v 12 "21> 

l 
• 

c,2,/i:i; 
c 12 t Flexurol, 0 12 • .r- 6.6d 

The ·-•ting param.ter for orthotroplc plates Isa 

• 
Do • D12 + 2 D12 '·'-



2 

Fig. '-1. ORIENTATION OF AXES OF PRINCIPAL STRESS 
N-0 PRINCPAL MA TE RIALS STIFF~SS 
PROPERTIES FOR ORTHOTROPIC PLATES 

1 he elastic stress-strain re lot ions for "specially orf hofropic" plates are (6.2): 

El I E' X 
------ + Eq 6.4a 

I - "12 "2 I 

E22 e 
--~Y __ Eq. 6.4b 

I - "12"21 

1 xy"' G 12 y xy Eq. 6.4c 

also \I 12 Eq. 6.4d 

Eqs. 6.4 show thcit for "s;>ecially orthotropic" plates, f°'-•r basic independent 

materials consfonh: E 11 , E22 , mod•Jli of elasticity in the two principal directions 

of orthotropicity, C, 12, modulus of in-plane sh":!m rigidity, and v 12, Poisson's 

ratio for stress in direction I, or v 21 , Poisson's ratio for stress in direction 2, 

define stress-strain relations. The two Poisson's ratios ore related as given by 

Eq. 6.4d. 

fiosed on the above stress-strain re lot ions, the in-plane onJ fle,curol :.i ii rness 

constants for specially orth~tropic piates ore defined h l able 6-1, Part b. 
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Some thin plates am ,node up of several layers of rn11terials having different 

elastic and directional properties. This is characteristic of rnony composites. 

Overall flexural .sf iff ne'>Ses may he isotropic, quasi-isotropic, or "spt-ria! I y 

orthotropic," and r,1oy re'ldily be dP-terrnined using the elastic theory of lamin

ated plates. See Section 6.7 in this Chapter for modifications to the above 

stiffness relations to cover the cases of isotropic and balc..nced !-yrnrnetri<.al 

specially orthotropic laminated plates. Analysis of s\JCh plote~ is facilitated if 

stiffness relations ore expressed in matrix notation. 

Stiffness Const~ts for Generally Orthotropic Plates 

· In the special orthotropic plate case given obov1?, the princi~al orthotropic axes 

of the material, I and 2, coincide with ·the prin-:::ipal plate axes, x and y 

(Fig. 6-1). Stiffness coefficients Dij and Aij are related to the principal plate 

oxes, x and y, as given in Equations 6.4 11nd 6,5. See Appendix 8 in (6.1) for 

similar stiffness relations for the more general orthotropic case, where the 

principal axes of the material stiffness do not coincide with the plute axes, This 

reference also covers the case of laminated orthotropic plates that ore fab

ricated f,om layers whose principal axes of materials stiffl'lf'ss, I and 2, are at an 

angle with the plate axes, x and y. 

Application of Stiff ne111 Relotkns 

In-plane axiul stiffenss constants are required for determining: 

• deflections, stress resultants, and buckling resistance of plotes with in
plane restraint of edge translation, where "large deflections" develop 
membrane action; 

• stre;.s resultants in "in-plane" loaded orthotropic plates; 

• buckling resistance of orthotropi ~ plates. 

Flexural stiffness constants are required for determ;ning: 

• deflections of plates, 
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• stress resultants in plates with in-plane restraint of edge translation, 
where "largie deflections" develop membrane action, 

• stress res;.Jltc.nts in loterally loaded orthotropi~ plates, 

• buckling resiston<.e of plates subject to in-plane compression. 

tffect of Elastic Cor.stants on flexural aehovior 

Both E an<1 v are important parameters in determining deflection of isotropic 

plates. Obviously they both influence o!I aspects of the behavior of orthotropic 

plates. 

Bending moments and flexurnl stresses due to lateral loads on isotropic plates 

analyze-:! with small deflection theory do not vary with E, but they do vory with 

Poisson's ratio, \/, "Small deflection" i3otropic plate theory solutions available 

in the literature for various shapes and load distributions ore given tor specific 

values of V. Significant changes in stress n:oy occur for other values of v. 

Some appro)(i1':lations for estimating the effect of variations in \! are given in 

the next Section. 
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6.3 ISOTROPIC PLATES UN>ER LATERAL LOAD 

Plate elerne,,t~ frequently must be designed for resistance to lateral load. Plate 

,hickness must be proportioned to prov=de the necessary load resistance without 

excessive stress, strain, or deflection. Plate stresses, strength and deflection 

depend upon the following principal variables: 

• Materials proper1 ies: stress or strain limits, elastic constants, directional 
characteristics (isotropic or orthotropic included in this Chapter), layered 
constrvction. 

• Thickness. Onl~ "thin" plates of uniform thickness are consioered in this 
Chapter. 

• In-plane shape and dimensions between edges. 

• Arrangement and location of suppor1s. 

• Restraints provided at supports: restraint of edge tronslc.tion normal to 
pl.:me of plate, edge rotation, and edge translation in plane of plate. 

• Intensity and distribution of lateral loading. 

e In-plane loads: intensity and whether tension or compression. 

• Non-load effects: thermal stresses, stresses res:Jlting frorn shrinkage and 
thermal and moisture gradients, stress caused by support deflections, 
built-in stresses caused by therrnol effects in manufacture of lo-nina1ed 
olates. 

Structural Behavior 

Lateral IOJds produce both flexural 01d membrane stresses in thin plates. These 

effects are shown schematically in Fig. 6-2. MemlJrane stresses become 

significant when edges ore resfroined from translating in the plane of the plate 

and when maximum deflection exceeds about half the thickness of the plate. 

Membrane stresses arise even when edges ore not externally restrained from 

translating in the plane of the plate, but these do not become sigriificant until 

tilt. plate deflec1s enovgh so that it begins to behave like a shallow shell. 

Solutions that toke into account membrane stresses are often termed "large 

deflection" sohJtions. Lor~ deflection effects frequently are significant in 
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Fig. &-2 LATERALLY LC,ADEO Pl.A TES AN> MEMBRN-ES WITH 

TYPICAL DEALIZED LOAD Al'O SUPPORT ARRANGEMENTS 
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plastic plates because elastic moduli of i:,lastics and many composites are much 

lt)wer than elastic moduli of metals. Thus, deflections tend •o be much larger in 

plastic plates than in comparable metal plates, and very often with plastics, 

deflection exceeds half the thickness. Furthermore, the membrane stresses that 

result frorn large deflection behavior usually provide a very beneficial stiffening 

of ihe plate, especially where the plate edges are held against in-plane 

translation. In this case, the plate resistance to effects of lateral load is non

linear; increoSP.s in lood produce beneficial changes in geometry with increasing 

plate deflection so that stresses increase of o slower rote than load. In view of 

this, it is often desirable to employ "large deflection theory" in designing plastics 

plates. 

Available Solutions for lsntropic Plates 

Closec form solutions for stresses and deflections in plates undPr lateral load 

have been de·,eloped for a number of regular shapes and loadings. The stute of 

the art is very well presented in (6.2). Most solutions are obtained for the 

simpler "small deflection theory" in which membrane resistance is neglected. 

"Lorge deflection" solutions are also g1 ,en in (6.2) and the conditions which 

require consideration of the more complex "large deflection theory" are d[s

cussed. 

Approximate analysi:; methods based on various techniq\Jes of ..._,merical analysis 

have frequently been emplored to obtain stresses and deflections i11 plates with a 

large variety of shapes, edge conditions, and load distributions. Older methods, 

such as finite differences and various grid analogies, and new finite element 

comJ:,uter ano1yses have been widely used. Formulas and coefficients for 

deflections and stress resultants for a large number of different plate shapes, 

edge S\l)port conditions, and lateral load distributions ore available in various 

published reference books. 

Tabulations of solutions for plate bending moments oid deflections for various 

conditions of load on rectangular and/or circular pk1tes with several conditions 

of edge restraint are given in (6.2), (6.3), (6.4), (6.5), (6.6), (6.21), (6.22), (6.23), 

(6.24), (6.25), (6.26) and (6.27). See (6.3) for triangular plate solutions and (6.23) 

for skew plate solutions. In some coses, the tabulated solutions - (6.2), (6.3), 
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(.~.4), (6.S), (6.6), (6.21~ (f..ll) - inclo,ctt> the effect of qeometry chongP.s 

associated with large deflections. Only a few of the tabulated sokstions also 

include coef;'ic1Pnts for \ht>cir •'Kld/,>r r~"1ctions. <;olutions for some of thf- most 

i:,un,non nnd -.11,nitic,1;1t u1-.es ,ire 'Jivcn l<Jter in this 'iecti·Jn. 

For the most part, tabulated solutions, based on small deflection t~ry, pr,>1,ide 

coefficients for determining maximum hending moment, shear, support reaction 

ond corner reaction of a particular type or direction, ond deflection at a 

partkulor location. The "smaH deflection" solutions typically provide the 

following relotions between the above structural parameters and shape of plate, 

load, spon dimension, and cross sectional stiffness: 

M 2 
= kl q b 

Q -:: k2 q b 

V :; k3 q b Eqs. 6.7 

R 2 = k
14 

q b 

4 
w = k5~ 

In some coses, flexural stresses are directly presented by dividing bending 

moment by i.ection modulus. See Eq. 6.10. 

The constants, k, depend on the shape of the plate and the location and direction 

of a structL•rol pgrometer such as bending moment. The span, b, usually is the 

smaller span dimension for rectangular i:lotes, and the radius ot diameter for 

circular plates. The load, q, is usually uniformly distributed lateral pressure. 

However, some ~abulotec solutions cover concentrated loads or hydrostatic 

pressure distribution. Typical solutions for moments and stress resultants ore 

usually wlid only for a specific wiue of Poissor.'s ratio, v. The cross section 

flexural stiffness, D, is needed for deflection calculations. 

Solutions which include lcrge deflection behavior require more complex relation

ships of variables as is illustrated lcter in this Section. 
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Adjustments in Tabular Solutions for Different Poisson's Ratios 

Solutions given in typical tables for bending moments include Poissons Hatio, v , 

as a dependent variable. Tabulated bending moment coefficients are valid only 

for particular values of v • For isotropic rr.ateriols, adjustments can be made to 

rnoments (small deflection theory) given for a particular Poisson's Ratio, v 1, to 

obtain moments for a material with another Poisson's ratio, v 2, with the 

following equations (6.3): 

(Mx)2 = 1-
1
v~ ~I- vi "2)(Mx)I t ( "r v l)(fv\>1] Eq. 6.80 

(My)2 = _l_2 ~vr vl)(Mx)I +(I-vi v2)(1"1\)1] 
1- v I 

Eq. 6.8b 

where the subscript : denotes values obtained in o tabulated solution for 

Pois~on•s Ratio, v 1, and the subscript 2 denotes adjusted values for o non

tabulated Poisson's l{atio, ·J 2• 

Adjustment of deflection coefficients (small deflection tt.eory) ore not required 

with variations in v. See (6.3) for effects of variations in v on edge reactions, 

corner reactions, and twist. 

Deflections end Stresses for· Common Load CIJSeS 

Recia9Jlar plctes: Nomenclature, di,ection, and locatio·1s for maximum plate 

stresses shown in later figures are given in Fig. 6-3. 

Midspan deflections in thin flat rectangular isotropic plates under uniformly 

distribi,ted normal (lateral) pressure, with seve:-al edge support conditions, are 

given in Figs. 6-4, 6-S, and 6-10 (6.4). 

Maximum stresses in thin flat rectangular isotropic plates with uniformly 

distributed normal (lateral) pressure, with several edge support conditions, ore 

given in figs. 6-6 to 6-10 (6.4). 
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Ni>te: See Fig. 6-3 frlf' stress notation. 

rr-r - . . 

-i ~~TTT ~-F ----- -··- 1 __ -- __L_ 
I 

I ...... I~" , -- r;;._,__,.. __ 

-0.1 

•I --✓ / I 
I 

I I 
-- a7t>!L V7/i- -1-~- I I I -- -+· L • _,! _ __._ 

I l ♦ ½ ~• t ~ -- --- E,ctrapolated i I ! (D 7 / 
I i 2.0 v: I I 

I 
I /'. I I I I I I I 

l I I I 1.5,/-+ .i.• ' I I I 

I I I i 1.0 • t ~ I - .....-:- --~· 
-0.2 ' I I I J ' I I I '-- ,r- -- .L----, 

I I i I I J J ; ---- -- "' 
,_ - ' 

; I ·• -,.• 
I I I~ ! ,...- J.,., -, J- -· I I 
I• I ...-:- ; I ./ '/. I ~- '.1--i 

-0.3 

-0.4 

1 o/b i ~ l '/ ,, ,__,... : ..... , .. .-- I . 

" .... V / l_/1 ! 1_.,"",---..... aDb t 2 --'1.0 I I ,_:.-, : I q <i;> 
l' I/· L __,,_ ,r - ! ........r. /_ '/: ,, 

_/ , lnterc~t ofoDb - ; ,/ I _z-::-,-. ·-- i _/ I i_J__ l I with (2a - ac.) -,1.2s - I : I /' , CY. 

I I I I I I I I ' - -

-0.S 

-0.6 

-0.7 

-0.7 

' 
I I ,/ I ! I I I - I ti 

~ 

i 
I / I ' ._ 

! -I.S \ _/ I I I ! ._ -• I I I I I ' ' 
I 

I-
\ I I I I ,._ - \ j ' _l I ' a - -\ ,/ !L ! I I Fig. 6-2{0) - I 

,-
I 1'\I/ I 1/ ! I 

E• Condition r-, 
1 I I I -·,;,.,-.. 

' 1, I I I I I 
I i 

~LO 
I ,, r I i 

I l 1 -2oc •De t2 ' y y ( ) 
I ! : q b r - k = (I • v2)/.91 -I I _/ I 

~ 3.0--
__. 0 -I l l • I I ; 

k q "' I for v • 0.3 JJ_ -: I l 1 1 J I I I . - . I 

0 2 3 s ' 

Fi9- '1(W MAXIMUM COMPRESSION STRESSES IN UNIFORMLY LOADED 

1S01ROPIC RECTANGULAR PLATES WITH EDGES FREE TO 

ROTATE NtO FREE TO TRANSLATE IN PL»E OF PLATE (6A) 

6-21 



NDtea ~ Fig. 6-3 tor stres1 notation 
0 • .5 

Fig. 6-2(c) Ed~ (J) 

2.0 :rr•;-1.5 
a 2 
_st ( '> 0.4 

Q 5 

ko = (I - ,i)/.,i 

O.J 

f-' 

(J) 

2.0 

~(!.? 1.5 
q b 1.25 

1.0 

0.1 
1.0 
1.5 

a 2 

{o 
1.25 

:.£l. ( t) CID 
q 5 

0 ' 3 4 s 7 

!! (k Ji) 1/4 
t o E 

Fig. fr7 MAXIMUM STRESSES 1-4 UNIFORMLY LOADED ISOTROPIC 
RECTANGULAR Pl.A TES WITH EDGES FIXED AGAINST 

ROTATION A"O FREE TO TRANSLATE IN PLN£ OF' PLATE (6.4) 

6-22 



Ni,tea See fig. 6-3 fc. .'1resa notation 
0.8 

- a/b 1 I I I 
I I 

- Cl) -,-....- I \ I I ,-
3.0 · ~ \ 

0.7 '\: 

:ti ~ Fig. 6-2(b) _,... 
1 I Edge Condition 

_ 2.0 I 

o., ... Q 

' ,__ 
I( • (I - •.i2)/.'1 

0 

k0 • I for " " 0.3 
0.5 -- 1.5 

' I 
I 

' , 
0.4 1 • .1s \ '., 

' 
\ ,\ 

0.3 -- ,.o \: 
... \ I 

'- .'I 

" ' ~ ---
0.2 ' __ aib \ I ,~ 

a,."-.. "'- ~ 
3.o........_ ' 

,, 
2.0........_ ....... ....... r-...l"'i 

ocy• oEy•ae~ --- ' ""'---,.s, ~ U:,/ i-,... I' I 
1.2S-

..... 
. J 11:;r -- -- 'f...J.. .... I 

0 ,~f7/ -
~I r1•·-,~ 

I I 
I 

2 3 4 5 ' 

Fig. M MAXIMUM S1RES5ES IN UNIFORMLY LOADED ISOTROf'JC 

RECTANGU..AR PLATES WITH EDGES FREE TO ROTATE N-0 

HELD FROM TRANSLATION IN Pl Al£. OF PLATE (6A) 

6-23 

I I 

-

7 
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Notes See Fig. ►3 for streu notation. 
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These are coses of frequent interest to designers of plastics coinponents. The 

stresses and deflections given in figs. 6-4 to 6-9 for v<.Jrious values of a/b, b/t, 

v , E, ond q ore obtained frorn solutions based on "large deflection" plate theory 

(6.4). The thin plate theory, which is their basis, is valid for b/t greater thon 20. 

Stresses giver, in Figs. 6-6 tt, 6-9 are maximum total combined bending and 

direct stresses in the central reqion of the plate, cr r , and direct rnembrnne 
.... y 

stresses in the middle surface, <J , as explnined in Fig. 6-3. Thus, the •na><irnum 
cy 

bending stress in the central region of the plore is: 

[q. 6.9 

ana the maximum bendirJ •noment per unit width in the central region of the 

plote is: 

Eq. 6.10 

When edges are held against in-plane translation, the rnoxi:num in-i;-lone edge 

reaction per unit width ot the center of the long edge is: 

N ey -= uey t Eq. 6.11 

For plates which are fixed against rotation along all fcur edges, the maximum 

stress in the edge region, <J Ey' and the direct membrane stress in the middle 

surface, <J ey' are given in Figs. 6-7 and 6-9. The maximum bending stress in the 

edge region is: 

o b = ( o E - o ) Eq. 6.12 e y y ey 

and the maximum bt.-nding moment per unit width in the edge region is: 

? 
<1 t-

Mey -. e6b..Y.._ Eq 6 1 ·.3 . . 

For cases where deflections ore small (less than about 0.5 t for plates which have 

in-plane edge restraint), anc:J thus, where the "small deflection theory," neglf"ct-
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ing membrane effects, provides sufficient accuracy, maximum deflections and 

:)tresses may be obtained from Fig. 6-10 (6.4). In this solution, there are no 

direct membrane stresses one stresses given in the t="igure are bending stresses. 

The maximum L,ending moments, MY, may be obtained using Equations 6.10 or 

6.13. 

Maximum shear stress res Honts, (~
0 

and Qb, for uniformly loaded simply 

supported plates analyzed b1 small deflection theory, are given in Fig. 6-11. 

N.axirnum edge rcuctions normal to the plate, V
O 

and Vb, are alro given in Fig. 

6-11. Q
0 

and Va ore the rncximurn forces per -.init length resulting from lood 

spa,ning in the shorter direction, ond occur next to the center of the lor'.)er 

edge. Qb and Vb are the maximum forces per unit le'lgth resulting from .oad 

spooning in the longer d:rection and occur next to the center of the shorter edge, 

Because of twisting effects along the edges of the rectangular plates, the edge 

reactions do not equal the shears and the corners tend to lift. This !ifting 

tendency results in concentrated uplift reactions, R, which are also given in Fiq. 
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Approximate total edge reactions may be estimated as follows: 

For edge b, the shorter edge, distribution is approximately parabolic over the 

length of the edge, and: 

r vb = 0.1 vb b Eq. 6, 14 

For edge a, the longer erige, distribution is Jssumed parabolic up to a length b/2 

from each end and uniform in the central region having a length of (u - b), and: 

E Va = 0. 7 Va b + V
O 

(a - b) = V
O 

(a - 0.3 b) Eq. 6.1 S 

The total lateral load on the plate must equal: 

Eq. 6.16 

For plates in which large deflections ore significant, the above method ma)' be 

used to estimate reactions, although it will slightly overestimate maximum ec!ge 

reactions and corner reactions. If necessary, a better approximation for 

maximum edge reoctians can be obtained using the approximate method of 

combining small deflection and pure membrane analyses which is described in 

Section 6.4. 

Ex~ 6-1 and 6-2 illustrate the use of the design aids provided in this Section 

to evaluate several typical r«tongular plastic plate components. The signifi

cance of "large deflec.tion" effects is :;hown in the examples. 

Circular plates: Deflections and stresses in thin flat circular isotropic plates 

under uniformly distributed normal (lateral) pressure ore given in Figs. 6-12 to 6-

14 for cases where edges are free to translate laterally and where edges are held 

against lateral (in-plane) translation (6.5). These curvt>s include "large deflec

tion" effects which are most significant in plates with edges held against lateral 

trordation and with higher values of (a/t). See (6.5) for additional curves for 

interrnediate rotational edge rest10int. See (6.6) for curves with increased 

(Tut continued on PQ6e 6-34) 
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I Example 6-1: lJeterrnine the maximum window size that con safely be glazed 
I with a 1/4-inch thick acrylic plastic panel hoving a ratio ol width to length of 
I 1.5 an<l subje<'t to a mo,<irnum uniforrn:y-distributed wind pressurt> of 50 psf. 
I Edges ore simply-supported in o neoprene gasket. Maximum allowable deflection 

is O.') in. The acrylic material is considered to be isotropic, with E
0 

= 400,000 
I psi and v = 0.3. Minimum ultimate flexural strength is 10,000 psi. Maximum 
I allowable flexural stress during short-term wind load is 2,000 psi.* What total 
I locds act on each edge and the corners? 

I ~.aximurr, size based on deflection: 

I w 0.5 2 0 50 1-(.3/ 

I 
I 

max t = .2 5 = • ; q = 144 = 0.35 psi ; = ~ = I .0 

F rorn Fig. b-4 for edges free to translate: ¥ (k
0 
r )¥,. = 2.4 

. v-
b = 19.6 in. thus: .~S ( I -~0,~5 

) = 2.40 
a = 1,5 X 19.6 : 29.4 

Check stress: 

* {k
0 

g ) y., = 2.40 and from F iy. 6-6(0): 
0 

~y ( fi) 2 
= 0.333 ; 

19.6 2 
a Cy= 0.35x0.333x(o:25) ; oCy = 716psi < 2000psi 

Deflection governs design, allowable plate size is 19.6 ,n. by 29.4 in. 

Edge Keoctions: From Fig. 6-11: Vb= 0.480 x 0.35 x 19.6 = 3.29 lbs/in. 

From Eq. 6.14: 1: Vb= 0.7 x 3.29 x 19.6 = 45.1 lbs 

V
O 

= 0.486 x 0.35 x 19.6 = 33.3 lbs/in. 

From Eq. 6.1 ~: E V
O 

= 3.33 (29.4 - .3 x 19.6) = 78.3 lbs 

2 H. = 0.08:> x 0.35 x 19.6 = I 1.4 lbs 

I Check: Eq. 6.1 i: 0.35 x 19.6 x 29.4 = 20 I. 7 lbs ; 

I 
I 
I 
I 

2 x 78.3 + 2 x 45.1 - 4 x 11.4 = 201.3 lbs 

20 I. 7 - · 20 1.3 

I ------ --------------- --------------------. -- ---- -- - . -------
I t·Jote: I psi , 0.0069 W;Po; I in., 25.4 r11n1; I lbf = 4.45 N; I lb/in.= 0.11:11'-l/mrr 
I 
I * 
I 
I 
I 
I 

Design loads, design criteria (suet'. os sofety factors, load factors and 
capacity reduction factors, etc.), and materials properties used in design 
examples ere for illustrative purposei only. The user of this Manual is 
cautioned to develop his own lc>ads, criteria and materials properties 
bose-d on the requirements ond conditions of his specific design project. 
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I Example 6.2: Determine the maximum opening that can safely be covered with a 
I 1/8-inch thick mat reinforced FHP sheet having u ratio of width to length of 1.5 
I and slbject to o maximum uniformly distributed wind pressure of 50 psf. Fdges 

I 
ore anchored to a stiff frame with metal screws. The edge detail car, prevent 
the in-plane translation but does not clomp against edge rotation. ,'A< .,,.imum 

I allowable deflection is 0.5 in, The FRP material is considered to be isotropic, 
I with E = 1,000,000 ps; and " = 0.3. Maximum allowable flexural or tensile 
I streM ~ring short-term wind load is taken as 3000 psi~ Determine the maximum 

I 
total stress and the maximum axial (membrand and bending stress and maximum 
bencli ng moment. 

I 
: Maximum size, based on deflection: 

I WC 0.5 
I T = 0.12s = 4 

a 
b = 1.5 

I 
I 
I 
I 
I 
I 
I 

F rorn Fig. 6-4, for edges held against in-plane translation: 

= 6.35 

V = 0.3 k 
0 

= 1.0 50 
q = m = 0.35 psi 

I 
I 
I 

"' b ( 1.0 x 0.35 ) m 1,000,000 = 6.35 b = 32.6 in. 

I Check stress: 
I 
I 
I 
I 

= 6.35 and a I 5 '6 = • 

I 
I 

From Fig. 6-8: 

I Mox. total stress: 
I 
I 

32.6 2 
a Cy = 0.35 x 0.038 x ( 0•125 ) 

a = 48.9 in. 

= 0.038 

= 905 psi 3000 psi 

I Deflection governs d~sign, allowable plate size is 32.6 in. by 48.9 in. 

I 
I 
I 

0 2 
from Fig. 6-8: ;v. ( l) = 0.023 

: Ma><. memhrone ~tress .,. o.on x 0.15 x ( 032;~ ) 7. = 548 p:,;i I . i. , 

: Mox. required sofe foste-ner lateral strength = 54A x I /8 = 68.S lbs/in, 

I I Note: I psi= C.0069 MPo; I in.= 25.4 mm; I lhf 4.45 N; I lbf/in. == 0.18 N/mm 

I * See footnote, Example 6-1, p. 29. 
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accuracy for smaller a/t values and for correction factors for stresses in plates 

of moderate thickness (4 < a/t < 20). 

Trlcs9,lar plates Bending moment, deflections ond reactions are given in Figs. 

6-15 oncl 6-16 for thin flat isosceies triangular isotropic plates ( v = 0) under 

uniformly distributed norrnal (lateral) pressure with simply supported and rota

tionally fixed edge conditions, respectively (6.3). These solutions are based on 

elastic "small deflection" plate theory. Thus, the total stresses equo! the 

bending stresses, 6M/t2. 

For plates where deflections exceed about one half the plate thickness, and 

where edges hove translational restraint in the plane of the plate, significant 

membrane stresses arise which reduce bending stresses. In these plates, 

rnaidmum total stress would be less than the bending stresses given by the small 

deflection theory. See ScetiO!'l 6.5 for an approximate method of estimating 

"hrge deflection'' effects in thin plates with ~dge restraint ir. the plane of the 

plate. 
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Fig. ►15 COEFFICENTS FOR MAXIMUM MOMENTS M, DEFLECTIONS w, 

AtO TOTAL REACTIONS IN ISOCELES TRIANGu..AR ISOTROPIC 

Pl.A TES UN>ER UNIFORMLY OISTRWTF..D N>RMAL PRESSURE 

WITH SIMPL. Y Sl.PPORTEO EDGES, BASED ON "SMALL DEFLEC
TION' PLATE nEORY (6.3) 
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WITH ROTATIONALLY FIXED EDGES, BASED ON "SMALL 

DEFLECTION' Pl.A TE THEORY ('-3) 
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6A ISOTROPIC FLAT MEMBR~S UN>ER LATERAi.. LOAD 

Plastics are sometimes u~d in structural applications where they behove as pure 

memLranes under :ateral load. This behCJ\lior is illu:i. ',.:ited in Fig. 6-2 in the 

previous Section. The following equations fc.r maximum deflection and stress in 

mem~ranes of various shapes ore useful for design of such components. In all the 

equations given below, the material is isotropic and elostic, bending effects ore 

n~lected, and, except where notecJ otherwise, the membrane is assumed to be 

initially flat, without slack, but with zero initial pre-tension in the plane of the 

membrane. The membrane is loaded by a uniformly distributed lateral pressure, 

q. 

Long rectangukr membrane, deflected to a cylindrical shape, spanning a dis

tance, b, with membrane forces held on two opposite long edges, as shown in Fig, 

6-2(b). All the equations given below ore valid ~proximotions for ratios of 

deflection to span of 5 percent or less. These relations may be obtained using 

the equotions for cable tension with o sag equol to the deflection. • 

Cme I - lniti::illy flat membrane, without initial tension or tautness (6.3): 

Eq. 6.17 

Nve :: 0.5 q b fq. 6.18 

where ~ and Nve ore the in-rlone and normal edge reactions per unit length. 

respectively. 

The membrane force in the edge region is obtained from the edge angle, 8 e= 

Eq. 6.19 

The membrane forcP at midspan is the same as ~' whict- is given by Eq. 6.17. 

* See for example Scalzi, J., Podolny, W. and Teng, W., "Design Fcnda
mentals of Cable Roof Structures," published by U. S. Steel Corporation, 
1969 
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Df.flection at the center of the span is (6.3): 

w 
C 

- 041 b ~(l-•})gb 
- • Et Eq. 6.20 

Case 2 - Initially flat membrane, with initial pre-tension, Nhi" When sog is 

equated to deflection of a cable with initial tension, Nhi' plus tension due to 

loading, ~q• the following relation for tension due to lateral loading an a lor.g 

strip of span b is obtained: 

[ 
., [Ii_ ,-- 7213 

~q = 0.20 q b V1--:7" - ~i -v Nhq J Eq. 6.21 

Eq. 6.21 may be solved by "cut and try" methods for the unknown additional in

plane edge membrane force, Nhq' resulting from the applied load, q. The total 

in-plane membrane force at the edge, Nhe, then, is the initial pre-tension plus 

the additional force due to applied load: 

Eq. 6.22 

The normal component of the edge re~ction, Nve' is obi.:iined frorn Eq. 6.18 and 

the total membrane force and stress at the edge is given by Eq. 6.19. 

The midspa, deflection of the pni-tt:!Osioned me.,,orane may be obtoine,:j from 

the additional membrane force d1.,e to applied load: 

w 
C 

-:✓-~(1-•i> 
=0.61bEt Eq. 6.23 

Axial deformation, or elongation, of the membrane associated with pretension is: , 

=- Eq. 6.24 
Et 

Case 3 - Initially soggett membrane, with initial sag, fi (i.e. with initial length of 

membrane ore gre<iter than span, b. > b), where initial sog is less than about 5 
I 

percent of the span, b. 
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Again, using relations between coble tension and 90!J *, initial sag and difference 

between initial lengtt, of ore and span ore approximately related as follows: 

= 0.20 
(b. - b) 

I 

6 Eq. 6.25 

The edge reaction in the plane of the supports is: 

-3~ fi 2 Et 
~ = (0.625 ~ - 50 Nhe) 2 0-v) 

Eq. 6.26 

Eq. 6.26 r"loy be solved for i-..lhe by "cut and try" methods. 

As before, the normal component of the ~e reaction, Nve, is obtained from Eq. 

6.18 and the total memb.ane force and stress at the edge is given by Eq. 6.1 q_ 

The odditiunol midspan deflection, we' of the initially sagged membrane may be 

determined from the me,;"lt)rone edge force, Nhe, using Eq. 6.23 abow with ~e 

slbstituted for ~- The total final sag of the membrane is: 

f = f. + w Eq. 6.27 
I C 

ExCIR1)1e '-3 ilbstrates the use of the above method to determine the deflection 

and stresses in o l'll'lg rectangular plastic sheet that is assl.·med to behove as o 

pure meni>rane. The membrane is ''pretensioned'' prior to receiving lateral load. 

The effect of the dur:.tion of the "pretension" load is evaluated using the 

methods suggested i'l Chapter 3. 

Reclar9'lar membrane, with nembrone forces held 'Jl1 four sides by tensile 

membrane reactions ~x' and ~y' as shown in Fig. 6-17, and v = 0.3 (6.3): 

~ = kl 3../q2 b2 Et Eq. 6.28 

~y = k 2 3_Jq2 b' Et Eq. 6.2~· 

~ w = k3 b TI Eq. 6.30 
C 

Values of k 1, k2, and k3 are plotted in Fig. b-17 for a range of ratios of a/1-:i. 

• See foot:iote, p. 37. 
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I Exaff1)1e ,.Ja A long PE. shHt, 0.1 inch thick, which hos the mechanical properties 
I given in Fig. 1-3 (Chapter 3) is supported and loaded as shown in the 5ketch bt-low. This 

sheet is pretensioned by moving the clamped edges q>ort by O.~\J inches, end fixing 
I them in that location. The lateral load is a short-term loc.id applied 14 months (10,000 
I hours) after the initial application of pretension. The temperature does not vary.* 
I Determine the maximum total membrane stress ond the maximum deflection of the 
I sheet. Neglt'C't bending resistance. Assurne v = U.J. 

I 
I 
I 
I 
I 
I 
I Pretension: From Eq. 6.24: 
I 

Nhi b ai b 
6hi = Tt- = -r-; 

I Initial Pretension: From Fig. 3-30: 
I 

E
0 

= 21,600 psi@ time t
0 

= 0 

ai = 21,600 x~ = 216 psi I 
I I Check viscoelastic limit: £ = ~= .01 < .0245, viscoelastic limit, Fig. 3-3c. 

I Pretensicir1 cfter relaxation at time 10,000 hours: 
I 
I From Fig 3-Ja: 

I 
I 
I 
I 

t..., = 12,000 psi 

a I0,OOO = 12,0CVl x 0.5/500 = 120 psi 

Nhi = NI0,000 = 120 x Q.; - 12 lbs/in. 

I From Eq. 6.21: 
2 2 

: Nhq = <0.20 x 0.2s x soJ 21
•
600 

x ~-
1 - 12 JNhq > 

1 
= c121.0 - 12_/Nhq>

3 

I I - .3 

I ·::ut and Try Solution: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Trial Nh ____ g 

12 

!7 

Nhe = 17.3 + 12 = 29.J lbs/in. 

Nve = .5 x 0.25 x 50 = 6.25 lbs/in. 

2 

0 21.8 - 12 ~)l 

18.6 

17.3 

tan e 
O 

= 6.25/29.3 = .2133; e 
O 

= 12.0° 

Ne = 29.3/cos 12.0° = 30.1) lbs/in. 

a e = 'J0.0/0.1 = 300 psi 

I 
I From Eq. 6.23: WC: 0.61 X 50 

2 17 .3 (I - .J ) 2 6 . 21,600 X 0.l = • in. 

I ,-------------
• Note: I psi = 0.0069 MPa; I lb/in. = I N/mm; I in.= 25.4 nim 

I • See footnote, Example 6-1, p. 29. 

6-40 



3,0 
kl kz k3 

.. ,..:.~ 

'r . 
a/b 2.0 

{ ~y a > b 
--ii,if ~ :::: ::ll •. . ~ ti 
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Fig. 6-17. C:OE.FFJCIENTS k 1, k2, k3, FOR DETERMINATION 

Of MAXIMUM FORCES AN> DEFLECTIONS 

IN RECTANGULAR MEMBRAt£S (6.3) 

Exan.,le 6A illustrates the use of the above equations for determining thE: safe 

load capacity of a rec:toogular membrane supported by a rigid, u'lmoving frame, 

Circub meni>rane, with membrane force held on outer circumference (6.3): 

" P, 
;;; 0.21 

3Jg2 E a7-
t2 

Eq. 6.31 

crc = 0.25 ~ g2Ea2 (3 - ") 

t2 {1-vJ Eq. 6.32 

where a and a are the radial tension stresses at the edge and center, e C 

respectively. For the circulCI" membrane, the membrane edge reactions are: 

N ;;; "et e 

Nve = 0.25 q a 

sin ee = 0.25 g 0 

N 
e 

~he = Ne cos 8e 

LJeflection at the center is: 

w 
C 

Eq. 6.33 

Eq. 6.34 

Eq. 6.35 
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I EXC1111)1e 6A: Oetermine the maximum membrane stress and the midspan 
I 
I deflection for the thin FkP pol"'el of t:::xomple 6.2 if the panel is assumed to be a 
I 
I membrane and its bending resistance is neglected. 
I 

I 
I 
I 
I 
I From Example 6.2: a= 48.9 in.; b ~ 32.6 in.; t =- 0.125 in.; E: I x 106 psi; 
I 
I 
I q = 0.35 psi 
I 
I 
I 
I I From Fig. 6-17 for o/b = 1.5: k I = 0.282; k2 = 0.204; and k3 = 0.363 
I 
I 
I 
I I From Eq. 6.29: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I From Eq. 6.30: 
I 
I 
I 
I 
I 
I 
I 
I 

Nhy = 0.282 ✓ 0.352 x 32.62 x I x to6 x 0.125 = 71.5 lb/in. 

71.5 ·rur~ 

W = 0.363 X 32.6 
3 

/ 0.3S X 32•6 

c V I x 106 x 0.12s 
= 0.53 in. 

I Note: I in.= 25.4 mm; I psi= 0.0069 MPa; I lbf/in. = 0.18 N/mm 
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6.S APPROXIMATIONS FOR LARGE DEFLECTION ANALYSIS OF 

ISOTROPIC Pl.A TES UNJER LATERAL LOADS 

An approximate method, based on combining membrane and small deflection 

bending solutions, is available to determine the deflection, stresses, and reac

tions for plates under uniformly distributed lateral load where large deflection 

effects are significant (6.2). This method is best explained by first illustrating 

its application to a long rectangular plate with simple supports that are held 

against translation (i.e.: also, a plate with similar supports on two opposite 

sides), and then generalizing for rectangular and circular plates. ihe plate is 

loaded by a uniformly distributed lateral pressure, q. This pressure is considered 

os comprised of two pressures qb and qm, whae qb is resisted by 1)late bending, 

and qm is resisted by membrane action and: q = qb + qm' 

The center deflection of the plate, considering only plate bending, is (6.2): 

long Pla~e General Plate 

w = 
C 

2 4 
Cl- v l qb b 

0,156 -E-t··y---- Eq. 6.36 

or: = = Eq. 6.36a 

The center deflection of the plate, considerina only plate membrane action as 

given by Eq. 6.20, is: 

Long Plate General Plate 

~Cl- v2) qm b 4] I /3 
Eq. 6.37 WC = 0.41 -~-

L 
3 3 

l'f.5wcEt C2 WC Et 
Eq. 6.37a or: qm = Cl-" 2) b 4 

= -;?+--
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Thus, considering both bending and membrane action: 

Long plate: 

General plate: 

w E t 3 
C 

q = qb + qm = o-v2)b4 
2 

w 
(6.4 + 14.5 -1> 

t 
E.q. 6.38 

Eq. 6.38a 

In a typical design problem, the total load, q, the spon dimension, b, and the 

material properties, E and \I are usually known, and it is desired to select a 

minimum plate thickness, t, that wilt limit maximum deflection at the center of 

the plate, we' and maximum combined bending and axial (membrane) stress, ac, 

to an allowable deflection and stress, respectively. This is accomplished by 

selecting a trial thickness, t, and solving Eq. 6.38 (or 6.38a) for the center 

deflection, w c' by a cut and try proc1?ss, or other suitable cubic equation solver. 

This value of wc is then soostituted into Eqs. 6.36a and 6.37a to obtain qb and 

qm. Maximum bending stresses at the center of the plate span (or at the edge 

for rotationally fixed edges) or~ then determined frorn "srnoll def:ection" plate 

theory for qb' and direct stresses from plate membrane tt-,eory for qm. These 

are obtained using the following equations: 

Max. bendi!:!9 stress: Long elate Gen~rnl plate 

2 2 
0cby = 0.75 qb b = C3 ~ ~) Eq. 6.390 

Membrane stress: Long plate General elate 

if- 3J 2 2 b2 E 
m -, qm b E 

Eq. 6.391> (Jcy = 0.30 ----:-1 = C4 2 J) t t 

Maximum total stress: 

= Eq. 6.39c 

See Fig. 6-3 and Eq. 6.9 for stress notation. 



The deflection ond ,noximum stress coefficients in Eqs. 6.38a and 6.39, a ard b, 

for plates with edges held ogainst translation and v = 0.3 ore: 

------- o/b ------ c1 ·------- -c
2
-- c

3 

Rectonqt., lar 
plates 

1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

Eqs. 6.36a & o. '38a Eqs. Eq. 6.39a 
fll)ly ~tof101,aTiy 6,J]a lr'l)ly- . totic:niTiy 

~ted Fixed &. S..WO,ted Fixed 
--~~-- __ Edg,.:s__ 6.38a -~-- ---~~~ 

22.6 n.1 30,0 0,29 o.31 
16.2 53.2 24.4 0.38 0.38 
13.0 44.2 22.0 0.45 0.44 
11.0 J9.8 20.0 0.52 0.47 

9.0 36.0 17 .5 0.61 0.50 
7.0 35.2 16.0 0.75 0.19 

9.8 37 .4 .

1

_ 18.0 l 0.57 0.49 

Circular diam 
plate!_______ = b ---~·_:__ ---~~~~-- .. 55,6 __ 0.31 _ --~:_!_~--
* long plate, or plate supported, on 2 opposite edges, at ends of b 
-max. stress at edge of plate 

0.25 
0.26 
0.28 
0.29 
0.30 
0.31 
0.32 

0.40 

For o material havi'lQ a Poisson's Hatio, v, that differs from 0.3, multiply 

the coefficient C, by k 01id the coeffic:ents c2 and c4 by (k )113, where 
I O 0 

k
0 

(1-v)/0.91 (= !.0 when \I= 0.3). The coefficient c3 also varies somewhat with 

\I, but this may lx.: neglt>cted as n secondary effect. 

Note thot tht voh..ies of C 1, c2, c3 and c4, given above for a rectangular plate 

with an infinite roti" rJ/b, are the same os the coefficients given in Eqs.6.38 and 

6.39 with v = 0.3. 

l:xan1,le ,.s illustrates the use of the above method for the evaluation of the 

same rectangular plate that was onc:lyzt'1 in Example 6.2. 

Alternate MettvJ - Rectangukr plate, simply supported 0') two opposite edges: 

As an altern-Jte to the approach used in Eq. 6.38, the following equations from 

(6.2) provide a convenient means for analyzing rtctongular plates with supports 

only on two Of>POSite sides (cylindrical bending) restrained against in-plane 

translation: 

Let -
Q = 

"'he b2 

"'2 D -

For simply svpp,>rted edges (Fig. 6-2b): 

2 3 w 2 

iiu~ = T 
t 

::.q. 6.40 

Eq. 6.41 
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I ~le '-5: Determine the maximum combined membrane and bending stresses 
I ot midspan and at the edges and the midspan deflection for the thin FRP panel of 
I Examples 6.2 and 6.4 (applied q = 0.350 psi) using the oppr.Jximate method given 
I in this Section. Compare with results obtained in the previous two examples.• 

I 
I 

For plate bending, with o/b = 1.5, and v = 0.3: C 1 = 12, from table ofter Eq. 6.39. 

12w Et3 3 
F E 6 36 c = 12.0 xJ.i..000{,oo x 0.125 w = 0.02 I w 

rom q. • a: qb = I x b 4 32.6 c c 

For membrane action with a/b = 1.5, and v = 0.3: c2 :: 21, from table after Eq. 
6.39. 

From Eq. 6.370: q = 21 w 3 .E+. 
m c b'+ 

For combined action: q = qb + qm 

3 q = 0.35 = 0.021 w + 2.32 w 
C C 

Cut and try !olution: 

0.5 
0.5S 
0.53 
0.527 

qb 

0.021 WC 

0.01 I 
0.012 
0.011 
0.01 I 

Plate bending load is qb and from above qb = 0.01 I psi. 

qm 

2.32 WC 
3 

0.290 
0.385 
0.345 
0.339 

? 
::q 

0.301 
0.397 
0.3S6 
0.350 

For plate bending, a/b = 1.5 and v = 0.3: c3 = 0.485, from table ofter Eq. 6.39. 

2 
From Eq. 6.390: acby = 0.485 x 0.011 x (J.ii6s) = 363 psi 

Membrane load is q and from above: q = 0.35 - 0.011 = 0.339 = 0.34 psi m m 

For membrane action, with o/b = 1.5 and v = 0.3: c4 = 0.28S, from table after 
Eq. 6.39. 

From Eq. 6.39b: c, = 0.285 3 ~.3392 x 32.62 x l,OOO,~ = 567 psi 
cy ~L ~IH 

Combined bending and membrane stress = 363 + 567 = 930 psi 

Plate deflection, we = 0.527 in. 

l'bte: I psi = 0.0069 MPa; I lbf /in. = 0.18 N/mm; I in. = 25.4 mm 

• See footnote, Example 6-1, page 6-29. 
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wco is the cPnter ,;pan deflection when lateral lood i-. resisted only by the 

bending resistance of the plCJte (i.e., small def' ~tio'1 theory). 

r or uniforrnly distributed luterol looding witn simply suppvted e(l<J~\: 

wco F.q. 6.42 

; may be deterinin,~ by a cut-and-try 'iOliJtion of Eq. 6.fi I. 

The ,nid-span deflection is: 

.,..,co 

u • a> 
Eq. 6.43 

The h,ll"izontal edge reaction is equal to the ,ne,nbrcne force at the rnid!'lprJn of 

tt-.e piJte one is: 

The ,nid!ipon bending ITIO nent is: 

(I - sech _1.s1.fri, = 0.811 -
0 

f:q. 6.4'• 

F.:q. 6.45 

~co is the ;--riid-spon bending •noment for .$imply supported edcJes. For uniformly 

distributed loading: 

M co 
Eq. 6.46 

When the edges ore not fully tx-ld against translation and move towards each 

uther a known or assumed arnovnt, 6h' the following modified relation for ii 
may ~ used with the above-described equations for the simply supported edge 

case: 

Eq. 6.47 
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When the plate hos on initial curvature with initial mid-spm deflection of f i and 

simply supportec edges, the following modified relation foi a applies: 

2 2 - 2 
_ _ 2 3 (fi + wc

0
) 3 ti (l+CJ) 

a(l+a) = 
2 2 

- Eq.6.413 
t t 

If the plate has rotationally built-in and tilted edges, replace the term ( I + a) 
with (I + a/4) in the above equations 6.41, 6.47, and 6.48 for a. Als.:,: 

w 
co =---

(I + i> 
For uniformly distributed lateral looding with built-in edges: 

= 1.216 (1.S7fi° - tanh 1.57 ~) 

ii tanh 1.57 ~ 

For uniformly distributed load with built-in edges: 

Eq. 6.49 

Eq. 6.50 

Eq. 6.51 

Eo. 6.52 

Ex0fl'1)1e 6.6 illustrates the ~valuation of ship plating as a long flat plate using 

the above approximate analysis for cases (a) where the edges or~ held withcx!t in

plane movement, and (b) whe"e the supports allow a fi><ed inward movement. 

The former case is compared with results obtaint:d using the curves of Figs. 6-4 

and 6-9, with a/b = ao. 
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I~'-'= Determine the maximum stress and the mid-span deflectior, in the 
I bottnm plating t>f the boat hull shown below. 

I <I!II I l·H 111111 D,j ~~-· 
1
1 

t"""-----~:==!11111!=::::::~-----~ Soctl-1 pNpertlet of hull 

I · :f!!ll·l1i :~~;::" n'lrf'll~.I..._ ~ : ~~ ~z. 
I ~i .. 111, -

,._ -- - ~-- , - ------• !, • Zl,800 In~ 
I ,,... I -

' ' c • 50 In, 

I maximum "hogging'' moment (i.e. hull moment with ,,.ave crest at mid-shii>s) = 
110,000 in-lbs 
I 
I The hull plating is an FRP laminate made up of a combinotiClfl of mat ond woven 
I roving 0.5 inches thick. Assume that this laminate is isotropic for pv:-poses of 
I analysis. Initial modulus of elasticity for short time loading is 1,500,000 psi and 
I " is o.3. • 
I (a) First assume 1hot the frames do not mc,ve longitudinally relative to each 
I other, thereby making the edge condition for analysis of bottom plating 
I held against translation and fixed against rotation. 

I (b) Take into account relative longitudinal displacement of adjacent frames 

I 
due to hull bending and reaction to me:nbrane tension from plate action of 
the bottom plate under lateral pressure. 

I 
I Solution: 

I 
l(a) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

When the longitudinal movement of transverse supports is neglected, the 
bottom plate resists lateral fluid press1.'re as a plate with multiple equol 
spans supported on the transverse frames without edge rotation (since 
adjacent spans and restraints are identical) and is also hel~ against in
plane translation. Using the approximate method for a plate essentially 
sponni"'=J in one direction given in this Section of the text: 

q : 100 X 62.4 • 1728 : 3.61 psi 

3 
D = , X 0.5 X 1,ro,000 = 11,,10 lbs-in. 2,in. 

12(1-.J) 

3.61 X -:YJ4 
WCO: J84 X 17,170 : 0.44 in. 

:-No-te_s_l_i_n._=_2S_.4_mr, __ ;_I -in._2_=_64_5_m_m""'2,...; _l_i_n...,.3,...=-: ,-,-387 mm3; 

I I in. 4 : 416,231 mm4; I psi= 0.0069 MPa; I lbf-in.2/in. = 113 N-rnm2/mm; 

I I lbf/ir.. - 0.18 N/mm; I in.-lbf/in. = 4.4S mm-N/mm 

I 
I* S- footnote, ExOfTl-le 6-1, p. 29. 
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Exurnple 6.6 cont'd. p. 2 

I From Eq. 6.41, modified tor rotationally fixed end conditions: 
I 

I 
I 
I 
I 

= 

I Cut and try solution: 
I 

I Trial a 

J X 0.442 
0.52 = 2.32 

-

I 
I 
I 

(I) 

o + l > 
(2) 

2? 
(I) X (2) :: 2.32 

I 
I 

1.5 

1.3 

I 1.32 

0.44 
i 
i 
i 

= I +1¥ = 

I From Eq. 6.40: 
I 

i 
I 
I 
I From Eq. 6.52: 
I 

I 
I From Eq. 6.SI 
I 
I 

I 
I 

i 
I 
I i T otol stress: 

I 

1.32 

N he 

0 
eb 

= 

------------
1.375 

1.325 

I. 33 

0.33 in. 

2 
Nhe x 30 

w2 X 17,170 

2.83 
2.28 
2.33 

= 248.5 lbs/in.; a merri> = 248 • 0.5 

= 
3.61 X 302 

11 = -271 in.-lbs/in. 

ok 

= 497 psi 

= 
1.216(1.57 .fCii - tonh 1.57 fCnX-271) 

1.32 tonh 1.57 ...{i;ii 

= -226 in.-lbs/in; 
I x o.s2 

s = 6 = 0.0417 

+ 226 + 5420 . = - 0.0417 = - psi 

= 497 + 5420 = 5917 p~i 

I Compare with results using direct solution, Fig. 6-9 with a/b = oo: 

~ (k 9 >''- = 30 ( I x 3•61 ) '- = 2.36 
t oE 03" 1.Sxl06 
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1 · xornple 6.6 cont'd. r,. J 

:Frorn Fig. 6-9 fa o/b = oo: 

I 
I 
I 
I 
I 
I 
I 
I 

l1 2 
~( t) 

q Ei -= 0.04; <J 
ey 

30 2 
: (),04 X 3.61 X (:13 ) 

= a Ey. o ey = 5978 - 520 = 5458 psi 

2 
M -= o eb S = 5458 x 9f -= 227 in.-lbs/in. 

S20 r,si 

I From Fig. 6-5: 
I 

WC 

-.- = 0.65; WC = 0.65 X 0.5-::: 0,325 in, 

I Conclude: Solutions from graphs and from approximate method ore in good 
I agreement. 

I (b) The hogging moment causes bending of the hull which results in relative 
I longitudinal movement between fr,1mes. Furthermore, the membrane 
I tension which develops in the botto,n plating due to lateral load also 
I produces o compressive reaction on adjacent long:tudinal elements which 
I tend to act as compressive bars to resist the opi:lied membrane tension in 
I the plating. These two effects may be token i,1to account by considering 
I a cut through the bottom plote with an applied tension force Nhe and the 

remainder of the longitudinal structure (having area A I and moment of 
I ;,"'rti,, t

1 
,,,jthc11t tke kt"lHO<T' µlf1t~) r-r0,,ini~,., r,-,._i<-tonn~ to the opplied 

I lHmcii'1~ l'lornenl ond ,ii:cf"1tri<: 1!ly <lpj)l:t>d "llw' 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-~= 30" 
frame n I I frame rn _[i ______ --Mf 

- ---- ---.\ 
Cl C 

• 

M 

Cross Section X-X (Area A 
1
) Longitudinol Section 

I 'led ion propl•rties without b,,ttom plutifl(j: 

I 
I 

A I • A - at -:: 500 - I SO x 0. '> -:: 425 in. 

I Area y Ay Yo 
•-------------------------
• A 
I 
I A1 
I 

425 

50 
0 

25,000 
0 

25,000 
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8.8 
58.8 

Ayo2 

38,720 
-f59i.~li 
-220,692 

lo 

1,090,000 
0 -----

1,090,UOO 



Example 6.6 cont'd. p. 4 

•• 2stooo 58 8 . I c, =2s = • ,n. 

• I 
I II = 
I 
Is, 
I bot 
I 

1,090,000 - 220,692 = 869,308 in.4 

11 869 308 . 3 = - = M 8 = 14, 784 in. 
cl • 

I RelaUve Lan::~~I D~~~7:•: ::~~n Fr~: ] 

i 6 
h = E LA"j" + SI + ~J) 

I [ 1 I ~ 30 x 0.91 I SO Nhe 150 Nhe x 58.8 107000,000 J I h = 1,500,000 425 + 14,7B4 + 14, 84 x 0.91 
I 
I 
I 6 h 
I 
I 

= Ie.2 x 10-
6 

[o.95 Nhe + 743] = < 0.0113 Nhe + 13.52 > io-
3 

I From Eq. 6.40: = 
1r

2 
X 17,170a ---=2~- -= 188.3~ 
30 I 

I 6 h 
I 
I 

-3- 3 -3 = 3.26 x 10 o + I .5 x 10 

I From Eq. 6.47, modified for rotationally fixed edges: 
I 
I - 2 - -3 2 I a(I + a) (I+ I2x30(3.26a+ 13.5)x 10 ) _ 3x0.44 
1 4 .,,2 x o.s2 - o.s2 

I - a 2 , 91 a 2 -
■ a ( I ► li) (0.475 +--=--) = 1.97 ( I + 7i) ( I + 0.24 ci) = 2,32 
I a 
I 
I o .. 0.2s a >2 o .. 0.24 a > = 1.1 a 
I I Cut and try solution for a: a (I+ 0.24 a) (I + 0.25 a) 2 ? 
I ( I) (2) (3) (2) x (3) = 1.18 

I 
I 

i 
I I Nhe = 
I 

0.25 
0.24 
0.23 

1.06 
1.0576 
1.0S5 

2 
0.23 x 1r X 171170 _ 43 ) lb/' • 

2 - • s in. , 
JO 
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1.0625 
1.06 
1.057S 

~ 43.3 
"e = 1r.3" = 87 psi 

I. 19 
I. 188 
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Example 6.6 c:ont'd. p. 5 

I Stress in longitudinal dements d bottom ht,11, other than plate: 

• I __ 10%U00%UOv _ 150x43.3 _ 150x43.3x58.8 __ 676- l'i0-26--717ps' 
■ 0 bot - I ,78 425 14,784 - · - 1 

I 
I I Stress in longitudinal elements of hull if influE:,Ke uf bencmQ of bottorr. plotP. on 
I longitudinal stress is n~glected: 
I 
11 0 I0,000~ 460 . 
I bot = - 71 ;[_~ -= .• psi 

I I Bending moment in bottom plate: 

I M 1.216 (1.57 lo.ii - tanh 1.57 .Jo.23) 

I e = (0.23) tonh 1.57 .{o.23 Meo 
I 
I 
I Me 
I 

2 = 0.96Meo=0.96x3.61x30 t 12 = 260in.-lbs/in. 

I a = 6 x 2§0 - 6 240 ps·, • 
I eby 2 -, ' 
■ 0.5 
I I Deflection of bottom plate: 
I 
I From Equations 6.49 and 6.ll0: 
I 
I 
I I WC 

I 
I 
I 

3.61 X J04 

= 384 x 17,170 (I 0·f3 ) = 

= 6,240 + 87 = 6,327 psi 

0.42 in. 

I Conclude: Strain due to hogging moment and reaction to membrane tension in 
I bottom plates couses in-plane translation of bottom plate supports which result5 
I in a large decrease in membrane action in the bottom plating and an incrc!Ose in I stress in the plating resulting from the increased bending moment which 
I accompanies the decreased membrane tension. Furthet more., the local deflec-1 tion and develq.,ment of membn::,ne tension in the L.cttorn plating reduces its 

1 effectiveness as a hull girder compression flange, resulting in an increase in 
■ longitudinal streMes in the other element~ which comprise the hull girder. 
I I Note: For purposes of simplification, the effect of deflt..-ction and membrane 
■ tension in the hull side plotes has been neglected. This would cause further loss I in membrane support of plate loads and further increases in plate and hu:I girder 

1 stresses. 
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6.t ORTHOTROPIC PLATES Uf\OER LATERAL LOAD 

Some unisotropic ulostics 1noteriols can be oµproxirnnted qs plonor orthotropic 

rnateriols with stiffness l)ropcrties cJeter11,ine1J us described iri S<>cticn 6,!. Also 

yrids can be ev(]luoted ns equivolent orthotropic µhitt•s ,1s d1'.scribed in (6.l) (]11d 

lo,j), Only a lilllited number of solutions for co111rnon lornlinqs, shape<;, and 

support c~mditions are availoble in the liternturP. 

Deflec lions and Bending Moments in Common Approximations 

for Hect~lar Plates 

If an avernye Poisson's ratio is define<l <1s: 

vl2 t::22 v2 I L 11 
= -------- - ----·-----

✓ E.11 l:.22 -../1~1, f~n 

then 

' also, sometimes the shear stiffness, 1) 12 , rnay he opproximutect as: 

In this case, from t.quation 6.6e: 

l~q. 6.53 

'I/hen U
0 

is given by Eq. 6.53, the deflection at the center of an orthotropic plate 

with rigidities CI I and D 22 and sides a and h is the S<lrne as the deflection of on 

isotropic plate with a rigidity D = D
0 

and sides 

a 
4 

[15;; b b 
4 ro:; 

= ~~ 0,: ~n;-; F:q. 6.54 
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Using the above approximation, the det1ection and bending moments at the 

center of a uniformly loaded, rectangular, simply supported, orthotropic plate 

with principal oxes, I and 2, coinciding with th!" plote axes of symmetry, x and y, 

moy bt- obtained using coefficients given by the curves of Fig. 6-18 and the 

following equations (6.2): 

b4 
WC = kl ~ Eq. 6.55 

A 3 
a :,

0
22 Eq. 6.56 ;;; b D11 

fi, 2 
MX = (k2 + k3 ) _g_g_ Eq. 6.57 

"21 22 ,.2 
3 

My = (k3 + k2 ~2 Eq. 6.58 "12 - ) q b 
11 

For isotropic plates, 0 22 = D 1 1 = D and v21 = v 1 2 = v, and >. 3 is simpl)' the 

ratio u/b, In this case, approximately the some results are obtained from either 

Fig. 6-10 or Fig. 6-18. 

Direct solutions for maximum bending moments in orthotropic rectangular plates 

with Poisson's Ratio, v12 = v21 = 0, where principal axes of material stiffness 

coincide wit., plate symmetry oxes, x and y, respectively, with uniformly 

distributed lateral load, q, and both simply supported and rotationally fixed edges 

are given in Figs. 6-19 and 6-20 respectively (6.3). Moments vary with >. 1 = 

b/a ~o 111022 and with Dal ~D 11 0 22, where D
0 

is determined using Eq. 6.6e. 

Moments are obtained from coefficients given in the Figures as follows: 

MXC k4 q o 2 = 

Myc 
2 

= k5 q b 
Eqs. 6.59 

Mxe k6 q a 2 
= 

Mye 
2 = k7 q b 
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- - - k3 

0 0.10 0.20 
s.o :: 

4~ 
>-3 = a/b ""'J~ 3.0 

~ . . . 
·'...: .. :_ . . . . .. .: .. 

1.0 . - ··• - ..... 1.0 
0 0.010 0.020 0.030 0.040 

Fiq. 6-18 COEFFICIENTS FOR MAXIMUM MO,..tNfS Al'O Dl+U:·.CflONS 

,N 51MPL '( :iuPPOi { ftD Ht .L I AN( ,ULAH OH II iO I: {OPIC PLA 11 ·, 

WHERt:: 0
0

-= ./f>,-1 D2~ (SMALL DEFLECTION SOLUTION) (6.l) 

6-56 



"s - - - - -
0 0.04 0.08 0.12 

,.o i-,l. cJ:·'. .>L 'i 
b 4 f15"i°I & -Jb,, Du • o.e :-

>-1 • ;; -V 5ii o.a :::;, ~~ = ::·s::·_~.,;"'fn---=":::Y·--::----+c'++*+ 

0.16 

,.....,.._,,~-!'17-1 

Ref.: Eq. 6.59 

\I= 0 

0.5 ~;;..1£::1.:.....:;;.;.4,;.;.;.;,!.;,;.·. ~-. ~--.;.;,· ·+_;·.;.;..;.;.::.,_i-.;:,i--'.:....;.;..::i,.;_.;....:;;t-==•·"--f· 
0 .020 .040 .060 

Fig. 6-1, COEFFICIENTS FOR DETERMINATION OF BENDING MOMENTS 

lt,i SIMPLY SUPPORTED RECTANGULAR ORTHOTROPIC PLATES 

(SMALL DEFLECTION SOLUTION) (6.3) 

k6, k7 - - - -

0 -0.02 -0.06 -0.08 -0.10 
2.0 

Ref.: Eq. 6.59 

1.0 

o.s~L..L..-'----+---L--i-;...:_+-'--'-~+=-J.;.-'-"-'-+""""'-""'-..... '"'"" 
00 .0IO .020 .030 .040 .050 

Fig. 6-20 COEFFICIENTS FOR DETERMINATION OF BEl",OING MOMENTS 

IN FlECTANGULAR ORn-tolROPIC PLATES WITH ROTATIONALLY 

FIXED SUPPORTS (SMALL DEFLECTION SOLUTION) (6.3) 
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In the case of simply Sl4)ported plates, the maximum moments occur at the 

ctmter of the plate. In the case of rotati,')fl□ lly fixed edges, maximum moments 

0<:cur at the center of the plate and minimum (maximum negative) moments 

occur at the center of the fixed edge. The following approximate corrections for 

specific v values may be used (6.3): 

MX = MX + "2 I ~ M 
0 22 Yo 

My : My+ §, M vl2 II X 
0 0 

where M and M are moments for v = 0 (Figs. 6-19 and 6-20). 
xo Yo 

Maximum bending stresses are: 

(1 
X 

(J 
y 

Eqs. 6.60 

Eqs. 6.61 

When deflections determined from these small deflection solutions exceed about 

O.St, deflections and moments will be overestimated by amounts which increase 

with increases in flexibility. If more accurate solutions are required, it may be 

necessary to use a non-linear finite element analysis. See Section 4.9. 

Sometimes, approximate results of sufficient accuracy can be obtained by the 

methods suggested in the previous Section, using equations for isotropic mem

branes to 'lpproximde the membrane part of the problem. 

ExCln'1)le 6-7 in the next Section illustrates the evaluation of a rectangular 

orthotropic plate using the curves presented in this Section for determining 

bending moments in each principal direction and maximurn center deflection. 
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6.7 LAMINA rtD Pt.A n--... s Ut-OEI-< LATE.HAL LOADS ANO INTEHNAL 

THERMAL STRESSES 

~
1 1astics ond curnposites ore USf>d in laminated or layered thin flat plate 

contigurutions as described in Chapters I to 4. Such pl(]tes are sornt>tirnes built 

up from layers of un,directional co,nposites, s•x:h as yrophite or ,m11nid rein

forced epoxy, which ui e oriented in two or more directions to form an 

anisotropic luycred plc.te (See Table 1-8, Fiqs. 2-ll end '•-IS). 

Procedures for detnmining stiffn,~<,ses, flexural stresses, cmd ddlc>ctions in 

lur11inated plates ore dbc, ·ssed helow, together with a design exmnple, to 

illustrate the use of larnin,JterJ plate theory. l1ecause of spnce lirnitotions, the 

presentuti•Jn is limited t,, specially orthotropic plotes where the principul Clxes of 

each layer coincide with the plote axes, x anrl y, and to plates with balance,1 

y plate axes 
z 

plaie of 
symmetry J-balanced 

symmetri~I 
cross-section 

Fig. 6-21. 

I /2 center layer 
= No. I layer -

ORIENTATIOI\I OF REFERENCE AXES FOR BALANCED SYMMET
RICAL. ORTHOTkOPIC LAMINA TED MATERIALS - PRINCIPAL 
AXES, I ANJ 2, OF MA TE RIAL STIFHESS OF EACH LA YER ARE 
PARALLEL TO PLATE RE.FERENCE AXES, X AN> Y 

Presentation of the underlying theory of laminated plates is beyond the scope of 

this design rn<11ual. See (6. 7) and (6.8) tor detailed expositions of the relevant 

theory. 
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~ross Section Stiffness 

In orJer to detern:ine detlectior1s, henc!in,; :no1;1,~nts, ,1xi, 1 I t: 1 r11-,t•;, -,h(':;rs, twists, 

unu rP.octiilns due to external loods 011 lrnniri,1 tcd pl<1t,• .-o.,:p,>n .. nts, it i,; 

nece~sury to detern;ine the in-plane und flPxurnl stiff1wss1:s of tlJ,, ,Jv<•roll plllte, 

eittv~r frorn direct tests on the plnte, -1r fro,n th,• elt1stic prop,•rti,,s ,f rh" 

irx.iivic~uc1l luycrs, if they fire known, The lntft-r npprorn-11 is ,!escribr-d 111 thi<. 

•;ection, 

Stiffness relationships ore given in Tnblc- 3-5 of '-iPrti:>n ].''>. [h,.y ,1re nlso qivC'n 

in 1\ppendix ; 3 of (6.1) tor <J more ucnernl cose Qf t>nlnncc-d l[jfliin,i tes where the 

principul oxes of so,:1t' of the syrnrnetrically placed ln:,,t>rs :no)' bent 11ny an,Jk•, 

.i, k' with p(,JtP. oxis x. See also (6.')) for <J rnor ! dPtnil~J •.md qenerCJI 

presentntinn which intrcxluces the ust:> r,f motri,c nototi1.)1'1. H,!ciu,;c of the 

number of components involvt:>d in the on(Jly~i-;, pr('sentcition i-; tr1<..~ilitott'd nnd 

co:npututi1Jnul work system<Jti.H•,•J by the ust:• of ,1wtriic: notuti,>n. : lowicver, 

because ,:,f <;pace limitations, rnatrix notntinn will not be introd11c<!d here, See 

l6. I) md (6.9) for exa111ples of the 11s1-> of , nc1tri )( not11t iGfl for la mi ,,oteci pl•Jte 

11nalyc;is. Heference (6.1) olso cov:.,rs lmr1iriatccJ plntes with unbnlonced con~truc

tion, thermal stresses, ond built-in lciyer str<!ss<>s resulti,1q fro 11 .. 1evot1->d 

,Jsse•nbly temperatures. Examples illustrntinq the use of thi-> unaly,;is procedures 

are included. 

For <I single plate consisting of nn assembly of 2n foyers orramwd in n bokmcf'd 

confi(JJration about the mid-plane, with the principol orthotropic <1xe~ of eoch 
f 

layer coincining with the x and y axes of the plate (Fiq. 6-21 ), plate stitfnesses 

are determined using Lqs. 6.5 and 6.6 by sum,ning the contri~utions from eoch 

loyt?r, k, over the total number of layers, 2n. 

1 he following stiffness coefficients for the kth layer, defined rnore extensively 

in (6.1 ), facilitate the oryanizati,Jn of •~-••-::ulntions, •ls well as use of rnatrix 

algE·bra, in anolyLing specially orthotropic plotP.s: 

f::q. 6.620 
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fq. 6.62c-

lq. 6.62cJ 

Note that 1he notqfio, l does no1 refer too tl,1rd uxi!> perpendicular to plane 1-2. 

1 ht~ u11,1ly!>is pre~t·nft•d herein cowrs only two-dirnensionc1I thin plates, and the jJ 

notutil.)( 1 is us~J tor convenience in orgoni.zing col,;ulotions (6.1 ). 

The stiffness coefficients for each layer, bijk'ore definedbyEqs. G.62 for layns 

with ;irincipol t1xes pmollcl to the µInt~ axe!>, x and y. However, for layers with 

major axe,; ot 90° to ti ie x axis of the plate, it is convenient to redefine the 

stiftnt-s..\ coefficients for th~Sf' layers as follows: 

for luyers at 90° with x f-_q, 6,62e 

for layers at ?0° with x [q. 6.€,2f 

The terms in Lqs. 6.62c and d do not require modification for foyers at 901 
with 

x. 

The above stiffness coeffiuents are used in Tobie 6-2 to define the bo:.ic 

stiffness properties for laminated specially orthotropic plate cross sections. 

These ore similar to the properties presented previously in Table 6-1, Section 

6.2, for homogeneous ul'liform thid<ness special'y orthotropic plates. 
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Toblr. 6-2 

Stiffness Properties of Specially Orthotropic Laminated Plate Cr05S Sections 

Stiffness Proµerty 

In plone, A .. 
IJ 

Flexural,!) .. 
IJ 

The twisting parumeter is: 

Balancecl Syrnmetric::il 
Layered Cross Section 

I 

+ ik) b .. , 
IJK 

[; 12 = D33 for matrix notation 

Eq. No. 

[q. 6.63a 

Eq. 6.63b 

Eq. 6.63c 

Eq. 6.63d 

Eq. 6.63e 

• Note: For p!otes with thin layers, tnis term is often very small, relative 
2 

to tk zk. 

Flexural Stre~es ald 0.-flectio,s 

After the overall plate ~tiffnesses art: calculated using E.qs. 6.63, bending 

moments in the direction of plate oxes cm be calculated for laterally loaded 

plates using the design aids gi~ in the previous Section, or in the references 

rJf the encl of this Chapter. For loading or support cases not covered by design 

aids, the overall stiffness constants can be used in a finite element computer 

analysis of the orthotropic plute (Section 4.9). 
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Maximum plate deflection is determined using thf: above mentioned design oids 

or computer analysis with the calculated stiffness constants. 

Stresses in the various layers are then determined from the following equations: 

Flexural and axial stress in x direction: 

0 xk 

Flexural and axial stress in y direction: 

= b22k r~ -My zk] 
A.22 D72 

Shear stress on x and y faces in plane of plate: 

Eq. 6.64a 

Eq. 6.64b 

Eq. 6.64c 

The above method for determining plc..te stiffness and stresses in each layer of a 

balanced symmetrical orthotropic laminated plate is illustrated in Ex<Jn1)1e 6.7 

at the end of this Section. The example also illustrates the use of Fig. 6-19 for 

determining bending moments and deflections in a laminated orthotropic plate. 

The above method can be used for balanced laminated rlates having layers at 

angles other than O degrees and 90 degrees with the plate x axis with the aid of 

the more complex relations for bijk given in Appendix B of (6.1) and the 

additional stress transformation equations given in (6.9) to obtain stresses in the 

principal axes direction of the layers located at m angle with !he x-axis. The 

more general method given in (6.1) ond (6.9) could easily be computerized to 

facilitate solution of (I wide variety of laminated plate problems. 

Transformed Section Method 

A method commonly known as the "transformed section" method of elementary 

beam theory is very similar to the lominotE'd plate theory given above for 
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orthotropic layers balanced and with principal axes at O and 90 degrees to the x

oxis. In the elementary "transformed section" method, however, the effects of 

restraint of "Poisson deformation" in plates are neglected and the effects of in

plane shear and twist are not considered. See Chapter 8 for further discussion of 

this elementary method for determining stiffness properties and stresses in 

sondwirh beams and plates. 

lrans'IS'se end lnterlominar Shear Stresses 

Plates which transmit lateral load ore subject to transverse shear forces, Q, 

which ore proportional to the change in plate bending and twisting moments. 

These shear forces produce a system of equal trarisverse and interlaminor 

(i:>etween planes) shear stresses, T and 1 (or , and , },which vary through 
xz zx yz zy 

the thickness of the plate f rlXT' a maximum at the neutral axis to zero at the 

surfaces. Some layered composites may have relatively low interlaminar shear 

strength, and thus, require more ext~n<.ive investigation oi the effects of shear 

than is needed in conventional homogeneous plates. The "rolling shear" strength 

u:;ed in plywood design i.1 a fomiliur example of rm interlaminar shear criterion. 

Fig. 6-22. TRANSVERSE N-o NTERLAMINAR St-EAR STRESSES CAUSED 

BY TRANSVERSE St-EAR FORCE ON PL.A TE ELEMENT 

Referring to Figs. 6-21 and 6-22, tlie maximum interlaminar shear stress occurs 

between layers I and 2 just above the neutral axis. This stress is determined 

from the transverse shear forces an faces of the plate perpendicular to the x and 

y axes, respectively, as follows: 
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k:::n 

t xz 1-2 = 1 zx 1-2 

(1xz k! 
2 

1k zk b I I k 
= --------------

L) II 
Eq. 6.65a 

k:::n 

t /7. 1-2 ::; t 
zy 1-2 

Clyz k: 2 tk zk b22k 
= -----·------------ Eq. 6.65b 

In design, the above stresses must not exceed the transverse shear or inter

laminar shear strength limits for th€ material. With layered cornposites, the 

interlurninar shear strength is usually much lower than the transverse shear 

strength, thereby dominating the shear behavior of such plates. In contrast, 

shear strength of a concrete member is 1,1ovemcd t,y the µrincipal diagonal 

tension stress resulting fre,.,n the transverse and hori,wntal shear stresses. 

Transverse shear forces also produce transverse shear deformations that are 

usually neglected in conventional analyses of stresses and df,flectio,1s in plates. 

In laminated plates where sotqe layers or interfaces hove low sh~ar stiffness, 

significont errors may be introduced when shear deforn1ation is neglected. This 

is especially true for sandwich p:ates with "shear flexible" cores, as discussed in 

Chapter 8. 

Consideration of the effects of shen deformation on plate bending moments and 

deflections is beyond the scopE of this Chapter. See (6.8) for plots showinq the 

siynificonce of shear deformation with varying shear stiffness for several 

specific example plates. See ~ection 8.7 for further discussion of shear 

deformation in sandwich plates. 

Internal Thermal Swesses 

Sometimes, layered composites ore assembled at ternperoturt!S which vary 

substantially from service temperatures, and thus are subject to significant 

thermal changes. If the coefficients of expansion of the various layers, Ilk' are 

different, thermal chong~s will cause internal stresses within the laminate. For 

the syrnmetricol balanced constructions considered here, the following steps may 

be used to determine the stresses in ,ayer, k, resulting from a temperature 

voriot ion, f. T, from the assembly temperature (6,9): 
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I. Determine strain in each layer, k, due to full restraint of a temperature 
chmge, /:J. T ( /:J. ~ is + for temperature drop): 

Eqs. 6.66 

2. Determine total forces, NT' to fully re!train the plate in its assembly 
position: 

k=n 
NTx = 2 E eTxkbll ktk 

k=I 
Eq. 6.67a 

k=n 
NTy = 2 I eTylc b22 k tk 

k=I 
Eq. 6.67b 

3. Determine stress in each layer which equals streS.:o to fully restrain 
temperature strain, eTk' less stress when total holding force, NT' is 
released: 

0 xk Eqs. 6.68a 

Eq. 6.68b 

The final total force across the thickness of a unit width section in each 

direction must equal zero. 

Cxca,.,&e ,.1 also illustrates the determination of thermal stresses arising fro:-, 

fabric'ltion of the plate at a, elevated temperature, and use of the plate at other 

temperatures. 

Matrix methods for more complex coses involving built-in stresses in balanced 

symmetrical laminates with some layers at mgles 1jl k with the plate axis, x, and 

aim built-in stresses in unbalcn:e<.: laminates ore given in (6.9). 

Other effects that may require consideration in the design of kJminoted 

compcsites include radial tensia, within ond between layers in curved members, 

and thermal gra:lients across the laminate thickness. Detailed consideration of 

these is beya'ld the scope of the limited treatment of laminated plate theory in 

this Section. To some extent, the discvssia, of gra:lient effects in sandwich 

panels, which is given in Chapter 8, is relevant. Radial tensicn is discussed in 

Chapter 9. 
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llxornple 6.7: '.kltr-1,inf' tl,t• ·nm:,·111.•rr• ,;',.,rt-ft r 1, ,,.,;f ,, 1·lv--r1is\·ri 1·H.'!•·d lt.1t1•rol 
I µre~svr~ lhul l.:CJ11 be applied on lne plate shown in tlw sketch with maximum 
I stresses and deflection within the design allowobles given below. The plate is 

I 
fabricated by laminating layers of unidirectional aramid and graphite-reinforced 
epoxy tape in a balanced symrnelricai orrangeinent with all plies at zero 0r 90 

I degrees, arranged as shown in the cross section. Assembly temperatures differ 
I substantially fro:n the expec led service ternperoture, resulting in a balanced 
I system of internal thermal stresses in the various layers of the laminate. A 
I rnaxirnurn range of O tn 100 deqree droµ fro.·n assembly ternperature is to be 
I considered in evaluating the plate in this example.* 

I Plate ,;ize: )4 in. x 3h in. ; <iu~>port~: C,irnple 

I •1/10><. tht-rm<JI r-h•.11'4(· fr(.i' .i,.c;,• nbly tf·,111>1:·r<1t1.•rc: -1(1'(1 ; l i•nitirK• d,,flf-,•fi<Yl: 0.7 i•1. I -
I 1v1l1ft-•riol proprrti,~..,: 

I 
I La):'.er thickness: 
I 
I Moduli of elastic~: 

: longitudinal 

I transverse 

I 
I 
I 
I 
: Coefficient of exponsicn: 

I longitudinal 

I transverse 
I 
I Tension 

: longitudinal 

I transverse 

: Compression 

I 1ongit1.1dinol 

: tronsve,st· 

tk 

E L 
ET 

GTL 

't 
VT 

0
kL 

nkT 

allow t 
allow f T 

in. 

psi 

psi 

psi 

in./in.,A=-

in./in.fF 

psi 

psi 

Aro•,,i,L 
epoK~ 

0.06 

10 X 106 

1,0 X 10 6 

0.3 X 106 

0.30 

0.03 

-t.,2 X 10-6 

32 X 10-6 

55,000 

3,000 

13,000 

ll,000 

(.,rnphitt- -f'l,,.wy 
(high modulus type) 

0.06 

25 X ICJ6 

1,6] X 10 6 

0.65 X IQ 6 

0.30 

0.02 

0 
20 X 10-(, 

35,000 

2,400 

31,000 

17,000 

1-- --------------·----- ------- --- . -------
1 Note: I °F = I .8°C; I in. ::. 25.4 mm; I psi :: 0.0069 MPo; 

I I in./in.t°F :: 1.8 mm/mmt°C; I lbf-in. 2 /in. = 113 N-mm2 /mm; 
I 
I 
I* 

I in. kf/in. = 4450 N-mrr/mm 

See footnote, Lxomple 6-1, p. 29. 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0 

I:, •h•11(ll1: I ·•• .. ----

A 

Plan 

JC I I layers @ 0.06 in. eoch 

Crq,hlte L y I 
Aromid T x 2 
Graphite L y 3 
lromid T JC 4 
At-amid L y 5 
At-amid T " & 
mid-plane 
(bottom s ym,l'l@t
ricol with top) 

Cross Section A-A Through Laminate 

I 1. , 'd<••IH'lf tl~:,.Jrr1l ..,fiffrlf'~<, :·<1<1',lr,•,h f.,r ft1<· In· ,ir,<1!1: ·, 11 , l)ll• Ill/' 
I ui1.;,: u Jj' 

I 1 3 

: From Eqs. 6.63b (with lk = I~ considered negligible): 

I k=6 2 
I DI I - 2 r t k 2k b 11 k 
I k-1 

I 
I 
I 
I 
IF or Graphite L CGL): 
I (Eqs. 6.62) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I IF or Arornid T (A1): 
I (Eqs. 6.62) 

I 
I 
I 
I 
I 
I 

or 

= 

= 

= 

= 

= 

= 

= 

= 

;; 

k=6 2 
D22 = 2 !, tk zk b22k 

k=I 

k=5 2 
D33 = 2 ,: 1k 2 k b33k 

K=I 

25 X 106 
25.15 X 106 psi T-o.l-x 0:02· - = 

i.67 X 106 
1.68 X 10

6 
psi I - 0.3 x-0.02- = 

6 
0.503 x I 06 psi 0.02 X 25 X 10 

1 - o.J x n:or -= 

6 
0.503 X 106 psi 0.3 X 1.67 X 10 

T:O.Jxn~ctr- = 

0.65 X 106 

Ix 106 
1.0! X 106 psi 1-0:1-;o:oJ = 

10 X 106 
10,09 X 106 psi i-=o.rio:03 = 

0.3 X 1.0 X 106 
0.303 x I 06 psi Txn:ixn:-or-· = 

o. J x 106 p~i 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

For Aror,id L (AL): 
(E:.qs. 6.62) 

b22 

bl I 

= 

= 

10 X 106 

i-:o:rx <Dfi 

I x 106 

1 x o.3·;0-:c3 

Example 6. 7 cont'd. p. 3 

= 10.09 X 106 psi 

= 1.01 X 106 psi 

b 12 and b33 same as A1• 

Tobie (a)---------------------------------
0 22 Oil 0,2 D33 

Lo}'.er No. t 2 2 2 2 2 
zk tzk b22ktzk bl lktzk b I 2k1zk b33tzk 

(x ,o-3) (x 103) (x I03) (xl03) (xl03) 
-------------------- ----------------~----------

I GL .06 .30 5.40 136 9 2.7 3.5 

2 AT .06 .24 3.46 3 35 1.0 1.0 

3 G L .06 .18 I. 94 49 3 1.0 I. 3 

4 Ar .06 • 12 0.86 I 9 0.3 0.3 

5 AL .06 .06 0.22 2 0 0.1 O. I 

6 AT .06 0 0 0 0 o.o o.o 
11.88 191 56 5. I 6.2 

X 2 X 2 X 2 X 2 
382 112 10.2 12.4 

0 22 = 382 x 103 lbs-in.2/in.; oil = 112 x 103 lbs-in.2/in. 

from Eq. 6.63e: 0-> = 0 12 + 2 0 33 = (I0.2 + 2 x 12.4) x 103 = 35 x 103 lbs-in.2/in. 

= 2. Analysis for Bending Moment - use Fig. 6-19 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Al = ~ y7{j£ = ~ Viii = 0.49 : 0.5 

A 2 = r.:. Do = 35 = 0. 17 
·'-'Dllo22 v38i° ~ i·12 

From Fig. 6-19: k4 = 0.006; ks = 0.132 

From Eq. 6.59: MXC = 0.006 x q x 362 
=- 7.78 q in.-k/in. for v = 0 

M = 0.132 x q x 242 = 76.0 q in.-k/in. ye 
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Fxornplf' 6. 7 cont 111. fl• 4 

I I Correctim for v I 0: Use Eq. 6,f0 and a weighted overage for v as follows: 

I • ov. V 21 -= 

Loyer ;\Jo. 

IC\ 

2 AT 

3 CL 

4 AT 

5 AL 

6 AT 

r "21 tk 7 k 

f. tk zk 

tk zk 

.0180 

.0144 

.OI08 

.0072 

.003(, 

ov. 
r "12 \ zk 

"12 = 
: tk 7k 

"'2 i tk 7 k 

.0054 

.0003 

.0032 

.0001 

.0011 

0 
-:rnor I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Av. "2 I = ·?dR/4 = r..19; <N. "I 2 = 
.0074 0.14 --:IT54 = 

'Ti2 From Fq. 6.60: M = 1.1s q + 0.191181 76.0 q = 15.6 q 
XC 

M = m 7.78 q = 78.0 q 
ye 76.o q + 0.14 m 

I Average Bending St~esses in Each Layer: 
I 
I bl lk 2 k Mxc I x direction, Eq. 6.64a: a xk - ~

1
,---- -

y direction, Ea. 6.64b: 

Tobie (b) 

Loyer No. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

----------------------
GL 

'l. AT 

3 CL 

4 AT 

5 AL 

6 AT 

0.30 

0.24 

0.18 

0.12 

0.06 
0 

25.15 

1.01 

25.15 

I .01 

10.09 

1.01 

6-70 

1.68 

10.09 

1.68 

10.09 

1.01 

10.09 

~ 
q 

(psi) 

1532 

49 
920 

25 

123 

0 

vl2 tk 7 k 

.0005 

.0043 

.0003 

.oon 

.0001 

0 
:-0074 

0 xk 
q 

(psi) 

70 

337 

42 
168 

8 

0 



Example 6.7 cont'd, p. 5 

I Thermal Stresses 

I 
I 
I 
I 
I 
I 

I 

Assume that Mcxlulus of Elasticity and Coefficient of Thermal Expansion have 
the average values given above over the full range of variation in t'!mperotl're. 
Assume that the thermal change is a long-term effect which reduces the 
effective moduli EL to 80% of values given in the table above and ET to 50% of 
short-term values given above, 

I 
I Strain in each loyer from full restraint of rTlO\lelTlent ofter ten-peratvre change, 
I 
I 
■ Eqs. 6.65: 
I 
I 
I 
I 
I 

Axial stiffness of laminate: 
k=6 

■ Eq. 6.63a: Al I = 2 I: 
k=I 

= 2 
I 
I 
I 
I 
I 

Force on laminate if fully restrained from thermal movement: 

I Eq. 6.66: 
I 
I 
I 
I 

k=6 k=6 
NTx = 2 E eTxk bl I k tk i NTy = 2 E 

k= I k= I 

I 
I Thermol stresses in laye~$: 
I 
I Eq. 6.67: 
I 1, .... ee, 

T. 

■----------------------------------
• An Al I N.ry Nor,. 
..... NI. '" !Im bl 11, 'i.bnic '1cb1 lk a,. U,. •r,i.~'" Mr 

•T .. bl 11c'1c •,y1c•ru Mr. ., .. -"Xjj 

I <x10', (xlo'> oo'> (x10'> <x1o""'xx1o·'i 
I 

1x10-'i (xlO-'J 

·°' ... 25.15 .Sx '·" 1.201 0.050 0 20.0 0 ICIO.O . ,s • ,OS 1911 

·°' .s. 1.01 .I• 10.0, 0.030 o.-.- 32.0 -2.2 H,O •1°',S 3155 15'3 -:k2 

.06 .0 • 25.lS .5" l.'8 1.201 0.050 0 20.0 0 100.0 . u • ,OS 197' 

• 06 .5. 1.01 .8" 10.0, 0.030 0 .... 32.0 -2.2 "·o -1°'.5 3155 15'3 - 2U 

·°' ... 10.0, .5x 1.01 o ..... O.OJO -2.2 32.0 -106.S "·o • 2'5 -21lt Jl11 

,Ol .S • 1.01 .a.10.m !!:!I~ ~ 32.0 -2,2 ..!!:!! -.!!.:! 3155 15'3 -2'2 

2.,73 1.3'0 133.S JD.O 

L..1 L..1 L..1 L..1 
S.9" 2.'80 267.0 ... o 

Thermal stresses greotJy reduce the allowable stresses available for lateral load, 
particularly in the transverse direction. The allowable lateral pressure, q, is 
determined us;ng the a /q ratios calculated in Table (b) and the difference 
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Example 6.7 cont'd, p. 6 

I I between allowabl~ material stress and thermal stress (Table (c)) for the various 

1 layers and lateral directions of rnoteriol axis: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Transverse - Aramid 

O' 
2- = 49 ; q 

Transverse - Graphite 

crx 
- = 70 ; q 

Longitudinal - Graphite 

cr 
2. = 1532 ; 

Q 

Longitudinal - Aramid 

ox 
- = 337 ; q 

= 3000 - 1593 29 psi q 49 = 

q = 2400 - 1662 
70 -· 10.5 psi 

q = 332000 - 905 
1532 == 21 psi 

131000 - I ,978 33 . 
q = 337 - = ps, 

Thus, Transverse Graphite in ou1,!r layer governs and allowable lateral pressure 
(short term) = I 0.5 psi. 
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6.8 ISOTROPIC DIAPtflAGMS 

Thin plates that tronsmit applied loads to edge supports with all forces acting in 

their mid-planes are often referred to as diaphragms. A state of plane stress 

exists in such plates. A plate loaded in this way i!- sho1,•n in Fig. 6-23. In order 

to evaluate the ~tructural adequacy of suc-h a plate, it is necessary to determine 

the maximum tension and compression stresses, and their dir~ctions. The~e are 

compored to the material strength for the conditions of use (stress duration, 

temperature, and other environmental conditions) and the required safety 

tactors. Also compression stress is evaluated based on stability considerations, 

O\ df>s,uib1.·d i1, tl1tc' next ',N.:tion. 

ax .4tUiliffl ! I I! 11111~ 
0~1111111111111111111111m111111@11m 

tx ~ ~--GUllUlUlllllll~'""""' 

fig. 6-23. DIAPtflAGM PLATE - LOADS, 
Sl.FPORTS AN:> STRESS VARIATIONS 

l::.xamples of plates where diaphragm stresses moy be significant include floo1 

and roof slabs and shear walls which distribute wind and seismic loads in 

buildings, bearing walls on intermittent supports, and webs of I or boxed shaped 

beams and deep girders. 
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Maximum tension md compression ore ''principal stresses." They may be 

determined, by first determining the general plane stress state of any point in 

the diaphragm, tJ x' c, y' and a xy' Principal stresses, am and c, n ore th~n: 

0 m,n : 0,5 ( OX + Oy) .! 0.5 .Jc OX - 0 y)
2 ♦ 4 i X~ Eq. 6.690 

and their directions (principal oxes) from the x-axis, 8 n ore: m, 

2 'x 
tan2 e =-~ m, n cr - CJ 

X y 
Eq. 6.69b 

In some common coses of diaphragm plates, maximum values of ox and oy 

occur at locations where shear, , , is zero. In such locationl>1 ax and o ore xy y 
the principal stresses and no further calculations are required. 

Determination of dic:lphrogm stresses 

In the general case of a diaphragm with arbitrary shape, loads one boundary 

conditions, stresse~ con readily be determin,--d using elastic fin~e ele,nent 

analysis. See Section 4.9 and the related refetences ift- C~ter 4. Often, 
• however, diaphragm f!lementis, of components con tfe idealized with shape, 

loading, and support conditions for wh'ich tooolati6ris of maximum stressel> ore 

available i').ff"ference handbooks. 

~ 

\Available solutitns for isotropic plates: Diaphragm plates ore often loaded and 

supported such that they behove as deep beoms. Stresses in deep t>eoms ore 

significantly influenced by the distribution of in-plane shear and beuring stresses 

at boundaries, as well as by the location of the points of application -,f external 

in-plane loadings. Furthermore, shear defll!!Ction cannot be neglected relative to 

flexural deflec-tion in deep be:ams. Because of this, magnitude and distribution of 

stress is ~ignificontly altered from results of conventional beam theory in 

continuous, or •?ther "indeterminant" deep becms. 

For statically determinate simply s'4)ported diaphragm plates, in-p;ane stresses 

differ substantially from stresses determined with conventional beam theory 

when the spa, of the diaphrO(Jm, a, is less than about twice the depth, b. For 
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contirwous diaphragm plates, because of the additional rotational dis;:,lacement 

over the supports resulting from shear deflection, in-plane stresses differ 

sl.bstantio:ly from stresses determined with co1wentional beam theory when the 

span of the diaphra9m is less than about three times the depth, b. 

Graphs for determining maximum longitu<iinol stresses, rJ x' in common loading 

cases are given below. Tables of coefficients for rnoxirnum strc>sses iri other 

loading and support coses ure given in (6.3). See (6.10) for more rietailed 

discussiO"l of solutions for continuex,s deep bean,s. 

For rectangular diaphrngn, i,lates having proportions of length to depth (o/h in 

Fig. 6-23) grenter thun about 1.5 for cantilever spans, 2.0 for simple spans, and 

3.0 for fixed ended or continuous spans, in-plane stresses may usually be 

determined with sufficient acCL1racy by consider;ng th: d;aphragrn as a rectangu

lar beam whose cross sections deform as o linear plane (plane sections remain 

plane ofter deformation) during l>t>nding. In this case: 

max. a = 
G Min-~~~ 

y 
t bl 

Eq. 6.70a 

max. T = 
1.5 Q.!'!""~_!l~ 

xy t b 
Eq, 6,70b 

Diq,hrogm stresses in common loading coses: Maximum in-plcne stresses for 

some common idealizations of rectangular diaphragm plates are given in Figs, 

6-24 (a), (h), and (c)(6.3), 6-26, and 6-27 (6.10). Deflection.., are given in 

Fig. 6-25 (6.J). 

ExarT1,le 6.8 illustrates the use of these curves for detem•ining naxirnum 

,stresses in a diaphragm wh;ch behaves as a deep beam. 

Stresses at selecte<J points in on equilateral triangular diaphragm are giver, in 

Fig. 6-LB (6.3). Stresses in the vicinity of a short length of uniform load <Jlong 

one edge of on infinite plate ore given in Fig. 6-29 (6.3). 
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I Ex~le 6.8= Determine the required wall thickness of the equipment mount 
I shown in the sketch. The mount is to be fabricated from a mat reinforced 
I compre~sio•1-rnolded FHP lnmin,·•.- t-,1·,i•1,: thl! following initiol in-plane strenrJth 
I ,>ropert IP'>: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Compre•iom 

Sheor1 

Compreulve, tensile, 
or flexural modulus 
of elost icity 

12,000 pai 
20,000 pai 

8,000 pal 

1,200,000 psi 

I Assume that tf-ie lood is long t••r·11. ,\il()N for degradation in ultimate strer,gth 

I 
due to long term lood, envirnnmentol conaitions, oncJ fabrication variation, and 
minimize resin micro-crocking i,y designing for a usable long-~erm ultimate 

I strength of 25 perceri~ of the ooove values. Then use a load factor of 2.0 to 
I obtain the design lood based on the above reduced ultimate strengths. Assume 
I that modulus of elasticity reduces to 80% of its original v<1lue due to creep and 
I degradation. Use a load iactor of 2.5 for failure by instability.* 

I (o) Assume that the load is uniformly distributed along the bottom edge with 
I an intensity of 100 lbs/in. 

I (b) Assur,1e that the load is uniformly distributed al"Og the top edge with an 
I intensity of 100 lbs/in. 

I Solution: (a) Idealize tt-.e diaphragm as a simply supported deep beom loaded on 
I its lower edge, and determine maximum longitudinal stresses at midspan from 
I Fig. 6.24 (c). 

I . I T ens1on - strength, a/b = 1.0: 

I ax t 
I max -- = 1.85 . q I allowable ax = 0.25 x 12,000/2 = 1500 psi 

I 1.85 x 100 I req,Jired t = I 500 = 0.12 in. 

I 
: Note: I psi = 0.0069 MP a; I lbf /in. = 0.18 N/mr,1; I in. = 25.4 mm. 

I* 
I 

See footnote, Example 6-1, p. 29. 
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Example 6.8 C;ont'd. p. 2 

I I Compression - strength, a/b = 1.0: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

max 
0 t 

X 

q = 0.40 

max. allowable ax =0.25 x 20,000/2 = 2,500 psi 

required t = 0•f.soti OO = 0.016 - does nut govern. 

S:ompression - stob:lity, a/b = 1.0: 

Equate compression stress along the top edge at ultimate to critical buckling 
stress from Eq. 6. 72a in the next Section, with k ::: 2.08 frorn Case 11, Table 
6-5. Cose I! is used to represent the porobolic build-up of compression due to 
varying bending moment along the span length. 

2 2 -0.4 x I 00 x 2.5 = -2.08 1r x 1,200,000 x 0.8 t 

t 12(1-0.32)x362 

t3 = 0.072 ; required t = 0.42 in. 

Stobi lity governs required thickness. 

I 
1 (b) For stresse~ in a simply supported deep beam loaded clong its top Pdge, 
I use Fig. 6-24(0): 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

I 
I 

I 
I 
I 

Tension - strength, a/b ::: 1.0: 

a t 
X max. -
q = 1.20 

requl·red t = 1 •20 x IOO 0 08 · 1500 = • m. 

Compression - stability, o/b = 1.0 

0 t 
max _x_ 

q = 0.i5 

-0.75 X 100 X 2.5 
t 

= -2.08 n 2 x_l.1200,000 x 0.8 t 2 

12 d - o.i> x 362 

t3 = 0.135 in. 3 ; t = 0.51 in. 

Result: Use t = 0.51 in. minimum thickness, as governed by stability in 
coi'iipr'ession when loaded along tlie top edge under a uniformly distributed edge 
load. 
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6.9 ST ABILITY OF ISOTROPIC PLATES 

Plate clements often co-, ,;,risP flct portions of thin \"ailed structural members 

such as I-shaped, hox, cho,,nel, anqle, or hcit-shoped sections, and stressed ~kin, 

ribbed or hollow core panels. Thf.se assemblies of plates function as beams, 

~olumns, walls, diaphragms, roofs, floorsi covers, stiffeners, ond the like, In 

such merT1her,;, the pl<Hes rncy serve os flonqes O" -...1ebs that are stressed in 

uniform <r voryinq in-plane rompression. They also may function as webs 

stressed in shear .Jr di()(lonal compression. These thin compression elements ore 

suhjf"Ct to local buckling os plates with various conditims of edge restraint, 

The overall hehavior ancf design of members co'Tlprised of assemblies ot plates is 

presented in C-hopter 7. Determination of the stability of tht-ir local plate 

<'lements is essential for analysis and design of the overall member. Buckling 

crit,.rio for isotropic flat rlotes ore presented in this Section and for orthotropic 

f!ot plates in the next Section. 

Generol Behavior 

\\1hen a thin plate is loaded in compres-,ion within its own pkine, it is subject to 

sudden bucklin<J, or lateral deflection at a stress that depends upon its stiffness, 

ond this strPSS is often less than the limiting compressive strength of the 

material. '11hile this initial buckling causes a usually undesirable rippling in the 

plme, it roes not alwoys result in cotostrophic fnilure. For example, when 

buckling occurs in a longitudinally compressed rectonqulor plate at a stress 

bel,ow the yield stress or proportional limit of the moteriol, the effective 

stiffn~ss of a plate thot is supported nlong its longitudinal edges is reduced after 

buckling. l,1 this case, the IOl"'gitudinal stresses near the plate edges increase 

,nore rapidly thcri the load, while the stresses in the b•JCkled central portion 

increase less rapidly or decrease. The plate hos "post buckling" strength that 

depPnds vpon the ratio of initial buckling strf"SS to material strength and the 

geometry of the plate as well as its edge restrnints. In the case of thin plates 

with edqe sllpports ,hot restrain lateral or in-;:-lone movement, the post-buckling 

strf"ngth can be quite significont due to the transverse membrane action that 

supports the plate as it buckles. 
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Stability of long Rectm~lar Plates 

long r~ctangulor plates slbject to lonqitudinal co!llpression, and having one or 

both of the longer edqes supported perpendicular to their plone, with various 

rotational ond in-plane edge restraints, are common cases of interest for 

buckling analysis. Transverse edges are also usually supported, but these will not 

influence the plate stability if the plate is sufficiently long. A long plate under 

uniaxial compression, with all edges simply supported, will buckle into a series of 

woves having half-wavelengths about equal to plate width (Fig. 6-300). ltiis 

means that the rr,inimum buckling stress in the long simply-supported plGte with 

unioxiol load is about the some as th<? b-.1cklinq stress in a square simply

supported plate. If the long plate has longitudinal edges clamped aqainst 

rotation, the holf-wavelc>ngth will be 1h0ut two-tl'-irtls of the J'lntr· ,,1i,!fh. 

(lit Lang Ractangular Plate (b) Analogous Longitudinal Strips Supported by 
E:.lostic Stiffness ol T rc.nsver ..e Strips Acting as 
SprH19 Supports 

Fig. ,-JO. RtJO(LINC OF l.ONC. rnT I ANO il .\R ;:-1 , ... -r "". 

l.NlER l..NAXIAL COMPRESSIONS 

A useful analogy is to consider the longitudinally compressed long rectangular 

plate as comprised of longitudinal strir<;. or thin compressed bars, that obtain 

lateral support against buckling perpendicular to the plane of the plate from the 

elost ic stiffness of transverse strips (Fig. 6-30b). However, because of the 

vcriotion in stiffness that occurs transversely, quan~itative results for plate 
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stobility connot be obtained from direct opplicotion of the theory of compressed 

bars on an elastic foundation, because the approprinte foundation modulus cannot 

be defined in o simple woy. Nevertheless, the analogy is an aid to a physical 

understa~ing of how. b~kljng _resistance develops in plate'>, 

Rec1m9,ll..:r Plates in Direct Stress 

When a rectangular plate is subject to a compressive stress resultant N in its 
X 

own plane (Fig, 6-300), the elastic huckling resistance is (6.15): 

N 
XC 

Cq. 6,71 

k is a buckling coefficient that depends on edge support conditions, the i,late 

propations, o/b, and the variation of N over the plate width b, In terms of 
X 

stress and plate thickness, Eq. 6. 7 I becomes: 

O XC 
Eq. 6.71a 

k has minimum values for thru.e ratios of o/b that result in bucklinq of the plate 

in m integral number of holf-wavelengths in thf- x-direction, with lengths equal 

to the critical half-wavelength of buckle. For example, as was indicated 

previously, the critical half-wavelength is b for a uniformly compressed rectan

gular plate with simple e<ige supports (Fiq. 6, 10o). Consequently, for plate 

lenqths, a, greater than b, the minimum value of k = 4.0 is frequently used for 

determination of critical buckling stress, and plates with this loading and e~e 

condition ere considt-red "long" when o ? b. The maximum error in this 

ossum~tion is on underestimatP of buckling strt-ss by 12 percent at a~ 1.4b. The 

error is only 4 percent at a = l.45 b, with minimum values of k falling in between 

the above o/b ratios. 

Minimum values of the bucklil'll'J coefficient, k, tor use with Eqs. 6,71 or 6.710 

are presented in Tobie 6-3 for common cases of edge restraint and in-plane 

stress distribution. See (6.11) for solutions for critiool buckling stress ;., many 
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·ithcr r<>ctcnqul,1r pl,1te ,1rror<1P1r-<>nt:-; ,..-jtt, ,'.jffrrf'nt Ul•Phi,~ntinr ,·,f ,•cl<:,• r<·

straint conditions nnc loodinri distrih1Jtions. r..•o~t 0f tfwsP ore rPfin,~rrt•nto; tn the> 

11olues for k riivm ir Tnble 6-3. 

Tmle 6-3 

BUCKLING COEFFICll::NTS FOR LONG ISOTROPIC PLATES SUJPORTED 

ON THREE OR FC>Lf< SIDES utOER LONGITUDINAL COMPRESSION 

(Source 6.14) 

-------
Mmimum dudding Co,e,ffic1ent 7 • Iii: 

Kat,o or 
Bending Stross lop btge F rtt ~!tom bJge f ,.,. 

to Uniform Unloaded ---------- ----------
Con,p~uion Edges Bottom Edgr Boflom Top Edge 

Stress Simply Unlooded Simply Edge Simply lop tdge 
rose Lood,ng Supported EdgrsFixed Supported Fixed Supported r i)Ct"d 

~ 
0 ., 

~ I~~ 0.0 4.0 6.•' 0.45 .. 1.33 0.45 .. 1.33 
(pur~ compression) 

(rrnn. a/b fvr long platf:') (1.01 (0 ,.) (5.♦ )"• (1.5) (S.•l (1.5) 

M I b ~ ().50 5.8 

A I b ~ i.00 7.~ IJ.6 0,57 1.61 1.70 S.93 

A t<h l.00 I 1.0 

;[ I~ 5.00 15.7 

6 XI~ ... 13.9 39.6 0.85 2.1 S 
(pure bending) 

(min. o/b for long plate) (0.6) 

• Value• qiven a,e ~don plales having loaded edgrs si""'I~ supported and a,e conservative for plate, hov,ng l~d -,Jg,>, foxed . 

.. ill. more occurole wk:e of k for plates wirh one longi!udinol st,.OpOrt frff end It.. otti.r 11mply suppot lf'd with o/b 0. 7 is (6.1 I): 

le O CJ.45 • (b/o)
2

. 
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Example 6.9 rnd Fxomple 6.11, which ore given later in this Section, illustrote 

the use of Eq. f,.7 lo to estoblish proportions of flcm~ plotes thot will rlevelop 

the full comprE ~ive strength of the walls of hollow hbulor sections without 

local hurklin11. Thi,; i,;; r'ic;r••c;~f'rl f11rth~r ii" rh<1nt,•r 7. 

In coses where the plate is not laterally supported along its l,,ngitudiool 

(lKllooded) edges (Fig. 6-31 ), or for wide plates where b is much greater thon <J, 

the critical buckling stress resultant and stress oi-e qiven by Euler's Formula and 

.ir,i c:, tullow, (6.15): 

f strip behaYes os 
E ,,1.,, column 

Fig. 6-31. BlJCKUNG Of WIDE: PLATES UNJE.R U'-IAXIAL COMPRESSION 

} 

N 
k w- D 

XC 
= -~---

a 

2 
( .!:. ) L or a k w E =---2 

XC 12(1- v ) a Eq. 6.ila 

Values of the bv,:kF 1g coefficient, k, fur various conditions of end restraint and 

application of comprc.ssion force, N , or~ 9iven in Tobie 6-4. Values of k for 
XC 

additional conditions are qiven :n (6.11). 

When edges ere held in tl-iE. plane of the plate, longitudirol compression produces 

trcnsverse compression due to restraint of Poisson expansion. This results in 

some reduction in the buckling coefficient. A buckling coefficient correction 

factor, Cb, to be applied to k = 4, the cOE"fficient for uniaxial compression on 
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Table6-'I 

BuckUng Coefficient• far Wide botropic Plo1es 
ar Platel ~1ed Only m Transwrse Edges 

lhler U.ifarm Longitudinal Con.,retsion (,.11) 

Plate Loading ~• Restraint -------------------
~ Enc!aTa~ b »a 

, Endl N.: 

10 

-N.Ja 
II o/2flrp·•~Total 

• I •N.: 
o/2 

ZN.fa 
IZ .-z.IJfflill_~~ Total 

w2 rmmr u · N-= 

13 

Pin ends 

Clon.,ede11ds 

One en(i pinned 
ClflPGlite encl clumped 

pin ends 

pin eo<ls 

pin ends 

ClCll!tllewr 
X n 

Px'" Po (I -a) 
P0 0 

NXC .. ,;-:;-, 
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long plates with simple st,pport of longitudinal edges is given in Fig. 6-32 (6.12). 

The correction foctor for simply-supported edgf"s and varyi~g amounts of 

restraint of in-plane edge movement, Ka' is given on the left side of the Figure 

and is to be applied to k = 4.0 for use in Equations 6.71 and 6.71a. 

W~n longitudinal edges are also restrained against rotation, the correction 

factor increases with increasing edge rest,aint, Kb' as shown in the main part of 

the Figure. The asymptote values given on ~he right side of the Figure ore for 

fully clamped edges. The "co;recteri" critical buckling stress, a xcc' is (6.12): 

0 
XCC 

4 Cb 1r
2 

E 2 
= ----- (!) 

12 (1- /) b 
Eq. 6.71b 

For a qiven amount of rotational restraint, the correction factors that reduce 

elastic huckli ng coefficients when restraint of in-plane translation is provided 

hove little practical significance, since restraint of in-plnne translation substan

tially increases the post-buclding strerigth of the plate. This type of restraint 

1evelops the plate's mernbrone resistance to large lateral deflection, but sir,ce 

this effect is non-linear, it does not enhance the initial buckling resistance. 

Biaxial stress conditions also hove significont influence on plate buckling 

strength. Correction factors, Cb' for various ratios of uniform transverse 

h.nsion or compression stress to uniform longitudinal compressive buckling stress 

on a plate with simply s~ported f!dges ore givt:!fl in Fig. 6-33 (6.12). Note that in 

the curves given in the Figure, the longitudinal stress term, a xc' in the 

transverse stress ratio, o ! a , is obtained from Eq. 6. 71 a. These factors ore 
y XC 

multiplied by k = 4 in Equations 6. 71 or 6. 71 a to obtain critical buckling stresses 

in the longitudinal direction, as given in Eq. 6. 71 b above. See (6.12) for similar 

curves for plates with other edge conditions. 

Effect of Creep 

Creep in plastics sl.bject to long-duration stress wos discussed in Chapters 2 and 

3. The use of o reduced modulus c-f elasticity, termed the viscoelastic modulus, 

wos recomme..ded to account for creep. In the linear range, the viscoelastic 

mod.llus depends on the wrotion of stress. In the case of a plate, stress 

6-89 



18 

., 

.4 

.2 

Eq. 6.71b 

.o 

0. -·-

0 
, 

I 

-- -- - - - - ·--· -
I 
' 

-i-- ..... 
' ~-- -i-- ..... 
I ---- ~-- -.... -

I, ~- --- ._. -I i ., ......... -- _..,.. ..... -i--,,, ,,,.. ..... __. ,_ -~ -i--~ 

I /. / r ... ~ -- _ .... ---'/ /Y ,,. ~ - I i--
I/ "/, ... ,,,.. ..... ~ ..-

1urih //~ ,,,., ~' ,. 

,I/~ /;.;' , ..... , /,, '/i.., ... Simple l_./ 
j/ "~ /~ y .~t.- ---

-->-rJ;I / i 
~I✓ / ---I 

, J I ✓ .. I -..... 
, ., J Longitudinal _,_ 

;J 

J Ecipe~ _,_ 
I 

b _,_ 
')1/ ---I I 

I Si1T11le /~ ---
5'.,pport _,_ 

; I I I ; I tttttii I 

I I I I <L.: I 
I I 

0 s 10 IS 20 25 

Rotational Restraint on Longitudinal Edge 

K
0 

b 

Tt"" 
0 
0.25 
o.s 
1.0 
2.0 
4.0 

Q) 

osy~ 

1.745 1.,, 
1.65 
1,60 
1.56 
I.SJ 

1.48 

@ full 
rototionol 
fixity of 

lo,igitudinol 
edges 

K , ~lane edge force ) K _ , edge bending moment ) 
G • 'unit dilp ement X i.nit e<fge lengffi ; o - ~i.ni1 angle II unit edge length 
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IN EQS. 6.71 FOR VARIOUS BIAXfAL LOADING CON>ITIONS N 
SIMPLY SUPPORTED COMPRESSED Pl.A TES (6.12) 
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intensity, ond perhops duration, frpq1,e,-..tly is qreot"r in, s<1y the x rlirectinn than 

in the y direction. C,ince the nucklinq -;tri>nqt'1 of a lonqitudinolly loaded 

rectangular plate, for example, is larqely detf>r,rined by the trc'.nwerse flexural 

stiffnf!s.~, a question arises ohout the proper modulus vf elasticity to u~e in the 

plate bucklinci equations. The followinq rnodifiration foctor is ,~rived frorro an 

approach suggested hy Blt~ich (6.13) for rr,pf,JI f'lotes londf>rl he'fond their propor

tional lin,its: 

Fri. 6.73 

Modify 11 (or 1'1 , from the previously qivm forinulos for Plnstir h11C'klinq of 
XI': XC 

rectangular plotes os follo·~•s: 

(Jxcv = Llxc fri_T Eq. 6.74 

The approach suggested above is semi-empirical in concept, nnd thus, should be 

confirmed or odjustecl using plote bucklinq tesh on S!JKific plastks motniols. 

Example 6.9 illustrates t'-ie calculation of the maximum buc!dino stress in o 

compressed plate which is o romponent of a rectongul .,r t,.,be column fobr icated 

from a plastic material exhibiting the creep dioroctNistics dfetermined in 

Chapter 3, Fig. 3-2. 

Post Buckling Strength of Rectong.,lcr Plates in Direct Stress 

Y'hen the critical buckling stress is less ~hoo the yield strenqth or proportional 

limit strength of the materiel, the ultimate strength of o thin plate rna) exceed 

its bucl<ling strength. After initial buckling occurs in a rectoogular plate subject 

to uniform uniaxiol compre~ion md s~ported along each longitud;nal edge, 

stre9SeS decrease in the ~entral area of moximun- buckle deflection, and they 

increase in the strips adjacent to the !onqitudiool s~ports (Fig. 6-:?4). At the 

collapse condition, two strips adjacent to the lonqitudi,,al support, ha•1ing a width 

b , (']S shown in Fig. 6-34, ore caisi<lered to carry the mtire plote locid at o stress 
e 

equal to the ultimate usablt- compressive strength of the plate rroteriol (first 

domoge, or yield strength). 
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I exan.,1e '-!h Determine the minimum thickness required to develop the full 
I ultimate compressive strength without local buckling of a hollow 10-in.-square 
I tubular compression member extruded of PVC plastic having the vi~coelostic 
I properties given in Fig. 3-2. (a) Assume short-term loading, 0.1 hours or less; (b) 
I assume long-term loading, I 00,000 hours. • 

I Solution: (a) From Fig. 3-2 for 0.1 hour duration of looding, Ell. =s .... ~Q ;:; 550,000 
I psi and maximum usoblt" stress, c, = 4,500 psi. Assume "hinge<r' eage condition 
I for longitudinal f'dges because m1Yocent sides con buckle alternately inward and 
I outward, as shown in rhe sketch. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

l » b 

b 

Buckled Shape 

I From Eq. 6.71a with k;: 4.0 for hinged edges: 

I 
I 
I 
I 
I 
I 

2 2 
a = 0 = 4,500 = 4.0 x 1r x 550,000 ( t , 

XC V I l (I _ .J2) 'fn ' 

t = 0.h76 in. (use min. t = 0.48 in.) 

I (b) From Fig. 3-2 for 100,000 hour duration of loading, E is reduced because of 
I creep and the mt..xi'Tlum usable stress is also reduced ~ouse of reduction in 
I long-term ultimate strength. Thus, Ev= :J00,000 psi and a"= 2,300 psi. 

I First, using isotropic buckl:ng theory: 

I 2 2 
I axe= av= 2,300 = 4.0 x 'Ir x 300,000 ( TOt) 
I 12 o - .32> 
I 
I t = .46 in. 

•----------------------------• I Note: I psi = 0.0069 MPa; I in. = 25.4 mm 

I 
•• See footnote, Example 6-1, p. 29 • 
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fxarnple 6.9 cont'd. p. 2 

I Comment: The buckling tl.eory lor isotropic m'1terials may produce ai ov~rly 
I conservative evaluation oF the bucklinq strength of a uniaxial co•npressed plc,te, 
I clependi ng on the effect of du rot ion of load on the flexural rigidity transverse to I the direction of cornpression. If we assume that buckling resistonce is governed 
I tiy short-terr!'l modulus of elasticity tra,1sverse fo the direction of load, the plote i buckles ,1s an orthotropic plate mid we cm use the following solutions: 

I 
I I (I) Simrlified Solution: Fro•" Fqs. 6.73 and 6.74 -..·ith: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

T ·: 

4.0-2! .!'
2 

X ~50,()()0 -r:ss ( t ) 
2 

a = 2,300 = 2 -10 xc-v 12 { i - .3 ) 

t = .40 in. 

I (?) Aopl:,..otir,ri rof n,-•h,-,trnnir h11cklinr. "011otion given in tiie next Section: 
I 
I 
I I t rcn, i. q. 6.8~ w1tli: l JI I = 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

D 
0 

OXC\. = 
4n

2 
t
2 

E 5-l.'.. o V -----2 ~ 
I2(I-vI2 v21 )10 o 

I lhis is the somE> m t'lf- ahovt'. !limrPfit:'cl t>xpressior1 if ·.1
12 

v
71

• 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
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F.ig. &-lit. POST BUCKLING STRESSES IN THIN PLATES 

WITH SUPPORT ALONG BOTH LONGITIJOINAL EDGES 

The foll011Ninq serii-empirical relations hove been developed (6.14) tor effective 

pos1-l>uckling strength of thin metal plates simply support@ti along longitudinal 

edges ,refer to Fig. 6.34): 

be ~xc ( 0 2 ffe.xc) .:- "' - I. - 0. 2 -
o axe axe 

Eq. 6.7r;. 

a is jetermi ned from Eq. 6. 71 o with the appropriote value of k for o plate 
XC 

s~ted olong two longitudinal edqPs. 
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N b 
)C 

= tb- Eq. 6. 76 
e 

N 
l( 

::: t 0 ~ <I .o - 0.22 JO 
,c I -J -xc ··xe o xe 

Eq. 6.77 

In procticol design, CJ and b are determined by cut and try solution of the 
xe e 

above equations whenever a > o • 
XU XC 

For a plate supported alonq only one lonyifudin,11 edge: 

b ff. ~ i = 1.19 -2£ ( I - 0.30 ~ ) 
0 xe O xe 

Eq. 6.78 

a is determined from Eq. 6. 71 a with the appropriate value of k for a plate xr 
Sl4>J)orted along only one longitudinal edge. 

ax = ~x = 1.19 J axe oxe (I - 0.30 ~) Eq. 6.79 -J-;;; 
The coefficients in the above Eqs. 6, 75 to 6. 79 ore not greatly affected by the 

restraint conditions· "long longitudinal edges aid use of the above relations is 

appropriate for all types of restraint at supported edges. Of course, CJ will 
XC 

vory with tile type of edge restraint. 

No data ere avail'1ble to evaluate whether the above relations ae suitable for 

use with p!astics materials. Tests on thin plates under direct compression should 

be conducted for each specific material of interest. 

Combined Direct Compreaicn md Lateral Load 

Plates ore frequently subject to combined diiect compression force'§ and lateral 

loods, requiring cor.sideration of interaction effects. An example is ship bottom 

plating which serves as o portion of the hull girder flcnge and also re-sists 

st.bstanticl hydrostatic pressure. The following q,proximate interaction rela

tions are extremelv useful for procticol design: 

I. Elastic buckling stren: Unlike o slender column, 1he presence of lo1eral 
load in combination with direct tt'r'ust does not reduce the elastic buckling 
strength of o plate (6.13). On the COl'ltrary, some increase in buckling 
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strer,gth may occur if the shapt> of the deflectitJ11 curve produced by 
lateral lood differs sigriificontly from the slv.lpe of the lowest mode 
buckle. 

2. Defler.tion d.Je to lateral load: Deflection due to lateral load is increased 
by the presenc-e of cornoressive axial force and is decreased by the 
presence of tensile axial for-ce. This increased (or decreased) deflection is 
determined by a magnification factor, m, as follows(6.13): 

end 

w 
a = rn w 

0 

= __ L ___ _ 
a 

1-__>s~ 
0 xc 

a ~ 
XO 

0 ~ 0 
XO XC 

w ~ 
0 

t 
2" 

Eq. 6.80 

Eq. 6.81 

3. Bending rr.oment md stren 4Je to lateral load: In a similar woy, bending 
moment is increased by the presence of compressive axial force and 
decreased by the presence of tensile axial force, as follows (6.13): 

=m M 
0 

o x = o xo + rn a xb 

Eq. 6.82 

Eqs. 6.83 

The some limitations to c, and w as described above for deflection 
XO 0 

also apply to the use of the m<J<}'lificotion factor for moment. 

Example ,.10 illuMrates the determination of combined axial and bending stress 

in a box-shaped cross s~tion used for corrosion resistant ducting that ~upports 

both internal pressure o,d axial load on the side walls. 

Recta19Jb Plates In Shear 

Under o state of pure shear stre~ in o thin plate (Fig. 6-35), comprt'!ssive and 

tensile principol stresses (Eq. 6.69) equol to the shear stress are directed at ! 45 
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I Cxauiple 6.IOa Determine the required wcJII thickness of the FRP duct section 
I shown In the lketch. The duct is to be designed for the combined effect of an 

I Internal pressure of 3 psi and equipment supported on the wall which produces a 
line load on «ICh side wall of 300 lbs/in. These loads should be considered "long 

I term". The FRP laminate to be used for the duct wall is alternate layers of mat 
I and woven roving gloss reinforcement with polyester resin. The structural 
I properties of the overall laminate ore as follows: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

30011wln. 300Wln. 

t.nllle lfrength 15,000 pei BaliiN"tP'ft~ 
fle~I lfrength 22,000 pel 

1 

cor11p,•11lve lfrength 2,,000 pei 1 

fle,ual modulus of w~~ ... 
elasticity 1,500,000 psi 

300 kiln. 300 Win. 

I Assume tho• the effective modu!us of elasticity is reduced to 80% of the above 
I value for long-term load. Assume that the usable ultimate long-term strength is 
I one-fourth the above values, including allowance for tolerances in fabrication, 
I effect of long-term load and environmental degradation. Apply a "load factor" 
I of '.! to the above design loads for "ultimate strength" design, except use a load 
I factor of 3 for the case of stability due to axial load alone.* 

I Solution: The duct wall spans 24 inches as a long plate with edges rotationally 
I fully fixed by the balancing effect of pressure on the adjacent wal I (see sketch). 
I Each side wall is subject to the combined effects of bending plus axial 

r.ort1)ression. The symmetrical application of internal pressure on the adjacent I wolls of the square duct results in rotational fixity at the edges of the plate. 

I The effect of axial load without internal pressure must also be considered. In 
I this case, the side walls which support axial load must be considered as pin ended 
I struts, since there is no effect of balancing pressure on adjacent sides to provide 

I 
fixity. 

2 2 
I Ultimate Bending Moment: Mu = 'lf,/- = 2 

x fl 24 = 288 in.-lbs/in. 
I I Ultimate Axial Compression: Pu= 2 (-300 + ¥> = 2 (-300 + 

3 x2
24) = -528 lbs/in. 

I Ultimate Design Stresses: Flexure: o ub = 22,000 • 4 = 5,500 psi 

I Compression: o ua = 24,000 • 4 = 6,000 psi 

I Tension: a ua = I 5,000 • 4 = 3,750 psi 

I 
1---------------------------
1 Note: I psi= 0.006j MPa; I in.-lbf/in. = 4.45 mm-N/mm; I lbf/in. = 0.18 N/mm; 

I 
I 
I• 

I in. = 25.4 mm 

See footnote, Ex0n1>le 6-1, p. 'Z'J. 
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Example 6.10 cont'd. p. 2 

I Trial Thickness: Assume moment magnification factor increases moment by I I 0%, or decreases usable flexure strength to 5,000 psi. 
I 
I Pu r~u I Then: A + S- = 0u 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- 528 -.- -
6 X 288 

,2 = - 5,000 

5,000 t2 - 528 t - 1,728 = 0 

t 
528 :~ 5282 

+ 4 x 5 000 x I 728 .. ----------1 X 5,CJOO _t_ ______ t_ __ = 

I Try: t = 0.75 in. 
I 
I 
I 
I 
I 

- 528 
0xo = 0.?S = - 704 psi 

.64 in. 

I Fron lq. 6.720 for clorrved edges: u = 
I « 

2 
4 'IT X 1,500,000 X .8( .75) _ 4 236 . 2 14 .. - , ps, 

I 
I Magnificotion factor: 
I 
I 
I I Uending Siress: 
I 
I 
I 
I Axial Stres;,: 
I 
I 
I 
I Interaction Relation: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

12 ( I - .] ) 

m = I 

Ult. uxb 

704 
= I - 4,326 =-

6 X 288 
2 = 

.83 X (.75) 

Ult. rr 
)(Q = - -~~

8 
= - 704 psi 

' (J 
XO XO -or-+ lJ (1 
XC UO 

ll ' uo 
~ 1.0 

704 + ~•.~ s I 4,TI6 

• 17 ... .67 = .84 < 

0.83 

3,701 psi 

O.K . 

I Check case of axial load only on side walls considered as pin ended strnts with 
I load factor = 3. 

oxo = 704 x 3/2 = 1,056 psi 
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I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

0 
XC 

0 

= 

~ = 
0 

XC 

2 2 1.0 X lf X 1,500,000 X .8 ( • 7 5 ) 

12 (I - .32) 24 

::g~; ~ 1.0 

Use 0.75 in. thick duct side walls 

Example 6.10 cont'd. p. 3 

= - 1,059 psi 

O.K. 

I 1-iote: Top and bottom walls could be sized for bending plus tension, if desired, 
as follows: 

I 

I 
I 
I 
I 
I 
I 

I 
I 

I 
I 
I 
I 

-/ 
6 X 288 , 

trial t = (S,SOO-IOO) = .57 in. 

The magnification effect of tension in the top and bottom piates allows a further 
reduction in wall thickness: 

Try: t = 0.56 in. 

a 2 X 2 X 24 86 psi = ,56 X 2 = 
XO 

2 2 
0 xc = 4 x x 11500,000 ( .56 ) = 2,952 psi 

12 (I - .32) "211 

m = 86 
+ ~ = 1.029 

ob = 
6 X 288 

1.0.29 X 0.56 2 = 5,355 psi 

86 5,355 
3,750 + 5,500 ~ I 

0.023 + 0.974 = 0.997 < I O.K. 
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degre~s to the x axis respectively. The limiting shear stress that results in 

elastic buckling in the direction of diagonol compression is (6.14): 

k 11
2 E 2 

T = 2!_ ____ 2_ ( b!) Eq. 6.84 
'(V(' 1 l (I - \) \ 

T t 
.. • __ +-___ ~_r __ •_.,.,..,_.x 

f 
Txy t f b 

f ________ ~-~ 

,:-:-1 
Fig. &-35. ~ St-EAR LOAD ON RECTANGULAR PLATES 

The buckling coefficient, kxy' depends on the aspect ratio, b/o, and the 

conditions of edge restraint. The following equations may be used to determine 

kxy for plates with b < a (6.14): 

Simply st4>Ported edges: 

b 2 
= 5.34 + 4 ( - ) 

a 

All edges clomped: 

k = 8. 98 + 5.60 ( ~ ) 2 
xy a Eq. 6.86 

Equations 6.84 ond 6.85 ore frequently used to t>voluote elastic stability of thin 

webs of plate girders, where a is the spocing of stiheners and b is the depth of 

the girder, except that o and bore rc-,er~ed where stiffeners are closer than the

depth of the girder. 
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Ex<rnple 6.11 illustrates the USt' of Fqs. 6.84 ood 6.85 to estohlis:, pr.,port ions of 

wet, plates in box sections that will dev<·lop the f,JII sheor strrngtt, of thl:' weh 

without local bucklinq in shear. This is discu55e<I furth<-r ir, Choptt>r 7. 

Stiffent>d airder webs hove siqnificont post-buckling strength. After bucklin(l 

occurs in the direction of riiooonol corriprt~ssion, thf- WE'b behoves likf' o tr•Jss 

with diogonol tension (tension field) in the wE>h ond ro•npression in thf- stiffel"inq 

rihs y•hich extend :letween flom1rs. This is discuss,-cl in Chapter 7. 

Rectmgular Plotes in Combined Sheor end Unioxiol Compressive 

or ln-Plme Bending Stress 

The critical buckling stress (for both shear ond direct sfres.c;) is reduced when o 

plate is subjec-tf'<i to the combined effects of shenr and uniaxiol c-o•npressive or 

in-plane bending stres.<. (Fiq. 6-36). for such coses, thf> criticol ~1Jc-klino stresses 

cm be closely opproxirnote<"f with tr-: followino inter(l('tion fnrrn11ln~ (I. ll)(I. I',)· 

~ 
~t 

0 t 
.,_ __ )( -· .... ._ )( 

c:,
11 

t 
-+ .... 

0 t -., 'Cxy t b 'txy t , ... 0 t 
JI -+ ::: " -+ 

-+ .... .... .... .... - , .... 
YI 

'txy t 

YI !I !I 

(o) LlniC111iol compression stress (b) fn-p1oce bending stress 

, 
Fig. 6-36. COMBN. D SI-EAR AtV UNIAXiAl COMPRESSION OR 

IN-Pl.At'E BEl'Ol-4G STRESSES ON RECTANGU...AR PLATES 
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I~ '-11: Determine the minimum thicknesses of web and flange in the FRP 
box section beam shown in the sketch to develop the full ultimate web shear I strength and flange compressive strength without local wall buckling. Assume 

■ thot the material is isotropic and that the web and flange plates ore long relative I to their widths with loo9itudinol edger. pinned.• 

I 
I 

I 
I 
I 

I 
I 

i 
I 
I 
I Solution: 
I 

I 
I Web: 
I 
I 
I 

I 
I 
I 
I 

I 
I 
I Flange: 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Material Properties 

IS" E = 1,200,000 

I 0" 
ult. compression strength= 16,000 psi 

ult. shear strength= 8,000 psi 

From E~. 6.82: k = 5.34 + .4 (I 5/ro)2 = 5.J4 

2 t 2 
F,om Eq. 6.S I: 't = 8,000 =- 5.34 'IT x i ,2~,000 ( lwS ) 

xzc I 2 ( I - .J ) 

tw = 0.56 in. 

From Eq. 6. 71 a and Table S-3: 

2 t 2 
0 = 16,000 = 4.o 11 x 112go1000 < 

10
f > 

XC 12 (I - ,J ) 

t1=0.61 in. 

II Convnent: For wall thicknesses grf"Oter than s•ven above, the ultimate strength 
of a beam using this box section is governed by material strength; for wall I thicknesses less than these volue~, ultimate strength is governed by local wall 

I buckling, which is a function of the stiffness rather than of the strength of the i material. 

I -------------------------- ----
Note: I psi -; 0,0069 MPu; I in. " 2~.4 mm 

• See footnote, Example 6-1, p. 29. 
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Combined shear and u;1iforrn compression (Fig. 6-360), wher<> o/b > 1.0: 

2 
CJ 

X 
♦ 

0 

'xl 

Eq. 6,87 

When a/b < I .O, the obovP formula is very c..onser vat i"e and rnore accurate 

relations are given in (6.13). 

Combined shear and pure in-plone bending (Fig. 6-36b); where n/b > 1.0: 

2 2 
T CJxb 

(-~) ♦ (----
0 

0
o 

Txyc xbc 

= I Eq. 6.88 

Eqs. 6.87 and 6.88 may be combined into one three-port interaction eciuotion 

when oll three types of stress occur simultonE>cusly (6.14). 

Recim9'fcr Plates Without Lateral Stfl><,rt Along Com'>ressed Longituclinol Edges 

Sometimes, as in Example 1..9 in Section 6.8, a diopl-irogm plate transfers load as 

o "deep beam" without lateral , L.Oport along the compressed edge, as shown in 

Fig. 6-37. In such plates, o conservative estimate of critical !::>uc·kling stress may 

be obtained by consijering thot o strip of unit width along the compressed edge 

(or other location of maximum compression) behoves .:,s o slencier strut t->etween 

points of lateral SI.Wort. The critical buckling stress in such o strip is given by 

Eq. 6,720. I he buckling coefficient, k, reflects the end restraint conditions ond 

the voriatioo in build-up of compression stress over the unsupported length. This 

approach nt>glects the odditionol resistance which con be provided by adjacent 

strips which ae stressed 1o lower levels. Mobilization of this additional 

resistooce brings into ploy th@ torsional stiffness of the plate. 

If the spa,-depth ratio of the diaphragm plate exceeds about two, a more 

accurate determination of buckling stress may be obtained from the theory of 

lateral-torsional buckling of rectangular beams (6.15). For this case, the critical 

buckling stre~ at the laterally unsupported compression edge of o diaphragm 
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Lateral - ton:anal 
brace locotic., 

Maximum 
~length 

I lCC I M ,--;;---+, ~ ·-·+- --t---- -~ 
I I ... _______ ..... • ___ .,.___i 

Lnteral - torsional 
I I buclcling 
I 

I 
IJ 

" C ~ (:: t" j ~ -'~ Supports are frtt to rotate, k = 11 or ,~, ~ ---.: ~ , -;, ,. ==t' fully fixed ago inst loterul rotation, '"j£-..::.. -::_ _,' , k • 2 -++--- - ~ .._ -:==F ,•..,, ---- ...... ' ~,,,,,.,,,,, ........ ' 
(.."' Basic Ca,e '~ 

(o.) CONST ANT ~ OVER SPAN a, lJt,MACED SPAN = r 

~ c;-No loter~I support ~---...... • 

VARIOUS DISTRBJTIONS CY LOADING 

Fig. 6-'SJ LATERAL-TORSIONAL. BUCKLING Of DIAPt-RAGM PLATES 
WllHOUT CONTINUOUS SUlPORT ALONG LONGITUDINAL 

EDGESa/b >2 
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plate of thicknt>ss, t, \1E>rtil, b, span, o, nrin laterally unsupported kngth, c, 

subject to variuus IOO(iinq distribution~ oncl <Tr, 'iti"'n~ of restraint at supports, as 

shown in Fig. 6-37, is (6.1 S): 

t 
O - 0.63 Ei) 

7(1 •v) 
Eq. 6.89 

The buckling ce>t>fficient, k, VC"'ries for different distributions of loading on the 

diaphragm plate, for different locations of lood application relative to the 

centroidal x axis, and for different t /pes of restraint nt the points of lateral 

support. So'T"e values of k for the comrr>only occurr inq load and restroint con.:Ji

tio.,s shown ir. Fig. 6-37 are qiven in Tobie 6-5. 

Tht- wive k = 1.0 for pure bending without restraint of rotation o1 pair.ts of 

lotercl rf!stroint may often be use<l to establish proctkol design lirrits for 

buckling beco•1se it conservotively opproximot~s the other conrlitions with 

reosono'.Jle accuracy in most cases. 

Tht- above solution is based upon twisting of the pl:Jte as a riqid body, neglecting 

trmsv°"rse bendinq of the plate which redllces its torsional rigidity. This could 

result :n a, overestimate of the bt.~kling stress, dE-pending on the a/b md h/t 

ratios of the diaphragm plate. 

Clrculcr Plates 

The critical buddi11g stre~ on the perimeter of o radially compressed circular 

plate (Fig. 6-38) is (6.11 ): 

J re 
4k •2 D 

= -a2_t __ Eq. 6.90 

le 11
2 E (!) 

2 
or 0 rc ---- 1· 

3 (I- V ) 
a Eq. 6.90a 

The following values of k apply to vori~ coses of support restraint: 



I. 

2. 

3. 

"· 

s. 

,. 
7. 

T'lble 6-5 

Budcling Coefficients for Narrow ~tangular Beams 
With a/b > 2, Swject to In-Plane Bending (6.11) (6.15) 

Loading Distribution Buck,ing Coefficient, k, in Eq. 6.89 

lateral restraint at lateral restrain! at 
indic-ated spacing with- indicated spacing with 

out lcterol 11 tatiaial fixity full la1a-ol rotational fixitv 

Pure bending in plane of 
plate - Fig. o-37(a) with 1.0 2.0 
lateral unbraced length: c 

In-plane concentrated lood 
at mid-spa,, applied at 
oentraic.lal x axis - Fig. 
6■ 37(b), simple s-n,«ts I.JS 2.12 
in-plane IPCI\ a, lateral 
1141Pcrt spa, a 

Same as 2, except load is 
~lied at distance d d _(I !...:U..J abaYe centroidol x axis I.JSU-l.74 0 
fig. 6-37 (c), or -d below. 211-0.63 6i 
Unifcrmly distributed 
load applied at centre :dal 
x-axis - fig. 6-37(d), 1.13 
si:nple ll4'P<lfll in plane 
IPCI\ a, lateral 5'4)p«t 
aper 0 

Concentrated load at ffld 
of cantilever, applied at 
centroldal x c.,xis - n.a. 1.28 
Fig. ►J7(e), no in-pl~ 
• lateral M,IIP«t at point 
of load opplicotion 

Same as S, except loocl is 
1.28 (1- ! jl + v) 

~lied at d oboYe centroid n.a. t axil, Fig. ►37 (f) or ■d belo,,,, 2 (1-0.63 Ii) 

Uniformly distributed load 
an cantilewr, applied at 
centroidal •--la -Fig. n.o. 2.05 
►l7 (g), no ln-plone or 
lateral M41PQrT ot 
contll...,., encl 
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3.0 ----------------..---,--r--...,....--. 
1~-.t.,-,-.1t: 

- -~- -· ... . . . -.. ~ .. 
2.S +-+-+-..;-.-+---,---+--+--. ➔----·. --· .... 

Eqs. 6.,0 I .0 
& 6.j()o 

ol=::I=gjl=t3::$~$..L4:,;:.Eaa~~=~~~EEl 
0 2 4 6 8 10 12 14 

K _ beoding l'TlO(Tlerlf 
b - <t:inlt angle x unit edge lengtt,> 

fig. 6-38 BUCKLING COEFTICIE.NT!> k FOR CRCULAR ISOTROPIC PL.ATL 

WITH ROTATIONALLY RESTRAl~D EDGES (6.11) 

k
2 

(le in Eq. 6.!"0, 

1.2 
1.0 2.0 3.0 4.0 s.o 

:l -+ --+· 
0.8 

Ratio 
o 1ta2 0.4 

0 
1.0 0.2 0.3 0.4 o.s 

k I (k in lq. &.90) 

ng. 6-3' BUCKLING COEFFICIENTS r OR AN-IJLAR ISOTROPIC PL.A TE.s 

WITH SIMPLY SUPPORTED (k I) OR CLAMPED OUTSDE EDGES (ki> 
- NTERNAL OOUN>ARY FREE IN BOTH CASES (6.11) 
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,,2k 

Eqs. 6.90 
& ~.90a 

Eqs. 6.90 

& '·'°° 

,.o 

5.5 

s.o 

4.5 

4.0 

3.5 

3.0 

2.5 

.. .;::· 

0.5 

0.5 

L .. t .... ~·.:!- : .) >t 
·-'- "I ·-:; - -7- . 

1.0 

1.0 

~ l = o 

_ ...... ~C1"'--

1.5 2.0 

1.5 2.0 

2 t 2 
t = t 1 (I - l + .2 l ) ., 

2.5 3.0 

2.5 3.0 

Fi9, ~ BUCKLING COEFFICENTS FOR C~CULAR ISOTROPIC PLATES 
WITH NHJLAR THICKENING ('-1 I) 
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For simply supported edqes: 

For clamped edgt>s: 

For elastically supported edges: 

For simply-supported or clamped plate 

with uns~ported annular 

o~ings: 

For simply supported plates and 

clamped plates with annular 

thickening: 

For an elliptical plate with boundcries 

clamped: 

k 

k = 0.426 

k = 1.49 

See Fig. 6-38 

See Fig. 6-39 

See Fig. 6-40 

SE-e Fig. f.-41 

3.0 4.0 5.0 

ratio b/a 

Fig. 6-1' I. Bl.Xl<LING COEFFICENT FOR ELLIPTICAL 
PLATE WITH CLAMPED EDCiES (6.11) 

See (6.11) for buckling of circular plates under partial external radial comp

ressi on, e~:ternal radial compression with boundary portiolly simply s~orted and 

partially clamped, various cases involving support of on annul<J."' opening normal 

to plate, various circular sectoral plates, and buckling of plates with compression 

applied radially at internal boundaries of amular openings and combined with 

radial compression on external boundaries. 
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T riCS91lar md Polygmol Plates 

The critical bucklin(] stress on the perimeter of equally stressed trimgulor plates 

(Fig. 6-42) is as follows (6.1 ! l: 

k1/E t 2 
= ------2- (-} 

120-v) 0 

For equilateral trimgle with simply supported edges (Fig. 6-42o}: 

For right mgled isosceles tria,gulor plate with sirnply 

supported edges (Fig. 6-42b): 

l:q. 6.91 

I<= 4.0 

I<= 5.0 

See (6.11) for buckling of mmy other polygonal plates under V{lf'ious conditions of 

shape, proportions. edQe loads, and edoe rt~l\trnint. 

(a) (b) 

Fig. 6-U. ~EC J STRl:SS ~ SIMPLY SlM>OR Tl:D JRIANGU..AR PLATES 
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,.10 STABILITY OF ORTI-fOffiOPIC PLATES 

When plate materials ore not isotropic, stability relations become much more 

complex. Only o few basic coses involving buckling of specially orthotropic 

rectmgulc:r plates ore presented here. In these pk,tes, the principal plate oxes, 

principal ox,.~ of materials st;ffness and o.<es of principal stress (exceot in pure 

!~,e'Y case given below) all c-oincicle. 

Ulifarm Uliaxial Compresion 

For the basic case of uniaxiol compression on a simply supported rectangular 

plate stressed in the x direction (Fig. 6-430), the critical buckling stress 

resultant is (6.11)(6.18)(6.19): 

N 
XC 

F 1. f>.9? 

(a) Plate ai""'y ~ (b) Plate with one edge free, 
parted along all others simply Sl4Jl)Ol'ted 
four edges 

Fig. 6-\3. 81.JCKLING CF PLATES IN UNAXIAL <.:OMPRE.SSK>N 

For single thickness plates, the criticol buckling stress is: 

0 
XC 

N 
=~ 

t Eq. 6.92a 

For specially orthotropic, lomir.oted plates, the critical buckling stress in layer 

k, with its stiffness properties referenced to direction I in the x direction, is: 

0 xck Eq. 6.92b 
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also N 
Jr..C 

n 
= 2 1: 0 xck tk 

I 

The half-wavelength of buckle, R.b' is: 

4~ 

i.b = b ✓r>;~-

Eq. 6.92c 

f:q. 6.93 

See Eq. 6.6 for O 
0

• For an isotropic plate D 1 1 ~ D22 = D and D
O 

= D ( I -

/)/(I+ v) +'f'D = n; thus, cr)_ is the some as qiven in Eq. 6.710. Also the 

half-wavelength of buckle is h. 

Equations 6.9? and 6.93 only apply for plotes whose lrngfh, o, ~quals or exceeds 

i. b' See (6.16) for bucklinq coefficients for smaller o/b rotios. 

Exanple l.12 illustrates the deterrnhation of crif-:ol local buckling stress in a 

rectongulcr tube column fabricated from the orthotropic laminate whose stiff

ness was colculated in Example 6. 7. 

When the longitudinal plate P.<Jges ore rototionnllv fixed, the critical buckling 

stress is (6.16): 

0 
XC 

Eq. 6.94 

Eq. 6.95 

Equations 6,9lf and 6.95 apply only for plates whose length, a, r:quols or exceeds 

.t.b. 

Wh<.;i ir,formotion about the in-plane shearing rigidity of the specially ortho

tropic material is not available to colcuiate D , Cl" estimate of the effect of the 
0 

differing stiffness in the I and 2 dirt:ctions on the buckling !tress in the x-

dlrection co, be obtained by modifying the buckli:,g formulc:, to~ isotropic plates 

as follows: 
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I exan.,1e ,.12: Determine the local wall buckling compressive stress under short 
I term load in a squore tube section constructed with the laminate who!le stiffness 
I properties were determined in Example 6. 7 and whose cross section dimensions 
I ore shown in the sketch: * 

I 
I 
I 
I 
I Solution: 
I 
I From Ex-omple 6.7: 

: Flexural Stiffness: Longitudinal: 

I Trans verse: 

I Twisting Stiffness: D = 
0 

= 382 x I o3 lbs-in. 2,'in. 

= 112 x 103 lbs-in. 2/in. 

35 x 103 lbs-in.2/in. 

I From Eq. 6.89, modified for a laminated plote: 

I 
I 
I 
I 
I 
I 
I 
I In each layer: 

= 2 
f'I 

2 
( ✓ 382 X 103 

X 112 X 103 
302 + 35 X 103 ) = 5304 lbs/in. 

I 
I I A 22 = I: t b22 = 

I 
0.06 (25.15 + 1.0 I + 25.15 + 1.0 I ~ I 0.09) x 2 x I 06 

+ 0,06 X 1,01 X 106 = 7.55 X 106 

I Graphite, longitudinal: a yck -· 5,304 x 25. 15 x I 06 --- 17,670 psi 
7.55 X 106 

I I Aramid, longitudinal: 

I I AromiG, transverse: 

I Ctwck total load: 

= ~304 X 10,09 X 106 

7.55 X 106 

5,J04 X 1,01 X 106 

: 7.55 X 106 

I Graphite, L: 17,670 x 0.06 x 4 layers= 4,240 lbs/in. I Aromid, L: 7,089 x 0.06 x 2 layers = 851 

I Aromid, T: 710 x 0.06 x 5 layers= ~ 
I 5,304 lbs/in. 

= 7,089 psi 

- 710 psi 

I 
I Note: I lbf-in. 2Jin. = 113 N-mm2 /mm; I lbf/in. = 0.18 N/mm; I ~si , 0.0069 MPo 
I 
•• See footnote, Example 6-1, p. 2? • 
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I. Use E22 (or 0..,_2) in isotropic fnrrnulns to deterrnine a . t .• 
,_ XC ISO rop,c 

nirection I lir.s l]fonq thP x axis. 

l. f.'odify b1Jcklinq stre-..s os follows: 

o = a . . xc ortho xc 1sotrop1c g i-=q. 6.96 

Thi.; is thP. so·ne rel'1tion thot wm, wqgested in a previous Section to account for 

creep in buckling of isotr,.,pic plotes under long-term loods. 

Two other conditions of practical importance are the roses of uniaxiol <:orn

pression with one edge ct y = b free and the other ed(Je at y = 0 either sirnply 

supported or fixed as shown in Fig. 6-43(b). These coses are limiting conditions 

i:i the local buckling of m outstanding flange of on I or C shaped brom. 

The foll,w,inq t>q1Jations for the orrroximote cri~ical bockling stress in specially 

orthotr:>pic pk1tf's with me unloaded f'dqe free are givrn in (6.18)(6.19). These 

wert'! ~veloped for hornooen,~us plates of uniform thickne,;s, t1nd are given for 

the above two lirnitinQ conditiuns of edgt> restrnint: 

(a) l'dqe ot y = b free and ot y -= 0 simply ~•~ported: 

(J 
XC 

2 
IT 

= b2 t 

for a very loog plate, where o/b is large: 

E4. 6,97 

Eq. 6S8 

For this edge condition, the half wove length of buckle eq1,ols the length 

of the plate, a. This is simi:or to tht, isotropic plate buckling condltions 

qiven in Cose 4, rable 6-3. 
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(b) edge at y = b free a,d ut y = 0 fixed: 

a xc = bi t
2 

(< 0.935f D11 0 12 - 0.656 0 12 + 2.0C32 o 1'2 >] Eq. 6.99 

For this edge condition, the half wove length of buckle is: 

4 

1 b = 1.46 b 
.2 Eq. 6.100 

~ Chapter 7 for o design example showing the application of the above 

equations for design of composite beam flanges. 

Effect of Shear Oefcrmotian in Laminated Plates 

Buckling relations become very complex when tronsverse (interlarninar) ~hear 

deformation is not neglected, as it is in the classical buckling relations presented 

above. Buckling stresses, inclvding transverse shear deformation, for uniforrrly 

compressed specia!ly orthotropic rectangular plates with loaded edges simply 

supported and unloaded edges: (o) simply supported, (b) clomped, and (c) one 

~imply s;...ipported end one free, ore given in (6.8), but the equations ore too 

cumbersome to present here. Plots comparing buckling stress including shear 

deformatbn with stresses neglecting it are also given in (6.8) to illustrate 

conditions when shear deformation moy be significant. These may occur when 

E
11 

t/G
13 

b >2, where the direction of the buckling streM is in the materials 

direction I. See <:hopter 8 for further discussion relative to consideration ot 

shear deformatk.n in the buckling of sa,dwich panels. 

Pure In-Plane Bending 

For i~~lan,e stresses distribvted across the plate width b in pure bending (Fig. 

6-"4), with varying oegrees of edge restraint from tonionol ri-:1idity of a flange, 

the critical buckling stress is (6.11): 

2 k 11 0 11 a XC = ~- Eq. 6.101 
b t 

The buckling coefficient k is obtained from the curves g;ven in Fig. 6-44. 



Fig.~ BUO<UNG COEFFICENTS FOR RECTANGll..AR ORTHOTROPIC 

Pl.ATE IN~ BEN>ING (6.11) 
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Pure Shear 

For pure shf.or strt"sses on a simply ~i_,pported rectnngular plate (Fiq. 6-45), the 

critical buckling stress is (6.11 ): 

3 "' 4 kx ( DI I D7.2) 
= -- :y - - - - - -- - - - -

b2 t 
t 

xyc Fq.6.102 

The buckling coefficient k is obtained from the curves in Fig. 6-45. 
xy 

See (6.11) for several other cases of rectangular plates in pur.? shear. See (6.17) 

for the critic.::i buckling stresses in sheCI" for long plates with various degrees of 

rotational restraint on the longitudinol edges. These solvtions ore usPful for 

deh~rmininc1 shear bLicklinq o~ orthotropic webs of plate girders whose flanges 

provide vc:-ying degrees of .-otational restraint. However, the solution given by 

Equation 6.102 abi,ve may be used in many coses where the rototionol restraint 

from the flanges is low, or is neglected. 

Combined She...- and Direct Strem 

The interaction equations 6.87 and 6.88 suggested in the previous Section for 

buckling of i~otropic p!otes may be used to obtain o tentative estimate of the 

stability of m orthotropic plate under combined loading. Tests should be 

conducted to confirm the applicability of these relations. 

Circular Plates 

The critical buckling stress for a circular orthotropic plate with uniform radially 

applied edge loads and with orthotropic oxes of rnoteriol arranged radially and 

circumferentially is (6.1 I): • 

F:q. 6.103 

See Fig. 6.46 for values of k for a range of ratios of .JE8 /Er· 

6-118 



22 

20 

18 

16 

kxy 

14 

Eq. ,.102 
17 

10 

8 

6 
0 

A2 
__.~...._.._ __ 1.0 

0,9 

;a...;C'-+-~-=~==~~.IL-'--,,14:.C.,-,A0.8 

-· - --
= Do l,j DI I D22 

- --+- t -♦---♦ ----

1 = (b/~ V,_o,,i1022 ! 

0,7 

0.1 

0 

0.2 0.4 0.6 0.8 1.0 

Fig. ~ BUO<LING coe=-,:ICENTS FOR RECTANGULAR SIMPI.. Y 

SUJPORTED OOTHOfflOPIC Pl.A TES IN PURE St-EAR "911) 
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k 40._:.:~____JL'._.$.~....C:'1----.:;:.:..::::;.:....:.....,._:__;._;____;_~~-I 

Eq. 6.103 

. - . ~ 

_ g = 0.3 

.. ,. \I E 
~ "' r r 

+--+----,.+e- ·I---'-( \lg = tg 
0 -'-'-==~~J::.;.;.L.:.:L_l_...J,.._.:,;._,:__:..a 

0 1.0 2.0 3.0 

Fig. ~ BUCKLING COEFFICENTS FOR SIMPI.. Y Slff>ORTED OR 

CLAMPED CACUL.AR ORTHOlROPIC PlA TtS (6.11) 
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,.11 t--;r.,1LIRAL FREQUENCIES OF PLATES AN) MEMBRANES 

In problems of investigation or design involving transversely loaded plate 

elements sl.bjected to dynamically applied loading or support motion, the natural 

frequencies of free harmonic vibration cf the plates must first be determined. 

Gererolly, the lowest natural fr~quency is of greatest interest, but sometimes 

higher modes must also be investigated. See (6.3) and (6.20) for tabulate,! 

formulas for natural frequencies of transversely loaded rectangular, circular, 

triaigular, and miscellaneous shaped plates with various conditions of edge 

restraint. Some common coses are presented here based on equations given in 

these references. These equations ore fairly accurate "upper bound" approxima

tions for the lowest and second mode natural frequencies of the indicated plate 

types. 

Rectangular Isotropic plates 

The natural frequencies of rectangular plot~s supporting o uniformly distrihuted 

mass p on a unit nreci are given by the following relation (6.3): 

for a plate loaded only by its own weiqht, where p = 

fn ° :d 12E/TJ~ 
ll. g • 

Eq. 6.104 

Eq.6.10'40 

The frequency coefficient ii! in the abo"e Equations varies with the mode and ., 
with the edge support conditions. See (6.3) for values of 'n for the two lowest 

modes of vibration for rectaragulor plates with various ecige restraints. For two 

common cases, where A = a/b: 
0 

Simply supp.'.>rted edges: 

First mode: 

Second modP.: 
(use lowest) 

2 
♦ I = 1.57 (I + X

0 
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Rotationally fixed edges: 

First mode: ~ I = 1.57)5.14 + 3.13 A~ + 5.14 l.: Eq. 6.107 

Second mode: ~2 = 9.82J I + 0.2~ l.~ + O. ! 32 l.: 
(use lowest) 

~2 = 1.s1 Js.14 + 11.6s x~ + 39.06 ~ 
Eq. 6.108 

When the plate is stbject to in-plane tensile or compressive forces, !',! and N , 
X y 

the natural frequencies are modified. ;n-plane tensile forces (+N) increase the 

natural frequercy and compressive torc~s (-N) reduce it. Compressive forces 

equal to the plate huckling lood reduce the Mfurol frequency to zero. The 

following equation is a fairly cx::curate "upper hound" estimate of the natural 

frequency of a plate with simply SL•pported edges subject to in-plane forces N 
)( 

and Ny {6.20). 

I 57 { r 2 2 a 
2
] 

2 
2 m 

2 
2 n 

2 
a 

2 J f = -.r:: D Lm + n (b) + Ny a ("i) + Nx a (n) (b) Eq. 6.109 
n a"-IP 

where o, b, x, y, N , ond N ore directed as shown in Fig. 6-iJ7, and m and n are 
X y 

1nte~s which define mode frequencies. 

yt plate axis 
2 t material axis 

+Ny 

b I t..., ____ _.~-----•·l•'-t-x_~ ___ '►moterial axis 
~ x plate oxi~ L O Ny _J 

Fig. ~1. ORIENTATION OF PLATE AXES, MATERIAL 
AXES AN> PLATE EDGE DIMENSIONS 
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The lowest, or first mode occurs when m = n = I, except in certain cases where 

a I b and N :s negative and oppi · .aches N • Other moc1es must be detemined 
X XC 

by cut md try sl.f:>stitution of various values of m and n. When N = N = O, the 
X y 

above equation reduces to Eq. 6.104 and Eqs. 6.105 or 6.106, using the 

appropriate values of m md n. 

When the amplitude '.>f vibra?ioo exceeds obout half the plate thickness, the plate 

is stiffened significor,tly by the chalgei; in its shape, and its natural frequency 

increose~. An approximate determination of the increased non-linear natural 

frequel"'cy, relative to the frequencies given above for "small deflections," is 

given by the curves in Fig. 6-48. The ratio of linear frequency to nonlinear 

frequency for various ratios of vibration amplitude to plate thic~ness is given for 

limiting roti0$ of o/b md several conditions of edqe rest, aint. 

The greote1;t ehect of stiffening due to "large -:ieflPCtion" shape changes occurs 

with simply s1.1pported edges that ore held against !ateral translot ion (Curves 2 in 

the Fig.,re). For this case, the rotio of linear to non-linear frequency does not 

vary significantly with o/b. The other edge conditions given in the Figure ore 

Curve I for simply supported edges, not helrl against in-p!ane translation, Curve 

3 for clamped edges, not held against in-plane translotion, md Curve 4 for 

clomped edqes, held against in-plane translation. 

Rec~lcr "Specially Orthotropic" Plates 

The natural frequencies of rectmgular specially orthotropic plates supporting a 

uniformly distributed mass p on a unit area ore given by the following relation 

for plates with all edges simply suppnrted (6.20): 

f 1.57 
n = a2-Ti- Eq. 6.110 

where o, b, and materials oxes I and 2 ore directed as shown in Fig. 6-47, and m 

and n ere integers which define mode frequencies. The lowest or first mode 

frequency occurs when m = n = I. The second mode frequency is the lowest of 

the results from Eq. 6.110 with m = 2, n = I, or with m ::: I, n = 2. Higher mode 

frequencies are obtained with vorious combinotions of integral values of m and n. 
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1.0 

' ,1\ ..- Simplf supported four sides, 
0.4 \.1/ held from lateral translotion-t-.>1--jf---+--f 

/'II _Simply supported four sides, 
~ free to translate laterally 

0.3 (3) -clomped four sides, held from lateral 
translation 

®-·-Clomped four sides, free to translate laterall 
0.2----...... ----...... - ...... _...__ ...... _..__i.-.-. 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Amplitude,'Thickneu of Plott: 

Fig. 6-48 RATIO OF Uf\EAR TO IION..ltEAR fREQUENC'/ AS A FUNCTION 

OF AMPUTLOE/THICK~ RATIO FOR LARGE DEFLECTIONS 

OF RECTANGULAR PLATES (6.20) 

1.0 
.... 
l o.8 t--t----t-7""1~-t-,~t:--""F""'~:.:1;~ 

r i I o.6 
:J D.11 See Fig. 6-48 for Key. -+--+---+---+--P-..... r.:'\ ~~-----.._ ...... ___________ _ 

0 0.2 0.4 0.6 0.8 I~ IJ I~ I~ I~ ~O 

Amplitude/Thickness of Plat" 

Fig. ~ RATIO OF Ut€AR TO "°""-It-EAR FREQUENCY AS A FUNCTION 

OF AMPUTlDE/lHICKl'-ESS RATIO FOR LARGE DEFLECTIONS 

OF CRCULAR PLATES (&.20) 
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Eq. 6.110, with appropriate volues of rn md n, reduces to Eq. 6.104 md Eqs. 

6.105 or 6.106, for tha first and second mode frequencies of isotropic simply 

supported rectangular pla1es (D 11 = 0
22 

= D
0 

= D). It also reduces to Eq. 6.109 

with N = 0. 

Circulm- Plates 

The lowest natural frequencv of a sirnply supported, transversely looded circular 

plate is (6.3): 

,r lo 
= T ,J~-a p 

Eq. 6.111 

An approximate ckterminot1on of the increosed nonlinear naturo! frequP.ncy 

which occurs when the plate undergoes large deflections is given by the curves of 

Fig. 6-49. The ratio of linear frequency to nonlinear frequency for various ratios 

of vibration amplitude to plate thickness is obtained using Curv~ I for simply 

supported edges, not held agoinst in-plane translation, and Curve 2 for simply 

supoorted edges held against in-plane translation. Curves 3 and 4 give the same 

information for circular plates with clamped edges. 

Tria,g.,lm- Plates 

The lowest natural frequency of a simply supported, transversely loaded right 

1rimgulcr plate with two perpendicular sides of length, a, is (6.3): 

Eq. 6.112 

See (6.20) for mmy more plate edge proportions and surJ)ort conditions • 

... 
Mernbraries 

The lowest natural frequency of various membr11ne·,; stretched with a uniform 

edge tension force per unit length, N, and having the shapes listed below, is (6.3): 

k = Eq. 6.113 
2 'ff 

.J~ 
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F is the area of the membrane 

g is the acceleration due to gravity 

q is the uniforn,ly distributed transverse pressure 

k is a coefficient which depends on the shape of 1he membrane. For some 

common shapes, k is: 

k 

Circle 4.U 

Square 4.44 

Equilateral 1r iongle 4. 77 

60° sector of drcle 4.62 

Semicircle 

Hectar,gle 

4.80 

~ J,....*_[_1 _+_( 0-0 -} 2-J o > b 

Example 6.13 illustrates the use of the above equotions to determine the lowest 

notural frequency of several rectangular plates, such as might be used in plastic 

glazing and screen wall panels, respectively. Excessive wind-induced vibration 

may occur in s•JCh panels if the frequency of wind gusts approaches the natural 

frequency of the plates. This is not likely in the first plate in the example, but 

may occur for the first mode vibration of the second example plate. 

An exhaustive summary of ovoiloble solutions for natural frequencies, mode 

shapes, nodol lines, and amplitude coefficients in plates of various types is 

presented in (6.20). lnformotion provided covers many different shapes of plates, 

conditions of edge restraint, behavior of anisotropic plates and plates of variable 

thickness. Kelolions for effects of in-plane load, "large deflections," and 

tronsverse shear deflection on the natural frequency of certain types of plates 

are olso included. 
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I Exan1)1e 6.13: Determint? the two lowest natural frequencies of the plates in (a) 
■ Ex-.imple 6.1 and (b) Example 6.2. Use specific gravity of thermoplastic 
■ materials given in Table 4-4, and FRP given in Table 1-6. * 
I 
I (a) Solution: Specific gravity of acrylic = 1.17 
I 
! • I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I (b) 
I 
I 
I • I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 

From Eqs. 6.102 and 6.103 with >. = 1.5 
0 

First Mode: 2 •i = 1.57 (I + 1.5 ) = 5.10 

Second Mode: 2 ~ ::: 6.28 (I + 0.25 X 1.5 ) = 9.81 

2 or • 2 = I.S7 (I + 4 x 1.5 ) = 15.7 

From Eq. 6.llllo: 

2 
40(),()()(l X 0.25 X. 32.2 = 

12( I-0.32)x I. I 7x0.036 
7.81 cps 

= tf~ x 7.81 : 15.01 cps 

Solution: Specific gravity of mot reinforced polyester= 1.4 

Using equations for plates with small deflections: 

Use 

From Eqs. 6.102 md 6.103 with ). 
0 

= ! .5 and frorn part (a) above: •i ::: 
5.1; •2::: 9.81 

From Eq. 6.970: 

5.1 
= 48.92 

1,()()(),()()() X 0.125 2 
X 32.2 

2 = 
12(1 - 0.3 ) X 1.4 X 0.036 

= 95~11 x 2.04 ,. 3. 92 cps 

2.04 cps 

The natural frequencies determined for smoll dei'lectbns will increase as 
the plate stiffens when it is subjected to suff!ciently ::igh loads to cause 
appreciable deflec. tion. At 1he maximum design deflectiOi'I of 1/2 in. the 
amplitude/thickness ratio is 4.0. If the approximate curve fo, any value 
of o/b in Fig. 6-48 is extrapolated to the above amplitude/thickness ratio, 
tne estimated lowest noturol frequency is: 

=- 2.04/0.2 = 10. 

• See footnote, Example 6-1, p. 29. 
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NOTATION - °'°S>ter 7 

a see Fig. J-7 & Fig. 7-12 

A cross sectional oreo 

Ae, A'e effective cross sectional areas after local buckling of compressed 

plate 

Ab area of brace member 

Af area of one flange of thin-wall beam 

A area of net section n 

A , A area of plates n ond m, respectively, (Fig. 7-25) n m 

Atup' Abot effective area of top and bottom flanges of a box section 

:\w area of web between inside ot flanges of thin-wall beam 

b, bf, bw' width; width of flange; width of web 

be distance defined after Eq. 7.85 

be effective width of local plate in post buckling state, or for 

resistance to concentrated lood, or for corrected flange stress 

because of .;heor log 

b' 
e 

b 
s 

C 

effective flange width for corrected deflection because of sheo.

log 

longitudinal spacing between transverse stiffeners; also, width of 

substitute ponel in shear lag c-nalysis 

dimen~ion in ►ig. 7-12 
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cf maximum transverse deflection of thin flange caused by curvature 

produced by longitudinal stress 

Cb, Cc, C I coefficients in buckling equations 

Cm reduction factor in equations for effect ot combined bending and 

axial compression 

J, d 
w 

d 

e 

warping constant 

depth of section, depth of web 

dimension in Fig. 7-12 

transverse flexural rigidity of flange 

distance from shear center to centroid along 1-1 axis of symmetry 

elastic modulus, ta1Y::1ent modulus 

elastic rnc.Julus in longitudinal direction 

vi~coelastic modulus (Chapters 2 and 3), viscoelastic tangent 

modulus 

Ex elastic modulus in x direction 

Eb elastic modulus of brace member 

G shear modulus 

Gxy s ieor modulus in x-y plane 

moment of inertia of cross section 

11, 12 moment of inertia about .Jxes I and 2, re~tively, in rnember 

cross section 
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"J 

k 

K 
m 

L 

M 

effective moment of inertia ofter locol buckling of comp~ssed 

plate element, or os redaced by shear log 

moment of inertia of web stiffener about the plane of the web; 

centroidal moment of inertia of support element for stiffened plate 

torsion constant for cross section 

;:>late buckling coefficient; width defined in Fig. 7-7 

stress distrib•Jtion factors given by Eqs. 7 .89 and 7 .90 

effective length coefficient for buckling of columns 

coefficient for bending deflectioo of beoms 

sp"ing stiffness of braces 

stress concentration factor 

member length 

bending moment 

lateral bending moment on each flange of I section cau~d by 

torque 

Mxu I ultimate design bending rnoment at a point along reference axis x 

in a plane perpendicular to centroidal axis 1-1 

n 

N 

N 
n 

width of bearing (Fig. 7-7) 

axial force per unit width 

maximum axial thrust at fold linen in folded plate 
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• 
N axial force in x direction 

X 

Nxc critical buckling load on centrally loaded column 

N>CcF 1, Nxc T critical elasTic bl.•ckling lo:..d in flexure about axis ; , and in torsion, 

respectively 

N 
XU 

p 

p 

q 

Q 

Q 
s 

Q "'' a''" a 

ultimate axial force in x direction 

numerical value given by Eq. 7.63; uniformly distributed load 

intensity nor,nal to surface of folded plute 

uniformly distributed load intensity on horizontal projection of 

folded i>late 

applied load 

Euler buckling load for weak direction 

unifor~ly distribut(;d iood normal to beam axis 

radial load on thin flange due to curvature with longitudinal stress 

shear flow at fold line n ir. folded plate 

forrn factor for local buckling 

form factor for local buckling of unstiffened plate 

form factor for local buckling of stiffened plates where post 

buckling strength is considered 

r, r 
O 

radius of gyratior,; polar rodiu~ of gyration 
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r 
s 

R u 

s 

T 

V 

T 
s 

radius of .,;Jyration about strong axis 1-1 and weak axis 2-2, 

respectively 

radius of gyration about axis 1-1, based on effective section 

propertie~ 

polar radius of gyration about shear center 

concentrated load or reaction normal to beam axis 

section modulus of \;ross ~tion 

section modulus with respect to centroidnl axes I and 2, respec

tively, ::, member cross section 

effective section mod•,lus ofter local buckling of compressed plate 

element, or as reduced by shear lag 

thickness; thickness of flange; thickness of web; 

torque (twisting moment) 

transverse !hear force 

por-tion of total torque resisted by torsionally induced shear 

stresses 

V f lateral shear on each flange of I section cauSE"d by torque 

V xul ultimote transverse shear force at point along x axis for bending 

about centroidal axis 1-1 

W total uniformly distributed lood 

x distance in direction of x axis, from a reference point 
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B flexural-torsion constant defined by Eq. 7 .24 

5, -~ deflection, initial deflection 

t,,. lateral deflection of frame 

a 

0 xc' 0yc 

0 xce 

axu' ayu 

T 

Poisson's ratio 

a function defined br Eq. 7. 75 

normal stress 

normal stress at fold line n in folded plate 

stress in x ::firection, overage normal stress 

bending stress in flange caused by torque 

ultimate buckling normal stress in x direction, ond in y direction 

elastic buckling norrnol stress in x direction 

reduced ultimate strength of material (normal stress) in x direc

tion, and in y direction 

shear stress 

shear stress in flpnge caused by bending resistance to torque 

t
1

, 'sf' t
5

..., shear stress caused by torsional resistance to torque, same in 

flange, some in web 

shear stress at point clong x axis, and maximum shear stress at this 

point 
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.Jltimote shear stress that produces buckling at a point along x axis 

reduced 1,ltimate shear strength of material at a point along x axis 
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7. BEAMS AN> AXIALLY STRESSED MEMBERS 

F.J. Heger 

7.1 INTRODUCTION 

Plastics moy be formed to obtain tension members, columns, beams, ribbed 

panels, and other beom-like components that hove efficient sections fo:- resisting 

direct thrust and bending. These sections ore usually rectangular or circular 

hollow tubular shapes, or I, , T, hat, or other open thin wall shapes that are 

assemblies of thin plate elements. St:...,1 shapes may be formed by extrusion, or 

other processes as described in Chapter I. Gloss or other fiber reinforcements 

ore used in larger and more significant structural members. Fiberglass reinforc

ed polyester members mode by the pultrusion process are described in Cha!')ter I. 

Reinforced plastic tubular sections and ribs ore also fabricated by filament 

winding, spray up, hand layup, compression molding and other suitable processes. 

Design methods for plastic and reinforced plastic structural members that resist 

axial forces and bending are provided in this Chopter. These members ore 

usually termed ''co1umns or struts" when they resist primarily compressive 

thrust, "ties", or tension members, when they resist h:ns11e thrust, and ''beams" 

when they resist transverse loads that produce bending. Members subject to 

combined compression and bending ore often termed ''beam-colurms". Flat 

panels having ribs spanning in one direction behove essentially os columns, beoms 

or beam-columns, with each rib and its adjacent plate acting os a repetitive 

~tructurol member. Other components, or assem:.,lies of components, that 

behove like beams include large stressed skin components such as aircraft bodies, 

box beams, ISO-type cargo containers, vehicle bodies, md folded plate sections. 

Equations and methods of analysis are presented for designing columns, beoms 

and ribbed panels considering axial strength and stability, benoing strength, 

twisting strength, lateral-torsional stability, stability of local plate elements, 

and deflection. These methods are based on conventional elastic theory for 

bend:ng and buckling of bars in which a basic assumption is that ''plane sections 

before bending remain plane ofter bending." Certain mociificotions are intro

duced when needed for members with wide flanges, deep webs, and ot~r special 
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considerations. Since some plastics and reinforced plastics do not hove isotropic 

elastic properties, design considerations for members with orthotropic elastic 

properties ore included. 

Many of the design recommendations presented in this Chapter are based on 

design practice for metal members. Design procedures and formulas for metal 

members hove evolved from theoretical formulations of structur..:il behavior that 

account for fundamental materials properties such as elastic modulus and yield 

strength. Often these may also be used for other materials, such as plastics, orn1 

the theoretical relatior,s required for designing beams and axially stressed 

members ore presented and discussed in this Chapter, or elsewhere in this 

Manual. However, implementation of accurate design methods for metal 

members has required over SO years of careful structural reseor-:::h to determine 

significant parameters that govern structural behavior. Important examples are 

residual stresses that reduce the effec1ive elastic uooulus in buckling when 

stresses exceed about one-half to two-thirds the yield strength, and inelastic 

resistance to buckling that permib plastic deformotion withc•1,t buckling in some 

members. Residual stresses are introduced by the manufacturing process, and 

inelastic behavior is affected by the ductility and post yield performance of th<

moterial. The same type of comprehensive research has yet to be done for 

plastics and reinforced plastic structural members. 

The experience gained in developing design practice for metal members should 

provide a large heodstart toward the development of a proven design practice for 

the various plastics and composite materials that are useful for structural 

applications. However, as hos already been discussed in Chapters 2 and 3, 

plastics are much more sensitive to variations in temperature and duration of 

load than metals and, unlike common metals, some plastics and reinforced 

plastics hove elastic properties that ore anisotropic (i.e., vary with direction of 

stress relative to materials property oxes). Futhermore, each plastics material 

and manufacturing method will hove its own characteristics relative to residual 

streSS('s, rTIOnufacturing tolerances aid inelastic behavior near ultimate strength. 

Thus, design practice for metal members may require significant modifications 

beyond those required due to differences in fundamental materials properties In 

order to provide on accurate basis for design of plastics. Further research is 

needed to investigate the effects of the above factor:. on the behavior of pla:stic 

structural members. Until this is completed, design approaches and tentative 
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recommendations of specific design procedures presented in this Chapte;, as well 

as elsewhere in this book, based on theoretical concepts that hove been prov~n 

for metal members, will provide useful interim design methods. Thei,· should als.l 

assist the desi\,Jl'ler to understand the fund<imental structural behavior involved in 

member design, and they may help the plastics industry to define the type of 

applied research that is needed for rational prediction of structural behavior and 

design of members. 

The design practice that has evolved ior cold-formed steel structural members 

(7.1) provides the -nost comprehensive model for design recommendations for 

structural plastics because of its extensive coverage of local and overall buckling 

of thin-walled sections. Also, the cold-formed steel design specification has an 

excellent commentary that describes the basis of the design recommendations in 

terms of fundamental material properties Sloeh as E and c, y' where possible. 

Another excellent description of the basis for many of the design provisions for 

compression in the structural, cold-formed steel and alumbum specifications is 

found in (7.2). These ore the primary sotJrces for design recommendations fOt" 

local plate buckling, colul"'Yl buckling ond lateral buckling of beams given in this 

Chapter. However, modifications to account for orthotropic properties of plate 

elements ore included in the buckling relations presented toter in this Chaµter. 

The designer should recognize thot tests on specific structural plastics are 

especially needed to develop the "effective section" concept of post buckling 

resistance of thin, stiffened plate elements and to defi11e the effect of local 

element and overall member buckling when elastic buckling stresses exceed 

about one-half to two-thirds of the ultimate s:,ength. This is explained in the 

relevant sections of this Chapter. 

7.2. TeQON MEMBERS 

M~mbers subject to direct tensile axial stress without significant bending are 

used as ties, struts, braces, hangers, and chords ar,d diagonals in trusses. These 

members must be designed to hove adequate strength, and olso so,ne level of 

control of deformations. The member requires a minimum net cross sectional 

area, A.,, that is ck:t~rmined as follows: 

Nxu Kt 
req'd An = 

a XU 
Eq. 7.1 
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The stress concentration factor, Kt, is determined for the worst type of 

disc0;11inuity erivisioned for the mernber. (See Section 5.5.) Stress may be 

amplified adjacent to holes for conr,ections, v.Jriations in the dimensions of ti-'.:: 

cross scctitJn, notches, threads, or other discontinuities. If the expected 

discontinuity produces an eccentricity between the net section at the discontin

uity and the line of action of the applied load, this may be taken into account in 

the Kt value, or the combined bending and axial stress on 1he net section may be 
dett:rmined using Eq. 5.23, and this stress amplified by a suitable loNer !<t value. 

The material ~trength, crxu, should be reduced, if the applied load is a long term 
load, or a cyclic lood, or if elevated temperatures, .Jnd exposure to aggressive 

environments are expectt:d. The reduced strengt,1 should then be multiplied bv a 

suitable capacity reduction factor ( < 1.0) that alloNs for vori'ltions in the 

strength of production moteriois to obtain :I XU• If the material hos low 

toughness (i.e., is brittle), and/or if significant flows may be introduced during 

material production, or component fabrication, tl,e nateriol strength ~Id be 

based on fracture toughness requirements. Quantitative procedures for this ore 

not well developed. See Section 5.8 for a summary of fracture toughness 

concepts. 

The design load should be multiplied by an appropriate load factor ( > I .0), as 

discussed in Chapters 3 one 4, to obtain the required ultimate load, Nxu• In 
selecting a load factor, the designer should consider whether occidental eccen

tricity in load application may increase streSSt!S above the nominal axial stress. 

Alterootively, the designer may include ar, occidental eccentricity in the design 

criteria and design the member for combir,ed bending and direct stress, as 

explained in Section 7.5 

The total elongation of tension members is determined from Eq. 5.28. See (5.1) 

for elementary methods for determining the deflection of assemblies of axially 

looded members such as trusses and bracing. In determinin-;. axial deformation, 

the time-dependent viscoelastic modulus is used to account for the expected 

duration of load, service temperaturf': and other environmental conditions. This 

is discussed in detail in Chapters 2 and 3. 

The design of a thermoplastic hooger strop for o hung storage tank, including the 

stress concentr<ltion effect caused by connection holes, is illl:stroted in Exan-1>1e 
7-1. 
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Example 7-1: Design o Polycarbonate thermoplastic strop hanger to support 
each end of a water storage tank that hangs from the roof structure of a railrood 
car os shown. Lateral loods ore taken by a seconci ,;yo;t~ n of .. trups. Assune 
that bolts ore 5/8 in. diameter. WP.igli I 
supported by each U strap is 1,000 lbs. 
Assume that the material has a minimv,n 
tensile strength of 8,000 psi, and a minimvm 
compressive strength of 12,000 psi for bolt 
bearing. Use a capacity reduction factor of 
0.3 in tension and 0.5 in compression for 

hoh! diameter 
<!Qual,; bolt diameter 
plus 1/16 in. 

establishin~ the maximum long term strenqth, 
as well as the strength under repetitivP- Sfrap is molded 

to radius 
loading. Use a load factor of 2.0 to obtain the 
design L•ltirnate food.* 

Thickness required for bolt beoring with 6 - 5/8 in diameter bolts: 

Red~ed ultimate compressbn strength 0. S x 12,000 " 6,000 psi; 

Ultimate design load, 2P = 1,000 x 2.0 x I .SO* z 3,000 lbs, u 
(*Note: load is increcsed 50 percent for impact.) 

ouct a = 2P , where a ::: bolt bearing strength "' 6000 psi 
U UC 

rnin. t = ~;OOlf~ISxb = 0.14 in.; Try a I /4 in. (0,25) thick strap. 

Triol width required at section with hole: hole diameter a = .625 + .063 :a .69 in.; 

Estimate stress concentration factor, Kt = 2.8 

Reduced ultimate tension strength, a ·t = 0.3 x 8,000 = 2,400 psi 
p K ~ 

,1 = - -- '!;_t_; (b - 0.69) = 2.1,,.,~~~-\:k = 7.0; trial b 
ut (b - a,t vt x U.t:.J x t:,'+vu 

= 7.69 in. 

Calculate stress concentration factor, K., for net section stress. Try b = 7.5: 

Eq. 5.49: Kt = 2 • (I - ~)3 = 2.75 
1 

Oeterrnine minimum width, b, for section at hole: 

min b = 2¼~25{:¥,z.m + 0,69 = 7.56 in.; Could use 1/4 in. x 8 in. strop. A= 2. in2• 

Alternate design with 1/2 in. thid: material: 

Trial b = 4 in. & Kt= 2 + (I - ¥,>3 = 2.57; min. b = l;?-g?so~~!zmo + 0.69 = 3.90 

Use 1/2 in. x 4 in. strap. Bolt bearing will be lower with this alternate design 

Bearing pressure under strap on tonk wall: T = 1000/2 = 500 lbs 

T 500 From Eq. 9.1: wlain = pr, p = 2U'x"7i = 6.25 psi 

I Note: I psi = 6.Ms KPa; I in. = 2s.4 mm; I lbf = 4.45N 
I * Design loads, c!.!sign criteria (such as sote ty factors, load factors, and capacity 
I reduction factors, etc.), and materials properties used in design examples ore for 
I illustrative purposes only. The user of this Manual is cautioned to develop his own loads, 
I criteria and motericls properties based on the requirements and cooditions of his specific 
I design project. 
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7.3 CENTRAlL ,. LOADED COU.JMN,1; 

Columns aid other compression members ore centrally loaded when the line of 

action of al applied load coincides with the centroidol <Jxis of the member. 

E~tricity between the applied load and the centroidol oxis results in bending 

stress in addition to axial stress. Behovior under combined bending ond axial 

load is treated later In Section 7.5 

As in the case of tension members, design of columns involves proportioning for 

both odeql.'Ote strength and control of axial deformation. The presence of stress 

concr.'fltrations may also require consideration when determining the strength of 

comprt:ssion members, and the stress concentration factors dP.scribed in Section 

5.5 may also ~ applied to compression members. Tht-re are more situations in 

practical design, however, where compr~ssion members can be arranged without 

holes or changes in cross section, as compared to tension and bending members. 

Buckling or instability is frequently a critical consideration in the design of 

compression members. Buckling occurs when either local or overall member 

stiffness is inadequate to prevent large deflections when a slight lat-.?ral force is 

applied or when slight deviations in member straightness exist. This behavior is 

illustrated in Section 5.7, where the bucklin~ resistonce of on idealized cornpres

sion rnerrber is derived. As is shown below, buckling considerations greatly 

Influence the level of compression stress that can be allo ·•':"d in the design of a 

column. 

Stralgth 

Thf' compressive strength of the material is the highest compressive stress that 

con be used in the design of a short centrally loaded column. Similar to a tension 

member, the minimum ~tion area of a centrally loaded colurm, as governed by 

material strength, is given by Eq. 7.1. The guidelines for establishing tensile 

capacity given earlier also apply to compressive capacity. However, eY.cept for 

very short columns, or columns having significant stress concentrations, the full 

compressive strength of the colurm material can seldom be mobilized, because 

compreuion stress must be maintained below the materials' compressive 
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strength, c,xu' to provide safety against buckling. Furthermore, small flows and 

brittle fracture usually are oot design considerations for compression elements. 

As for tension members, axial shortening of a centrally loaded column is 

determined from Eq. 5.28. The same considerations given for ter,sion members 

also influence the selection of elastic modulus, E, for control of deformatio,i in 

compression members. 

Eb:lcling 

Members that are sJbjPCt to compressive thrust must hove adequate stiffneu to 

safely resist failure by buckling. The following types of buckling must be 

considered: 

I. Local buckling of thin ports of a section comprised of on assembly of thi,i 
plates (i.e. flanges, and webs of tubes and I sections) 

2. Lateral bending (flexural buckling) of overall member 

3. Twisting (torsional buckling) of overall member 

4. Combined flexural-torsional buckling of overall mPmber. 

Local buckling of thin plate elements may limit the maximum stress tliat can be 

developed in a short column that hos adequate resistance to overall buckling. 

Since rlastic colu,ms frequently ore co,nprised of thin plate elements, consider

ation of local buckling of plate elements is important. Equations for buckling of 

thin IOO<Jitudinoliy compressed plates are given in Section 6.9 for isc,tropic 

moteria:s, and in Section 6.10 for orthotropic materials. 

For stresses in the elastic range, the local buckling stress in the plate elements 

that comprise typical thin-wolled sections (Fig. 5-2) are given by Eq. 6.710 in 

Section 6.j for isotropic materials. The longitudinally com;:>ressed plate ele

ments ore considered to be "long plates" and buckling coefficlents ore presented 

in Table 6-3. Various idealized conditions of edge restroint are assumed along 

longitudinal edges. Most commonly, o conservative assumption that edges are 

simply supported is made. Sometimes the buckling coefficient is increased 

slightly to reflect some edge restraint provided by adjoining members, or a 



special analysis con be mode thot accounts for the restraint pro.,,ided by adjacent 

plates In the member cross sectioo. Buckling relations for orthotropic plates ore 

given in Section. 6.10. 

It is useful to classify local plate elements as "stiffened" or "unstiffened". A 

plate that con support additional c <ial load ofter initial elastic buckling (See 

Section 6.9) is termed "stiffened", while a plate wt,ose maximum strength can 

not exceed its initial elastic buckling strength is t~rrned ''vnstiffened". Unstiff

ened plates ore usually plates y•ith only one longitudinal edge supported, such as 

outstanding flanges, while stiffened plates hove both longitudinal edges sup

ported. 

A ·alue of le = O.S in Eq. 6.71a is suggested in (7.1) for unstiffened outstanding 

flanges of channels, I sections and similar sections, when such flanges are subject 

to uniform compression. For plates that are supporteci on each longitudinal edge 

(stiffened plates), k = 4.0 is used when edges are assumed to be simply 

supported and plates are subject to uniform in.plane compression stress across 

their width. Values of k for other conditions of restraint and for plates where in

plane stress varies linearly across the width ore given in Table 6-3 ond in Figs. 6-

32 and 6-33. Se, Sect ion 6.10 for orthotropic plates. 

When stiffened plates ore supported by an element of limited width such as the 

"lip" of a stiffened channel (Fig. 7-1 ), the supporting element must have 

sufficient in-Plane stiffness to support the stiffened plate. For ic;otropic 

materials, the following relations for minimum moment of inertia, •s• about the 

centroid of support elements, (derived frorn requirements for cold-formed metal 

members), may provide a suitable guide for design with plast!cs (7.1 K.7 .3): 

Edge stiffener (Fig. 7-D: 

> 10t4 Eq. 7.2 

Intermediate stiffener-centrally located (Fig. 7-D: 

(~2 _ O.l 9E > 20t4 
t IJ -XU 

Eq. 7.3 
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Intermediate stiffener - not centrally located (Fig, 7-1 ): 

I 4ot4Q7cbl)2 0.19E ~(b2)f·0.19EJ 
s = • . T - r--- 1--y<r -cr--

xu XU 
Eq. 7.4 

The applicability of these relations to plastics should be checked by tests with 

s~ific materials. 

[ 
a) U.tlffened 

Flangea 

~._stiffened plate__.,.~ 

with 1
5 

Eq. 7.2 C 
edge support 

b) 

s; Stiffened P~tes'l 

H 1· 2

; 

intermediate 
support with 
1
5

, Eq. 7.4 

d) 

b), c) and d) - · Stiffened Flanges 

intermediate 
support with 
1
5

, Eq. 7.3 

c) 

Flg. 7-1 ARRANGEMENT OF SUJPORT ELEMENTS FOR STIFf'B'ED PL.A TES 

In design practice for unstiffened cold-formed steel members (7. I), when axe 

obtained from elastic buckling theory (Eq. 6.710), exceeds 0.65axu (oxu = yield 

strength In the case of steel members), the critical buckling stress in the metal 

members, a , is reduced, as shown in Fig. 7-2. If a obtained using the elastic 
XC XC 

relations for local buckling, Eq. 6.710, is desigooted, a xce' then the reduced axe 

in the transition region is: 

O,cce > o.,s axu= °xc = I .3 o xu (I - 0.4~ aoxu) < oxu 
xce 
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This reduction is used because for stresse~ above about 0.65 cr , effects of 
XU 

residual stresses and tolerances in flatness reduce the actual buckling load that 

unstiffened plates con carry, as show!'\ by tests of t~ buckling strength of metal 

members. For plastics, it is uncertain whether the reduced buckling stress giv~n 

by Eq. 7.5 should be used instuad of the elastic buckling stress {Eq. 6.71a) since 

the residual stress state, flatness in manufacture and inelastic properties near 

ultimate are different than in metal members. However, since in Eq. 7 .5, a xc is 

reduced over the elastic buckling stress when cr xce > 0.65 axu' Eq. 7.5 is 

tentatively recommended for design with plastics. 

0 
XC 

0 xu 

h ttra~siti 
reg1ro I.Ot---------, 

0.8 
r\ Oxc = cxc' Eq. 7.5 

0.6 

0.4 

0.2 

0 

0.65 

0.2 1).4 0.6 

b 
1.10 f 

I I 
0.8 1.0 1.2 

(I -v2)axu -- kE: _____ 

C1xc= a , Eq. 6.71a xce 

I I I I 
1.4 1.6 1.8 2.0 

f; 
- xce 

2.2 

Fig. 7-2 VARIATION OF LOCAL BUCKLING STRESS axcJaxu WITH(b/t} 

For convenience in design, a form factor, Q, is used to relate the local bucking 

&tress, axe' to the material strength, oxu (7.2). This form factor is dete.-mined 

as follows: 
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(I). For unst1ff"'fled plate elements, or for stiffened elements where the post 

buckling strength of thf! plates is neglected: 

Q = Q 
s 

a 
XC 

0 xu 
< 1.0 Eq. 7.6 

where, for isotropic materials, axe is obtained from Eqs. 7.S '.ll'ld 6.710 

with k coefficients from Tobie 6-3 for the plate component in o column 

section thot has the lowest local buckling strength, based on idealized 

conditions of longitudinal edge restraint. If the rotatiOl'llll stiffness at 

longitudinal edge supports can be established, Eq. 6.71b with Cb correc

tion factor for ~e stiffness given in Fig. 6-33 con be used. Eqs. 6.~•2o, 

6.9Z., 6.97 or 6.98, together with Eq. 7.5, should be used for determining 

axe with orthotropic materials. 

(2). For a thin-walled membt-r mode up only of stiffened plate elements that 

ore allowed to buckle i,y;ally (if they can still support load after buckling), 

the form factor is: 

Q < 1.0 Eq. 7.1 

The effective area, Ae, of the above member for resisting compression as 

a short column is the sum of the products of the effective widths, be' 

times the thickness of each stiffened plate. The effective width, be, 

after initial elastic buckling may be obtained from Eq. 6.75 by letting 

axe = oxu· For a stiffened plate of isotropic material supported on two 

longitudinal edges, the effective width, b , may be obtained directly using 
e 

the following relation, derived from Eq. 6.75 with oxe = oxu! 

b = l.9t {I (I _ 0.145 ✓ E ) < b 
e -V~ l6m"" axu -

Eq. 7.8 

The more general Eq. 6. 7S with o xe = o xu should be used to calculate be 

for orthotropic materials and for other types of local plate elements. 

The effective area, then, Is: 

A = Eb t e e Eq. 7.9 
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Eq. 6.75 (and thus, Eq. 7.8) was developed based on tests of thin metal 

plates that ore ductile. Further·nore, as previously discussed, local 

buckling is influen..:ed by residual stresses that exist after fabricating 

operations such as cold-forrning, and hot-rolling for steel shapes, or 

extruding, molding, and casting for plastics. Thus, tests are required to 

verify that specific plastics rnaterials con sustain post buckling loads 

without damage or fracture. This verification is needed for bath 

reinforced plastics which are not ductile, and for thermoplastics where 

stresses beyond the viscoelastic limit are undesirable. 

The effective width of plates that do not buckle locally at a stress less 

than oxu' (Eq. 7.5) is taken as their full width, b. 

(3). For a thin-walled compression --nember comprised of a combination of 

stiffened plates that buckle locally at a stress below the buckling strength 

of the unstiffened plaies in the section, stiffened plates that do not 

buckle locally, and unstiffened plates that buckle at a stress, o.itc < C1ii;u' 

the maximum compressive stress in a short column is limited to the 

le-west local buckling stress in the unstiffen~d plates, Oxc· The effective 

area of the column section is denoted A ' and is determined by summing 
e 

the thickness times the effective width of each partially buckled stiffened 

plate, based on o;.ce = axe (for the lowest buckling strength of the 

unstirfened eler,,~nts), instead of oxu ir, Eq. 6. i'Ss plus the full area of all 

unstiffened r.:lements. Thus, if b' is the above described eif~tive width 
e 

of stiffened plates that buckle initially at a stress below oxc and b is the 

width of the other elements which have not buckled at the lowest bucking 

stress of the unsti(fened elements: 

A I = Eb 't + Ebt e e Eq. 7.10 

The partial form factor that accounts for local buckling of some of the 

stiffened plates at a stress below axe then becomes: 

A' e 
Q~ = A < 1.0 Eq. 7.11 
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Also, the partial form factor that occounts for a maximum stress level 

ilxe < axu is Q5, given l)y Eq. 7-6 with axe = lowest axe for unstiffened 
plates. Thus, the form factor for the column sections having both 

stiffened plates th<Jt buckle locally, s!;ffened plates that do not buckle 

locally, and unstiffened plates is: 

(;} = = 
A' e 0 xc 
A oxu < 1.0 Eq 7.12 

where o xc is thE: lowest critical buckling stress of the unstiffened 

elements and A'e is the effective area to develop o xc' rather th<Jn o xu· 

Specific tests should be mode to confirm both the ability of a thin stiffened p!ote 

to support load ofter initial elastic buckling and the method for determining the 

effective width, bf". If test data is not available, the form factor, G, shou,d be 

determined using Eq. 7.6 with ~he :::>west o for all the plates in the eras~ 
XC 

section, both stiffened and unstiffened. This will usually result in a conservative 

estimate of the form factor. 

For very short compre$Sion members, the form factor is oppliPd to thf' maximum 

stress in Eq. 7. I: 

req'd A = 
~u 

Qcr 
XU 

Eq. 7.13 

For longer compression members, Eq. 7.13 gives the minimum cross section oreo 

required for adequate local buckling resistance. II' this case, however, larger 

values of re~•d A may be nec"ssary, as explained later. 

Structural steel specifications given in (5.5) establish design rules for b/t ratios 

that will result in Q = 1.0. When Q = 1.0, the full design strength of the rooterial 

con be developed, whenever other buckling or deflection criteria do not :-estrict 

the maximum design stress. This con result in desirable simplifications in design 

specific,'ltions, but buckling provisions rnoy in some coses bt: overly conservative. 

Some ex·1mples of b/t and d/t limits to develop a maximum material strength, 

axu' are given in T~ble 7-1. These are derived by lettif'g axe' from Eq. 6.71a, = 
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Type of 
Sne• 

Uniform 
compnuaion 

Uniform 

Table 7-1 

Maxinun W~to-Thidcness Ratios to Prevent 
local Buckling Below the Material Oe$ign Strength 

Type of Plate Elen-,t 
cind Longitudinal Edge 
Support, Isotropic Materials 

Web 

Maximum Width-lo- Thickness 
Rotio to Preven• Local Buckling 
at 0 xu ex 'TKu 

Eq. 7.14o 

d w ,.. Eq. 7.14b ; 
~--

t -b v2) compre=sion and pure :I}. 01•-E~~}w w u 
ln.plm,e bending 

ln1)1one shear Web 
dw / E Eq, 7.14c 
'w c;, 1 'T ( I - V 2) 

XU 

Cb 

U-.ifcrm Flange with one edge free, the 
I. eomi--ion 

other simply -..,ported. Used for o., 
x anc1 a shapea 

2. U-.ifcrm Flange with one edge free tlw 1.0 
C~ion other clomped 

3. 
Unifcrm Cc,um fblge, or web with boll, eclgea $N'1W 1.8 eon.,..ian M.IIPCll'ted. UMd for Cl ond C shapes 

bf 
Beam Flange, some edge conditions o., S.2 + 0. " ,r- ! 

w 

It. Unifcrm Column flange, or WC!b, with both edges 2.4 eon.,..ian clamped 

Punt Web, with both edges sin,.,ly -..,ported. s. i0"1'1ane 4.4 
bnllng Uled for Web of C ~• 

Punt 

'"~ Web, with both edges clomped• 5.7 
bnllft\l 

Pura Web, without stm.,_1 (i.e. long web), 
7. i~lane with both edges simply ,upported. Used for 2.1 .._. W9b of C ahrlpe• 

Punt Web, without stlff-s, with both edges a. ~lane 2.7 .._. clan1lecl• 

...,.;. ,._.age ofS. and &. and of7. and 8., used for weba of J: and□ , when #longe 
is thicker than W9b. If fk:l,g(. is flexible, use S. and 7. 
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C1 xu· The d/t ratios that are given for in-plane bending and shear of beam webs 

are explained in Section 7.4. The limiting b/t and d/t ratios given in the Tobie 

are for isotropic plate t'!lements with the idealized conditions of edge restraint 

noted. Similar ratios for orthotropic plate elements may be obtained by letting 

axe = oxu in the buckling equations in Section 6.1 O. When these ratios are used 

as maximum limits in rlesign specifications, local buckling will not govern the 

strength of a section. 

Overall flexural buckling. A slender column may experience large lateral 

deflections, and become unstable under a central load, termed the criti<.:al load, 

that is less than the capacity governP.d by material strength (Eq. 7.13). When the 

critical l<Y.Jd is applied to the columns, any slight deviation in straightness, or any 

small lateral force, will produce on unlimited amplified bending moment, Nxc fl 

(Fig, 7-3), a condition of flexural instability. This type of behavior is described 

conceptually in Section 5.7 for a very simplified und idealized type of compres

sion member in which flexibility is modeled by a concentrated single spring at 

mid-height. In the Euler bucking theory, the same conceptual approach is 

applied to more practical centrally loaded columns where the stiffness, El, is 

constant over the column length (Fig. 7-3). In this case, the critical buckling 

load is: 

N tr2EI 
= 

(KL)2 XC 
E.q. 7.15 

N 
XC 

' t t -----• I:,. 

\ 

I L 

I 
)] L 

, 
j ~ 

Nxc 
j 
N)(C 

Pin End: K = 1.0 Re$trai~ End: K = 4,0 for full fixity 

Fig. ·1-3 FLEXl.RAL BUCKLING OF SL.a,VER COLUMN 
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K is en effective length coefficient that is determir,ed by the conditions of end 

restraint. For the basic case of pin ends, K = 1.0. For other end restraints, K 

may vory from O.S to infinity. The effective length coefficient, K, moy be 

determined from the buckling coefficient, k, given in Table 6-4, as follows: 

K =
k 

Eq. 7.16 

It is 11seful for design purposes to combi;ie Eqs. 5.20, 5.6 and 7.1 ~, obtaining: 

0 xc = 
iE 

ckl>1. 
r 

Eq. 7.17 

KL is the effective unbraced length in the direction of buckling, while r is the 

radius of gyration (Eqs. 5.6 or 5.7) for bending in that direction. The lowest 

value of a will be obtained for buckling in the direction with the highest ratio, 
XC 

KL/r. 

E is the elastic rnodulus for bending in the direction of lowest a xc for materials 

with a linear stress-strain behavior. If E is not constant, the tangent modulus, 

ET, for the stress level, axe' should be used in Eqs. 7.15 or 7.17 (7.2). For 

plastics, the elastic modulus used in buckling calculations should reflect the 

maximum duration of load and the range of temperature and exposure conditions 

e.<pected for a particular component design. Us\JOlly, the lowest viscoelastic 

modulus for the range of expected design conditions can be •Jsed so long as a xc 

remains below the viscoelastic limit (Chapters 2 and 3). 

A non-dimensioool plot for Eq. 7.17, divided by Oxu is given in Fig. 7-4 (Curve 2). 

However, curves 3, 4 and 5 are more representative of the actual test behavior 

of steel and aluminurn columns, where buckling copa-::lit is lowered by modulus 

reduction at higher stresses, residual stresses and accidental eccentricities 

caused by deviations in column straightness (7.2). Similar curves should also 

apply to plastic colurms, although their shapes might vary somewhat, depending 

upon specific stress-strain relations, residual stresses fro:n fabrication, and 

eccentricities of the part. 

7-16 



a 
XC 

a 
XU 

1.0 

Q --
.75 

.5 

Material strength, a 
XU 

Design curve x S.F. to be established 
for specific materials and applications, 
Q = I , Eq. 7. I 9 

Eule/s Eq. 7 .17 

Design curve x S.F. for thin-wall 
section, Q < 1.0, Eq. 7.19 

Design curve x S.F. for 
more conservative 
transition where matt,riols 
E m<JY decrease at higher 
stresses, Q = I , Eq. 7 .20 

0 _____ ....,_ ___ _. ___ _,_.._ ___ __._ 

.5 

KL 

1.0 

ro-
1 I _XU -, 
\ 11' I 

1.5 2.0 

Fig. 7-lt MAXIMUM STRESS FOR CENTRALLY LOADED COLUMNS GOVERt£0 
BY FLEXLRAL BUCKLl"IG 

In the absence of test data for columns of specific plastic materials, shape, 

fabrication proces,;, and arrangement'. the approach used for steel colurnns moy 

be used as a trial approximatiOtl for plastics moterials that essentially exhibit a 

linear strt"ss-strain relation up to oxu· In this approach, the maximum stress is 

reduced below axe given by Eq. 7.17 whenever: 
,----·----

KL / 2 .,l E 
-r- < Cc = -V axu - Eq. 7.18 

Eq. 7.17 gives axe "' 0.5 \Jxu when KL/r "' Cc. For lower values of KL/r, axe is 

determined fro;n the following semi-empirical equation, giving o parabolic 

transition of stress from the Euler stress at °xc "' 0.Saxu to axu at KL/r "'0: 
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For KL 
< Cc (given by Eq. 7.18): r 

(O' )2 
(~2 a (1 XU Eq. 7.19 = xu-47E XC r 

This equation, divided by oxu is plotted in non-dimensional form as Curve 3 in 

Fig. 7-4. 

For column sections where the form factor, Q < 1.0, Qo should be sub~tituted 
XU 

for a in Eqs. 7.18 and 7.19 (7.1). Curve 4 in Fig. 7-4 shows this case. 
XU 

An alternate approach that is more conservative, and perhaps appropriate for 

materials with an elastic modulus that decreases significantly at stresses 

approaching O'xu' is to use o straight line increase in axe from 0.5oxu to o xu· 

This results in the following equation: 

For KL < C ( ' 18) r c given by Eq. .. : 

0 xc = 0 xu 

(a )3/2 
XU -----

21T 2E 
Eq. 7.20 

This equation, divided by crxu, is plotted in non-dimensional form os Curve 5 in 

Fig. 7-4. Again, for column sections with Q < 1.0, Qo should be substituted 
XU 

for oxu in Eqs. 7.18 and 7.20. 

Torsional buckling may occur at a lower critical load than the flexural buckling 

load given by Eq.7.15 for certain types of doubly symmetric thin wall cross 

sections having low torsional stiffness. Torsional buckling does no! prove critical 

with the tubular and I shaped sections that ore commonly used os centrally 

compressed columns. however, it may govern the critical load for a cruciform 

shoped section and it contributes to the reduced torsional-flexural buckling 

resistance of open thin-walled sections that are not doubly symmetric, as 

explained below. 

The torsional buckling resistance is (7 .4): 

N = 
XC 

;½" (GJ + 

C• 

2 EC 
1f w) 

(KL)2 
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The tursional constant, J, was defined pre•riously in Section 5.4 and the warping 

constant, Cw, will be defined later in Section 7.4. The polar radius of gyration, 

r 
0

, is given in Table S-4. 

For a cruciform shape, the terrn in Eq. 7.21 containing Cw, (i.e. the warping 

resistance), is negligible and the following approximation for the critical 

torsional buckling stress is valid (7.4): 

= 
E t 2 m+ vT ( o > Eq. 7.22 

This stress is approximately the same as the critical locol buckling stress for a 

longitudinally compressed plate with one longitudinal edge free and the other 

simply supported, (7.4). Furthermore, for cruciform columns that are long 

relative to their width, flexural buckling (Eqs. 7.17, 7.19 or 7.20) moy result in 

a lower buckling strength. Thus, since the torsiOl"l(JI buckling stress is the same 

as the local buckling stress, the so~ procedure for deterrnining the maximum 

design stress may be used for these torsionally flexible sec~ions, as was given 

previously to dete:-rnine whether local buckling or flel(ural buckling governs 

maximum strength. 

TcxsKlnOl-flexural buckling may be critical for thin-wall open sections with 

unsymmetrical and singly symmetrical configurations, such as angles and so,ne 

chanrw,ls with thin wide flanges. In this type of bockling, coupling of the flexural 

and torsional modes of buckling reduces the critical load below the lood 

calculated for either mode independently. The elastic torsional-flexural buckling 

strength of centrally loaded CO'.l'lf):-ession struts with a singly symmetric section, 

such as chomel, hat or I with ooequol flanges, is (7.1): 

N 
XC 

I =n [~xcFI • N,o:J-fN..;., ;;:,,.,/- 4 6N,ccFl~8 ~q. 7.23 

Nxc:F I is the elastic flexural buckling strength about the axis of symmetry (axis 

1-1, Fig. 5-4), obtained using Eq. 7.1 S, and Nxc T is the elastic torsionol buckling 

strength, obtained using Eq. 7 .21. a is a cross sectlonol property as follows: 

s 2 = I - (e/r ) s Eq. 7.24 
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where e is the distance from the shear center to the centroid olong the 1-1 axis 

(Table S-5, x -x axis) and r is the polar moment c•f iMrtia of the cross seciion 
0 0 S 

about the shear center: 
-

/ 2 2 -, 
rs = l r I + r2 + e- Eq. 7.25 

'\ ''centrally loaded" <without bending) member of t'1e above type must have the 

thrust load applied through the shear center. If thrust is applied elsewhere on 

the section, the member will be subject to combined bending ond axial load 

(Section 7.5). 

The critical elastic buckling str~ss for torsional-flexural buckling of singly 

symmetric sections is: 

~~ 
CJx =--,- ;(N frornEq.7.23) ce I-\ xc Eq. 7.26 

When a .<ce > O.S a xu the elastic value of a xce obto'.ned using Eqs. 7.26 and 7.23 

should be reduced to provide a transition between elastic flexural-torsional 

buckling and short column strength. A transition similar to curve 3 in Fig. 7-4 is 

obtained with the following equations (7.1): 

a xce > 0.50 Cl xu= a xc 

2 
(J = a _ XU 

XU ,.---
"TIJxce 

Eq. 7.27 

Eq. 7.28 

"iorsionol-flexural buckling of singly symmetric sections involves deformation by 

twisting abou, the shear cent~r and bending about the axis of symmetry (usuolly 

the strO'lQ axis). Thus, only members, 'J' portions of members, toot ore free to 

deform this way need to be checked for torsional-flexural buckling. 

Flexural ~kling involves bending about the weak axis of the section (usually 

axis 2-2), with a member length thot is free to deform about that axis. For a 

centrally loaded column with a singly symmetric section, the permissible column 

load is the lessor of the buckling load for flexural buckling about the weak axis 

(usuaily 2-2), as given by Eqs. 7.15 - 7.20, and the buckling load for torsional

flexural buckling by twisting about 1he shear center and bending about the axis 

of symmetry, as given by EQ. 7.23. 
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With thin-wall sections when the forin factor Q < 1.0, the term oxu in Eq. 7.27 

should be multiplied by the form factor, Q, as described previously for flexural 

buckling. 

For single angles, buckling resistance can usually be oppr?ximoted by the lower 

of the buckling stresses given by Eq. 7.22 for torsional buckling or Eqs. 7.17, 

7.19 or 7.20 for flexural buckling about the wea~ axis. A typical plot of the 

critical stress vs. length is given in Fig. 7-5. Flexural buckling is determined 

with reference to each of the principal oxes 1-1 and 2-2. The weok axis is 

usually 2-2. Again, a transition region shoulC: be included as shown in the Figure. 

a 
·XC 

E ,a C -- •••• 

• XC 2(1 :- V) ._.,_,_,............._ 
Transition 
Region 

....... 

Fig. 7-S BUCKLING STRESS IN SINGLE ANGLE 

See (7.3) or (7.4) for additional torsional-flexural buckling relations for open thin 

wall sections that do not meet the limitations discussed above. The subject is 

COl'lSidered again in Sections 7.4 and 7.5 with reference to the stability of 
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laterally i.nsupported beams and of columns under combined bending end direct 

stress, respectively. 

Suw,a,a f of Deaign Procedure for Centi ally L..ooded Plastic Colurms, 

The above described aspects of column behavior ore reflected in the following 

procedure for the design of centrally loaded plastic compression members. 

(I) Select a plastic material, a trial column cross section cnd a manufactur
ing process. Establish design criteria: I~, duration of looding, service 
temperature and other environmental conditions, and. restr.aiot. coocUtian 
at ends of colurm. 

(2) Determine material constants for use in design. These ore: 

E Use ExT at O.S0 xu, as a trial value, or establish plot of Ex vs. 0 x, 
For time~t considerations, use EvxT ot 0.5 times the 
viscoelastic limit stress (or at another appropriate stress) for the 
longest time duration required for design, or esta~lish plot of EvxT 
vs. °><• If material is orthotropic, stiffnP.ss properties in direction 
2-2 will also be required for determining locul buckling strength. 

a xu Use tM appropriate strength limit for the specific mat"rial::, lood 
duratic.,n, and environmental conditons. Frequently, for unrein
forced plastics, this will be the viscoelastic limit stress for the 
design tl·ne-temperature-exposure cunditions. For reinforced plas
tics, it mo/ be either the first da1""1Q9e strength, or the rupture 
strength, again taking into account the time-temperature-exposure 
design conditions. 

See Chapter 3 for further discussion of structural properties for use in 
design. 

(3) Select load cn:I strength reduction factors for use in comparing required 
strength with provided strength: 

• Multiply aesign load by a load factor (greater than 1.0) that allows 
for overloads, inaccuracies in analysis, etc., to obtain required ulti
mate capacity 

• Multiply materials properties, E and Oxu, br capacity reduction 
factors (less than 1.0) that allow for variations in structural 
properties to obtain the reduced material properties for use in 
desigl. Different copocity reduction factors may be used for E and 
C,XU• 
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(4) Determine the form factor, Q, for thin wall sections, based on Eq. 7.12, 
and the appropriate local buckling re:ations (equations in Chapter 6). Use 
E for the appropriate local buckling stress level. 

(S) For Q = 1.0 with doubly symmetric sections, calculate: 

Cc =#.w2E 7 8 Eq •• I 
0 xu 

For Q < 1.0, use: 
cc 

C' = Eq. 7.18a 
C Q 

(6) If KL/r > Cc (C~ for Q < 1.0), determine compressive strength, axe, fro•n 
Eq. 7.17:-

lf KL/r < Cc (C~ for Q < 1.0), determine compressive strength, ax~, from 
Eqs. 7.19 or 7.20. If Q < 1.0, replace axu in the above equations with 
Qaxu· 

In general, Eq. 7.20 will give lower estimated strengths than Eq. 7.19 and 
is more appropriate for materials with a non-linear stress-strain relation 
(i.e. when Er reduces for stress above 0.5, xu>- 1--towever, an xcurate 
determination of critical strength in the transi~ion zone, where KL/r < 
Cc, requh·es experimental verification of centrally looded plastic column 
behavior wit'l speciiic plastic materials and column configurations. 

(7) Determine: 

max Nxc = a xcA ~ req'd Nxu Eq. 7.29 

If Q < 1.0, max Nxc = axe Ae or axe A'e Eq. 7.290 

Ae' or A~, are determined from Eqs. 7.9, or 7.10, respectively 

(8) With singly symmetric sections, use Eqs. 7.26 or 7.27 to determine 
maximum Nxc for lengths of sections tho~ are tree to twist and to bend 
about the symmetry axis 1-1. Also, check to determine if Nxc is more 
critical by Eq. 7.15 for buckling about the weak axis 2-2. For single angle 
members u~ Eqs. 7.22 and 7.15. Fo, members with general unsymmetri
cal sect ion1, see (7. I). 

(9) Limit the maximum slenderness ratio, KL/r: 

max. KL = 200 
r Eq. 7.30 

Use the highest value of KL/r for the section. This arbitrary limit hos 
been traditionally used in structural steel practice to preclude the design 
of members that meet theoretical requirements for buckling resistance, 
but that are excessively slender from a practical standpoint. 

(IO) Intermediate bracing may be used to increase buckling resistancu by 
reducing the slenderness ratio, KL/r, about either or both principal oxes. 
To be effective, such bracing must provide strength md stiffness that is 
adequate to prevent excessive distort ion of rhe colurm at the brace point, 
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thereby forcing the column to biJCkle in the shape of a higher mode, with 
the maximum buckle length equal to the unbraced length. (7.5). 

~ace stiffness. The rec.uired minimum stiffness for an intermediate 
brace In a direction perpendicular to the main member depends on the 
out-of-straightness of the column and the number of intermediate brace 
points. N.inimum brace stiffness is recommended in (7.4) 'lS: 

4 Nxc for a column with one E 7 31 
min. req'd Ks = -----C- intermediate brace q. • a 

for a column with two, 
or more intermediate braces Eq. 7.31b 

Where Ks is the spring stiffness of the brace (i.e. the brace force that 
produces a unit axial displacement in the 1:::race), L is the length of tl,e 
colurm between braced ~ints, and Nxc is the buckling load, a xcA, for the 
main member with length, L. For a strut b1ace witn length Lb, area Ab 
and elastic modulus Eb: 

Eq. 7.32 

~ strength. The req•Jirements for minimum strength of intermediate 
bracing depend on the out-of-straightness of the main member and the 
stiffness of the brace. Typical rules for minimum bracing strength ore 
discussed in C7 .4). Required streng;h of braces range between one and 
three percent of the buckling strength of the brtlCed main member. The 
higher brace strengths ore needed when bracing stiffness is near the 
minimum requirements, while the lower values ore appropriate for stiff 
bracing Sfstems and main members with low deviations from straightness 
(L/.500 or less, where L is the length between brace points). A minimum 
brace strength of two per cent of the compressive r.opocity of the main 
member is often used as \J practical design requirement. 

The above design procedure is used in Example 7-2 to determine the design 

copacity of a centrally loaded tubular reinforced plastic column. 

1A BEAMS 

As discussed in Chapter S, beams support transverse loocls by a combination of 

bendinq, shear and sometimes torsion. Beam sections in the form of rectangles, 

thin wall tubes, I-sections, channels, hot sections, T-sections, Z-sections, and 

rna,y shapes of open corrugations or closed ribs in flat panels, ore commonly 

found in plastic1 structural components. Consi~rable simplification in m.1l1sis 

and design Is possible wh.en the beam has at least one longitudinal plane of 

symmetry and when the loocl axis is aligned with m axis of symmetry of the 

cross section. Except for a few special coses to be discussed later, the design 

procedure that follows Is limited to the above types of section.~ and load oxes. 
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I Example 7-2: Oc:termine the maximum long term axial compression thrust load that con 
I be safely applied to the fiberglass reinforced plastic column shown in the sketch. Service 
I temperature is 00 to IOOOF. Assume thct the column is pin ended, and has the tubular 
I section shown in the sketch. This section is mode by a pultrusion process that produces 

the following ultimate strength and stiffMss properties based on standard short term 
1
1 

tests: longit~inal compression: 25,000 psi, elastic ,nodulh E11 = 2,000,000 psi; 
E22 = 1,000,000 psi; G = 450,000 psi, Poisson's Ratios: v12 = 0.36; v21 = 0.18* 

I 

I m• I -,--,-.--- 2 
I I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I I. 

I 
I 
I 
I 
I 
I 2. 
I 
I 
I 
I 
I 

8' 

161-0" 

8'-0' 

--f lotera I brace 
perpendicular to 
axis 2-2 

Section properties from Tobie 5-3, Cose 9: 

.- 2 A = 2 x 0.40 ( 7 .6 + I 1.6) = I 5.36 in. 

1-

11 = 0.40xi 1•
62 

(ll.6+3x7.6) = 308.6in.4 

2 
12 = 0.40 / 7 •6 (7 .6 + 3 x I 1.6) = 163.3 in. 4 

- I 1211 

Column Section 

Reduced material properties to allow for long term load effects and manufacturing 
Yflriotions: Capacity reduction factor 0.5 for ultimate compressive strength, and 0.7 
for elastic moduli; Thus: 

axu = 0.5 x 25,000 = 12,500 psi; E 11 = 0. 7 x 2,000,000 = 1,400,000 psi 

E22 = o. 7 x 1,000,000 = 700,000 psi 
I 
I 
I 
I 

3. Load factors for ultimate strength: Multiply the desi~ load by a load factor of 2.S 
to account for variation in applied load, accidental bending, and differences between 
analytical models and real behavior. 

I 4. Local buckling stress: Eq. 6.92 for long plate with "Pinned" longitudinal edges gives; 

I 
I 
I 
I 
I 

2•2 ~ 
axe=~ ( vD, 0 22 + 0

0
); bis the maxim..m insidewldlhof plateelei1•1ts= 11.2 In. 

I 400 000 x 0.43 I 
Eq. 6.6 a, b: 011 = 12f1 - ti.J, x O.ldf = 7,984; 022 = 1011 = 3"2 

I I * See note on Example 7-1, page 7-5. 
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: ~le 7-2 (continued) 

I Eq. 6.6c: D 12 = v21 o 1 = 0.18 x 7984 = 

I E 6 6d D ' 31 ~000(0.4)3 I 680 

1437 

I q. • : 12 = - Tr--= ' 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I s. 
I 
I 
I 
I 
I 6. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Eq. 6.6e: D = 1437 + 2 x 1680 = 4797 
0 

2 n 2 ( 
(J = --------;-:::r ],984 X 3992 + 4797) =. 4108 psi 

XC 0.40 x I 1.2 

If we neglect post buckling strength of the plates in the column: 

Eq. 7 .6: Q = 
0 

xc = NR& = 0.33 < 0.65 no need to ccnsider trC11Sition for local buckling. 
rJ XU 

Slenderness factor, C , for column buckling: 
C 

= 81.8 

Column buckling stress, o : 
XC 

radius of gyration: 

3.26 

column hos ''pin" ends; thus, K = 1.0 

KL I 1.0 x 16 x 12 42 9 K L2 · 1.0 x 8 x 12 29 4 r I 4.48 = • governs; "'""r2" = -u6- = • 
KL 1/r 1 < Cc; thus, use either Eq. 7.19 or 7.20 to determine o • In the obsense of 
buckling test results, the more conservative Eq. 7.20 will be u~: 

Eq. 7.20: o 
XC 

)3/2 
- (QO lf.U ~L 
-Goxu- 2w-{X ~ 
: 0.33 X 12 500 - (0.31 X 12,500)3/2 X 42.~ : 3044 . 

I 7. Column design load 
' 2 ,{h:i-;400;000 psi 

I 
I 
I 
I 

Eq. 7.29: N = 304i. x 15.36 = 46,756 lbs 
XC N 

Max. design axial load, P = CF. = 46~~!6 = 
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I Example 1-2 (continued) 

: Alternate design with consideration of post buckling strength of stiffened plate elemenm 

I 4a. Locol buck~ng st~ress: ~-
e axe 0 xc I Eq. 6.75: 0 = ~ (I - 0.22 - 0 ) 

I XU XU 

. 0 xc 4180 1,· · I long sides: er = TT.500 = 0.33; -.,o.JJ = 0.574 
I XU , 

be 
I b = 0.574 (I - 0.22 x 0.574) = 0.50; be = 0.50 x (12 - 2 x 0.4) = 5.60 in. 

I short sides: a XC = 2 112 
2 (-{ i~84_x_j~992 + 4 797) = 9940 = a :.:ce 

I 0.40 X 7.2 ... 
O'xce 99.:+o I -a- = f2300 = o. 79 > 0.65 a XU 

I XU , 

I Reduced axe for transition, Eq. 7.5: 

I 0 40 f-- 40 a = 1.3 a (I-{ 0 • __ a ) = 1.3 o (I .,:-,.=. _ _. ) = O. 715 axu = 8937 psi I xc xu xce xu xu , • 17 

I vxc be . I O = 0.715 = O.SS; i;-= 0.85 (I - 0.22 x 0.85) = 0.69; be = 0.69 (8.0- 2 x Q.4) = 4.97 in. 

I XU 

: Effective area and Q: Ac= 5.60 x 0.4 x 2 + 4.97 x 0.4 x 2 + 0.4 x 0.4 x 4 = 9.10 ir.2 

I Eq. 7.7: Q = ~ = 1~·.!;i = 0.59 
I 
I 5a. Slenderness factor: 

I 
I 
I 
I 
I 
I 

211 X 1.400 000 I 2 
CC :- .59 X 12,500 = 61 •2 > 

6a. Column buckling stress: 

KL 
r 

(0.59 X 12,500)~/2 X 42.9 __ axe = 0.59 x 12,500- _____ ..... 4791 psi 

I 7a. Colurm design load: 
2wf ix 1,400,000 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Nxc = 4 791 x I 5.36 = 73,590 lbs 

. 73 590 
Max. design load, P = ~-S = 29,436 lbs 

Conclusion: the buckling load with the alternate solution is 57% larger than the 
buckling load that neglects post buckling strength. Note, however, that the kl'!y 
relation for post buckling strength, Eq. 6. 75, hos not be checked e~imentally with 
the type of orthotropic fiberglass reinforced plastic material being used in this 
example design. 

Note: I psi = 6.8'5 KPa, I In. = 25.4 mm, I in. 2 = 645.2 mm2, I in. 4 = 416,233 mm 4, I ft 

= C.305 m, 1° C = (°F - 32)/ 1.8, I lbf = 4.4S N 
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The desi;,n of beams mode from plastics must consider the following: 

• Strength in both bending and shear must be adequate to safe,y support the 
desig, loads. 

• When thin wall sections ore used, width-thickness ratios of compression 
elements must be proportioned to ovoid premature local buckling of flanges 
and webs, or reduced stresses governed by local buckling must be used in 
design. 

• Thin webs rnust be designed to avoid premature local buckling, and must 
not be overstressed or locally buckled by concentrated loads and reactions. 

• When compression flanges ore laterally unbraced, either lateral-torsional 
stiffness must be adequate to preclude premature failure by lateral
torsional buckling, or distance between points of lateral bracing must be 
limited to avoid this type of buckling. 

• Stiffness must be adequate for -:leflection control. 

• When flexural members have verv thin compres .. ion elements that are 
allowed to buckle elastically prior to reaching maximum design strength, 
the change in section pro:,erties and the loss in flexurai stiffness must be 
taken into account in practical design. 

• The loss in effective cross section properties that occurs due to shear lag 
when thi,-, bean, flanges are very wide relative to span length mvst be 
considered. 

• The flange curling that results from beam curvature in bet:ims with thin 
flanges and flanges with a high width to thickness ratio sometimes should 
be considered. 

Practical design approaches that recognize the. above behavior ore presented 

below. Limited consideration is given to the design of beams having unsym

metrical sections ('nd to the design of beams subject to torsion. References ore 

given for rnore complete treatment of these r,ore complex subjects. 

Flexural Strength 

Beams are designed for flexural strength based on the elastic beam theory 

(Section 5.4). The validity of this engineering theory hos been investigated for 

application to conventional I-shaped beam sections fabricated with pultruded 

FRP structural composites (7.25). Test results presented in this reference 

confirm that the theory provides stresses and deflections that agree closely with 

calculated values. 
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Section modulus must be ode-quote to resist the bending moment, Mxu which is 

us1Jally applied about the strong axis, 1-1, of the beam sedion. 

req'd min. S 1 = Eq. 7.33 

Oxu is the reduced ultimate strength, including the capacity reduction factors 

described previously for tension membf"rs and columns. For solid materials, o 
XU 

should be the bending strength. This may differ from both the tensile and 

compressive strengths of the material because of the stress gradient in test 

samples. See Chapters 2 and 3, For thin wall sections, o should be the tensile 
XU 

strength of the tension flange and the compressive strength of the compression 

flange. For some materials and design applications, the ftodur~ toughness 

consideration~ described in Section 5.8 shouid be token into account when 

selecting the limiting value of oxu for tension elements in beams. 

S1 is the required minimum section modulus with respect t,:, either the extremity 

of the tension flange or the compression flange, whichever gives the more 

critical requirement. See Table 5-2 in Chapter 5 for methods of calculating S, 

and see Tobie 5-3 for expressions for determining S for some common regular 

shapes. Also values of S for standard shapes like wide flange beams and tubes 

are often given in handbooks prepared by monufacturers or trade associations 

(1.9) (5.5). 

Mxul is the maximum design moment in a plane perpendicular to section axis I

I, multir,lied by the lood factor, as explained previously. 

When a beam is subjected to bending about both principal axes, the resulting 

combined stresses on a trial section are determined using Eq, 5,23. The 

maximum combined stress must be less than oxu· 

lhe reduced sectionol properties of the net section should be used to calculate 

stresses when holes or other discontinuities exist near point<; of maximum 

moment. Furthermore, the calculated stress adjacent to these discontinuities, 

0 x, should then be multiplied by a suitable stress concentration factor, Kt, as 

explained in Section 5.5, and the increased stress, OxKt, must be less than oxu· 
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For thin wall sections, the capacity of the compression flange may be limited by 

local buckling, rather than by the compressive strength of the flange materials. 

Two conditions ore considered for practical design: 

(I) 

(2) 

The maxirnum compressive stress is limited tc the local buckling stress of 
the flange. In this case: 

req'd 51 Mxul 

Oxc 
Eq. 7.34 

As .discussed in the ,..previous Section, the critical local buckling stress, 
0xc, may be determined using the local plate buckling equations \)iven in 
Sections 6.9 end 6.1 O. Buckling coefficients for isotropic materials are 
given In Table 6-3 for various stress distributions and longitudinal edge 
conditions. Cose I is used for flanges subject to uniform compression. 
Buckli~ equations and coefficients for orthotropic material:; are given in 
Section 6.10. Equations and coefficients given in Sections 6.9 and 6.10 
include the important cases of uniformly compressed plate! with one edge 
free, and the other simply supported, corresponding to outstanding flanges 
of I or C shapes, and both edges simply supported, corresponding to the 
flanges of D or Jlfshapes. 

For rectangular tube sections, and hat sections or lipped sections where 
the compression flange having a width bf is supported on each side by 
webs of depth dw (Fig. 5-2), the web provides edge restraint that 
incre-:ises the buckling coefficient for the compression flanges of such 
members. For these sections~ the critical buckling stress is: -a k w• E 

XC = 
12(1 - v2) ~f)2 

where (7 .6): 

bf 
k = 5.2 + 0.16a; ~ 6.97 

Eq. 7.35 

Eq. 7.36 

When C1xc > 0.6S Oxu, the some reduction in Oxc below the elastic value 
given by Eq. 7.3S that was explained previously for colurms (Eq. 7.S aid 
c-19. 7-2) ls appropriate., 

For stiffened flanges only, the flange may be allowed to buckle elostlcai
ly. Since a stiffened flange exhibits post-buckling strength, the actual 
area of the flange is reduced to Cl'l effective area, as explained previously 
for local buckling of stiffened e:ements in colurms. The maximum 
compressive strength of the flange is taken as the effective area times 
the material compressive strength. The "effective" cross section proper
ties are determined based on the "effective" width of the compression 
flange (Eqs. 6.7S or 7.8) and: 

Mxul 
= Eq. 7.37 
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The relation between S le and SI must be determined by a "cut and try" 
calculation of be of the compression flange 011d Sle, using trial section 
proportions. The effective section is usually symmetrical about only the 
2-2 axis, and the effective moment of inertia, I le• and effective section 
modulus, S1e1 for the compressi<>'1 flange may be determined as explained 
in Section 5.J. 

The first condition, Eq. 7.34, is used for all beams with unstiffened compression 

flanges and for designs with stiffened flange,; when local bucki:ng is not to be 

permitted. It is the more conservative of the two conditions and the simpler 

criterion to use in design, since it requires only a substitution of cr xc for Oxu in 
the equations given previously for required section modulus. 

The second condition, Eq. 7.37, may be needed for design economy where the b/t 

ratio of the compression flange is large, resulting in a low ratio of o /o • In 
XC XU 

this case, it may be desirable to use the post buckling strength cf a stiffened 

element. As noted previously for columns, the equations for effective width of 

local plate elements in the post buckling range given i11 Section 6.9 were 

developed for metal members, and they should be verified, or modified as 

required, for use with plastics. Also, design for the ,econd condition is 

complicated because the behavior of the beam in the post buckling range is non

linear as the effective compression area changes with stress levei. This results 

in reductions in effective section modulus s
1 

, moment of inertia, 1
1 

, area, A , e e e 
ond radius of gyration, r le' as stress level incr.?oses above the initial buckling 

stress. 1--towever, the section properties con readily be determined for the 

effective compression flange area that exists under the full materials strength 

oxu (Eq. 6.75 with a = a , or Eq, 7.8) and the limiting ultimate strength con xe xu 
be ex~mined on this basis. 

Limiting width-thickness ratios required to prevent local buckling at stresses 

below oxu (Q = 1.0) can be established by setting axc = oxu in the equations for 

local buckling of various types of compressed plates. This approach is used in 

structural steel specifications. limiting width-thickness ratios for certain plate 

.-lenldlts that frequently occur in beam members ore given in Tobie 7-1 for 

isotropic materials. A$ was discussed earlier for columns, these width-thickness 

ratios con be used to establish proportions ::>f thin walled cross sections th'1t con 

be stressed to their ultimate strengths without buckling. The use of limiting 

width-thickness ratios in practical design is illustrated in Example 7-3, given 
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later in this Section undt:r the heading "Oe'iign Procedure for Beams". However, 

proportions based on this approach may not provide economical sections, 

compared to thinner "stiffened" flanges that hove adequate post buckling 

strength. 

Shear Strength 

Maximum shear stress resultants often occur at poirts where normal stresses 

caused by bendin~ are low. In this case, the interaction of shear and bending 

effects need not be considered, and shear effects can be examioed independently 

from bending, as discussed below. 

Shear strength is adequate when the maximum shear stress, determined using 

Eqs. 5.31, or 5.32, is less thon the sheor stength of the material. The material's 

shear strength is the "interlaminar" shear strength for layered materials in 

sections with plooes of layers parallel to the plane of horizontal shear (axis of 

bending), or it is the "in-Plane" shear strength for thin wall webs with their plane 

perpendicular to the axis of bending. In some sections, it may be necessary to 

investiqute in-Plane shear stresses i,, one part of o cross section and inter laminar 

SM<Jr stresses in another part. This is illustrated in Example 7-3, given later. 

Oesi91 of Webs 

In sections such as I, [J, or JL, the web carries the major portion of the shear 

stress resultant applied to the section. For many practical beams, the web is 

subject to almost ''pure shear" (i.e. shear without normal stress) at sections of 

maximum shear, and to pure, ln-plone flexural normal stresses at s_~tions of 

maximum bending. However, in some cases, the web must be desig,ed to resist 

combined in-Plane bending and shear, or even combined in-ploie thrust, bending, 

and shear. Design considerations for webs include in-plane shear strength, in

plane flexural 01 axial strength, in-Plane shear buckling, in-Plane flexural or 

axial buckling, and local strength and buckling resistance at concentrated loads 

and reactions. Webs moy also be stressed in shear due to torsion, but this will be 

considered separately. 
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Web thickness musi be adequate to resist the rnoximum ~h~or stress resultant 

that acts in the plane of the web. For the thin-wall sections described above, 

the approximate Eq, 5.32 for shear stress in a flexural member may be recust as: 

req'd min. t = w 

' 

Eq. 7.38 

Txu is the reduced in-Plane shear strength of the web, dw is the depth of the web 

between insides of flanges, t is the total requir@d thickness of all webs that are 
w 

6 in the plane of bending, and V X\i I is the maximum design shear force mutipled by 

a load factor. If torsiu, produces odditi01lOI shear stresses, these must be 

included when determining web thickness. TI1is is discussed later. 

Web buckling in lheor. If thE: ratio, d /t , is too ~reat at the section of w w 
maximum shear (Section 1-1 in Fig. 7-6), the web may foil by buckling at a str:?ss 

below the shear strength, T • The local buckling strength of the web in pure 
XU 

shear is given by Eq. 6.84 for isotropic webs and Eq. 6.102 for orthotropic webs. 

Replace b with dw in these equations. See Table 7-1 for the d /t ratios that 
w w 

give ~c equal T><u for isotropic materials. 

Use T xc in ploce of T ><u in Eq. 7.38, whenev.!r Txc is less than Txu· Alternative

ly, Txc may be increased by adding transverse web stiffeners at the proper 

longitudinal spacing, a, to make T equal T in Eqs. 6.84 or 6,102. 
XC XU 

Longi!udinal stiffeners may also be used to reduce the effective unsupported 

depth, d • The design of stiffeners is presented later. w 

Web buckling in flexure. If the ratio dw/tw is too great at the section of 

moxii'num compressive bending stress (Section 2-2 in Fig. 7-6), the web may foil 

by buckling due to in-plane flexure. For isotropic materials, the local buckli~ 

stress at the compression extremity is gi•1en by Eq. 6.7 la with the coefficient 

for Case 6 in Table 6-3. For orthotropic materials, use Eq. 6.101, with the 

<.oefficient from Fig. 6-44. 

If "xc is less than the maximum web cc-npression that occurs when the odjocent 

flange is fully stressed, the web thickne~ ~'lould be increased to permit efficient 

use of the adjacent flange material. Since, for thin flanges and and deep webs in 

doubly symmetric beams, the maximum web compression stress is nearly equal to 
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the adjacent flange stress, in many coses the maximum d /t ratio will be the w w 
ratio that develops axu without buckling of the web. If the flange is considered 

to ~rovide partially fixed rotational restraint of the web, the moximurri d /t to 
w w 

preclude flexural buckling of a thin isotrooic web ~fore the maximum in-Plane 

strength of the moterial is developed is: 

mox. d /t = 5.0 ✓--E ,,.--
w w ( I _ ")' 0 xu v 

j 2 

I-shaped Beam 

-
Zero 
C::Ol'T'pl'ession, 
Ma.x. Shear 

Section 1-1: C-rns Web 
Buclc I i"9 in Shear 

~w Max. Compression 
~ Zero Shear 

Section 2-2: Governs Web 
Buckling ,n ln-9lane Bending 

Eq. 7.39 

Fig. 7-1, WEB BUCKLING DUE TO St-EAR »o 1N-PLN,E BDOING 

See Table 7-1 for dw/tw ratios for the basic conditions of zero and fixed 

rotational re,troint from the flanges. 

The obove web slenderness is greater than proportions used in most practical 

webs. However, o larger overal I depth of web may be obtained by providing a 

longitudirl\JI stiffener in the compression region of the web. The buckling stress 



will then depend on the d/t ratios between the compression flange a.,d the 

stiffener, and the tension flange and the stiffener. For isotropic materials, it 

will be given by Eq. 6.71a, with coefficient from the oppropriote coses in Table 

6-3 (using the appropriate stress vor:otions between stiffener and each of the 

flanges). 

Web buckling in cambined lhecr and flexure. When high shear and in-plane com

pression due to flexure occur at the some section, the web thickness selected 

based on the previously discussed criteria should be checked for adequacy \Alder 

the combined effects of sneor and in-plane compression, as described in Section 

6.9. The interaction equation, Eq. 6.88, may be used for this check. If this • 

equation gives a ratio summation greoier than 1.0, the web thickness must be 

increased. This will increase the critical shear and in-plane flP.xure buckling 

stresses while at the some time decreasing the actual s~ stresses. Alterna

tively, web stiffeners rnoy be added to i:lcreose either the shear buckling or the 

flexural buckling stresses, as requirP.d, 

Web stiffeners, When -r xc ;s less than Txu' .x o xc is less than a xu in the web, it 

may be advantageous to increase these critical buckling stresses to ailow the use 

of the full material strength by providing transverse or longitudinal stiffeners. If 

used at all, transverse web stiffeners are usially only applied in regions of high 

shear stress to increase the shear buckling strength of the weo. However, the 

maximum dw/tw ratio usually camot exceed the ratio given by Eq. 7.39, the 

limiting ratio for flexural buckling of the web. 

To be effective, stiffeners must be properly spaced, and they must not deform 

excessively os they support the thin web. Tilis req.,ires that they have sufficient 

lateral moment of inertia, Is, about the plant:· of the web. When the stiffeners 

and web ore isotropic with the same F., the minimum r~ired Is is (7.4): 

I = 0.34d 4<'w)3 
I W 1i; Eq. 7.taO 

1
1 

is the mlnimwn required moment of inertia of the stiffener about the plane of 

the web, and b
1 

is the longitudinal spacing of stiffeners. 
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When the web is braced by both longitudinal (horizontal) stiffeners, located 

between 0.2 and 0.2S dw from the compression flangE", and transverse (vertical) 

stiffeners spaced at b
5

, the minimum lateral moment of inertia <lf the :ongitudin

al stiffener should be (7.4): 

? !? ,bs 2 -7 
Is " dw t.; L4 ~) -0.13_J Eq. 7.41 

The recr-,ired moment of inertia of the transverse st:ffener shnuld continue to be 

given by Eq. 7.40. 

Web crippling. When localized bearing loads are applied to thin webs by 

concentrated loads or reactions, the loads or reactions may produ~e significant 

transverse compression stresses in the web. This stress state is shown in Fig. 7-7 

The web must be checked for adequate strength and r"!:sistance to local buckling, 

sometimes coiled crippiing. If the web provides the entire tron.sverse resistance 

to the concentrated forces rown in the Figure, web thickness must be adequate 

to meet the following tronsverse strength and buckling re1uirements (7.4): 

Strength: 

(1 
yu 

> 

Interior Aeoring 

Ru 
tw (n + 2k) 

End Bearing 

or ~ 
f\, 

t {n + l<J 
w 

where n and k are shown in Fig, 7-7. 

Buckling resi~tonce: 

2 t 2 l&rl 2 
'I E W ~ - ,...:..:. (2 + -,. ) 

12 (I - }) 'dw , a~ 

Eq. 7.42 

Eq. 7.43 

Buckling resistance, os given by Eq. 7.43, shall be greater +hon the following 

transverse stress in the web (Fig. 7-7): 

Interior Bearing 

or, 

End Bearing 

Ru 
= t (O.Sd + n) w w 

Eq. 7.44 



and for u.,iformly distributed load: 

a ye > a 
- y = f 

w 

The above equations are used for structural steel sections, and ore believed to be 

conservative, but should be considered as highly tentative for application to thin 

plastic webs. Extensive tests of cold-formed steel members provide the basis for 

the empirical web crippling criteria used for cold-formed sections (7.1). Because 

the latter criteria do not include variables for basic materials parameters, they 

are not useful for design of plastics m~mbers with thin webs. Tests of specific 

materials and typical bearing configurations are required for accurate evaluation 

of web crippling a,,d local buc:kling at bearings with thin-walled plastics sections. 

A .. B 4j n ~, 
;i ~=ti: k;ij I I A.!1 

A-A B-8 ~ '74s0 

w 
b) Critical Section 

A .. E,~ tor Cripp,il'I\I 

o) c) 

.... , 

d) 

~~-CBEtff}ffi 
R 

~ tt ~ 

Critical S..·tions for Verticol Buckling 

fig. 7-J CRIT!CAL. SECTIONS rOR WEB CRIPPLING AN> VERTICAL BUCKLING 
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Lateral buckling 

In most practical design coses, beams are supported against lateral deformation 

by plates or other locc' ~omponents that transfer load to the beam. In such 

cases, the beam can deform only in one direction, usually the direction of the 

load. There ore situations, however, where beams have no lateral support or 

bracing over part or all of their span. Sometimes, such laterally unbraced beams 

con buckle at a lower load than the load that develops the full flexural or shear 

strength of the beam. 

F'ig. 7-8 shows o beam in pure ~ing, simply supported and also held against 

tipping at both ends. The top flange is in uniform compression, tending to buckle 

laterally like o column in its unsupported direction. The bottom flange is in 

tension and tends to remain straight. As a consequence, during buckling the 

entire cross section rotates as the top flange moves laterally and the bottom 

f~ remains straight. Bott: the residance of the t<Y,l flange to lateral uending 

and the resistance of the cross section to twisting are mobilized as the beam 

resists lateral buckling. Thus, a more accurate, bvt less c..ommonly used, 

description of tois behavior is lateral-torsional buckling. 

Lateral-torsional buckling seldom 'imits the load resistance of unbraced beams 

hoving closed thin-wall sections or stocky solid sections such as a round or square 

shapes. 1-towever, open thin-wall shapes are torsionally flexible, and when 

unbraced, they ore prone to buckling in the lateral-torsional mode. 

The loterol-torslonal buckling resi.stance of an unbraced beam with ao open thin 

walled cross ,ection derives from its la~eral bending stiffness, from its torsional 

stiffness, ~ from its warping stiffness. Warping involve, bending of thin wall 

elements (such as flmges) as the onq~e of twist of the beam changes along its 

length. This Is shown in Fig. 7-8. This behavior is discussed again lc.ter in this 

Section under the heading, Tanlan. 

Equations are given below for the critical bending moment that causes lateral

torsional buckling of beams witt, the following limitations: 

• materials ere isotropic and elastic 
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• beam cross sections are doubly symmetric 

• lauds ore applied at the centroid of the cross section, which is also the 
center of twist of a dou~ly symmetric section. 

• loads ore directed along thP. weak axis, perpendicular to the strong axis. 
They produce only bending, or bending and flexural shear, about the strong 
axis. 

Mer c~ .. --L--J_..,) Mc, m 
2 b) 

4 -........ 
4-
1 
I 

). '3 

I 

c) 

Fig. 7-8 LATERAL-TORSIONAL BUCKLING Of" LN3RACED BEAM 

The basi-:: equation for critical buckling flexural stress is (7.2): 

0xc = ;,, -{:~;~ f~:l Eq. 7.46 

where 

Eq. 7.47 

For open thin-wall sections, such as I sections, P e2 is the Euler colurM lmd for 

buckling in the weoi< direction, and is: 

2 
,r E 12 

pe2 = (KL)2 Eq. 7.48 

For rectangular solid or tubular sec-tions, P e2 is taken as zero. Thus, for these 

types of sections, Mxc i~ the critical buckling moment under applied moment 

that is constant over the unbraced lengi'i. 
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C I is a coefficient thot depends on load distribution and end conditions, and K is 
the effective length factor (see Section 7.3) for column buckling in the weak (2-

2) plane of her.ding. Values of CI and K for common load cases and end 

conditions are given in Table 7-2. If a beam hos intermediate lateral supports, 

the lateral buckling coefficient, C 1, is approximated by: 

M1 2 
c 1 = l.7S+ I.0S(M;/M2)+0.J('M7 

Table 7-2 

< 2.3 

Lateral Buckling Coefficients for Beams with Various 
l...ood end ~t Arrangements 

l...aading cnl 
awl ,..trai11t• about, __ 

8and1NJ-monw,t 
diogrom 

.~. "'tHilllf!Jl!lllillllffii 
Mo "'o 

., w 

. -¥ jJlt"t-· ~ r ~llill• 
., w 

·-t-t' • t_t t 1,-. ~~➔ 1-· 

'I tp 

End restroint • 
obout y-axis 

None 
Full 

None 
Full 

None 
Full 

None 
Ful! 

1,0 1.0 

1.0 1.13 
0.5 0.97 

1.0 !.)() .. 
0.5 O.IU,H 

!.O I.JS 
o.s 1.07 

1.0 1.70 
o.s 1.016 

1.0 1.016 

• All beall-. .. rutroinecl ot each and CIIJClir-.f rototion obout the x-axis end <,;isplor.emr.lt 
ill tlll 'I _, I dlNCII-. Loodt applied ot beom centroidol axis. 

" Crltic111 Strea bald on_,., _, (WLJ~). 
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where MI and M2 are the moments at each end of a segment between brace 

points, and M 1 < M2; M 1/M2 is positive for reverse curvature bending and 

negative for single r.urvature bending. Thus, if M is constant between two brace 

points, MI = -M2 and CI = 1.0. 

Equations for determining the section properties, S 1, 12, and J are given in 

Section 5.3. Also, for isotropic m'lterials, the modulus of sh1•aring rigidity, G = 
E/2 (I +v ). 

Simplifications of Eq. 7.46 are usually used for practical design. For f:'Xample, in 

structural steel practice, sections have signifo,...int torsional rigidity because 

thickness of flanges and webs is no1 "thin." For these types of symmetrical I 

beams with S 1 = 21 11J; 12 = 2tb3 / 12, J =- 2bt / /3, when (d/4 P e2)2 is small 

compared to M;c' V= 0.3, with isotropic materials, 11nd K = 1.0 for simple 

support of flange bending about the weak axis: 

btf 
Oxc = 0.65 c, E <ra> Eq. 7.50 

In another simplification, applicable for very deep I sections, and sections with 

very low torsional rigidity (with "thin" flanges and webs), the entire resistance to 

lateral buckling is assigned to the lateral buckling resistc:,ce of the top flange. 

c 1 ir2E 
0xc = ( KL )2 

r2 

Eq. 7.51 

This is further simplified with a rectangular compression flange of width b to: 
2 

- ~-8 CI E - CI tt Ed 12 
°xc - (KL/bi' - (KL)2 SI - -

Eq. 7.52 

In coses where it is not clear whether Eq. 7.50 or 7.51 (or 7.52) should be applied, 

the highest buckling stress obtained with either of these equations governs. 

Othe: equations for approximate critical buckling stress are given in (7,1) and 

(7.2). 

The lateral-torsional buckling resistance of closed thin wall sections, such as 

rectangular tubes, is obtained from the critical buckling moment Mxc given by 

Eq. 7.47 (7.2), and the buckling stress is: 
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0 xc = Eq. 7.53 

In design practice fo,- cold-for'Tled ~•eel beams (7.1 ), the lateral buckling stress 

given bv the abovf' Eq, 7 .52 is reduced when a > 0.55 a • The reasons for 
XC XU 

this are the 5'Jme as already discussed for buckling of centrally compressed 

columns end local buckling of thin-walled plate elem~nts. The following 

reduction equations represent the bosis of design requirements given in (7. I): 

let axce = a xc for elastic buckling using Eq. 7.52 for oxc in Eqs. 7.46, 7.50, 

7.51 or 7.53 could also be used): 

l<'L 2 1.4 CI E 
For <-s--> > ------ oxc = a xce 

- cxu 
Eq. 7.54a 

(a XC < 0.55 fJ XU) 

2 
KL 2 1.4 CI E 0. 3 CI E cr XU 

For (-r-) betw. --- &-
0
---: CJ = I.lo - .,..___ Eq. 7.54b 

0 (Jxu XU XC XU 3,Zo xce 

Kl 2 0.3 c 1 E 
For (0 ) < --- : CJ xc = crxu Eq. 7.54c 

fJ XU 

Design practice for structural steel (5.S) does not incorporate the above 

reduction equations. Rolled steel beams d.erive most of their resistance to 

lateral buckling from the St. Venant torsion resistance of their flanges, ond Eq. 

7.50 usually best opproximotes the resistance of such shapes. Neglect of the 

other terms in Eq. 7.46 may compensate for the simplifying omission of 

reduction factors when o xc > 0.55 a xu· 

The lateral-torsional buckling resistance of beams having thin rer.tangular cross 

sections (Fig. 6-37) is given by Eq. 6.89, with coefficients for the loading coses 

of Fig. 6-37 given in Table 6-5. These are useful for determining the strength of 

plates that behove like beams with a compressed unsupported edge due to in

plane flexure. (Such plates ore termed diaphragms in Chapter 6.) 

When loads are applied at the top flanqe, instead of at the centroid of a beam 

section, buckling resistance is slightly reduced. Conversely, when loads ore 

applied at the bottom flange, buckling resistance is lurger than given by the 

preceeding equations. lhese refinements are presented in (7.2). Generally, they 

are not taken into account in practical design; thus, the more complex lateral 

buckling equations wit, these refinements are not included here. 
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Lateral buckling solutions for beams with singly symmetric or with unsym

metrical cross sections ore given in (7.1) (7.2) and (7.4); since the use of such 

sections is not common, these more complex solutions also ore not given here. 

When on unbraced beam is designed with a singly symmetric cross section, a 

compression flange with increased lateral stiffness is frequently used. An 

example is an I section with the outer edges of the compression flange turned 

down (or a channel added to the compression flange). Eq. 7 .51 usually provides 

a suitable approximation of the buckling stress in this type of beam. However, 

the radius of gyration, r2, should be for the compression flange only. 

When lateral buckling resistance is inadequate, the designer may selec~ o beam 

section with improved 1-:!teral and/or torsional stiffness, or he may reduce the 

unbr~ length by uslr,g bracing at intermediate points along the span of the 

beam. The bracing must be effective in preventing lateral deflection of the 

compression flange, and torsional rotation of the beam cross section, and it must 

limit the unbraced length of the beam to obtain adequate levels of critical 

buckling stress, as given by the preceeding equations. Effective bracing 

arrangements ore generally one of the following two types, shown schematically 

in Fig. 7-9: 

• The Type I .system supports the compression flange by o lateral system 
thot prevents significant lateral deflection. The minimum required 
strength and stiffness of this type of bracing system is that required to 
stabilize the compression force in the beom when its compression side is 
considered as a colunvt. 

The methods given in Section 7.3 for minimurn requirements of column 
bracing may then be applied to obtain conservative estimates of the 
required strength and stiffness of the bracing system. Each lateral 
support should be designed for two percent of the total compression force 
at that brace point in the laterally braced beam (7 .2). When compression 
fj<J119e bracing is provided by o continuous diaphragm that is elastic, 
approximate methods for determining the usually very low minimum 
required strength and stiffness ore discussed in (7.4). 

• The Type 2 system prevents twisting of the entire cross section at the 
brace points. Rigid diaphragms ore provided between two parallel beams. 
This bracing system is effective without any system for increasing the 
loterol strength and stiffness of the top chord (7.7). Each diaphragm 
should be designed to resist a minimum shear force of two perc :1 t of the 
total compressi flange force at the brace point end the same shear 
applied in the opposite direction at the tension flange. See Fig. 7-9. 
These forces must be balanced by small upward and downward loads on 
the odjoc'!f1t beams as shown in the Figure. 
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Another arrangement of sorne interest in design is th"! case where lateral support 

is provided at the tension flange, instead of at the compression flange. This is 

not an efficient location for lateral support, but sometimes rh~ improvement in 

lateral buckling resistance afforded by available lateral restraint on the tension 

side requires consideration in practical design. Some examples of flexural 

members with this type of ~ross section are shown in Fig. 7-10. 

In general, when the tension flange is braced and compression flange unbraced 

the compression flange behaves like a compressed strut laterally supported by a 

continuous elastic foundation. The foundation stiffness is the stiffness provided 

by the web and tension flange against lateral translation and torsional rotation. 

This behavior is complex and simple relations are not available to predict the 

buckling strength of the flange. See (7.1) or (7.3) for an approximate procedure. 

Section A-A 

Ti,pe I 

Top Chord Brared Against 
latPral Bending 

Open 

Section 8-8 

Type 2 

Brae ;ng Prevents 
Ratol ion al Broce Points 

Fig. 7-, EFFECTIVE LATERAL BRACING SYSTEMS 
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Fig. 7-10 LATERAL BRACING ON TENSION SIDE OF BEAM 

Deflection 

Because the elastic and viscoelastic moduli of plastics are low, deflection is 

frequently a critical de5ign criterion. Performance criteria often limit maxi

mum deflection und"!r service load to avoid unsati:.factory appearance, disrress 

in attached non-structural comoonents, flutter in wind, leakage at weather seals 

and excessive movement at joints. Typical limits range from L/ 180 or less for 

visual acceptance to L/400, or less, for adequate rig:dity for resistance to 

r.:ertain vibratory motion. 

Beam deflect!on results from both flexural and shear deforl'l1'.ltion. Except for 

beams with sandwich cmstructions having low density cores, or for beams that 

h:n,e large depth to Spal ratios, sheo~ c!eflection is small compared to bending 

deflection, and is usually neglected. Only bending deflection is considered here. 

Shear deformation of sandwich beams is presented in detail in Chapter 8. 

A general expression for curvature produced by bending moment is given in 

Sec:tion 5.4. The integration of curvature, together with boundary conditions at 
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supports, gives the slope at any point along the beam axis caused by bending. 

Then, the integration of slope. together with boundary conditions at supports, 

gives the deflection ot points along the beam axis. ~ (5.8) for the derivation 

and solution of the differential equation for 1he deflection of elastic beams, 

based oo i:::q. 5.29, the bask elastic curvature relation. 

In practical calculations, slo;>es and dP.flections of beams are often Jetermined 

using the conjuyate beam mology. This simple method is explained in Section 

5.4 arid illustrated in Fig. 5-5. It may be used effoctively whenever the bending 

moment diagram hos first bf:!en determined. 

The maximum bending deflection occurs at a point of zero slope or at a 

boundary. A general expression for the maximum bending deflection in the plane 

of 1he loads for a member with a constant ~ross section over the iength, L, and 

symmetric about the load plane is: 

w 
K WL3 

m =----
E 11 

Eq. 7.55 

The bending deflection constant, Km~ varies with the distribution of total load, 

W, on the beam and with end-support and end-fixity conditions. Values of t<m 

for some common load and end support cond:tions are given in Table 5-1 in 

Chapter S. See also Tobie 8-3 in Chapter 8. The elastic modulus in Eq. 7.55 is 

the moc"lus in the longitudinal direction, See Section 5.3 and T ab1es 5-2 and 5-3 

for methods and equations for determining I. 

See (S. I), (S.3), and (S.8) for general methods for determining deflection of 

beams and rigid frames and (5.4) and (5,5) for tables giving formulas for 

deflection and coefficients for maximum deflection. 

When beams with thin flanges ore designed to allow local buckling at loads below 

th3 design load, based on the ''effective width" concept that was explained 

previously, the moment of ,nertia decreases in the region of high moment where 

the effective width is less than the actual width. In this case, the beam 

stifflless, El, is variable over the beam length as shown in Fig. 7-11. Stiffness 

depends on stress level and behavior is non-linear. An accurate determination of 

deflection, if needed, can be obtained using a computer anolrsis for beams with 

vorioble stiffness. An upper limit of deflection can be obtained by taking the 
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smallest effective moment of inertia at the section of mc;ximum moment as a 

constant I, or a better estimate con be obtained with some weighted overage 

between the I of the gross section and the I of the effective section at the 

location of highest stress. 

A 

~ 

Web Support--11~-----+--.;.;.;;.;...iL... .. --+ 
(Typ.l b I .,,,.---

---< ... --
....... ... ,_ __ 

... - s 

Note: Effdetive 
Width, be < S/2 ,---

---< .... r 5 Wnenevero,. >oxe ... ---

Section A-A Variable Cross Sor-lion 

Fig. 7-11 EFFECTIVE WIOlH VARIATIOl-.1 WITI-f MAXIMUM STRESS 

rJesi91 procedure for beams 

The design procedure for beams is similar to the step by step summary given ot 

the end of Section 7. '3 for centrally loaded columns. Of course, the equations for 

bending strength ald lateral stability of unbraced compression flanges presented 

earlier in this Section arr used ins:eod of thd equations fc: compression strength 

and stability given in the summciry for columns. Al50, additional considerations 

involving shear str"flgth and stability, locai stresses e1t reactions and concen

trated loads and deflection frequently ore important with beam members. These 

are describec in detail in the precedinq paragraphs. 
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When standardized structural members ore av'lil<Jble, manufa~turers usually 

develop tables of section properties such as section modulus, S, and moment of 

inertia, I, and members that have the required Sand I properties may be selected 

directly with the aid of such information. Howe11er, when the designer hos to 

determine his own proportions for members, a procedure for selecting trial 

proportions, based an approximate relations for s1 and 11, is useful. Trial 

proportions for designing thin-wall I and rectangular tube sec:tions can be 

established as follows: 

I. 

2. 

3. 

4. 

Determine maximum flange bf/tt and web dw/tw ratios that permit xu in 
these members without local buckling. Also, determine maximum dw/tw 
that permits xu in the web. See Table 7-1. 

Determine minimum required area of web, Aw fi.e., twdw)• from Eq. 7.38. 
Select a trial depth and web thickness th.Jt provides Aw and the deepest 
section that has dw/tw less than the limiting value for buckling, or that 
provides practical proportions for the beam. 

Determine the rec;;,.oired minimum section modulus, SI, from Eq. 7.33. 

Determine a trial area of each flange to obtain the required section 
modulus from the following approximate relation: 

trial Af .. = Eq. 1.56 

S. Determine the required minimum moment of inertia, I I, from Eq. 7.55. 

6. Determine a trial area of each flange to obtain the required moment of 
inertia from the following approximate relation: 

7. 

trial Af * = Eq. 7.57 

If a greater flange area is required for I , than !:, I, it may be more 
economical to use a deeper section, if perrliitted by functional require
ments and manufacturing limits. 

*Note: See steps 6.2 and 6.3 in Example 7-3 for derivation of these equations. 
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8. Establish o width ond thicknes~. of flange that develops the flexural 
strength rec,.,ired with the governing flange -1rea. If SL governs, the bf/tf 
ratio must be limited to develop a without local buckling of the flo:,ge. 

XU t' be If I I requires a larger flange area, the ~rmissible bf/tf ra 10 can 
increased, since o will be less than ox • Af+er trial proportions are 
selected, check tho'\ the maximum flexurdl compressi"e stress under the 
foctored desigr, load is equal to, or less than, the reduced ultimate 
str~gth o~ the material, a xu' or the maximum buckling strength, c,xc' 
wh1che..,er 1s less. 

9. Check the adequacy of web thickness and beoring length for bearing 
strength and stability at concentrated reactions and loads. 

10. If the compn.ssion flange is not laterally braced, check the member for 
adequate resistance to lateral-torsional buckling. If resistance is not 
adequate, provide appropriate lateral bracing, 

Application of the beom desi']fl procedure is illustrated in Example 7-3. Also, 

the flexural behavior of the same beam ur.::ier a dynamically applied load from 

blast pressure is illustrated in Example 5-7. 

A few additional considerations for special cases involving plates that behave 

like beams, beams with thin and wide flanges, and beams subject to torsion are 

given in the remainder of this Section. 

One-way plates OS beams 

Plates that are supported on opposite edges and span in one direction are 

essentially wide beoms. The methods for analysis and design of beom:o- presented 

above may also be applied to such plates. 1-towever, the effective stiffness of 

the plat"! as a iJeom is increosed because contraction and expansion of the ''wide 

beam" due to the Poisson effect is restrained. The increased stiffness is taken 

into account by replacing the elastic modulus, E, in the e<µ:itions above by 

E/(1 - ·v2). This is discussed in oetoil in Chopter 6. 

When plates spanning in one direction are subject to concentrated loads 

(Fig. 7-12), shear and bending effects result in directions both parallel to and 

perpendicular to the direction of the span. The maximum stresses occur ot the 

load, but significant bending in the direction of the span extends longitudinally 

along the plate, distributing the concentJoted load effects to adjacent strips. 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Exiarr.,le 7-3 - Beem Desi~: Design a beam to suµport a uniformly distributed long term 
load of I kip per ft. over a span of 20 ft. Service temperature range is cf' to 100°F. 
Limit ma:<imum deflection to L/200. Design the beam for full lateral support and 
determine the maximum spacing, and ri,<' minimum strength and .c;tiffness of lateral 
bracing that will develop full lateral support. Also determir,e the minimum length of 
bearing support requirea if the beam is supported by direct bearing at its ends.• 

Use a fiberglass reinforcerf plastic I-shaped section manufactured by the pultrusion 
process with the same longitvJinal and transver!e properties as the tubular column section 
used in Example 7-2. Material properties based on sta.ldard short-time 1ests ore: 

I 
I 
I I I. 

I 
I 
I I .I 

I I 1.2 

I 1.1 
I 
I 
I I 1.4 

I I .s 
I 
I 1.6 

I I 2. 

I 
I 
I 
I I 3. 

I 
I 
I 
I 
I 4. 
I 
I 
I 

longitudinal compression: 25,000 psi; longitudinal tension: 30,000 psi; elastic 
moduli: E1 I = 2,000,000 psi; E22 = 1,000,00) rJsi· Gl2 = 450,000 psi: Poisson's 
Ratios: v12 = 0.36; "21 = 0.18; web shear, :n-pfane: 10,000 psi; flange shear, 
interluminar: 3,000 psi; transverse compression: 15,000 psi 

"Reduced" material properties to allow for long term lood effects and manufactur
ing variations: ; -= 0.5 for compression, 0.4 for tension, 0. 7 for elastic moduli and 
0.3 for in-plane and interlaminar shear strength. 

Compression: a = 0.5 x 25,000 = 12,500 psi 
XU 

Tension: a = 0.4 x 30,000 = i 2,000 psi (gov~rns bending} 
XU 

Elastic ~oduli: El I = 0.7 x 2,000,000 = 1,400,000 psi; 

E22 :;;: o. 7 x 1,000,000 = 700,000 p~i; G I 2 = o. 7 x 450,000 = 315,000 psi 

Web in-plane: a = 0.3 x I 0,000 = 3000 psi 
XU 

Flange interlaminor shear: a = 0.3 x 3000 = 900 psi 
XU 

Transverse compression on web: a = 0.5 x 15000 = 7,500 psi. 
yu 

Load h.;ctor f_, ultimate strength: 

Multiply the design load, w = I kip/ft., by a lood factor = 2.0 to allow for overload, 
inaccuracy in support arrangement and load application, and differences between 
analytical models and real behavior. 

Determine required section modulus, S 
1 
,2 2 

T bl 5- 1 C I M M 
wu~ ~ x

8
20 __ 

1
nn11. 

a e , ose a: ox. xul = ~ = u\n, 

Eq. 7.33a: req'd SI = IOOJ<r,<>ooo I~- = I 00 in. 3 

Determine required moment of ir,ertia, I, 

Sw L 4 L 
Table 5-1, Case lo: max. I = 384Ef,"= 200'-

I 
I * See note on Example 7-1, page 7-5. 
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~le 7-3 kontinued) 

s. 

5.1 

S.2 

3 
Thus req'd • 1 = I o~l&rE L 

3 1000 X 1()()() X 20 X 144 2143 • 4 
= 384 x I ,40o,roo = ,n. 

Determine minimum ratios of flcwige width to flange thickness, bf/ff, ~ web 
width ,o web thickness, dw/tw to develop ultimate flexural compression strength o~ 
12,000 psi and ultimate shear strengtil of 3000 psi, respectively: 

Flange - to develop ultimate compression strength (based on conservative assump
tion of pinned edge at web): 

bf 2 G12 
Eq. 6.98: <m = er ; a = Oxu = 12,000 psi 

f XC XC 

max ::, = f 31
1l,g:/ = 5.1 

Web - to develop full I l,'}()(} psi flexural stress at flange: 

d 2 t 
Eq. 6.101: D w 

11 

k ,r2 
= -a

xe 

3 1,400,000 t w 3 
Eq. 6•60= D 11 = I 2(i - 0.36 x 0.18) = 124,aoo t w 

Af ..: bf t f 
A = d t w w w 

Fig. 6-44: for ~ 2

1

2

1 
= O.S: estimate k = 20; max~: = 11 .f9 x 1

1l'tilf' = 45 

S.3 Web - to develop full 3000 psi reduced ultimate shear strength: 

<42 t 4 k 
Eq. 6.102: w r l/1. = ~ 

(DI I D22) 'xyc 

Eq. 6.6b: 

3 
700,000 tw 

3 0
22 =12(1 - 0.36 x 0.18) = 62,4001w· 

Fig. 6-45 & Eq. 6.6c: D 12 = 21 D11 = O.lfi x 124,800 tw 3 = 

G t 3 
Eq. 6 6d • D' _ 12 w _ 315~000 t3 _ 2L 250t 3 

· ' 12 - 12 - I - Dt w 

3 
22,500 tw 

Eq. 6.6e: Do = D12 + 20'12 = (22,500 + 2 x 26,250)1w J = 75,000tw J 

Do 75 
A2 = ---;::::=== = ---;:::::::::::=-== = 0.84; >.1 = 0 for long plate; Fig. 6-45: kxy = 12 yo11 0 22 y124.e x 62.4 

max (~) _ 4 X 12 X (1241800 X 6214003) 1/ 4 _ J4 S 
• -.- - 3000 - • 

w ' 
Select trial I section with b,'tf ~ 6, dw/tw ~ 45, s1 ~ 100 and 11 ~ 2143. 
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I exan.,1e 7--J Ccantinued) 

I I 6.1 

I 
I 6.2 
I 
I 
I 
I 
I 
I 
I 
I 6.3 
I 
I 
I 
I 
I 
I 
I 
I 
I I 6.4 

I 
I 
I 
I 
I 
I 
I 
I ,.s 
I 
I 
I 
I 
I 
I 
I 7. 

I 1.1 
I 
I 1.2 
I 
I 
I 

Trial web design wit~ ipth = 24 in.: dw = 22 in.; tw 
~ = • .50 >l 22 = I I m. 

Trial flange design for strength, based on S: 

S A1{dw + t1) + ¥ and (dw + t1) dw 

s 
Eq. 7.56: Trial Af (dw + t f) -

T 'IA 100 II 251' 2 r10 f = LT - T = • in. 

Trial flange design for stiffness, based on I 

2 2 
Af (dw + t 1) Aw d 
~-- + 7~ and (dw + t1)::::: dw 

21 Aw 
Eq. 7.57: Trial Af = (d + t-f- - T 

w w 

T . I A 2 x 2143 11 6 3 . 2 ) 
n'l f = 2 - T =- • in. 1governs 

23 

22 = liS -~ a.so in.; 

Trial Section: Depth = 24 in.; bf -= 9 in., ff = ¥ = 0.70. in. 

dw = 24 - 2 x .70 = 22.6 in., tw = 0.5 in. 

bf 9 
r,:-f = 2 x .?O = 6.4 > 5.2 but may be acceptuble because stiffness, rather than 

strength, governs design. 

dw 22.6 
t w = lJ3'" = 45.2 ;;;; 45 

Check properties aid stresses: 
2 3 

I __ 9 X 70 X (2J.10) _ 0.5 X 22.7 
• 2 + 12 = 2162 in.4 > 2143 o.k.; 

S - 2162 - I BO 'n 3 > I 00 le - --rr - I • 0, • 

req'd axe = 
1

D<J80I2 
= 6667 psi; furn. axe = 3::., = 7690 psi, o.lc. 

Check adequacy of web for shear: 

wuL 2 x Ix 20 
Table 5-1, Case la: max Vxul = L = 2 = 20k 

E '7 '•O 'd ' t 20,000 0 JO ,'\ 50 f k ~- , .. 10: req min. w = 3000 x 22_6 = • < u. urn., o. • 

o.3 3000 1800 · 'Txyu : ~ X : psi 
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I Example 7-l (cantinu,,ci) 

I I 7.3 

I 
I 
I 
I a. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 9. 

I 
I 9.1 
I 
I 
I 9.2 

I 
I 
I 9.3 
I 
I 
I 
I 
I 
I 9.4 

I 
I 
I 
I 
I 
I 9.S 
I 

Check for bucklin{I jn shear: 
3 1/4 

Eq. 6.102: "[" = 4 X 12 X (1241800 X ~.99.L __ = 3396 esi, 
xyc (45.8) x 0.5 with ttiinged" edges 

o.k. 

Check maximum interlaminar shear in flange. Assume thickness of inside layer of 
longitl>dinal fibers is 0.03 in. and calculate maximum horizontal (in1erlaminor) 
shear on plane o-a: 

0
5
Y =- 9 x C',67 x ( 12.0 - 0,33) = 70.4 in.3 

Eq 5 JO• t" _ 20,000 X 70,4 
• • • >: - 9x~ = 71.2 psi < 900 psi, o.k. 

Determine minimum length of bearing based 
buck ling at supports. 

on web crippling and local web 

T bl c.1 (' I R 2. x I. x 20 -- 20k a e .,... , ,ase a: u = 2 

R 20 000 
Eq. 7 .42: Heq'd (n + k) = ut = ~-O.S = 5.33 in. 

0 yu w 
If a 1/2 in. fillet is~ed, k = 0.75 in., and required bearing length n = 5.33 - 0.75 = 4.58 1n 

Try 5 in. beoring length: 

''a" for local buckling = (5 + ~) = 
_ 20,000 

Oyu - 0.5 X 17 = 2353 psi 

17 in. 

'"2 E22 . t w 2 4 d 2 
Eq. 7.43*: a =i1{1 _ v -.-- l...,.!!l (2 + ~ 

ye 12 '»21' dw' o2 , 

aye =I~~~ ~~'~s) (~i~7)2 
( 2 + 

4 
~;/-

72
) = 2,728 psi > 2353 o.k. 

*. l'-«>te: Since E 11 » E22, it is cooservotive to use isotropic buckling equations 
With E22 

Use 6 in. minimu,n length of bearing, allowing 1.4 in. for tolerance. 

I 10. Minimum spacing of lateral supports: 
b t 

110.1 

I 
I 
I 

Approx. check with Eq. 7 .SO: a xc = 0.65 C I E I I -hf- & takt: C I = 1.0 

9 X 0.7 238 875 238 875 
:,>CC = 0.65 x 1,400,000 x L x 24 = -r·; mox. L = cr • 

XC 
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I 
I 
I 

Emmple 7-3 (cantlnuea) 

I 
I 10.2 
I 
I 
I 

req'd a Mu 100 x 12 6557 . L 238l75 36 , • 
xc = --S- = ! 83 = psi i max. = 6 57 = ... in. 

0.8 c 1 E1 I Approx. check with Eq. 7 .52: a = ----'-~ = 
XC (KL/b)L 

max. L = 9 ~O.B-~ ~~,OOO = 117 .6 in. 

I 10.3 Try o 10 ft. ur,t>raced length (one brace ot midspan), and use Eq. 7.46 for critical 
I buckling stress: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I IC.4 

I 
I 
I 
I 

~ 

I o. 7 x 9 . 2 <-5 JS . 4 J 2 : 12 -- X ..: c , In. j = 
3 9 X 0,7 ~. 2 3 

+ 22.6 j 0.5 = J.OO in. 4 
3 

,r 2 El 
Eq. 7.48: P 2 = 2

2 
e (KL) 

2 
_ 'II' X 1,400,()()() X 85, 
- 020>2 

FromEq.7.49with: M1 = O:C 1 = 1.75 

,.15 r--- ----i·· 242 ··· -- - 2 
Eq. 7.46: axe = llJj"" (277,625) + q x 81,561 

= 81,561 lbs 

= 9729 psi > 6557 psi a.k. 

Conc.lusion: One brcxe at Midspan and one ot each support are ac!equote. 

4N 
Min. brace stiffness, Kbs' (Section 7.3): Eq. 7.Jlo: min. Kbs = ~ 

N = (Af .. A. /6) a = (9 x 0.7 + 22•6 x 0-5) 9729 = 80,000 lbs 
"')CC ''w XC 6 

min. Kbs = 4 x ffdOO<!._ = 2667 lbs/in. 

I 10.5 Min. brace strength, ~' (Section 7.3): min.~ = 0.02 x 80,000 = 1600 lbs. 

I 
I t-&e, 
I I in. = 25.4 mm, I in2 = 64S mm2, I in3 = 16.387 mm3, I in4 = 416,231 mm4, I ft = 

I 0.30lt8 m, I lbf = 4.448N, I Kip = 4.448 KN, I ft-k = 1.356 KN-m, I in-lb = 0.113 N-m, I I lb/In = 0.17S N/mm, I Kip/ft = 14.S9 KN/m, I psi = 6.89S KPo, 0 c = (°F - 32)/ 1.8 
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C. 

a) Central Concentrated Load b) Off-Center Concentrated Load 

Fig. 7-12 EFFECTIVE WIDTH FOR CONCENTRATED LOAD ON 

Of'E-WAY SPAN PLATE 

The entire concentrated load is assumed to be carried by a strip of the plate 

having on "effective width", be, whose maximum flexural normal stress, 0 xe, 

uniformly distributed over width, be, is equal to the maximum flexural normal 

stress in the plate, Ox• 

The following equations for approximating the effectivE' width ore useful (5.4): 

I. Concentrated load on central circular area of diameter c (Fig. 7-120): 

be = 0.58a + 4c Eq. 7.58 

2. Concentrated load on mid-span off-center circular areo of diameter c., 
located a distance, d, from nearest edge of plate (Fig. 7-12b): 

= 0.2% + 2c + d Eq. 7.59 

but not greater than be in Eo. 7 .58. 

See (7 .8) or (7 .9) for more accurate md comprehensive procedures for determin

ing stress resultants caused by concentrated IO<J4,; on plates. 

Shear lag in wide flmges of beams 

When +he flonge of a beam is wide relative to its span length, shear deformation 

produces a non-«iiformity in the distribution of bending stresses ;>ver the width 
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of the flange that can be significant. Eq. S.30 gives the shear stresses in the 

flange of an I or box type beam shown in Fig. 7-13. The shear deformation 

associated with these stresses results in the distribution of flexural stresses 

s'°k>wn in the some Figure. 

Fle,cural Normal 
Stress in Flange 

Shear Stress 
in Flange 

Web 

Box Beam Cro55 Section 

Shear & Fluvrol 
StreSJeS in Web 
of Box or 1-Beom 

I-Beam CFO$S Section 

fig. 7-13 St-EAR LAG IN I OR BOX BEAMS WITH WIDE FLANGES 

Sheor lag cm be token into account in design by using on "effective width," 

similar in concept to the effective width used in the post buckling behavior or 

thin stiffened compression flanges. The bending capacity of a becm having the 

effective flange wid~h, be, uniformly stressed to a xm is equal to the banding 

capocity of the octuol beam having a maximum flange stress, a xm, at the flange 
location odjOCf:flt to the web. 

Graphs giving oo effective reduced flange width, b , that oc,:-ounts for shear log 
e 

in simply supported, continuous and cmtilever box or l-$1':oped beams ore 

provided in Fig. 7-14. The graphs in Fig. 7-14a give the effective width, be' that 

is needed for colculoting on effective section modulus at the se-:tion of 

ma'<imum moment in the above 1ypes of beams. Maximum flange ~tress is: 

Eq. 7.60 
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~ 
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.20 

0 .02 .05 .10 .20 

b • flange width 
L • span length 

.JO 

b /L Simple and Cont inuaus Beams 
b/2l Cantilever Beam 

0.5 

~ 

■ Interior_.. of conti,,._, 
...... , ..,;f-ii, •iltritt.,led ... 

• 51mp1,, ~"""" 
uniformli, dilffilll,tecl load 

♦ Simpli, ~ IINm, POint 
load Cit miCIIPa', OPICI conlii
llNm, point INCi Cit lftd 

Ci) Conti......,. NOffl, unif.-mli, 
distributed INCi 

■ Interior apon of ~I- INaffi, 
po;nt lood ot micllpan 

Ntte: Gtapns •• for bo• lhaped 
NCtiDM, Multipoy b~/b f,_ .,.. 
117' 0.15 ~ NCTi-

Fig. 7-l'l(a) EFFECTIVE BREADTH RATIOS FOR ~ LAC Al 
SECTIONS OF MAXIMUM t.'OMENT 

0 ,02 .05 .10 .ilO .JO 0.5 

b/1. Si"11le anc. <.o •tinuous 8eClffll 
b/2L Cantil-. • 6lom 

Fig. 7-lll(b) AVERAGE EFFECTIVE BREAOTI-t RATIOS FOR St-EAR 
LAC AT SECTIONS FOR DEFLECTION CALCULATIONS 
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The following equation provides on estimate of flexural stress, ox, at any point 

in the flange width a disto;1ce y from the web (7. I 0): 

\ 4 ( Ct,) - K I - Eq. 7.61 

where: a = maximum stress ad1"ocent to web; xm 

K = (Sbefb - I )/4 for flanges that extend between webs (box sections); 

K = (4.25 be/b - 1)/4 for flanges that overhang the web. 

The graphs in Fig. 7-14(b) give the average effective width, b'e' that is needed 

for calculating an average moment of inertia, I , to be used for calculating 
e 

midspan deflection with equations given in Table 5-1. 

The graphs in Figs. 7-14 a and b, show that considero1ion of shear lag becomes 

more important (i.e., effective width reduces) as tl-ie rat:., of spon to flange 

width reduces, a,d as the load distribution becomes more concentrated at the 

section of maximum moment. The amount of shear lag also varies with the ratio 

of G/E and with the quantity, m = 31w + 1,flw + If' where lw md If are moments 

of inertia of web and flanges, respectively, about the neutral axis of the beam. 

The results presented in the graphs were developed in shear log studies of 

composite steel and concrete box girders (7.10). T'lus, they are most valid for 

members with isotropic materials arvl with proportions similiar to the box and I 

girders used in the investigation reported in (7.10). 

See also (7.3) for a ~ummory qt effective widths for shear lag, as determined by 

various investigators for cantilever and simply supported beams with various load 

distributions. 
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Flange cwling 

When a beam with thin wide flanges bends, the flanges curl inward toward t~ 

neutral axis because the radial components of the curved flange tension and 

compression forces cause transverse bending (see Section 9,2). This behavior is 

illustrated In Fig, 7-15 for doubly symmetric thin wall I and D sections. 

The average radial component, Qr, of the longitudinal flange force, al<av tf, that 

results from the flexural curvature of the beam is (7 .3): 

2 
20 xov tf C, tf 

XOV 

= Ex 1/M = Ex a 

Detail A 

r 
qr 

a) Wide Flange 

Section A-A 

~ 
b) Box Section 

Fig. 7-15 WIDE FLANGE CUUJNG Dl£ TO CURVATURE 
OF DEFLECTED BEAM 

Eq. 7.62 

The transverse deflection of the curled flange (Fig. 7-15) of thin-wall I and 

sections under the distributed radial load, q,., is: 

4 4 
Km<tr bf 2 °xav 2 bf 

cf = D = 24 Km (I - "f )(E E,,) T. 
f x f tf d 

Eq. 7.63 

The bending deflection coefficient, Km, is given in Table 5-1 for beams under 

uniformly distributed load with various suoport arrangements. The uniformly 

loaded cantilever beam case should be used for curling of an I !>eom, giving Km 
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= 1/8. U,lformly loaded beams with simply supported enJs, ond with rotatil)O(Jlly 

fixf'd ends represent limits for the flange of a box section, with the actual Km 

dependent on the amount of end restraint provided by the web. Km equal to 

2/384 to 2.5/384 is probably a reasonable approximation for many practic:ol box 

shapes. Ex Is the elastic modulus for axial stress in the longitudinal direction, 

while ~f is the transverse elastic modulus of the flange in flexure. The flon-:,;e 

stress Oxav is the average stress ot the mid~pth of the flange caused by the 

design loads on the beam. 

Aesthetic considerations or other performance criteria moy require a limitation 

on cf. If o maximum value for cf is established, the width or thickness or the 

flange in the thin-wall beam can be adjusted, if necessary, to limit er 
Generally, the radius of curvature in primary bending is lar~ enough so thot the 

resulting transverse strf!s.ses due to curling ore small. In the case of curved thin 

wall beams, however, the radius of curvature moy be such that both transverse 

stresses and deflections are significant, and constitute a primary design con

sideration. This is discussed in Section 9.2. 

Torsion 

Torsion of shafts was discussed in Section 5.4, along with equations for 

determining the resulting shear stresses. However, as noted in that section, 

support corditions may prevent the free warping that occurs when non-circular 

cross sections are subject to twist. When worping of a thin-wolfed section is 

pr..vented, torsionally induced shear stresses ore reduced, but additional bending 

and shear stresses are produced by the lateral bending that results from warping 

restrair.f. Bl!nding due to warping restraint is most signiflcoot in the torsional 

resistance of beams having open thin wall cross sections ( i.e. I, L , C , J, JL). 

Al90 the relative importance of warping restraint increases as the beam span 

decreases. 

The torsional deformation of on open thin-wall section is illustrated in Figs. 5-8 

and 7-8 given previously. The first fi9Ure illustrot~s how torsion is resisted by 

shear siresses developed individually in each recf<Jll9vlar element of the open 

cross section and by lateral bending stresses that arise in the flange elements as 

the top and bottom flanges deflect laterally in opposite directions during twist. 
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These bending stresses ,nust be added to stresses that arise frorn primary benoing 

in the planes of the applied loads to obtain the maximum bending stresses that 

occur at the tips of the flanges. 

Cloeed thin-wall sections: From a design viewpoint, a member that is subject to 

significant torque ,hould be provided with a torsionally efficient section, such as 

a closed thin-wall (i.e. tubular) shape. ror member! with these sections, the 

equations presented in Section 5.4 for the shear stresses caused by primary 

torsion provide a sufficiently accurate basis for design, and the longitudinal 

streSS"s a:id torsional resistance that develop from warping resfroint can be 

neglected as very smell in all but unusually short members. 

Wtvn designing a beam with a tubular s~tion for combined bending and torsion, 

the combined web shear stresses must be kept below the in-plane shear strength 

of the material. They must also be less than the critical shear buckling stress as 

discussed previously. (See Design of webs, this Section). Also, thin flange 

elements must be checked for local buckli:-ig ·Jnder combined shear and axial 

compression. Eq. 6.87 maf be used tor this check. The design of a beam with a 

tubular cro~ section subject to combined bending and torsion is illustrated in 

Example 7-5 given later. 

Open thin wall sections generally provide inefficient resistance to torsional 

moments. "4evertheless, their widespread use as efficient bending members, and 

the need to consider situations where loods are sometimes applied eccentrically, 

producing twisting as well as bending, occasionally requires the de1erminotion of 

torsionally induce-ct streues in members with open thin wall sections. 

The theory for torsion of open thin wall section~ is somewhat complex. SeP., 

(7 .3), (7.4) (7 ,6) 0 .11) and (7.12) for theoretical develop~t c. f the theory and 

for explanotions of its use, including concise presentations of equations for stress 

me! deformation. See (7 .11) for extensive design aids such as a table of warping 

constants and function charts for determining stress and deformation in many 

cor:,mon loading and suppcrt arrangements. See (7.12) for on extensive treat

ment of torsion in many types of members. 
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To illustrate the practical evaluation of torsional effects in mem~rs with open 

thin wall sections, equations ore presented below for ~ simplified basic case of 

o beam with on I-shaped 9'!Ction (doubly symmetric), ond having flanges that ore 

rototi0!10lly fixed ir. lnteral bending at one end (full warping restraint). The 

beam is subject to a constant torque, f, over its length, L. Fig. 5-8b illustrates 

the arrangement and torsional behO\.for of this structure while Fig. 5-8o shows 

that same beam subject to uniform twist when the ends of the flanges are free to 

rotate (warp). The following step-by-step procedure con be used to determine 

maximum stresses roused by the torque, T, for the case where warping is 

restrained (Fig. 5-Bb): 

I. 

2. 

Determine warping constant, C w 

12 d2 
cw - -4- Eq. 7.64 

The warping constants for standard metal shapes ore given in handbooks 
such as (5.5) and (7.1 I). 

Eq. 7.65 

3. Determine the bending moment and shear force induced in the flange by 
lateral deformation during f'vist. Also determine the portion of the total 
torque, T, resisted by torsionally induc~ shear, Ts. Only the case of 
constant torque, T, over a length, L, as shown in Fig. 5-8, band c, is given 
here. See (7.11) for solutions to cases with different variations of tor""' 
along the beam length and various conditions of end restraint of lateral 
deformation. 

3.1 Flange Bending: Mf 
T sinh £(L - x) Eq. 7.66 = ·pa C p L 

'3.2 Flange Shear: v, = T coshc:J,(L - x) a pl Eq. 7.67 

3.3 Torque token by torsional shears 

T = T [1. c,,sh.Ji,(L-xl] Eq. 7.68 
s C pl 

4. Determine the maximum lateral bending ond shear stresses induced by Mt 
ar.d Vt acting on each of the fl~s and Ts acting on the assembly of 
flange c:n1 web plates. (See Fig. 5-Be, f and g for illustration of strttsses). 



4.1 
6T tanh pl 

2 
pd tf bf 

This stress occurs at the tips of flanges at the fixed support. 

4.2 max. 'l f 

Eq. 7.69 

Eq. 7.70 

This stress occurs at the junction of flange and web at the fixed support. 

4.3 max -rs in flange: 

max. 'sf = 

where J = 

3 
2 bf tf 

3 

= Eq. 7. 71 

+ Eq. 7.72 

This stress occurs along the outside surfaces of the flange at the point of 
load application. 

4.4 max T in web: 
s 

+ tw T Eq. 7.73 
m0XT = _---r-

SW J 

This stress occurs along the outside surfaces of the w~b at the point of 
load application. 

The above case also applies to a beam of length 2L with a concentrated torque 

applied at mid-span, and flange ends simply supported (no rotational fixity) with 

re:ipeet to lateral bending (Fig. 5-Bc). In this case, warping is restrained at 

midspan because of symmetry, and behavior is the same as a cantilever with its 

built-in end at mid-span of the actual beam subject to one half the total midspan 

torque (i.e., the torque transmitted to each support). 

The above procedure is used in Example 7~ to determine the stresses in an I

shaped beam subject to combined torsion and bending. Local buckling resistance 

under the combined stress state is also investigated in this example. 

Beams cuned In plmle 

Beams loaded perperldicl•lor to their plane of curvat11re are subject to combined 

torsion and bending. ~ 7-S illustrates the determination of bending and 

torsional stresses in a curved beam of this type having a tubular section thot 

resists torsion efficiently. See (7.13) for detailed treatment of this type of 

member. 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~ 7-4: Determine tht: maximum bending and shear stresses i'l the I-beam designed 
in Example 7-3, if the loads shown below are applied to the beom. Determine if these 
streues <e><ceed the safe strength of the beam, based on the moteria: properties, capocity 
reduction factors and load factors given in Example 7-3 and the criteria oiven in the text 
for resistance to lateral and local buckling. 

I I. 

I 
I 
I 
I z. 
I 3. 
I 
r 
I 
I 
I I 4. 

I 4.1 

I -.2 
I 
I 
I 
I 
I 4.3 

I 
I 
I 
I 

Midspal bending moment: 

102 Ix 10 
Table 5-1: MX = 0.2 x 7r + 7- = 

vx = 0.2 x 5 + I x o.s = I.SI< 

Bending stress - vertical loads: Eq, 7.23: 

T f : 0.,... .. ------ir-

t = o. w 
24" 

tf = 0.1 ..... ____ _._ 

11 = 2191 in4 s1 = 183 in) 

12 = 85 in4 J = 3.0 in 
4 

2-5 + 2.5 = 5.()lk 

: 5.0 X 2 )( 12 0 LL ks' (SJ = ,oo I 

Shear stress - vertical :oad 

Vxul Usl 
Eq. S.JO; T w = ~--

0.5xll.32 3 
; Q

5
=0,70x9x(12- 0.35)+ 2 = 105.Jin 

1,5 x 2 x I 05.3 O 2 ks 
Tw = O.SlC2191 = • 9 i 

Torsional effects 

Torque: T xu = 1 x ~ x 2 = I.' k, constant between midspan and supports 

':onstants: 

Eq. 7"4: Cw ,. 85 \
242 

= 12,240 

Eq. 7.65: p2 ,. ~ = ,:,~~ iz~i~ = 0.00011; p :: 0.0105 

Maximum flange bending stress due to warping resistance of flanges: 

f.q. 7,6': axb,. 6 T tcr,hrl ; pl• 0.0105 x 5 x 12 = 0,63; tonh pl:: 0.5581 
pd tf bf 

6 X 1.0 X 12 X ,5581 
"xb = 2 = 2.81 ksi, at midspan 

0.0105 X 24 X 0.7 X 9 

I ----------------------------1 • 
I 

SN note or, ~le 7-1, pope 7-S. 
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I uampee 1 __ ecan,....., 
I 
I u 
I 
I I 4.5 

I 
I 
I 4., 
I 
I 
I s. 
I S.! 
I I s.2 
I 
I '
I ,.1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I ,.2 

I 
I &.3 
I 

Maximum flange shear caused by lateral bending ,,f f!onge1 

E 7 7f\.. 3 T 3 x 1.0 x 12 
q. • vi Tf = 7 ~ = 2xzftx.7x 9 = 0.12ksi,atmidspo, 

Mnximum flange shear coused by twist: 

Eq. 7.71: "sf = :4: ¥ = o.7 x I.Ox 12 = 2.80 ksi, max. at supports 

Maximum web shear caused by twist: 

tf T o.s x 1.0 )( 12 
Eq. 7.721 tsw = !. -y- = = 2.00 ksi 

Combined stresses 

Bending at midspan: max. ax " 0.66 + 2,81 = 3.47 ksi 

In.plane shear at supports: flange: 'tf = 0.12 + 2.80 = 2.92 ksi 

Web: T w = 0.29 + 2.00 = 2,29 ksi 

Adequacy, baled on material properties and section given in Example 7-3. 

Bending: Use interaction equation similior to Eq. 7,80 tor combined axial ;ind 
bending, for reduction in ultimate strength caused by lateral buclcling effects. 

ab (bending from vertical load) 

axe (loter'll buclcling resistance) + 

0 
bending from twist 

ab 
a)(u (I - w-> 

XC 

1.0 

With lateral support at ends <'t'lly, C 1 == 1.0, lateral buckli"'l resistance is: 

Oxc = ~ = 1J!8i~ "' 2.00 ksi (from Example 7-3) 

~ • 2tb = o.33 • o.Js = .Q3 < , .o o.k., 
,.vu 12.0 (I -m 
Ccnclusiom Norm.11 stress, ax• caused by bending is not excessive. 

Flonge shear, Tf a 2.92 ksi max. at supp«ts < 3.0 ksi in-Plane web shear 

strength given in Example 7-3, o.lc. in shear 

Web shear: t w = 2..29 lcai mox. at 114JP0r11 < 3.0 kli, ~webs..- strtnglh, oJc. 

I '·4 
-3468 

Local buckling of compression flange: Use Eq. &.98 
for buckling stress in orthotrc,pic: plate, uniformly 
stressed across width, aa c-.JNervo1 ive approxirna
tinn for flange of this beam with stress distribution 
shown in llcetchi 

I 
I 
I 
I 
I 
I 
I 

+3468 

-2156 
2t, 2 2 x 7 2 

Eq. &.98: axe= G12 <r,> = 315 <---,-:--) : 7"'2 ksi > 3.47 ksi o.k. 

I I In. " 25.A mm, I in.2 • '45 mm2, I in.3 • 16,387 mm3, I in.
4 "' 416,231 rrm

4
, I ft a 

I O.l0ft8 m, I Kip a 4."8 N, I ft-ks 1,356 KN-m, I k/ft = 14.5, KN/m, I lcsi = &.8'5 MPa 
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I ~ 7-S: Determine the bending and torsional stresses in the curved cantilever beam 
I shown in the sketch subject to a tip load perpendicular to the plane of the curved portion 

I 
of the member. Use the same FRP material proper·ties ond load factors as used far 
Examples 7-2 and 7-3. Neglect weig-t of beam. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I o 

I~ 
I 
I 
I 
I 
I 
I 
I 
I 

30" 

Elevation 0-:1 

II 
2 --

~---3-20' __ '. 

-~0.5" 
T_!p. I 

p 

2 

_f. - . 
Set:tion b-b 

(Same as beam in Example S-4) 

From Example 5-4: I I = I S21 in\ 

S1 = 156 in3; A = 29 in2 

~ 

I 
I I. Maximum bending moment, normal stre:.s, shear force ma flel<Ul"ol shear stress: 

I 
I 
I 
I 
I 
I 
I 
I 2. 

I 
I 
I 
I 3. 
I 
I 

M = SO P x LF = SO x 7 x 2. = 700 in-k; V = P x LF = 7 x 2 = 14.0 k XU XV 
Mxu 700 . 

<ix =~;ax = m = 4.Sks, 

Vxu ~yl 19.5 19 19 3 
tx = 61

1 
; ~syl =0.Sx 10---r- +0.Sx2x 7 x 4 =93.9in 

_ 14x93.9 _ 09 ksi 
T JC • l X U.5 X 1521 - • 

Maximum torsion moment and shear stress 

T = 20P x ::'t = 20 x 7 x 2.0 = 280 in-k 
>CU 

TXU 280 
Eq. S.37: 't,c = lAt = 2 x ,.s x 19.5 x o.s = 

p 
Combined torsional and flexural shear: 

tx = 1.5 + 0.9 = 2.4 ksi at mid-height of web 

I.S ksi 

20" 

I ' I 
Check odeq,acy, based on moteriais strength, or local buckling, whichever governs. 

: See note on Example 7-1, page 7-5. 

7-66 



I EJanple 7-S '-'t--0 

I E '~- o 1400 x o.sl 112 7 8 I q. ...... 11 • 12(1 - 0.36 x 0.18> " is.,, 0 22 = 011 = • 
3 

I E 6.6e D D ._, 0.18 x ~400 x o.s 2 x 31S x o.s ., 37 
qs. ' 0: 12 ♦ ...._,-12 z 12(1 • U,J6 X t.18) + l2 : 7 ' I '-6 c and Ucb 

211 2 
: °>u: • 0.

5 
x ;;i ( 15.6 x 7.8 + ,.37) = 9.94 ksl < axu = 12.5 ksi; Use axe 

I 4.2 Flange - shear buc:lcllng stress, txyc 

I ~114 
I Eq. ,.1021 t = ""xr co, 1 022 

I xyc b2 t ; 

I Flg.6-45z >.I•$ D11/D22 = 0i >.2 = Do/ O11D22 = 9.37 =0.8S 

I 
I 
I 
14.3 
I 
I 
I 4.4 
I 
I 
I 
I 
I 
I 4.S 
I 
I 
I 
I 
I .. , 
I 
I 
I 
I 
I 

15., X 7.8 
kxy • 12.2; 

3 1/4 
t ,. 4 X 12.2~15,, X 7.8 ) 

,eye ' X 0.S 
= 11.2 ksi > txyu = 3 ksi; use Txyu 

Flange adequacy in combined shear and bending, Eq. 6.87: 

I 5 2 4.5 <w + IT ~ I .Os 0.2S + 0.ltS = 0.70 < 1.0, o.lc. 

Web - normal buckling stress, axe 

2 kw 0 11 . 
Eq. 6.IOh axe • 2 ; F,g. 6-44z k 

b t 
20 for DzzlD I I = o.s 

2 
a. • 20 • x 15·' = 17.0 ksi > a = 

XC 192 X 0.S XII 
12.s ksl; Use c,l(U = 12.S ksi 

Web - shear buclcling stress, ,. 1 • xyc 
k from 4.2 above; 

xy './4 

Eq, 6.102: • = 4 x 12.2~s"' x 7.a3> = 2.5 ksi 
I x 0.5 

< txyu = 3.0 ksi; lJle T xyc 

Web adequacy In combined shear and normal stress; Eq, 6.88i 
2 

~ + \4£\~~•J> ~ I.Os 0.92 + .12 • 1.04 1.0. o.k.; close enough 

Conclusiona Since the flalge Is understressed, a slightly wider and lhollower tuhe 
wauld be more efficient bec:oute the tors!onal effects ere more si9"ificant than the 
flexural effects. 

I ... No....,te,--z ... ,.--ps ... l -.. .,,.U,._5 .... , ... Pa-, """ll ... n.-~ ... 2-s-.,-?"-, ... , .. 161 ...... :: ... , .... 4} ...... N,--4 ____ 4 ____ _ 

I I In. • 25.4 mm, I In • '45 nvn , I In • 16,387 mm , I in = 4".231 in , IK = 4.448 KN, 
I I in-K a 11 J N-m, I Ksl a '-89S MPa 

I See note on Example 7-1, page 7-S. 
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7.S BEAM - COLUMNS 

Beam-columns are subject to combined bending and axial compression. As shown 

previously in Section S.7, when axial compression is applied to a member already 

bent (laterally deflected) as a result of bending stress ond/or initial crookedness, 

tt-M:se initial deflections ore eccentricities that produce more deflection 1ue to 

the applied compression force. As a result, stresses increase non-linearly as 

axial load increases, A simple method for estimating the magnified bending 

moment caused by axial load, involves the determination of a "magnification 

factcr," as defined in Section 5.7. The estimated moximum bending moment is 

determined from the calculated moment, M , and axial thrust, N , obtained in a 
XO X 

linear analysis: 

M = M + N c5 t·- I N ] max XO X O X 

1-~ 
XC 

Eq. 7.74 

In this equation, 6c is the maximum lateral deflection in a mem~r of length L 

caused by initial crookedness and/or on applied bending moment, M , based on 
XO 

linear analysis, Nxc is the Euler buckling load for a pin ended member, and Nx is 

the applied load. 

The term (I - N /N ) is called the "magnification" or ''amplification" factor, 
X XC 

since it provides a simple multiplier for determining the approximate effect of 

the non-linear magnification of initial crookedness, eccentricities in the appli

cation of axial load, and deflections due to lateral loads as calculated using 

linear elastic analysis. 

Eq. 7.74 is written in more convenient form by defining (5.5) (7.2): 

= Eq. 7.75 

Thus: 

Eq. 7.76 
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Maximum deflections of beams with several conditions of end restr0int, end 

mo:nents ond transverse 1oods ore given in Table 5-1. When these deflections, 

and the related Euler column buckling loads, Nxc' (Eq, 7.15) ore applied to Eq, 

7.76, values may be obtained for "1. These are given in Table 7-3 for some 

common load cases. This Tobie shows that + = 0 for the case of equal end 

moments of the same sign, producing single curvature with constant moment 

over the length of the me•nber. Also, this is the largest value of ljl, since "1 is 

negative for the other cases. In view of this, the term in the numerator of Eq, 

7.76 is called the "Reduction Factor", C , where: m 

C m = 

Table 7-J 

Reduction Factor for Combined 
Bending and Axial LDad 

t•,lSie I c'-"' ---, . 
-p 111111 n I11II III1I I~ 0 I 0 

- ·- -
2. 0xa -f111111111111111111It- -0.4 I -· 0.4-

0 xae 

3. a 
-4111 IJ IIIIIII II II II I If..,_ -0. I - 0.4~ 

0 xae 

4. 
j a --, ,- - 0 2 I - 0.2~ 

0 xae 

5. 
0 xa t:L/2 

➔- 0.3 -, I -· b .. 1-
' 0 xae 

6. 0 xa --1 l l- -0.2 I 0"-
0 xae 

...... ·- •r• --~ ·-

. 

-

I 
I 

~ 
• I 

I 

Eq. 7.77 

• Ap1 ,'.i,~ for C I aid a I when 1-1 i.s axis of bending a,d fa- C 2 when 2-2 is axis of bending 
~ ~~ m. 
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Values of Cm for common coses ore also given in Tobie 7-3. Thus, the following 

modified version of Eq. 7.75 will be used in the design equations presented later: 

cm 
Mmox = Mxo N Eq. 7.78 

(I -rf-_) 
XC 

If it is desired to include an additional amount of deflection, !Soi' for initial 

crookedness, this may be done using Eq. 7.75. However, as a dP.sign simplifica

tion, no init;al crookedness is included for the determination of 1jl utt:d in 

structural steel design practice (7.2). 

The comrl"Ol'l cases where end moments are unequal are not included in Table 7-3 

because they involve theoretically complex relations for 1jl. An approximate 

approach given in (7.2) greatly simplifies the calculation of C for this m 
important case (Fig. 7-16, o orb), giving the following practical approximation: 

Ml 
Cm = 0.6 + 0.4 ~ , but not less than 0.4 

2 
Eq. 7. 79 

where Mi is the numerically smaller end moment, and M1;M2 is positive for 

members bent in single curvature (Fig. 7-16(0)), and negative for members bent 

in double curvature (Fig. 7-16(b)). 

I' 
2 8-z 

I, 
Senion~ 

, 
a II a 

M2 is positive 

o) Single CUNOture 

II 

• a a 

b) Double Curvature 

Fig. 7-1' SINGLE AHl DOUBLE ~VA~ OF BEAM-COLUMNS 
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Bending combined with axial compression implies the absence of lateral support 

in at least the plc:ne of bending. The beam-column moy, or moy not, hove lateral 

support in the direction perpendicular to the plane of bending. An occvrote 

deterr11ino~ion of the behavior of o loterally unsupported beam-column is 

complex (7.4). The same is true for a member subject to axial compression 

combined with biaxial bending. An approach based on a simple interaction 

formula hos proved to give a conservative approximation of the effects of 

combined bending and axial compression foot is very useful for practical design. 

The generalized forrn of on interaction equation for members such as those 

shown in Fig. 7-16 is (7 .2) (7.4): 

0 xa Cml 
0

xbl 
Q O )(QC + -----a 

Q (] (I - -~) 
xblc a xole 

+ 
cm2 (]~ 

0 xa 
Q a b2 (I -o--) 

x u xa2e 

1,0 Eq. 7.80 

where oxa = axial design stre:..s times lood factor, Q a xac = ox:al strength in 

compression (inc!uding any reduction for local buckling), bosed on Fig. 7-4 for 

buckling in weak direction (usually axis 7.-2), c, xb 1 = bending design stress about 

1-1 axis times load factor, Go xblc = bending strength about 1-1 axis Hr.eluding 

any reduction for ioterol and/or local buckling), <'xa le = a;dal Euler buckling 

stress (f::q. 7.17) when laterally unsupported normal to 1-1 axis, Cm 1 = reduction 

factor for bending about 1-1 axis, o xb2 = bendinq design stress about 2-2 axis 

times load factor, Q o xb2 = bending strength about 2-2 axis, a 2 = axial Euler e xo e 
buckling stress (Eq. 7.17) when laterally unsupported normal to 2-2 axis and 

cm2 = reduction factor for bending about 2-2 axis. If the member is not subject 

to bi-axial bending, the third term in Eq. 7.80 is not required. 

Because the reduction factor, C , may be as low as 0.4, it often is necessary to m 
check the effects of combined stress at joints where no amplification of bending 

con occur (except in frames subject to sidesway). In this case, neither the oxioi 

strength, oxau, ,lOI" the bending strength, axbu' need be redU(.ed for lateral 

buckling. Any reduction due to local buckling is taken into account in the 

determination of the Q foctor. Thus, the interaction formvlo becomes: 

O'xo 
--- + 
Qaxou 

0 xbl + a,...b2 
Qoxbu 

< 1.0 Eq. 7.81 
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Desi'.)n of members subject tu combined bending and axial stress usually requires 

on initial or trial design, based on the designer's judgement about the interaction 

of axial stress end berding. The factored ultimate stresses obtained with this 

design, oxa• a xb 1, crxb2, must be investigated using both Eqs. 7 .80 and 7 .81. 

E>cample 7-& illustrates the investigation of a linear member subjected to 

combined bending end axial stress resultants. 

When members form part of a frurne in which joints may deflPCt laterally, design 

for combined bending and axial load becomes more complex. The behavior of 

laterally and ve,-tically loaded rigid frames and slender braced frames (Fig. 7-

17(0) and (b)) ex•~mplifies the non-lineor increase in deflection and bending that 

occurs due to interaction of effects produced by these loads (Section 5.6). 

Lateral load produces lateral deflection of joints. The product of vertical load, 

P , and lateral joint deflection, l!. , produce additional bending in rigid moment 
V 

frames (Fig. 7-17(a)) and additional axial load in "pin jointed" braced frames 

(Fig. 7-17(b)). These effects ore significant in certain slender or flexible 

structures but methods for their determination ore beyond the scor-e of this 

Design Monuol. See (7.14) for a comprehensive presentation of a practical 

oppro)(imate method for determining Pvt, effects. 

h 

I 
I 

EiC ' 
I 

a) Rigid Frame 

Additional Moment at b and c = Pvt. 

b) Braced Frame 

P f. Effect is Equivolent to Effect of 
oX Additional Lateral Load Applied at 
b, where P'H = 2P v t. /h 

Fig. 7-17 ADDITIONAL. STRESS RESULT ANTS DlE TO FRAME DEFLECTION 
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I E>Canple 7-l,: Determine the maximum design axial ,::ompressive load that can be applied 
I to the beam shown in the sketch. The fiberglass reinforced plastic materials are the same 
I as for the beam in Example 7-3. The design beam load applied perpendicular to axis 1-1 Is 

I 
500 lbs per ft. The beam is laterally braced at midspan. The beam section is shown in 
Section 0-<1. * 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I I. 

I 
I 
I 
I 
I 
I 2. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 2.1 

I 
I 
I J. 
I 
I 
I 
I 
I 

p p 

II 0.7"+= -
0.111 _....,_ 

lat. brace 

EleYGtion 
Section o-o 

Reduced ultimate strength and stiffness properties (See Example 7-3): 

0 xu 

" 12 

= 12,500 psi (compression); 'xu = 3,000 psi 

= 1,400,000 psi; E22 = 700,000 psi; G 12 = 315,000 psi 

= 0.36; "2 I = 0.18 

Section properties: 

A = O. 7 x 9 x 2 + O. 7 x (16 - 1.4) = 22.82 in2 

16" 

3 
11 = 0.7 x 9 x 7.652 x 2 + o.7 jJ4•6 = 918.9 in4; s1 = ~ = I !S in3 

• 7 X 2 X 9
3 

14.6 X , 7
3 

85 5 · 4 12 = 12 + 12 = • in 

{f; {;;:; 635" ~ rl = -y j; = -Y ii:ifr. : . ,n; '2 1~ = 1.94 in. 

Bending. Use lood factor of 2.0 
2 0.S X 12 X 2. 

8 = 18.0' k x 12 = 216 11-k; max a xb 1 = -N/- = 1.88 ksi 

Determine the form factor, Q, for local buckling under axial compression alone: 
This may be governed by either the locol buckling resistance of the flanges or the 
web. 

Flange: 
bf 9 rt, : 2 X • 70 : 6•4 

I 
I * See note on Example 7-1, page 7-5. 
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I E.>comple 7-G (r:ontinuecl) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
Is. 
I 
~ 
I 
I 
I 
I 
I 
I 
I 
I 6. 
I 
I 
I 
I 

G12 315,000 . 7690 
Eq. 6.98: a = 2 = 2 = 7,690 psi; Q = 12 SOO = 0.615 

XC (b f/2t f) (6.4) , 
2 

Web - for uniform compression: Eqs. 6.92 and ii.920: vxc = : 2rr t <✓DI I D22 + D0 ) 

CJXC : 
221

2 
(0.7] '124,sOQ_x-62,4()() + 75,000 X 0.73) ( I 4.6f" ~Q.]- '1/ I £

4
,o 

Note: See Example 7-3 for calculation of D 11 , u22 and D
0 

crxc = 7,396 psi 7,400 psi; Use Q = ?2;~ = 0.59 

Post buckling stren<)tn of the web is not used because web mu~t also carry shear 
and bending from lateral load. 

Ultimate axial compression strength: K = 1.0 for simply supported ends, with 
respect to both 1-1 and 2-2 axes: L1 = 12 ft.; L2 = 6 ft. 

KL I 12 x 12 KL2 6 x 12 
rj = 6.Js = 22.1; r2 = 1.94 = J1.1 

Ee.. 7.18a: c• = V- = 1;n2~JJ_4oo,ooo = 61. 
C 71 lrcJX~ -v 7,400 

= Q.59 X 12,5()() = 7,400 psi Note: Q crxu 

When KL < 
r2 

C' , use Eq. 7.20 for transition zone (Fig. 7-4, curve 5): 
C 

(Q<1 )1.5 
. xu cKLl 

(1 = 'J. , - --- = 
xac xu 2 'IT ,{i.E" r 2 

7,400-(7,400)1.Sx37.I = 5154psi 
2tr ✓2 x I ,4JO,OOO 

Ultimote bending compression strength, based on loterol buckling resistance, ma
terial compression strength, or local buckling resistance. 

bf 1f 
Eq. 7.50: cr xblc = 0.65 CI El I TT ~ Qo xu 

With brace at mid span (M2 = Mmax and MI = 0), from Eq. 7 .39: CI = I. 7 5 

0 9 X 0.7 
o xb le = .65 x 1.75 x 1,400,00) x 12 x 16 = 8708 psi > Q oxu = 0.615 x 12,500 psi = 7700 

LJseQOxbv = 7.7Ksi 

Bending amplification factor (Eq. 7.80): 

Amplification factor for bending about axis 1-1 in Eq. 7.80 is ( I - o xo/0 xo I c>· 
0 xale is the Euler buckling stress about axis 1-1, and is obtained using Eq. 7.17. 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Example 7..(, (continued) 
2 

1r Ell 
Eq. 7.17: o I = ---- = 

xa e (L/r ,>2 

2 
D X 1,400,000 

(22.7)2 = 26,815 psi = 26.8 ksi 

Note: Use Euler stress ever, if axole > 

also, oxo is the axial stress, P/A: oxo = Pu/ 22.8 

p p 
Thus, amplification factor = I - 22.B xu26.8 = I - ITT 

I I 7. Bending reduction factor, Cml (Eq. 7.80): Table 7-3, Cose I; Cml = 1.0 

Determination of Pu' based on interaction equot ion, Eq. 7 .80 I a. 
I • I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

°xa 
-- + O' 

xac 

cm, 0
xbl IO pv 1.0 x 1.88 Io 

0 = • ; 22,8 X 5.154 + 7.7(1 - p /ITT) : • 
a bl (I - xo ) u 

x c 0 xale 

Pu 0.244 
TTi3 ♦ (I - p /611) = 1.0 

u 

Cut and Try Solution: 

p 
u 

kirs 
( I - P /611) 

u 
P /117 .5 0.244/( I - P /611) E = I .0 u u 

I 8S 
I 84 
I 

0.8ol 
o.&3 

ll.723 
0.715 

.283 

.283 
I .006 
.998 1.00 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Result: Maximum ultimate axial thrust that con be added = 84k. Using a load fact()!' of 
2.C, the maximum design axial thrust is 42k. 

Note: 
I in. : 2S.4 mm, I in2 645 mm2, I in3 = 16,387 mm3, I in4 = 416,231 rnm4, I ft = 

0.3048 m, I Kip= 4.448 KN, I in-k = 113 N-m, I ft-k:: i.356 KN-m, I lbf/ft = 14.59 t-1/m, 

I psi = 6.895 KPa, I Ksi = 6.895 MPa 

7-75 



7.6 RIBBED PAN:LS 

When plastics ore used for flat components that resist transverse loads, 

configurations comprised of corrugated shapes or flat sheets with ribs are often 

used. See Figs. 4-4, 4-5 and 4-6 in Section 4.4 for typical ponels with various 

types of open corrugations, solid ribs or closed hollow ribs. Most of these ponel 

types have a system of ribs that span between support member3 along ends of the 

panel. Such panels are designed as one-way spanning beams. Panels may be 

simply supported by members located at panel ends, or they may be multiple 

span continuous beams supported by members located at intermediate points in 

the panel length. 

Design considerotivns ore the same as previously described in Section 7.4 for 

beams having open thin-wall sect:ans or tubular sections. These include panel 

flexural strength OOSE,d on tension and compression strength of the respective 

tension and compression flanges, in-plane bending and shear strength of the web, 

in-plane and interiaminar shear strength of the flanges, local buckling of both 

the compression flange and the web, and panel deflection. If o ribbed flat ponel 

is used to Sl'pport axial load as a column or bearing wall, design procedures given 

in Ser.tion 7.3 should be followed. 

The section properties of a common type of corrugated panel formed of 

undulating circular ores of equal rcdii are given in Fig. 7-18 as a function of the 

pitch-depth ratio, as defined in the Figure. This chart facilitates the rapid 

calculation of section properties for this type of corrugated panel. 

When a concentrated load is applied at u ,ingle rib, or at a point between two 

ribs, on a panel with multiple ribs, the load effects ore distributed portly to the 

directly loaded ribs and partly to ribs beyond the loaded ribs. The analysis 

required for an accurate determination of the load distribution between ribs is 

complex and beyond the scope covf!red here. Studies devel~ f01 br!dge decks 

(7.8) (7.9) provide some useful approximate procedures for obtaining load 

distribution between the transverse ribs. Also, as explained in Chapter 6, the 

ribbed panel can be considered to be on orthotropic plate; in this approach stress 

resultants may be determined using charts or tables provided in rP.ferences given 

in Chapter 6. Sometimes, it is sufficiently accurate for design to consider that 

thf' er,tire concentrated load is carried by the loaded rib, or ribs, with no 

dist!"ibution of IOCY.f effects to adjacent ribs. This assumption is most applicable 
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to ribbed pc;nels with thin facings that do not hove "di:;tribution ribs" rUMing 

perpendicular to the primary ribs spc;nning between panel supports. 

0.370 

i 0.365 
e 
~£ 0.360 

Ql"0 

0.355 

0.350 

0.345 

... 
0 0 

.t:. 'C ... ; 

~ P?-~ 
d = depth 

,~ ,I O 12 
I 2 3 4 5 6° 

P Pitch 
ir = l5epih 

0 

1 

1.40 

:.20 

1.00 

0.80 

0.60 

a:hi 
0.40 

Fig. 7-18 SECTION PROPERTIES OF P~LS WITH 
CIRCU.At~ ARC CORRUGATION (7.15) 

The design of a single-span ccrrugated wall panel with circular ore corrugations 

is illustrated ln Example 7-7. The design of a singlP. span flat pmel with hollow 

ribs that forms t~ deck of a marine floating dock is illustrated in ~le 7-8. 

7.7 LARGE BOX AN) T-BEAMS 

When structural plastics are considered for large structurnl componenets, a ''box 

type" configuration, comprised of wide ribbed or sandwich panel flanges integral 

with deep webs, is often on efficient strudure that con be economically 

fabricated. Such a member is shown in Fig. 7-19o. A few examples in existing 

usage include footbridges in se•·,oge plants, floating docks and walkways at 

Marinos, freezer truck bodies, cargo containers, and aircraft bodies. 

If the wide flanges or covers of a box beam with multiple webs occur only on c,ne 

side ·:>f the webs, the overall cross section is a T configuration instead of a box os 

shown in Fig. 7- I 9b. Large structures with ''box" or "T" configurations often 

behove as beams and their design is based on the methods ald criteria given 

above in Section 7.4. However, flooge components may first hove to be designed 

as local bending members, spanning transv~rsley between webs. This is illustra

ted in Example 7-8 in Section 7.6. 

7-77 



I EJanple 7-7: Determine the required thic1<ness of a trahspartel"T acrylic plastic 
I corrugated slleet wall panel with a pitch of S inches and a depth of 2 inches to sofely span 
I 60 Inches <simply Sl,l)pOl'ted) under a short-ter,n (wind) design load of 20 lbs per sq. ft. 

(suction or pressure). Limit the maximum service load deflection to fpan length divided 
1
1 

by 120 (i.e., 0.5 in.) Assume the following minimum test properties for the oc:-ylic 
material:* 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I. 
I 
t 
I 
I 
I 
I 2. 
I 
I 
I 
I 
I 
I 

Tension Strength 9,000 psi 
,,. 1, ... 

Compression Strength 11,000 psi 

Fle-curol Strength 12,000 psi 

Elostic modulus 400,000 psi 

RE:du:ed ultimo~e str~qth and stiffness: Ass.,;me capacity reduction factors for 
wl'ld load as ~.3 for te?"lslo,,, 0.4 for flexure, 0.5 for compression and 0.9 for elastic 
rnodulus. Tne i"'w~r cop.:.city reduction factors for tension and flexure ore selected 
l'>ecouse ocryl:i:s tend to ~hove as brittle materials. 

Use loud fa-.:tor of 2- ': 

Bending strength: 

M •. 20 x s; _x 2•5 - = 156 ft-lbs/ft or in-lbs/in, where Z • .S is the load factor 
XU 

Required section modulus, S 1: Eq. 7.33: S 1 -= 
in3/in 

Thus, I 1 '" SI d/2 = 0.058 x ! .0 = 0.058 in 4 /in 

M 1S6 ** cr = rx~ 
XU 

= 0.058 

I 
I 
I 
I 
I 
I 
I 

** Note: "tension" rather than "flexure" ~verr.s, bP.couse the full thickness of the sheet 
is stressed at the moximllrn tension stress at tht• trough at midspan. In this formulation, 
the vor;ation in stress over the thickness of the sh.~t is neglected for thin sheE-ts. 

From Fig.7-18 for pitch/depth ratio= 5/2 - 2.5: 1
1 

= 0.180 ti; thus: 

I 
I J. 
I 
I 
I 
I 
I 
I 
I 
I 

11 0.058 
req'd t = • I 80 x d2 = 0.180 x 2 x 2 = 0.081 in. 

Bending deflection: On one inch wide strip: W = 20 x ~ = 8.33 lbs/in. width 

SWL J 5 x 8.Jl x 603 
Tobi:! S- I: ~ : ffltJ ;:: 384 x .9 x 400,000 x 0.058 = 1 • 122 iri. 

olk,w 6m = ~ = -J% = 0.50 in. 

lncreo- th1'cL.---- to t -- 'o.1/J x 0.081 -- 0 182 · · I ' ,. I - iu- . in., since 1 1ncrea:ces ,near y 
with t 

I * See note on Example 7 .. I, page 7-5. 
I 
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I Example 7-7 (continued) 
I 
I 4. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I s. 
I 
I 
I 
I 
I 
I 
I 

Local bucklbg resistance: furn s1 = 21 1/d = 2 x 0.180 x 0.182 x 22/2.0 = 0.131 in3/in 

'd a ~.156 = 1190 1200 ps1· max. req x = u, , ., 
1 

Cunservative approximate buckling strength is given by buckling resistance of 
cylindrical shell under longitudinal compression (Section 9.10): 

Fig 7-18: radius of curvature, R = 0.65d for pitch/depth = 2.5; R = 0.65 x 2 = 
I.JO in. 

Eq. 9.74 a 
XC 

CE t 
=~= 

Fig. 9-25 for bending with R/t = ~ j~g = 7.14: kn "" 0.85 

Also for i.;otropic materials with v = 0.3; k
0 

= 0.6 

a 
XC 

0.6 X 0.85 X 0.9 X 400,000 X 0.182 
= .3 

Local buckling does not govern 

= 25,700 psi > 1200 psi 

Use a thickness of 3/ 16 in. with a corrugation having 5 in pitch and 2 in. depth 
center to center of sheet. 

From Fig. 7-18, the required width of equivalent flat sheet is K = 1.45 times the 
laying width of corrugated sheet plus any required side laps. ~a of sheet section 
= I .45t x (laying width i- side laps). 

I 
I 
ii 
I 

I in = 25.4 mm, I in3/in = 645 mm3/mm, I in4 = 16,387 mm4/rnm. I ft-lbf/ft = 4.448fJ
m/m, I in-:bs/in = 4.448 t..J-mm/mm, I lbf /in = 0.175 N/mm, I psi = 6.895 KPo, I lbf /ft = 
47.88 Pa 
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I Emmple 7-8: ~sign a deck panel that spoos 6 ft. (simply supported) and provides a 
I walkway for floating slipways il'I a sMall boot morina. Transverse and longitudinal 
I sections through the wc'kway showing the required deck panel an,:• 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

' I 
I rio spacing - _..) _________ .... 

Asame the followirg desig, loads: U,ifamly distributed: 100 lbs/sq.ft. (includes pa,el weig-it) 
Line: 250 lbs/ft (See longitudinal sectlon} 

Use a fiberglass reinforced plastic laminate with alternate layers of mat and woven roving 
end polyester resin. Assume the following mechanical properties, based on short time 
tests in wet environment: 

Tension Strength: 20,000 psi; Compression and Flexural Strength: 25,000 psi; 

Si,ear Strength (in-plane): 6,000 psi; Shear Strength (interlaminor): 1,500 psi; 

Elastic Moduli: E1 I = E22 = 1,500,000 psi; G 12 = 450,000 psi; 

Poi&SOn's ratio: v12 = v21 = 0.2 

Use the rib arrangement shown in the 
sketch at the right. The rib is layed 
up wet over a cardboard core whose 
cc.ntribution to strength, stiffness and 
local buckling resistance is neg!ected. 

I 1. 
I 

Use the following capacity reduction factors, 4, for reduced ultimate strength 
properties and service stiffness properties (design loads are applied intermittently 
over a long period of time}: TMsion, Compression, flexure and in-Pla;ie shear: t = 
0.5; lnterlaminor shear strength: 9 = 0.3; Elastic Moduli: 9 = 0.8 

I 
I 
I I 2. 

I 3. 
I 
I 3.1 

I 

IJ,e a load foc1or of I. 7 

Determine thickness, t 1, of deck ~t, and clear spacing between ribs. 

Try t = 0.3 in. Let clear span between supports = s' = s - (a + d). Line lood will 
gover~ local flexural stresses, transverse direction, between ribs. 

I 
I 
I 

* See note on Example 7-1, page 7-5. 
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I EJcarr4>1e 1-& (continued) 

I 
I 
I 3.2 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
; 
I 
I 3.3 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4. 
I I 4.1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

4.2 

Pu = 250li 1•7 = 35.4 lbs/in. width 

Check strength criteria: 

p XS' 
applied Mu~ u 5 
Note: Coefficient I /5 allows for effects of M>me end fixity, 

Flexural strength, a = 
XU 

0.5 X 25,000 = 12,i::-v() .~!>: 
2 

b t I I x 0.32 
S1 = ~ = --r- = 

allowed max. M = cr S 1 = 12,500 x 0.015 = 187 .5 in-lbs/in 
U XU 

mox. allowed clear span: 7.08 s' = 187.5; s' = 26.5 i11 

Check deflection criteria: 

Table 5-1: Assume end restraint results in deflection midway between simplv 
supported and fixed end cases. 

K P s13 

6m = m El ; P = 250/ 12 = 20,8 lbs/i11, at midspan; Km = <-Je + TiI) x ~ = 0.013; 

3 
. b t I I x 0.33 4 

E = 0.8 x 1,600,000 = 1,280,000 psi; I = 7T :: 12 = 0.00225 in 

ollow 6m = ~ = 3iRJ to avoid excessively "soft" feel 

s' .013 x 20.8 s13 0.094 s13 , /io 
100 = 1,280,000 x 0.0022 S = I 000 i max s = ~ ~J94 ~ 3 = S. 95 6 in, 

Corclusion: If deck sheet is 0.3 in thick, clear distance between ribs should not 
exceed 6 in. 

Determine center to center rib spacing ond rib dimensions~ 

Try ribs at 12 inches on center: Either line lood or uniformly distributed load may 
govern design. Ribs 5P'ln 6 ft. os simply supported beoms 

P = 250 x 1.0 x 1.7 = 425 lbs.; W = 100 x 1.0 x 6.0 x 1.7 = 1020 lbs. 
u u 

Since distr!b-Jted load, Wu' is more than twice concentrated line IO.:Jd, Pu' Wu will 
govern des1gr .. 

Strength criteria: 

applied Mu = 1020 x g· x 12 = 9,180 in-lbs/rib 

if we coo develop full strength of laminate: oxu = 0.5 X 20,000 = 10,000 psi 
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I Exmi,>le 7-8 (continued) 

I 
I 
I 4.3 
I 
I 

Eq. 7 .33: req'd SI 9180 
= "xu = nf,000 ::. 0.92 in3 /rib 

Stiffness criteria 
3 2 2 

L 5 WL 'd I 3.91 WL 3.91 x 600 x 72 
300' = JB7i IT ; req = E = 1,280,000 = 9.50 in 4/rib 

I I 4.4 Rib dimensions, using trial approximations 

I o > 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I <2> 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I (3) 

I 
I 
I 
I 

Initial estimate of propertions and section properties: 

Compression flange area = _0.3 x 12 = 3.6 in2 

If effective tensior flange area ~ 0.2 x compression flange = 0.2 X J.6 = 0.7 in 2 

d 
Trial e.g., y = 3.6d = 0.84d 

. 0 3.6 + 01 2 2 
Trial I 1 = 3.6 x (. I 6d) + 0. 7 x (0.84d) = 0.586d 

Trial min. s1 

Trial min. 1
1 

2 
= 

0
-~~ = 0.7d = 0.92; trial d = 1.31 in. 

= 0.586 ci2 = 9.50; trial d = 4.0 in. 

Limit~ng width-thick~ ratio of deck sheet 
d = 4 in. & I = 9.50 in /ft: 

to preclude local buckling with 

t S 9.50 14 8 . 31 'b 9{la~ op =o.16x4 = • in r,; 0x = • = 620 psi 

2 2 
Eq. 6.71a: a = k 1r 3 (~) = 620; k = 4.0 

XC 120-V ) u 

4 1r 
2 

x I 280 000 
620 x I 2(1 - 0.2 ) 

= 84.1; if t = 0.3, max h = 25.2 in o.k. 

Use mox. (a+ d) = 6 in., as governed by transverse stiffness, 

if tension flange A = 0. 7 in 2: 0. 7 = (1.12d x 2/6 + a) t 
2 

0.7 = (0.37 x 4 + 2)t2; min t 2 = ~:J9 ;,w 0.20 in. 

Try t 2 = 0.25 in. 
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I &ample 7-8 (continued) 

I (4) Trial proportions of rib and section properties: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

6" 

I ,,,, 

t," 

0.3" 

y 

.Bl" l.J'," 1.87" o. 75·• 

: Segment Area A 

. 2 

y Ay Ay 2 
. 3 . 4° I in in 1r. m 

1------------
1 0.3 X 12 = J • 60 o. o. 3.82 2 J.6 X .J /(2 : 0.03 

I 2 
I 
I 3 

I 4 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.25 X 0.75 X 2 = 

0.2 5 x I • I 2 x 4 x 2 = 

0.25 X 2. = 

.38 

2.24 

.so 
r.72 

0.27 0.10 0.22 

2.15 4.82 2.81 

4. 2.00 4.41 
n2 TT:16 

- 6•92 I 03 · I 14 28 . 4 Y = 6:1"[" = • . in.; O = • in 9.50 

negl. 

°""T.lJ2 
11.26 
'W-"'-8 

f2 may be reduced to about .25 x 9.5/ 14.3 = .17 in and the above calculation for 
section properties repeated. 

Local buckling will not govern bottom flange which is in tension, nor webs v,hich 
are o.k. by inspection, since stresses are low because of the rib depth required for 
stiffness. 

•-----------------------------1 
I I in = 25.4 wm, _I 4n2 = 645 MM

2
, I in; = 16,387 rnm3, I in3/in = AS mm3/mm, I in~ = 

I 416,231 mm , I in /ft = 1,365,587 mm Im, I ft ,, 0.3048 m, I lbf = 4.448 N, I lbf /1n = 
I 0.1751N/mm, I lbfft = 14.59 N/m, I in-lbs/in = 4.448 N-mm/mm, I psi = 6.89S KPa, I 
I 1bf.ft = 47.88 N/m , I in-lbf = 113 N-mm 

I 
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Sometimes, the proportions of large box and T beams require consicieration c.f 

effects that ore normally neglected in the elementary theory of flexure used for 

practical design of most bending members. The elementary theory is based on 

the assumption that ''Plane section!> before bending remain plane after bending". 

By this assumption, shear strain is neglected. However, shear strain causes 

important modifications of the distribution ond mugnitude of normal and shear 

:.tress when either the depth, or the width, of a box section is large relative to 

the span of the box beam. 

A 

Bottom 
Flange 

a) Box Beam 

~~:phragm J.,_LJ ___ ;5_i_bs _ __,,,_□ ___ :] __ 
Section A-A 

b) T-Beom 

Fig. 7-19 BOX AN:> T-8EAMS 

Box Tor beom'i that hove span to web depth ratios that ore less than Jbout I to 

2 (for simple spms) or spcn to flange width ratios that are less than about 5 for 

uniform load and 8 for concentrated load (for simple spans) should probably be 



analyzed by methods thot account for effects of shear strain. This can be done 

using finite element analysis with element stiffnes,es that account for both axial 

and shear deformotiO'l. Also, the above span-to-depth, and span-to-width, ratios 

ore based on isotropic materials having a Poisson's Ratio, v , of 0.3. Significant 

differences may be expected with orthotropic materials and with materials with 

a low in-plane sheer modulus, G. 

Solutions for stresses in deep rectangular isotropic beams are given in Section 

6.8. These ore not applicable to deep beams with flanges, but indicate the 

general nature of the effects of low span-depth ratios. In deep beams, the 

effectiveness of the fltJnge is reduced and rough design could be based on t~.e 

web only behaving as a rectangular diaphragm plate. 

The modification in flange normal stress cavsed by shear deformation in wide 

flanges is usually called shew' log. This is discussed in Section 7.4. Again, the 

approximations given in that section apply only to beams with isotropic maierials 

and v = 0.3. Shear lag in members with wide flanges is usually taken into 

account by using o reduced flange width, termed the "effective" flange width. 

The "effective flange width" is the flange Y'idth of on equivalent beam with 

uniform flange stress having the same maximum flange stress, or mid-span, 

deflection, as the maximum flange stress in the actual beam with non-uniform 

flange stress caused by shear lag. See Fig. 7-14 for graphs giving effective 

flange width/actual flange width .-atios as a function of span/flange 'Nidth ratio's 

for simply supported and cantilever box and I-beams subject tr> lKliformly 

distributed load or concentrated loads at midspan or one-third span. Fig. 7-14(a) 

gives the effective width, be' for colculating effective section modulus for 

determining maximum flange ~tress at the section of maximum .noment, while 

Fig. 7-14(b) gives the effective width, b'e' for calculating the average moment of 

inertia for determining mid-spon deflection. 

The desig, of o large box section beam with o wide flange is presented in 

E>aample 7-9. An effective flange width is determined using the above method to 

account for shear log. 
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I 
I 
I 
I 
I 
I 
I 
I-
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ExGmple 7-,: Develop a prototype design for the entrance cnnopy roof shown in the 
sketch as a transparent gloss reinforced polycarbonate plastic cantilevered box beam.* 

12'-0" 

4'-0'' 4'-0" 41-011 

-.- - ---,- "T" - -.---- -, I-,- I L----- _J__ ____ J...______ I 
-..------...-,.:i-..11.::11-..-=:=-'========r".1--' 

(a) Side r.levotion 

8'-0'' 

(c) Sectim Thru Troosverse Rib 

J _l_------'-t 2.5 in 

1.2" 

(b) Transverse Section (:j) Section Thru Longitudinal Rib 

Design loads are 100 psf at the wall, varying linearly to 50 psf at tip, for drifted snow and 
dead load of structure, and 15 psf for net wbd uplift. Assume the following materials 
properties, based on short time tests: tensile strength = 12,000 psi, flexural strength = 
15,000 psi, COrl"pressive strength : 12,000 psi, in-plane shear strength = 8,000 psi, initial 
elastic modulus = 800,000 psi, Poisson's ratio = C.35. Limit the tip deflect!on to 1.5 in. 
under maximum design snow load, and the deflection of ribs ond deck sheet to 0.5 in. 

I 1. 
I 

Use capacity reduction factor~ for snow lood of 0.5 for tension and shear, 0.6 for 
local flexure a,-,d for comi>ression, and 0.8 for initial elastic modulus. Multiply the 
ab«Ne values by 1.2 for wind load. I 

I 
I 
I 
I 
I 
I 
I 2. 
I 
I 2.1 
I 
I 
I 

Thus, for snow load: 0 xu in tension :: 0.5 x 12,000 = 6 000 psi; o xu in local 
flexure = 0.6 x 15,000 = 9,000 psi; Oxu in compression = 0.6 x 12,000 = 7,200 
psi, 0xu for in-plane shear = 0.5 x 8,000 = 4,000 psi; E = .8 x 800,000 = 640,000 
psi. 

Use a load factor of 2.0 for strength under snow <Jnd wind loads. 

Determine top skin f iickness for 3 longitudinal ribs equally spoced ot 24 inches. 

Establish trial thickness for deflecti()ll control with the aid of Figs. 6-4 and 6-5. 
Estimate that edge restraints are midway between rotationally fixed and pinned, 
and also about midway between "edges held" and "edges fre~ to translate." 

6 = ~ = 2.0; ~ c= 0; 5 ; In bay closest to wall, load overages ( I 00 + 83) • 2 • 144 = 0.64 psi 

I 
I 
I 

* See note on Example 7-1, page 7- • 
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I Example 7-9 <continuf!d) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 2.2 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 3. 
I 
I I 3.1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 3.2 

I 
I 

Poisson's index, k 
0 

w 
Try t = 0.3 in.; for T = 8:j8 = 1.67 arid a/b = 2.0 in Figs. 6-4 & 6-5 for 

average of edge support cases in these Figures: 

req'd * = (k
0 
~ )

114 = (2.1 + 3.3 + 2.8 + 3.6) t 4 = 2.95 

2: x ~ = 2.95; t = J{J.4 ;
4

2_95 = 0.27 in.; Use trial sheet thickness = 0.30 in. 

Check strength: First try I in. wide simple beam strip as a conservative approxi
mation. 

0.64 X 2.Q X 242 
Mu = 8 

2 
92 lb / . s -- 4L = s rn.: 

0 
= 

2 o.3 0 015' J -r = • 1n 

o = ~ = 6133 psi 9,000 psi 
X U,UI :> 

Actual maximum stress wil be substantially less because of two-way bending and 
membrane action. A more accurate check could be made using Figs. 6-6 to 6-9 for 
"large deflection" plate analysis. 1-towever, since ,, < 9,000 psi above, there ,s no 
need for this. · x 

Design longitudinal ribs for 1.2 inch trial widtt->. (4 - 0.3 in thick strips laminated 
vertically, see Sketch d.) Span = 48 in between transverse ribs. 

Strength: End span has maximum moment. 

Approx. fv\, = _@_4_2<_~~ 4 x 48 = 8,832 in-lbs; where 2.0 is the lcxx.: factor for ultimate. 

8832 . 3 Req'd S = 6000 = 1.47 in 

Note: 6000 psi tensile strength is used instead of 9000 psi flexure; bottom lamina
tion is mostly in tension. 

2 
if we neglect flange of "T" section: S = ~ and b = 1.2 ;n. 

req'd h2 = 6 x 
1
1.f7 = 7.36; h = 2.71 in, 

Try h = 2.5 in and consider on effective T-flonge width of 8t on each side of stem. 

A y Ay 2 -.. 
Ayo I t• 

0 ----- --

6 X 0.J 
2.5 X 1.2 

= 1.8 0 0 0.87 
= 3.0 1.40 4.20 0.53 

4.°8 4.20 

1.36 
.84 

Do 

neglect 3 = 
f ,2 X 2.5 /12 :: 

t- 7 I u.3 .. 0 ' [ 1.56 
T:-56 2.'i" 

1.l"~~ i:l6 

y = ,~3 = 0.88 in.; 1
0 

= 3.76 in\ min S = ~:~~ = 2.11 1.470.k. 

Check deflection - End span: 

I 5 WL3 I 3 Approx. 6m = 1 x 3814 El _ x 5 ~- 184 x 4 x 48 
L 384 X 640,()()() X 3. 7 6 = 0.22 in. o.k. 
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I~ 1-,k:antlnued) 
I I 4. 

I 
I s. 

Transverse ribs: Assume glued laminated wood used. Des;gn is not presented for 
lack of space. 

Design of Main Box Beam: (Use one side of symmetry line.) 

I S. I Ultimate loads: 
I 
I 
I 
I 
I 
I 
I 
I s.2 
I 
I 
I 
I 
I 5.3 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 5.4 

I 
I 
I o> 
I 
I 
I 
I 
I 
I 
I 
I 

w 1u = SO x 1.0 JC 2.0 (load factor) = 100 psf; w 2u = 100 x 1.0 x 2.0 = 

P I u = (SO x 3 x 2 + 17 x J x ~ x 2.0 = 668 lbs 

3 8 3 4 P2u = (50x3x2+ 17x 2 x3+67x3x2+ 17x7x 1 )x2.0 = 16081bs 

3 8 3 4 P Ju = (67 x 3 x 2 ... 17 x 2' x l + 83 x 3 x 2 + 17 x 2 x j) x 2.0 = 2004 lbs 

Maximum ultimate shear & moment - stress resultants: 

Vu = 100 x 12 + 100 x l} + 668 + !608 + 2004 = 6080 lbs 

200 psf 

12 12 12 Mu = 100 x 12 x -y+ 100 x 2 x 3 + 668 x 12 + 1608 x 8 ... 2004 x 4 = 38,496 ft-lbs 

Required Section Modulus, Web Area for Shear and Moment of Inertia: 

M 
, ..__ fl . t . 'd S u 38,496 x 12 77 . 3 
~ ange 1n ens1on: req 1 = 

0
- = 6000 = 1n 

XU 

L fl • , 'd 5 38,496 X I'] 64 . J ower ange m compression: req 
1 

= 7200 = m 

V 
Web in shear: req'd Aw = Tu = ~ = 1.5 in 2 

XU 

Deflection limit: Cantilever beam not included in Table S-1. 
18 and 19. For service loads: 

6 WL3 WL3 
m = TE •m-

6 SO x 4 xm2 x 12
3 

,cl2
3 

m = IS x ,000 I • 

I 5 _ 373 + 962 _ 133S • m'in 1 . -, -.--., . 

50 x 3 x 11 x I 23 x I 23 

& x 640,000 I -

= 890 in4 

Use Ref. (5.5), coses 

= 1.5 in. 

Trial Proportions - Try to maintain 0.3 in constant thickness so that shape con bf. 
thermoformed. Section modulus for bending strength, or moment of inertia for 
bending stiffness will govern by inspection. 

Maximum width of lower flange to develop compressive a xu without local bur:kling. 

bf 
r. = Cb 
f 

____ E __ ; Cb from Cose 3 in Table 7-1 = 1.8, as trial 'Value 
a (I _ "2) 

XU 

2 = 18.I 
7,200 (I - .JS ) 
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I E>cample 7-'J (cantinued) 

I 
I 
I 
I 
I <2> 
I 
I 
I <J> 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I <4> 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I (5) 
I 

Max. width of bottom flange to develop 7200 psi in compr~ssioo: 

bf = 0.3 x 18.1 = 5.4 in. 

Maximum depth of web to develop compr~ssive a without local bu:::kling: 
XU 

Cb from Tobie 7-1 = 4.4; dw = 5.4 x 4.4/ 1.8 = 13.2 in. 

Maximum depth of edge return for inner edge of bottom flmge to develop com
pressive axu without local buckling - assume uniform compression. 
Cb from Case I in Table 7-1 = 0.6. bf = 5.4 x 0.6/ 1.8 = 1.8 in. 

Min. stiffness to brace inner edge of bottom flange: ,--------
Eq.7.2: Is = 2.0 t4 7 (~2 - 0~9E = 2.0 x 0.34 (B:~➔2 - 0.197~2640 = 0.29 in 4 

XU 

Determine 1
5 

about centroid of 2 in. trial lip plus 2 in. radius section; 

l' 
Lower limit for I = 0.3 x 43/12 = 1.6 in4 

s 

')•· No need to calculate accurate value for 1
5

, 

Try the following section: 

2" ____ 3" 

II 

1.211 

EstirTI\Jte effec~ ive properties of beam including correction for shear lc,g in top 
flange. 

I 
I 

Effective Top flmge area, as reduced Jue to shear lag. 

I <a> 
I 
I 
I 
I 
I 
I 
I 

For maximum flmge tension: 

From Fig. 7-14(0) for b/2l = 8/2 x 12 = 0.33 

and using 0.8 times a cantilever b~'Om with uniformly distributed load ca.sr as on 
approximation for our case of combined uniform and triangular (drift) distribution: 

be = 0.8 x 0.25b = 0.20b 
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I 
I 
I 
I 
I 
I 
I 
I 

Example 7-, (continued) 
The factor 0.8 is used because the triangular port ion of the load produces a sharper 
build-up of moment near the root of the cantilever thon in the uniformly 
distributed case, causing more log in developing flexural normal stress in portions 
of the flange away from the edge. 

Thus, talce effective area of half the top flange, ATop' for maximum stress as 
(Aw/6 + betf/2 + befb x 1.5 Astringer 

A 0.3 x 18 0.20 x 96 x 0.3 o 20 I 5 I 2 3 4 a · 2 

I (b) 

I 

Top = 6 + 2 + • )( • X • X = • '"· 

For deflectioru 

From Fig. 7-14(b) for b/2L = 0.33 and using the same cantilever beam case 
described above for flange stress: b'e = 0.8 x 0.74b = 0.59b I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Thus, take effective area of half the top flange, ATop for deflection as: 

A'rop = 0.9 + O.S9 x ;6 x 0-3+ 0.59 x 1.5 x 1.2 x 3 = 12.6 in.2 

0.3 X 18 
6 + 0.3 X 9,5 + 0.3 X 2 -= 4.4 in. 2 

Section Properties - Stress 
4.8 X (17+) 

Centroid, Y = 
9

_
2 

- = 8.87 in up from e.g. bot. flange. 

I. 
le 

4,8 X (17 - 8.9)2 
+ 4.4 X 8.92 : 663,5 in4 

663.5 77 I . 3 t..J 77 . 3 = --if."b = • in =::: req <J in 

__ 663.5 _ 70 5 ·n3 ► ._. 64 . 3 --,r- . , req-... ,n 

Section Properties - Deflection: 
12.6 x (17 +) 

Centroid - y = I J .O - = 12.6 in. up from e.g. bot. fionge 

l'le = 12.6 x (17 - 12.6)1 
+ 4.4 x 12.62 = 942.5 in4 < req'd 1182 in4 

Section may be overly flexible since estimated e;fective I is only about 80% of the 
required I. 

A prototype should be built, and tested since approximations hove been used in ~he 
analysis and desig.1 of the prototype. Thickness could be increased to 1.2 x 0.3 "· 
0.36 in. or allowable defl~c~ ion could be increased by 20%, if necessary, based on 
tests on the prototype. .\n additional l~itudinol rib CO'-''::! be added in lieu of 
thickening the sheet. The protutype design will be continued using the pre-,ious 
section. 

I 
I s.s Check for web buckling: 

I 
I 
I 
I 

Av. shear stress t 
X 

6080 
Q,J X (14+) = 1444~ 1450 psi 
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I Exan1>1e 1-, Ccont1nuec1> 
I 

To develop this stress: Table 7-1 

dw f:5 . 14 t = Cb T .) ; Cb= 2.1; min. tw = --;:=====-
w ( I - ) 2 I 640,000 

o.k. xc • 1450 ( I - .352) 

= 0.30 

6. Checks for wind uplift loading case: 

6.1 Ultimate loads and stress resultants. 

To save space, only the check for overall bending of the box shape will be pre
sented here. 

Net w 1u = 15x I.0x2,0 = 30plf.; Plu = 15x3x2x2.0 = 1801bs 

P2u = 2 x Plu = 360 lbs.; P3u = P2u = 360 lbs 

V = 30 x 12 + 180 + 360 + 360 = 1260 lbs u 

M = 30 x 12 x 12/2 + 180 x 12 + 360 x 8 + 360 x 4 = 8640 ft-lbs u 

I 
I 
I 
I 
I 
I 6.2 Effective width of top flange in buckling. Treat flange as an :>\Jtst.:-nding flange of 

channel, with remainder of ft<Jnge toward inside assumed as loc:1,;lly buckled. 
Determine maximum effective bf' for various trial values of maximum )tress. Use 
Case I in Table 7-:. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

If S =::: 40 in3 trial cr = 8640 x 12 
top I X 40 

bf = t Cb i/ E 2 = 0.J x 0.6 
w aO-v) 

X 

= 2592 psi 

640,()()() X 1.2 : 

2592 ( I - .351) 
3.3 in. 

I 6.3 
I 

Estimate Ae for top flange = •3 618 
+ .3 x (3.3 + 2) = 2.5 i~2 

Section Properties: AT op = 2.5 in 
2
; ABot = 4.4 in 

2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

2.5 X (11!) 
Centroid: y = 6 9 = 6.16 in. up from e.g. bot. flong£ . 
II 2.5 X 10.842 + 4.4 X 6,152 = 461 in4 

Sltop = 'if !1 = 41 in
3
; Sbot = ~ = 70 in

3 

Sltop furnished is sligitly larger than the assumed value of 40 in 3. 

wind load, as governed by loc:al buckling of the top flange. 

Thus, shape is o.k. for 

I in.= 25.4mm, I in2 = &4S mm2, I in 3 = 16387mm3, I in4 = 416.231mm4, I in-I = 

0.04mm -I, I ft = 0.3048m, I lbf = 4.448N, I lbf/in = O. I 75N/mm, I psi = 6.8'5 KPo, I psf = 

47.88 N/m2, I in-lbf = 113 N-mm, I ft-lbf = 1.356 N-m. 

7-91 



Shear and normal stresses in the vicinity of large flange openings, and open 

joints, cm be estimat!d based on shear log approximations developed for analysis 

of aircraft structures. Space precludes the inclusion of o quantitative presenta

tion here, but numerous cases ore covered in (7 .16). 

7.8 FOLOED PLATE STRUCTURES 

Methods of analysis and design previously presented for plates and beams may 

also be app1ied to more complex structures such as "folded plate" i.H'uctures. 

Folded plate structores are assemblies of plates of rectangular, triangular or 

other shapes that btl'iave overall as beams, portal frames, archs or shells. Some 

typical configurations with rectangular plates are- shown in Fig. 7-20. Configur

ations with trimgulor and trapozoidal ~s ore shown in Fig. 7-21. 

Stresses in some folded plate structures con be determined with acceptai:>le 

accuracy by applying the elementary beam theory (Eq. 7-33) to the overall cross 

section of the plate assembly. In this ''beam method", the overall section 

properties are c:1,,termined using the methods given in Section .::i.3 and 7 .4. 

Assemblies of plates whose lengths are large relative to tneir dimensions of cross 

section (i.e. thin-wall beam sections, ribbed panels, etc.), and assembli"s of 

large plates whose fold lines deflect identically (i.e. interior boys of roof shown 

in Fig. 7-20c), con be analyzed as beams. 

The following more elaborate procedure may be used to determine transv"'lrse 

bending stresses in assemblies of large plates and to determh,e longitudi.,ol 

stresses in structures with "pinned" connections along fold lines which do n-'lt 

deflect identically (exterior boy of roof shown in Fig. 7-20c). For procedures 

covering structures with monolithic joints that hove varying deflections at fold 

lines, see (7.17), (7.18) or (7.19). For o more comprehensive review of methods 
• 

of analysis for folded plate structures, see (7 .20). 

Procecb'e for cn1lysls of folded plm• (7.17) 

I. Replace actual structure with equivalent compound structure com::,rised 
of transversely loaded plates (slab structure), and plate system loaded "in
plone" at fold lines as shown in Fig. 7-22. 

1-,2 



End 
n:,1,,hragm -

End 
Diaphragm 

c) 

o) b) 

Fig. 7-20 FOLDED PL.A TE CQN='~ TIONS 

i-tric 

Cl Q 
o) bl 

d) 

Fig. 7-21 FOLDED PL.ATE FRAMES AN:> AROES FORMED 

FROM TRIANGU_AR PU. TES 
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a 

p 

• I I 11 I I I 11 t 11 UIJ 
1xa 

o) Slob b) Plates 

Fig. 7-22 FOLDED PL.A TE SECTION AS A COMPOSITE OF 
SLAB MO PL.A TE STRUCTURE 

2. Analyze "slob structure" os one way plate, spanning between fold lines 
with lateral loads (Fig. 7-220): 

p = PY cos a Eq. 7.82 

If the ''slob structure" is monolithic with adjacent plates at fold lines, 
assume for this port of the analysis that "slab structure" supports do not 
hove relative deflection and analyze a unit width strip of "slob structure" 
os a continuous beam on unyielding supports at the fold lines. If "slab 
strucfl:re" is not monolithic with adjacent plates at fol-d lines (pin ended), 
differential deflections of "slab structure" at fold lines do not produce 
changes in "slab structure" moments. Deter;nine "slob structure" reac
tions at fold lines and maximum transverse bending moments at governing 
sections of "slob structure". 

3. Apply slab reactions Clt fold lines as ridge reactions on system of 
longitudinal ;>lates, as shown in Fig. 7-22~. Resolve these ridge reactions 
into plate loads by determining their components in the planes of the two 
intersecting plates at a ridge. 

4. Temporarily assume that each plate is independent from its neighbors 
(fig. 7-23a). Calculate in-Plane flexural and shear stresses due to the in
plane components of the ridge reactions. Use elementary beam theory 
(Eq. 5.25) to determine normal stresses along the edges (free edge 
stresses). 

S. Apply equal and opposite shear loads along each edge where adjacent 
plates intersect to equalize normal (longitudinal) strasses in contiguous 
plates. This is shown in Fig. 7-23b. Shear loads o:-e given the some 
longitudinal distributi\lfl as the "free edge" flexural stresses. Their 
summation produces a thrust stress resultant with a line of action along 
the edge. 1he maximum thrust occurs at the location of maximum fr~ 
edge stresses. This thrust stress resultant prod,oees correction normal 
stresses that vary linearly across the plate (Fig. 7-23b). 

The correcting normal stresses con be determined using a stress distribu
tion procedure that is similar to "moment distribution". In this procedure 
the "free edge stresses" are equivalent to fixed ended moments in 
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o) f.,. Edge Condltlan 

C 

Distribution of 
Edge Shear Flow 

f 

b) Edg9 lta-uab AtiPlled to h..- Cotnpatable NDrmol Strellae at b 

Ag. 7-23 EDGE St-EARS APPLIED AT JOINTS TO FORCE COMPATABILITY OF 
LONGITUlNAL STRESSES IN FOLDED Pl.A TE STRUCTURES 
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6. 

7. 

''moment distribution". For rectangular plates, the stress distribution 
factors at each fold line, m-n, are: 

kmn 
An 

= An+ Am 
Eq. 7.83 

k 
Am 

= 
~~ nm Eq. 7.84 

See Fig. 7-23 for notation. The stress distribution factor, kmn is the 
normal stress that must be imposed a, the m-n edge of plate m by the 
axial thrust resultant, l'J,n, to remove a I psi difference in free edge 
normal stress between adjacent ed-~es of plates m and n. For rectangular 
plates, the carry over factors for stress correction at edges opposite joint 
n-m are 1/2. See Example 7-IO given later for an illustration of the stress 
distribution process. 

The magnitude of the applied shear loads is determined so that the 
combined "free edge" normol stress plus the correcting normal stress in 
ecch plate at a fold line are equol. 

Determine thrust stress resultants required to obtain equal longitudinal 
stresses at fold lines: These ore determined from the final stresses 
calculated in Step 5 above, starting from a free boundary, using the 
following equation. 

( 0 n-l + 0 n) An 
Nn-1 + 2 • = 

Eq. 7.85 

Determine shear forces per unit length (shear flow) at fold lines and 
maximum shear in the plane of the plate. The sum of the shear force 
along the fold lines to the point of maximum normal stress is equal to the 
maximum fold line thrust Nn, ond the shear flow at a fold line has the 
same distribution along the leng1h of the plate as the plate sheor stress 
resultant in the free edge plate (Step 4). Thus, for a plate system with 
uniformly distributed load, the maximum shear flow is at the end of the 
longitudinal span and its magnitude is: 

max qsn = Eq. 7.86 

The shear flow (shear stress times thickness) in a rectangular plate is 
determined by adding the corrective edge shears and the free edge plate 
shears. The maximum shear flow in a rectangular plate is either the shear 
flow at one of the edges, or the shear flow wi:hin the plate given by: 

Eq. 7.87 

The notation used in Eq. 7 .93 and the variation in shear over the height of 
the plate is shown in Fig. 7-24. 
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<iheor ',tress Voriotit>n 
Across~ 

Fig. 7-21J St-EAR STRESSES IN FOLDED PLATE STRUCTLflES 

Resistance to local buckling of plate elements may be investigated using the 

plate buckling equations given in Chapter 6. See also (7.21) and (7.22) for a more 

comprehensive consideration of buckling of folded plate structures, including 

test results and on extensive bibliography of additional referene:es. 

The design of a folded plate roof with sandwich plates and pin joints using the 

above procedure is giver. in Example 7-10. The stress distribution method 

outlined above is used to obtain the final longitudinal stresses in the various 

plates of the structure. The maximum shear stresses at fold lines and within 

plates are also determined. The longitudinal stresses obtained in the interior 

plates of the example structure are compared with stresses at the some location 

obtained using the ''beam method". 

The procedure g{ven above can be extended to cover structures with monolithic 

joints whose told lines deflect differentially. Space does not pe:-mit o detailed 

consideration of such coses. See (7 .17) for a comprehensive treatment of this 

problem. Th is type of structure is also ono lyzed in (7 .18) and (7 .19). 

Results of tests of two aluminum faced plastic core foldeci sandwich panel roof 

structures are presented in (7.23). E.xp<lrirnentally determined behavior 

correlates well with behavior predicted by folded plate theory. 

Structural configurations that require complex anoly.ies with the above ap

proaches can probably be analyzed more efficiently and accurately using finite 

element computer analysis. Existing general purpose programs such as ANSYS, 

NASTRAN or ST ARDYNE con readily hcndle such problems. These are discussed 

in Chapter 4. 
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I Example 7-10: Design a steel faced, polyurethane foam core sandwich panel folded plate 
I roof having the arrangement shown in the sketch. (Refer also to Chapter 8). * 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Solid End Walls or Stiff Transverse Beam 

Sketch of Typical Structural Arrangement 

p Liw 

6'-0" 

A 
Typical Section 

I Properties of materials: 

I Facings - steel: E = 30,000,000 psi; tensile, compressive and flexural yield strength = 
I 30,000 psi 

1
1 

Core - polyurethane foam, 2.5 lbs/cu.ft. min.; density: G = 500 psi, E = 1,500 psi, 
I tensile strength == 25 psi, compressive strength = 20 psi ood shear strength = 20 psi. 

I I. 
I 
I 
I 
I 
I 2. 
I 
I 

Capacity reduction factors: Use 0.9 for strength and 1.0 for E for steel and 0.6 for 
strengths and 0.8 for E ~ G for foom core. Thus: Steel; E = JO x I~ psi, 0~u = 
0.9 x 30,000 = 27,000 psi; Foam core: E = 0.8 x 1,500 = 1,200 psi, G = 0.8 x 
SOO = 400 psi, Oxu = .6 x 25 = IS psi in tension, axu = .6 x 20 = 12 psi in 
compression <l'ld Oxu = .6 x 20 psi = 12 psi in shear. 

Load Factor: Use a load factor of 1.6 

I * See note on Example 7-1, page 7-5. 
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I Example 7-1 o (continued) 

I 
I 3. Trial Design of Sandwich Elements: 

I 
I 

Plate I: 18 go. steel ~ins, polyurethane foam plastic, 2 in. core: 

I tf = .0478 in., Af = .0478 x 2 x 12 = I.IS in2/ft.; Ac = 2 x 12 = 24 in"l./it. 

I 
I Plates 2, 3 & 4: 22 go. steel skins, 2 in. foam plastic core: 

I 
I 
I 

tf = .0299 in., Af = 0.0299 x 2 x 12 = 0.72 in2/ft; I = 0.72 x 1.0152 = 
in4/ft; S = 0.74/1.03 = 0.72 in3/ft.; Ac :: 2 x ;2 = 24 in2/ft. 

I 
I 
I 
I 
I 
I 
I 
I 4. Load components: I Normal to Plote Snow 

2 

I 
I 
I 
I 
I 
I 
I 
I 

Equivalent on 
Horizontal 
Projection 

Dead 

Total 

Snow 

Dead 

Total 

30 ( 6• ) T.95 

4.3(~ 

30 

4.3 <¥-~ 
Py 

= 22.45 

= 3.75 

p = 26.2 psf 

= 30 

- 5 

= 35 psf 

I I s. Slob Analysis - Pinne<i Joint~ - For service loads: 

WV 1h 62 
I 
I 

Slabs BC, CD, DE:M = ~ 35 x B = I S8 lbs/ft. 

I 
I 

6 
35 x 2" = 105 lbs/ft. 

Check Flexure Stress: 

158 X 12 2 00 .• 
0 = o.72 = 6 psi, Ultimate Ox = 2600 x 1.6 = 4160 psi < 27,000 psi 

Check local buckling (face wt inkling): 

0.74 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Eq. 8.107: c1 = O.S(EfEcG ~/3 = 0.5(30 x 106 x 1200 x 400)113 = 12,ISOpsi > 4160psi wr c 

Secondary bending of smdwich section facings is discussed in Chapter 8. It con be 
shown by the Cl'lOlysis given in Oiapter 8 that for the very thin facings of this 
beam, secondary bending stresses ore negligible. 

7-99 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

E>oample 7-10 (cantinued) 

Check shear in core: 

~ 

•cu 
vu 

= A ; V = 26.2 x 6.95/2 x 1.6 = 
C U 

146 6 I · 12 ' tu = 2x"T2 = • psi < psi o.k. 

Check Deflection: 

5PL3 PL 
Eq. 8.27: w = 3840 + aiT." 

m V 

146 lbs/ft. 

JO X 106 
X Q,74 0

m = < 2 I - 0.3 ) 
= 24,395,600 lbs-in2; D = 2 x ! L x 400 = 9600 lbs 

V 

5 X 26.2 xb-95 4 
X 1728 

'N = 384 X 24,395,600 
26.2 X~ 

2 
X (2 

+ 8x9SOO -

L 
wallow = 100 = 

6.95 x 12 
300 = 0.28 in. o.k. 

= 0.056 + .198 = 0.253 in. 

I 6. 
I 

Plate Analysis: 
21 CJ 

I 
210 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

i:3 

' I , ' ,,,,,, 
208 ,,,. 208 

C 

C 

To find plate components of the vertical reaction of 2V 
wR.. = 210 x 1/2 x 6.95/3.S = 208 lbs/ft 

:;; 2x 105=2101b/ft@C,D&E: 

Plate I: "Free Edge" Stresses: 

2 
-27,400 M = 105 x ~ = 11,800 lbs 

18•~ S= 

..,_ ____ J_Q•--Q-11----A 27 l,nl'I O : Jt :: ( I ,8QQ X 12 
+ ·- ~ 5.16 

2 
0.04 78 x 2 x TB S 16 . 3 6 = • m 

= 27,400 psi 
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I Example 7-1 o <continued> 
I I Plote 2: Free Edge Stresses: 

I _._.._..."'......,-.,.----;--,r---,--, 
I I--'-'---~.._.___...__, 
I 
I 
I 
I 
I 
I I f">lote 3 & 4: Free Edge Stresses: 

I w ; 1,16 lbs ft -8 000 
I I ...... ,__..._..._..._...__.,____, 
I 
I 
I .w-----------,11,. 
I 

302 
M = 208 x 8 = 23,400 lbs 

s = 
,0299 X 2 X (6.95 X 12)2 

6 = 

a = 231400 X 12 
70 = 4000 psi 

Load is twice plote 2 load; thus 

a = 2 x 4000 = 8000 psi 

I 7. Correction of Edge Stresses to Equalize Strains of Abutting Edges: 

70in3 

: Typical Computation for Correction Stresses Resulting from Restraint of Adjacent Plates 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
: Stress Distribution Factors: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

= t.73 + s.o 
k 1.73 

21 = 5.0 + I • 73 = 

5.0 
= s.o + 5.0 = 

= 0.74 

0.26 

N N~/2 N JN ZN 0 t = - 6n + = - 6fi + 6fi :;: A 
bh /6 

N 3N 
0 c=-bh-bh= 

4N 0 t = A 
2N 

c,c = --,;; 

Carry Over Factor: 

- I /2 for all spms . 
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I 
I 

e-n-.,1e 7-10 (continued) 

I Streu Distribution: 

I 
I 
I ~-~c.-...-....., 
I 
I 1---...:.:.:~--+---=~----ti---..:;.:..;=----+--=--~A..;;r;..;:eo;.;;;...:.(;.;;.;in;...;

2
1..-__ 

I O Distribution Factor .~---~---i~--_..;;:......,1,-;;~----=-+~-.----"--+---'~=;..a.;;.;.;..;....;;= 

5.0 s.o s.o 
.71t :.2, .so .so .so .so 

- '2' Corry Over Factor 
I ~--=----__.,,---=;___-~--=----+----=---+---------7 -7 -7 

I +27.4 -8.0 Free Edge Stress 
I Distribution 

-27.4 +4.0 -4.0 -8.0 +8.0 +8.0 
+23.2 -8.2 ··2.0 +2.0 

I a--------+-------+-------t--- -----+--------
1 -11.6 -1.0 Corry Over 
I + .S - .S Distribution 

+1.0 +It.I 
+.7 - .3 -2.0 +2.1 

I 
I +.1 

+1.0 
- .3 

♦ .I 
- .2 

- .2 
♦ .I 

-I .O 
+ .5 - .5 

+ .2 Corry Over 
Distribution 

11-------+-----+-----t------~------
I 
I + .I 

♦ .I + .I 
- .:? 

- .2 
+ .I 

- .I 
♦ .1 

;carry Over 
Distribution 

11--------11------+-------+-------.------
I +15.0 + 7. +7.o Total-rm s1reaes -2. -2.7 -4.1 - 4.1 

I Axis of Symmetry 
Ulder Vertical 

I ~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

a. 

-Ulla' 

8 

A 
l!!!!!_._~ 

(Multiply by 1,6 for ultimate) 

.1s.o11a1 +7.0lcai 

(Muttlply"t'i~ttimote) 

Maximum ultimate plate stress = I S,000 >< 1.6 = 24,000 psi tension < 27,000 psi; 1., x 1., = 12,160 psi compression~ 12,150 psi. 

Conclusion: Strength is adequate, as governed by tensile strength of facings, local 
buckling compressive strength of facings, and shear strength of core. 
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I Example 1-10 (continued) 

I I 9. Check Overall Buckling of Sandwich Plahm 

I 
I Eq. 6. 71 : N = 

XC: 
I 

k 2 f' Nxc --11...r - ; a = ~t & k from Tobie 6-3 
bL XC Llf 

: Check plate 2: In-plane uniform compression, ax = 4• 1 i 2• 7 = 3.4 ksi 

and bending= 4.1 - 3.4 = 0.7 ksi I 
I 
I Ratio = ~ = 0.20; estimate k = 4.0 + .5 = 4.5 I .., .... 

I 
I 
I 
I 
I 

Stiffness Dis greatly reduced by shear deformation oft.ore. Based on the ratio of shear 
to bending deflection calculated in the plate anolysis of step 5 above, use Deft. = 
24,395,600 x .056/ .253 = 5,400,000 1bs-in2. 

2 
I ~c = 4.5 5,4oo,OOO 2 = 577,000 psi » 1.6 x 4, I 00 psi 

2 X ,0299 X (6.95 X 12) I 
I Conclusion: Buckling of sondwich plates under in-plane longitudinal compressi"e stress 
I will not limit resistance of structure. 
I 
I 10. 

I 
I 
I 11. 
I 

• Maximum plate shear (in plane of facings) may be determined using equations given 
in text. Calculations for plate shear and development of connection details ore 
omitted due to lock of space. 

Alternate Approximate Analysis Using Oeom Method 

I 11.1 Interior boy 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• I 
I 

A = 0,72 x 6.95 x 2 = 10.0 in
2 

I = 10.0 x 422/12 = 1471 in4 
0 

S1 = 1471/21 = 70 in3 

2 
M = 210 x 2 x 30 x 12. 567,000 in-lbs 

8 
" - 5671CXXJ 

X - 0.0 = 8,093 psi 
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I Example 1-10 bntinued) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

11.2 Exterior boy 

A y Ay 

5.00 0 0 

Yo Ayo 
2 

1.1 296 

lo 

1471/2 

I 
~ 

11'-f@ 1-
= 135 

2 1.15 x I .S = I. 73 30 51.8 22.3 860 
r.7l ~ 

y = 51.8/6.73 = 1.1 in. I = 
0 

1938 3 
Stop = 28:7" = 67.S in ; 5oot = 

\i = 567,000 x I /2 = 283,500 

Trn 
782 

1938 in4 

U~f = 61.9 in
3 

283 SOO . 283 500 . 
top ax = 67_~ = 4200 psi; bot. ax =- ~- = 4580 os1 

61,'!:' • 

Con.,are the above results with stresses shown in sketch given in Step 7. 

Conclusion: "Beam Method" is fairly accurate for interior bay, but is extremely 
inaccurate 'or bottom plate of end boy. 

I in= 25.4mm, I in 2 = 64Smm2, I in2/ft = 'll 17mm2/m, I in3 = 16,387mm3, I in3/ft = 
53763mm3 /m, I in 4 = 416.23 I mm 4, I ft = 0.3048m, I lbf = 4.448 N, I lbs/ft = 14.59 N/m, I 

psf = 47.88N/m2, I psi = 6.895 KPa, lksi = 6.895 MP'l, I in-lbs = 113 N-mm, I lbs-in2 = 

2870 N-mm2• 

The "beam method" may ollO be used to obtain approximate estimates of plate 

streues for many irregular osaemblies of plate, that comprise folded beam, frame and 

arch-lllce structures (Figs. 7-20e). This is discuaed in (7.24). Approximate methods are 

0110 given In (7.21) for determining plate deflections and moments in thin folded plates 

without edge supports, where deflections often are large enough to require consideration 

In the analysis. Several forms of folded plate structures with triangular plates (Fig. 7-20, 

d, Fig. 7-20 are discussed in (7.24), and desig, examples using approximate analyses ore 

given. 
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NOTATIONS-Chapter 8 

a 

-a 

A 

·c 

d' 

D 

om 
Omx,Dmy 

Dmf 

Dmfi 

DV 

OYX, Dvy 

spcn length in a two-spoo panel; longer side of rectangular plate; 
general dimension 

width of bearing 

transformed areo of cross section 

transformed areo of core 

transformed area of faces 

in-plane or axial stiffness 

effective shear areo 

width of sandwich beam; unit width of sandwich plate; shorter 
side of rectangular plate. 

width of "i" face 

thickness of sandwich core; indicates "core" when used as a 
subscript. 

cost per unit volume of core materiol 

cost per unit volume of face material 

cost per unit surface o~ea of sandwich pmel 

distance between neutral axes of sandwich faces. 

diameter of circle inscribed within hexagon or square of honeycomb 
cell 

stiffness 

bending stiffness 

bending stiffness in x aid y directions respectively 

total bending stiffness of faces, about their own neutral axes 

bending stiffne~ of the "i" face 

shear stiffness 

shear stiffness in x and y directions respectively 



NOTATIONS (conhruecl) 

E elastic modulus 

elastic modulus of the core 

effective elastic modulus 

elastic modulus of the faces 

elastic modulus of the "i" element in the transformed section 

tangent modulus of a viscoelastic plastic subjected to constant 
strain rate 

reference elastic or viscoelastic modulus for use in the trans
formed sect ion 

viscoelastic modulus 

indicates "faces" when used as o subscript 

ultimate strength 

ultimate compression strength 

long-term ultimate strength 

short-term ultimate strength 

ultimate tensile strength 

ultimate shear strength 

shear modulus of rididity 

shear modulus of rigidity of sandwich core 

Gcx' Gey shear modulus of rigirtity of the core in the x and y directions 
respectively 

I 

I 
t: 

integer designating layers in sandwich composite 

moment of inertia 

moment of inertia of core 

moment of inertia of both faces about their own neutral oxes 

moment of i'lertir.1 of both faces about neutral axis of the cross 
section of the whole sandwich. 
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N>TATIONS (contirued) 

ni 

M 

n. 
I 

I 

n. 
I 

N 

buckling coefficient 

coefficient for stresses and deflection in orthotropic sandwich 

coefficient for deflectior. dut- to moment 

coefficient for deflection due to shear 

span length 

load factor 

cost coefficient for direct optimum cost design 

bending moment on beam; bending moment per unit width (bend
ing stress resultant) or plate 

bending stress resultants on faces indicated by subscripts 

primary bending moment applied to transformed section 

secondary bending MOment applied to sandwich faces 

modular ratio of element "i" in transformed section of beam or 
column 

modular ratio of element "i" in transformed section of plate 

direct force per unit width (direct stress resultant) 

Nx, Ny, Nz direct force per unit width in x, y and z directions, respectively. 

Nxy shear stress resultant applied in the plane of sandwich 

NA neutral axis 

P concentrated load; or total load q>plied to sandwich beam 

Per critical buckling load 

P crv critical CC'lumn buck:ing lood governed by initial eccentricities 

Pe Euler buckling load 

P v buckling load governed by shear rigidity of core 
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NOTATIONS (cantlrued) 

q 

Q. 
I 

s 

sf 

SF 

t 

t. 
I 

T 

V 

uniform load per unit length or area 

primary component of uniform load 

secondary component of uniform load acting on faces 

shear force oo beam 

primary component of shear on sandwich beam havir,g shear
flexible core 

secondary component of shear acting on faces of sandwich beam 
having shear-flexible core 

shear force per unit width (stress resultant) transverse to plane of 
sandwich plate 

first moment of an element "i" about the neutral axis of the 
cross section 

first rmment of all elements about the neutral axis of the cross 
section 

section modulus 

section modulus on face 

safety factor 

thickness of one face in sandwich having equal faces; indicates 
"t-.nsion" when used as a subscript. 

thickness of i face in sandwich having unequal faces 

temperature 

twisting stress resultants in planes desi~noted by superscript 

indicates "ultimate" when used as a sl.bscript 

indif'Otes "shear" when used as a slA>script 
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NOTATIONS (c:ontin,ed) 

w total deflection of sandwich plote 

w
0 

allowable deflection of sandwich beam 

we total deflection of sandwich plate with "effective" properties 

w
5 

secondary component of deflection along face 

wm deflection of sandwich beam or plate due to moment 

w
0 

initial eccentricity or lateral displacement of column centerline 

wp prima-y compon~nt of deflection of sandwich beam or plate 

wv deflection of a sandwich beam or plate due to shear 

x in-plane axis of sandwich plate; distance from centerline along 
span of beam 

X distance from support olong span of beam 

y in-plane axis of sandwich plate 

z axis of plate normal to plane 

zef distance from neutral axis to extreme fiber 

z. distance from neutral axis to "i" face centroid 
I 
I 

zi distance from reference axis to "i" face centroid 

-z distance from reference axis to neutral axis 

~ coefficient of thermal expansion; shear deformation 

4 change 

c strain 

ci strain 1n "i" face 

v Poisson's ratio 

"f Poisson's ratio of faces 

Poisson's ratio of "i'' faces 

•· coefficients for sandwich beam with shear flexible core 
I 



NOTATIONS (contlrued) 

a stress 

acr critical buckling str~ss 

a. stress in "i" face 
I 

al long-term stress 

0'5 short-term stress 

awr critical stress for face wrinkling 

-r shear stress 

Tu ultimate shear stress 

Q shear flexibility coefficient for beams 

~ shear flexibility coefficient for plates 
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CHAPTER 8 - FLAT SAN>WICH STRUCT\;fiES 

Rich-Jrd E. Chambers 

8.1 lntroductian 

The state of the Cl"t in the analysis and design of structural sandwich panels is 

well odvanced. Eerly theory was developed mostly for "stressed-skin" wood 

construction, and it hos been refined and extended over the years as sandwich 

construction hos been used ir. o wide range of structural applications, including 

those as diverse os doors for residences, and components for aerospace vehicles. 

Several texts onJ hon<l>ooks ore ovoilimle which provide t~reticol treatment of 

a wide variety of sandwich arrangements, under various load and support 

conditions (8, I, 8.2, 8.3, 8.4, 8.5). 

Typical structural sandwich constructions hove lightweight cores that ere 

significantly less stiff and less rigid thon the foc,-s. Structurai analysis and 

design of sandwich constructions must account for the effects of such cores. 

This is especially important in this Manual on plastics, since low density plastic 

foom cores, or plastics in other configurations that have low shear rigidity, ere 

frequently used in sandwich constructions for reasons of low weight, low cost, 

and high thermal resi11tance. 

The objective of this Chapter is to present significant considerations ir the 

structural analysis and design of sandwich components that ore fabricated, in 

whole or in pert, from ;>lastics. The Chapter deals with flot sandwich panels 

subjected to transverse and in-plane forces, and to loads ,jeyeloped while panels 

are restrained agoirat thermal, shrinkage, or other dimensional chcnges. Panels 

having cores that ore flexible relative to their faces ore considered in detail 

becousie many plastic cores hove low rigidity. Design examples ore develope-j to 

illustrate implementation of key concepts, including direct design for minimum 

cost. While this Chapter is devote-d to flat sandwich panels, the concepts 

pre1entftd are al,o q:,plicable to curved sandwich shells and rings which are 

treated in Chq,ter ,. 
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8.2 Jll'lip(IN!ntS of Sandwich Construction 

A structural sandwich is a composite that is comprised of two faces, separated 

by ond connected to o structural core that is less stiff ond less dense 

(Section I. I 0). The faces and core are usually connected by an adhesive that 

provides structural contiooity across the panel depth (Fig. 8-1 ). In some special 

constructior.s, a separate adhesive layer is not needed because faces and core ore 

integrally formed. Plastics may comprise all or pat of o typical structvral 

sandwich panel, since they may be used for either or both faces, for the core, 

and for the adhesive. 

Faces 

The primay structural role of the faces of a sandwich panel is to carry tensile, 

compressiv~, flexural, and shear stress resultants that act parallel to the plane 

c.f the panel. Faces may also serve to distribute localized loads and reactions to 

ttw- softer and weaker core. Typical forms t)f faces are shown in Fig. 8-2a; any 

of these types of faces may be fabricated from pla::1tics, os well as from other 

sheet materials. 

Adhesive 

Face 

Fig. 8-1 CEJERAL APRANGEMENT OF SAN>WICH CONSTRUCTION 
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a. Scndwict. Faces b. Sandwich a.... 

Fig. 8-2 TYPICAL ELEMENTS OF SAN>WICH CONSTRUCTION 

In addition to their structural roJle, the faces may provide nc.n-structural 

attributes such as texture or color, and resistance to weather, flame spread, fire, 

heat, abrasion, erosion, skidding, water and moisture, "'herr.!cals, radiation, and 
biological attack. 
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The core of a sandwich J)O'lel separates the two faces and holds them in a stable 

position. It provides the sheor lood path between faces, it stabilizes the faces 

agairwt buckling, and, together with the faces, it carries loads that ore applied 

normal tot~ plane of the panel. Typical types of sandwich cores ore shown in 

Fig. 8-2b. Cores ore usvolly fabricated from plastics, although they may 0110 be 

manufactured from other materials such as metal, gypsum, foamed cement, 

wood particle board, or end-grain bolso. Honeycomb cores may be fabricated 

from resin in,>regnoted paper, or from :-einforced plastic or metal if structural 

performance requirements are stringent. 

The sandwich core may also provide thermal or acoustical resistance, or\Ct 

occosionolly fire resistance or visual effects. 

Foce/C,«e Interface 

The primary structural role of the face/core interface in sandwich construction 

is to transfer transverse shear stre-sses between faces and core, to stabilize the 

faces against buckling owoy from the core, and to carry loads applied normal to 

the panel surface. For the most port, the faces and core of sandwich 

constructions that contain plastics ore connected by adhesive bending. In 10me 

apecial cases, such as truss-core pipe, for example (Fig. 4-6), faces and core ore 

farmed together during the extrusion process, resulting in on integral homogene

ous connection between the component~. Fasteners ore seldom used to c~t 

facfl and core because they may allow erratic shear slippage between face$ and 

core or buckling of the faces between fasteners; also, they moy compromise 

other attribu~s such as waterproofing integrity one! q>peoronce. 

L3 O..gn Criteria fer Sandwich Canstruction 

The formulation of design criteria for plastir-bosed sandwich structures, must 

include both the unique characteristics introduced by sandwich construction, and 

the apecial behavior introduced by plastics. This is discussed ~low. 
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0¥eraU Conipaaeut Stiffnea 

The overall stiffness provided by the interaction of the faces, the core, and their 

interfaces, must be sufficient to meet deflection and deformation limits set for 

the structure. <Neroll stiffness of the sandwich component is ::ilso a key 

consideration in design for general instability of elements in compression (Fig. 

8-3a). 

In most typical sandwich constructions, the faces provide primary stiffness under 

in-plane shear stress resultants, (N h direct stress resultants (N , N ), and xy X y 
bending stress resultants (M , M ) (Fig. 8-4). furthermore, and os important, 

X y 
the adhesive and the core provide primary stiffness under normal direct stress 

resulronts (Nzh and transverse shear stress resultants (Qx' QY). Resistance to 

twisting moments (T , T ), which is important in certain plate configurations, xz yz 
is provided by the faces. 

La:al Budding 

The stiffness of the face and core elements of a sandwich composite must be 

5~rncient to preclude local buckling o,. the faces. This local buckling can take 

either of two forms (Fig. 8-3). Local crippling occurs when the two faces buckle 

in the some mode (anti-symmetric). locol wrinkli!'lg occurs when either or both 

faces buckle locally and independently of each other. local wrinkling can occur 

under either axial compression (Fig. 8-3c), or bending compression (Fig. 8-3b). 

Resistance to local buckling is developed by on interaction between face and 

core which depends upon the stiffness of each. 

Ger.rol lnltability 

General instability, or overall buckling, of sandwich components subjected to in

plane corrc>ression (Fig. 8-3a) may be a governing limit state. In sandwich 

construction, buckling resistance depends on both the flexural rigidity of the 

faces and the Shear rigidity of the core. Core shear deformation reduces the 

buclcling resistance os calculated by typical handbook formulas, which are based 

on flexural rigidity alone. 
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---------... ::'\\:.:.:::::·:::::::,,, ..•.... :.:::::\:)·/} ..,,, 

a. c..n.rat lnotobil•ly b. Local Wrinkle in Bending 

Crlppling Wrinkling 

c. locohed Bucking in Conveaian Ei.m.,ts j 

Fig. ~3 BUO<UNG MCX)ES IN SANlWICH CONSTRUCTION 
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Strength of the General Pmlel 

The structure must have sufficient strength to resist direct (in-9lone) and 

transverse stress resdtonts without r1.4>ture « buckling. In most sandwich 

constructions, the faces are designed to resist direct stress and shear stress 

resultants applied in the plane of the panel and bending stress resultants acting 

across the panel (Fig. 8-4). Cq,ocity of faces may be limited by either material 

strenQth or resistance to local buckling • 

.,.... F•._....,._.,,...1e11 .... ei1we111, ... N111N11....-1a1-1,zw,_.....,. 
..... wltll ... ...,.._.._._ 

Ag. M COORDINATE SYSTEM NO STRESS RESULT ANTS 

The core and adhesive are designed to rerist transverse shear and normal 
C0nl)ressive and tensile stress resultants. These elements must 0110 hove 

sufficient 1enslon and compression strength and stiffness to restrain the face 

against local buckling, since during local buckling the face tends both to indent 

and to pull away from the core. 
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Omracteriltics of the Care 

The properties of the cor~, and especially the relative properties of core and 

faces, have significant effect on the structural behavior of sandwich construc

tions. The key characteristics of the sandwich core ore delineated below: 

In-Plane Stiffnea-Soft and Stiff Cores: If either the elastic or the viscoelastk; 

modulus of the core in the plane of the panel is very low relative to that of the 

faces, the core is termed IC>ft herein. As compared to a stiff core, a soft core 

does not contribute significantly to either the in-plane or the bending stiffnesses 

of the cross section. Usually, the in-plane bending and stiffnesses of soft cores 

are ~lected; stiffness properties in other directions are usually assumed to be 

finite. 

The majority of commonly used core materials (honeycombs, low density plastic 

foams, and balsa), when used with stiff faces (steel, ~Jluminum, w~, FRP), 

possess relatively low in-plane stiffness. Thus, the emphasis of the analyses 

presented herein is on constructions having soft cores. 

Shear Stiffness- Shear-Flexible and Shear-Rigid Core~: A shear-flexible core 

hos a transverse shear stiffness that is low enough to result in shear deforma

tions that ore significant relative to bending deformations. A lhear-rigid core 

hos a shear stiffness that is high enough to render shear deformations negligible 

compored to bending deformations. Since low-density plastic foam cores for 

sandwich constructions usually provide low shear rigiO::ity compared to the 

flexural rigidity of the sandwich, behavior of panels having shear-flexible cores , 
will be discussed subsequently. 

Resistance to L'Ealzed l.aads 

The structure must sustain localizv.od effects due to concentrated loads, reac

tions, attochmer,ts, or at other discontinuities in the panels (Fig. 8-5 and 

Section 8.7). Localized loads are frequently the source of panel failures, and in 

many instonces, they are the result of faulty design. Sometimes, however, 
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c. Incantation of Core 

b. Cruthlng of Core ot 
Concentroted Support 

d. Dlbondll19 by Curling 

...._ Shadid .... Indicate ldwmatlc ltrell dlltribution In care. 
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localized connections are a necessary compromise, and they require detailed 

evaluation. The effects of such localized loads are difficult to estimate 

accurately by calculation, and f!Yaluation by tests is usually required. Local 

stiffeners, or reinforcing elements, end and edge closures, and the like, usually 

proved the most suitable load paths for normal loads that are ~plied locally. 

Volume Olanges due to &wiramentcl E,cpc,sure and Curing 

Panel elements may be Stbjected to stresses and strains due to causes other than 

external loads. Moisture, temperature, curing or c.>01ing shrinkage, and expan

sion and contraction due to exposuret to chemical environments may create 

strains and warping in the panel. Furthermore, large cumulative movements and 

rotations may require special detailing at connections to prevent rupture of 

seolonts at panel edges. Fi'lOlly, very substantial stresses cm result when 

internal strains are restrained by either the supporting siructure or by the 

geometry of the component itself. This will be discussed in more detail in 

Section 8.1 O. 

c:.r.,atibility 

Compatibility Cll'TIOl"9 the various materials uaed ·in a sandwich composite, as well 

as compatibility with ti'le environment to which they are exposed, are important, 

but frequently c,,,erlaoked, design considerations. The chemical and physical 

C0'11)0Sitions of all materials should be compatible initiol;y, and this compatibil

ity should be preserved for the life of the product in its environment. 

While compatibility is not conaidered furtner herein, a few excmples drawn from 

experience are cited here to emphasize the importance of this criterion. An. 

ocllesiw: that shows high levels of adlesion at room temperature may cleave 

cleanly from its acflerend on impact, or at low stress levels, when temperatures 

ere below freezing. An oil-baled plasticizer may leach from the thermoplastic 

compo.,nd uaed in the face « core, and ultimately destroy what was initially a 

IOUnd acflesive band. A "blowing" agent may dissipate from a plastic foam core 

and alter its thermal resistance or cause significant shrinkage effects. An 
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alkaline inrJredlent may leach from a cementitious face, and chemically degrade 

an adhesive that •s not resi~tant to alkalies. When on element is made from 

plastic, the preserice of heat, stress, and other aggressive environments moy help 

to accelerate or aggravate some of the d>ove degradation processes. 

8.4 Section Properties for Beams and Columns 

Inherently, the t?lasric, or viscoelastic, f"l":odulus of the core and faces of a 

structural scndwich ore different; the moduli of the two faces may be different 

as well. Thus, section properties of sandwich cross sections, required for the 

analysis of beams and columns, ore determined from transformed section theory. 

Application of this theory is well developed, as it is used in the dfolterminotion of 

section properties of reinforced concrete, plywood, laminated and stressed-skin 

timber construction, and composite concrete/steel design; it is treate-d only 

briefly herein. 

Analysis of Transformed Section 

The following procedure is used in the determination of transformed section 

properties of sandwich beams and columns that ore comprised of elastic 

elements. Modifications to occoont for both viscoelastic behavior and plate 

behavior will be discussed subsequently. 

a) 

b) 

A refere'lee elastic modulus, E , is selected for convenience of calcula
tion. This is usually taken as thl elastic modulus of one of the faces. The 
reference modulus is arbitrarily token herein as the modulus of the 
bottom face of the cross section, as drown; that is Er = E I• Another 
q,propriote criterion is that the reference modulus is that of ·the face 
having the higher modulus. The refererce modulus becomes the effective 
modulus of the v.nole cross-section for purposes of determining stiffness 
and deformation of the section under transverse bel"ding and under in
plane loads. 

TM whole width of the beam cross section may be used in calculations. 
However, for sandwich constructions having o continuous cross-section, 
selection a lM'lit width usually proves convenient. When elements of the 
cross-section ore not uniform in depth or thickness, as in the case of a 
corrugated face, the width mignt be token as the wove-length of the 
corrugation. Whatever the choice of reference width, it is referred to 
here as the actual width. 
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c) The modular ratio n is determined for each element of the cross-section. 
;:;:..:~': =~u~ the actual elastic modulus, Ei, of the element to the 

Eq. 8.1 

This relationship is modified to OCCOlint for the effects of plane strain 
conditions in Sec.:tion 8.5 for c.-olumns in compression, and Section 8.7 for 
wide beams and plates in bending. 

d) The actual width of each element of the cross section is multiplied by the 
modular ratio, n i , to obtain the transformed width. The new cross
section is the tranafcrmed aection. 

Once the above transformations are accomplished, the section properties of the 

transformed section are obtained directly by estci>lished methods for isotropic 

sections having variable width (Table 8-1). 

T1me-Ollpendent Sectlan Properties: The time-dependent behavior of lir.eor 

viscoelastic plastics is readily tmcen into account in the determination of time

dependent section properties of the sondwich cross-section. The elastic compo

nent, E
0

, of the viscoelastic modulus, Ev, is used in place of Ei, if short-term 

stresses and strains are applied. If long-term. sustained loads or strains ore 

anticipated, the appropriate value of the v\ll"iable time-dependent viscoelastic 

modulus, Ev' is used in p!oce of Ei (see Section J.3). When the modulus changes 

with shifts in tem;:>erature, the temperature-dependent modu,us is requir~. 

For constructions that contain plastics displaying time-dependent behavior, it 

may pr~ convenient to select the reference modulus as that of on element of 

the cross •ction which demonstrates elastic (non-time-dependent) behavior. If 

all elements are viscoelastic, the criteria for selecting the reference viscoelastic 

modulus are as given in a) above for the e!astic modJlus. In any e-✓ent, the 

modular ratio, n1, will normally vary with time unless the moduli of all ~lements 

of the cross section demonstrate the some relative decQ)· with time (i.e. all 

materials hCIVf'! the same creepocity. See Avail<i>le Estimates of Viscoelastic 

Respon,e, Section 3.3). 
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Charocteriltlc1 of the Transformed Section: The following ore important char

acteristics of the transformed section, particularly as they pertain to sand"'•ich 

structures. 

• The strain in Cl'ly '!lement of the trcnsformed section is the some as that 
in the actual section. 

• The stress in the transformed 3ection is o pseudo stress which must be 
transformed to the actual siress by multiplying the psuedo stress by the 
modular ratio, ni• This transformation is included in formulas for section 
modulus, Eqs. 8.160, 8.170, and 8.18a. 

• In the general case of a layered c.-oss-section, a rigorous solution for the 
shear stiffness of the transformed section would account for the different 
shear stiffnesses of the individual layers. For the special case of 
sandwich structures, the transverse shear i;tiffne~ of the faces is usually 
much greater than tho. of the core. 1-k-nce, only thP. core is considered in 
computation of shear deformation; shear deforr,10tion in the faces is 
assumed negligible. 

• The shear stress on the core a,d adhesive layer is the shear stress 
calculated for the actual width of these elements. 

Equations for determining section properties for typical sandwich beam and 

colurm cross-sections having voryi"lg degrees of complexity are given in Table 8-

1. The section propffties in bending for the .whole transformed section ore 

appropriate for elementary analyses of constrtJCtions having shear-rigid cores. 

The other expressions for th~ components of moment ~f inertia and bc..nding 

stiffness (e.g. 1
0

, Ip Dmf' etc.) are needed in the analysis of sandwich panels 

having shear-flexible cores. This is discussed in more detail in Sections 8.6 to 

8.8. 

excn.,1e Colculatians 

Example 8-1 illustrr.ites calculations for section properties of a simple cross 

section having thin faces and a plastic honeycomb core. Because the faces ore 

thin an<: identical, and the core is "soft", the calculations ore simple and 

straightforward. 
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I Exon-pie ~I: Tronsf«med Sectian Properties of a Sandwich Beam 
Having Thin Equal Faces• I 

I Determine the section properties of a sandwich beam having the cross-section shown below. 
I Assume that the 12 in. width of the beam is sma.l enough that plate action con be neglected 
I <See Section 8. 7): 

I 
I 
I 
I 
I 
I 
I 
I 
I ,. 
I 
I 
I 
I 
I 
I 2. 

• I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Face 2: 0,05" thick Ill oz. Fabric/Polyester FRP 

,r 
Core: 0.003" thick pol)'ester film honeycomb 

with 3/fr' cell 

F oce I: Son,e as F oce 2 

Materials Properties (in direction of span) 

Properties (psi) 

Elastic Modulus, E. 
I 

Shear Modulus, Ge 

Faces (Table 1-6) 

2.2 X 106 psi 

Assum«: = a> 

Core (8.2) 

Neglect 

5,000 psi 

Calculations: Follow Tobie 8-1 b for thin faces. Use unit width of b = 1,0 in., Er = [ 1 
= 2.2 x 106, d = 2.0'' - tf = 2,0- 0,05 = 1.95 in., c = 2.0 - 2 tf = 2.0-0.1 = 1.90 in. 

A 

A 

-z 

D 
m 

s 

= Af ..: 2 t f = 2 x 0.05 x I :: 0.10 in.Jin. 

= AE = 0.10x2.2x I06 =0.22x I06 in.2/in. 

= ~ = 1p. = 0.975 in. (mid-depth) 

2 2 
= •o = ~ = I X o.oi X l.95 = 0.095 in. 4/in. 

= El = 2.2 x 106 x 0.095 = 0.209 x 106 lb-in./in. 

::. btd = I x 0.05 x 1.95 = 0.0975 in.3/in. 

= bd = I x 1.95 --: 1.9S in.2/in. 
I I Dv = AvG = bdG =Ix 1,95 x 5,000:;; 9,750psi 

: Note: I in.= 25.4 mm; I psi = 6.9 kPa; I in. 4/in. = 16,387 mm4/mm 

I * Design loads, design criteria (such as safety factors, IOC't.l factors, cop-xity reduct ion 
I factors, etc.) and material properties used in desig-i examples are for illustrative 
I purposes only. The user of this Manual is cautioned to develop his own loads, criteria 
I and materials properties hosed on the requirements and conditions of his specific design 
■ project. 
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Example 8-2 illustrates calculations for section properties of a more compli

cated sandwich beam with dissimilar faces. The tabular arrangement for 

colculotions organizes hand calculations for more complicated constructions and 

it provides c convenient array for checking purposes. Other formats ore more 

suitable for computer use (8.4). 

The calculations for the sandwich construction of Example 8-2 show that the 

core does not contrihute significantly to the uxial and bending stiffness, in this 

f'Xample. As is typical for soft cores, Ac and le are both smc.11. Whether or not 

the core is shear-flexible will be determined ir, Section 8.6. 

Any time-dependent changes in modulus will usually result in a shift in the 

neutral axis, 'lnd a change in area, stiffness, and moment of inertia of the 

transformed section. Example 8, 3 illustrates these changes in properties of the 

structural cross-section, for a sandwich panel with one viscoelastic face. Note 

that for sandwiches having soft cores and thin faces, the section modulus 

remains unchanged, even though the neutral axis shifts significantly. This, of 

course, is the expected result since the two faces carry the applied moment by 

stath:s. 

Example 8-4 illustrates the calculotio.""I of section properti,.s for a cross section 

having one corrugated face. 

8.5 

Once the neutral (or centroid<JI) axis and section properties of the transformed 

section hove been established, stresses, strains and displacements occurring 

~r axial in-plane icads appl;ed at the neutral axis a,e readily calculated from 

the following relotiqnships: 
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•~•8-21 
I 
I 

Transformed Sectian Properties of o Sandwid, PCl'lel 
Having Dlulniilcr Faces• 

I Determine the section properties of the sandwich construction shown bf.low. Assume I that the 12 in. widt~ of bean, is small enouql that plate action can be neglected (See 

I Section s. 1>. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Core J 

. , .,. ' 

Face I 

Actual S.:tian 

(total Nidth = 12 in.) 

I •• Material Properties - Short Term 

Element 

Mnteriol 

Reference 

Elastic Modulus, Ei. psi 

Shear Modulus, Ge, psi 

T MSi le Strength, Fut' psi 

iCOf'11)ressian Strength, F uc' psi 

~ Strength, f w' psi 

-

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I* See Footnote, Example 8-1. 

Face- I 

10 oz FRP 

(Tobie I - 6) 

2.2 X 106 

CJO 

24,000 

21,000 

-

NA Zz • 1,5,.. 

r __ _ 
_t_---am.,__ z, • 0.8"' 

Transformed Sectian 

E = 2.2 x 106psi r 

Face 2 Core 3 

M:lt FRP 2.5 ocf PU Foam 

(Tobie I - 6) (8.6) 

0.82 X 106 1,500 

00 500 

11,000 25 

22,000 20 

- 20 
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I &mq,le 1-2 contirued 

I 
12.---~-
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

' I I 
I 
I 
I 
I 

•· a 
I 
I 
I 
I 
I 
I 
I 
I 

~ti• 

Ei 

Ge 

"i 

nlbi 

'1 

"1 Al • "1 bl 11 
I 

I; 
I 

ni-'. 1 1 

i r 
Enl Ai 11' 

E"J Aa 
i, • - i ♦ z'1 

lo 
2 • Enl Al 11 

,, . Zn1b ti3/li. 

•oc 2 . n3bl3 

•c .. "3be 3/12 

I . •o + 1, 

Dm • E,I • E11 

Dmi • E, ,, 
I (extr.M fiber) 

s . _I 
n1z 

2 
2111 ~ 

Sfl • n:r.- •. 
"I I ~- "1 ,., z,• 

• "z Aziz 

Ay • bl a,,.,. 
o. • AyCc ----

lktit 

10' pai 

10' pai 

-
In. 

In. 

in. 2/in 

In. 

In. 3/ln 

in. 

In. 

In. •/In. 

In. •11,\. 

In. '!In. 

In. •tin. 

in. •11n. 

lb-In. 2tln. 

lb-In. 2t1n. 

In. 

ln.3/ln. 

Ir. 3/ln. 

In. 3/ln. 

In. 2/ln. 

lb/In. 

rm:el Face 2 Core 3 Totol 

2.2 • E, 0,82 0.0015 -
- - 0.0005 -
1.0 0.373 0.00068 -
1.0 0.373 0.00068 -
0.1 0.15 2.35 -
0.1 :>.056 0.00165 0.15' • 
0 2...S 1,23 -
0 0.13' 0.001'7 o.1J, • 

o.e, - - -
-0.8' 1.5, 0.34 -
0.0792 o.i.2 - 0.221 

0.000083 0.00010 - 0.000183 

thele steps are 0.00001, -
omitted f« 
10ft cores• 0.00074 -

- - - 0.221 • 

- - - '64.,000 

- - - ~3 

o.,- 1.u I.SI -
0.235 0.357 6l6 -

I 
0.00167 Cl.00375 - -

-o.ou- - - -
0.089 .. -

- - 2.'8 -
- - 12~ -

I ....._ • 
I 

C.e Iliff,.. naglectld. If not, "I A1 a 0.158 In. 2/ln., n1 A1 1; a O.l.i in. 3tin., 
GM I ., Q.222 In. •11n. 

I 
I 

ff a..:kl - ..,., t• IOft CW9 

I 1ft. • 2M fflfflt I ,.. • '-' lcPof I lb • 2.2 Kg 
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I Exon.,le 8-3s Time Dependent Section Properties of a Sandwich Plate Pmel 

I 
I 

Having Elastic md Vismelmtic Faces• 

: Df.termine the short-term and long-term section properties in bending for o sandwich l)("nel 

I having alumirum aid PVC faces, and a soft core, as described below: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0.030" Al 
Face 

2.C1' PU F nam Core 

x•-•I 
0.25" PVC 
Face 

l•b•='·"'•I 
Slut Term 

E, = 0.55 x 10' psi 

-x 

------1 I -'II t• bl = I.C1' .. , 

Long Term 

Er a 0.27 X 10
6 

pal 

Actual Section Time-Dependent T rmsfanned Sections 

I Solution: Establish Er as the visoo.lastic modulus Ev of PVC. Assume short-term modulus 

I E
0 

= 0.55 x 106 psi, and since Roi 2 (Table 2-2) the long-term modulus Ev= 0.55 x 10612 = 

I 0.27 x 106 psi. Take E of alumirum as 10 x 106 psi, and assume that ~his modulus is n<"t time 

: dependent. Assume, G, of foam is SOO psi short-term and 250 psi long-term. lke format of 

I Exa"1)1e 8-2, end neglect in-place stiffneu of core since it is 10ft. Neglect effects oi 

I Poisson's ratio. 

I 
I 
I 
1----------------
1 * See Footnote, Exa"1)1e 8-1. 



I Excnlple 8-3 contlruid 
I 
11. _.._,..... ... 
I 
I Short Tei:n Lona Term 

I Propertltl U-.it 
Face I face 2 Total face I Face 2 Total 

I 
10' pal I E O.SS • E, 10 0.27 .. E, 10 

I 
"1 1.0 18,2 1.0 37.0 

I 
I "f1 In. 1.0 18.2 1.0 37.0 

I 
Q.25 0.03 Q.2S 0.03 I '1 In. 

I ni'4i In. 2 /in. 0.2S o.~ 0.80 0.25 1. 1 1 1.3' 

I 
I z' I In. 0 2,llt 0 2.llt 

I 
In. 3/in. I "JAizj 0 1.17 1.17 0 2.38 2.38 

I i In. .!M !ill 
I 
I zl In. - 1."' 0.68 - 1.75 o.» 
I •o In. It/in. 0.533 0.2S2 0.785 0.7'6 0.1" 0.935 
I 
I ,, in. •11n. 0.0013 .-nall 0.0013 0.0013 .-nall 0.0013 

I 
In. It /in. 0.78' 0.93' I 

I D"' ~~2/ln. U0,000 253,000 

I 
~in.2/ln. I Dfflf 720 350 

I z., In. 1.58 0.695 1.87 OMIS 
I 
I s .. in. 311n. 0.062• OM2• 

I 
\oe In. 3/in. 0.A97 • 0.50C. 

I 
I ~ in. 3/ln. -o.3'5 • +0.371 • - O.AJI. ♦ 0.4]]. 

I 
ln.2/ln. I A., 2.15 • 2.llt • 

I o,, 
I 

~n. 1075 535 

......... • Check•• equal an .,,. row 

I I In. • 2U """' I pal • 6.9 lcPaa I lb • 2.2 Kg 
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I ExCJn'1)1eM: Sectim Properti~ of a Steel-Faced Foam-Core Sandwich Panel 
Having One Corrugated Face .; I 

I 
I 
I Determine the section properties of the sar Mich panel described below for long-term 
I loading conditions. Neglect effects of Poisson's ratio as being small since top sheet is 
I corrugoted (See Section 8. 7). 

0.2S" 
O.S" 

'i 
or 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

z 1 z' 

x' ~IJiti~iliilti-iiiliiiii6iJ.-L...l. J; 
I 
I 
I 
I I I. Materials Properties 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• I 

Element 

Material 

Loading_ Time 

Elastic Modulus E. (psi) 
I 

Shear Modulus Ge (psi) 

Min. Yield or Ultimate- Strength 

Tension Yield (psi) 

Tension Ultimate (psi) 

Compression Ul1 imate (psi) 

Shear Ultim,1te (psi: 

Actual Sectim 

Faces I & 2 

24 Go. Steel (t = 0.024") 

Any 

29 X 106 

-

36,000 

58,000 

-
-

I 
I 

Note: I in.: 25.4 mm; I psi= 6.1 k~a; I pcf = 81.5 kg/m 3 

I * See Footnote, Exomp1..: 8-1. 
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Core 3 

2.5 pcf PU foam 

Short-Term Long-Term 

- -
500 250 

- -
- -
20 7 

20 7 

-

.......... ...,.,.,_ 



I fxan1>1e M cantlrued 
I 
I 
I 2. 5ectlen ........... (b • 2 in.) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Propwti• 

Ei ic 106 pal 

Ge (lang-term) 

nl 

bi 

ti 

AC-. Eq. 8.2a) 
I 

zi 

n1 Ai z; 

zi 

1
0 

(IN Eq. 8.8a) 

111 (Ne Eq. S.,a) 

, lf2 C-. Eq. 8.7a) • 

I pf 

I . lo+ If 

om . E
1

1x10·3 

Dm11 • E .3 I ., x 10 

SI . I 
n1 (11 ! O.S ti 

·z s,, • 
0.167 b1 t 1 

ni 

s,z • 
2 ,, 

n.m:s ♦ ti> 
~ . n1 A1 z 1 

A., • bl 

~ 
DV • A.,Cc 

Unit 

:z, 

pal 

-
In. 

in. 

In. 2 

in. 

In. 3 

in. 

in. 4 

in. 4 

in. 4 

In. It 

In. 4 

lb-in. 2 

lb-in. 2 

ln.3 

in. 31110-l 

in. 3 

in. 3 

in.2 

lb 

Face I 

:z, 

-
I 

2 

0.02lt 

D.Olt8 

0 

0 

-Z.57 

0.317 

2..lxl0-6 

-
-
-
-

OJ)67 

0.205 

0.192 

-
.().I 23 

-
-

Elements of Cross Section 

Face 2 
Core 3 Total 

2a 2b 2c 

:z, :z, - - -
- - - 250 -
I I I - -

1.021t 0.048 1.024 2 -
0.02lt 0.lt76 0.024 3.976 -
0.025 0.023 0.025 - 0.121 

,. lt.25 4.5 - -
O.IOC 0.098 0.113 - 0.311 

1.lt3 1.68 1.93 - -
0.051 0.065 0.093 - 0.526 

- - - - 2..licl0-6 

0.0015&1 0.00043 0.00154 - -
- - - I - O.OOJS 

- - - - 0.530 

- - - - 15,370 

ltlt.7 12.s "4.7 - 102.0 

0.37lt - 0.273 - -

- - - - -
0.013' - 0.013ft - -
- - - - -

- - - 8.618 -
- - - 2012 -

I Not91 I in. • 25A nvn1 I pal c '-' kP01 I lb .. 2.2 Kg 

I • 
I 

Since h ~ face In lt•lf re•rri,lea key features of a aondwich (thin faces 
apar•.ted by o care or thin w9b), It la a ipeclal ca. of Table 8-la, ond Eq. 8.7a for I is 
uacl to ... miM •12 ..... 
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Table 8-2 

Strea, Strain and Stiffnea Relationlhipa for under Axial load 

Comoression Element 

Relationship Columns and Struts Plates (Plane Strain) 

Area, A En. A. 
I I Eni Ai 

Stiffness, A In. A. E. = AE 
I I I r !n'. A. E. = AE 

I I I r 

n.P n'.P 
Stress, ai l I 

T T 

Strain, £ 
p p 

~ ~ 

Note: If b = I, P = N 

The term n'i in the above relationships is defined as follows: 

, I (!-,i.) __ ni = 2 c. 
I -v. 

I 

n. 
I 

2 
I - "i 

Eq. 

8.20 

8.22 a, b 

8.23 a, b 

8,24 

Eq. 8.25 

In effect, n'i reflects the increase in axial stiffnes in coses where lateral 

movements due to the Poisson effect Cl"e restrained. Such conditions occur In 

axially loaded plates subjected to plane strain conditions. 

Bending stiffness is important in the evaluation of the behavior of columns and 

plates subjected to loads that are eccentric from the neutral (l)(iS, and for 
evaluating buckling capacity. Bending stiffness is discussed in Sections 8.6 and 

8.7. 

As illustrated in Example 8-3, certain Cll"rongements of viscoelastic: plastics in 

sandwich cross sections with dissimilar faces may result in very si9'iflcant lhifts 

in the neutral Q)'is with time uooer stress and strain. This means that an axial 

load .ipplied initially at the centroid will gradually become eccentric with 

respect to the shifting neutral axis, When this occurs, the load I:. no longer 
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purely axial, and the resulting additiunal bending effects should be taken into 

account. When the material stress is within the vi~oelostic limit, this can be 

considered a linear problem, indep~ndent of stress level. If the viscoelastic limit 

is exceeded (which is not recommended), the neutral axis shift would becol'l'lE' u 

function of both stress level and time, and the analysis becomes non-linear. 

See Section 8.8 for stability of sandwich members under axial 100d. Example 

8-7, in Section 8.8, illustrates the evaluation of a sandwich mtr:1her under axial 

load. 

8.6 Beams 

Two ~prooches to the onaly'sis of sandwich beams are presented herein. An 

elementary theory, which is oppropriate for constructions huving sheor-rigid 

cores, is presented first. IT i:; merely on extens'on of well established concepts 

based ~on convent:onol beam theory. A rr,ore rigorous theory, which is 

~propriate for , .. :ons'-ructions having shear-flexible cores, is presented subse

quently. 

Elementary Theory (Shear-Rigid Cores) 

Sandwich structures having shear-rigid cores ore very emcient, because the rigid 

core provides on effective load path to carry shear from one face to the other. 

Hence, dlrect or membrane stress resultants ore mobilized in th~ faces to 

provide high strength arid stiffness. As in any efficient bending structure, such 

as a truss, the objective is to maximize direct stress and minimize bending stress 

:n all elemer •s. 

Elementary bending theory, hosed en plane sections remaining plane ofter 

bending, applies to sor.Jwich beams that have adequate core shear rigidity. In 

~his case, l>eoms con be analyzed by conventional tronsformed--llection theory, as 

descri~ below. 
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Deflection: In the elementary theory, the total deflection is the sum of the 

deflection due to bending of the transformed section and the deflection due to 

shear defcrmotion of the core {rig. 8-6). 

w = w m•wv Eq. 8.26 

where 

w = total deflection 

Wm = bending deflection of transformed 
section under total load 

WV -= shear deflection of core under total load 

In essence, the bending deflection is that of a beam having a finite bending 

stiffness and a core having infinite shear rigidity; the _shear deflection is that of 

a beam having an infinite bending stif:ness and a finite shear rigidity of the core. 

For certain simple ~t and loading coses, the combined maximum bending 

and shear deflection for beams with 5P<l'I length, L, co, be found by using 

properties of the transformed section in conjunction with the following equation 

(8.7): 

K PL3 I<' PL m ·v 
Eq. 8.27 w = --u-- + o;-m 

where 

p = total load on beam 

Km = defle<"tion coefficient for moment (T oblfl 8-3) 

KV = deflection coeffr:ient for shear (Tobie 8-3) 

The fint term on the right of Eq. 8.27 is the conventional beam-theory formula 

for the deflectic:.n of elastic beams due to bending, as typically found in 

handbook~ The second term acccunts for t'heor deflection, and i1 generally less 

readily available. Values of the coefficients are given in Tobie 8-3 for a number 

of loadins and 5t4>porf conditions. 
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a. Loading 

l 
b. Deflection due to Primay Bending of TransfcrlTINI Section 

Fig. 8-' 

w 
V 

c. Deflection due to Shear in Core 

d. Combined Deflection 

1/. 

COMPOtENTS OF DEFLECTION OF 
CENTRALLY LOADED SAN>WICH BEAM 
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Tcmle 8-3 

Coefficients f« Bending and Sheer Deflection 
of Sandwich Beams for Use in Eq. 8.27 (8.7) 

Locatiori of Coefficients 
Beam Type Loading Conditions Deflection Bending Shear 

Km KV 

Uniformly Distributed Midspan 5/384 1/8 

ConcentrotE'd at Midspan 1/48 1/4 
Simply Supported Midspan 

Concentrated at Midspan 11/768 1/8 
Both Quarter Points Quarter Points 1/96 1/8 

Uniformly Distributed Midspan 1/384 1/8 
Both Ends Fixed 

Concentrated at MidspJO 1/192 1/4 
Midspan 

Uniformly Distributed Free End 1/8 1/2 
Cantilever 

Concentrated at Free End 1/3 I 
Free End 

Non-Symmetric Loocis: Shear deflection in a sandwich beam may lead to 

significant amplification of deflection when loads or support conditions ore 

unsymmetrical. An excmiple this is shown in Fig. 8-7. Physir.al reasoning (and 

theory) shows that the shear forces in span AB do not produce vertical 

deformation and that the shl,or deformation in that span is merely the lateral 

displacement of the original square a-b-c-d into a rhonbJs, creating on angle 

chcnge of a 1• The shear deformation within the cantilevered portic,n BC, then, 

must be token relative to a 1• Thus, the vertical sheor deflectioo of point C is 

(CJ I + a 2>x BC. 

Indeterminate Support Conditions: When shear deformations become significc.nt 

in indeterminate structures, hond>ook formulas based only on bending stiffness 
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0 b 

C C 

A B 

a. Loading 

b. Deflection Due to Bending 

tis = at,-.ar deformation in AB 

~ = shear dl!farmation in BC 

C 

C 

c. Ootflectlon Cue to Shear SM.Ing Amplification at ~antilever 

Ag. ~7 BEN)N; N-0 St-EAR DEFLECTION COMPONENTS 
IN A EEAM Wm-t CANTILEVERED OVERHANG 
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may produce large errors in the calculation of reactions, shears, moments, ond 

• deflections due to bending. Therefore, shear deflections should be included when 

determining redundant reoC'tions in such structures. Excimple 8-5 ill ,strotes such 

a calculation for a two-span panel subjected to uniform bod. The results of this 

example ore used in the n,,merical example given in Section 8.1 I. 

Viscoelostk Properties: When viscoelastic plastic ma~erials are used for either 

the faces or the core of a sandwich panel, the time-dependent tronsforned

section properties which ore derived from the appropriate viscoelastic modulus 

should be used in the calculation of deflections. The stress le•,els occurring in 

the various viscoelastic sandwich elf>rnents should be checked to verify that they 

ore below the viscoelastic limits for tl-ie rnateria'. in each element. 

Stresses: With the properties of the transformed ~tion established, bending and 

shear stresses ore readily calculated using conventional beam theory for a cross

section of variable width. Characteristic bending ond shear stress distribution .. , 

together with elementary formulas for determining actu~I stress levels, ore 

given in Fig. 8-8, for several coses as follows: 

(a) Thick faces and a stiff and shea!'-rigid core. This corresponds to the most 
general cross section having uniform thickness (See also Tobie 8-lo). The 
rigid core in ,his case carries a portion of the applied bending moment anti 
the shear st!"ess in the core varies with distance from the :,evtral axis, 

(b) Thick fcx:es and axially soft, but sheor-r-igid, core. As discussed earlier, 
this case allows some simplification, since the soft core does not carry 
signifi::ant bending stress. The core shear stress is essentially unifor'.n. 
Whif, the soft core does not contribute significantly to bending capacity, 
the stresses in the rore should never t,e neglected out of hand, since '.J10St 
soft cores ore very weak compared to the faces. Note tho; the 
approximate Eq. 8.38b is conservative by 8% or less for procticol sand
wich constructions where t/d is less tha.~ 0.5. 

(c) Thin faces a1d axially soft, but shear-rigid, core. The faces :,re 
sufficiently thin to permit the :.implifying assumption that there is a 
negligible stress grodient betwee,, the neutral axis of the face and the 
extreme fibers of the section. 
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I exc...,1e 8-51 Oeriwtion of ReactiCJna, Moments and Shears in a T~Spm Beam 
I Swjected to U.ifcrm Load • 

I 
I I. Struct\n.: Arrangement 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I z. 
I 

Determine D&flection cw to lklif orm Load with Redundmt 5'4,port F\,_, Rr.mow!d 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

b 

Km P L
3 

Kv PL 
wb = D + D 

rT, V 

for uniform load (Tobie 8-3) 

= 5/384; K = 1/8; P = qL = 2qo 
V 

~ sa2 I 
= 2 12 om + ~ 

; 3. Determine Rensing Deflection with Recblcblt ~ Reaction Acting Alone 

I 
I for concentrated load at midspo, (Tobie 8-3) 

I 
I _ 1/48; Kv = 1/4; P = Rbl 

I 
I 
I 
I 1 ~ Solw for f\a_ by Setting Oeflectim at b = 0 

I 
I 
I 
I 
I 
I 

sa2 
~ 

1----------------
1 • See Footnote, Example 8-1. 
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Eq. 8.27 

Eq. 8.38 

Eq. 8.29 
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I fxar11,le 8-5 contlrued 
I 
; S. End Reactlon1 Roa_ and Rel 

I 
I 
I 
I 
I 
I 

- q (2a) + Rbl 

I 6. Moment In Spca-\ ~ 

+ RaL + Rel = O 

-Rbl + 2 qo 
2 

I 
I 
I 
I 
I 

2 . a 
= R

0
L x - 'T; at midspan, x = 1, and 

2 
M = Rol 7 - T 

17• Mamet,: at b (x = a) 

I 
I 

' I 8. Sheen at a mid b 

I 
I 
I 
I 
I 9. Deflection at Midlpal ~ 

I 

Eq. 8.31 

Eq. 8.32 a, b 

Eq. 8.33 

Eq. 8.34a, b 

I Superimpose two loading cases on span ab. Cose A is deflection of simply Sl4)ported uniformly 

I loaded beam (Eq. 8.27) moment MbL not acting. Cose Bis deflection (in opposite direction) of I simply supported beam with no load, aid acted upon by MbL (8.14) at b. (Note: ~ is 

I negative.> 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

K PJ V + 

~ A 
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Fig. 8-8 

Q M 
Bf?nding Stress 

M 
a; = 5: (Eq. 8.36) 

I 

't 

Shear Stress 

00 
t = TT (Eq. 8.32) 

o. Thick faces - axially stiff and shear-rigid core 

Bending Stress Shear Stress 

oot u• 
t = TT 6a (Eq. 8.38a, b) 

• fo,- \/d O.S, see text 

b. Thick foces - axially mft and shear-rigid core 

Bending Stress 

M 
a = ~ (Eq. 8.39) 

Shear Stress 

Q 
T = bd (Eq. 8.40) 

c. Thin faces - axially 10ft and ,t,eor-rigid <.'Ol'e 

eEN>ING N-0 SHEAR STRESS DISTRIEl.JTION IN 
SAN>WICH IEAMS HAVING SHEAR-RIGO CORES 
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In all of the aboYe coses, it is implicit thot plane sections before bending remain 

plane ofter bending. This is only valid for shear-rigid cores. The important 

effects introduced by shear-flexible COfes ore di£cussed be!-,w. 

Analysis for Shear-Flexible Cares 

The term shear-flexible, as used herein, defines o relative condition in which the 

core provides a low shear rigidity compared to the flexural stiffness of the faces. 

Sandwich ponels having shear-flexible cores do not behove in accordance with 

conventional beam theory. Sr.ear deformations and deflections become signifi

cant, and conventional elementary theory described earlier may foil to predict 

t>Mavior within suitable limits. Such limits will be dtscussed subsequently. 

Sandwich constructions which hove shear-flexible cnres ore net effic.ient beams. 

The sheor-flexible core is only port:olly effective in carrying shear from one 

face to the other, and hence, resistanc~ to bending by direct or membrane stre• 

resultO'lts in the faces may not be fully mobilized. The result is that the faces 

carry o larger share of the load in bending ab01Jt their own neutral oxes than is 

indicated from elementary theory. In the extreme, lacking helj) from the core, 
the two faces may carry all of the load as separate beams, spanning between 

reactions, independent of the core. 

While it is the objective of structural design to develop efficient primary 

structures, there ore other criteria that may require a compromise in this design 

objective, and lead to structural arrangements where the core acts In o lhear

flexible manner. Exorrples are as follows: 

• The uae of low density foamed plastics may be desirable for reo.ons of 
weight, thermal resistance, or cost. Such cores frequently hove very low 
shear ri~idity c:ompored to tt.e faces, as well as in comparison with other 
cores available for sandwich construction, such as honeycombs mode from 
metal or plastic-impregnated paper. For example, the long-term vbco
elostic-..cor modulus of a low density plastic foam may be as low aa 
200 psi - such cores prove to be shear-flexible in most practical sandwich 
constructions. 
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• Faces may be corrugated, ribbeJ, or exceptionally thick for aesthetics, 
stability OJOinst local buckling, r."ld many other reasons. Furthermore, 
the modulus of elasticity of some advanced-fiber reinforced plastics 
facings may~ very high, and approach thct of metals. Thus, the bending 
stiffness of faces may be high, rebtive to the shear rigidity of many 
practical cores. 

Thus, in view of the above, there may be mony practical cases wht:re the shear

flexible core condition exists, and the application of rigorous theory may be 

required. 

Delcriptian of Analysis: The onolysis for shear-flexible cores employs differen

tial equations to enforce compatibility between the bending and shear deflec

tions of the transformed section, and the bending deflection of the faces, along 

the full length of the beom. In the e 1e:-nentary theory, summing the shear C'ild 

moment deflections to obtain the totJI deflection neglects the resistance to 

deflection offered by the secondary bending of the faces. Tt:erefore, the 

deflection of the member according to the refined theory will generally be less 

thc:s't that calculated from the elementary theory, but the faces stresses will be 

greater because the secondary bending is leM efficient than the primary bending 

in resisting loads. Using the refined theory, the total deflection (w) is the sum of 

the primary {wp) and ~econdory bending defl~tions, where the secondary bending 

deflections ore the same as the sheor deflections, (w 5'· 

The following expressions describe the components of loads and transverse shear 

and moment stre~ resultants at any point along the beam length assumed in the 

refined theory: 

q = <\> + qs Eq. 8.41 

Q = Q + Q Eq. 8.42 p 5 

M = M P + Ms Eq. 8.43 

In each case, the su:>script "p" indicates the component carried by the f•JII 

transformed ~tion (Fig. 8-~a). The subscript "s" denott-s the component carried 

by lheor and bending in the faces, over ond above that which occurs in the 

tronsforrred section (Fig. ~:lb). 

8-34 



The total deflection (w) is as follow .. : 

where 

w = w +w p s 

w = primc.-y Lending deflection o~ transformed 
section due to primc.-y shear stress 
resultants (QP) 

p 

w = s secondary deflection 

= deflection of corf' due to primary shear 
stress resultants (QP) 

= deflection of faces benc1ing about their 
own neutral oxes due tc, secondary shear 
stress resultants (Qs) · 

Eq. 8.44 

Consideration of both statics aid compatibility of deflections leads to the 

following differential equotions (8.3): 

-Q = D "' = EI w"' +EI w"' Eq. 8.45 p w, 0 p f p 

frcm which 
4 02 Q 4 g2 Q Eq. 8.46 G,11 - e 

L2 = L2 p 

and 

QP ~L:2) w' = Eq. 8.47 s 

where r L ~ D IJl/2 r 0 L ~AGI ~ [n°;; = "1 r.r = 2' Dm~1o at 
Eq. 8.48o, b, c 

f 0 

Primes deaofe differentiation with respect to x, the distance ola,g beam length. 

In my pTticulor problem in which the total shear, Q, is o given function of, x, 

Eq. 8.116 con be solvec: for Qp. The quantities Mp, v,p, and~ may be obtained by 

integration md diffHentiation. The slope, ws'• con be obtained from Eq. 8.47, 

and the quantities M
5

, ws' and q5 ore obf'lined by subsequent integration and 

differentiation. Eq. 8.4 I to 8.4 '.i and suitable boundary conditions are needed to 

etfect the above solutions. 
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1? ff-~. i 
P P Bendir,J Stress Shear Stress 

a. Dlr.tribution !#Ider Primary Bending and Shear on Trons
formed Section - Axially Saft and Shear-Rigid Cores 

Mal+ M,z = Ms 

G11 +G.zcG1 

Fig.~, 

Diltribution under Secondary Ber.diog ona Shear on Facings 

q 

Bending str ... ~ Strea 

C, Nit !:>iltributlon under Applied Moment and ~ 

BEN>INC AN> SI-EAR STRESS DISTRIBUTION IN 
SAN>WICH BEAMS HAVING 51-EAR-FLEXII.E CORES 



In essence, in tt,e analysis for sheor-flexibl~ cores, the wtol shear (Q) and the 

total rr.oment (M) actill'J on any cross section ore divided into two components, 

as described below and shown in Fig. 8-9: 

• 

• 

The primcry shear (Qi;,) and moment (MP) stress resultants act on the full 
transformed section m exactly the some way as shown eor lier for +he 
elementary theory in Fig. 8-8. (Compare Figs. 8-8h and 8-90.) 

The aecondary shear (Q 5 ) and moment (M!:) stress resultants act only on 
the faces (Fig. 8-9b). These :.~ondary stress resultants cause tt.e faces 
to bend oLout tneir own neutral oxis. This bending of faces, which i~ over 
and above the bending i"l)osed on the transformed section by the primary 
stress resultants, is neglected ;n the elementary analysis. 

l'unericol Solutions: The analysis for shear-flexible cores is general and can be 

applied to any loading condition (8.3, 8.8). 'Jnly the simpler cases of simply 

s~ported beams loaded with a uniformly distributed loa<.1 or concentrated loads 

are presented herein. Of course, by symmetry and superposition, these ca5"s con 

be r"?adily altered to handle both cantil~ver and continuous beams. Numerical 

solution, for other load and support coses must he derived from the genc-rol 

differential equations as given in (8.3, 8.5, 8.8), and sumrnnrized from (8.3), 

below: 

Equations giving rAJmericol results for the analysis of shear-flexible cores, ore 

given for <:~rtain load and support conditions in Table 8-4. Relations ore given 

for deflectioos, moments, and shears at any point olor.9 rhe beam length. 

Equat!o;,s for maximum values are also given. Note that the origin (x = 0, or X = 
0) is diffe~•nJ for different loading case~. 

Effects of Ii: The she'Jr flexibility coefficient, Q, Eq. 8.48 has a strong influence 

on the magnitude of the deflection, moments, and shears, calculated in accord

ance with the theory for shear-flexible cores. The magnitude of the shear 

flexibility coefficient, Q, depends ~on the sp,:in, the ratio of shear rigidity of thP. 

core to the flexural stiffness of the faces, and ~he ratio of I to I . Since 
0 

U/10 )
112 is usually dose to one, even for relatively thick faces, it!: efff'Ct on Q is 

negligible. (See Tobie 8-1 for definition of I and I .) Hence, for a given span, Q 
0 
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d4,pends on D /D f' and Eq. 8.48c con be used for most practical sandwich 
V m 

structures. 

The magnitude of tne she.:ir flexibility coefficient, Q, governs the relative 

importance of secondary face bending. This is illustrated in Fig. 8-10 which 

shows the distribution of primary and secondary shear and moments along the 

length of a centrally loaded, simply supported sandwich beam, for o range of Q = 

I to co. Following are significant results shown in the Figure: 

• The faces carry the full shear near the center of the span for all values of 
Q. In the elementary analysis it is ossur,ed that the core c11rries the full 
shear for the whole length of the beam. 

• As Q decreases, faces carry an increasing share of the total shear over 
substantial portions of the beam. 

• As Q decreases, on increasing shore of the totol moment in the central 
portion of t~e beom is cc,rried by the faces in secondary bending about 
their own neutral axes. At Q = 3 for example, the faces carry about 25% 
of the total midspan moment. 

With Q equal to about 5 or greater, tonh Q = I for all practical purposes, and 

simplified coefficients, ti, are given in Tobie 8-4 for this case. Further 

simplifications for two comnl<."n coses ore: 

for concentrated 
Ms max 

Mmax g ~ 5 Eq. 8.78 loads at midspan = ----r 

for uniformly 
Ms max 

2 Mmax g !ii: 5 Eq. 8.79 distributed loads = g2 

As Q increases further, the shore of the total moment carried by the fa..:es in 

secondary bending ci>out their own oxes decreases r~idly and the primary 

transformed section carri~s most of the total moment. The structure thus 

becomes a more efficient composite, CJ'ld the bt!ht1vior q>proaches that assumed 

in e•~mentory theocy. However, even though Ms aecreoses to small values with 

increases in O, face stresses may still be significant, since the section modulus of 

thin faces is small. 
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Effects of Canc:eutratlon of Load: In the anolysis for shear-flexible cores, con

centrated loods are assumed to be opp lied cs line or knife-edge loads. In 

practical structures, concentrated loads ae actually distributed locally over a 

finite width. Whether it is importont to account for the actual width of the load 

can be determined by comparing this width to the distance over which the 

secondary bending moment from the knife-edge load decoys to a small value. 

For a knife-edge load applied ot midspan of a simply supported sandwich beam, 

the bending moment decays to p% of its maximum value at a distance, (2x)d, 

defined by the following relationship: 

r t3 Efl ,12 
(2x)d = 0.408 ~j loge (l~O) Ea. 8.78 

This equation, derived from Eqs. 8.48 and 8.51 o, holds only for relotivel} thin 

faces where the problem of large f«e stresses resulting frcm knife-edge loads is 

most critical, and for values of g greater thon about 5. The calculation of the 

distance (2x)d is illustrat-.:d in connection with a practical design in Fig. 8-11, 

which will be discussed in more detail later. 

In application, if the actual width of the load is on the order of (2x)d' it con be 

divided into a number of knife-edge loads distributed over the actual width. The 

effects of each concentrated load are then superimposed to determine the 

maximum moment under the load. 

Effects of Owtlhmgs ot Beam Ends: For simplicity, equations given in Tobie 8-4 

pertain to beams without overhangs ot supports. The effects of overhangs, which 

are uilooc:led, ere fairly small,' and such overhangs are not usually encountered in 

practical framiny. t-bwever, flexural test coupons of sandwich constructions 

are usually significantly longer than the test span, and the effects of the 

OYerhanging ends should be considered in interpreting test results. EquC1tions 

which account for the effects of overhangs on centrally loaded and uniformly 

loaded beams ore given in (8.3). 
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Application of the Analysis for Shecr-Fk:xible Cores: The following procedure is 

used to anolyze sandwich cross sections having shear-flexible cores: 

• Section pr\lp~rties and bending stiffness of both the trar.sformed section 
and the faces, a:"ld shear ~tiffness of the core, are calculated using 
equations given in Table 8-1. 

• The equations given in Table 8-4 are used to determine the shear
flexibility coefficient Q, deflections1 and the primary, secondary, and 
total bendir-;, moments. 

• The primary momer.t, Mp, is applied to the transfor~ section of the 
whole cross-sa:tion, and primor, bending stre5"'5 are calculated in the 
so1ne fashion as described previously for +he elementary theory. 

• The secondory face moment, Ms, is applied to Faces I and 2 in proportion 
to the ratio of bending stiffness of the respective faces, Dm11, and Dmf2 
to the total bending stiffne$$ of both faces (Dmfl + Dmf2). The moments 
so calculated, Mst and Ms2, ore then divided by the section modulus of 
each respective face (about its own neutral axis, to obtain secondary face 
stresses. 

• The stresses dlJe to the primary and secondary m~ent~ are added to 
obtain the total stresses in the faces. 

• Tt-e primary shear stress resultants ore calculated frorn f'iuotions given in 
Tobie 8-4. These are then divided by the shea area, Toole 8-,, to obtain 
shear stresses in the core, and in the adhesive bon<i os op;>roprlate. 

• The secondary shear stress resu1tonts which act on the faces may be 
colculated from ~uations given in Table 8-4. The shear streSlles ore then 
calculated for eod. face from elementary beam theory. The3e stresset 
are seldom critical in practical sandwich constr-.,ctions. 

• If concentrated loads hove o width on the order that given by Eq. 8.78, the 
load can be t:livided into a number of knife-edge loads, os discussed 
eor:i~, to provide a refined estimate of mo"imum secondary moment on 
the foces (see above, Effects of Concentration of Loac). 

Example 8-6 illustrates the calculations required to ono1yze for secondary 

bending effects In an unba:onced, metal-faced, sandwich 1->eam having one 

corrugated face end o plastic foam core. In this example, maximum combined 

foce stress c-rused by primary and secondary bendirl{'I of the stiff corrugated face 

is 6,133 psi (42.4 MPa). As is shown, elementary theory, which neglects the 

flexibility of the core, would have gi~en a total stress of 3,436 psi (24.1 MPo) 
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IEw,.-u. 
I 
I 

Ewluate Foam Care Scnlwic:h Beam with One Face Corrugated• 

I Determine adequacy of the steel-faced panel for which aectiun properties were determined in 

I Example ~ Span is I 00 in., and the long-term design load is 30 psf. Use Lood Factor of 1.8. 

I Deflection Limit is L/200. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 1. 
I 
I 
12. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

.. 

Actual Section 
(from Exan1>1e 8-4) 

o.r 

(U. 2 in. wide repeating strip) 

Stre• 
Distribution 
T.uwfarmed 

f.ection Anal)'lb 

o.ign Load (b = 2 in.) q = ~ = 0.417 lb/in. (unfactored) 

\•,5~1 

Stre• 
Diatributm 

Shear-Flexible 
Care Analysis 

Coefficients (See Exaq>le $l-4 for section properties and Table 8-4 for equations) 

n • l. [ Dy I ] O.S 100 [ 2012 x 0.530 ] O.S 
• 2° 0mf 1o : ,-r [102 X 103 X 0.526 : 

7
•
1 

for Q > 5 uae Eq. 8.61a, c, Table 8-4. 

2 7.1 - 2 = 
7.1 2 

• 7.1 - I -r.r 

= 0.'6 for moment and deflection 

= 0.86 for shear 

1-•--See--Foo-tno-te-,-Ex-amp_le_8-_I_. 
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I Exaq,le 8-6 contlrued 
I 
I 3. 
I 
I 
I 
I 4. 
I 
I 
I 
I 
I 

Ultimate Bending Moment (LF = 1.8) 

I 2 I 2 M = 'B q L x LF = B x 0.417 x I 00 x 1.8 ::: 938 lb-in. 

Determine Primary md Secondary Moments: 

Primcry: Mp = d3 M = 0.96 x 938 = 900 lb-in. 

Secondary: M = M - M = 938 - 900 = 38 lb-in. s p 

I 
I Secondary moment is assigned to faces in proportion to their bending stiffness. 

I 
I 
I 

Dmfl 
Ms1= ~ = ?o~~J x 38 ::: 0.025 lb/in. 

I 
I 
I M Dmf2 M 102 - 0.C67 

s2 = ~ x s = I 02.0 
I 
I s. 
I 

Maximum StreNeS in Faces at Midspan: 

: Face I: 

I 
I 
I 
I 

Primary 
(tension) 

Secondary 

I Face 2: Primary 
I (Element 2o) (~on) 
I 
I 
I 
I 
I 

Secondary 
(tension) 

I Fcx:e 2: Primary 
I (Element 2c) ~on) 

I 
I 
I 

Secondary 
(oo, I ipression) 

fpl = 

f 
s, 

= 

f = 
P2a 

fs = 
2o 

f 
P2c 

= 

M 900 

~ = o:103 

0.025 

0.192 X 10-3 

~ 900 = o:m 2a 

Ms2 38 
-s;;- = u:um 

M 900 

~ = tr.m 

8-45 

X 38 = 38 lb/in. 

= +4,390 psi 

= .! 130 psi 

= -2,406 psi 

= +M36 psi 

= -3,297 psi 

= -2,836 psi 

Total = +4,520 psi 
and + 4,260 psi 

T otol = + 430 psi 

Total = -6,133 psi 
(Maximum) 



I CCCIR1)1e a-& cont1....ec1 

I 
I I,. 
I 

a.de Abowe S1resses Against Elementary Theor-y 
(neglectiing shear-flexible-core behavior) 

: Maximum face stress, Element 2c, is f2 = M/S2c = 938/0.273 = -3,436 psi. This is only 

I 56% of total stress (-6,133 psi) from the above onulysis. Maximum stress in bottom face is 

I f 1 = 938/0.20S = 4,576 which is almost the some os f I above. 
I P 

I 7. Maximum Care Shear S1ress 

I g_!, 0.417 x 100 x 0.86 x 1.8 I Qp = Q •1 x LF = 7 •1 x LF = -----,..-------- = 32.J lb 

I 
I 
I 
I 
I e. 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Q 
fv = A 

V 

32.3 
= Km = 

Deflection (Unfoctored Load) 

3.7S psi 

S x 0.417 x I 004 0.4 17 x I 002 

= 384x 15,J70x 103 + Sx20l 2 
().526 2 X Q. 96 
ll3ln 

= 0.0353 + 0.245 = 0.280 in. < 0.5";::: L/200 ok. 

I Note that shear deflection is about 87% of the total deflection. 

I I,. 
I 

Ewluate Strea and Deflection Levels 

I Steel Faces: The steel fares, having a minimum yield strength of 34>,000 psi and ultimate 
I strength of 58,000 ps= (Example 8-4) ore safe by inspection since maximum stress is 
I 6,133 psi in compreaion and 4,520 psi in tension. Stability of the upper face ogoi~t 

I 
wrinkling must be evaluated by test since onolyticol expressions for buckling of corrugated 
faces restrained by core ore not available (see Section 8.8). 

I 
I Foam Care: The maximum long-term shear stress in th~ foam core, which includes a load 
I factor of 1.8, is 3.75 psi. This compares to a minirrum long-term strength of 7 psi 
I (Excmple 8-4). This provides a rncrgin of safety of 7 /3. ;5 = 1.87 between minimum ultimate 

I 
short-term strength aru factored stress. Equivalent capacity reduction factor is 1/1 .87 = 
0.54 which «.>l)ears rt:aaoooble. 

I 
I O.flectiCln: The Rctinn rr.eets deflection criteria. 

•-------------~ I Note: I in.= 2S.4 mm; I psi = 6.9 kPa; I in. 4/in. = 16,387 mm4/mm 
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that is only about 56% of the maximum stres.~ determined by the present more 

rigorous method. Furthermore, the difference would increase with shorter spans, 

shallower sectioos, more shear-flexible cores, or deeper corrugations. 

Camparilon of Elenwltory md Rigcrous Theories 

In cerrain coses, the elf!mentory and rigorous theories may produce widely 

differe1,t estimates '>f stresses and deflections. The error involved in using the 

simplified oppooch increa$eS with the following: 

• Decrease in span. 

• Decrease in core shear rigidity relative to bending stiffness of faces about 
their own neutral axis. 

• Increase in bending st iff;;ess of faces relative to stiffness of the overall 
transformed section. 

• More concentra!r:d distribution of load 

Fig. 8-11 provides o quantitative lOmporison of the results of elementary and 

rigorous theories, os affected by core shear stiffness and span-depth ratio. The 

figure shows the critical span-depth ratios where secondary stresses are equal 

greater than 10% of primary s•resses for two loading conditions and a simply 

SI.Worted span. The critical span/depth ratio is a function of the facf"-thickness

to-pc;nel-depth ratio and the face-modulus-to-core modulus ratio. The graphs in 

the figure indicate the following for L/d = IO to 50, which is a practical range of 

spon/dt!pth ratios 'IOI' most sandwich c<>'!structions: 

The concentrated loading condition (Fig. 8-1 lo) results in critical SfKY'I 
depth ratios that are substantially higher than for uniform loads, and well 
into or above the practical range of L/d = 10 to 50, The secondary 
stresses are greater than 10% of the primary stress for most practical 
designs for concentrated loods. 

• F« uniform loads (Fig. 8-1 lb) and a shear-rigid core with Et/Ge less than 
d>out 100, L/dcr is below the practical range of L/d for most facing 
thicknesses; secondary face stresses ore less than I 0% of the primary 
stresses in such coses. 
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.. 
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I 

~r-
1.0 --~ ............................ ____ _ 

0.01 0.1 

Face Thickness/Depth Ratio (t/d) 

b. Critical Span/Depth Ratio for 
Uniformly Distributed load 

o.s 

...,.., I. If ctuol wlue of L/d ii le• thcr', (L/d)cr' ua r,f lhear-flexlble core theory la Indicated, 

~Ing \4)0n actual level of acceptabi. error. 

2. Graphs are for uniform ond symmetrical crou 1eetions. 

......,,_ of a-t U.1 find apan/depth ratio below which further analysis f« lhear-flexlble cores 

ii required to restrict erron In face atr- to IOI, or lea. Sandwich has 0.06 in. FRP faces 

(Ef ., 2.S • 10' pal) and a , In. thick, 2.5 pcf polyurethane foam core (Ge • 500 !)Ii). Calculate 

t/d • 0.03, Ef/G. • S x 103• Find l/d = 12 for uniform loads C'rld .!70 for concentrated loads. 
" er 

Calculate Ger• lt2 for ..-.iform loads and ,54 for concentrated loads (Eqs. 8.78 and 8.7'). 

Al• calculate deca,, C:iatonc:e for concentrated knife edge load, using Eq. 8. 78, with p " ln.1 

~ 3 ']l/2 (21() 0.S" 0.()6 ll Z.5 x 10 ._ ('00) I - in. 
d~ 500xZ.O """e :itr •' 

Therefore, If octwl load width ii on the order of 1.• in. or gNGter, consider distributing load -r a 
flnl te width. 

Fig. 8-11 CRITICAL SPAN/DEPTH RATIO BELOW WHICH ELEMENT ARY 
n-EORY tlROOUC-ES FACE STRESS ERRORS OF Int OR GREA 1ER 
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The illustrative exQt'l'l)le shown in Fig. 8-11 indicates that secondary stresses are 

less than 10% of primcry stresses for uniform loads at span/depth ratios of ! 2 or 

greoter. For conc~ntrated knife-edge loads, however, secondary ;tre~;es are 

greC1ter thcln 10% of primary stresses for all spans up to (L/d)cr = 270. which 

Includes the range ~f practical spans. 

For concentrated loads, the example also shows that secon~ary foce stresses con 

be significant even when faces ore quite thin, and when the secondory moment is 

small comp«ed to the maximum moment. In this case, according to Eq. 8.78, 

M5 max = Mrr,o/Q = Mmox/954 = 0.901 Mmax. Or, the ~ondory moment Is only 
one thousorxlth of the maximum moment applied to the cross section. 

8.7 Bending and Shear in Sandwich Plates 

The analysis and design of siindwich plates is in many respects similar to that of 

so!id plates which were cc,vered in detail in Chq:,ter 6. This section deals 

principclly with special cons:derotions whic~ arise in sandwich plate~ where the 

core is soft, and perhq>s shear flexible ond orthotropic as well. 

Section Properties of Sandwich Plates 

As in the COie far 90lid plates, the stiffness of the sondwic'i plate Is greater than 

that of c narrow beam of colurm due to restraints of Poisson's deformations, 

introduced by boundary oonditioni or shape of the structure. This increo1e in 

stiffness can be accounted for by the modified modular ratio, n'i' as defined 

earlier: 

I 
~
E.) n. 

I ------ I I n. = 2 E.'"" = 2 1 
I - vi v I - vi 

Eq. 8.25 

The term n'i is used in place of ni' in relationships for ~tion p,operties, such as 

are gi·,en in Tobie 8-lo. For relationships given in Table 8-lb, c that are derived 

for sandwiches with equal faces (E 1 = E2 = E = E.J, it is implicit that n1 = I. 
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Substituting, n'i• for the implied, n!' in ~propriate stiffness relationships results 

in the following: 

D = n'. El = El 
m 1 1 _"2 

Eq. 8.7CJ 

This equation is identical in form to Eq. 6,2a given in Chq:,ter 6 for so:id plates. 

The increase in p!ate bending stiffness over that of a beom is o result of the 

restraint of worpoge or anticlastic curvature transverse to the spon direction. 

For example, in solid plates, subjected to cylindrical b .... -nding on a simple span, 

this restraint is developed by internal wars and moments near tne unsupported 

edges of the plate. In the case o! sandwich plates, the internal shears ore 

carried by the core which is, relatively, very much less shear rigid than in a solid 

plate - significant shear cwformotion is expected. !-ience, a sandwich plate must 

be significantly wider than a solid plate in r.rder for the full restraint of 

anticlastic curvature to develop. Hence, the use of n'i in place of ni is accurate 

only for very wide sandwich plates. 

In light of the obcwe and the fact that " 2 is usually a small term, the effect of 

Poisson's ratio may safely be neglected in most practical des:gns. In such 

instances the formulas of Tobie 8-1, may be used without replacing, n. with n' .• 
I I 

Of course, if in o particular design, neglecting the effects of Poisson'$ ratio leads 

to on \R:onservotive result, the use of n'i in place of ni is indicated. 

If one or both faces of a sandwich panel ore corrugated, the local bending 

transverse to the corrugation direction normally relieves the effects of trans

veue moments required to restrain anticlastic curvature-. In this case, 1here is 

no justification for the use of n•1 unless the faces are very thick. If corrugated 

faces are thick, special study is required. 

llotrapic Sandwich Plates 

An "Isotropic" sandwich plate is constru,:ted from layers of isotropic or planar 

imtroplc materials, and properties ore isc-'trupic only in the plcnc of the plate. 
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Simply ~fed Rectangulcr Scnlwich Plates: When an isotrop:c ~ndwich 

plate is simply supported, bending moments, torsional moments, shears, and also 

bending deflections ore the some os those which occur in a simply supported solid 

isotropic plate hoving a uniform thickness. The principal difference in behavior 

between o simply supported isotropic sanc!wich plate and its solid isotropic 

homogeneous plate counterport is shear deflection. While the analyses for shear 

deflection of sandwich plates is considerably more complex, the concept is 

similar to that discussed earlier for sandwich beams. That is, the total 

deflection is assumed to be the sum of the bending deflection (with infinite shear 

rigidity assumed) and the shear deflection (with infinite bending rigidity as

sumed). 

Fig. 8-12 gives non-dimensional coefficients for shear and !>ending deflections, 

ord shear and bending stress resultants for si:-nply supported isotropic rectangu

lar ~ndwich plates IXlder uniform lateral load. As expected fr'>m the oba,,e 

discussion, t~ maximum bending stress resultant (Mx)' and the bending deflf!C

tion ore the son.- as those shown in Fig. 6-10, and the shear stress resultants ore 

the some as those given in Fig. 6-11; they are given hP.re only for completeness 

of the present figure. 

Rectangukr Sandwich Plates with Caq,ed Edges: In the case of uniformly 

loaded rectangular sandwich plates having clomped edges, the bending deflection 

md the .tleor and bending stress resultants ore not the some as for on equivalent 

isotropic plate. Rather, these values depend upon the plate shear-flexibility 

poror,.eter, 'O, where 

lJ = ,,2o Eq. 8.80 

m 

This platt: shear flexibility parameter is similar in many respects to the shear 

flexibility poromet~ for beams, diacussed earlier, and defined by Eq. 8.4,. 
Dimensionless coefficients for three limiting values of 'Oare given in Tobie 8-5. 
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Table~S 
Coefficients for Maximum Deflection md Moment for 

OCJl'T1)ed Square Saidwich Plate Lhter Uliform Load (8.5) 

D * M* 
w m 

q 04 ~ 
CD 0.00126 0.0513 

4 0.00325 0.0410 

0 (X) 0.0347 

* Maximum beriding .stress resultant occurs at middle of each .edge. Maxi
mum deflection is ot center of ihe plate. 

Circular Sandwich Plates: Circular sandwich plates which are symmetricoll)' 

loaded and si"l)ly supported behove in the same man.1er as circulor homogeneous 

isotropic plates, except that the shear deflection, w , must be added to the 
V 

bending deflec~;on w • The equatit)llS for maximum shear deflection and m 
bending deflection at the center of a plate of di<.imeter a, and subjected to a 

uniform load, q, ore given below (8.5): 

total deflection w = W +W Eq. 3.26 m V 

for simply-supported edge w 5 + \) ~ Eq. 8,81 m - 1024 (I +v) m 
04 

for clomped edgE.s w = mW Eq. 8.82 m m 

for either edge <."onditon w = * Eq. 8.83 
V 

V 

The ~JOtions for the moment component of deflection given ct>ove ore identical 

to those for homogeneous plates. 

Approximate Me'thoci,: Relatio.1rhips derived for co,wenticnal, homogeneous, 

uniform plates con be modified to give approximate moments and defk:etions for 

isotropic sandwich plates. The following procedure hos been proposed to adapt 
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c:omentional plate formulas, for homogeneous solid sections in which shear 

rigidity is assumed infinite, to the case of layered sandwich construction where 

core shear rigidity hos o finite value (8.1 ): 

I. Calculate "effective properties" of the sandwich plate for use in conven
tional formulas for homogeneous isotropic elates, as follows: 

General: 

~ r2 te = 3.46 
I -v:) Dm 

Ee 
A 

= r 
e 

For thin equal faces and ~ft but shear-rigid core: 

te = 1.73d 

1.16 tf Ef 
E .. 

e d 

Eq. 8.84 

Eq. 8.85 

Eq. 8.86 

Eq. 8.87 

Thus, an isotropic sandwich plate having a bending stiffness Orn, and on 
i~lone stiffness A, is identical in stiff,,ess to a homogeneous isotropic 
plate having a thickness te, and a modulus of elasticity, Ee. 

2. Calculate we, the maximum bending deflection of the equivalent homo
geneous plate simply supported at its edges, with loads applied normal to 
the plate, using appropriate formulas for on homogeneous isotropic plote 
having the geometry of the actual plate, and having thickness t , and 
elastic modulus, Ee. e 

3. Calculate actual approximate upper-bound moximum deflectio., of the 
sandwich plate, to account for the finite shear rigidity of the core: 

0 m 2 = w (I + 20 ~> e& w (I + - ) 
e Dbl: e 0 

V 

Eq. 8.88a, b 

Since~ an upper-bound value, the actual maximum deflection, w, will 
lie bet ""u and we. Thus, w is an estimated value. 

Calculate the bending and shear stress resultants using equations for the 
homogeneous isotropic plate having the geometry of the actual plate. For 
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plate 10lutions based on small deflection theory, which is usually the only 
case of interest for proctical sandwich structur.~s, stress resultants, (not 
stress), depend c.nly on plate geometry, load, and boundary conditions, and 
are independent of thickness. Mcr,y hond>ooks (e.g. 8. I 5) give solutions 
for plates in terms of stress rather than stress resultants. In such coses, 
and for small deflections only, stresses can be converted to stress 
resulronts by se-tting t = !, and multipling the resulting bending stress by 6 
and the sheo- stress by ?./3. 

The stress resultants determined by the above procedures do not account for the 

extra foce-bendit,g effects associated with shear-flexible cores, such as was 

determined for beams in the shear-flexible core anolysi;, described in Section R.6. 

This is discussed further belcw: 

Shear-Flexible Cores: The effects of shear-flexible cores, discussed in Section 

8.6 for beams, also occur in plates. There are no proctical rigorous sollitions 

available for the analysis plates having shear-flexible cores. The following ap

proach for uetermining the approximate maximum stress due to primary and 

secondary bending effects, may prove useful in some coses. 

a) Consider a free-body strip of the plate as o beam. 

b) Determine the ratio of maximum bending stress (primary plus secondary) 
to primary be!"lding stress, using methods given in Section 8.6. 

c) Determine the primary bending stress in the actual sandwich plate by the 
methods discussed in this Section. 

d) Estimate the maximum stress in t:le plate by mL•ltiplying the primary 
stress in the plate determined in Step c d:>ove by the ratio obtained in 
Step b ci>ove. 

Since the plate is being modeled as a beam, Fig. 8-11 may also Le used to esti

r.10te when secondary bending effects are significant by estimating approximate 

critical span-depth ratios. 

The accuracy of the ci>ove approach depends on load distrib\itiOf'I, geometry, and 

cross-sectional proportions and materials pr:)f>ertie!'. and the like. Depending on 

the specific design problem, more accurate analysis and tests may be required. 
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Orthotropic Sc:l,dwich Plates 

The faces or the core of a sandwich structure moy be orthotropic. Numerical 

solutions for orthotropic sandwich plates are very limited, mainly because of the 

complexity of the oncalysis problem. Equations for deflections and bending stress 

resultants for uniformly loaded rectangular plates having either simply-supported 

or clomped edges, with principal directions of orthotropic faces and cores 

aligned with edges are given in (8.1) but they are complex and cumbersome to 

use. Furthermore, expressions for shear stress ore not pro,.,ided in this refer

ence. 

The following equations moy be used 10 dettrmine maximum deflections and 

stress resultants for the case of a uniformly loaded, simply supported rectangular 

sandwich plate having thin but dissimilar i5otropic faces and an orthotropic core 

with the principal oxes of the core aligned with the edges (8.2). 

deflection Kl 
I I ) ~ Eq. 8.C9 w = (~+ Yi d2 I I 

') 

face stress ayl K2 ~- a y2 

K
2 

q b. 
Eq. 8.90u, b = , = dt 2 I 

core shear b b Eq. 8.91a, b stress TX = K \-l d. Ty = K3y q d 3x ' 

Values of coefficients K I to K3 are plotted in Fig. 8-13 to 8-15. These coef

ficients vary with aspect ratio of the plate, with the degree of orthotropicity of 

the core, as defined by R = G /G , and also with -0. The values CJf G /G cy ex cv ex 
range from 0.4 to 2.5, which is typical of many available honeycomb cores. 

More generally, a reasonable q>proximation of maximum stresses and deflections 

may be obtained, provided the plate elemenis are not strongly orthotropic, by 

analyzing the orthotropic plate as on isotropic sandwich plate having the follow

ing properties (8.5): 
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Eq. 8.92a, b 

Eq. '3.93a, b 

The accuracy of this approximation diminishes if D is significantly less than my 
Dmx' but this is usually neither a common nor m efficient condition ir. practical 

structures. 

Sir...,. Cauled by Locabed Loads 

When concentrated loads are q:>plied normal to a sol'ldwich pa,el, localized 

bending stresses ore produced in the foce(s) of t~ panel, and shear and tension 

or comprersion stresses <l"e developd in the core. TJ.iese effects ore uslJiJlly 

maximum at or near the point of load application, and can cause significant 

stresses, as discussed in St:ction 8.3. 

Relationships for stresses dev~lr,ped under two simple coses of localized loads 

ore given in Figs. 8-16 and 8-17. Fig. 8-16 is for the case of a local drcular load 

q,piif'd to the face in regions away from the edges of o wiae sandwich beom or 

IOrldwich plate. Fig. 8-17 is for a line load applied neo. the edge of a panel. in 

bott-i COies the face and core stresses resvlting from overall 1lending and shear 

should be su:>eri"1)0Sed 'YI these local stresses ~o obtain the totlll stresses in the 

component. 

Overall, effects of localized loads such os local stresses due to pet-ling at the 

face-core interface, and the usual very low strength of sandwich cores, combine 

10 render moat analyses as highly q:>proximate. rests of the effects of locolized 

k>cJcM are frequently a necessary port on any de:tailed evaluation. 

U Stability of Scndwich Elerwlb in Con,preaion 

Both general i._tability of sandwich columns, struts and compression panels, ald 

local instability of COJl1)ressian faces of sandwich structures ore important limit 

states, and ere considered in this Section. 
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Buclcling of Columns and Struts 

During the process of buckling, a simple pin-ended column loaded ii, compression 

deflects laterally in bending. The cur·.,oture that develops during this deflection 

produces both an eccentricity of the load relative to the axis of the column, aid 

a sheer component transverse to the column axis. In most conventional 

compression members the distortions due to shear s~ress are small enough to be 

neglected. In sandwich construction, however, shear deformations may reduce 

buckling capacity significantly from loads calculated from classical Euler theory. 

The following equation gives the buckling load for sandwich compression 

members that experience significant shear deformations in addition to bending 

deformation during the buckling process (8.5): 

I I I p-- =yr+.,.- Eq. 8.100 
er e v 

It con be shown that the critical buckling load associated with shear deformation 

only, is the some as the shear s1iffness of the column (8,5); thus: 

p 
V 

= D 
V 

Thus, Eq. 8.100 con be written 

where 

I 
-p-- = 

er 

p = e 

I I 
1""" + u-

e V 

k w
2 Dm 

-r-
L {

critical Euler buckling load 
for column with infinite shear 

= stiffness and finite bending 
stiffness 

- oritical buckling load for column 
with finite shear stiffness aid 

= infinite bending stiffness, and 
with buckling mode either sym
metrical or anti-symmetrical 
with respect to column midlength 

k = buckling coefficient depending upon columr. end 
conditions (See Tobie 6-4) 

8-63 

Eq. 8.101 

Eq. 8.102 

Eq. 8.103 



These simple relationships yield resul1s which are identir;al to more complicated 

exact solutions for the general c1se whe,·e the buckling mode is either symr,.etri

ccil or Cl'lti-symmetrical about column rr:id-lengli:. Such buckling modes occur in 

axially-loaded columns which have both c,~Js pinned, both ends clamped, or both 

ends clomped with one end free to translate. T~ equation also results in values 

which are only slightly unconservotive for several practical sandwich construc

tions in which one Pnd is pinned and the other end is damped, with both ends 

held ogciin~t translution (8.5). More rigorous methom. ore available for such 

c03es where the buckling mode is neither symmetrical nor anti-symmetrical 

about mid-length (8.S). 

Calculations for determining the critical buckling load of a simple pin-ended 

column ore given in Example 8-7 at the end of this Section. For the column 

examined, shear deformations reduce the Euler buckling load by 27%. 

F« materials which display elastic-plastic behavior, ~he secant modulus of 

rigidity should be used in the determination of D , as well as D • In the case of 
V m 

plastics, the time-depel"dent viscoelastic modulus should be used in place of the 

elastic modulus, provided tttat stresses are held below the viscoelos1 ic limit 

(Chapter 3). 

Effects of Initial Eccentricities: When :,;ign:ficant initial eccentricities are built 

into a sandwich column which hos either a weok core or a weak adhesive bond, 

the column rTl<ly fail by rl4)ture of the core at 11 load which is lower thm the 

critiC'OI buckling lood given by Eq. 8.100. For an axially loaded column that is 

clamped at each end and held against translation, the critical load P crv' 

governed by the shear strength Tu' of either the core or the adhesive, wh!chever 

is lower, is as follows (8.5): 

p 
,.u Av L 

= 4w
0 

Cl"V 
if k L ~ 11 Eq. 8.10'♦ 

pcrv = 
,.u Av L 

sin kl 
4 w

0 
7; if k L > ,r Eq. 8.105 
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where k 

= initial eccentricity°' lateral displacement of 
column centerline 

Eq. 8.106 

The critical load is determined by trial and em}r to test for the equjlity, 

P:P . crv 

When plastics ore used as the core of a sandwich panel, appropriate values of 

time-dependent strength as well as modulus should be used in the evaluation of 

the effects of initial eccentricities. 

Buckling of Plates lhiel' ln-Plcne Camprell\Sion 

Conceptually, isotropic sandwich plates or panels with isotropic faces and cores 

buckle u,der in-plane compression in o manner similar to isotropic homogeneous 

plate-s (Section 6.9). As in the case of sandwich colulTVls, core shear deformotic,n 

reduces the buckling strength of sandwich plates from classical solutions that are 

based on bending stiffness alone. 

Buckling resistance of unioxially compressed, simply supported sandwich plates 

having iaotropic faces and on orthotropic core may be determine::! from Eq. 6,71, 

together with the buckling coefficients given in Figs. 8-18o and 8-18c. The,e 

Figures, together with Figure 8-18b for isotropic cores, show how the buckling 

resistance wries os the ratio of core shear rigidity in each principal direction, 

R = Gc/Gcx' varies from 0.4 to 2.5. This range of R values is typical of the 

core characteristics of honeycomb core materials. 

Buckling resistance of unioxially compressed, simply supported, sandwich plates 

having isotropic faces end on isotropic core may be determiMd from Eq. (,.71 

and the buckling coefficients given in Fig. 8-1 Sb. The coefficient, U, represents 

the ratio of shearing to bending stiffness. The figure shows that changes in this 

ratio can hove significant influence on buckling strength. Equations for buckling 
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resistance of isotropic sandwich plates for S10me other ,oading and support 

conditions or~ a'V"Jilable (8.5 and 8.11 ). 

Equations are also available tc determine buckling resistance of sandwich plates 

having orthotropic elements for o variety of other loading conditions, support 

arrangements, and plate geometries (8.1, 8.2, 8.5, 8.10). Discrete, but somewhat 

cumbersome, equations are avoilable for rectangular plates having principal 

o,thogonal oxes of the faces and core parallel to the plate edges (8.1 ). 

The corrugated core sandwich configuration is a practical but special case of o 

sandwich plate having on orthotropic core. Analysis for overall instd:>ility, m,d 

local instability of thin web and face elements, though somewhat cumbersome, 

ore available (8.1, 8.2, 8.5, 8.1 O, 8.1 I). 

Face Wrinkling and Local Instability 

Face wrinkling may be o critical limit stote when compressi,,,, faces ore thin onr:f 

flexible and the core hos a low shear modulus, and also a low compression 

modulus normal to the plane of the face. Face wrinkling is o form of instability 

associated with short wave length ripples as opposed to the general instd:>ility 

discussed d:>ove. Wrinkling may take the torm of either symmetrical or 

antisymmetrical buckling of both foc~.s of compression members, Y in the c'3Se 

of a sonclwich plate or beam in bending, the compression skin may buckle while 

the tension skin remains taut (Fig. 8-3). 

The following semi-empirical ~uotion gives o conservative lower bound for the 

f~--e stress at the onset of local face buckling with a ~ontinuous core material. 

This equation is derived from an analy~is of o large number of test results on a 

variety of sandwich members with thin face materials and continuous cores (8.5, 

8.12). 

Eq. 8.107 
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The modulus, Ec, in this case is either 1he elastic or viscoelastic mooulus of the 

core for homogeneous cort,s, or the elastic or viscoelastic modulus normal to the 

faces far orthotropic core! such as honeycombs or end-grain balsa. 

Theoretical equation;; are also available that are intended to account fOI' the 

effects of waviness of the faces Ol' face wrinkling strength (8.2, 8.3, 8.5). A 

knowledge of the magnitude of the initial waviness amplitude is required for use 

in such equations. However, measured values of initial waviness do not provide 

suitable predictions of skin wrinkling stresses, and empirical values of initial 

waviness must be assumed for proper correlation between theoretical results and 

actual 1est wlues. Hence, in gene,·al, these equations ore of limited practical 

u1e In predicting critical wrinkling stress a j)riori. Furthermore, Eq. 8.107 has 

been found to provide reo:nnobly good lower-bound predictions of skin wrinkling 

stresses independent of surface waviness chorocteristic! (8.12). Overall, this 

suggests that wrinkling stress is best established by Eq. 8.107 and then verified 

by test as appropriate, oncl especiol ly when cores are shear flexible and weak. 

Example 8-7 ilh:n,ates the calculation for critical wrinkling stress for o plastic

based sandwich column. For the member examined, wrinkling stress is about 

three times the critical stress for overall buckling. If the panel were signifi

cantly shorter than assumed in the example, wrinkling stress might govern (See 

ala> Example 8-11). 

The effects of biaxial stress on the critical wrinkling stress have been examined, 

with the following concll•sions (8.5): 

If 

If 

If 

0 
..:t. > 
ox 

(~:) ! • tt- "x • "er• 

(~:) ! , then "r • a er • 

(Gey) j 
= C- - , then ax = axer and ay = "'ycr· 

ex 
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ExCll'1)1e 8-7: uipoclty of a Sandwich Colurm Loaded in Axial COfl1)reasion * 

OP.termine the short-term ultimate loac! capacity of a pin-ended sandwich column 10 inc:hu 
wide and 8'-4" long, and having the cross section shown in Example 8-2. Load is applied e1t 
the neutral axis. 

I. Corr1>reasion Strength (Eq. 8.23a) 

Let Pu = ultimate load capacity go·,erned by compression strength. 

n. p Aa. AF 
I p I ~ ai = A or = = u n. n. 

I I 

From Example 8-2: Face I: n = I, F uc = 21,000 psi 

Face 2: r. = 0.313, F uc = 22.000 psi 

Core: n = :.1.00068, F - 20 psi 
UC 

En. A. = A = 0.156 in. 2 /in. (E = E.) 
I I r I 

C~acity: Face I: p ;;; 
0.1 56 x 21 2000 

= 3,276 lb/in. (governs) 
u I 

Face 2: p = 0.1 56 X 221000 
= 9,200 lb/in. u 0.313 

Core: p 0.156 X 20 4,588 lb/in. .. u:ooom- = 
IJ 

2. Caeneral Instability (Eq. 8.102) 

= rJ- +&-;and 
e V 

k = I for pin-ended column (Table 6-4): 

= 486,000 in./lb, DV = 1,240 in.,'lb (Example 8-2) 

= Tr
2 

X 486100() 

1002 = 480 lb/in. 

per = -, ---"T""i-
1 4fflJ + r,fflJ 
I-------·---------

= 346 lb/in. 

1 * 
I 

See Footnote, E>r.ample 8-1. 
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I exan.1e 8-7 cantln,ed 
I 
I 

Local Wrlnlclng (Eq. 8.107) 13. 
I 
I I I I 

I 
I 
I 
I 
I 

acr = 0.5 

p 
er 

Face I: E I 

Face 2: E2 

Canclude 

= 

= 

(Ef Ee Gc)j = 0.5 Q500 x 500 Ef)j = 45.4 Ef ~ 

A 
1/3 45.4 Ef x 0.156 7.08 Ef l/3 

n. = = n! . I 

2.2 x 106 psi; Per = 
7.08 (2.2 X 10 6)113 

0.82 x 106 psi; Per = 
7.08 (0.82 X 106)113_ 

0.373 

= 921 lb/in. 

= 1777 lb/in. 

Ultimate load on colurm is 346 lb/in. as governed by general insfobility. Total short term 

ultimate load is 346 lb/in. x 10 in. = 3460 lbs. Note that low shear stiffness of core reduced 

: Euler load of 480 lb/in. to 346 lb/in., o reduction of 27%. 

I 
I Notel I psi = 0.0069 MPo; I in. = 25.4 mm; I lb = 0.454 kg 
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In essence, these equations indicat~ that the critical wrinkliny stress is un<1f
fec. ted by biaxiality of stress. 

When thin faces ore s~ported I ~neycomb cores with large cells, they may 

wrinkle or dimple in or out of the voids in the cell:i. The critical f'lCt! buckiing 

stress for such ho~ycornb cores is (e.5): 

where 

t 2 
acr = k E <a,) 

d' = diameter of circle inscribed within hexagon 
or square of hcn!ycomb cell (Fig. 8.2b) 

k = 3 for hexagonal cells, orld for square cells 
with stress applied pcrallel to the sides 

k = 2.5 for square cells with stress cpplied 
parallel to the diagonal of the square grid 

Eq. 8.111 

When the sandwich consists of thin faces appliecl to o corrugated 'or other 

discontiruous core, o 'lJmber of modes of local buckling must be considered. 

Th<Jt is, either tM face or the core may biJCkle independently or simultaneously. 

Furthermore, if the face is attached to the core only locally, as with fasteners or 

rivets, the elements may buckle between fasteners. Some guidance for deter

mining the local buckling resistance of such .sandwich panels with corrugated 

cores is gi"'en in (8.2, 8.1 I). 

a., Optimum Desi~ to Minimize Cmt • We~ 

The structural arrangement of sandwich construction offers unique opportunities 

to mix end toilor material:.. end cross-section proportions to meet structural 

design criteria. For cost-effective design, economic comparisons between 

combinations of different materials in a sandwich structure must be mode. Such 

comparisons should be based on sandwich proportions that VO/fY for eoch 

combination of materials, end that reflect the minimum combined coat of the 

cc,re and facings. Simplified relations which con be used for the• eco11omic 

Cl'lalyses ore presented in this Section. If ~iyl ,t rather than coat is to ~ 
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opt1mized, '-'lit weight may be slbstituted directly for unit cost in the en~uing 

discussion and equations. 

The following ae the pdncipal simplifications and assumptions used in the 

derivation of minimum cost relations that are presented subsequently: 

• The faces ere identical and thin 01d seconGory bending effects due to 
shear-flexible cores are negligible. 

• T,,e costs of adhesive, other ~ing or fastening processes, and surface 
finishes nre not includ.oo in the analysis. 

• The core is assumed to be "soft," as defined in Sectior. 8.4. 

• The unit cost per volume of skins and faces does not vary with thickness. 

The validity of the above assumptions r'l<l}' hove to be investigated in more 

detail, once initial proportions ore established. Equations in Table 8-1 h give 

section properties for sandwich sections that meEt the criteria described c.!>ove, 

Colt EffectiYe Propartirm for C.ompaneuts in Bending 

In sandwich components such as wall, roof, or floor members design@d to support 

normal loads in bending , cross-section proportions ae usuolly govern~ by a 

required moment of inertia, section modulu,, ..ind core area. These s~tion 

properties may be satisfied by infinite combinations of facing and core thick

ne11ses. However, only one set of proportions provides the required section 

properties at minimum cost. A procedure for determining the minimum cost of 

J>CJMIS that hove the required section properties is developed below. For 
' simplicity, the procedure is developed for a beam strip of unit -.idth (i.e. b = I). 

Pcntl ec.t, The cost per unit surface area, CP, of o sandwich panel meeting the 

C155Umptions given eorli~r, is e,cpressed as follows: 

cP = 2 t Cf+ CCC Eq. 8.112 
where 

cf = cost per unit volume of toc:e material 

C = cost per unit ·,olume of core material 
C 
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Thia e,cpreulon will be uaed below in the development of relatlonshipa for 

minimum cost panels. 

Crltwlon I - Mmwlt of Inertia Gowirn11 In a specific design situatlon, stiffnesa 

requirements may dominate the desig,, problem and govern sandwich proportions. 

Thus, Criterion I results in a cr,as section that provides the required moment of 

Inertia, I•, at minimum cost. The resulting section is adequote only if its section 

modulus, S, and shear area, c, are al,o adequate for the sp, 1<:ific ~uirements of 

the application (i.e. S ~ S*, and c ~ c•). Equations satisfying Criterion I Te 

developed below. 

The total materiol cost per unit surface area of the panel is obtai~ in terms of 

I* and unit costs of materials, by combining Eqs. e. 7c and 8.112 f« a unit width 

of section (b = I): 

Eq. 8.113 

Differentiating this equation v.ith respect to t, and setting the result equal to O, 
gives tM face thickness required for minimum panel cost, in terms of I• and the 

W1it costs of materials. ExpreJ.1ions for the core thickness and the total panel 

cost can then be readily determined. Resulting relationships for situations where 

I• goyems design {S !t S*, and c • c•) are os follows: 

t = [ c 2 • ~ ~ 
20. ~:-cl Eq. 8.114 

C : (4Cf ) ~- -3 t Eq. 8.115 

s = td ~ t {c + 2-t) = Smln Eq. 8.1~ 

2 

ec, ~ [ c/ ,. l' ::; ~-3 
C 2 tL c1 - cc>'-J 

Eq. 8.11' 
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min. C = cost of foc:es + cost of core Eq. 8.112 p 

= 2 t cf+ (~~ -V t cc Eq. 8.117 
-c 

[cc
2 

(2 Cf - Cc) lj 
1/3 

= 2.38 Eq. 8.117a 

m 2 t c, + 4 t <:, (if c,,cc :;:s. i> Eq. 8.117b 

Eq. 8.117b shows that for a c,·oss section proportioned for moment of inertia at 

minimum cost, ttw- faces co"l)rise one-third of the panel cost, and the core 

.:omprises two-thirds of the panel cost. This is true for rr.any practical panels 

where the cost per unit YLlume of the face material is significantly ']l'eoter than 

that of the core (i.e. c 1/Cc » ¾>· 

Criterlan 2 - Sectian Mo.lllul Gawms: In contrast to the above, situations can 

CW'ile whe:-e strength requirements dominate the design problem, and govern 

sandwich proporti..ins. This, Criterion 2 results in a cross section which provides 

the required teeti~ modulus, S*, at minimum cost. The resulting section is 

adequ<'~ o.1ly if its moment of inertia, I, and shear area, c, are also adequate for 

the 11peCific requimments of the application (i.e. I ;;ii. I*, anci c ~ c*). Equations 

for Criterion 2 are developed below. 

The total material cost per unit surface area of the pmel is obtained in terms of, 

S*, and unit costs of materials, by combining i::.qs. 8.14c and 8.112~ 

Eq. 8.118 

By reamning simil<I" to that described above for Criterion I, the following 

relotionlhi,s con be derived for situations where S* governs design (I ~ I*, and 

C !t c*)i 

[cc s•J 1/2 

t • TC, Eq. 8.119 

2cf t r ~CS•] 1/2 C == ~ == 
C 

Eq. 8.120 
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ti t (r + t)2 
= 2 = 2 Eq. 8.7 c 

(1 + ~) [c/~:3~ 1/2 

= Eq. 8.121 

min. cP = cost of faces + cost of core Eq. 8.112 

2 t c, + 
2 cf t cc 

= cc 
= 2 t cf+ 2 t cf Eq. 8.122 

= (8 C C S*)l/2 
f C 

Eq. 8_123 

Eq. 8.122 shows that for a cross section proportioned to obtain minimum cost of 

materials for a given section modulus, the total "l'loterials cost is divided equally 

between the faces and the core. 

Criterion 3 - Moml!t"lt of Inertia and Section MoclJM Satisfied Simultaneauslya 

In certain coses, a cross section that provides the r~uired moment of inertia, I*, 

and the requireJ section modulus, S*, simultaneously, also provides the minimun" 

panel cost. In order to be ~quote, the cross-section proportione<: in occord

anr.e with Criterion 3 must also provide adequate shear oreci (i.e. c ~ c*). 

Equations for Criterion 3 are deve!oped below. 

Proportions that provide section properties in accordance with Criterion 3, ore 

as derived from Eqs. 8.7c and 8.14c for reasonably thin faces: 

21* s•2 2 I* Eq. 8.124 C = S* - SI* ~ S* (for thin faces) 

t = 
s•2 

Eq. 8.125 
2 I* 
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Thus, slbstituting Equations 8.124 anrl 8.125 into 8.112, results in the following 

panel cost: 

Eq. 8.126 

This equation gives the panel cost directly from ~l-\e minimum requ:red section 

properties. /u will be explained later, it may provide ~he minimum panel cost a-; 

wel!, depending on the relutive magnitude of S* and '* and urit costs, ood 

providing c ~ c*, for o gl"en design :.ituotion. 

Criterion /J - Shear Area, c-= In addition to the requirements for bt::!'lding section 

properties, the cross section must also provide sufficient core thickr.,:,ss, c* or 

greater, to Jevelop :·equired shear strength. This serves as a final check M the 

strength capacity ,f the cross-section meeting the other criteria given above. 

Graphical Datermination of Governing Criteria: A graphical presentation of both 

required and cost-effective proportions demonstrates, quantitatively, which of 

the abcwe criteria governs in a givel"I design situation. Fig. 8-19 presents such 

graphs for a specific set of I*, S*, and c* requirements, which will be used in a 

numerical solution in Example 8-8. The following are key elements shown in Fig. 

8-19. 

• The curves in Fig. 8-19 define section proportions which satisfy the 

required values of I*, S*, and -:•. The ~haded portions of the curves def he 

the bounds c,yer which proportions ere governed by S* by I*, and by c*, 

respectively. 

• Tiie dashed straight-lines ere contours of constant panel ur.it cost. The 

minimum-cost cross section occurs at the point of tangency of the cost 

contour and the I* and S* curves. 

• The points of tongen<:y, as obtained by Criteria I, 2 and 3, ere marked on 

Fig. 8-19. For this specific set of criteria, these hq>pen to points occur 0.1 
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0 

NDte: I• 0.604 in. .,in. 

S• 0.282 in.•/in. 

c• = 3.36 in, 

Criterion I ct = U.08 $/in.3 

Criteriori 3 
0,004 $/in.3 cc = 

\ 

0.05 0.1 0,15 0.2 0.25 

Face Thidcrwa - t, in. 

Fig. ~1, CRITERIA FOR SELECTlt-«; MNMUM-COST 
BEAM rnoss ~CTION FOR EXAMPLE 8-8 
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q>proximately the same contour (Cp a& 0.027 $/in.2), but thii is not the 

generul rule. 

• Both Criterion I and Criterion 2 fail to provide the mir,imum panel cost 

becwse, in each instance, the alternate requirement for section properties 

is not satisfied. For example, for the some depth, the Criterion I thickness 

(ond cost) must be increased to provide the needed S*. The result is similar 

for I* ond Criterion 2. 

• Criterion 3, by definition, satisfies both section modulus and moment of 

inertia requirements. And, it is the only point on the shaded boundary that 

meets both criteria. Hence, it provides the minimum cost (i.e. tangent to 

the left-most cost contour). The minimum cost is Cp = 0.0274 $/in. 3 

• Criterion 4 forms o fourth bound on cross-section proportions, which is the 

minimum depth required for shear strength. Core depth provided by the 

above criteria must be greater than ,::* in c,,der to meet the shear strength 

criterion. 

For the specific set of design criteria examined above, Criteria I, 2, ond 3 all 

produce similar minimum ·panel costs since they lie on approximately the some 

Cp cor.tour. However, they produce significantly different minimum cost 

proportions. In this instance, Criterion 3 prevails, since it satisfies both section 

modulus and moment of inertia criteria. 

Clearly, the minimum cost solution examined abO'lle is not subject to generaliza

tion. Depending upon shifts i'n the relative magnitude of I* and S* and c* in a 

specific design situation, or a change in slope of the cost contours, as dictated by 

the relative unit cost of face and core materials, either Criterion I or Criterion 

2 could govern in bending. Furthermore, if the core is especially weak, Criterion 

4 might prove to govern as a result of shear strength considerations. 

Detailed DNi9' Procecbe1 While the above graphical approach is useful in 

understanding how the governing criterion is selected, a direct numerical design 
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procedure is useful in determining optimum desigm. The following procedure 

provides a direct approach to the determination of miniMum-cost panels, for o 

specific application: 

a) Determine the required section properties I* ond S*, and the minimum core 

thickness, c*, required for shear strength. 

b) Solve for the section modulr,s furnished by the Criterion cross section 

(Eq. 8.116). If S ~ S*, Criterion I provides the minimum-cost cross section 

as governed by I*. If S .., S*, the Criterion I cross section is not adequate 

and is rejected. 

c) If from the above, S , S*, solve for the moment of inertia furnished by the 

Criterion 2 cross section (Eq. 8.121 ). if I ~ I*, Criterion 2 provides the 

minimum-cost cross section os governed by S*. It I L I*, the Criterion 2 

cross section is not adequate and is rejected. 

d) If Steps b end c res1,lt in rejection of cr·terion I and 2, Criterion 3 yields 

the minimum-cost bending cross section. 

e) Once the criterion which produces the minimum-cost bending cross-section 

is established from Steps b througl d d>ove, the core depth provided, c, 

should be compared to, c*, in accordance with Criterion 4. If this criterion 

is satisfied, the face and core thickness ond the panel cost can be obtained 

by the q>propriate equations for the governing bending criterion given 

earlier. 

f) If Criterion 4 requirements are nc,t met, the core dep.., must be increased 

to provide the required strength. The face thickness co, be diminished, 

while still satisfying I* and S*, as core depth is increased (Eq. 8.7a, b Old 

8.14a, b, c). Alternately, a stronger or stiffer core may be needed to 

provide a cost-effective design. 
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g) Finally, the selected section shoulu be checked for other governing 

criteria such as shear deflection. 

Ex01nple 8-8 illustrates the procPdure for determining cost effective proportions 

of a sandwich wall panel. 

Direct Determirmtion of Required Moment of Inertia 

When designing a conventional beam or column for stiffness, the moment of 

inertia required to limit beam deflection or provide column stability con be 

calculated directly for a given beam or column span and lood distribution. 

Usually, this ,~onnot be done for a sandwich beam or column because it is 

necesscry to account for the eff~ts of core liheor deformation. 

In Example 8-8 on estimate was mode that core shear deflection would be about 

25% of bending defloction. Based on this, the required rr.oment of inertia, I*, 

was increased from that due to bending alone in the wall panel, to compensate 

for the increased deflection due to shear. However, for a sandwich beam or 

colurm proportioned for minimum cost of panel and face materials based on 

Criteria I or 3, a direct determination of I*, which accounts for core shear 

effects in addition to ben<!ing, con be formulated as follows: 

Bending Plw Shear Deflectian in Beams: 5c:llving Eqs. 8.27 and 8.115 simul-

taneously yields the following expression for I« if Criterion I pertains 

w a = allowable deflection 

K PL3 
m 

m = ( ~:f _ 3) [2(2:,c~ Cf)~ 

for Kv and Km' see Tcble 8-3. 
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I Exarrl)le 8-81 ~timum-Cast Paiel Design • 

I Determine minimum~ost proportions far a sandwich wall pcanel thot spans 8 feet, a,d has 

I 
fiberglass-ma~-reinforced polyester faces of ~I thickness, and an extruded polystyrene 
structura I f oom core. 

I 
I I. 
I 
I 
I 
I 
I 
I 
I 1. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 3. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Design Criteria 

Wif'ld load 

Safety Factor on Strength 
(T ypicol Bmb - see !eCtion 3A) 

Deflection limh 

Material Pwoperties 
(short-term) 

Cost ($/in. 3) 

Ultimate Tensile Strength 
(Tens ion Governs) 

Ultimate Shear Strength 

Design Strength(~"' 5) 

Modulus of Elasticity 

Modulus of Rigidity 

Required Prapertis 

q = 40 psf ::: 0.28 psi 

FS = s 

w 
O 

= L/ 150 = 0.64 in. 

Face (mat) 

0.08 

= 10,000 psi 

2,000 psi 

Ix 106 psi 

Determine Minimum Allowable Stress, F: 

Tension: 

F td = 2000 psi 

Wrinkling of Face: 

1/3 I 
= 0.5 (Ef Ec Ge) x FS 

Core (foam) 
la.I 3) 

= 0.004 

F w = 35 psi 

Fvd = 7psi 

EC = 1,500 psi 

= 1,000 psi 

Eq. 8.107 

I 
I 

= e.s (I X 106 
X 1,500 X 1,000)113 

X 1 = I, 144 psi < 2,000 psi = F td 

I Use F = I, 144 psi m governed by face wrinkling. 
I 
1--------------
1 • 
I 

See Footnote, Ex001>le 8-1. 
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I exan.,1e 8-8 c:antinNNI 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I' 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Required Section Modulus, S*: 

S• = ~ = ~ = i~e 1:1~~ = 0.282 in. 3 /in. 

Required Moment of Inertia, I*: 

I• _ S g L 4 S x 0.28 x 964 

- 384 £, x • a = 384 x I x 106 x o.64 
= 0.483 in.4/in. for bending only 

Try adding 25% to moment of inertia required for bending to compensate for shear 

deflection. Therefore, try I* = 0.604 in. 4 /in. os first cut. 

Required Minimum Core lhickness for Sheer, c*: 

Determi .. AiJplcable Crlterian b' Minimum ~ Proportions: 

Section Modulus Furnished by Criterion I: 

s = (~ - 3\ [ C 2 I* 

c I ~ (2 :, - Cc)
2 

2/3 
Eq. 8.116 

= (
4 X 0.08 _ 3\ [ 0.0042 

X 0.604 J 2/J 
0.oo4 '/ [2 <2 x o.oa - o.oo4>2J 

= 0,262 < 0.282 in. 3 /in. = S•. Criterion I is invalid. 

Moment of Inertia Furnished by Criterion 2: 

I = 
3j 1/2 ~ ~ 1/2 cf S• 0.08 x 0.2823 

= zio.004-
c 

Eq. 8.121 

= 0.474 < 0.'°4 in. 4/in. = I•. Criteirion 2 is invalid. 

Concludes Since neither Criterion I or 2 satisfies both S* and I*, Criterion 3 governs 

the bending cross-section. 
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IExGT1>1e ~ contiruect 

I 
I 
I IS. Propcrticna and Coat fnr Criteria'I J 

•'· I 
I 
I 
I ,1. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
la. 
I 
I 
I 

C 
2 X 0.604 0.2822 

0.282 - 2 X 0.604 Eq. 8.124 

= 4.28 - 0.066 = 4.21 in. 

Note that the :;ecortd term is small for thin faces. 

t s•2 o.2e22 . 
= tfi = 2 X 0.604 = 0•066 m. Eq. 8.125 

Cp = 2 X 0.066 X 0.08 + 4.21 X 0.004 Eq. 8.112 

= 0.0106 + 0.0168 = 0.0274 $/in.2 = 3.95 $/ft2 

OleCk Criteria'I •= 
From Criterion 3, c = 4.21 in. llo. 1.92 in. = c*. OK 

OleCk m:curacy of 251'. increaae in moment of inertia. Check ossumption as to com
pensat1or1 for shear deflection in step 3. 

Km PL J Kv PL S I 
= o + ~ ; K = ,mr , K = '8 (Table 8-3) 

m v m .JO&t v 
w Eq. 8.27 

5 (Q.28 X 96) 963 (0.28 X 96) 96 
: 6 + 8 X f ,()()() X 4.21 

384 x I x IO x 0.'°4 

= 0.512 + 0.077 = 0.59 in. ' 0.64 in. = w 
O 

(within 8.SW>) OK 

Refine by second trial with I• reduced by about 7~, if desired. 

Canclutian 

Minimum cost panel which meets design criteria hos 4.21 in. core and 0.066 in. faces. 
Panel cost is $3.9S/sq ft plus cost of bonding ocllesive. 
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If Crl1erlon 3 governs, so!ving Eqs. 8.27 and 8.124 results in the following 

e,cpression for I•: 

E.q. 8.129 

In q>plication, Eq. 8.127 is uaed when evaluating Criterion I, and Eq. 8.129 is 

used when ev<1luating Criterion 3. 

Cobm Buclcling Including Effects of Shear ileflection: Solving Eqs. 8.102 and 

8.117a yields the following e>epres!'lion for I*: 

where 

P = des;gn axial load 

SF = safety factor <;gaiNt buckling 

for k aee Tobie 6-4. 

Eci. 8.130 

After determining I* from Eq. 8.130, it is used in conj\JfX tion with Eqs. 8.113 to 

8.115 to find optimum proportions ond minimum cost. Independent checks ore 

then made to wrify whether the compre£Sion strength of the materials ia 

adequate. 

8.10 T•~ and Mollture Movements and Otha- Volume 0...,. 

Structural plastics may display significant dimensional or volume changes when 

sub!:.cted to moisture and temperature changes. Plastics moy 0190 undergo 

significant volume changes such as permanent or transient swelling ond shrinkage 

In chemical envlrorvnents, permanent shrinkage on exposure to UV, and aging 

st..inkas,e that may develop with time ald which is accelerated by elevoted 

te,,.,erature. These volume changes and 'lSSOCioted linear expansions and 

controctlona CCll"I cauae significant distortions in sandwich panels that are free to 

mow and significant stresses in panels that are restrained. While the effects of 

temperature ere uled hffein to illustrate these important effects, the principles 
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developed may be applied in the analysis for the effects of moisture movements, 

curi,,g and ..19ing shrinkage, or volurr.e changes resulting from other environ

mental exposures. 

Wcrping cnl Omnges in Length • 

. 
When oppos:ng faces of on unrestrained panel undergo diffP.rent volume changes, 

a strain d,fferential is imposed across the thickness of the panel. The 

unrestrained panel warps to a curvature having a radius: 

R 

where 

d 
= 

= unit dimensional chanre or strain occurring 
on opposite faces. 

Eq. 8.131 

From <.i practical standpoint, this change in rlim~nsion is usually token from a 

reference condition wch as that at the completion of manufacture, or at the 

time of installation. For unit dimens:onol changes that do not vary over the 

length of the panel, curvature is constant along the length, and in ef<ect, is 

analogous to the curvature iro o panel which is subjected to ~quol ~nding 

moments at its ends. The deflection normal to the plane of the panel at its mid-

length resulting from this c•Jrvature is: 

2 
(£2-£1)L 

w = Bel Eq. 8.132 

The term(£ 2 - £ 1) is the magnitude of the in-plane struin differential caused by 

di~ferent ial volume changes of the two faces. In the case of a uniform 

temperature change which is uniform across the face: 

£, 
I 

where 

£. 
I 

ti T. 
I 

Eq. 8.133 

= strain due to thermal ex,:onsion of i face 

= coefficient of thermal expansion of ihe "i" toce 

= temperature change in the "i" face from 
reference condition 
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In addition to•causing bowing, a strain gradient imposed across the panel results 

In a change in its owrall length. The mor,nih.,de of the change is: 

6L = 
(ti + t2) L 

2 Eq. 8.134 

Joint •alants and other details at por,el ends, and hok~ ot fasteners, should be 

desi~ to accommodate such movements which con be significant in long 

panels. Exomple 8-9 illustrates the calculation of deflection ond length change 

for Cl"I unbalanced panel subjected to a temperature change that is constant 

throughout the panel depth. 

Str11111 'Due to the Restraint of Wa-plng 

Sandwich panels that ere contirAJOUs for several spans may be supported by 

primary framing at intermediate points along the panel length. When different 

strain gradients ere impClled on opposite faces of such panels, reactions develop 

to prewnt deflection at the supports. These reactions c:ause moments and shears 

In the panels. Since shear stresses and deformations may be significant in 

Nndwlch structures, they must ~ included in the calculation of stresses, 

deformations and reactions for this indeterminant structure. 

The derivation of e,cpress,ons for moments, shears, and reactions in a sandwich 

panel that Is continuous over two equal spans, and that is subjected to a 

temperature gradient, is given in Example 8-10 (8.14}. The example shows that 

maximum support reactions and associated po:,el Shears and moments depend on 

both the flexural stlffneu of the panel and shear rigidity of the core. Further

more, tt.rmally Induced reactions may incre<Jlf'! or decrease as panel span 

incna1e1, and moments generally irM::reose as the span increases. While this 

exan1)1e Is developed for a tffl1)erature differential across tht! panel, the general 

approach Is wlld for other sources of differential volume chalges in the faces, 

such III moisture gradients. 



I ex...,1e~,s 
I 

Bowing in an U1balanced Sandwich Beam 
S.jected to l.Wfarm r...,..oture Change • 

I 
I Determine the magnitude of warping Cl"ld sh, inkage in the Alumirum/PVC pcnel shown In I Example 8-3, at o temperature of 2S°F. The panel is IO feet long ond it was flat when 

I rnaiufoctured at 7S°F. 

I 
I 
I I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 2. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 1 
I 
I 
I 
I 
I 
I 
I 
I 4. 
I 
I 

Panel Prapertia 

Pm,el depth to centroids of facings, j = 2.14 in. 

Panel Length = IO ft x 12 = 120 in. 

Coefficient of Thermal Expansion: Alumin.im 

Maximum Deflection at Mid-L.eng1h 

Cc2-'1>L2 
w = 8d 

PVC 

o I = 12.8 x 10-6/°F 

02 = 30 x 10-i,.l°F 

c I = Cl I 6 TI = 12.8 x I o-6 (-SO) = -0.640 x I o-3in./in. 

w = (-1 .SO+ 0.64h I 202 
8 X i.f4 = 0.723 in. 

lalg1h0111nge 

(c1 +c2'L 

2 

(-0.65 - I .SO) x 10-3 x 120 
= 1 = 0.12' in. 

Ca,cludes The IO foot long l\lumi""m/PVC sandwich ponel, manufactured at 75°F, 
w(DI cmaut 3/4 in. and shrinks about I /8 in. when it is exposed to a temperature of 
25°F. 

1------------------
1* See Footnote, Example 8-1. 
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I Exan.,le 8-10: Deriwtion of Rooctions, Moments, Shears and 
Deflection in o Two-Span Pmel SIA>jected to a 
T~ature Gradient Across hs n.,dcness (8.14) * I 

I 
I 
I 
I I. Structural Arrangement (For Temperature Change, e.Jcli face) 

I 
I 
I 
I 
I 
I 
I 
I 

outside 

ZS,b in1ide 

t 0 

le 

~ 
£1 = -:ii tiT 1 

£2 = (12 ti T 2 

: 2. Determine Thermal Deflection with Redundant !,upport at i> Removed 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

cold side 

(e12 tiT 2 - a1 tiT I) (2a)2 

8d = 

Eq. 8.133 

Eq. 8.132 

Eq. 8.135 

I 3. Determine Restoring Deflection with Recbldant St.wort Reaction Acting Alone 

I 
I 
I 
I 
I 
I 
I 

Eq. 8.27 

I 
I 
I 

For concentrated lood at midspan (Table 8-2): Km = 1/48; Kv = 1/4 

I 
I Eq. 8.136 

I 
•--------------------• * See Footnote, Example 8-1. 
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I ~ .. 8-10 (c:antlrMNO 
I 
I I '- Sohte far ~ T' b)' Ec,JDtfng Restoring DeflK tiu., to lherl"IOI Deflection at b 

I 
I 
I 
I 
I 
I 
I 5. End Reacflans R0 T md Re T 

I 
I 
I 
I 
I 
I 

by symmetry 

I 6. Mammt at b 
I 
I 
I 
I 
11. Mon.Id in Span ab, ot distance x 

I 
I 
I 
IL Shean ata, bcnlc 
I 
I 
I 
I 
I ,. Deflection at M1c11pc11 of ab 

I 
I 
I 
I 
I 
I 
I 
I 

(a2 AT 2 - a 1 AT 1) o 

d [3~m + ~] 

Eq. 8.137 

Eq. 8.138 

Eq. 8.139 

Eq. 8.140 

Eq. 8.141a, b, c 

Eq. 8.lte2 
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Design of connections between the panel and its sup;:>orts should include uplift 

reactions that result from gradients. In addition, local <.rushing at compressive 

reactions must be evaluated. (See S<!,ction 8. 7). 

8.1 I Panel SY>jected to Wind Load and Teff1)el'ature Ciodients 

Both plastics materials and sonc1w;ch construction ore used extensively in 

Insulated structures such as cooler, freezer, .:ind other refrigerated buildings, 

arctic buildings, ISO-type freight containers for multi-modal transport, and 

truck bodies. Foamed plastics ore 11sed frequently for the cores of such 

structures, and in some cases, faces ore manufactured from fiberglass reinforced 

plastic, as well. 

The concluding example in this Chapter, Example 8-11, presents an analysis of 

a, all-plastic- insulating sandwich panel for use in insulated buildings. The 

example is based on design criteria developed for on installation for the Alaskan 

fl.brth Slope at Prucfloe Boy, ond an extension of analytical procedures used in 

their structural evaluation (8.14). 

E:.:01nple 8-11 demonstrates the analysis and evaluation of wind and thermal 

stresses in a restrained two-span panel subjected to temperature gradient. It 

al-, illustrates many of the concepts introduced in this Chapter and elsewhere in 

this Manual, and the numerous considerations involved in a comprehensive design 

of a structural sandwich component. The following is a commentary on key 

elefflPnts of the evaluation. 

I. Deaign Criteria: Temperature and wind conditions are estimates for the 

the Pruclloe Boy region. The maximum wind load is assu~ to occur either with 

« without the temperature differential acting. 

Load factors (LF) ore assigned with the purpose of increasing loads or stresses to 

account for the potential for overloads, and other unknowns related to the loods 

and the analysis, as is done in structural design with conventional structural 

materials. See Section 3.2, 4.2 and 4.10. 
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I Excln1,le 8-1 h 

I 
Ewluation of Woll Panel for Arctic E,cposure * 

I Determine structural adequacy of on exterior two-spon sandwich wall panel for arctic 
I buildings. Design criteria include 30 psf wind load and -60°F outdoor temperature in winter. 
I Use 0.1 in. thick mat-reinforced plastic faces on 4 in. thick, 2.5 pcf PU fucm core 
I (t = 0.1 in. d,. 4.1 in.) 

I : ,. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Design Criteria 

Span: 

T emperaturl.!!: 

Wind IO'Jd: 

Lood Factors: 

Capacity 
Reduction 
Factor (CRF): 

Maximum 
Deflection: 

2@ 10 ft. (120 in.) 

Installation at S0°F, 

T 1 = • 60°F outside in winter, 

T 2 = 70° F inside. 

q = 30 psf 
= 0.21 psi, inward or outward 

1.7 on wind 
1.4 on thermal gradient 

0.60 for FRP foces; 
0.4u for foam core. 

Span/ 150 = 1 '20/ I 50 = 0.80 in. 

: 2. Materials Pnaperties 

Woll 
Panel 

X 

a= 10'-0" 

C 

Wal Section 

I Short Reduction Long 
I Element Properties Units Term Factor for 10 yr Term 
I _______________ P_rope_.___rt.._y ___ Du_ro_t_ion_o_f_S_t_re_ss ___ Pr_oper...__t,._y_ 

I Faces Ef psi 0.8 x 106 2 0.4 1< 10' 
I I v1 o.J o.3 
I Fut psi 11,000 ° 3 3670 ** 
I F uc psi 22,000 3 7340 
I 11°F ,s x 10-6 ,s x 10-6 
I 
I Core 
I 
I 
I ... 
I 
I * 

EC 
G 

C 
F 

UY 

psi 

psi 

psi 

2500 

800 
25 

2 

2 
3 

1250 
400 

8.3 

U.se tensile strength for flexural tension strength (See "Flexural Strength," Section 3.6) 

See Footnote, Example 8-1. 
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I Exaft1,le 8-11 contlrued 

I 
I 
13. 
I 
I 

Deal9'I Stn•e■ - Ultimate Strenyib Approach 

I Establish reduced ultimate design stre~ths to be colllJ)'lred later to factored .stresses due •o 

I 1oads. 
I 
I 
10. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I b. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I c. 

I 
I 
I 
I 
I 
I 
I 
I 

Multiply typical ultimate strengths in I. above by Capacity Rf'dlX.:tion Factor to 
obtain reduced ultimate design strength: 

Properties 

Tensiom 

Compression: F 
ucr 

Short Term 

0.6 X 11,000 : 6,600 psi 

0.6 X 22,000 : 13,200 p~i 

Shear: F uvr 0.4 x 25 = 10.0 psi 

Tension strength governs ultimate st1 ength of faces. 

Long Term 

0.6 X 3670 = 2,200 psi 

0.6 X 7,340 = 4,400 psi 

0.4 X 8.3 : 3.3 psi 

Check strength governed by face wrinkling (Eq. 8.109). Use CRF = 0.6. 

Wrinkling Stress Short Term Long Term 

Ultimate: 
1/3 

o.s <o.a x , 06 x 2,soo x eoc» 113 o.s (0.4 x t06 x 1,2so x 400) 

5,850 psi 2,925 psi 

Reduced: Ferr 0.6 x 5,850 = 3,510 psi 0.6 X 2,930 : 1,760 psi 

Failure by face wrinkling in compressiO"l governs design of faces. 

Summery - Final reduced ultimate design strengths: 

Face ultimate strength F utr (tension) 

Face wrinkling strength Ferr (compression) 

Core ■trength F uvr (,hear) 

8-92 

Short Term 
(psi) 

6,600 

3,510 

10 

LonG Term 
psi) 

2,200 

I, 760 

3.3 



I exm.,1e a-11 contiraled 
I 
I ·~ I Section Properties: Refer to Tobie 8-1: 

I 
I 
I Prcpertit?s 
I 
I 
I I 
I 
lo 
I m 

Is 
I 

2 =I =td/2 
0 

2 = Ef 1/(1 - v ) 

= td 

I 
I 1, = t 3 /6 
I 
I D f = Efl I m 

I st 1 = sf2 = t216 
I 
I A = itc 
I C 

ID =AG I V C C 

Units 

. 4;· in. 1n. 

. 3;· in. 1n. 

. 4;· in. 1n. 

in. 2-lb/in. 

. 3,. 1n. 1n. 

. 2,. 
in. 1n. 

lh/in. 

I Coefficients (from Tobie 8-4): 

I 
I 
I l1 
I 

2o V , ) 
(

D \ 1/2 

= 7 Omf/ 

I 
•• , = ¥ 
I 
I 1 •2 = I 

%rt-Term 
Property 

0.84 

0,74 X 106 

0.41 

0.00017 

133.3 

0.0017 

4.2 

3360 

602 

0.9983 

1.000 

Reduction Factor for Long-Term 
Durotiun of Stress Property 

2 

2 

2 

0.84 

0.37 X 106 

0.41 

0.00017 

66.7 

0.0017 

4.2 

1680 

602 

0.9983 

1.000 

0.9999 
I 02 _2 
I "3 = ---:r-1 ___ e ________________________ _ 
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I exan.,a. a-11 contiruect 

I 
I 
Is. 
I 
I 

StrelS Analysis for Wind Effects 

I Uae short-term properties for wind. See Example 8-5 for equations. 

I I Reactions: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

= 0.21 X 120 r. 5 X I 202 + I ] 
U2 X 0.74 X 106 n60 

[ 
120

2 
I ~ , + 6 + 'Nl} = 31.2 lb/in. 

J X 0.74 X 10 

-~L + 2aq 
2 = 

- 31.2 + 2 x I 20 x 0.21 = 9.6 in.-lb/in. 

Eq. 8.30 

I Moment, M', at center reaction at b: due to wind load, W, acting on full spon 2a: 
I 
I 
I 
I 
I 

Ml -bl - = 

I Moment at b due to reaction f\L: 

I I RbL(2o) 
I M"bL = 4 

I 
I I Net Moment at b: 

I 
I 
I 
I 

= 

0.21 X 2402 

8 

31.2 X 240 
4 

= 1,512 in.-lb/in. 

= -1,872 in,-lb/in. 

1512- 1872 = -360 in.-lo/in. 

I Notes A check shows that moments at midspan of span a ore less than Mi,L· 
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I ~le 8-11 cantlrued 
I 
I 
I Bending Stresses: Distribute moments between faces and transformed section in accordonc~ 

I with Table 8-4. M' is distributed as for o beam under uniform load; M" is distributed as for 
I beam lKlder concentrated centra I load. 

ablp = 

= 

= 

= 

1512 X 0.9999 
o.41 

1512 X 0.0001 
- 2 X 0.0017 

+ 

+ 

1872 X 0.9983 
o.41 

1872 x 0.0017 
- 2 X 0.00l7 

1blp + f1>Lf = -871 - 892 

= - 871 psi 

= - 892 psi 

= -1,763 psi 

(primary stress on 
transformed section) 

(secondary face
bending stress) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Note: Secondary stresses ore approximately equal to the primary stresses. 

I Shear Stress @ b: 

I 
I 
I 
I 

= 
31.2 x I 
2 X 4.1 = 3.8 psi 

1, Strea Analysis for Thermal Effects (Refer to Example 8-10 for equations): 

I . 
I Panel was flat when fastened on lvilding at T = + S0°F which is token ns reference 
I temperature. 
I 
I 
I 
I 
I 
I 
I 
I 

= 

= = 15 X 106 

[-60 - (+50)] = -1 .~5 x I o-3 in./in. 

[+10- (+50~ = +0.30 x I o-3 ln./in. 
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I Exan.,le 8-11 contiroecl 

I 
I 
I Short-Term Thermal Effects 
I 
I Reactions: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I Moments: 
I 

= 

I Total Moment: 

I 

(+ 1,95 X I0-3) 120 

[ 
1202 I ~ 4

•
1 

3 X 0.74 X 106 + mt}J 

-4.2 lb/in. 

Eq. 8.137 

= +8.4 lb/in. 

= -504 in.-lb/in. 

I Primary Moment: 

I 
= Mb T "I :: Mb T x I = -504 in.-lb/in. 

I Secondary Mor.ient: 
I 

= M ( I - - I) = -504 (I - 0.9983) = 0.857 in,-lb/in. 

: Bending Stresses: 

abTp = = 
504 -1,229 p~i (primary stress on 

- lf.lIT = transformed section) 

"bTf = = 
0.857 - 260 psi (secondary face-
0.003:t = bending stress) 

-1229 - 260 = -1,489 psi 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Note: Secondary stresses are only about 20% of primary stresses for this cose. 

I Shear Stress @ b: 
I 
I 
I = = 

+ 8.4 X 0,9999 
2 X 4.1 
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I Ex0ff1>le a-11 oontinJed 
I 
: Long-Term Thermal Effects 

Since stiffness properties D , D f' and D are proporticnal to Ef and G resp~tively, and rn m v . c 
since the lotter moduli both decrease by a factor of 2 for stresses of long duration, long-

term reactions, ,noments, and stresses are one-half of the short-term values colculoted 

above. These reduced values are reflected in the tcmle below, for the long-term (thermal) 

l\)t]ding condition. 

7. Ewluate StreNeS 

Interaction 
Wind Stresses Thermo1 Stresses al xLF a1 xLF 

Loading Load F Load F ._ + F 
C d·t· Element Mode.,. Factor al F 0 r r on I ion ur actor ur ur ur 

I---------------------------------
1 
I Wind (W) 
I 

Face 
Face 
Core 

B 
R 
R 

I. 7 
871 3510 
1763 6600 
3.8 10 

0.42 
0.4S 
0.65 

•-------------------------------1 
I Short-Term 
I Thermal (TS) 

I 

Face 
Face 
Core 

.--------
• Long-Term 
I Thermal (TL) 
I 

Face 
Face 
Core 

B 
R 
R 

B 
R 
R 

1.4 

1.4 

1229 3S10 
1489 6600 
1.02 10 

615 
745 
0 • .50 

1760 
2200 
3.3 

0.49 
0.32 
0.14 

0.49 
0.47 
0.21 

1----------------------------
1 Wind + Short
! Term Thermal 
I (W + TS) 

I 
I Wind + Long
I Term Thermal 
I (W + TL) 

FOC"e 
Face 
Core 

Face 
Fxe 
Core 

B 
R 
R 

B 
R 
R 

I. 7 

1.1 

871 3510 
1763 6600 
3.8 10 

871 3510 
1763 6600 
3.8 10 

1.4 

1.4 

122' 3510 
14&9 6600 
I.Cl 10 

615 
745 
o.so 

1760 
2200 
3.3 

o.,, 
0.77 
0.1, 

o.,i 
0.93 
0.86 

•-----------------------------
1 * B = 
I R = 
I 

Ultimatf' ~trength controlled by buck 'ing of compression face 
Ult:mot(; strerigth controlled by rupture of face or core 
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I ~1e ~11 cantiruect 
I 
I 
I 
I a. Calculate Deflections (Load Factor = 1,0) midspan between a & b 

I 
: Maximum deflection is inward due to temperature gradient and wind load. 

I [ ] 2 2 I sa2 I (e:2- e:1>a (Mbl +MbT)o 
I w = M ~LJm + o; + 8d + 16 Dm 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

M = 0.125 qo2 = 0.1 25 x 0.21 x I 202 = 378 ;n.-lb/in. 

w = 378 [ 5 x 120
2 

I l 
48 X 0.74 X 106 + l'36UJ 

1.95 X 10-J X 1202 
+ 8x4.I 

(-360 -504) 1202 
+ ~-...a.........____,.. 

16 X 0,74 X 106 

= 0.88 + 0.86 - 1.05 = 0.69 in. < 0.80 ~~. Max. OK 

Eqs. 8.35 & 8.142 

I Canclude: Panel meets wind and thermal strc'SS criteria with 7% margin (i.e. maximum 

: interaction = 0.93). The most severe loading c,,r.dition is face wrinkling under wind lood 

I combined with long-term thermal stress. 
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A load factor of I. 7 is assigned to wind lood, os is frequently used in building 

desigr,. This factor accounts for inaccuracies ir1 determininq pressure distribu

tions, uncertainties of gust magnitude, wind velocities which may exceed the 

desig, value, and :noccurocies In ooalysis. Most building codes allow a reduction 

in wind load when combined with othfir loads to an equivalent load factor ~f : .33. 

This reduction is not token here because, unlike most conventional building 

structures, wind is the principal loor':"Q on the panel. 

A lower lood f~tor of 1.4 is assigned to temperature effects, as i! conven

tionally used in building design. This load factor reflects the probability that the 

design temperature is near the minimum vclue, and that significantly lower 

temperatures ore il'll)roboble. As is the case of wi:id load, some building codes 

allow a reduction in temperature str~ss when combined with other load f"ffects. 

This reduction is not token here because temperature stress is also o primary 

loading for c panel in the arctic environment, 

Capacity reduction factors (CRF) are assigned to account for mode ond 

consequences of failure IXlder th~ imposed loads, the possiblity of low strength 

material being present of a point of maximum stress, and similar uncertainties. 

A CRF of 0.6 (equivalent to a partial factor of safety of I / 0.6 = 1.7) is ossign@d 

to the FRP faces, since they 11re to be mode by a reasonably wel! controlled 

process with good reproductibility and tr1der adequate levels of quality control. 

A CRF of 0.4 (equivalent to a partial factor of safety of I / 0,4 = 2.S) is ossig,ed 

to the shear strength of the for:n, recognizing that this material is to ~ foamed 

in place and that orientation in cell structure an<:I variations in density may 

produce significant wriuions in strength from the assumed ultima~e voll'es. A 

hig,er value of CRF of 0.6 is assigned to face wrinkling strength recognizing 

that modulus wries less then strength, and the chance of the face and core 

having lowest modulut values of tM some point in the structure is remote. 

2. Materia Ptapertle.l: The short-ten,-, strength ond elastic« viscoelonic 

moduli are rewced to account for long durations of s~ress ond strain which m")' 

occur during the winter when the temperature differential is impused for long 

periods. Th~ reduction fact«s of 2 ~ modulus and 3 on strength ore established 



In conalderatlon of R values shown in Tobie 2-2 and discussed in Chapter 3, stress 

rupture data as is shown in Figure 1-20 for fiberglass reinforced plastics, and 

H>B data on thermoplastics, as in Table 3-3. In tM present state of the art in 

characterization of structural plastics behavior, these are judgment factors, 

since la'lg-term effects on p,orertit"'.s or specific formulations of polyurethme 

foam are essentially unknown. However, if the moterials hod been characterized 

aa delcrlbed In Tables 3-8 and 3-9, the level of confidence in this evaluation 

would be greatly l111>roved. Furthermore, knowledge of strain limits would then 

be available to provide o rational design approach thot would be more ccnsistent 

with the criteria, based on time-dependent properties of plastics developed in 

Chapter 3. 

3. Del9' Strei.glha: In some other ports of this Manual, a working stress 

approach hos been used for simplicity of presentation. An ultimate strength 

design approach is used for this example because it represents the more 

odYanced state of the art in practical design. 

The reduced ultimate design strength in tension governs :;trength design at 

&,'00 psi, short-term, and 2,200 psi, long-term. This is crHT1)0red later in the 

analysis to the maximum extreme fiber stresses in the faces. 

Aa noted In Chq,ters 2 and 3, the flexural strength of unreinforced and 

reinforced plastics, obtained in standard tests, is usually greater tho, either the 

stra,gth under uniaxiol tension or cOJT11:,ression. If "first damage" theory is 

occep1ed, first ~ should occur at a strain which is independent of flexural 

tenalon or In-plane tension stress mode. Furthermore, flexural strength wries 

with lhlckneu of the material and span-to-depth ratio (as does wood), whereas 

tensile strqth la lea sensitive to thickness. There ore ~ uncertainties 

abGut the wrlations in flexural strength with test sample geometry, to render 

the uae of flexural strength obtained via standard test l"llf'thods of questionable 

wlue. Th.II, the lower value of tension or compression strength is used in this 

exClff1)1e CII an indication of flexural strength as well. Of course, if full-scale 

protot,-pe teat• were ~ted, this rationale could be modified to reflect the 

ac1ual results. Pouibly an approach, where the interaction between the hipr 
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flexural strength and the lower uniaxiol strength ore occounte<i for, is applicable. 

Such m approach is token later in the analysis for the evaluation of combined 

short-term md long-term strength. Such interaction approoche:,; need verifica

tion by test to provide a sound basis for such a nile. 

The reduced ultimate face wrinkling compressive stress of 3,510 psi short-term 

and I, 760 psi long-term is lower than the reduced ultirnote design strength in 

tension. However, the face-wrinkling strength is compared, later in the analysis, 

to the overage compression stress in the face, not to the combined compression 

and bending stress thot governs in strength evaluation, The compression stress 

resultant is. used, because as discussed in Chapter 6, tne buckling of a plate 

depends mostly on the in-plane compression stress, and is independent of the 

magnitude of flexural stress. 

4. Section Properties: Determinotion of section properties includes the 

calculation of moment of inertia and section modulus of the faces, in addition to 

the overall stiffness and strength properties of the transformed section, in 

anticipation of the possibly significant effects of shear flexible cores as 

discussed in Section 8.6. The shear flexibility coefficient, 9, and values of, ,S, 

are needed for this analysis. 

S. Stress Analysis for Wind loads: Maximum wind loods act only for brief 

periods, and hence, the analysis for wind considers only short-term behavior. 

The analysis far stresses and moments derived in Example 8-5, that accounts for 

the effec1s of shea deformation in the core is used to determine stress 

resultants and reactions. 

'- Stress Analysis for Thermal Loads: Thermal loads near mo} :mum are 

expected to be appl!ed for long periods during winter. In this case, the effects of 

both the initial short-term thermal load, and the long-term (assumed indefinite) 

thermal loading must be considered. 

The bending stresses a iaing from the temperature differential (1,489 psi) ore 

somewhat higher than those due to wind load (1,248 ps,). This demonstrates that 
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thermal stress is a signific,:,,nt limit state for sandwich panels used in insulated 

bvlldinga. 

7. Ewluatla1 of Stnur : The table given in this part of the example 

summarizes the various loading conditions considered in the analysis, and the 

load fuctor criteria aet for the project. TM stresses shown are the unfoctored 

atreues resulting from design loads. The ~trengths shown ore the reduced 

ultimate design strengths which were established in Step 3 of the calculations. 

The combined effects of short-term wind and long-term thermal loads present a 

..,.clal problem in ~aluatior since the ultimate strength wries wlth load 

duration. Ari interaction opprooch is introduced herein. Interaction relationships 

ere frequently ~ in conventional structural ~sign in coses where different 

atrea modes ore governed by different strength criteria. In effect, if the 

fallowing condition Is met, the structure is assumed to meet the design criteria: 

maximum wind stress maximum thermal stress 
reduced short-term str~ngth + reduced long-term strength ~ 1 

where 

+ 

F uS = short-term ultimate strength 

F ul = long-term ultimate strength. 

Eq. 8.143 

In thla example, the above criterion is met. '!'he highest combined stress (wind 

plus '°'9-term thermal load, results in on in+eract!on fodor of 0.93, which is 7~ 

below the 10fe value as predicted by this criterion. 

In view of previous discussions (Retention of Short-Term Properties ofter 

Sustained loadings, Section 2.8, Md Excmples 3-8 and 3-9, Section 3.4~ the uae 

of o limiting atroin approach would permit an evaluation of behavior strength 

behavior ~ loads of mixed cllration that reflects better the behavior- of 

plolt~ lff1)1ementot:on of this approoch awaits the characterizotiun cf key 

structural properties for both face and core materials along the lines propoHd in 

Tables 3-8 and J-,. 
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NOTATIONS - Chlpter 9 
(See Table ,_, for notations usad in ecpationa for Cl'ICl.lysls end delql of bwled 
pipe in Section 9.14) 

a 

a 

b, C 

b 

b 
X 

B 

C 

C 

cf'cc 
C, CO' c 1 
cx,cy 
d 

governing dimension in shell geometry, dimension ot hypor edge 
along x 'lxis 

cross sectional area of unit width cro~-: section 

section area per unit width in Q direction; above plane n, 
Fig. 9-4(d) 

areo of unit width of sandwich shell for transformed section 
with facings E 

cross sectional area, secti:Jn area in circumferential direction 

in-plane stiffness of shell in direction of principal radii of 
r.urvoture, R 1 end R2 

in-plane stiffness of shell in x and O directions 

shear stiffness in x-Q plane 

width and half depth cro:.s section dimensions 

governing dimension in shell geometry, radius of circl~ of 
revolution in torus; dimension of hypar edge along y axis 

component of width in x direction 

coefficient in stress concentration equation 

governing dimension in shell geometry, rise of hypor in z 
direction 

coefficients for bending, thrust, sheor, ond radial defleci ion 

coefficient fN maximum radial and shear stresses 

buckling coefficient 

unit volume cost of facing and core materials in sandwich shell 

coefficients 

largest distance between ribs in SPherir., I shell 

flexural stiffness in directions of principal radii of curvatures, 
R 1 and R2 
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~ 

~ 

F 

flexural stiffness in radial direction 

flexural stiffness in x, ,J, and O directions 

twisting stiffness in x-0 plane 

elastic modulus 

elastic modulus of bottom plate in radial direction 

tangent and secor,t mocluli of elasticity 

viscoelastic (time-dependent) modulus (Chapters 2 and 3) 

viscoelastic (time-<lependent) tangent and secant moduli 

long term viscoelastic modulus in circumferential direction 

elastic modulus in x, 0 (circumferential}, and rJ<meridional) 
directions 

line load per mit length in parallel plate test of pipP. 

react ion forces at b and c 

$h4eor modulus 

modulus of shearing rigidity of core of sandwich section 

height of fluid 

horizontal edge load on spherical cap 

section moment of inertia per unit width 

section moment of inertia per unit width in circumfe~entiol, 
meridional, Cl'ld "directions 

K<:tion moment of inertia per wiit width of sandwich shell 
having symmetrical transformed section t>osed on facings modu
lus of elasticity, Ef 

moment of' inertia of section, moment of inertia in 
circumferential direction 

reduction (knockdown) fc,ctors for tuckling coefficient 

correction factor for effect of internal pres.wre or, buckling 
coefficients 

correction factor for curvatun: 
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L 

Nx,~ 

Nxy 

Ng, Nd, Nr 

NdO'~ 

Nxc' Nee, N4c 

N' x' N' XC 

length of cylindrlcul shell 

edge length that "lifts up" at bottom plate 

length of uniform thickness shell between circumferential stiff
eners 

load factor 

wavelength of buckle 

bendil"lg moment per unit width (stress resultant) 

bending rr.oment per unit width in circumferential and meri
dional directions 

bending moment at ~ of sphericcl cap 

bending moment at point b 

bending moment at circumferential edge of cylindrical shell 

bending moment in x oncl y directions 

twisting moments per unit wid!h on cJQ and g(j ~ections 

coefficients 

axial force per IAlit width (stress resultant) 

critical buckling axial force in slant direction of cone 

pseudo~r:ticol buckling shear force and circumferential force 
in o cone 

axial force per IAlit width in x and y directions 

shear force per unit width in xy plane 

axial forces per IAlit width in Q,cJ, and r directions 

shear forces per unit wi.:lth in dQ plane 

critical buckling axial force in x, g (circumferential), and 
tMmerrdional) directions 

axial and critical buckling axial forces per unit width in x 
direction caused by overall t>Mding of cylh1rical shell (as a 
tubuk:r beam) 

critical buckling shear force in Ox plane 
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p 

Px, Py, Pz 

Po, P1 

Pw 

Per 

axial stress re,ultants in principal directions I and 2 

buckljng axial stress reJUltants in directions with principal rcdii 
of curV'ltures, RI and R2 

pressure 

uniform weight load on unit area 

uniform load on v,1it area of horizontal projection 

pressure in the bottom and in the top re3ions 

pressure in directions x, y, and z 

pres,ure at o designated point, o or I. 

pressure due to wind lood 

critical buckling pressure 

line load per unit length on edge perimeter 

total load 

concentrated load that locally buckles spherical shell 

overall total concentric load applied on upper onJ lower edges 
that buckles a cone 

total symmetrical load on shell of revolution above opening 
angle<J 

short-term pipe stiffness 

uniformly distributed lateral or ·internal pressure 

pressure at tank bottom, top 

fluid pressure, radial and tangential preuures 

transverse shear force per unit width (stress resultant), concen
trated load 

transverse shear force at point b 
• 

radial shear force per unit width on edge of shell 

radial shear force per unit width on section perpendicular to x 
and y axis 

radial shear force per unit width on sections perpendicular to 
circumferential and meridional directions 

first moment of the area above (or below) centroidol plant: i-1 
about axis in 1-1; above plane n~ about axis in 1-1. 



s 

s 
t 

th 

tc 

te 

tf 

ti, t2 

Tl' T2 

.,. 
I er 

w 

mean radius 

radius of cylinde,· 

radius of top and bottom edges of cono:::; also principal radii of 
doubly curved shell in directions I and 2 

equivalent cylinder radius for buckling of cone under various 
types of load 

knuckle radius 

radius of bottom plate, radiu$ ot edge of spherical portion of 
torispherical head 

required rad:us of annular bose ring 

radius of sphere 

sk.nt distance from apex of cone 

slant distance from apex to opening of cone 

section modulus per vnit width in circumferential and longi
tud:nal directions 

section modulus 

thickness of shell or pipe wall 

thickness of bottom plate 

thickness of sandwich core 

effective thickness of ribbed or sandwich shell 

thickness of sandwich facing 

thickness of layers I ond 2; time I and 2 

temp.~atures on inside and outside cf she!;; temperature at 
time I or 2 

overall total torque applied at upper edge that buckles o cone 

transverse shear force per unit width {stress resultant) in a ring 
or curved beam 

radial deflection 

radial deflection at edge 

radial deflection at b, bottom plate 

radial deflection at b due to membrane action 
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w 

a 

B 

n 

ax, ay 

au 

total load per unit width 

angl<"; coefficient of thermal expansion 

helix angle at layers I and 2 

cylindrical shell constant; bedding angle 

deviation from spherical radius 

radial deviation from theoretical radius of shell 

plasticity reduc.tion factor for noo-lineor stress strain behavior 

density 

spherical shell constant; constant 

shell stiffening factor 

Poisson's ratio 

Poisson's ratio for str~ss in x and O directions 

meridional angle 

meridional opening angle 

meridional anyle from apex to edge 

angle between direction of pressu;-e and z axis; angle from edge 
of spherical shell 

normal stress 

bending stress, elastic beam theory 

maximum bending stress on inside of curved ring 

nor,TIOI stress in meridional (cl), circumferential, (0), and radial 
(r), directions 

stress in filament 

stress in x and y directions 

ultimate strength of material 

ultimate strength in direction of filament 

critical buckling stress in><, 0 and cl directions 



't 

0 

ca, 

p 

Pr 

,csx), 0(Sx), 
t(Bx), +(Bx) 

shear ,tress 

critical buckling shear stress i~ cone 

shear stress in xy plane 

critical buckling shear stress in xy plane 

sneor stress an cross section normal to O direction 

circumferen·iial angle from origin to location of stress resul
tants 

rotation at point b, bottom edge 

rotation at b due to a unit moment at b 

rotation at b due to membrane effects 

angle between hypar x and y oxes with skew coordinates 

radius from axis of concentrated load or mornent f'> point of 
stress resultant 

radius of zone of significant bending moment caused t.y 1.oncai
trated load or moment 

radius of zone of significant thrust caused by concentrated load 
or moment 

shell functions for long cylindrical shells 

shell functions 'or short cylindrical "lls 
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CHAPTER , - THIN RINGS AN> 51-ELlS 

f.J. Heger 

,.1 INTRODUCTION 

Plastics and reinforced plastics may be molded to form curved ring and shell 

elements with ease. For applications such as pipe, liquid containers, pressure 

vessels, roof structures, ond other structural components, shell ca,figurations 

often provide a, effective means of minimizing the quantity of moteriul required 

for both enclosure and load tronsfer. In such applications, plast1cs may provide 

economical solutions to the problem of structural enclosure. 

ln additiC'l to their easy adaptability to molding, plastics have many desirable 

properties, both structural and non-struct,Jral, which contribute to their effec

tive use in curved components. See Chapters I to 4 for descriptions of those 

struct•Jral md non-strv::turol characteristics that should be considered when 

choosing materials for ring <J'ld sheli structures. The high unit materials C·~t of 

most plastics and reinforced plastics requires efficient design and del'l'Krlds 

economical fabrication techniques. Their use can cften be justified by design for 

minimum weight of material in a form susceptible to economical fabrication. 

Ring and shell structures offer o means fo, attaining this efficiency. This is 

porticvlorly the case in applications such as fluid storage vessels, pressure pipe, 

air ducts and buried pipe where the excellent corrosion resistance of plastics 

further enhances their cost effective performance as shell structures. 

Methods and design aids are provided in 'this Chapter for analysis and de:ign of 

pipes and other rings, shells of many configurations, curvftd panels and curved 

membranes that behave structurally as thin rings or shells, as defined later in 

this chapter. Desigi methods and design concepts which lead most directly to 

optlrnu'Tl structural desii71 for plastics shell structures are emphasized. 

Structural properties of plastics, along with thrir fabrication techniques, differ 

markedly from traditional structural moteri11ls; thus, as in the previous Chapters 

on plates, beams and axially stressed members, end sandwich structures, some 

new methods and new concepts that may be unfamiliar to engineers used to 
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worlclng with wood, metal., « reinforced concrete ore required for effective 

design with the pl~ics and reinforced plastics family of structural materials. 

A. dilCUINd In Chapters 2, 3 and 4, plastics are frequt,ntly not ductile; hence, 

much greater 0/CCUl'tJC/ of stress analysis is essential with these materials 

compared to most :.teel or reinforced COl'lerete shell struch:res. Discontinuity 

atreaes near edge supports are usually very important considc;-at ions in plastic 

lhells. AIID, the generally lower ratio of stiffness to strength with plastics, 

compared to metals, requires accurate consideration of stability in plastics shells 

IUbject ta cunpression. Lorge size plastic shells often require stiffening by the 

UN of ribs ar laldwlch construction in order to attain needed buckling resistance 

with NlCIIOMble quc1ntltles of plastics. 

Plaatics baled composites ere often used when plastics shell structures ure of 

.atantlal size, or ore subject to high loads. For many plastic composite shell 

COIT1)Gnents having conventional shapes, the stress and buckling analyses presen

Md In this Chapter will provide sufficient a.::curocy for final design. In such 

~IYNS, moterlals properties er-, approximatt:<l by their average isotropic or 

orthotroplc materials constants. These are usually based on test results for the 

•tire laminate. OI delcrlbed in Section 3.5. 

AdYanc.ed composites, COfflP(ised of loyen of oriented fibers in a resin matrix 

are often UNd In aeraapoce and other transportation vehicle applications to 

reduce wef9't. Such laminates may be desipd to optimize stiffooss or strength 

QI e,cplalned briefly In 5-:tlon 4.9. Components f.Jbricated from such layered 

t'l'IIIIMrlals are ~ mli30troplc 3hells ond require special refined 

theories for ac:curate analysis (9.1). These are not treated in this Chapter. 

Relulta In the form of slmpl:fled ~tions are not available, and lock of space 

precludN pretentotion In tufflclent Qtail to meet the objectives of this Oetign 

Manual. Hc,wew,r, the anal)'let detcribed in this Olopter may be useful for 

dlwlap,lng the preliminary dealg, of the these types c,f components. More 

accurate computer aided analyses CQl'l then be perforrl'M!d using approaches Old 

program. IUCh ca thalG dacr'bed In Sec;ion 4.,. 
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9.2 ANALYSIS AN> DESIGN OF THIN RINGS 

Rings may be circular or other continuous cur•,ed shapes. :hey may be narrow or 

wide, but their essential characteristic that distinguishes them from cylindrical 

shells is their two-dimensional behavior under load. A ring is essentially a plane 

frame. When transverse diaphragms or ribs ore provided ot one or more point.i 

along the longitudinal axis of o wide ring, applied loads ore transferred in three

dimensions and the structure is termed o cylindrical shell, A ring differs from a 

shell in the ~ame way that a beam differs from a plate. 

Pipe are often analyzed os very wide rings, although restraints at joints and 

coonection points rnoy cause thr~-dimensional transfer of applied load in the 

vicinity of these points. This behavior produces "discontinuity'' longitudinal 

bending stresses near the comections, These are determined by the cylindrical 

shell edge bending analyses described in Sectior, 9.7. 

Curved two-dimensional members that do not form a closed ring are often 

termed arches or curved b..."Oms, depending on the edge support conditions. 

Arches are treated extensively in reference texts on indeterminate stress 

analysis (9.2). They ore not included in the scope of this Chapter. 

Rings Lhder Direct Stress 

Rings provide great struct\lral efficiency in resistir,.g !hose distributed loads 

-.-,oose funicular !ine (Section 4.4 and Fig. 4-1) coincides with the ring centroid. 

An example is uniform internal or external pressure on a circular pipe (Fig. 9-

la). Without longtituainol discontinuities, the applied uniform preswre C"O•.Jses 

only circumferential thrust (hoop) forces in the pipe ring as follows: 

pR 

:: 

For a ring of uniform thickness: 

= 
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Eq. 9.3 



Radial deflection is: 

w = 
NgR 
Eoao 

For a wide ring of uniform thickness: 

w = = 

Rings Ulder Bending 

Eq. 9,4 

Eq. 9.5 

A,,y other load distribution on a circular rin~ produces bending, axial and shear 

stress result<l'\t1. Conventional relationships between these stress resultants for 

straight members are modified by the curvature or rings. Equations relating 

bending, axial and shear stress resultants in curved members are given !>elow. 

Sign convention is shown in Fig. 9-1. For rings subject to common load 

distributions, these stress resultants may be determi;1ed :.,sing the moment, 

thrust end shear coefficients for particular points in a loaded ring structure 

given with the following equations: 

Mo = Mf,b - J
0
°v0 Hd0 = CM WR Eq. 9.6a 

NO = Noc,- f 
O 
O (VO + q1 r) d 0 = cNW Eq. 9,6b 

VO = VQc>+ f 
O 
O (Ng - qr R) d O = cyW Eq. 9.6c 

The coefficients cM, cN' Cl1d cv are determined for any port:cular load and 

support arrangements by an indet~rminote structural onaiysis of the ring as a 

plaie frame. for many common loading and suppo:-t arrangements, they m<JY be 

fou,d In handboolcs such as (9.3). These are applicable only for thin rings as 

defined later in this Section. 

Six common loading and support orrangements for circular rings ore shown in 

Fig. ,-1. The constar.t -:ircumferentiol thrust fl')f' the uniform pressure case (a) is 

given by Eq. 9.1. Plots of the moment, shear aid thrust coefficients in Eqs. 9.6 

are given In Fig. 9-2 for loading coses (b), (c), ld) md (e) of Fig. 9-1, and in Fig. 

,_3 for case (f) of fig. 9-1, using several different values of the bedding angle, S 

(,.4). The sigr. convention used is shown in 1:-oth Figures. 
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(a). Uniform Pressure 

w 

(c). Two Concentrated Loads 
at Ends of Diameter 

w 

w 

(e). U,iformly Distributed 
Load and Support 

Vg + dV 
Mg + dM 

Ng +dN 

(g) Sign Convention 
+ Stress Resultants 

,rR2 

(b). Fluid Wei9't On 
Concentrated Support 

w 

(d). Uniform Load on 
Concentrated ~t 

I 
Pt "Po cos "t°' n, '"(2'1 • I) 

Po 

Pb pl 

'I 
Pb• pl coe '\ hr - O>s'\• J 
(f). Trigonometric Variation of 

Le-ad and Support Pretlure 
See Fig, 9-3 fw p

0 
and P1• 

Ag. ,_ I SIX COMMON LOADING AH) SU'PORT ARRANGEMENTS 

FOR CIRCll..AR Rl'IIGS 
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0 

Crown Spring Invert 

0 20 40 60 80 100 120 l~0 160 180 0.4 __________________ _ 

O.J ---~-1----4--...i=.::c=_:_~ 

0.2 1---.,.-+-,..,.....-+---+----+-----+-~.---~--+---"'4'-i 

CM 0.1 

0 ~..;....+-~~~~--,f--lf--

Moment, Mo 

•0.6 ,---,--T"""-"c::::al,i--111!!!<"~.---.--.--, 
• 0.5 J--+---+,...,..~~-+----+--"~___...,---1--,,.....-+---1 
•0.41---"-_,:;""-_.L.--'-------+---1----l~__::i-....--1----1 

•0.2 --------+----+---~--+-~--¥.-I-'-'=-=---! 

CN -0.1 

0 
0.11----1----+-c_,.,i::::::.=::..i.::=-:~.-~-----~~-I----I 

0.2J--ho-,.___+---+----+---+-

Thrust, Ng 

-0.1 ,~r....... .-" 
-0,2 '~ ~ '-° - '<e) 
.(). t 1---1---~-----+--+--+---- '--:"-l ~ '-
-0.4 t---+---+---'-----4----+----4--r--i.'-, .... ~ .. ___:_4. ............. -: 

-0.s o ~o 40 '° 80 100 120 140 160 1ao 

Sheor, vij 

Note: :.ee Fig. ,_1 for Loo.J Coses (b), (c), (d) & (e) 

Fig. ~-2 COEFFICIENTS FOR MOMENTS, .tflUSTS Ar'° St-EAR.4i FOR 

A THIN RING SlRECT TO VARIOUS LOAD DISTRIBUTIONS 
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a 
Crown Spring 
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-0.4 
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-~!C,,'!!,L-,t-0.1 

, __ =l_f_~ '"5-~J:t;.1~::::~~::;jk~:::'..o!~:::;Ja'.~::.:;~~_J'4-0.2 
.,.__..... _ _..... ____________ .._ -v.J 
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0 
w/4 
45° 

w/2 
9<f' • laa° 

p
0 

:W/C
0

R 

Pi .. w1c 1R 
w 
I 

8 l.n 

•J4 1.57 

•/2 1.70 

2/3'1 1.71 

• 1.57 

c, 
0.419 

o.~ 

1.20 

1.57 

I 
IW 

Looding C01e f, 
Fig. j.J 

P1 Pt • Po cos "t O 

", "' •1<2• - 8) 
Pb = p I cos'\, (1 - 0) 

nb = w/8 

Fig. '-3 COEFFICIENTS FOR MOMENTS. TI-flUSTS, AKJ StEARS, 

FOR n-., RING SUB.ECT TO TRIGONOMETRIC 

DISTRIBUTION OF LOADING AN> SUJPORT PRESSlRS (,A 
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The moment, shear and circumferential thrust stress resultants produce normal 

(bending and axial), transverse and interlaminar shear and radial stresses on the 

ring cross section as shown in Fig. 9-4. In a curved bar subject to bt:nding, 

,;tresses will bP. higher on the inside edge and lower on the outside edge than 

stresses determined using -:onventional elastic. bending theory, as derived from 

an assumption vf linear strain variation across the section. This increase in 

maximum stress because of curvature may be neglected for rinqs of moderate to 

low curvature, soy wi1h R ~ St t'> I 'Jt, depending on the ttc-.::u,aq· desired. The 

moment, thrust, c.ind sheur values obtained with the coefficients given in Figs. 9-

2 and 9-3 ore all obtained from "thin ring" onaly~s that neglect the non-linear 

variation of stress on a curved cross-section. 

An estimotf' of the maximum bending stress on the inside of a curved member 

may be obtained by multiplying stresses or the inloide surface determine'1 using 

conventional elastic beam theory, ob, by o correction facZor for curvature, Kie' 

as follows: 

Eq. 5.7 

S<!e Fig. 9-4 (c) for a graphic presentation of these notations and stresses. Fe: 

rectangular sections, the correction factor, K. , is calculated using Eq. 9.8 (9.5): 
IC 

Kie = I .G + i [; ~ .51) + ~ Eq. 9.8 

For other shape cross sections, sue;, as I, hollow rectangular, circular or 

elliptical, reasonably accurate correction factors ore given by (9.5): 

I K. -= 1.0 + B (-->1) 
IC be,:; [ 

I +U 
(R -d R_j Eq. 9.9 

B is 0.5 for I or hollow rectangular sections and 1.05 for circular or elliptical 

cross sections. See Fig. 9-4 {c) for the other symbols. 

A pipe bend is <11 example of a curved member with o hollow cirr.ular cross 

section. These ore octuolly toroidal (donut sho~:d) shells, Sur.h shells are 

~reated in Section 9.5. 
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(a.) Normal stress due to bending ond 
ttvust in "thin rings" 

x--/ Lt" 0
b 

(c.) Bending stress, including effect 
of cur110ture 

AO 
T ag T + dT 

n , n 
to 

·,J,,~~~" Lo to r 

(b.) Shear and radial h,nsion stress in 
thin rings 

aon = Section area on sa,roe side plane n 
us qr acts 

a 0 "' full section area 

(d.) Section X - X 

Fig. 9-4 NORMAL, SI-EA.~ AN> RAnlAL STRESSES ON RING CROSS SECTION 

Eq. 9.8 shows that for rectangular sectionsv maximum bending stresses deter

mined using conventional beam theory ore about 7.0% too low at R/t = 5, and 

3.4% too low at R/t = 10. In the follow:ng discussion, rings ore termE'd "thin 

rings" when the incre'lsed maximum stresses resulting from the geometry of the 

curvature ore considered negligible for design. 

For thin rings, the maximum stresses at a giv-~ cross section ore: 

maximum circumferential normal stress: 
Ng Mg 

Eq. 9.10 O' 0 ::: -+-
(" g Sg 

maximum shear stress (with qt -= Oh T 
Vg 

Eq. 9.11 Q = cs Og 

maximum rodiol normal stress (with q = 0): 
Mg 

Eq. 9.12 err = Cr o,R r 
I,, 
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The coefficients, cs and cr, depe.,d on the shape of cross section. For maximum 

shear stress, c is obtain by applying Eq. 5.30 at the neutral plane, giving cs "" 
- s 

(Qsl ar)/(bn 10 ). It may be shown that when qr= 0, or has the same variation as 

tg, giving cr "'cs· In this case: 

For a rectangular section: cs = cr = 1.5. 

For on I section with a thin weo ar:d ag = area of web: cs = er = 1.0 

When qr / 0, the radial stress produced by qr, a rq = qrb/bn ( l - ao,/ag) must be 
added t? the radial stress produced by the benciing I noment, us given by Eq. 9.12 

(except determine c usinrJ Q for the plane n of maximum combined radial r sn 
stress, rather tnan for the neutral plane). See Fig. 9-4(d) for bn, un and ag for 

several section shapes. The some reasoning applies to shear stress when qt -/. O. 

The part of the Ng thrusts that arc not associated with qr do ot produce radial 

norma! stresses, since they result from a chongt; in shear stress resultant with 

angular position (see Eq. 9.6b), and their radial components equilibrate shear 

strem variations with angular position. 

Radial stresses produce distortion of the cross section of thin tubular curved 

beams. This reduces both the strength and the stiffness of the tubular sectior .. 

See (9.3) for correction factors that account for this distortion in curved 

members whose curvature is not excessively sharp (thin rings). 

When rings are subject to -.ignificant bending moments, bending ~flections are 

USU<.llly much greater than deflections resulting from axial or sheor stress 

resultants. These lotter deflections ore generally neglected in practical colcu-

lotions and maximum bending deflections are det~rmined from: 

3 
cw PR 

w = to•o" 
For a ring of unit width, subject to a lood, W, per unit width: 

3 
cw WR 

w = E0 ig 

Eq. 9.13 

Eq. 9.13a 

For long tubes (wide rings), restraint -,f deformation transverse to the ring 

stiffens the ring somewhat, as e'<i>lained in Chapter 6. Thus, EG ig should be 

replaced witi, Do, where Do is given in Tobie 6-1, and: 

w WR3 
cwDg Eq. 9.13b 
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Values for the coefficient cw for various common loading coses are given in 

handbooks such as (9.3). Values of c for vertical and horizontal diametral w 
changes are given below for the lood coses shown in Fig. 9-1: 

Coefficients for Deflection of Rings for Loading ~ in Fig. ,_ I 

Load Case 
Fig, 9-1 

Change in Diameter 
Vertical Hor izontol 

6 
C 

d 
e 
f 

Buckling 

8 = -n/4, w/2, 21r/J, ff 

-0.074 
-0.149 
-0.116 
-0.08~ 
-0.060 

0.068 
0.137 
0.110 
0.083 
0.030 

When rings ore subject to signific1Jnt axial compression under uniform "r non

uniform loads, their structural capacity may be limited by their resistance to 

buckling. The maximum circumferential l:Ompressive force (ring thrust), as 

limited by buckling, is usually token as the buckling resistance of a circular ring 

subjec-t to uniform external pressure. This is: 
3 E0 ig 

NQc = R2 

The critical external pressure that buckles the ring is: 

3 Eg ig 
Per = R3 

For a long tube of uniform wall thickness: 

E t 3 
0 

Per = 3 
4(1 -"o "x)R 

The critical circumferential stress that bucklt!s the ring or tube is: 

= 
Eg t2 

2 
4 (I - "o "x) R 

The buckled configuration of the ring is shown in Fig. 9-5. 

Buckled shape 

Eq. 9.14 

Eq. 9.15 

Eq. 9.16 

Eq. 9.17 

Fig. ,-5 E,JCKLED CON='IGLRA TION OF RING SUBJECT JO lNFORM 
EXTERNAL~ 
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Emmple ,_, illustrates the use of the equations for rings subject to uniform 

pressure to determine the required wall thickness of a plastic pressure pipe. The 

maximum external pressure that cc.uses buckling is also calculated. Example ,-2 

illustrates the use of the equations and coefficients for non-uniform load to 

obtain on approximate evaluation of the stresses and deflections expected in a 

parallel plate test of a plastic pipe. 

Buried plastic pipe behoves as thin flexil:le rings that ore both loaded and 

restrained by their embedment soil. These require special design approaches 

that rely on soil-structure intero,:tion for control of pipe deflection. A brief 

explanation of the principal considerations for analysis and design of buried 

plastic pipe systems is presented in Section 9.14 at the er.d of this Chapter. 

Curved components that support loads by three dimensional systems of internal 

stress resultants ore termed shells. These are treated in the sections that 

follows. 

,.J St-ELL GEOMETRY 

Typical configurations for plastics shells were discussed in Chapter 4, Section 

4.4. These generally may be classified as "cylindrical" (i.e., shells with a f;nite 

radius af curvature in only one principal direction, such as cylinders), "doubly 

curved with positive Goussim curvature" (i.e., shells having radii of curvature 

with the some sign in each of the two principal directions, such as domes), and 

"doubly curved with negative Gaussian curvature" (i.e., shells having radii of 

curvatue with opposite signs in the two principal directions such as saddle shells). 

See Figs. 4-1 to 4-3 for illustrations of the above typec; of shells. 

Shapes and equations for surfact! geometry of cylindric~! shells and doubly 

curved shells of positive Gaussian curvature are- given in Fig. 9-6. Doubly curved 

shapes include th~ sphere, its generalized counterpart - the ellipsoid, cone~ with 

either elliptic or circular sections, and the elliptic paraboloid. The surfaces 

shown in Fig. 9-6 (a}, (b), (c) with a = c, (d) with a = b and (f) with a = bare 

surfaces of revolution, formed by revolving a straight or curved line about an 

axis. The surfaces shown in these figues are ~lso translational surfaces, formed 

by translating a straight or curved line along ano~her straight or curved line. 

The surface shown in (e) is another translational surface, formed by tronslatinr 

one parabola over another parabola. This surface is useful for covering areas 

with !'ectangular plms, using arches supporting each edge, as explained in more 

detail in Section j.6. It is also useful for approximating portions of other 

surfaces covering rectangular plans such a!: a spherical surface. 



I 
I 
I 
I 

exarr.,le 9-1: Determine the minimum wall thickness tor a 12 in, diameter PVC water 
moin (AWWA C900). Pipe is buried with shallow cover in an area where surface traffic is 
not anticipated. Internal pressure is 130 psi, including a 30 psi occasional surge. Also 
calculate adequacy against buckling with full vocwm applied briefly inside the line.* 

I I. 
I 
I 
I 
I 
I 
I 
I 
I I 2. 

I 
I 
I 
I 
I 
I 
I 
I 
I 3. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pipe Properties ot Temperature of 73°F (Ref. AWWA C900) 

0Jtside Diameter: 2R
0 

= 13.2 in; R
0 

= 6.6 in. 

Modulus of Elasticity: E = 400,000 psi (short term} 

Poissons Ratio: \) = 0.38 

t--tydrostotic Design Basis: HDB = 4,000 psi 

Determine pipe wall thickness rroviding safety factor of 2.S. Assume ti.at the pipe 
is a thin ring and that load effects due to burial are negligible. 

2R -t 
I JO t I 3.2 - t) 0 

p ( 2 ) 2 t =~ = = ao HOO 4000 = 0.515 in, 

"St ~ 

Use AWWA C900 Closs 100 PVC pipe with minimum t = 

Determine buckling resistonce 

R = 13.20 - 0.528 
2 

= 6.336 in. 

40(),(X)() X 0.5283 
-~---..-2--..... 3 = 67.6 psi 
4( I - 0.38 ) 6.336 

0.528 in. 

Factor of safety against buck!ing under bri~f vacuum in line 

"SF = 67.6 = 4 6 14.7 ' 

I -----------------------------
: Note: I psi = 0.0069 MPa, I in. = 2S,9 mm, 0 c = (°F - 32) 5/9 

I * 
I 
I 
I 
I 

Design :oads, design criteria (such as safety factors, load factors and capacity 
reduction factors, etc.), and materials properties used in design exampl~s \lre for 
illustrative purposes only. The u.c:er of this Manual is cautioned to develop his own 
loads, criteria md materials properties based on the rt'l(IUirunents ond condition, of 
his specific design project. 
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I 
I 
I 
I 

f>anph, '-2: l)f>termine the force per lineal inch required to achieve the 5% defloection 
requirement in the parallel plate loading test for stiffness of plastic pipe (ASTM D2412). 
(For arrangement, see Fig. 9-lc). Analyze 12 in. diameter PVC pipe (AWWA C900). 
Determine pipe stiffness and maximum bending stress in the pipe wall at 5% deflection.* 

I I. 
I I 2. 

I J. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 4. 

I 
I 
I 
I 
I 
I 5. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pipe properties (See Example 9-1) 

Deflection - 5% of mean diameter: ·.v = 0.05 (2 x 6.336) = 0.631: ln. 

Find load to develop 5% deflection. Use short term viscoelastic modulus since test 
lasts a few minute!. Use Eq. 9.13b be<.;ause ASTM D2412 requires a moderately 
wide ring (i.e., 6 in. ler,gth on 12 in. diameter and 0.515 in. wall). Neglect effects 
of increase in span of ring caused by increase in diameter, since such effects are 
smal I at 5% deflection. 

Dow Eo igw 
w = 

cw R3 = ( I - v2) cw R 3 (Eq. 9.1 Jb, rearranged) 

. t3 o.s2a3 o o123 . 31• IO = f1 = 12 :: • 1n In. 

cw = 0.149 (see table following Eq. 9.13b for case c, Fig. 9-1.) 

W = 400,000 i 0.0123 x 0.63~ ,., %.2 lb/in. 
(I - 0.38 ) 0.149 X 6.336 

Short-term pipe stiffness, PS , is W/w (W/w = 
notation). 0 

PS = W = ~ = 152 psi 
0 W VoOJ&t 

F/ 1!. y, the latter being ASTM D2412 

Note that the D2412 calculation is based on the mean inside diameter or radius, 
rather than the mean radius of the wall as in Eq. 9.17. 

Maximum short-term bending stress at 5% deflection 

Mg = c M WR ; c M = 0.32 maximum at crown and invert (Fig. 9-2) 

Mg ::: 0.32 x 96.2 x 6.336 = 195.0 in-lb/in.; Ng = U at crown met invert, by syrrmetry 

og = Ng :t. ~ (Eq. 9.10) 
ag :>o 
io 0.0123 J 

Sg = -,- = 0.528 :;: 0.0466 in /in. 
'2 ~ 

aw = ! J.&t?6 = :!:. 4185 psi; Maximum bending stress at 5% deflection is! 4185 psi 

I 
I 
I 

Note: I in. = 25.4 mm, I in.3/in. = 64) mrn3/mm, I in.4/in. = 16,38, mm4/mm, I lb/in. = 
175 N/m, I in.-lb/in. = 4.45 N-m/m, I psi = 0.0069 MPa. 

I * 
I 

See footnote, Example 9-1, Page 9-13. 
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2 2 (a) Cylinder 
:"Z•~: R R 

z 

l( y 

(cl Ellipsoid 

2 2 
!, + ~ 
C b 

For ellipsoid of revolution, o:b, b=c, or b=c 

X 

(e) Elliptic Paraboloid 

cx2 
X 

z " --r 
a 

y 

r 
X 

x2 2 z2 
(b) Sptnre 

~ + :2 ;? 
,. I 

R 

C 

X 

(d) Elliptic Cone 

x2 2 z2 ,•5-:-z•O 
'- b c 

For circular cone: aob 

z 

C 

(f) Elliptic Paraboloid with 
C = C a C 

X '/ z 2 2 c";,•~ 

Fig. '-' CEOMETRY OF CYLNJRICAL SI-ELLS AN> St-ELLS OF 
POSITIVE GAUSSIAN ClflVA TIJRE 
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Shapes and equations of geometry for douhly curved shells of negative Gaussit1n 

curvature ore given in Fig. 'J-7. The most common such surface is the hyr>erbolic 

parob,,loid shown in (o) and (b), and ~signated by shortened terminology as a 

''h~'J)Qr." If reference oxes x and y intersect at an angle w less than 9CI', as 

shown in (t-), the resulting surface is termed a "skew hypar." The case c,f ,.,, = 

9<I' is then termed a ''right hypar." If the two edges in the x-y plane, a and b, 

ore equal, the hypars are termed "equilateral." 

z 

b o-, / 
L --/ 

(a.) Ri!t,t Hypar, Rectangular 
Axea, x & Y: 

C 
z = cili xy 

~ 
.::J. 

For Equa latero I Ri!t,t Hypar, 
o = b 

(c.) Ri!t,t Hypar, Alter'lOte 
Orientation of Axes Along 
Curved Diogono I 

x2 ~ 2z c-· .. 

(b.) Sk~w Hypo r, Ske:w Axes, x & y : 

z = £xy 
For Equaloterol Skew Hypor, 
a = t 

z 

y 

(d.) One-Sheeted Hyperboloid 

Fig. ,_7 GEOMETRY oi:- St-ELLS OF I\EGATIVE GAUSSIAN ~VA"RAE 
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Hypors ore tronslationol surfaces, formed by translating o straight line over two 

generator straight lines, as shown in Fig, 9-7. When the x and y axes ore rotated 

into the directions of principal curvature, the hypar surfaces has the form of a 

scddle, as shc.wn in (c), A surface of revolution havi~ negative curvature is 

formed when a parabola is rotated about a cP.ntral axis, as shown in (d), t<J form a 

hyperboloiu of one sheet. 

A torus, or donut-shaped surface, shown in Fig. 9-&i, :~ a doubly curved surface 

having positive curvature over the portion outside the radius, b, and negative 

curvature over the portion inside b. This shopt- is widely used for pipe bends, and 

portions of it are used for fillets at the base of cylindrical v~ssels with c,linder 

axis oriented vertically, and for junctions between cylindrical walls and spheri~al 

tl...~ds of pressure vessels. The latter type is shown in sketch b in the Figu1 e. 

As stated earlier for rings, the shells treate::I in this Chapter are all classed as 

"thin". This requires tho• the smallest radius be greater than about IO times the 

shell thickness (9.3). S•,ch limits are imposed so that the underlying 'lssumpticns 

of the stress-strain relationships in the bending and membrnne theories used for 

the eqootions presented in this Chapter will bi.~ valid. 

,.4 STRESS Al~ YSIS OF St-ELLS 

Very often, simple closed form elastic formulas for stresses and deformatiors 

provide analyses of sufficient occurncy for comMOnly occuring shell comDOnP.ntr., 

such as cylindrical tanks, spherical roofs and hypar roof components subject to 

oxisymmetric loads. Other somewhat more complex cases involving closed form 

solutions of differential equation;, have been solved in non-dimensional form and 

results presented in tables of shell coefficients (9.6). Still -nore complex shell 

geometries, e,jge restraints or loadings, which cannot be represented by mathe

matical functions having closed form solutions, con be analyzed using finite 

element computer OOC1lyses. The general approach to such problems was 

discussed in Chapter 4, Section 4.9. Some of the availab!e programs were 

referenced in that Section. 
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(a) Torus 

z 

= 

z 

tong..-nt with 
sphere 

torus 

.,._..;;;..&-~--....,-- tangent 'with 

(b) Torispherical clo.1ure for end of cylinder 

Fig. '-8 GEO#ETRY OF TORUS, A St£LL Wini BOTH POSITIVE 
»o l'EGATIVE GAUSSIAN CURVA ~ 

Accwate Analysis for General Shells 

cylinder 

An ac<:urote analysis of a shell having almost any shape, subject to almost any 

condition of edge restrnint, <rid comprised of almost any type of elastic or 
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viscoelastic material is within the present state-of-the ar1 in finite element 

analysis. Howt>ver, the analysis may become extremely complex and expensive 

when non-linear analysis is required for those special types of shells whose: 

• detorrr.ations result in signifiant changes in geometry, 

• elastic properties change with stress level, and/or duration of load, 

• restraint conditions change with stress level and duration of load, 
requiring non-linear analysis. 

The analysis may also become complex when materials properties are "generally 

anisotropic" and/or layered, requiring consideration of ;1on-symmetric elasticity. 

When non-linear analyse~ are required tor shells that are sensitive to changes in 

local geometry (such as analyses for blJCkling), curved finite elements may be 

required, further oading to the complexity of the solution. 

General - Shell Bending Analysis 

Consider first the general case where stress re~ultanrs are to be determined in a 

singly or d~bly curved thin shell ~ubject to an applied load. Eight unknown 

stress resultants exist at a point on the she,I (Fig. 9-9) while only six equilibrium 

equations are available. Consequently, the general problem of shell ,Jnalysis is 

indeterminate and con be solved accurately only by inclusion of deformation 

compotobility relations in addition to equilibrium e<JUOtions. While it is not 

difficult to set up the differential eq•,otions of equilibrium and deformation for 

general bending shell behavior, solutions of the equations often either ore not 

available or ore too complex for practical application. 

5'in1)1irlcations in Analysis 

~II malysis can be simplified greatly for manv -:loubly curved shell structures 

that ore subject to loads distributed over their surfaces without abrupt ditoh·l in

uities, because in such shells, bending, twisting and rodiol shE'Or stress resultants 

are relatively unimportont compared to axial and tangential shear stress 
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resultanh. If bending, twisting, and radial she.Jr stress resultants ore assumed to 

be 2:ero, only three unknown stress resultants exist at any point on a shell 

surface. These stresses ore termed the "membrane stresses" because the 

assumption of zero bendir.9 means that the shell is acting as a pure mernbrone, 

subjected only to tension, compression, and in.plane (tangential) shear stresses. 

For thin shellsi 

FJg. ,_, INTERNAL STRESS HESUL T ANTS AT A POINT IN A SI-ELL 

The memt>~ane stress problem is statically determinate within the shell because 

three equa•ions of equilibrium ore available for every point in the surface; 

however, for a complete membrane solution, edge support forces and detormo

tions must be provided which exactly meet the membrane solution requirements. 

Practically, these support requirements may not be satisfied; in such coses, 

bending stresses will exist in the vicinity of supports. Fortunately, these edge 

bending effects usually damp out rapidly, so that approximate bending solutions 

for the portions of the shell near the edge supports often ore sufficient for 

determining the significant shell bending stresses. 

The approach usually taken in the simplified shell analysis is os follows: 

• Assume membrane solutinn is valid, and calculate membrane stresses at 
appropriate points in the shell. Detail~ of this analysis are presented in 
Section 9.6. 

• Determine ~ ;·aactior,s and deformations required in the membrane 
analysis. 



• If the actual shell bovndor f conditiom cannot provide the thrust and In
plane har reactions, nor the edge displacements and rotations required 
for compatibility wit:, membrooe stress conditions (the usual case), apply 
additional edge forces that, when added to the membrane reactions, result 
in support reactions, deflections and rotations compatible with the o-:tual 
boundary conditions of shell, These c.dditionol edge forces produce 
significant bending and ire.plane strcs.'I resultants in the edge regions of 
the shell, and the analysis to determine thf!se stress resultants and the 
associated edge deformations is termed the ''edge bending analysis" or 
"~iscontinuity stress analysis". Details of this analysis ore presented in 
Section 9.7. 

• The final stresses in the edge region ore determined by superimposing the 
rnembron• stresses and the edge bending :.tresses, 

The simplifi'!d shell analyse:; t,>tesented in the remainder of this chapter cover 

1he following common shell types: cylindrical shell.,, shells of revolution, and 

translational shells. 

Cylindrical shells have been treated more extensively in the literature than any 

other type. Because the)' hove only single curv1Jture, membrane solutions are 

eosy to obtain tor many types of loading. 

Full cylindrical shells (Fig. 9-6o) under distributed load, such as pressure 11essels 

and tonks, hove edge bending disturbances only in the vicinity of circumferential 

edgi!s. Generally, these circumferential edge disturbances produce longitudinal 

bMding moments which damp out rnther rapidly in a longitudinal direction into 

t~ shell. This is particularly true for long !l1,ells, Elsewhere in the shell, only 

the stress resultants obtained in the membrane analysis ore significant; however, 
some stiffness is required throughout tne shell for stability. This will be 
diSCl!SSed in detail in Section 9.10 

Partial cylinden, such os barrel vault roofs (Fig, 4-J), usually hove significant 

transverse bending effects which result from longitudinal edge disturbance,. For 

long shells, transverse bending moments extend over the entire width of the 

shell, Transverse l>ending moments are o critical design consideration in such 

partial cylindrical shells .. 

Shells of revolution of many types (Fig. 9-6), in addition to cylindrical shells, 

hove also been treated extensively in the literat<Jre. For continuous loading on 
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all but very tlot shells, only the membrane stress resultants are significant over 

a major portion of the shell and bending moments usually moy be ignored except 

in the vicinity of edges; again some bending stiffness must be provided 

throughout the entire shell for stability. 

TrGlllational shells, such as the hyperbolic paraboloid (hypar) (Figs. 4-2 & 9-7) 

also support c;istributed loads primarily by membrane stresses, when edge 

supports provide reactions and control deformations as required by the assump

tion of the membrane t~ry. Although, because of their simplicity, mernbrane 

solutions are usually employed, :it least for prelimir.ary design of hypar shells, 

their results hove been found to be :naccurate for some commonly used shell and 

edge support configurations. When edge supports do not control deformation as 

required by the membrorP. theory, bending oc.cu.-, in the shell and in-plane stress 

resultants may differ considerably from these obt<Jined with the membrane 

theory. This is discussed in Section 9.6. 

Equations for determining mernbrone stresses and edge bending effects in the 

above common shell types ore given in Sections 9.5 and 9.6, respectively, 

together with references for more comprehensive solutions. Stresses resulting 

from thermal gradients and restraints of therr.1al changes at edges are treated in 

Se<.:tion 9.9. 

Normally, the thin shells treated in this Chapter hove a constant thickness, t, 

having uniform elastic propertif's In all Jirections ,isotropic). The basic solutions 

given later art for this case. In SOrTlf) structures, however. thickness may not be 

uniform, ribs may be present, the shell cross section may be layered or materials 

may be orthotropic. Since thf:! rnf!mbrane stress resultants are statically 

determirate, the~ variatims ~ not significantly affect tho? membrane solutions 

given in the next Section. l hey will hove C' profound effect on the edge bending 

solutions, as is Jiscussed fut iher in Section 9.6, as well as on any mathematical 

or numerical solutions thclt include bending. Various approximations for includ

ing the eff~t of diredional variations in stiffness and effects of ribs or 

sandwich construction are included in many of the presentations in the Sections 

that follow. 
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,.s ME.MBRAtE ANALYSIS OF St-El.LS 

Membrane action of shell structures relies on the sysh:m of statically determin

ate "in-Plane" or membro~" stress resultants that arl,e to resist a continuously 

distributer:I lood on o smoothly curved shell. Thete In.plane stress resultants ore 

$Ufficient to satisfy static requirements for support of the continuous distributed 

load because of the curvt,d geometry of the shell. Membrane stress resultants 

are obtained by statically determinate stress analyses, involving only the 

geometry of the shell and the applied loads, and the equations of e<J.filibrlum. 

Membrane action provides on inherently efficient stress path because no bending · 

or transverse (radial) shear is required by statics to support the applied load. 

Shells of revolution. 

Membrane eqlKltions of equilibrium for continuous distributed loading ore given 

in (9.7) for two practical shell types of widespread interest: 

• shells of revolution with symmetrical load distribution with respect to 
their axis of revolution (i.e. ter~ axisymmetric loading), 

• shells of revolution with anti-symmetrical load distributloo with respect 
to their axis of re-,olution. 

Analyses of the former type do not rP.quire solution of differential equations; the 

lotter solutions involve differential equations. 

Membrane stress n~sultonts in symmetrically loaded shells of revolution 

{Ffg. 9- iO) may be determined using the following two ecp,tions (9.7): 

N• = 
p. 

2 'Ir R2 sin2 d 
Eq. 9.18 

~ No 
+ ~ = - Pz 

I 
tq. 9.19 

Pd is the total symmetrical load on the shell above the opening angle ,, directed 

along the axis of revolution os shown in Figs. '-' end 9-10. Eq. 9.18 has a 
singularity at d : O, and thus the above method cannot be UNd In the vicinity of 

the apex of shells of revolution. See (9. 7) for the basic differential equatlana of 

the membrane theory. 
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R 1 = Radius of curvature in, direction 
R2 • Radius of curvature in g direction 

(The direction of revoh,tion) 

Fig. ,-10 MEMBRN£ STRESS RESU.TANTS IN SYMMETRICAL SI-ELL 

OF REVOLUTION WITH SYMMETRICAL LOAD~ 

Pz is the radial unit load, normal to the surface (pressure), at o point whose 

coordinates cr.-e d, Cl. 

The ute of thele equations to determine tile membrane stress resultants in o 

paraboloidal shell is illustrated in Example ,-3. 

Note that for a cylindrical shell, R 1 = oo, ti = 90 degrees, and N' = Nx in 
Table ,_ I f« all locations on the shell. 

Equations for the three rnembrooe stress resultants, N_, No onJ NdO, ore 

pre,ented for NYeral common types of distributed load of practical design 

Interest In the following tables: 
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I 
I 
I 
I 

Example ,-3; Determine the membrane streM resultants at the support ring of the circular 
porobolold of revolution show,, in the sketch, subject to I psi internal pressure. Obtain 
geometry from Fig. 9-6, Case (f), for a = b = 50 in. and c = 30 in.* 

I 
I 
I 
I 
I 
I 
I 
I 
I J. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I '•· 
I 
I 
I 
I 
I 
I 
I 
I s. 
I 
I 

z , . 

2. 

Fig. 9-6: Equation of surface:: 

cx2 cy22 
Z=z+ 

o a 

Since any horizontal section through the surf
ace is a circle, stress resultants ore the some 
at all points around any horizontal circum
ference. Thus, consider the x-z vertical 
plane as representing all vertical planes. 

Radii of curvature: At suP?<)rt ring where x = 50 in. 
z 

Ro x ,1. dz 2cx 2 x 30 x SO 
R2 = sin i = 5rii"i; tan.,= ax= 7 = 502 = 1.2 

and tS = 50.19, sin tS = 0.768, R2 = & = 65.1 in. 

X 

- -~ 3/2 

RI 
ds G_+ ®>2 d2 z 2c 7. X 30 0.0240 = ~ = 

d2 z ; ""ix1 = ;,. = sir = 

~ 

= 1S8.8 in. 

p" NtS stress resultant: Eq. 9.18: N" = 2 
2 wR2 sin tS 

At the support ring: Pa = p ,r a 2, where P .£ is the component of the total pressure 
load below the supporf" ring ~ong the axis or rotation and Pz is the pressure normal 
(perpendicular) to the surface ot any point. 

2 
N _ Pz 

O 
,,, I x 50

2 
- 32.SS lbs/in. 

,J - 2 R
2 

sin2d 2 x 65.1 x (0. 768)2 -

N0 stress resultont: Eq. 9.19: ~ + ~ = -Pz; Pz = 1.0 psi 
32 5~ Ng I 2 

At the suppc-rt ring: 00 + ro = 1.0; No = 65.1 (1.0 - 0.206) = Sl.7 lbs/in. 

I 
I Note: I in. :; 25.4 mm, lbf/in. = 175 N/m, I psi = 0.0059 MPa. 

I * 
I See footnote, Example 9-1, r>oge 9-13. 
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Cylindrical Shells 

Spherical Shells 

Conical Shel Is 

Toroidal Shells 

Tobie 9-1 

Tobie 9-2 

Table 9-3 

Table 9-4 

See (9.8) and (9.9) for extensive tables of equations for membrane stress 

resultants in other shells of revolution, including pointed domes (toroid shel!s 

where ring axis bisects cross section), spherical shells with unsymrnetrical 

boundaries, paraboloids, cycloids and ellipsoids of revolution, and conical shells 

with support at vertex. See (9.7), (9.8), (9.9), (9.10), (9-11) and (9.12) for 

derivations of the equations given in Tables 9-1, 9-2, 9-3 and 9-4, for other 

results of membrane shell analyses, and for more detailed explanations of 

methods of analysis and differential equations for more complex coses of 

membrane stresses in shells. 

Trawlcitional shells. 

Another class of shells of practical design interest are translational shells. "fhe 

surface geometry of these shells is formed by translating a straight or curved 

generator along a set of perpendicular or skewed straight or curved generatrices, 

Cylindrical shells belong to this class, as well as to shells of revolution. The 

hyperbolic paraboloid (shortened to ''hypar" hereafter) is a well known transla

tional shell, formed by trcnslating a straight generatrix along another set of 

straight generatrices, as shown in Fig. 9-7(0) and (b). Another translational shell 

of interest is the elliptic paraboloid, formed by translating a parabolic generatrix 

along a set of perpendicular parabolic generatrices, as shown in Fig. 9-6(e). 

Equations for membrane stress resultants in right angle hypar shells subject to 

dead load, !llOW load, fluid load and wind load ore given in (9.8). For all the 
' above loadings ~xcept snow lood, both axial and shear stress resultants arise 

througlOUt the shell. Since edge members often cannot be arranged to support 

significant axial membr<l'le stress resultants with adequate strength and stiff--ness, a system of equal and opposite edge forces must be applied to eliminate the 

required membrane reactions. These edge forces cause additional in-plane axial 

and bending stress resulto,ts which are difficult to e-1aluate by simple closed 

form analyses, as .:liscussed in the next Section. 
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Arrangement ,. 

2. 

3. rj 

Table ,_1 

Membrme Stress Resultants in Closed 
Clrculcr Cylindrical Shells (Source 9.8) 

Equation of 
Load Variation 

Pz = p 
(Uniform pressure 

on vert icol or 
horizontal cylinder) 

PK= Pe 
(Weight load on vertical 

cylinder) 

Pz = -yx 

(Fluid lood on 
vertical cylinder) 

0 

-pR 

0 

YxR 

Pz = PwCOICI 
(Wind load on 

Y9'1'tic:al cylinder) 

xz 
P.., 'ffl coeQ - PwRcosO 

5 
Py• -Pe coeQ 

Pz = Pe sinO 

(Weight load on 
horizontal cylinder) 

h j (Fluid load an horizon-
'- ~-·- Pz • y (h • RsinQ 

~ a tal cylinder>Cexternal I 
• aa shown, - f<N internal) 

Pz,. Pw cosQ 

(Wind load on 
horizontal cylinder) 

-Pe R (L - K) sinO 

Y1 (L - x) sinQ 

- x.p-2 ~ -sif) 

h~R 

Pw(L-,,.,i 
~cosO 

'J-27 

-P._R. coeQ 

0 

0 

-PwK sinO 

-Pe (L - lx) casO 

L YR (l - x) casO 
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Table ,-2 

Meu-fwcne Streu R-...ltants in 
Spherical Shells (Sourre 9.8) 

, ...... ., 
ua1v. ..... 

Pa., 
aa.-..-> 

"•. ,.o.1 
, ........ 
......... 

I .... ,.-' 
..... , .. ,:-, ....... 

I 

u.- ...... 'L 

,..... .... 'L 

Nnte, 

N' 

......__, ... ,...,. 

.......... N,•NC1i.,a1.,_ 

•--•11-.....-tf•N-• 
, ................ _.thn .,_ ........ _...__ 

'\ 

-f(•-:~·) f( .z,) 
- I• ..,z; 

,. '·.. ... _ ... .,.._ 
-1'1 -,1 
-. -caott -, R • Z, -H,-,.R-, • • 

,., ... ~-.......... 
,14 

-T+ciiiJ ...._-,.R-, 

~( _,,.) 
- ·-~ I ... ,- ... "-' 

,., ............... 
-~ ..._-a, -. -... ~ ...... ,.,. .............. 

I 

""t\ i ■ rt1•~ ...... 
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Table ,_2 (cont'd) 

--------------.--------------------------------------~-----
E • .,,1an-,~ 

Load Variation 

-------------+--------+----------i-------------------
s. 

;:--~-~-~-~----... ~- -
~ ' R 

-------

.. 
'DctiJ 

Fluid load.I 

Fluldi-, 

!Wind....., 

u.c.., ........ ..,._..._,..,. .. ........... ....., ,_..,_ ... c.. .. 
"'~"""•wllhYR .......... , .. .,,, 

II 

0 

0 
-"- - level I D 

11.,w -

- "'2 [· ----~]-~ 

0 

0 

0 

0 

I ,. "' ·----------------------------------------...J 
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Table '-3 

Membrm1e Stress Resultants In 
Canical Shells (Sol.rce 9.8) 

L-.., N• ~ 

l ~· ➔.•StJi/-➔• "'Toi' 
, .. , ..• 

Fw10 •0~C1Nll 
Pa•'•~ 

l 
!Weiohli...il ➔-➔- ➔.•Sfll-

'!:.) J 
➔• .... -,,,v 

... •it,.,.~ 
,., •• o~Clt'IM ...... ~2-

J 
~~ ➔.+ .... ...... ~ 

c,,Z_,~ c.:-•> - f ►~. eeN -7 ............ .. . ...... .. .... ~ ,. •... , ............ 
- ,. ; ..... 1- I -........... -------0 I 0 

•••-,C. .. -hl ----.--- -11[~ a
3

+1
1a, .... -• 1-T•ll---hctlll) 

-Jh _ _.,1 

~~ -·-,- 0 

.,.,. •- ..... .... ----.--- 'l (J,.,_- h-
......... ___ 

ea' - ,z, -,.::.,.:--. .... -, ..... 
•••• , .... 0,1-.:::. 
lUlll--l -,J .... 

---"L -'I.~.!. I ~-- ., ................. 
"'"•-•L -•t , .. ¼..-. I 

I 

\ ➔wi [--r.J. -~ . I 
I J • 1 ...... --i {--..;,)-~~]-

I c-- , •••• , ......... \MIii .. 

I ➔wt [---rl.]- , ..._.--
I , 
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Table '-11 
Memwane Stress Relultants in Synwnetrk:al 

Toroid Shell WhoN Ring Axil Does Not lnterlllCt 
the Crcm Section (Source 9.9) 

E°""'la,el ._...v.1ati.. ... , 

Pa• -P f t•Ra!Jl • A ol 
tu,lt•m pr-) 

p 
[ OI + RIA..d - I, • Rll.-_i1 Pa• -p 21, • IGlnli ii .... IUnff __ .. 

.-11atllnucllle) 

P2 •Tt,-~ "fR ~ ..,_ l 
- • • A.inillil..J b h linll • T lln ' 

Fluid.,._.. 11A R2 J ] ..... , • .-,Ifie -yllinj!CGOl••-y U-01111 • .,...._,IIIH 

- c, ..... .,_,,,......., ......................... , ..... , ........ ... 

... , N~I 

ir 0 

~ [a. 11,,; • Rllln2, ♦ 11n2,i] 
11111, 0 0 

0 

YA [h Z II -"7T, 'f .... •-1111..,-,_,. 0 

.... " 
-R ~ -z~ - (I - ;lfli] 



For loads that are uniformly distributed over the xy plane and directed along rh:: 

z axis of ~ypar shells, such as ;;now loads (Fig. 9-11 ), the Nx and NY direct stress 

resultants are zero throughout the shell; the only streM resultants ore the in

plme shear forces, Nxy• Along the edges, tht=se can be resisted by edg~ struts 

having adequate axial strength and stiffness, and thus edge bending effects con 

be minimized. Because of the simplicity of the membrane analysis and the fairly 

low rise of many practical hypor shells, the solution for snow load is often used 

to obtain 'll"I approximate analysis for dead load and other loads ~,hich hove the 

same approximate direc-tion and distributiein. 

The following equation gives the applied lood intensity on o unit surface area of 

the hypar (refer to Fig. 9-11): 

P = -P cos ♦ z s Eq. 9.20 

In this equation, Pz is the component of the applied load intensity in the 

direction of the z axis (Fig. 9-11 ). 

For the case of loads ooiformly distributed over the xy plane, iii = 0 and p = -p . z s 
The membrane stress resultants in rectangular and skew hypar shells subject to 

such loads are (9.13): 

ab sin CII 
Nxy = Ps 2c 

When 111 = 'J<P, the hypor is a ridlt hypar (Fig. 9-1 lo). 

EG. 9.21 

Eq. 9.22 

The above system of in-Plane shear stress resultants produces the following 

maximum direct stress resultants (principal stress resultants) in the two diogonal 

directions (Fig. 9-1 Id): 

N N Cot 
(II 

I = xy 7 Eq. 9.23a 

Eq. 9.23b 
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•" a -,I 
(a) Right t-t,par, Rectangular 

AlCes, X & y 

(c) Skew f lypar, Skew Axes, x & y 

Nxy 
N 

N ;!(\'...NI 
xy ~ 

For P
2

, 

N = N =0 
X y 

(d) Skew Element from Skew Hypar 

Fig. 9-11 HYP,'R St-ELL COORDINATE SYSTEMS AN:> STRESS RESU.. T AN1"S 

The above principal stress results are oriented in the following directionss 

NI at 11J/2 with x axis. 
Ni at (,,,/2 + 90°) with x axis. 

The shear stress resultants in these directions ore zero. 
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If Nx and Ny are Nt equal to O in Fig. 9-11 (b), or (d), these sl<etcl .es i llustrC'te 

how the dloganal principal ~tress resultants, N1 or N2 ore equilibrated by the 

components in diagonal directions I or 2 of the two shear stress resultants, Nxy• 

acting along the x and y edges, respectively. 

The error In using the obove equatinns for dP.od load, where p = -p , or for z e 
other loads, ca, be estimated to some extent by noting the magnitude- and 

wrlatlon of cos 1J (fig. 9-11) throughout o particular shell. More complicated 

analyses should be u..ed for shells wih large rise, or for sl-iells whose z axis is not 

vertical. 

Membrane stress resultants in elliptical porob:>loid shell!! (Fig. 9-6(e)) ore given 

In (9.14). lhe~ can sometimes also be used to approximate the stress resultants 

in similar shells formed by tronslotior, of circulor ores instead of parabolas. 

Generally, fabrication of components with curved surfaces having constant radii 

is conslderobly simpler than fabrication of curved surfaces with variable radii. 

In this cose, a parabola which ls passed through two sets of symmetrical points 

on the circular arc will provide a 900d approximation (Fig, 9-6(e)). 

Tenelon Mee.a ... 

Tension membranes ere used in structures s11ch as •ents and air ~upported 

enclosures and components. Air supported structures include single m~mbranes, 

enclosl1-.g ~ entire pressurized space, ond closed cell double membrane, pressur

ized compouents that can be used for covering nori-Pressurized spaces. Fabrics 

UNd for such membranes are often composites of flexible plastic coating and 

Inorganic or organic fiber. Thn·e common trpes are Fluroplostic (PTFE) coate<I 

gklll fiber, Polyvinyl Chloride (PVC) coated Nylon or Polyester fiber, <RI 

Neoprer.e coated Nylon or PolyestM fiber. The first type can be formulated to 

be nan-combustible, a particularly important consideration for covering large 

apaces used for public assembly (see Section I O.S). See (9.15) for a "state-of

ihe--Jrt" report on the application and design of air supported tension membrooe 

structures. 

As the name Implies, tension membrtJnes are capable of resisting applied load 

only when they are streued in tension. When they are not given sufficient initial 
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tension, lc.rge chonges in sha~ moy result from fluctuating loads, such as wind 

load, producing unsatisfactory behavior like "flapping", flutter (Ind excessive 

movement. In 11ie., of this, most tension structurf'!s are pretensioned prior to 

application of service 1-.>ads, either by tensioning against external anchorage, ood 

internal struts, or by i11tr-1 nal air pressure. Once the tensi~ structure has 

sufficient initial tension, it can resist applied distributed loads which produce 

tension, compression, and/or in-plane shear, so long as the principal compression 

resulting from J-he applied ioods remains below the initial tension, and the 

combined initial tension and applied principal tension remain below th~ safe 

tensile strength limit. 

Tensior1 membrar:es differ from rigid shells because they cannot resist bending 

and transverse s™Or, and they must have sufficient initial tension to counteract 

membrane compression due to ai)J)lied loads. Usually, the initial tension forces 

and the applied loads produce large deformations of tension structures and the 

changes in structure geometry must be accounted for in accurate design 

analyses, This requires non-linear analysis methods that are complex and outside 

the scope of this Manual, However, if the final geometry of a tension structure, 

after application Qf initial tension and applied loads, can be estimated with 

sufficient occuracy or determined experimentally, the structure may be analyzed 

using the membrane analysis methods previously presented in this Section. Even 

when final mpes con only be roughly estimated, linear membrane analysis moy 

be very useful for preliminary design purposes. 

Tensi011 str~ctures require adequate anchorage to develop tension edge forces 

provided to develop initial tension in the membrane and edge reactions caused by 

applied loads. Anchorage streng;h frequently is developed by providing suffi

cient weight in foundations, or by anchoring into the ground with earth anchors 

ooving adequate pullout strength. 

When initial or final stresses q__re larger than the safe strength of the skin fabrics, 

tension membranes can be reinforced with cables of nylon, aromid, fiberglass or 

steel. Such reinforcement may also be required if significant concentrated loads 

must be supported. 
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Nettir.g Analysis 

Netting analysis is a method that is sometimes used to design filament wound 

laminates for pressure vessels and pipe subject to one pre-Jominont uniform 

loading, such as internal pressure. This looding produces a particular set of 

membrane principal stress resultants in the shell. Netting analysis provides a 

means for determining the filament orientation that results in the some stresses 

in all filaments, as well as equations for det~ .. mining the filament stress at this 

orientation for this set of membrane stress iesultants. In netting analysis, it is 

reasoned that if all filaments ore arranged to be at the same stress under the 

design load, their inherent strength can be fully developed lwith suitable safety 

factors), and the design will thus be optimized with respect to strength-to

weight ratio. 

In netting analysis, only the continuous filaments are assumed to hove load 

carrying capability and in designs based upon this anolys:s, all fibers ore arranged 

to be uniformly st:-essed in tension (or compression). One of the following four 

types of layered filament wound composites are usually uSt:d: 

(I) An angle ply (helix wounci) balanced laminate of thickness t 
consisting of two sets of equal strength monolayers, oriented at !: a 
with the longitudinal axis (Fig. 9-120). a is termed the winding 
angle of the helix. 

(2) A :,ioory o,gle ply (helix wound) balanced laminate consisting of 
two sets of equal strentth monolayers oriented at ± at, and two 
sets oriented at ! <12 with the longitudinal axis (Fig. 9-12~). The 
double sets of layers hove total thicknesses of t 1, and t 1, 
respectively, for each double set. This is considered the general 
case of a binary oriented laminate. 

(3) A three.ply laminate comprised of two equal sets of mo.10loyers at 
±. a, with a total thickness t 1 (for both sets together), and une set 
of monolayers of thickness 12_ at 90° (circumferential) (Fig. 9-l 2c). 
This is a special condition of"l;ase 2 with a 2 = CJrf'. 

(4) A cross ply balanced laminate consisting of one set of monolayers 
(with thickness t 1) oriented in the x-direction and one set (with 
thickness t,) oriented in the y-direction (Fig. 9-12d). This is a 
special condition of Case 3 with a 1 = 0. 

The equotion.s of netting analysis are based on the resolution of stresses on a 

filament vi' cross section bt, oriented at an angle, u, with the x-axis and 
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subjected to principal stresses ax and ay in the x and '/ directior.s, as shown in 

Figure 9-l 2a. When ax and ay are principal stresses, the shear stresses on planes 
perpendicular to the x and y axf"s ore zero. For equilibrium of appliec! and 

resisting forces: 

a t b = X X a f t b cos a, where t is the equivalent thickness of the 
monolayer 

b 
cosa 

y (Hoop) 

filament Group with Effective 
Area bt 
(a). Single Pair of Filament 

Layers at .! a 

y 

le) Binary Laminate with One 
Pair of Filament Layers 
at !. 11, C11JP One in y~irection 
Cl • ± ,o" 

y 

(b) Binay Laminate wtth Two 
Pairs of Filament Layers 
at !. a 1 and !. Cl2, Respective 

y 

~-+-----.x 

(d) Binary Laminate with One Pair 
of FIiament Layers in 
x~irectian, a = + 0 and One 
Pair in f~ir:cltion, cai • .! ,OO 

Fig. 9-12 ORENTATION OF FILAMF.NTS AN) MEMBRAN: STRESSES 
FOR t-ETTING ANALYSIS 
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Thus: ax = 

Similiorly: a Y = 

2 
ar:os a 

. 2 
af sin a 

Eq. 9.24 

Eq. 9.25 

The above relations lead to the equations given in Tobie 9-5 for the laminate 

described in Cose I above. These indicate the required angle of wind, a, as a 

function of the retie of principal membrane stress resultants, Nx and Ny• Most 

commonly, these relations are used for designing filament wound laminates for 

cylindrical vessels or pipe subject to internal pressure, or to combinations of 

internal pressure and various oxi-syr1metric longtudinal stresses. The equation 

for filament orientation shows that the so-called optimum wind angle of a = 

54.7° only applies to a cylindrical comi:,onent, such as a closed cylinder with 

internol pressure, where Ny= 2 Nx· 

In a more general case, two winding angles or directions of filaments ..Jre used. 

Filament layers hoving on equivalent thickness of t
1
, are appli~d at a helix angle 

±. a 1, and layers having on equivalent thickness of t2 ore applied at a helix angle 

±. a 2, as sh~wn in Figure 9- I 2(b). The equations for determirdng the relations 

between layer thickness and required helix angles and the strength of layers for 

this more general cnse of a binary laminote are given in Tcble 9-5, Cose 1. 

In typical practical laminates, one ''Pair" of filaments is applied at approximately 

±. 9<fl (the hoop direction), while the other pair is appli~d at ±.a (Case 3 in the 

Tobie), or in the longitudinal direction (a = c0
) (Case 4 in the Table). 

Thus, the equations given in T ab1e 9-5 may be used to determine the arrange

ments and strength of filan,~nts in fil.Jment wound vess~ls and pipe subject to 

princij)OI membrane stress resultants Nx and ~- Exan1>1e 9-4 illustrates the 

application of these eqvotions to design of a filament wound pres~ure pipe 

subject to both longitudinal and circurr.ferential stresses. 

In filament wound vessels with closed ends or heads, the same hel;x wraps used 

to form the cylinder ore also wrapped over a doubly curved mold of pr6i)er shape 

to form end closures whir:h resist internal pressure using the full strength 

provided by the hel:x wrap. Usually, polar openings are provided at the apex of 

the head shell as access ports and as openings needed to remove an internal 

collapsible or disposable mandrel used in winding the vessels. 
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Table ,-5 
Requirenw1ts for Filament Orientation and 

Strength Baled on Netting Analysis 

T)'Pe of Lamlna1- Fllamert Orientation in Terms Required Strength, a1, in 

of Helix A.ngle, a, crd Equivalent Direction of Filament 

Thlckneu of Filaments t I and t 2 
for Merri>rane Stress Ratio, Ny/Nx 

ea. I - laminate of thickness t 

with two equal •t• of filaments N Nx 
at t. ~Ix angle :! a (Fig, 9-12(a)). 11 • tar/ <1 0 t • 2 

X t COS Cl 

0110 a,•+ 
t 11.l a 

ea. 2 - 9ffierGI blnery lami-

nate wiH, a ~t of filaments <1t 

~ 
t 1 sin2 

e11 + t 2 sin2 a 2 Nx 
! a 1 (thickness t 1) and a set of = 2 2 af : 2 2 
fllument1 at ! e12 (thickness t2). X t I cos a1 + t2 cos "2 '1 COi a1 • t2 cos a2 
Strengths af filaments in sets I Ny 
and 2 are all a1 (Fig. 9-12(b)). al!O o1 s 

t ' 2 t I z 
1 sin a 1 + 2 s n a2 

Cate 3 - lcml, lGte with t I 

fllamlnts at t.lx a,gle ! a 
ti + '2 Nx 

ano t2 filaments at ,rf ~ • 2 -1 a, "' 
t coa2 

Cl 1 ... In d11'9Ction of y ~) X 
t 1 cos a I 

(Fig. 9-12 (c)). 
allO a f • t . '} t 

llln Cl+ l 

0.. - - lcmlnate with t, 

~ '2 ~ 
fllamlnts in direction x (langi- • fj" a, "tj 
tudinal) and t 2 filaments in 

N diNc:tian y (N,ap) (Fig. 9-l 2(d)). also a, ....:t 
'2 



I 
I 
I 
I 
I 
I 
I 
I 

Example 9-4: Determine the required laminotP. thickness and angle of win<J for helical 
filaments that should be used in a filament wound pressure pipe with 10-in. inside radius 
constructed with one half of the filaments at 9rl' (hoop) and the other half at a helix angle 
:!:. a. Assume an internal pressure of I 00 psi and assume that the joints and bends are 
supported so that maximum longitudinal tension will not be greater than 0.3 times the 
circumferential tension. Assume that the basic tensile strength in s~ort-time tests of t~e 
laminate in the direction of filaments (uniaxiol strength) is 60,000 psi. Use a rapacity 
r~uction factor of 0.3 for long ter'll and cyclic stress, service exposure effects, and 
manufacturing variability, and use o load factor of 2.0.* 

I 1. 
I 

Uiiaxial strength: cr fu = 0.3 x 60,000 = 18,000 psi 

I 
I 2. Table 9-5, Cose 3: Let t 1 = t2 = 0.5 t, where t = total thickness of laminate 

I 
I 
I 
I 
I 
I 

N I (t I + t2) 
J = 0:3= --i- -1; 
Nx t 1 cos a 

I 0.5 (t + t) 2 2 
":J = 0.5 t c~s2 a - I; cos o. = rn = 1.461; cos a - 0.679; a = 47.2° 

I I J. Stress Resultants: 

I 
I 

Eq. 9.1: I 00 x 2.0 x IO = 2,000 lb/in. 

I 
I 
I 

Table 9-5, Ca~e 3: a f 
N 

: __ _._ __ ; 18,000 = ~,000 • 
t I sin2 a + t 2 (0.5 t sin-' 47.2 + 0.5 t) 

I 
I 
I 

t = 2~1JOO = 0.144 in.; hoop thickness = 0.144/2 = 0.072 in. 
9,000 (si;i 47.2 + I) 

I 
I 

l--lelix (a = !: 47.~ with longitudinal axis) thickness also= 0.072 in. 

I Use 0.036 in. at + 4 7 .2° and 0.036 in. at -4 7 .2°. 
I 
I 
I 
I 
I 
I 
I 
I 
I-------------------------1 ----
1 Note: I in. = 25.4 mm, I lbf/in. = 175 N/m, I psi = 0.0069 MPa. 

I * 
I 

See footnote, Example 9-1, Page 9-13. 



Netting analysis 1s also used to determine on optimized shape for the ovaloid end 

closure, or head shell, This requires consideration of the helix winding pattern as 

well as the size and type of polar opening needed ot the apex, A low angle helix 

wind is usually used for the cylinder to provide an efficient wind angle for the 

ovoloid head. The shape of the ovoloid head hos been developed using both 

analog equipment that applies pressure to a net of continuous fibP.rs and 

theoretical analyses (9.16). Such analyses are beyond the scope of this Design 

Manual. 

While netting analysis often is extremP.mly useful for proportioning the effective 

thickness or quantity of fiber to be placed at specific orientations in filament 

wound ccrnponent~, in some cases final design requ:res consideration of the 

effects of bending caused by discontinuities at supports and heads. This usually 

involves determination of elastic stiffness properties for laminated orthotropic 

plates and shells (Section 6. 7), and a UE'nding analysis of the orthotropic layered 

filament wound shell (Sections 4.9 and 9.6), 1.;sing appropriate stiffness constants 

for this analysis. 

9.6 EDGE BENDING ANALYSIS OF St-ELLS 

Efficient structural action associated with shell behavior demands adequate 

support at the edges of the shell, If possible, edge structure should be strong 

enough to p.-ovid~ the react ions required to support the membrane stress state. 

In addition, it should be i.tiff enough to minimize deformations in excess of those 

required by the membrane solution. Nevertheless, even if edge members hove 

sufficient strength to support membrane stresses, in genera!, their deformation 

will not meet the requirements of pure membrane beha·,1or, Corsequently, 

bending stressel> almost always must be expected in the vicinity of shell edges. 

Whether or not the edge bending moments are significant for the design of the 

shell depends on the relative strength and stiffness of the edge supports 

provided. In • nost practical shell structure3, these momants are significant near 

the edges, but they usually die out rapidly in o dir"?Ction away from the edgf-. 

Consequently, analysis of bending effects in shells is usually limit~ to the edge 
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region or other points of discontinuity, such as locations where different ~hells 

Intersect, where abrupt changes in load distribution occur, or where penetrations 

and ccncentrated loads occur. This is not the case in certain hypar shells where 

support defc~mations result in large differences between the ,nembrane stress 

solution and streues obtained by numerical analyses that account for bending 

and support deformation (9.32) (9.33}. This is also evident in model tests (9.34). 

Practical, and usually approximate, methods for determining shell stress result

ants in the above regions of discontinuity are presented in this Section. c:-,1utions 

that c,re included here ore limited tr> widely applicable approximations for 

commonly occurring discontinuity problems in symmetrically loaded shell edge 

regions. These occur in pressure vessels ond many other shelli.. of practical 

interest. The axisymmetric solutions are lllso widely used as rough approxima

tions for malf non-axisymmetric ronditions. Although edge bending str~sses are 

often consider~ os secondary effects and neglected in ductile metal shells, 

these stresses may produce crocking or other distress in the generally non

ctuctilc plastics materials; thus, they almost always require careful consideration 

in design with these moterials. 

Lang Cyl'ndll!r 

l.klder oxisymmetric edge loads, structural beh'lvior of tne edge region o: a shell 

of revolution is analogous to a beam on on elastic foundation. This is illustrated 

in Fig. 9-13 which shows that axisymmetric edoe radial shears and mon .. mts on 

the end of a cylinder produce similar ef!ects to the behavior caus,-d bv a 

concentrated lood and momerit on the end of a beam on an elastic foundation. In 

the edge region of a cylinder, the stiffne~! of the hoop direct;on provides 

cont:nuous elastic support (i.e. "on elustic foundation") for longitudinal strips 

that reiist the applied edge loads. These edge loads cause radial shear, Qx' a,-J 

beondiny moment, Mx, stress resultants in the longitudinal d;rection, and direct 

stress r~sultants, Ng, in the circl•mferentiol direction. These ore onologoul to 

the longitudinal shP.ors and moments and the foundation direct pressures which 

arise in a beam on an elastic foundatic.n. 

The above analogy proves useful in understanding the edge bending behavior of 

more complex structures such as orthotropic, ribbed or sandwich sh~lls. The 
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deformations and streM resultants that arise in the edge region whe'l the 

axisymmetric edge forces shown in Fig. 9-13 are applied depend on the ratio of 

circumferential axial stiffness to longitudir.al flexural stiffness, as defined by a 

shell constant, 8. 

I 

/ 
Longitudinoi strip 
ono logous to 
elastically supporh.:d 
beam 

Cylin,fr ·,;al SI, ip 
provides e:o,tic 
fouodation 

Beam Stiffness = E i 
X X 

Foundation Stiffness = Eg Og 

Sectlan 1-1: Arulogaul "8earr,~loatic: Foundation• 

Fig. 9-13 ELASTICALLY su>PORTED BEAM ANALOGY FOR 
SI-ELL EDGE BEt-OING 

In order to define a, it is useful to modify slightly the notation previously 1Jsed in 

Section 6.2 to define plate stiffness, to give the circumferential axicl and 

longitudinal flexur1JI stiffnesses, respectively, as: 

Ao = Egag 

D 
Ex ix 

= (I - "x vgl X 

For uniform thickness shells, these become: 

- D = 
X 

12 (I - "x v~ 

Eq. 9.26 

Eq. 9.27 

Eq. 9.28 

Eq. 9.29 

The shell constant, 8, defines the relationship of the above directional stiff-

nesses os follows: 

B = Eq. 9.JOo 
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For a shell of constant thickness: 

e = Q (I - "x vg) E~l/4 Eq. 9.30b 

R2 t2 E 
X 

If the material is isotropic, Eg and Ex are equol and may be dropped from Eq, 

9.30b. Also, "'x :.-: vg = v. 

The following equations give the radial def!~tion, slope, longitudinal moment 

and shear, and circumferential thrust caused by the a;,tisymmetric edge forces 

shown in Fig. 9-13, as a function of the distance, x, from the edge of the shell: 

w = I 
-~ 

X 

~ M0 1jl(Bx) + Q0 0 (B ~ Eq. 9.3 I 

dw I 
~BMOO(Sx) + Qcll(ax~ Eq. 9.32 ax = 

2 62 D . X 

M I 
~M0 II (Bx) + 0 0 -r (S~ Eq. 9.33 

X =-s 

Q = 2BMG dBx) - 0
0 

ljl(Sx) Eq. 9.34 
X 

Ng 
Agw 

Eq. 9.35o = - ""'"'lr 

Mo = "o Mx Eq. 9.35b 

In these equations, deflection, w, is positive when inward, the edge forces Q
0 

and 

M
0 

ore positive when directed as shown in Fig. 9-13, and the dimension, x, is 

positive as shown in the same Figure. The functions of Bx in the brackets are 

shell functions that are defined as: 

rl (Sx) = e-Bx (cos Bx + sin Bx) Eq. 9.36a 

•<Bx) = e-ex (c')S 6X - sin ex) Eq. 9.36b 

Q (Bx) = e-Sx cos Bx Eq. 9.36c 

T(Bx) = e -Bx sin 13x Eq. 9.36d 
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These functions are plotted in Fig. 9-14 for the range of Sx c.f practical interest. 

See (9.7) far mo<e precise function values for Bx, varying in 0.1 intervals from 0 

to 7.0. 

Eqs. 9.31 to 9.34 apply to shells that have sufficient length to make the effects 

of edge discontinuities at e-ach end essentially independent. This will be the case 

when the shell length, L > 3/8 • 

For ribbed shells, the axial stiffness per unit width, ~, and the flexural stiffness 

per unit width, Dx, needed in E:.qs. 9.30 to 9.35 may be obtained by "smearing 

out" (i.e. av.?ragin~ over rib spacing) the respective circumferential axial and 

longitudinal flexural stiffnesses. The "smeared out" circ.umferential axial 

stiffness is the circumferential rib axial stiffness dlvided by the longitudinal 

spacing of these ribs. The "smeared out" longitudinal flexural stiffness is the 

longitudinal rib flexural stiffness divided by the circumferential spacing of these 

ribs, 

For sandwich shells, the axial stiffness per unit width, ¾, and the flexural 

stiffness per unit width, Dx' needed in Eqs. 9.30 to 9.35, may be obtained from 

the Eqs. 8.5 and 8.12 for stiff,1e~ of sandwich sections given in Tobie 8-1. 

As i'I evident by inspecting Eqs. 9. 31 to 9.34 for effects of a unit edge moment 

end ~r, the vori:ition with (Bx) of deflection, w, slope, dw/dx, moment, Mx, 
and shear, Q , is the so•ne as the variation in the appropriate functions that are 

X 

plotted in Fig. 9.14. These plots illustrate how the effects of edge disturbances 

damp out within a distance of about x = 3/B. 

The maximum moment caused by on edge shear, Q
0 

is: 

max. M 
X = 

0.323 Q
0 

B 

This occurs at: x 11 
0
8
8 

Eq. 9.37 

Eq. 9.38 

The above eq.,ations ore used in~ ,-5 to show that the following edge 

bendi~ effects occur in a ''hinged edge" cylinder subject to uniform internal 

pressure, q, (Fig. 9-1 Sa): 
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1.0 
---- - - ---

Shell fU'1Ction 
0.8 • (Bx) 

+ (Sx) 
g (l!x) 0.6 -r or ! 
'f (j!,c) I -1 

0.4 \ ' 
\ i 

- - ~- -

,;-
- I ;: 

0.2 • I ---( 
I 

0.0 

---- ---
-0.2 

0 1.0 2.0 
(l!x) 

l.(, 4.0 s.o 

Fig. '-1~ st-ELL F'U-K:TIONS FOR EDGE BEt-OINC IN LONG CYUr,.DERS 

Edge Shear: 

Maximum Moment: 

Q 
0 

M 
X 

= 

= - 0.162 g 
62 

[q. 9.39 

Eq. 9.40 

The maximum shear and moment in a cylinder witl-l rotationally fixed edges 

subject to internal pressure occur at the edge and ore (Fig. 9-1 Sb): 

Edge Shear: Eq. 9.41 

Edge Moment: = Eq. 9.42 

The maximum shear and momer,t due to a radially directed conc-entrated line 

load per unit of c:rcumference, P, around o loog cylinder ore (Fiy. 9-1 Sc): 

9-46 



I 
I 
I 
I 

E>ample 9-Si Determinr the maximum axi-symmetric radial shear and moment 
stress resultants in a long cylindrical shell with a "hinged" edge (i.e., free to 
rotate but radial deflection prevent~) subject to uniform internal pressure, q 
(Fig. 9-1 Sa). 

I I 

I 
I I. I 
I 
I I 1.2 

I 
I 
I 
I 1.3 

I I 1.4 

I 
I 
I 
I I 1.5 

I 
I 
I 
I 
I 
I I 2. 

I 2.1 
I 
I 2.2 
I 
I 
I 
I 2.2 
I 
I 
I 
I 

Radial shear .:it the hinged edge: 

Because edge, x :-.: 0, is ''hinged", M = 0 and the final radial deflection, 
W:~ 0 

Consider that the final radial edge deflectio., is obtained by superimposing 
the rodial deflection in a "free" edged tube produced by the internal 
pressure (membrane deflection) and the radial deflection at x = 0 
produced by the axi-~ymmetric radial edge force, Q0 • 

N F{ 2 
Ed~e deflection produced by q: Eq.;. 9.5 and 9.1: w = E~ t = ~ 
Edge deflection produced by G.l: 

Eq. 9.31 with Mo = 0, x = o, (ex) = 0: w = 
2 

;~ D 

X 
Fig. 9-14: 0 (Bx) = I.Oat (Bx) = O; 

Equate edge deflections in 1.3 and 1.4: 

0 
R2 Q 2 B3 D q R2 
~ = 0 Q X 
Eg t - 2 a3 D ; o = - Eg t 

X 

Eq. 9.28: E0 t = A0; and Eq. 9.30 a: 

Muximum moment: 

Only the edge load p,·oduces longitudinal moment, M • 
X 

Mx is obtaine-J using Eq. 9.33 with M
0 

= 0 for a hinged edge. 

Qo T (8 x) - 9 T (B x) 
Mx = a - - 2 s2 

Thus: 

Moment varies with the shell function T (Bx), as shown in Fig. 9-14. The 
maximum moment occurs at o point wher-! Bx = 0.8 and T (ax) = 0.32 

Thus: max M 
X 

q X 0.32 
= - 2 

2 B 
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Q -P Eq. 9.43 a = 2 

M 
p 

Eq. 9.44 = a 4 B 

where Q and M are the shear and bending stress resultants at the point of load a a 
application. 

Discontinuity bending stresses that arise when o vessure pipe wall is thickened 

at o joint ore calculated in Example 9-6. The pressurn pipe designed in Example 

!1-1 and an idea1ized joint configuration are used in this simplifiea example. 

(o.) Hinged edge (h.) Rotationally 

fixed t'dg@ 

\ 
P I 

I 

I 
I 
\ 

(c.) Rodk1lly Appli~ 

rinq load 

Ni>re: ~ zone of edge re1trolnt, w :, membrane def,ection, 

p 

Fig. 9-15 AXI-SYMMEffllC "'DISCONTll'UITY" COMllTIONS 
IN LONG CYLll'«JERS 

Short Cylinder 

Edge-bending effects on the circumferential edges of a cylindrical shell which 

cmnot be considered "long" are also treated in (9.7). For the special case of 

equal edge s!ieors, Q
0 

and edge moments, M
0 

on each end of the "short" cylinder 

(Fig 9-16a), the radial deflections and slopes at the e,jge are given by the 

following equations (9. 7): 

w I 
(BMo X2 + Qo x1> Eq. 9.4~ = -

2 83 D 0 
X 

~) 
I 

(2BMo X3 + Qo X2) Eq. 9.46 = 
282 D 0 

X 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Exmnple 9-': Estimate the maximum longitudinal discontinuity stress that results from 
the use of a thickened wall at a bell joint for the pressure pipe designed in Example 9-1. 
Use the following idealized edge thickening and assume that a 1'1-,ingeci" edge condition 
occurs at the bell end of the pipe. See Example 9-1 for material properties.* 

Add rooterial at edQE' ring, 
A '} () . } r-hQ -• 111 

I = 0,528 in. 

, . Shell parameter, a: 
i/4 

t( I -v ''O , Eg Eq. 9.30b: a = ___ x
2 2

--
R t Ex 

R = 6.33 in. 
I ----11---

Eg =Ex= E = 400,000 psi; vx = "g = 0.38 

8 = [ 3 o - o.Ja
2
> J 114

= o.692; s 2 = o.479 
~.336)2 

X (0.528)~ 

I 
I 
I 
I 
I 2. 

I I 3. 

I J.I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 3.2 

I 
I 
I 
I 4. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I * 
I 

Membrane deflection: Eqs. 9.s & 9.1: w = \Rt
2 

= -
11° :£~//2

; E w = -9,884 

Unknown edge load, Q , acts on edge of pipe shell and on ring: 
0 

Deflectiori of shell edge due to Q
0

, (M
0 

= 0 because of hinge assumption): 

Qo 
[q. 9.31: w = - 3 ; 

0 2 8 D 
X 

E t 3 0.5283 E _ Eq. 9.29: D = 2 = ---..... 2 - -0.0143 E 
x 12 ( I - v ) 17- ( I - .38 ) 

Q 
Ew = -

O 2 X (0.692)3 X 0.0143 

Deflection of extra ring reinforcement: 

Q R2 Q x (6.336)2 
0 0 

Eqs. 9.4 & 9.1: w = ~; E w = ----">"""u--o t ~o o ,. 

Equate deflection ot edge of pipe (membrane, q, plus bending, Q ) to deflection of 
ring reinforcement to obtain Q

0
• 

0 

-9884- 105.2 G
0

- 20.1 Q
0 

= O; Q
0 

= - (IOS.;~O.I) = -78.7 lbs/in. 

Check: Q must be less than Q for ''hinged" edge as given by Eq. 9.39 
- 0 0 

Hinged edge Qo = - rJ = - 2 ~b~692 = -93.9 lbs/in. 

See footnote, Example 9-1, Page 9-13. 
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I Ulllff1>le '-' CcanthJed) 
I 
I I s. 
I 
I 
I 
I 
I 
I I 6. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

With a hinged end, maximum moment occurs at (Bx) = 0.8 and is given by Eq, 9.33 
with (Bx) = 0.32. · 

O.S 116' f ~-- M -JS.9 xO.J2 365" lb/' x = 0.692 = • '"· rom ~; x = 0.692 = • in,- 5 m. 

I x t 2 I x .5282 0 0465. 3,. MX 
•x = -r = 6 = • 1n. 1n.; c x = = 

Sx 

Comment on accuracy of assumptions. 

36.5 = 78' psi 
0.0465 

The assumption of a hinged end and ring oreo concentrated at the edge probably is 
not very accurate, since the point of maximum d1scontinuity moment is only 1.16 
In. from the edge. A second assumption tho+ the edge rotation is "fixed" by the 
ring could be made and the resulting maximum moment calculated. These two 
cases would probably bracket the actual discontinuity bending condition. An upper 
limit of the moment for the fixed rotation assumption, applicable if the cc.nfining 
ring hod infinite radial stiffness, is obtained with Eq, 9.42: 

max. limit of Mxo = _g__ = 130 

max. stress a = 
XO 

2 e2 2 2 X (0,692) 
135•7 "' 2 919 ps· 

0,0465 ' I 

= 135. 7 in.-lbs/in. 

Because the above solution does not account for the radial and rotational flexibility 
of the edge ring, the actual maximum longitudinal stress is probably quite a bit 
lower than the above value, 

I 
I 
I 
I 

Notes I in. = 2S.4 mm, I in. 2 = 645 mm2, I in. 3 /in. = 645 mm 33 /mm, I lbf /in. = 175 Nim, 
I psi -= 0.0069 MPa, I in.-lbf /in. = 4.45 N-m/m. 
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where the terms X 1, 2, 3 ore functions of (8 L) as fallows: 

= 

= 

= 

cosh ~~ L) + cos (pL) 
sinh (BL)+ sin (BU 

sinh (8 L) - sin (BL) 
sinh (SU+ sin (SL) 

cosh (SL) - cos (SU 
sinh (8 L) + sin (BL) 

M~t~~..------. 
0 Q 

Q 
M Q O M °' +--------~ J 0 

I. L -~ 

(a.) -\xi-symmetric fdg~ 
slwors and moments 

(b.) Built in edges with 
internal pres~ure 

Eqs. ~.47 

Fig. 9-16 AXI-SYMMEffilC EDGE EFFECTS IN SHORT CYLlf'.OERS 

The functions x1, ~ 2 and x3 ore plotted in Fig. 9-17 for the practical range of 

BL. It is evident that they a:,prooch 1.0 when 13L > about 3.0, indicating that in 

such cases, the shell behaves as a "long :-;hell". 

Eqs. 9.45 a.,d 9"46 ore similar to Eqs. 9.31 and 9.32 with x = O, modified by the 

shell functions x1, X2, or X3• 

For a short cylindrical shell with built-in edges subject to uniformly distributed 

lood, q, (Fig. 9- I 6b): 

Eq. 9.48 

The general solutions for the constants of integration for deformations of short 

cylindrical shells ore given in (9.7), enol:ing more complete solutions for such 
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prohlems than can be obtained with the limited equations for edge deformation 

given above. Also, see (9.9) for extensive tables of coefficients for a variety of 

edge !-ending solutic..ns for both long and short cylindrical shells. 

Shell fin:tlons 
x, 

5.ll ----.---.----.----.---.--"?"""--.----•,----

4.0 -+---+--+----+----+---+---+---+---+----+---+-~ 

~o-+----i-+----+---+----+--+----+----+----+--+----1 

0 

t----'1--,1--- ----+-----i---~ --- --t----- --,
·---H----i--- --- - ---~ -➔---+--+--+---

0 2 3 " 5 
(SU 

Fig. '-17 St-ELL FUNCTIONS FOR LONGITl.DINAL BEl'OING 

IN SHORT CYLll'OERS 

Ott..- Shells of Rewlution 

E~nding effects in many other shells of revolution such as spherical :ind 

conical shells are determined awroximately by considering their edge region to 

behave as a tangent cylinder. This is known as the ''Geekier" approximation and 

It hos been found to give sufficient occurocy for practical design of most shells 

of revolution. Exceptions are excessively shallow shells, say spherical or conical 

shells whose rise is less than I /12th to I/ I 5th their span, and shells whose R/t is 

less than about SO. 

Equations are given in Tobie 9-6 for evaluating edge bending in spherical shells. 

Thae equations are derived from Eqs. 9.31 to 9.3S by taking the sphere radius 

equivalent to the tangent cylinder radius md the meridional direction in the 

sphere equivalent to the loogitudinol direction of the cylinder. Since it is 
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convenient to consider distanr.e from the edge of the sphere in terms of the 

angular displacement (See Sketi:h in Tobie 9-f), Rljl is equivalent to x in the 

"tangent cylinder" and a ne•v shell constant ). is defined rm 

\ = RB = ~ Ag ~1/4 
4Df 

Eq. 9.49 

~Q = Egag (cim.1mferentiol direction) Eq. 9.50 

o, = Eficl (meridional direction) Eq. 9.51 

Equations are given in the Tobie for determining the significant edge bending 

effects in a spherical s!iell subject to horizontal edge loads, H9K onC: edge 

moments, MaK" UslY.Jlly, HqK ood M9K are determined from the edge forces 

req•Jired in the membrane condition and the equations of deformational compati

bility at the edge. This is illustrated in Example 9-7 for G simple dome with on 

~ ring having negligible rotational restraint at the edge. Once Hf!< and M9K 
ore determined, the remaining equatior1s in the Table may be used to determine 

the moments and thrush in the edge region due to the edge loads. These ore 

added to the thrusts determioed in a membrane analysis O'S illustrated in Example 

'J-7. 

Similar relations have been developed for other shells of revolution by consider

ing the edge region as a tangent cylinder. In (9.9) extensive tables of formulas 

and coefficients ore presented for <letermining edge bending effects in cylindri

cal, spherical and conical shells with a variety of edge conditions, 

Torilpherical and Ellipsoidal Pressure Vessel Heads 

Torispherical shells of revolution are widely used as heods for cylindrical 

pressure vessels because they provide a smooth transition between the cylinder 

and the head, while providing a relatively low rise closure. The torispherical 

shape is comprised of a spherical surface from the crown or apex jointed with a 

~orroidol knuckle shell that is tangent with the spherical surface near the edge 

with the cylinder at the edge, This geometry is shown in Fig, 9-8(b) in Section 

9.3. Ellipsoidal surfaces also can provide a similar smooth transition with the 

cylinder and have been widely used as pressure vessel heads. General ellipsoid 

geometry is shown in Fig. 9-6(c) in Section 9.3. 

9-S3 



Tobie 9-6 

Edge Deformations, Moments and Thrusis 
Due to Edge Forces on Spherical Shells 

isotropic, unifam t: 
).:I' 3(1 - v2)R2 )1/4 

," 
Fdge Load, H~ 

r E"1e n,d:al m,f=atlm 
2l.R sin2~ 

H; 
in base plane, 6r Egog K 

Edge rotation 
2>.

2 
Sl"'K 

H4' -
E0a

0 
K 

Meridionoi moment, M4 
Rsi~K H~ sin ( l.• ) 

e)..• l. 

Maximum meridonol 
0.322 R sin4'i< Hf 

K , at l.t: 0.8 
ir.oment, max M4 ). 

cotft( sin ( l.t- {> 
Meridionol thrust, Nf 

{isi~H~ 
f' ~. 

Circumferent iol thrust, N0 -2l.sin4'i< H; 
sin ( l.•-;> 

e~• K 

Circumferential moment, Mg "o,_., 

9-54 

Edge Moment, M~ 

i>.
2 

sinfK 
M; 

Eooo K 

o,3 
M~ -~ 

r:: sin ( >-• + i> 
y2M~ x. 

e 

M~, at l.t = 0 

-2l. cot'i<_ M; sin l.t 
K 

R el.♦ 

-2 [il.2 
M~ sin ( l.t- r;> 

R e 
x. 

'\,Mf 



I Example '-71 Oeterm'ne the stress resultants ot the edge and at the apex of the s:,her!cal 
I shell shown in the sketch *: 

I 
I 
I 
I 
I 
I h 
I 
I 
I 
I 
I 
I 
I 
I I I. 

I 
I 
I 2. 
I 
I 2.1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

h z 611' 
w t = 0,5" 

h·l ~--+--,__.....·-.!5 

~--100" __ +----

Geometry: 

hw = 60 in.; y = 64 lbs/ft. 3 = 0.0370 lbs/in. 3 

t = 0.5 in.; transparent glass reinforced poly

carbonate shell 

Ring: .Aluminum shape with A ::: 1.5 in2 and 

E = IOx I06 psi;~ =EA= ISx 1o61bs. 

Shell: E = 800:000 psi; for long term I~, use 

0.8E; thus, long term E = 640,000 psi: v = 0.3 

sin '-'k = ~ = 0.5; 9k = 30°; h 
5 

= I 00( I - cos "k) = I J.4 in.; h = R + 60 = 160 in. 

Membrane Stress resultants at edge: 

Membrane stress resultants - Tobi,:: q_2 

Fkst Fluid Load Case: N' = • y R [ ~ -~ E. + (I ~:: aj] 
[

160 100 Ii cos2 30 J l 123 . 
N" = -0.037 x I 00 T - --r t_ + _( I + cos 301_u = -123 lbsfr,; a" = --:r = -246 psi 

Ng =-yR r~- R CO$'.~ E·n ~~ijJl 
[

160 IOOJI I cos2 30.jl 
Ng = -0.037 x 100 ""T - 100 cos 30 + 3 l_ + (I + cos 30J_Jr -l48.5 lbs/in; 

,. 148.S 297 . ., 0 = - 1r.r = - ps, 

I 2.2 Membrane edge displacement of shell. 

I 
I 
I 
I I 2.1 

I 
I 
I 
I 
I 
I 
I * 

Edge radial displacement: From Eq. 9.3So 

• Ngo -1 '•8.Sx50 
" rm = E t ; E f. rm =- o.S - -14,850 lbs/in; inward 

Radial displacement of ring due to mern'>rone reactions: 

Hm = Nfk cos 9k; ~O = 15 x 106 lbs 

2 
Hmro 

Eqs. 9.4 and ::;.1: A .- = 

See footnote, Example 9-1, Page 9-1 3. 
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I Exarr1»1e ,_7 '8-;tinued) 
I 
I 
I 
I 3. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 3.1 
I 
I 3.2 

I 
I 
I 
I 3.3 
I 
I 
I 
I 
I 
I 
I 
I J.4 
I 
I 
I 
I 
I 
I 
I 4. 
I 
I 
I 
I 
I 
I 
I 
I 

E d r - .6!. X I 06 X I £3(c:os 30) X so2 - 11,362 lbs/in. 
shell - IS x 106 -

Apply horizontal edge reaction, H~, to impose eqval deflections on shell and ring. 

I ~ 
r~m 1-tfk I ' 11 __ .,. 
I. I 

w 
Edge bending analysis, using equations ::1 Table 9-6. 

1/4 ~1/4 

Shell constants: A = ~I -•,21 R~ = [~u -:.-::1100] = 

Edge radial displacement of shell for Hdl<: Table 9-6: 

2 A R sin
2
~ Hr'k = 2 x 18.2 x 100 x H~k sin2 30 

EA r = t 0.5 = 

Edge radial displacement of base ring for H9k: 

Hr 2 H x502 
,JI< 0 = fk Eqs. 9.4 and 9.1: d r = -- 6 
~O ISx 10 

.64 )( 106 
x 2500 H~ 

Eshell Ar = 15 x 106 = 107 H~ 

1820 Hc.'k 

Determine H,cby equating shell (merrbrane + bending) rarliol edge deflection to ring 
radi'"! deflecflOf'l: 

-14,85u + 1820 H~ = 11,362 - 107H~ 

13.6 lbs/in I 11362 + 141850 __ 
H·= 

1820 + 107 , 
Determine maximum bending moment Clld flexural stress caus..~ by H~; Tobie 9-6: 

0.322 R sin • Hdk o.322 x I ()()(sin 30) x I 3.6 
max M~ = l = I e.z = 12.0 in.-lbs/in. 

2 
I x o.s 0 0417 . 3 12.(l 288 . s, = 6 = • 1n; max o9 '-0.0417 = psi 

A•= OJ1s ♦ = _ (k~ = 0.0fl4 roiians x I 80 = 2.52 deg.; R+ = .044 x I 00 .- 4.4 indw from edrJe 
18.2 " 

Mox Mg = "M' = 0.3 x 12.0 = 3.6 in-lbs/in. at the same location as for max. M9 
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I E,mmple 9-7 <rontinued) 

I I s. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 6. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 7. 
I 
I 
I 
I 
I 
I 
I 
I 

Maximum combined stress@" = 30 - 2.5 = 27.5°; dK = 30° 

Nii: membrane stress: @ t = 30° is close enough = - 123 lbs/in. 

edge bending - Table 9-6: @ d = 27.5°, , = 2.5° 

N" = {2 (sin 30) x 13.6 
cot 27.5 sin (.8- jJ 

e0.8 = 0.1 lbs/in. negligible 

max o<!- = · 123 .:!:. 288 = -534 psi, or +43 psi 
0.5 

membrane stress@ ,j = 30° is close enough = -148.5 lbs/in. 

edge bending - Table 9-6: 

Ng = -2 x 18.2 sin '30° x 13.6 
sin ,o.a - ~ 

eo.a = 17 .5 lbs/in. 

- 148.5 + 17.5 + 
.5 -

3.6 
0.0417 

= -56 psi or -228 psi 

Compute N0 at support, d = 3rf', and ch~k radial displacement of shell agoinst radinl 
displocemern of ring. 

Table 9-6, for >.ii, = O, for edge bending: 

sin(-'ff/2) 
Ng = -2 x 18.2 sin 30 x 13.6 

0 
= + 247.5 lbs/in 

e 
Net N0 = -148.5 + 247.5 = 99. lbs/in 

shell: 

ring: 

fl r = 99x5u 
6401000 X 0.5 

= 0.0155 in. 

H = Hm - H~ = (123 cos 30 - 13.6) = 92.9 lbs/in 

fl r = ----'9"""2""".9_x __ so2~-
I 0,000,000 x 1.5 

= 0.0 I 55 in. o.k. 

ring thrust, T g = t½ 
0 

= 92.9 X 50 = 4,645 lbs, tensia'l; Og = 4645/ 1.5 = 

M~mbrane stress resultants at apex; Tobie 9-2~ 

3,097 psi 

03 loo 160 100 '1 cos
2
o J~ . Nd = - 0. 7 x - - - 11 + ----- = -111 lbs/in < Nd at edge 

2 3 L O+cos0 

N0 = -0.037 x 100 160 - 100 cos 0 + IOO fi- + cos O Jl = -111 lbs/in. 
2 3 L o + cos auJ 

Check: Because of symmetry, apex stress resultants must be the some as few the 
uniform pressure case: 

Nd = Ng = -P R/2 = -0.037 x 60 x I 00/2 = - I 11 lbs/in. o.k. 
I 
I 
I 
I 
I 

Note: I in. = 25.4 mm, I in.2 = 645 mm2, I in.3 = 16387 mm3, I lbf = 4.45 N, I lbf/in. = 175 
N/m, I lb/in. 3 = 271000 N/m3, I lbf/ft3 = 157 N/m3, I psi = 0.0069 MPa, I in-lb/in. = 
4.45 N-m/m. 
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Practical elastic shell analysis solutions for bending and membrane stress 

resultants in torispherical ond eliipsoidal heads did not become available until 

they could be obtained with finite differenc.:t" or finitl! element computer analysis 

in the late I 960's. The results of extensive parametric studies that provide 

elastic and membrane stress resultants for torisphericol and ellipsoidal heads 

with various angles "o' ratios of cylindE:r diomett:r to thickness Rit, and ratios 

of sphere radius to 'ihickness, R/t ore presented in o paper, "Elastic Stresses in 

Pressure Vessel Heads" by K1 -:JUS (reprinted from Welding Research Council 

Bullet;n 129, 1968 in Vol ::.. of (9.17)). The plots are too extensive to repeat here, 

but are very useful for t~ analysis of torispherical and ellipsoidal heads that con 

be designed based on isotropic elastic shell analysis. When such approximations 

ore not appropriate, r.omputer <J'l01tses for specific coses may be performed 

using a finite difference or finite element program such as une of those discussed 

in Section 4.9. See also (9.35) for design formulas for maximum stress in the 

toroispherical head shell in a pressure vessel. 

T cncs and SIias 

In (9.36) extensive tables of cocf~icie<1ts for determin:ng edge bending effects in 

cylindrical tanks and silos ~w• either ,,niform or tapered walls or".! presented. A 

method of determining edge effoc1 s in flat bott'>m tanks and pressure vessels 

having a toroidal knuckle 31,~1; J~ 1'le base is presented in Section 9.7 which 

follows. "Lift-up" of the boi iorn c.ige is also considered. 

Barrel Shells 

When cylindrical shells, such as barrel vaults (Fig. 4-3), have longitudinal edges, 

edge bending effects often extend throughout the entire shell, particularly if the 

opening angle of o transverse cross section is l~ss than about 120 degrees. These 

tronsvers..• bending effects frpm disturbances oa longitudinal edges hove been 

extensively treated in the literature, but their exact determination involves 

mlutions of diffwentiol equations. Because these 10lutions COMOt be formulated 

in ci.n:ise explicit equations, they are not presented lw:re. Practically, stress 

resultants in cylindrical barrel shells are determined using tables of shell 

coefficients, based on solution of the differential t·•~tions for edge loodings, 

and presented in (9.6), or they are determined with C<\mputer anolyses. Also, on 

approximotion known 0$ the ''beam~ch" analogy c,.18) is sometimes useful. 
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See (9.12) for a concise e,cplanation of the differential equations for edge 

disturbances in cylindrical barrel she-11s, as well as an excellent discussion of 

severol different approximations used in solving the differential equations, and a 

detailed consideration of the oppmximations involved in using the 1'beam-<1rch" 

analogy. 

Edge-bending stress resultants arise in hrpar shells whenever edge support 

deformations differ from those required by the membrane theory. Behavior is 

much more complex to define mathematically than in the case of axi-srmmetric 

deformations of shells of revolution. Solutions for edge bending stre5s r<!sulh:mts 

ore given in Table 9-7 for several cases of idealized edge support conditions 

which are discussed in (9.11 ). In most actual hypar structures, the edge members 

will not provide the idealized restraints used in the solutions given in the Tobie. 

Very often this will result in larger bending effedc, particularly in hypars with 

low values of l., but simplified so11.,tions ore not available for quantitative 

e~timates of the amplified be;iding stress resultants. Cases where stress 

resultants differ markedly throughout the shell from the stress resultants 

obtoired with the membr~ theory are discussed in (9.32)(9.33)(9.34). 

Hypor sh«:lls comprised of one or more layers of corrugated sheet hove also been 

developed md analyzed (9.37). Wt,en a single corrugated sheet is used, 

substantial bending moments arise in the dirertion of the corrugotions, but some 

of the benefits of in-Plane shear resistance, typiC'al of smooth hypor shells ore 

also derived in the corrugated hypor (9.37). 

If, in the designer's judgement, bending stresses may be significant in particular 

hypor shell structures, t~se stresses may be determined using finite element 

computer onolyM!s. These ore ovoiloble in several general structural analysis 

programs os described in Seciion 4.9. See also (9.32). Program improvements 

and simplifications undoubtedly will continue to cccur, making such approaches 

even more t>f"OCticol and cost effective in tt ,t: future. 
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Table 9-7 

Maximum Moments and Forces at Edges of 11ypar Shells (9.11) 

-Mi.7mt.ffi-N¥if..,. M ~-PooiliveM Mriiiimum ~tian 
C-itian 

~ 
At Conte, of E!!ii! Oa>ooite c-te< of l"- Per~i<ulm lo E- 8-n 

"', M Location ,-,Ol.lt R 
y frcm.ig. , 

[dgoo Ill r • D -•act to - 0.511 Ps• 
2 0.1-'-~ p

1
g 2 l p1a 

fully Nllram ,,...,...ion and o.&Sa 
rotalial In all diNc:tiala ~ -~ -1,n 1 

feign at r ■ 0 oupparted to 
(l l-1 p1

G 2 
3 P,a fult, rn1rain tran.kltian 

0 0.55a 
In all direc:ti- hinged -~,i;r- 1'73 --ir . ta--- ---
!!!!!!i 
I. 1 • f ,ed!,o.,_ing.,_omete,. S-fiV-9-llolarc. 

2. E-9;.,,. wre -lapMI for iootropic:, equilateral '10° hypa-, of ...,;farm thick- m - ;,, Fig. ,.110 for o. b. 

l. 11 hypar is recf<lnVul•, with pion .,_ion a and b, uae di'TleNioru o for elf acts along odge a and CMWllions b for ellerh 
o1ant odge b. In this cae, colculate 1 ...,ng o modified .,.,.,. of c clot•mlned tor on •!Uilaterol "- with aidn o, or with 
llicloa b, ,_,;....,,_ 

Edge and Discontinuity Reinforcenient 

I 

I 

It should already be evident from the above discussions of edge-bending stress 

resultants in several of the common types of shells that structural members of 

adequate strength and stiffne~ should be provided along edges and around 

openings in singl, and doubly curved shells to develop the inherent strength and 

structural efficiency of these shells. 

In coses where edge members cannot be pro-. lcfed, Jhe ·hells must be designed to 

resist substantial bending and transverse sheo.- stress res11ltants. Edge regions 

may hove to be designed as curved beams or .,rches, with greatly increased 

req.,irements for strength and stiffness cornpared 1"l membrane shells. Bending 

effects may penetrate significant distances into the shell from the edges which 

will i;!<:reose with increasing radii of curvature (i.e., with increasing flatness). 

Also to be avoided in efficient application of thin shell structures are sharp 

discontinuities in load or shell stiffness. For example, concentrated loads cause 

localized bending. These effects are co,1ered later in Section 9.8. Increases in 

thickness at joints in pressure pipe often cause sigiificont bending stress as 

illustrated in tm,tJle '-'• Restraints at flanges and connections between pipe 

and pressure vessels cou~ similar effects. 
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Summary 

Many failures of plastic shell structures hove occurred because so called 

secondary bending stresses at edges or other discontinuities were not tnken into 

account in the design. Because most reinforcP.d plastic moterials behovP. 

elastically up to failure in~teod of yielding in a d•,ctile manner like metals, it is 

essential rhat designs, for plastic shells be based on accurate, or cJOservatively 

opproximote, determination! of bath membrane and "discontinuity bending" 

stress resultants. The methods given in this Section and the previous Section will 

enable the designer to determine these stress resultants wirh sufficient 0<:curacy 

for many common shell types. In more complex case~, computer ooalyses or 

prototype test program~ may be required to achieve the necessary accurate 

determination of maximum stresses. 

Examples given in Secions 9.12 and 9.13 illustrate the application of the above

described analyses to some shell problems representative of actual structural 

design practice. 

9.7 SP:CIAL EDCE CON>ITIONS - CYLll'-DRICAL VESSELS WITH 

FLAT BOTTOMS N-0 KNJO<LES 

Two problems that are of frequent concern to tank and pressure vessel designer~ 

are determination of edge bending effects at the base of vessels with flat, 

uniformly supported bottom plates, and deter~inotion of bending <rid hoop 

stresses in toroidal knuckle fillets located at the junction of wnlls with bottoms 

or cov~rs. These conditions ore shown in Fig. 9-18 for a cylindrical fluid storage 

vessel having o vertical axis ond a flat, unyielding base support such as a 

concrete slab. 

Sketch ''o" in the Figure shows the first case, a 90 degree junction between the 

wall ond a flat base. Sketch "b" shows a typical condition where the base limits 

membrane radial deflection at the bottom of the wall and also partially restrains 

wall rotation at this point. This rotational restraint produces an edge moment 

that, in tum, causes a short length, Le, at the edge of the base to "lift off" its 

foundation, as shown in Sketch "b". 
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Sketch ''c" in the Figure shows the second case, a knuckle junction between wall 

and base in a cylindrical tonk with fluid contents, but no overpressure to cause 

uplift tension on the cylinder wall. In this case, the knuckle partially restrains 

the membrone rodiol deflection and rotation at the bottom of the wall. TI,is 

produces radial bet-wing, c.nd both radial and circumferential axial stress 

resultants in the knuckle. Again, the flat base limits radial deflection of the 

inside of the knuckle and also partially restrains rotation at this point, resulting 

in the type of base edge deformation ond "lift off" shown in Sketch 11h11• 

Sketch ''d" shows another bottom knuckle and base "lift off" condition that 

occurs in closed tanks with internal gas pressure and without external "hold

down" connections to the base slab. In this case, the overpressure causes uplift 

forces on the wall, and the edge of the base lifts off until the total downward 

force due to pressure on the ~nuckle end base edge equals the total upward force 

on the upper end of the knuckle due to pressure on the closed cover. This type of 

behavior usually produces large radial bending stresses and circumferential 

direct com:>ression stresses which rapidly increase wirh increases in internal 

pressure, a very undesirable type of structural behavior. The rapid non-lineor 

increase in edge bending occurs because of the increose in "lift off" length as 

internal pressure increases. In view of this, cylindr icol vessels with closed tops, 

flat bottoms, and internal pressure should l"ormally be designed with ''hold-down" 

connections directly to a substantial base structure. The thin flat bottom plate 

should not be used to develop the ''hold-down" resistance of the bottom pressure. 

Vertical Cylinder Bme with Flat Bottom: 

This base joint condition is shown in Fig. 9-18, ''a" and "b", for an open top 

cylindrical tank with internal fluid pressure. A portion of bottom plate, L , lifts 
e 

off the base due to ~e rotation. This length is determined from the lows of 

static equilibrium and the inside boundcry requirement that in regions beyond the 

"lift off" length, the bottom plate must be flat (i.e.: without curvature). A state 

of zero moment and zero shear must exist whenever the curvature and the 

change in the curvature of a structural member are zero (9.20). 



(a) 

R :R 
C 0 

(b) 

I 
. I 

' 
Support 

edge 

1· 
R 

C 

I R ·--~-_...,.o__..,,,.. 

t: •. '' '' ' '','f 
Le 

Base lifts off 

(c) 

R 
C 

Fig. ,_ 18 BASE JOINT BEHAVIOR IN VERTICAL CYLNJER 

If the lifted off length in the edge region is small compared to the radius of the 
bottom plate (the usual C<Jk), the bottom plate moy be assumed to behave as a 

series of rectangular strips whose lengths extend in a radial dirt"Ction. In this 

case, referring again to Fig. 9-18(b), the following relationships between the 
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lifted off length, Le, the base rotation, Ct,, and the edge moment are derivt:d in 

Example 9-8: 

Eq. 9.52 

3 Dr (qb}0.5 
Eq. 9.53 

The radial deflection of the flat bottom plate due to a radial base reaction per 

unit of circumferential length, Qb, is: 

Eq. 9.54 

The deflection and rotation of the cylindriccl she!: wall were discusssed in the 

previous Section. The membrane deflection and rotation at the bottom edge of 

the cylinder ore obtained as follows: 

Ng = ~RC Eq. 9.55 

NgRc 
2 

ctt,Rc 
wbm = ---

.l:g .l:g 
Eq. 9.56 

for hydrostatic pre5'Ure varying from Oat the top of the tonk to qb = Y h at the 

bottom, on a tonk of uniform wal I thickness: 
2 

wbm Y Re \m = -,:.= -
){ij 

Eq. 9.57 

The deflection end rotation of the bottom edge of the cylinder due to radial 

shear Qb oriCI moment Mb ore given by Eqs. 9.31 and 9.32, with Bx-= 0. 

The moment, Mb, end sh8<1r, Qb' at the wall bottom are determined by equating 

the membrane and Qb and Mb edge loading deflections and rotations of the 

cylindrical wall bottom to the Qb eJge deflection and the Mb edge rotation of 

the bottom plate. This requires solution of two simultaneous equations for 

compatible deflections and rotations at the jun<.:tion of base or.d wall: 

wb wall cylinder = wb bottom plate 



Ob wall cylinder = ~ bottom plate edge region 

In most practical vessels, the radial deflectiO"I at the junction of shell w:th 

bottom plate is very small and may be taken as zero. This occurs because the 

deflection, wb, given b;t Eq. 9.54 is usually too small to have a significant effect 

on edge bending in the odjocP.r1t cylinder. Also friction between the loaded 

bottom plate and the base support provides a fl:rther reduction of radial 

deflection at the edge. If wb is assumed equal to zerCJ, the effect of restraint at 

the base of a vessel of uniform wall thickness containing a fluid with a unit 

weight of y may be determined using the following approximate equation: 

= 

M I.S 
b 

3 D (y h) O.S 
r 

Eq. 9.58 

This equation is derived in the third and fourth Sections in Example S-8. It is 

most readily solved by a trial solution procedure. It can also be used ns a 

reasonable approximation for veJSels with non-uniform wall thickness if the 

cylinder wall in the base region is approximately uniform over a height of at 

least 3/B above the base, and if the bottom plate thi-::kness is reasonably uniform 

.>ver a distance, Le, (Eq. 9.52) in from the base junction. 

In order to determine stress resultants in the cylinder caused by base restraint, 

the edge shear, Qb' must also be calculated as follows: 

Eq. 9.S9 

This equation i~ also derived in Exan,ple ,-a. 

The longitudinal bending moment at any point in the cylindrical shell may readily 

be determined using Eq. 9.33 with Q
0 

= ..Qb and M
0 

= Mb, together wit;, the 

shell functions plotted in Fig. 9-14. The mo>timum moment will either be at the 

base (Mb) er at the point above the base where Qx (Eq. 9.34) is zero. 

The rnaxim1,m circumferential bending moment is: 

= Eq. 9.60 



I 
I 
I 
I 

e..n.,1e 9-8: Determine t~ base moment that results from restraint of membrane 
di5:1lacernents in a cylindrical pressure vessel with a vertical axis and flat bottom. 
Acc\)unt for lifting of the bottom away from a flat foundation that supports downward 
load only (i.e., give the derivations of Eqs. 9.52, 9.53, 9.58 and 9.59). 

I I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I.I 
I 
I 1.2 
I 
I 
I I 1.J 

I 
I 
I 
I 
I I I.It 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

End slope CrotQtion) of bottom plate: 

Assume that the edge of the flat bottom behoves as a series of flat strips of unit 
width (circumferentially) subject to an end moment, Mb' as shown in the sketch. 

Boundary Conditions: at b: y = 0, M = Mb 

at c: y = O; slope, l = O; M = 0 



I Example 9-8 <continued) 

I I I .s 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 2. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 3. 
I 
I I 3.1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Solution for Edge Moment and Rotation: 

2 
qb Le .. 

Mb= --i.- ; Th.s 1s Eq. 9.52; 

Edge Deflt:ction of bottom plate: 

For a disk under radial load: 

Qb Ro (I - v) negligible compared to edge deflection of cylinder for 
wb = Eb tb = most practic..al cases 

wb will be assumed = 0 to simplify the following derivation. 

Bottcm slope (rotation) of cylinderical shell due to fluid pressure and base moment 
for zero radial deflection: 

If, as in step 2, the radial deflection of the bottom 
plate is assumed = 0, t~e edge forces on the cylinder, 
Q md Mh, ore relat~ to each other by equating their 
r~iol defrection at b (Eq. 9.31) to the radial deflection 
produced by the applied pressure,, qb, on the free shell 
(Eq. 9.35 with No = membrane noop stress resultant 
at b), 

Using Eq. 9.31 at Bx = O, • (Bx) = 0 (Bx) = 1.0 and Eq. 9.35: 
3 

2 Ng Re- B Dx 

Ao 
Mb Qb 

w - -
- 2 82 D 2 a3 D 

'< X 

For the case of fluid pressure: 

2 s3 D R 2 (y h) 
Q X C 

!::, = - Ag 
- 8 Mb; and fro'Tl Eq. 9.30a: 

4D R 2 
X C 

Ag 
I =7 

9-67 



I &arnp11t 9-8 <continued) 

I 
I 
I 
I 3.2 Slope at base due to Mb and Qb: 

I 
I 
I 
I 
I 
I 
I 
I I 3.J 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I J.4 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4. 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Eq. 9.32 at x = 0, M
0 

= Mb; Q
0 

= Qb; Q (Bx)= f (Bx!= 1.0 

Mb Qb Mb 2 Ng Rc 13 Dx Mb 
ob = T-o; + 2 a2 D = ~ - 2 A s2 D 

X O X 

Mb 
°t>=2so 

NgRC B 

X ~Q 

Slope at base due +o membrane stresses. 

-~ 
X 

If ~a results from fluid pressure on a tank of uniform wall thickness in the vicinity 
of fife base, membrane stresses cau~ a base rotation of 

2 
wbm No Re yRc 

gbm = """""fl = - -- = - --
~0 h Ag 

If the vessel wall thickness is tapered to maintain a constant stress due to fluid 
pressure that varies with depth, 0... = O. As shown below, °t> is usually small 
compared to the slope caused by ~~d Mb.' aid is often not in::Tuded, porticularl}' 
in vessels having tapering wall thicla'less in The rt!9ion above the base. 

Slope at base of cylinder with zero radial deflection: 

For fluid pressure: Ng = y Re h at base 

Thus, summing 3.2 and 3.3 
deflection at the base: 

Mb S('yh Re) Re 
°t, = 2"TU - ---

x Ag 

for fluid pressure on a cylinder with zero radial 

~ y Re 2 (8 h - I) 
°t>=2so -

X Ag 
Equate Oi.. due to Mb at edge of bottom plate, to Qb due to Mb, Qb and membrane 
stresses cft edge of cJlinder 

- °t, cylinder = - °t> bottom plate; and qb = h 

l R/ (8 h - I) - ~x = Mbl.: 5 : This is Eq. 9.58 
~ " 3 (yh) • 

If the wall thi~kness of the cylinder tapers over th~ length B h above the base, I 
may be dropped from the term ( 8 h - I). 



E>carr1>1e ,_, illustrates the design of a cylindrical fluid storagt: vessel with 

vertical axis and a flat bottom. The edge bending effocts ;n this vessel are 

determined using the equot ions presented above. 

Bme Joint with Knuckle 

This base condition is shown in Fig. 9-18{c) for on open 'cop cylindrical tonk with 

internal fluid pressure. The knuckle geometry and the internal pressure and edge 

forces applied on the knuckle shell ore shown in Fig. 9-19. A 90degree knuckle 

is c quarter segment of a toroi<YJI (donut} shell. Geometry of such shells is 

described in Section 9.3. 

J.~ f t j - N4b 
F M"' 

b 

Fig. 9-19 GEOMEfflY OF Kf'.UCKLE AtO PRESSlflES ~ EDGE FORCES 
APPLIED ON KNJCKLE 

Membrane stress resultants for toroidol shells are given in Tobie 9-4. For a 

complete solution, however, bending effects must also be determined. These 

generally are significant throughout the entire knuckle. 

Relatively simple approximations of the type described in Section 9.6 for 

determining edge effects in long cylinders, and spherical l'.'r conicnl domes ore 

not applicable to a toroidal knuckle. The sharp curvature of meridional strips 

o,d the highly variable stiffness of circumferential strips "rodvce complexities 

that make tne 'tbeom-on-elastic-foundotion" analogy too complex for practical 

application to the toroidal shell segmer,ts normally used for tonk and pressure 

vessel knuckles. 
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I Example 9-'= Determine the required shell and bottom thickness of a cylindrical chemical 
I storage tonk with a vertical axis and a flat bottom as shown in the Figure.* 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

m 
76'-9'' 

The ves.,;el will be on open tor. tonk and may be filled 
to the top by a fluid having a maximum specific 
gravity of 1.4 and a maximum temperature of I 200F. 
The tonk and its contents are supported by uniforrrny 
di~tributed bearing over the flat bottom shell. The 
tank is to oc used in on interior location, and fixed in 
position by guides at the top stiffening ring that 
prevents overturning due to any accidental lateral 
effects. 

Use a shell laminate comprised of 0.10 in. chopped 
strand polyester resin spray-up on the inside (liquid 
seal) and for the balance of the r<~quired thick,1ess a 
circumferentic,I filament winding tape with polyester 
resin. In addition, ossun,e that 0.02 in. thick mat 
reinforced surfacing layers ore used on the inside and 
outside surfaces of the shell. Use a chopped strand 
polyester resin !aminate with 0.02 in. thick interior 
mot reinforced surfacing layer for the bottom. As
sume that the minimum practical thicknesses of the 
shell and bottom laminates both ore 0.20 in. As!:ume 
the following strength and stiffness characteristics 
for the above materials. 

Stiffness is characterized with the standard test (short-time) elastic m<Yduli of the 
filament winding, spray-up liquid seal, and surfacing mat layers in tension for the 
circumferential direction cmd in flexure for the determination of longitudinal (vertical) 
ono bottom shell discontinuity effects. 

I Assume the following values for these moduli: 

I I. Cylinder Shell (Orthotropic) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Circumferential elastic 
modulus in tension 

Longitudinal elastic 
modulus in flexure 

1->o:sson's Ratio 

6 (6.0 tf + 0.8 t ) I 0 
E w cs 

O = (tfw + •cs) 

where tfw is the thickness of the filament winding 
and t 1s the thickness of the chopped strand 
spray$ and mot layers. 

E = 0.6 x 106 psi 
X 

Vg = 0.38 

I * See footnote, Example 9-1, Page 9-13. 
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I Example ,_, <continued) 

I 
I 2. 
I 
I 
I 

Flot Bottom Shell (lsotropi:) 

Elastic modulus in flexure 
for any direction 

Poisson's Ratio 

Er= Eg= I.Ox I06 psi 

V = 0.3 

Strength under long-term load or repeoted load is characterized by limiting the maximum 
circumferential tension strain to 0,00 I and the moximum longitudinnl ond bottom shell flex
ural strain to 0.0015, based on the above short time moduli. 

I. Membrane stress resultant at bottom 

4 Eq. 9.1: Ng = p R = 'Yh R = 1.4 x 62.4 x 26.75 x TZ = 779 lbs/in. 

2. Trial design of laminate at bottom: 

I 3. 

I 
I 
I 
I 
I 
I 
I 4. 
I 
I I 4.1 

I 
I 
I 
I 

'cs= 0.10 + 0.02 x 2 = 0.14 in, and try tfw = 0.10; 

6 
E (6.0 X 0.10 + 0.S X 0.14) X ! 0 3 0 I 06 
o = o.14 + 0.1 o = • x 

allow a0 = eallow Eg = 0.001 x '.:i.O x 106 = 3,000 psi 

req'd t = ~ = 0.26 in. 

Increase t fw ,o 0.12 in.; Eg = 3.2 x I 06; allow O = 3,200 psi, allow Ng= 832 lbs/in.; 

t = 0.26 in. o.k. 

Reduce wall thickness higher up the wall to min tfw = 0.06 in., with Eg = 2.3 x :06 

allow No= 0.20 x .001 x 2.3 x 106 = 460 lbs/in. 

reduced h = m x 26. 7S = I 5.8 ft from top 

reduce thickness to 0.20 in. by reducing filament windi,g to 0.06 in. at 15 ft below 
the top. 

Investigate vertical bending at base and design bottom thickness. Trial bottom thick
ness is 0.20 in. 

Shell constant, S: 
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I Exon'1)1e 9-9 (continued) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4.2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

E0 = 3.2 x I 06 psi; Ex = 0.8 x I 06 psi; "g = 0.38; 

Ex 0.8 
Eq. 6.4d: "x = "g Eg = 0.38 x T.2 = 0.10 

B = (I - 0.38 x 0.10) x 3.2 = 0.522 ~ ~

1/4 

482 
X 0.262 

X 0,8 

Obtain base moment by solving Eq. 9.58 

-,R/ (Sh - I) Mb Mb
1
•
5 

7'g - 2 B Dx = 3 Dr ( y ~ 

T 6 6 0.8 x I if' x 0.26 3 
""o = 3.2 x 10 x o.26 = o.03 x 10 ; ox = 12 0 _ 0.38 x a.Im = l,~18; 

6 3 
C\ -= 1.0 x Io x olo = 733 

12 ( I - 0.3 ) 

y = 1.4 x 62.4/1728 = 0.051 lbs/in3; r. = 26.75 x 12 = 321 in.; y h = 16.2 psi 

0.051 x 48 2(0.522 x 321 - I) 
830,000 

M M 1.5 
b b 

- 2xo.mxr,m = 3-~-73h06~i"io3 

0.0233- 0.00079 Mb= .000113 Mb 1•5; 23.3 - 0.79 Mb= 0.113 Mb
1
•
5 

Cut and Try Solution 

Trial Mb 

IS 
20 
18 
18.3 

23.3-0. 79 Mb 

11.45 
7.50 
9.08 
8.84 

Mb = 18.3 in.-lb5/in. at junction of wall base. 

0.113 Mb
I
•
5 

-----
6.56 

10.11 
8.63 
8.8S 

I 4.3 Obtain hose shear in cylinder from Eq. 9.59. 
I 
I 
I 
I 
I 
I 

(vh) _ 16.2 
Qb = - 2 - BMb- - 2 X 0.522 - 0.522 x I 8.3 

Qb = -15.52 - 9.55 = -25.07 lbs/in. 
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I Example ,_, (continued) 

I 
I I 4.4 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4.5 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4.6 
I 
I 
I 
I s. 
I 
I 6. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Note: 

Calculate maximun"' cylinder wall moment above the base: 

[q. 9.34: Qx = 2 x 0.522 x 18.3 t (Bx) - (-25.1) + ca><) = 0 at location of mGX, wall 
moment 

19.I , (Bx)= -25.1 111 (Bx);, (Bx)= -1.31 ,i,(ax) 

Fig. ?-14: (Bx) = 1.3 

Eq. 9.33: Mx = -u:h, [o.s22 x 1 ~.J ~ < 1.3) - 25. t 1 < 1 J>J 
Fig. 9-14: M = 18.3 x 0.34 - 48.1 x 0.26 = 6.22 - 12.50 :: -6,28 in-lbs/in. 

X 

Calculate stresses: 

Wall: 

Woll at bose: 18.3 I L 19 . 
ax = 0.0113 = ,~ psi 

Wall at ax= 1.3; >< = --!d,_ = 2.5 in.: a><= o:o~~J = 556 psi 

Wall allowable a 0.8 x 106 x 0,()()15 = 1,200 psi < 1619 psi 
X 

Floor ut base: cr r =- ~~i6±. o.&3617 = 126 !:. 2,744 = ?.870 psi 

Floor allowable o = 1.0 x I 06 x 0.0015 = 1,500 psi < 2870 psi r 

Calculate lift off length, L 
e 

16.2 L 'J. 
Eq. 9.52: 18.3 = 4 e ; Le= -,/4.52 = 2.13 in, 

max. at joint b. 

Conclusion: Increase wall and floor thicknesses very locally at corner intersection. 

Recommendation: Investigate the use of a knuckle joint to facilitate a more procti
cul detail at this location. See Example 9-10. 

I in, = 25.4 mm, I in.3/in. = 645 mm3/mm, I ft = 0.3048 m, I lbf/in. = 175 N/m, 
I psi -: 0,0069 MPo, I lbf/in.3 = 0.27 MN/m3, I in.-lbf/in. = 4.45 N-m/m, oC = 0.SS 
<°F-32). 
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Fortvnotely, the direct determination of stress resultants in axisymmetric shells 

using computar analysis based on finite element or finite difterence, has become 

practical and relatively inexpensive. Programs such as BOSOR, and portions of 

NASTRAN, hove been specifically developed to provide efficient anol·1sis and ., 
simple input for axisymmetric shells of orb:trary shaf.,f:. These solutions are 

easier to implement than an approximate analysis using curved meridional strips 

restrained by circumferential strips of varying stiffness. The computer programs 

ANSYS and MARC both have additional capobilit:es for modeling contact 

surfaces with interface elements that con transmit compression only. An 

iterative solution is used to dett>rmine which ele,nents finally have a gap status 

~ which elements ore in contact. 

When the simpler computer programs are used to analyze bottom supported 

V.?rtical tonks, "lift off" of the bottom plate under ''.pplied forces (Fig. 9-18) is 

not directly considered. However, "lift-off" behavior in vessels subject to 

rotation at the junction may be analyzed using a two step procedure similiar to 

the approach suggested earlier i:, this Section for analyzing the junction of a 

cylindrical wall with a flat bt:Jse (Fig. 9-18a). As was done in developing Eq. 9.58, 

in the first step, the vessel is assumed to have a hinged connection at the 

junctic.., of knuckle and flat base (Fig. 9-20a). Computer analyses of ti1i• 

structure for the applied loads (Fig. 9-20a) and for a ''unit" moment applied along 

edge b (Fig. 9-20b) provide the edge rotation and stress resultants in the knuckle 

and cylinder for ~hese loading conditions. The net rotation at b is that due to the 

oppli.!d load on a hinged joint less Mb times the rotation due to a unit restraining 

moment. In the second step, the net rotation (Fig. 9-20c), of the shell is equoted 

to thP. edge rotation of the flat bottom plate, os given by Eq. 9.53, os follows: 

M 1.5 
b 

~m - Mb~ = 3 D (q )0.5 
r b 

Eq. 9.61 

This equation is easily solve-:1 for Mb• A trial procedure usually provides the 

most practical !Olution, The final stress resultants in the shell ore those 

obtained from the computer analysis for the applied loads on the ''hinged base" 

shell plus Mt, times those obtained from the computer analysis for the unit bast. 

moment at the "hinged base" shell. 
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E>cample 9-10 illustrates the investigation of edge bending effects in a base joint 

with a knuckle for the same vertical cylindrical fluid storage vessel that was 

designed in Example ,_,. It is worth noting that tlie introductior: of the knuckle 

has not diminiMed the stresses at the most highly stresSP.d point at the 

intersection of knuckle and bottom. This is because of the additional bP.nding 

introduced by the weight of fluid over the knuckle. The knuckle does provide a 

more practical detail for connecting the base to the wall and does tend to reduce 

the discontinuii y stresses in the !ower part of the cylinder wall, compared to the 

sharply intersecting case. 

I 
I 
I 
I 

of 
\ 

(o.) Applied lood with Mh = 0 

I 
I 
I 

' 0 \ 

(b.) hppli@d ~ 

Fig. 9-20 STRUCTURE l"IJEALI.U. TION AN) LOAD CASES FOR BASE 
JOINT WITI-f KNUCKLE 

Although the knuckle base arrangement shown in Fig. 9-18(d) involving uplift of 

the entire knuckle and edge region of the bottom plate without external ''hold

down" comecti,Jns shou Id not be used in practicai design, it may be necessary to 

analyze such o condition for various reasons. This case may be solved by a direct 

computer onolysis of rhe assembly of axisymmetric cylinder, knuckle and that 

portion of the bottom plate that lifts off the base. The idealized shell structure 

is shown in FkJ. 9-21. The ell.tent of annular bottom plate to be included in the 

s!ructure is ooly the area below the weight of structure, contents and internal 

pressure that just ba1ances the upward force on the top of the cylinder (See Fig. 

9-21). As shown in the Figure, the boundary conditions at the point where the 

lifted off edge region contacts the base are zero deflection, rotation, moment 

and shear. These must exist because the bottom plate remains flat and in 

contact with the rigid base beyood this point. 

9-75 



I 
I 
I 
I 

Example 9-10: Modify the bnse detail ot the tank designed in Example,_,, by introducing 
a knuci<le as shown in the sketch. Assume that the knuckle laminate hos the some 
properties as the bottom laminate of the tank in Example 9-9. * 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I. 

I 
I 
I 
I 
I 2. 

I 
I 
I 
I I 3. 

I 
I 
I 
I 
I 
I 4. 
I 
I 
I s. 
I 
I S.I 

I 
I 
I 
I 
I 

taper woll 
0.2o" tc 0.3 

<Ii, 

·~□ 
(o) 

Lift off 
(b) 

Analyze the shell structure with the hinged support shown in sketch (b) for two 
loading conditions: (I) internal fluid pressure, and (2) unit moment applied ot the 
hinge. This is accomplished using a computerized ''finite difference" analysis for 
oxi-symmetric loadings on oxi-symmetric shell of revolution. Program norne is 
BOSOR. 

BOSOR results provide %m and %b o.; follows: 

Fluid Pressure loading; %m = 4.64 x I o-2 rod 

lklit m<.'ment ot b: %b = 8.98 x io-4 rad 

Solve for Mb using Eq. 9.61. Mocl:fy DR from Example 9-9 for tb = 0.3". DR = 
(.33 I .23)733 = 24 74 

4.64 x I o-2 - 8.98 x I o-4 Mb 

M 1.5 
= --· b ; M = 41.64 in/lbs 

3x2474 ,/16:2 b 

1ne final stresses in the shell ore calculated from the superposition of thP. rP.sults 
of the fluid pressure loading case plus Mb times the results of the unit moment 
loading case. 

Investigate maximum stresses fro1n plots of stress resultants: 

At knuckle region, point b: 

max ~x = 41.64 in-lb/in.; mc-x Nx = 42.88 lb/in. tension 

s = t2/6 = 0.32/6 = 0.0l5 in3/in; a = t = 0.3 in2/in. 
X 

,----------------------------
1 * See footr10te, Example 9-1, Page 9-1 3. 
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: Emmple '-10 (continued) 

I Allowable bending stress = .0015 x ( I x I 06, = 1500 psi 

I Allowable tensile stress = .001 x (I x 106) = IOOO psi 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 5.2 

I 
I 
I 
I 
I 5.3 
I 
I 

Interaction relation for combined bending and tension stress in x direction: 

41.64 42.88 
u:urr ·or 
,~- + -rooo·- = 1.99 > 

821.2 I 

--(j) 

3.68 / e 
876,I 

I 
/_ d ------@ 

/ C 
12.95 ,-

\ 
\ ,_ 

b 

-i41.64 

-<D 'I' I \ 
/ ' 

' 

I 
I 
\ 

1.0 N.G. 

k-----13 

e 

b ....__a 
L = 3.21" e 

Tension Side Tensile+ No 

At knuckle region, point c: Ng max = 221.7 lb/in.; Mg"' 4.65 in-lb/in. 

lntercJCtion relation for combined be!iding and tension in Odirectioo: 

4.65 221.7 

ffl- + ~ - = 0.95 < 1.0 o.k. 

At tapered woll regia'l, point c: max M = 12.95 n.-lb/in.; max N = 0.38 lb/in. 6,eglect); 
X X 

sx = 0.32 /6 = 0.(i 15 in. 3 /in.; Al lowoble bending stress = 0.0015 x co.a x I 06) = 1200 psi 

I ax = 12.95/0.015 = 86::, psi < 1200 psi 

: 5.4 At tOf)el'ed wall region, point d: 

o.k. 

I 
I 
I 
I 
I 
I 

max Nil = 876.1 lb/in. tension; Mg= 2.18 in.-lb/in. 

Use average thickness, t = 0.28; a = t = 0.28 in. 2 

Allowable bending stress: 0.0015 (3.4 x I 06) = 5 I 00 psi 

Allowable tensile stress = 0.00 IO (3.11 x I 06) = 34CJ psi 



I 
I 
I 

Example 9- IO (continued) 

I 
I 
I 
I 
I 
I 
I 
I 
I 

5.5 

I I s.6 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 6. 

I 
I 
I 1. 
I I 1.1 

I 
I 
I 
I 
I 
I 

7.2 

I I 1.l 

I 
I 
I 

7.4 

Interaction relation for combined bending and tension in Qdirection: 

2.18 876.1 

~M + it&i- C: o.n < , .o o.k. 

At uniform wall region, po:,t e: mox Mx = 3.68 in-lb/in; N>.. = 0 

sx = .262/6 = 0.01 I in3/in. 

Allowable bending stress = 0.00 IS (0.8 x I06) = 1200 psi 

ax = J.t181 = 335 < 1200 o.k. 

At uniform wall region, point f: max Ng = 821.2 lbs/in; Mg = 1.04 in-lbdin. 

s -= .262/6 = 0.01 I in3/in.; a = t = 0.26 in2/in. 
X 

Allowcble bending stress = 0.0015 (3.2 x 106) = 4800 psi 

Allowable tensile stress = 0.0010 (3.2 x I06) = 3200 psi 

Interaction relation for combined bending and tension in O direction: 

1.04 
o.OlT 
"1i800" 

821.2 

+ g_ = 1.01 = 1.0 

Calculate lift--off length, L : 
e 

o.k. 

Eq. 9.52: 41.64 = ¥ L/; Le = -{to~l_a = 3.21 in. 

Comments: 

Knuckle substantially increases the theoretical peak bending stress c.it the jundian 
with base as compared with the flat base in Example 9-9. 1--towever, knuckle 
material is overstressed in only a very small region at the junction with the base. 

Peak overstress could be decreased by using a material with a higher stiffness and 
allowable strength in both directions for the knuckle and the edge of the bottom 
(such os mot - woven roving), by increasing thickness at junction with bottom, 
ood/or by reducing knuckle radius to the smallest practical size for good quality 
construction. 

Some theoretical overstress maybe tolerable at the local region at the juction with 
the base. 

The use of a knuckle, compared to o 90° corner, is desirable from a fabrication 
viewpoint. 

I 
I 
I 
I 

Note: I in. = 25.4 mm, I in.2/in. = 25.4 mm2/mm, I in.3/in, = 645 mm3/mm, I lbf/in. = 

175 N/m, I psi= 0.0069 MPa, I in.-lbf = 0.113 N-m, I in.-lbf/in. = 4.45 N-m/m. 
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N 
l( 

p 
I • I 

♦ 

R 
C 

R• 
0 

t-
' 

Vertical Axis 
Of Veuel 

p = -ight of structure contents, and internal preuure force 
on Oll!O of edge region thot lifts off rigid base to 
balance totol upward force on structure 

R
0

• rt•quired radius of onmlor base ring to satisfy: P = 211 R~ Nx 

Fig. 9-21 BASE UPLIFT IN CLOSED PREJSURIZED VESSEL WllHOUT WALL 
HOLD-DOWN TO RIGID BASE 

,.e CONCENTRATED LOAD EFFECTS 

As stated previously, when concentrated loods, or moments, are applied to thin 

s~lls, significant bending and axial thrust stress resultants arise in local regions 

surrounding the points of force application. The paper, "Local StrP-sses in 

Spherical and Cylindrical Shells due to External Loadings" by K. Wichman, A. 

Hopper ond J. Mershon (repri.ited from Welding Research Council Bulletin 107, 

1968 in Vol. 2 of (9.17)), provides an exhaustive summary of the available hand 

calculation methods for analyzing concentrated load effects, including extensive 

chart:; ond design aids. Tire material is too extensive to be included here. 

Instead, equations for approximating moment and thrust stress resultants due to 

o concentrated radial lood and a concentrated moment load on a spherical shel! 

are presented in this Section. These may be used to determine if a more 

complete analysis is warranted. 
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Two common types of concentrated applied forces, radial load and bending 

moment, are shown in Fig. 9.22, a and b, respectively. Significant effects from 

the concentrated forces extend over a radius, 

For moment: i:,m = 2(~)1/4 Rl/2 
a 

For thrust: PT = 4(~}1/4 Rl/2 
a 

p 

(o} (b) 

Fig. 9-22 CONCENTRATED RADIAL LO.~ AN> MOMENT 

Ot-.1 SPI-ERICAL St-ELL 

Eq. 9,62 

Eq. 9.63 

Equations for approximate maximum stress rt;sultants produced by these concen

trated radial forces or moments on a spherical shell with approximately equal 

moment of inertia per unit width, i, and area per unit width, a, in each direction 

ore given in Table 9-8, Part I. These simplified equations are based on more 

comprehensive relations given in (9.19). 

The above relations -:Jre considerably simplified for an isotropic uniform thick

ness shell. Significant effects e;<tend over a radius, 

For moment: Eq. 9.64 

For thrust: Eq. 9.65 

9-80 



eu 
Resultant 

TtJble '-8 
Approximate Stress Resultants in Spherical Shells 

Subject to Concentrated Radial Loads and Moments • 

I. G-rol non-prismatic ,hell with approximately equal i and a in all directions 

. 1/4 
o.06 P tt-) fR 

p 

. 1/4 
0.04 P tt) {R 

p 

3/8 

0.04 P (+) . 

1/2 I o )1/4 
-.06 PR \-i-

p 

,/P 

+ .03 p~ 
I 

1/2 
.. 

ll.16 M cosQ 
p 

0.08 M cosfil 
I) 

5/8 

0.02 (-t) M cosQ 

Rl/4 /P 
1/2 

0.035 ( f) McosQ 

p 

.. 

.. 

(only up to min P = 0.18 Pr (onlv up to min p = 0.10 Pr> 

w maxw ■ 
0.12 PR 

E.Jfa 

2. Uniform shell thickneu, t 

w 

O.OJP@ 
p 

0.02P@ 
p 

0.10 PR l/4 

.374 jp 

.12/RP 
p If 

p" 
• 0.10, 

( only up to min p = 0.18 Pr) 

fflllll w • 0.40 P R 
E t2 

I 

See9.19 

0.16 M cosQ 
p 

0.08 M cosQ 
p 

,12McosQ 
t p 

.. 

( only yp to min p = 0,10 Pf) 

See9.19 

• Adapted from (9.1~,. See charts in 9.19 for greater oc:cvrocy, 

" These opproximotions ore of varying occurocy. See (9.19) for charts that giw m«e 
accurate QR>roximationa. 
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Equations for approximate maximum stress resultant produced by these forces or 

moments on an isotropic uniform wall spherical shell are given in Tobie 9-8, 

Pert 2. 

,., TtERMAL STRESSES 

, lkliform temperature change does not produce stresses in shells with free edges. 

t-bwever, if edges are connected to elements which do not undergo the some 

thermal chon9"" nc: the shell, edge restoints arise and generally cause edge 

bending, thrust q;id shear stre5s resultants. These r,10y ~ determined by 

establishing equatio.,., .:;~ deformational compatibility as explained in Section 9.6. 

Temperature change in the form of a thermal grodient across the thickness of a 

shell often produces significant stresres which should be taken into account in 

the design of shell components. Poinb at sufficient distance from the edge of a 

shell are completely r~stained from curling to conform with the free re1otive 

deformations caused by thermal grodients, Bending moments arise thot produce 

the strains needed to accommodote the effects of thermal gradients. The 

bending moment due to a uniform thermal gradient with temperature T I on the 

outside ond T 
2 

on the inside of an isotropic shell is (q.7): 

= :: 

The stress in t~ shell is: 

= 

E aCT 1 -T2>t 2 

12 ( I - v}"--

E CT 1-T2) 

2 (I - v) 

Eq. 9.66 

Eq. 9.67 

If the edges of the shell ore free, the maximum circumferential stress in the 

vicinity of the edge is increased (9.7): 

= Eq. 9.68 
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The coefficient of expansion, a, of many plastics mcterials is relotively high ond 

this increases the magnitude of the possible st,.ess state in a plastic shell 

resulting from t'.lermal gradients or overall th~rmal change. However, the 

effects of a high coefficient of expansion are offset, to some extent, by the low 

modulus of elasticity, E, of man/ plastics. 

If the shell is a symmetrical sandwich shell subject to a uniform temperature 

gradient across its overall thick-,ess, (tc + 2tf}, the fully restrained bending 

moment ca1.,;~d by the thermal gradient is: 

= 

::. 

= 
Eaf ~::.i_-_ T 2> 

2 

Eq. 9.69 

Eq. 9.71 

Eq. 9.71 is essentiully the same as Eq. 9.67 for uniform thickness shells. 

However, because of the good thermal. insulation provided by plastic core 

sandwich constructions, (T 1 - T 2) may be much larger than in thin shells of 

uniform thickness. Because of this, stresses caused by thermal gradients may be 

much more significant in sandwich l;hells the, in thin shells of single thickness. 

Thermal stresses ore calculated in sandwich cylinders having a variety of facing 

materials in Example 9-11. 

If thermal gradients are not uniform, or if walls are non-uniform or ribbed, 

evaluation of the effects of thermal change usually is much more complex, 

requiring the application of finite element computer anol,-sis techn;ques for both 

heat transfer and stress onalyses. 
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I ~le ,-11: Estimate the thermal stress in regions away from the ends for a 
100°F temperature ~radient across the walls of sandwich cylinders having the 
thin facing :-noteriols and propertiP.s shown below.* 

Eq. 9.71: 
Ea (TI - T 2) 

ao = ax = 2 

Material E a a0 = a¥ for <r 1-T2) = I00°F 
r:si in./in.f'F P'>I ------ ------------ -- ---

Steel 30 X 106 6 X 10-6 -~ 9,000 

Aluminum 10 X 106 12 X 10-6 !: 6,000 

FRP - 50% gloss 2 ..c: 106 12 X 10-6 !: 1,200 

FRP- 30% gloss Ix 106 18 X 10-6 !: 900 

PVC 0,5 X 106 35 X I0-6 !. 875 

Polycarbonate 0,4 X 106 35 X I0-6 !. 700 

HOPE 0.15 X 106 70 X I0-6 !. 525 

l\!ote: I °F = 0.SS°C, I psi = 0.0069 MPo, I in./in.~F = 1.82 mm/mm°C 

* See footnote, Example 9-1, Page 9-13. 

9.10 STABILITY ANALYSIS 

Stability analysis is particularly important for the design of plastic shell 

structures. The high strength-to-stiffness ratio of most plastics and the 

economic need to minimize thickness of thev. materials both resvlt in designs 

often governed by stability rather thon strength considerations. Methods of 

stability Onc.Jlysis for shell structures, particularly with ri~ or sandwich 

construction, ore not widely treated in the literature. However, approximate 

methods based on buckling analyses (Of certain bc.sic structure Old load 

tJrrangements, have been proposed (9.9, 9.21, $.22) os sufficiently accurate for 

practical design of the shell configurations described in Section 9.3. These 

approxima~e methods for stability onal)"sis of uniform thickness, sandwich, or 

ri!x>ed shells ore summarized in this Section, 
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Material Stiffness 

This stiffness or modulus of eloi,ticity of the shell material must be l<novm or 

estimated to evaluate the stability of J shell structure. For many plastics 

materials, this property is dependent on the duration of load md/or the service 

temperature. The concept of the time--temperature dependent viscoelastic 

modulus, Ev, was introduced in Chapter 2 as a practical way to account for the 
r~uction in stiffness (often termed creep) that occurs under long time stress and 

with increasing temperature. The viscoelastic modulus is defined in Chapter 2 as 

the initial slope (or practically, the slope at a low stress) of the isochronous 

stress-strain curve at a j)Orticular time duration of stress, t I and temperature 

T 1• The isochronous stress-strain curve is a plot of stress vs. time-deP"fldent 

strain for several test samples at different-strr.ss magnitudes, with each stress 

level held constant for a time, t 1, and temperature T 1• The initial elastic 

modulus for short term load, E, and the viscoelastic modulus, E , for several 
V 

stress durations, t 1, t 2, ore illustrated in the stress-strain plots shown in 

Fig, 9-23. 

Modulus of elasticity may also depend on the magnitude of the short or long term 

stress. In thi5 case, the short term and/or long term stress-strain curves ore not 

linear at the stress level of interest. When on isochronous stress-strain curve is 

not linear, its slope at any particular stress level is termed the viscoelastic 

tangent modulus, Etv' for this stress, and the slope of a line joining the origin 

with the curve at that stress level is termed the viscoelastic secant modulus, 

Esv· These moduli are also illustrated in Fig, 9-23. 

a• Evr 

Slope= Etv 
.J = 12 I 

I 
" = r t I 
n ~v a I 

I 

Stroin, 11 
1

a 

Fig. '-23 EL.AS TIC MODULI FOR USE IN BUCKLING EQUATIONS 
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The buckling equations given in this section are written in terms of the initial 

elastic modulus, E, for short term loading, and for stresses within the range 

where stress is E times strain. For a ;>artkular maximum duration of long term 

load, and maximum service tern~•rature, Ev for that duration of stress and 

temperature should be used in place of E in the equa1 ;.,.,s given in this Secticn. 

When stress is outside the linear elastic or· linear vi~oelastic range, the tangent 

modulus, Et·✓• and the secant modulus, Esv' may be used to estimate a plasticity 

correction factor, n. This correction factor may be applied to reduce the 

critical Luckling stress obtainP-d using E, (E in the case of long term stress). 
V 

Methods for estimating n, based largely on experiments and theory for thin 

metal shells, are given in this Section for various types of shell buckling 

behavior. These reauire verification for application to plastic materials, 

particularly if buckling stresses exceed the ''viscoelastic limit" as defir.ed in 

Chapters 2 and 3. 

Idealized Shell Buckling Behavior 

Approximate stability analyses for many shells moy be based on consideration of 

three basic types of structural action of a cylinder: 

• Longitudinally loaded cylinder - longitudinal strEss is compressive. (Figs. 
9-24, 9-28). 

• Rt.diolly loaded cylinder 
(Fig. 9-29}. 

circumfe1 entiol stress is compressive • 

• Torsionally loaded cylindP-r - diagonal stress is compressive. (Fig. 9-3n}. 

C1lindrlcal Shells 

Longitudinally loaded long cylinder. In Fig. 9-24(0), a long cylinder under longi

tudinal load is divided into longitudinal strips of unit width around the entire 

circumference, and circumferential hoops of unit width along the entire length. 

Each longitudinal strip behaves as a slender end-lo~tied bar with continuous 

elastic wpport from the circumferential hooos (Fig. 9-24(b)). Cylinder buckling 
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resistance is a function of both the longitudinal bending rigidity, Dx, and the 

circumferential hoop rigidity, AofR, 

(a.) Long cylinder 

L 

IC 

.l 

(b,) Elastically ~ted 
longltudlnol strip 

~,t.) Longitudinal strip behoves 
as Euler strut 

Fig. 9-24 BUCKLING OF LONGITlDINALL Y COMPRESSED CYLINJER 

The longitudinal axial force per unit of circumferential length whkh buckles the 

cylinder is (9.23): 

2-{i c -..fox¾
R -- Eq. 9,72 

This equation is valid only for a "long" cylinder which buckles into one and o half, 

or more, longitudinal waves, For buckle patterns with fewer waves, lt represents 

o lower limit of buckling resistance. Other limitations ore discussed below. 

Buckling of short c,linders is discussed later in this Section. 

The half-wave length of eoch longitudinal bucic:le is (9.23): 

1b • • [ Dtr Eq. 9.73 
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For lsotr'll)ic, uniform thickness shells, Eq. 9.72 reduces to the more familiar 

cylindrical shell buckling equation: 

= = CE t 

R 

The half-wave length of each longitudinal buckle is: 

= 1.72--(Rt 

Eq. 9.74 

Eq. 9.75 

In order for Eq. 9.72 to be applicable to orthotropic, or ribhed cylindrical shells, 

the following criteria for relative longitudinal, circumferential and shearing 

stiffnesses must be met (9.9): 

2. ,.o Eq. 9.76 

> 1.0 Eq. 9.77 

- \lo 

The above stiffness parameters ore defined in Table 6-1 of Chopter 6, with x and 

0 replacing directions I and 2. 

In most practical designs for orthotropic or ribbed shells, the above criteria ore, 

or should be, met. See (9.9) for soiutions when these criteria are not satisfied. 

For orthot;-opic, ribbed or sandwich shells that meet the above criteria, Eq. 

9.14, may be used in lieu of Eq. 9.12, if "t" is replaced by •e• an effective 

thickness given by Eqs. 9.82 or 9.83 below. Thus: 

0 xc = Eq. 9.78 
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The term C in the above equation~ is a s~ell buclcling coefficient that is 

determined as follows: 

where: 

C 

k 
0 

k n 

k 
n 

= 

= 

= 

= 

Eq. 9. 79 

buckling coefficient from classical linear mathemati

cal derivations for cylindrical shell buckling, given by: 

= 0.6 , when \I = 0.3 Eq. 9.80 

3 (I - v2) 

"k"lockdown factor" (less than 1.0) for reduction of 

buckling stre~ in thin cylinders due to imperfections 

(see later discussion). kn may be estimated for 

cylindrical shells of uniform thickness from the fol

lowing semi-empirical relation, based on many tests on 

thin isotropic metal and plastic cylinders (9.24): 

I R 2 t 1.0- 0.91 (I - ----) + 1.5 lt) (R) 
,.D.06-/R/t 

Eq. 9.81 

e, the Naperian Base, equals 2. 7183 

Tr.e experimental data that provide the basis for Eq. 9.81 cover a 

range of R/t from I 00 to 4,000 end R/L from 0.2 to 33 for 

unstiffened, uniform wall thickness cylinders. The terms contain

ing R/L are not significant for smol!er values than R/L = 0.2. See 

also (9.26} for discussion of kn. 

Eq. 9.81 is plotted in Fig. 9-25 for coses where the term involving 

R/L is not significant. 

The following alternate equ,Jtion for k is recommended in (9.39), n 
based on a study of available test data on fabricated steel and 

aluminum cylinders subject to axial load, 

kn = 1.53 - 0.477 log~ ~ 0.21 Eq. 9.810 
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1.0 

C 
.Jt 0.8 

i 
8 0.6 

II. 

l 0.4 
.Jt 

~ 0.2 
~ 

0 

-- - >-- -
~ - -....... .:::- ... r R. 1d 0

111 

" 1-,l_ 

---- --r,,...,. r-... 
~r,,.... r-, ... ,..,. ~ 

Ea. 9.81 Axiol ., 
'" --· 

~n, 9.810 Ai<iol ~ ~ 

""" -II 11 
/ ,- , r', I .z, ,, , , , ,J I ,r I , 

10 2 3 • s11•• 10 z 3 • s111tlO 2 , • s111, 104 

R/t 

Fig. 9-2S KNOCKDOWN FACTOR FOR LONGITWINALL Y COMPRESSED OR 
BENT CYLII\OERS (Source 9.9) 

This equation is also plotted in Fig. 9-25 for R/t between 600 and 

IOOO. Obvious~y, it gives more conservative results than Eq. 9.81 

because it is based on tests of components with larger 

imperfections, presumably more representative of actual metal 

shells. The cut off at k = 0.21, representing R/t = 600, is n 
suggested in (9.39) because of the absence of test doto for lower 

R/t values. However, note that test data from small scale tests 

reviewed in (9.39) suggests o cut off of max. kn = 0.57, as well as 

on increase in the constant I.SJ.to 1.60 in Eq. 9.81a. If the latter 

coefficient is used in Eq. 9.8 lo in place of 1.53, the kn values 

obtained with Eq. 9.810 agree quite well with Eq. 9.81 up to the cut 

off point. 

The accuracy of either Eq. 9.81 or 9.810 for use with plastics shell 
' components will depend primarily on the accuracy of fabrication. 

Tests of full scale components should be lKldertoken as a ba;;is for 

confirming or modifying these relations. 

A further modification of Eqs. ~.tH and 9.81a for kn to include the 

increased buckling strength that can be provided by 

circumferential stiffening ribs is presented later in this Sec1 ion. 



Applicability of the above knockdown factor to ribbed or sandwich 

cylinders by substitution of t for t requires verification by tests. 
e 

k
5 

= reduction factor (less than 1.0) for shear deflection. This is 

usually only significant for sandwich shells, and is 9iven in Fig. 9-

26. 

0.1 o.os 0.1 o.s 1.0 S 10 

Fig. 9-2' REDUCTION FACTOR FOR SI-EAR OEFORMA TIOl'I IN BUCKLING OF 
LONGITUOINALL Y COMPRESSED LONG SAtOWICH CYLlt-OER 
WITH ISOTROPIC FACINGS ~ St-EAR FLEXIBLE CORE (Source 9.9) 

Obcussion of knockdown factor kr,: The buckling c.nalysis used for bars and 

plates is based on an assumption of elastic behavior and a deformed position of 

differential ~lements in the compressed component only slightly different than 

the initial theoretical geometry. When this type of analysis is applied to shells, 

the equations for critical buckling stress or stress resultant given above are 

obtained with C = k
0

• In real shells, however, prebuckling rotations usually are 

not negligibly small, and they have to be token into account in determining 

buckling resistance. This requires a non-linear analysis, as well as consideration 

of initial deviations of the shell geometry from the assumed perfect cylindrical 

shape. Initial deviations result from imperfections such as waviness and "flat 

spots" in the actual shell geometry. Further deviations occur when the shell 

deforms under 10.:>d. These prebuckling changes in the shells geometry usually 

reduce its buckling resistance to only about 1/4 to 1/8 of the resistance -,btained 

in a linear elastic small deflection anolysis. However, becouSE> o direct non

linear analysis is usuall}' too complex and unwieldly for practical design, a 
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''koockdown factor", kn' given by Eq. 9.81 or 9.81a, is usually applied to the 

results of linear theory, producing the buckling coefficient given by Eq. 9."!9. 

For a long cylinder under longitudinal compression, the buckling resistance 

developed in the classical linear analysis depends on the axiai stiffness of the 

circumferential or ring strips. In a thin shell, these ring strips hove a very low 

bending stiffness relative to their axial stiffriess. DeviatiOlls from o periect ring 

and from perfectly straight longitudinal strips cause small unsymmetrical lateral 

forces which produce circumferential bending deformations. When a typical 

"imperfect" longitudinally loaded cylinder buckles, a diamond-shaped buckle 

patte,·n arises rather than the axi-symmetric wave pattern shown in Fig. 9-24(0). 

The size ond shape of the dia'TlOf'ld-shoped ;xittern is a function of both the 

circumferential axial and bending stiffness, as well as the longitudinal bending 

stiffness. 

When circumferential stiffeners ore provided at a spacing, L , that is greater 
s 

than the half wave length of longitudinal buckling, 1 b' (see Fig. 9.24), the 

preceeding buckling theory indicates that the critical buckling load is the 

buckling capacity c-f the shell between stiffeners. Theoretically, this strength is 

not affected by the length of the shell between stiffeners when Ls > 1 b• 

However, tests reported in (7.39) show that the longitudinal buckling strength of 

such circumferentially ribbed shells is increo_sed significantly over the strength 

of a similar shell without the stiffeners. Th'! increased strength may be token 

into account by modifying the knockdown coefficient, kn' given previously by Eq. 

9.81 or 9.81a. If o shell stiffening factor, 

Ls 
A = - Eq. 9.82 

5 ~Rt 

is defined, then the following knockdown factor for buckling of the shell between 

ribs, suggested i., (9.39) for use with fabricated steel cylinders, is probably also 

applicable to plastic shells fabricated to the same level of accurocy: 

kn = (3.13 - 0.82 log ~) A. s -O.o ~ 0.87 As -0.6 Eq. 9.81b 

Obviously, kn, need not be less thoi the value given by Eq. 9.810. 
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The bending stiffness of the circumferential stiffeners do not appear in the 

above equation. This stiffness must be at least equivalent to the bending 

stiffness of an unstiffened shell of uniform thickness that hos the increased 

buckling strength given by Eq. 9.81b together with Eqs. 9.74 and 9.79. For the 

usual case of ribs that act corr.positely w;th the she:I, a length of shell equal to 

.76-ffit on each side of the rib, but not greater than 0.5 Ls, may be considered as 

o part of the rib. 

The above qualitative disc~ssion indicates thot the knockdown factor, kn, :;hould 

be a function of the ratio of circumferential bending stiffness to circumferential 

axi.JI stiffness. For an isotropic shell of uniform thickness, this ratio is t 2/ 12. 

For a planar isotropic sandwich shell with thir. equal faces, this rdio is 

(tc + tf)2/4. Also, the effective thickness of the above sandwich shell which 

produces the some critical buckling stress 'Nith Eqs. 9.72 and 9.76 is: 

Eq. 9.83 

With the above value of •e' t//12 = (tc + tf>2/4. Thus, Rite may be used in 

place of R/t in Eqs. 9.81 and 9.8 lo for determining kn for sandwich shells, 

although as stated above, this should be verified by tests. 

The equations for longitudinal buckling stress rFsultont and knockdown factors 

preStmted above cover the cases of unstiffened isotropic or orthotropic shells 

(Eqs. 9.74 or 9.72 with 9.79 and 9.81 or 9.81a), circumferentially stiffened shells 

that buckle in the uniform thickness region betweffl stiffeners (Eqs. 9. 74 or 9. 72 

with 9.79 and 9.81, 9.81a or 9.81b), ard sandwich shells (Eqs. 9.78 and 9.82, or 

9.72, with Eq. 9.81 as lower bound for kn,) Consideration of the longih1dinal 

buckling stress resultant for cylindrical shells that have both longitudinal and 

circumferential stiffeners also is of interest This case also covers the sub-ease 

of the longitudinal buckling strength of ,~ylindrical shells that have only 

circumferential ribs, but whose bucklt:.d shape includes bending of the ribs 

(termed "9ffierol instability" as compared to "local buckling" of the shell 

between ribs.) This stiffenPd shell case moy also be evaluated using the buckling 

theory presented above by defining an effective thickness: 

t 
e = Eq. 9.84 
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Eq. 9.84 may be applied to ribbed shells thot meet the criteria given by Eqs. 9.76 

and '1.17 (9.21) by using the knockdown factors given by Eqs. 9.81 or 9,810 based 

on R/t e· When circumferential ribs provide grcuter bending strength, D~ thon 
the minimum required in Eq. 9.76, the knockdown coefficient given by Eq. 9.81 

becomes increasingly more conservative. Eq. 9.84, together with Eq. 9. 78 may 

be used to determine the resistance to general instability of a longirudinolly 

compressed cylinder with circumferential ribs only, but if the ribs ore closely 

spaced, the kn coefficients given by Eq. 9.81 will be very conservative. Tests of 

cylinders that foiled with buckles that include the ribs hove shown that the high 

circumferential bending stiffness of the rib compared to the longitudinal bending 

stiffness of the shell iricreases the buckling coefficient, k (9.39). n 

Creep end non-linear behavior. For shells subject to long term stress and/or 

elevated temperatures, the viscoelastic modulus should be used in the stiffness 

terms of th~ above equations. If isochronous stress-strain relations ore not 

linear, kn should be multiplied by the following plasticity correction factor 

(isotropic materials) (9.9): 

n , or Eq. 9.85 
V 

Et is t~ tangent modulus of the plastic at an ultimate stress equal to the design 

stress times a suitable load factor. E is the secant modulus at that ultimate 
s 

stress and E =; the initial modulus. These moduli are obtained from a stress-

strain curve for the material, taken at least up to the required ultimate stress. 

(Fig. 9-23). 

When stress is long term, un isochronous stress-strain curve for the material 

loaded under the desig, time duration (or extrapolated to that duration) should 

be used to obtain the viscoelastic moduli, Etv' Esv' and Ev• (Fig. 9-23) 

Presswized longitudinally loaded cylinder. If a cylindric.al shell is pressurized 

internally, resulting in circumferential tension, the knockdown factor is increas

ed. The effect of the circumferential tension is to stabilize the longitudinal 

strips which ore subject to compression, thereby increasl119 the longitudinal 

buckling stress. An estimate of the increased bvckling strength of a pressurjzed 
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shell may be obtained using a correction factor to the buckling coefficient given 

by Eq. 9.79 os follows (9.9): 

Eq. 9.79a 

The correction coefficient fur effects of internal pressure, kp, is given in Fig. 

9-27. 

1.0 

0.10 . .,.,,,. 
,v 

0.01 
0.01 

I I 

I 
~ > 7~1) 

~ 
..,......--

0.10 1.0 10 

f ,f, 2 

Fig. '-27 CORRECTION FACTOR FOR PRESSUUZEO LONGITU>INALL Y 
COMPRESSED CYLINDER (Source 9.9) 

If, conversely a cylindrico! shell is subject to ci:-cumferentiol compression, the 

knockdown factor is decreased, and thus, the longitudinal buckling stress is 

decreased. The effect of combinecl radial and longitudinal compressive stresses 

may be evnluoted using the interaction equation given later in this Section. 

See (9.24) md (9.9) for summaries of moo,- studies of longitudi•ml buckling stress. 

Included ore various suggested provisions for reductions due to imperfections, 

plasticity, creep and shear deformution effects. 

l..angltudinally loaded thort cylinder Length of shell does not appear in Eqs. 9.72 

or 9.74. For long shells, length does not affect the longitudinal buckling stress. 

However, very short longitudinally loaded cylindrical shells may hove a larger 

buckling capacity than given by Eq.,. 9.72 or 9.74. Such shells bucicle into only 

one half-wove length, as shown in Fig. 9.24(c). See Eq. 9.73 or 9.75 for the 

theoret:col half-wove length of buckle. For short shells, the critical longitudinal 

j 



stress resultant that produces bu.:kling may be determined using Eq. 6. 72 in 

Chapter 6 for buckling of wide plates. This equation is essentially Euler's 

formula fo, a long slender column. 

In short shells, the axial strips derive their principal resistance to bucklir.g from 

their longitudinal bending stiffness. This is in contrast to long shells whose 

buckling resistance is e;'lhonced by elastic support from the circumferentic.l 

stiffness of the shell. Obviously, in a short shell, the rotational stiffness of the 

ends of the cylinder, as well as its length, greatly affects the buckling ;.trength. 

The effect of shell length for intermed:ate length shells where the length of the 

shell, or the spacing of circumferential stiffeners, Ls, is more than the half wave 

length of buckle, 1b' is included in Eq. 9.81b for knockdown coefficient. This 

provides a transition range where the combined resistance to buck:ing as an 

Euler strip with elastic support from the hoop stiffeners of the shell is taken into 

account. 

Whenever Eq. 6. 72, with the appror,riate end restraint coefficient, gives a higher 

buckling stress than Eqs. 9.72 or 9,74, together with Eqs. 9.79 and 9.81 or 9.81b, 

the shell is a ''short shell" and the higher critical stress r~presents the buckling 

strength. 

Example '-12 illustrates application of the above buckling equations and tl,e 

procedure described for estimating knockdown coefficier.t~ to the calculation of 

the longitudinal buckling stress iesultont for an orthotropic cylindrical shell. 

The shell stiffness is orthotropic because the circumfereritial elastic modulus 

differs from the longitudinal elastic modulus, and also because circumferential 

ribs ore provided, without longitudinal ribs. 

Cylinder Lhler Lcngitudinal Bending. The preceding equations ,nay also be used 

to determine the longitudinal buckling stress resultant in o cylindrical shell 

which is subject to overall bending, as shown in Fig. 9-28. In this case, 

longitudinal stress resultants vary within the shell, amt the buckling stress at the 

most highly compressed point can be determined using Eqs. 9.72 or 9,74 with a 

slightly modified value of the buckling coefficient. Instead of the knockdown 

coefficient given by Eq. 9.81, a higher kn, given by the upper curve in F:g. 9-25, 

may be used. 

9-96 



I E,cample '-121 Determine the longitudinol stress resultant, Nxc, that will buckle a filament 
I wourid, circumferentially ribbed, FRP tube with materials properties md dimensions shown 
I in the sketch.* 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I I. 

I I.I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 1.2 
I 
I 
I 
I 

10" 
0.3" 

.---.--x 
N 

X 

Longitudinal and circumferential stiffne;ses per unit width 

For buckling hetween ribs 

Eg t 3 x I 06 x 0.3 
Eq. 6•50= \ = (I - VQ v-:;> =o - o.41 x a.I I) 

Ex ix 0.8 x I06 x 0.33 
Eq. 6.6a: DX = (i-:vv) = 12(1 - .41 x .I I) 

Q X 

= 0.94 x 106 lbs/in. 

= 1.89 x I 03 lbs-in. 

6 
Eq. 6.Sb: A)( = 8·~ a.I? /o~llf) = 0.25 X 10

6 
lbs/in. 

ls 10 
\

5 
= -- = --.--- " 2.64 

-,/ Rt I 48 x 0.3 
Eq. 9.82 

For buckling including ribs - smear oot to get overage stiffness per unit width 

x_ = ___ Egag = 3 x l'J6 x (0.3 x 12 + 0.3 x 2) = 1.10 x 106 lbs/in 
• V (I - "g "x) 12 (I - 0.41 x O. I I) 

Ox = 1.89 x 103 lbs-in 
I I 1.3 Check stiffness ratios: 

I 
I 
I 
I 
I 
I 
I 
I 

~Dg 
Eq. 9.76: ---- > 1.0 

~ Dx 

Between ribs: ~ = ~ ~ ; Dg = l.O D and thus ~ Dg 
tJ:8 x' ~Ox 

= 1.0 

Including ribs: D0 increases more than .(0 increases while Ox and Ax do not change, 
and thus inequality is satisfied. 

1---------------------------
1 .. 
I See footnote, Example 9-1, Page 9-13. 
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I EJanple ,_ 12 Ccantlnued) 
I 
I 2. 
I 
I 
I 
I 
I 
I 
I 3. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
: 4. 

I 
I 
I 
I 
I 
I 
! 
I 
I 
I 
I s. 
I 
I 
I 
I 
I 
I ,. 
I 
I 
I 

Check half wave length of buckle between ribs to deterrr.ine whether shell con buckle 
between ribs. 

I, :'ff~ X Rj 1/4 = 'ff t-89 X 103 X 40j 1/4 = 4.6 jn. 

b \ 0.94 x 106 

- ---· 

Eq. 9.73: 

Conclusion: Shell con buckle between ribs. 

Check buckling strength between ribs: 

Eq. 9.72: 

Eq. 9,79: 

Eq. 9.84: 

2 -{J C -{o~i0 

R 
C "" 

2 -rr 
\ 

ks = 1.0 

2 / 3 x 1.09 x I o3 x o.94 x 106 

0.25 X 106 

R = ~ = 82; Fig. 9 - 25:k = 0.6 
t 0.584 n 

= 0.584 in. 

N ~ = 2-[f x 0.6 x 0.6../1.89 x 103 x 0.94 x 106 

XC 48 
= I 095 lbs/in. 

Check for potential incre..ased l.xlgitudinol buckling strength due to effect of rib 
spacing: 

Eq. 9.81b: k 
n 

= (3.13 - 0.82 io,, .B.t ) >. -0.6 < 0.8 >. -0-6 
>I s - s 

kn = (3.13 - 0.82 log 80) 2.64-0,6 = 0.88, 

or max. kn = 0.8 x 2.64-0•6 = 0.45 < CJ.60 from step 3 
l\b increase expected frc;:n circumferential ribs; however, they probably make this 
shell considerably leu "imperfection sensi~ive" thor, a comparable shell without the 
ribs. Tolerances for deviations from the design geometry con probably be somewhat 
greater because of the stiffening effect of the ribs. 

Check wheth« Eq. 6.72 with k = 1.0 (Euler's formula) givf:s a higher N : 
XC 

k -2o 2 3 
N = x = I .O w x 1 •89 x IO = I St '',s/in I 095 lbs/i,l. 

XC CZ (10)2 

This result wos expected since lb (in step 2) <<a, the clear rib s!)OCing. 

Conclusion: longitudinal buckling strength is governed by sec1 ions between drcumfer
ential ribs, maxirnum Nx~ .: 1095 lbs/in., and longitudinal buckling stress is; 

t1 XC = ~~S: 36S0 psi. 

1
1 

Note: I in. = 2S.4 mm, I in.2 = 645 mm2, I lbf-in. :. 0.1 !3 N-m, I lbf/in. -= 17S Nim, 
I I psi = 0.0069 MPo 
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_____ _. 

(o.) Bent ICll'lCJ cylinder (b.) Elastically 114>P«ted 
longitudinal ,trip 

Fig. 9-28 BUCKLING OF LONGITWINALL Y BENT LONG t:Yllf'.OEH 

Radially loaded cylinder. In Fig. 9-29, a cylinder loaded by radial pre~sure is 

shown divided into circumferentia! hoops along its entire length. For very long 

cylinders i;, the regions oway from the ends of the cylinder, these hoops behave 

like slender radially loaded rings. These rings derive little support from the end 

diaphragms which ore too far away. The shell b•Jckling resistance is the same as 

the buckling resistance .:,f the strips acting as rings, given in Section 9.2. For 

cylinders of moderate length, shell buckling resistance is increased ove, the ring 

buckling capacity because of the resistance to ovalling developed from 

tongential (membrane) shear stiffness. Very short cylindrical shells under radial 

pressure or circumferential stress be' ,a·.,e the same as long, narrow plates with 

supported edges parallel to the direction of stress, developing still greater 

buckling resistance than "moderate length" cylinders. 

The .:ircumhrentiol buckling stress ond external pressure for a ~ cylindrical 

shell (Fig. 9-29c) is given by Eqs. 9.14 to 9.17 in Section 9.2. 

The circumferential buckling stess resultant for o moderate length cylinder 

(Figs. 9-290, d) is (9.21 ): 

5.5 k (A ) I /4 CD- \3/4 
n X U' 

= -------- Eq. 9.86 

L,JR 
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(o.) External Preuure on 
cylincrical shell 

0 .... ___ , 

(c.) Buckled shape of ring, 
tube, or long shell 

(e.) Short shell 

(b.) Portion of circumferent,ol 
strip 

(d.) Buckled shape of 
moderate IMgtn 
cylindrical shell 

(f.) 8uck1ed shape of short 
cylindric,:il shell 

Fig. ,_2, BUO<LING OF RADIALLY COMPRESSED CYUr.oER 

In terms of the external pressure that buckles the shell, this becomes: 

5.5 kn (Ax)l/4 (Dg)J/4 

L R-{R 
= Eq. 9.86a 

The circumferential buckling stress for on isot .. opic, uniform thickness, moderate 

length cylinder is (9.21 ): 

= 
0.855 kn E t 

(I - ,,_i)J/4 L --/R/t 

In terms of the external pressure that buckles the shell, this becomes: 

0.855 k
0 

E t2 

= 
(I - v2)314 L R~R/t 

Eq. 9.b7 

Eq. 9.8711 

The coefficient, kn' is o knockdown coefficient for effect of inperfections on 

buckling of moder1Jte length cylindrical shells under radial pressure. These shells 

derive their buckling resistance from the combined action of circumferential 
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bending stiffness and in-plane shear cr.d axial cylindrical membrane stiffnesses 

that restrain ''ovalling" of the rirl9 during buckling. This behavior is not 

"imperfection sensitive", conseq~ntly t™' knockdown coefficient required to 

obtain agreement with test rPsults is much larger than in the case of a 

longitudinally loaded cylinde,. A constant knockdown coefficient, kn = 0.9, is 

suggested (9.j) for use in Eqs. 9.86 and 9.87. 

For shells subject to long term stress and/or elevated temperatures, the 

viscoelastic modulus should be used in place of E in the above equations. If 

stress-!'ltrain relations are oot linear, kn should be multiplied by thP. following 

approximate plasticity correction factor (isotropic materials) (9.9): 

n = ~G • :~ Eq. 9.88 

For sandwich shells with "shear soft" cores, o suitable reduction factor for shear 

deformation should be applied to tlie flexural stiffness, Dg, in Eq. 9.82. See Fig. 

9-26. 

The buckling stress resultant for an isotropic uniform thickness cylinder of short 

length (Fig. 9-29e, f) is given by Eq. 6. 71 (Chapter 6) for a longitudinally loaded 

"long" plate, with coefficients obtained from Table 6-3 for various ..;onditions of 

restraint along the edges. In this case, the long direction of the plate is the 

circumference of the "short" cylinder. Too width, b, of the plate is the length, 

L, of the ''short" cylinder. No general "knockdown factor" for imperfections is 

required in the cose of short shells. 

For an orthotropic ''short'' cylinder, use Eqs. 6.92, or 6.94, depending on 

rotational restraint of edges. 

For c sandwich short cylinder, use Eq. 6.71 i,, Chapter 6 and the buckling 

coefficients gi•1en in Fig. 8-18 in Chapter 8. 

In order to determine ~ther a particular radially loaded cylindrical shell 

behaves as a long, moderate length, or short cylinder, the buckling stress 

resultant, Nc;ic, stress CJc;ic, or pressure, Per' may be calculated fo!" each type. 
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The highest calculated buckling stress resultant determines the buckling strength 

and the mode of buckling (i.e: length, classification). 

Example 9-13 illustrates ar,nlication of the above equations to determine the 

external pressure that will 1,, oduce buckling of the cylindrical tube sketched in 

Example 9-12 when heavy rib supports or end diaphragms ore spaced at 20 ft 

longitudinally. 

Torsionally loaded cylinder. In Fig. 9-30, a cylinder is shown looded iri torsion, 

producing a state of pure shear in the x and O directions, and diogonol 

compression and tension at a 45-degree helix angle. 1-tere, the shell buckles into 

inclined circumferential waves that spiral along the cylinder. Again, coses 

invnlving a long cylinder, a moderate length cylinder and a short cylif'der are 

considered. 

The shear buckling stress for an isotropic, uniform thickntss, long cylindP.r or 

tube loaded in torsion is (9.26): 

T xQc == 

0.27kn E 

ci -v2>3/4 
Eq. 9.89 

The ~~·?Or buckling stress resultant for a ribbed or sandwich long cylinder or tube 

loooed in torsion is (9.27): 

1.75 (A) t/4 (0
0
)3/4 

RJ/2 
Eq. 9.90 

The shear buckling stress for on isotropic uniform thickness moderate length 

cylinder loaded in torsion is (9.26): 

'[ xOc == 0. 70kn E I-~-· ~J 5/4 LlirR] I /2 Eq. 9.91 u _ ,}> 5/8 . r~ I ~ 

Diaphragm, if a •11 
Open, if a hbe 

L 

l 
Fig. 9-30 BUCKLING Of" TORSIONALLY LOADED CYLlt-OER 
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I 
I 
I 

~le ,_13: Deterr,ine the external pres.1ure that will produce radial buckling of the 
cylindrical ribbed tul-ulor section shown in Example ,-12 if diaphragms or very stiff ribs 
are provided ot a long:l ,dinol spacing of 20 ft.* 

I I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Longitudinal and circumferential stiffness properties per unit 
9.86a: See Example 9-12 for material properties. 

r E,/ 0.8 X :0
6 

X 0.3 O •is 106 lb /" 
"'x = I - v x "o . " ( I - 0.11 x o.4I > = ·" x s in 

length for use in Eq. 

Do is obtained by determining the averf.1ged (smeared out) properties of a 12 inch 
lel\gth. A portion of sheflhaving 9Jengt1.1 of 0.7~ v'Rt on each side acts with the rib. 
Thus,ribwidth=2+2x.76 ✓48x0.3-= 7.77in. < 12in. 

A Ay -y y 

0.3" II I 
I. 2 X 0.J = 0,6 0 I) 0.238 

~ 
2. 7.77 >C 0.3 = 2.3 0.3 0.69 0.062 

.., i '--'7 2,9 0.69 
0.69 

= 0.238 in. - =-L ,z,, y 2., 

Eoio J x , 06 x o.oos42 4 
Dg = I _ "x "o = (I _ O.liT-xn:rrr = , • 70 x IO lbs-in 

Ay2 

0.034 
0.009 
0.043 

lo 

2 x .33/1:.t = 
1.n x Y/17. ·= 

0,004S 

~ 
0.0220 
0,04Jv 
0.0650 

2. Buckling pressure, bosed on general buckling of the 20 ft. long ribbed shell: 

5.5 kn (Ax)l/4 (Dr)J/4 
Eq. 9.86a: p = r,::; ; Take kn = 0.9. 

I 
I 
I 
I 
I 
I 
I 3. 
I 
I 
I 
I 
I 
I 
I 
I 

er LR 7/ ~ 

41/4 43/4 
s.s x 0.9 x (25 x IO ) (I. 70 x IO ) 2 06 . 

Per = 240 x 4a,/48 = • psi 

Also check Eq. 9.15 for long tube buckling: 
3 D 4 

g Jxl.70xl0 046. 206. 206. P = --.r- = 3 = • psi < • psi; use p = • psi 
er R-> 48 er 

Oleck local buckling of ffll between rbs; ccnsider as intermediate length nll, L = 10 in.: 
3 

Egt /1 2 3.0x I06 xo33{12 4 . 
Dg = 

1 
v " = ( I _ 0_41 x O. I I = O. 71 x IO psi;~ some as above. 

- Q X 

5.5 X 0.9 X (25 X 104> l/4 (0.71 X 104> 3/ 4 
Per = ----------------------'-----...._ __ .a-.,_ = 25.7 psi > 2.06 psi 

10 X 48 ,fiia 
Thus, radial buckling between local ribs does not govern. l\b need to check using short 
si-lell equations since general buckling of 20 ft long shell governs. 

: f\bte: I in.= 25.4 mm, I in.4/in. = 16387 mm4/mm, I ft = 0.305 m, I lbf-in. = 0.113 Nm, 
I I lbf /in. = 175 N/m, I psi = 0.0069 MPa. 

I * 
I 

See footnote, Example 9-1, page 9-13. 
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The shear buckling stress resultant for a ribbed or sandwich modertJte length 

cylinder loaded in torsion is (9.27}: 

3.46 (Xx) 3/8 (Dg}S/8 

L 1/2 R3/4 
Eq. 9.92 

Long and moderate length cylinders stressed in shear or~ not as S£.,11-itive to 

reductions in buckling strength from geometrical imperfections as longitudinally 

compre~ cylinders. Also, they do not experience as mt·~h ,:,f a drop in post 

buckling strength as a longitudinally compressed cylinder. This is because shear 

induced by torsion represents compression in one diagonal direction accompanied 

by tension in the orthogonal diagonal directior.. Nevertheless, experiments show 

some reduction from the buckling strength determir.ed using linear elastic 

analysis (9.9). In the absence of spe.:ific experimental data for a particular 

design, a knockdown coefficient, kn = 0.8, is suggested, based on test data given 

in the literature (9.9). 

~ effect of creep may be tal<en into account by using the viscoelastic modulus, 

~' for a particular durution of load and maximum temperature design criteria in 

place of E in Eqs. 9.~9 and 9.91 above, and in the stiffness terms, Ax and o0, in 

the other equations. Also for sandwich shells, the effect of core shear 

deformo1ion may be significant. An appropriate reduction coefficient, ks' moy 

be applied to the flexural stiffness, Do in Eqs. 9.90 and 9.92. 

The she(Jr buckling stress, or stress resultllnt, for a short cylinder loaded in 

torsion is obtained using plate shea,· buckling equations given in Chapter 6. Use 

Eqs. 6.84 for isotropic short shells and 6.102 for orthotropic (inc hiding ribbed) 

short shells. For a c.ornplete cylinder of length L and radius R, b = L and a = 

211 R in the plate buckling equations. 

The h~ value of the shear buckling stress, as determined by the appropriate 

equations given above for long, moderate ar,d short length shells is the proper 

calculated buckling strength. The length associated with this stress establishes 

the proper length classification. 

The abo"e equoticns for shear buckling of cylinders loode<' in uniform shear 

resulting from torsion provide a lower bound for the sheo,. buckli,,g strength of 
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cylindrical shells subject to conditions of var-ying shear. One common case 

occurs when a cylindrical shell behaves as o t'Jbular beam, resulting in conditions 

of a maximum membrane shear stress resultant at locations at the end of the 

becm span and at the neutral axis of the beam on the sides of the cylinder. 

Elsewher-e in the cylinder, shear is lower, and thus, the torsional loading case 

provides a conservative "lower bound" shear buc1<ling estimate. See Example ,_ 

15 in Section 9.12 for an illustration of the use of the above equations to 

estLnute the shear buckling strength of o horizontal cylindrical vess.!I on saddle 

supports. 

Combinotior, of '._ongitudinol md Circumferent,al Compr~'-»ion and Shear Stress. 

The folbwing interaction equation pro,1ides a conservative means to account for 

the effect of combinations of longitudinal and circumferential compression and 

shear stresses on the buckling of a cylindrical shell: 

1.0 Eq. 9.93 

T'1e terms with...:: subscripts in the denominators ore the critical buckling stress 

resultants without the presence of other types of stress. Tht! terms in the 

l'\umerator are the calculated simultaneously applied ultimate stress resultants of 

t~od type. The unprimed Nx terr., is the uniform longitudinal stress resultant, 

0,1d the primed Nx' term is the non-uniform (bending) longitudinal stress 

re.rultont at a critical point of a cylindrical shell. 

The preceding equation is similar to Eqs. 6.87 and 6.82 for plate buckling unr'er 

combined stresses. See (9.24) for a summary of more extensive analyses of 

comb;ned stress coses. 

Other Solutions for Buckling of Cylindrical Shella. See (9.24) for equations ap

pl icable to isotropic uniform wall, ribbed or sandwich cylindrical shells under 

axial and radial compression and shear that differ somewhat from some of the 

preceding equations. Plasticity reduction factors ore also suggested for each 

type of buckling. 
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Conical Shells. 

Like the cylinder, the surfa<:e of a circular cone is formed by revolving a straight 

line about a longitudinal axis. In the case of the cone, the generating line is 

inclined to the axis of revolution, while in a cylinder it is parollel to it. Thus, 

like the cylinder, a cone has an inti,,ite radius of curvature in one principal 

direction, but in the other direction, its radius of curvature varies with distance 

from the apex. Because of its similarity to a cylinder, buckling relations for 

conical shells may be determined using on equivalent cylinder. The equivalent 

cylinder radii are shown in Fig. 9-31 for the three basic types of buckling 

behavior. The following transformation relations ore suggested (9.9): 

GJ 
(a.) (d.) 

(b.) (c.) 

Fig. 9-31 EQUIVALENT CYLIN:>ER RADII FOR BUCKLING OF CONICAL St-ELLS 
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Longitudioolly compressed cone (Fig ~-3 I a): Determine Nsc ( or o sc> at the smal I 

end of the cone usinq Eqs. 9.72 or 9.73 for a longitudinally compressed cylinder, 

and the following equivalent cylinder radius, Re (9.9): 

Re 
R1 

Eq. 9.94 = l..:OS a 

p = 2 ii H" N5c cos
2 

a Eq. 9.95 er 

The some equivalent cylinder approoch may be used to analyze the buckling of 

cylinders under non-uniform longitudinal compression caused by an applied 

bending moment (9.9). 

Cone ..-.der torsion (Fig. 9-31 b): Deter .nine a pseudo-shear buck I ing stress 

resultant, N'sOc for T's0c>, at the small end of the cone using Eqs. 9.92, or 9.91, 

for a cylinder loaded in torsion, and the fallowing equivalent cylinder radius, R , 
e 

(9.9): 

= 

Determine the actual critical shear stress resultants at the small end as: 

N,Qc = ( ;~ 2 }~,Qc 
For a constant thickness cone: 

Also: 

t sOc = 

T er = 

Eq. 9.97 

Eq. 9.98 

Eq. 9.99 

Cone ..-.der external pressure (Fig. 9-3 lch For a cone subject to external 

pressure on the sides only (no loads on top and bottom ends), determine a pseudo 

buckling stress resultant, N'-le'• (or ag',}, at the large end of the cone using Eqs. 

9.86, or 9.87, for circur ferential buckling of a ::ylinder, and the following 

equivalent cylinder radius, Re, at mid-length of the cone, (9.9): 

9-107 



= 
Eq. 9.100 

Determine the actual critical circumferential stress resultant at the large end: 

Also: Per = 
~cosa 

R2 

For a constant thickness cone: 

= 

Eq. 9.101 

Eq. 9.102 

Eq. 9,103 

Cone under distributed dead loading (Fig, 9-31d): First investigate buckling, due 

to circumferential stress resultants. Determine N'Qc (or og'c) at the large end of 

the cone using Eqs. 9.86, or 9.87 for circumferential buckling of a cylinder, and 

the following equivalent cylinder radius, ReQ' at mid-length of the cone: 

Eq. 9.104 

Determine the actual critical circumferential stress resultant at the large end: 

Eq. 9.105 

For o constant thickness cone: 

= 
Eq. 9.103 

Also investigate buckling due to longitudinal stress resultants. Determine Nsc 

(or osc) at the large end of the eoi,e using Eqs. 9.72 and 9.74 for a longitudinally 

compressed cylinder, and the following equivalent radius, Res: 

Res = 
Eq. 9.106 

Compare tt.e above critical stress resultants for circumferential and · 1gitudinal 

buckling with the appropriate circumfe~ential and longitudinal membr~ stress 

resultants at the large end of the cone. 
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The some approach, using the equivalent radii given in Eqs. 9.104 aid 9.106, may 

be used for conical shells subject to other types of distribured load such as snow 

lood or flL•id load. 

See Tobie 9-3 for membrane ~tress resultc.nts in conical shells under various 

distributed loadings. 

The theoretical buckling stress resultant in a sphere under uniform external 

pressure is exactly the same as the longitudinal buckling stress resultant in a 

longitudinally compressed cylinder. The meridional direction of the sphere is 

analogous to the longitudinal direction of the cylinder, while the circumferential 

direction is analogous to the cylinder hoops. Thus, for a spherical sheil (9.21 ): 

Nt,k = 2 -{J C -fc,<J Ag 
-~---- Eq, 9.107 

per 
4-{f c-j D,J '!o 

= 
R2 

Eq. 9.107a 

For an isotropic, uniform thickness, shell: 

09(; 
CEt = -,:r Eq. 9.108 

per 
2 CE t 2 

= R2 
Eq. 9.108a 

The term, C, is a shell buckling coefficient that is determined as follows~ 

C = Eq. 9.79 

The coefficients k
0

, kn, and k were described previously under cylindrical shells. 
!, 

The buckling coefficient from the classical linear :.X,Clcling analysis, k , is the 
0 

SOl'Tl'! as the coefficient give11 for longitudinally compressed cylindrical shells 

given by Eq. 9.74. The knocktiown coefficient, k , is estimated from one of the n 
methods given below. The reduction factor for shear deformation is not 
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significant, except in certain sandwich shells wi1h "shear soft" cores, and i~ 

token as I .C, for other spherical shells. 

In one approach (9.9), the knockdown coefficient is: 

= 

where ). = 

0.14 + ½ for). > 2.0 

). 1/4 1/2 <J 

2 ~{1-v~ (~) sin-f 

Eq. 9.109 

Eq. 9. 110 

cSk = half the i:lcluded angle of the s!iell (see Table 9-3) 

The above value of kn gives a cor,servati\·e lower bound for buckling pressure, 

based on data for shallow spherical caps and may also he "Jsed for deeper shells 

(9.9}. 

Another semi-empirical equation for kn is (9.28): 

k 
n = 

(cSk - 200) 0 . / 
0.25 (I - 0.175 --~0 - -- ) (I - -~J{~~!-) 

20 

for 20° ~ iSk ~- 60° and 400 ~ ~ < 2000 

[q. 9.111 

As a rot.·gh Ot>J>roximotion, kn may be takt•n m 0.1 o to 0.20 wht>n R/t > 400. 

In Example '-14, the shell that was Go1t1ly.1<'d for 111embru,1e and edge bending 

stress resultants in Example 9-7 is checked for s~obility using the above 

equations for buckli.,g and knockdown coefficient. See also Example 9-17 in 

Section 9.13 for on ill,,~tration of the use of the above equctions for determining 

the requireci thickness of a tronsparP.nt plastic dome shell. 
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I 
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I 
I 
I 
I 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

E,cample 7-a.: Determine the factor of safety against buckling for the spherical shell 
that was analyzed in Example 'J-7. t = 0.S in., R = 100 in., E = 640,000 psi, '-'k = 300.• 

Eq. 9.108 

Eq. 9.109: k = n 

Eq. 9.11 ~. a = 2 

h 

0.14 +~ 
). 

y " 64 lbs/ft 3 • 0,037 lbl/inl 

r..; 2J 114 
( 100) l/2 30 f ( I - 0.3 J -:;- sin T = 

kn = 0.14 + 3•2 = 0.158 
( 13.3)2 

Alternott.': 

Eq. 9.111: 

Use ov~roge kn = (0.16 + 0.22) x O.S = 0, 19 

a 0.6 '{ 0.19 X 640,(X)() X 0,5 365 . 
t/,c = ---- IOU . = psi 

SF -- ~ -- I 48 ·-' and 365 I "'· L'+O • near .:uge, m :: • .,,. near apex 

13.3 

Note: I in:3"' 25.4 mm, I psi = 0.0069 MPo, I lbf/tt3 = 157 N/m3, i lbf/in.3 = 271000 
N/m, 

I • 
I ~ footnote, Example 9-1, Poge 9-13. 
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In another approach, Eq. 9.108 is used with the following value of k
0

kn covering 

the effects of using uniformly distributed ribs or sandwich construction, as well 

as imperfections and plasticity (9.19): 

-0.54 : - 0.145 r9 (: )2 + 37 ~ I 12 

. 11.09( ff -0.03 ~ 19.9 ( ! r 
+ 31 aj 112 

+ 4.31 ~1 112 
Eq.9.111 

6 is the • 

Hon. 

,u1n deviat;on from ~he theoretical curvature, including deflec-

If 6 = 0 (:lO irnperfectil)(ls): 

I .21 
( i a)l/2 

-2 a 
Eq. 9.113 

but k
0

k,., should not be taken greater than one half the value given by Eq. 9.1 13 

for any practical shell. 

In shells subject to long term stress, E should be replaced by E for the 
V 

particular duration of stress and maximum surface temperature for that dura-

tion. If isochronous stress-strain relations ore not linear, a plasticity reduction 

factor, 11, should be applied to E or Ev' as described previously for cylindrical 

shells, 

In the case of a sandwich shell with a "shear soft" core, the reduction factor, k , 
s 

given in Fig. 9.26 for cylindrical shells may be used for spherical shells together 

with one of the above estimates for knockdown coefficient, k • n 

Buckle wave length is;: 

= (oi \ 1/4 
3.12 fR / 
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For a shell of uniform thickness: 

= Eq. 9,115 

Eq. 9.108 may be used for investigating the buckling of o spherical segment of 

shell between ribs or supports with restricted wave length, where distance 

between ribs eoch way, d < 2 -,M, using the following buckling coefficient 

(9.29): 

C = 0.00226 d23t 3.7 t3 
R + d2 R 

Eq. 9.116 

An equation for the buckling coefficient for spherical shells with various 

patterns of radial and circumferential ribs is given in (9.30). 

When o spherical shell is subject to significant concentrated loads, the following 

buckling case moy provide a useful indication of whether the shell has adequate 

safety against local buckling from the concentrated loads. The approximate 

concentrated load, P , at the apex of a isotropic uniform thickness spherical cap 
C 

that buckles the shell is (9.9): 

= 
A2 Et3 

24 R 
Eq. 9, 117. 

where A is given by Eq. 9.11 0, and may extMd over a range from 4 to I 8. This 

equation is a lower bound relationship for shells with unrestrained edges. When A 

is less than about 4, "snap through" buckling generaily will not occur (9.9). This 

conclusion should be checked experimentally for cny particular shel\ material, 

and loading combination. 

Other Shells of Positive Double Curvuttwe 

For a shell having radii of principal curvature, R I and R2, the theoretical 

buckling stress resultant in the direction with principal curvature R 1 is the some 

as the longitudinal buckling stress resultant in a cylinder with a radius of R2• 

Thus: 

Eq. 9.118a 
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2 -/3 c -Jo2 A1 
~ 

Eq. 9.118b 
I 

D I is the flexural stiffness and 7r: 1 is the axial stiffness in the direction having 

radius R1, while D2 and A2 are the respective flexural and axial stiffnesses in 

the direction having radius R2• The buckling coefficient, C, may be estimot~d 

using the R/t ratio for the principal direction orthogonal to the direction of 

critical compression stress, as described previously. 

Sef" (9.9) for specific ouckling relations for various doubly curved shapes such as 

complete ellipsoidal shells, ellipsoidcl and torisphericol head,, complete circular 

toroidal (donut shape) shells, and bowed out toroidal segments. Note that with 

some of these shapes, internal pressure produces compression in certain parts of 

the shell, thereby requiring consideration for buckling resistance even though the 

major stress resultants in the shell are tensile. See Vol. 2 of (9.17) for several 

discussions of conditions that produce buckling of torispherical and ellipsoidal 

heads under internal pressure. 

A hypar hos negative Gaussian curvature. It has radii of principal curvature 

which ore of opposite sign. For the "skew hyi:;ar" shown in Fig. 9-1 lc, d, 

approximate equations for the radii of principal curvature are (9.31 ): 

Long diogonol: 

Short diagonal: 

2ab 
C 

2ab -
C 

2 b) 
cos "Z 

·n2 w 
SI '2' 

Eq. 9.l 19o 

Eq.9.119b 

Membrane stresses in hypor shells subject to uniform lateral pressure are given 

in Section 9.S. In either a right hypar or the more general skew hypar, the 

diagonal direction which is "arched up" toward the load is in compression, while 

the diagonal direction which is "sagged down" is in tensiflfl. The diagonal which 

is In e-:>mpression is analogous to the longitudinal dirP.Ctlon in a longitudin:1lly 

compressed cylinder. The radius of the opposite tension diagonal is ooalagovs to 

the radius of a longitudinally compressed cylinder. Thus, the buckling stress 

resultant of a skew hypor (Fig. 9-1 lc, d) is (9.31), for compressive principal 

stress in the, 
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Long diagonal: Nie 
C iD1.°Ai = 

ab sin2 ~- Eq. 9.120a 

Short diagonal: N2c = C -{ o; A1 Eq. 9.120b 
ab cos2 w 

"l 

For an isotropic uniform th;~kness hypor, the buckling stress is (9.31): 

For compressive principal stress in the 

C E t a le = -------------

ab sin2 z-Y3(1~-v2) 
Lot,g diagonal: 

Eq. 9.121 a 

C E t 0 2c = 
ab cos2 2 ,fio=}> 

Short diagonal: 
Eq. 9.121b 

The uniformly distributed pr~:.sure which buckles a skew hypar is (9.31): 

2 c2 E t 2 

per "' a 2 b2 sin2 w J,....:-~(-1 ~~~~c..,i.-·) Eq. 9.121c 

N.lte that in the above equations, w ~ 9cfl, and a, b and c are the dimensional 

parameters of the hypar (Fig. 9-1 le). 

Eq. 9.121c for buckling of a skew hypar was derived by approximating the hypo, 

as a longitudinally loaded cylinder (direction of principal compression is taken as 

longitudinal) with radius equal to the "averaged" radius of the tension parabola 

(Eqs. 9.119, a or b) and lo.1gitudinal axis in direction of conpression parabola. 

The "averaged" radius of the tension parabola is obtained by approximating the 

radius of curvature of this parabola by the second derivative of its geometrical 

~ation (9.31). Reisner (9.38) derived eY.actly the same equation for an 

equ,;.:Jteral right hypar (w = 9Cf', a= b) using classical linear buckling theory. 

Unlike the buckling relations for longitudinally looded cylinders and doobly 

curved shells of positive Gaussian curvature, the above equations for buckling of 

hypars do not include a knockdown factor. This is because in a hypar under 

uniform lateral pressure, whenever compression exists in the one principal 

direction, tension exists in the orthogonal direction, and this greatly reduc-es the 

imperfection sensitivity of the thin hypor shell. However, the designer lihovld be 

r.autious in choice of safety factors since research is needed to determine the 

actual effects of imperfections, edge deformations, and other deviations from 
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t~retical conditions in hypc.r shells. The more flat the shell, the greater the 

expected reductions from theoretical buckling strength. Corrections should also 

be introduced for creep and shear deformation in cases where such behavior may 

be significant. 

Use of the above equations for determining the required thickness of a skew 

hypar shell for adequate buckling strength is illustrated in Example 9-18 in 

Section 9.13. A high load factor is used in tris example because of uncertainties 

about the accuracy of the knockdown factor and the validity of the membrane 

t~ry for predicting diagonal compressive stress resultants in certain hypor 

shells. It was noted previously in Section 9.4 that significant differences hove 

been found between membrane compression stress resultants and compression 

stress resultants determined by more accurate analyses that toke into account 

bending introduced by support deformotions in certain types of t-:ypar shells 

(9.32)(9,33). These findings indicate that the actual buckling strength of these 

types of hypars will be significo:1tly less than indicated by the above equations 

that ore based on membrane stress resultants in the main part of the shell. Thus, 

without tests on models that accurately represent shell geometry and edge 

support ::onditions, the above equations provide only an upper bound (unconsen,·

ative) approximation of the true buckling strength of many hypor shells. 

9.11 SAN>WICH St-ELLS 

SOldwich construc~ion provides on efficient str\lCtural cross section for utilizing 

plastics in large lightly loaded shells, typical of roo: sh JCtures. The me-nbrone 

and edge bending stress resultants in such shells may be determined using the 

concepts and equation! given previously in this Chapter. However, the design of 

sandwi,:h shells is often governed by buckling. Buckling resistance of sandwich 

shells may be determined using the equations given in the preceding Section. 

Flexural rigidity, D , and extensional rigidity, A, ore given in Tobie ~I of m 
Section 8.4. The shell buckling ~oefficient, C, in Eqs. 9.72; 9.78, 9.791 9.107, 

9.118 should include o reduction factor, k , for core shear deformation whMever 
s 

"shear flexible" cores are used. This term is defined in Section 8.3. For buckling 

equations that do not include a buckling coefficient, C, o reduction factor for 

core shear deformation, ks, should be applied to the flexural rigidity, Dm. k
5 

is 
given in Fig. 9-26. 
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Because of their relQfively greater overall thickness, buckling resistance of 

sandwich shells is usually less sensitive to imperfect ions. The knockdown factor, 

kn' to be used in determining the buckling coefficient, C, should be hosed on the 

effective thickness, t , of the sandwich. For an isotropic sandwich with thin e 
stiff faces of equal thickness and relatively thick "soft" core; t e is given by Eqs. 
9.82. For a more complex sandwich section, te' may be determined using Eq. 

9.83 and the methods given in Section 8.4 for calculating D ond A. m 

See (9.24) (9.9) for summaries of more extensive speciol solutions for buckling of 

sandwich shells. Summaries of test results ere also presented. 

Determining Optinun Proportions When Buckling Gowms Design. 

The usual design problem with a sandwich shell is to determine the proportions 

required for adequate strength and ,tability. In regions away from edges where 

membrane stresses predominate, sandwich section proportions are largely 

governed by requireme11ts for buckling resistonce. 

In the majority of shells where behavior is similar to buckling of a longitudinally 

loaded cylinder, it is often desirabl~ to optimize the proportions of the 

composite sandwich section to obtain the required quantity: Dm A = E,-,/if af 

for the least cost of the core and foce materials. This type of optimization is an 

extension of the concepts for optimizir::J sandwich proportions to obtain o 

required section modulus or moment of inertia os explained previously in Section 

8.9. 

For a sandwich with two symmetrical facings that are both thin and stiff relative 

to the core structure (see Section 13.9 in Chapter 8 for limitations), the face 

thickness, t f' and core thickness, t c' that provide the least cost of the composite 

panel (for given face and core material) for a required if of ore (~.21). 

cc ,F,::, 
= Eq. 9.122 

(2C1 -C.:) 

2 cf 
= <c -2> tf Eq. 9.123 

C 
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The minimum combined materials cost for these proportions ore: 

Eq. 9.124 

In some practical cases, the optimum face thickness, tf' is thinner than con be 

fabricated with proper quality assurance, or is thimer than a minimum required 

for adequate resistance to local effects of handling and usage. Also, sometimes 

strength requirements, instead of stability, may determine minimum facing 

thickness, When the preceding conditions apply, a mini:num value for face 

thir.knes.,, t f' is chosen and required propo:-tions are selected as follows: 

of = 2 t, Eq.9.125 

t = 
-11;~f 

- tf Eq. 9.126 
C 7t"" 

The minimum combined materials cost for these proportions is: 

min. materials cost/unit area = 2 Cf tf + Cc tc Eq. 9.127 

lri those cases where shell buckling is governed by Ef if' rather than by Er,/if Af' 

(i.e., long cylinder under rodial load), Eqs. 8.114 and 8.115 {Chapter 8) for 

optimum proportions for the case when cross sectional stiffness, Et if' governs 

should be used. 

Edge bending effects in sandwich shells may be determined using the procedures 

given in Section 9.6 and stiffness properties determined using proceduMs given in 

Chapter 8. Strt:ss may be evaluated using sectional properties anci analysis 

methods given in Chapter~ 

See Example ,_., in Section 9.13 for an illustration of how the equations given in 

this section may be used to proportion sandwich shell cr?ss sections. Also, see 

Chapter 8 for other considerations in the des1gn of sandwich sections used in 

shells, such as local buckling of facings away from the core. 
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,.12 DESIGN EXAMPLES - VESSELS 

F!uid storage vessels ore impo1 tant applications for structural plastics because 

of the widespread nee<.i for corrosion resistant contair.ers for storage of corrosive 

chemicals that often aggressively ot1ock conventional metals, Designs for 

several types of cylindrical veSSf"ls ore presented in this Section a:ld in Section 

9,7 to illustrate the application of some of the cor.cepts and simplified analysis 

methods developed earlier in this <.."hapter. 

E>Cumples 9-9 and 9-10 presented in Section 9.7 illustrate the design of an open 

top, vertically oriented, cylindrical tank with a flat bottom supported on a flat 

concrete slab. In Example 9-9, the vessel hos a shorp intersection of wall base 

ond flat bottom and in Example 9-10 the some cylindrical vessel is provided with 

a toroidal knuckle transition at the base. Eoch of the vessels in these examples 

ore fabricated by filament winding continuous gloss fibers in a polyester resin 

matrix to form the cylinder shell, ·vhile the bottom and knuckle regions ore 

fabricated by spray-up of chopped gla ... s fiber and polyester resin over a rnold. 

E,oample 9-15 in this Section illustrates the design of o cylindrical vessel with 

axis oriented horizontally, supported on two ooddles with stiff ribs at the saddles 

and with hemispherical head shells. lhe cylinder i.s fabricated by spray-up of 

chopped gloss fiber and polyester resin over a mandrel (endless helix) while the 

head shell is sprayed-up over a rnoh1 off mandrel. The ribs at the saddles are 

formed with alternating layer!! of woven roving ond mot loyed up over o 

cardboard form. 

In Example 9-16, the design ot another horizontally oriented tonk, a buried 

petroleum storage tank, is illustrated. Ribs are provided to resist buckling under 

uternol pressure. The overall design considerations that led to the selection of 

the materials and configuration of this buried petroleum storoge tank are 

di1t;ussed in Section 4.15. 

See (9.22) ond (9.43) for discussions of design Of'Pl'OOChes 01d safety factors and 

for examples of material properties and design results for glass fi~er reinforced 

tonks and vt:ssels, and vessels reinforced with advanced fibers in aerospace 

applications. 
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I 
I 
I 
I 
I 

E>ample 9-15: Develop a preliminary design for the saddle supported horizontal cylindrical 10,000 
gal capacity chemical storage tank shown in the sketch. Use a chopped strand fiberglass 
reinforced plastic laminate applied by spray-up over a mor.drel for the cylinder and heads and a 
mat-woven roving laminate for the ribs that are located at saddles. Laminate properties in any 
direction ore: 

I Tension strength 
I 
I 
I 
I 
I 
I 

Chopped Strand 

10,000 psi 

12,000 psi 

15,000 psi 

Mot-Woven :1oving for Rib at Saddle 

18,000psi 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Flexure strength 

Compression Strength 

Elastic moduli, E 

G 

" 

800,000 psi 

300,000 psi 

0.3 

24,000 psi 

18,000 psi 

1,600,000 psi 

0.25 

The design fluid specific gravity is token as I.I, including on allowonc~ of 0.06 for the weight of 
the tank, end the tank should be designed for a potential maximum overpressure of 5 psi. The 
tank should also be capable of resisting a negative internal pressure (or an external pressure) of 
0.21 psi (30 psf) •Nhen empty.* 

I I. Location of saddles and load on saddles: The saddles ore located to equalize the total shear 
force on each side of the saddle. This minimizes the shear stress resultant, o design goal 
since buckling of the tnnk shell due to in-plane shear is likely to be o design parameter that 
governs the required shell thickness. Shear forces on each saddle support are equalized 
when the volume of fluid in the region between the centerline of saddles P.qUOls the volume 
in both the regions beyond the saddles. The 10,000 gallon capocyy require:'Ja total volume 
of 1,337 cu ft. Each ilemispherical head hos a volume of 2/3 w r = (2,r x 4 )/3 = 134 cu ft. 
Thus, the r!f'ired cylinder volume = 1,337 - 2 x 134 = 1,069 cu ft, rE'QUiring a length of 
1,069/• x 4 = 21.3 ft. TQ provide one ~If the volume, the cylinder length between 
centerlines of saddles should be 1,337/2w x 4 = 13.J ft, or 13 ft-4 in. The cylinder should 
extend (2 I .J -13.l)/2 or 4.0 ft beyond the centerline of s:.,pport on each end. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I • 
I 

The total load on each support saddle will be: 

Q = W/2 = (1337 x 1.1 x 62.4)/2 = 45,900 lbs 

The maximum unit weigtt of fluid and allowance for tank weight is 1.1 x 62.4 = 68.6 lbs/cu 
ft = 0.040 lbs/cu In. 

See footnote, Example 9-1, Page 9- I 3. 
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I Example 9-1 s (continued) 

I 2. Membrane stresses in wall - See Table 9-1. 

I (a) Circumferential: h = R for fluid load case in Table 9-1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Ng = y R2 c; -sin Q) with 0 = 0 at horizontal diameter 

crown: g = 90° ; Ng = 0.040 x 482 x ( I - I) = 0 

side: 0 = 0 ; Ng = 92.2 ( I - 0) = 92.2 lbs/in. 

bottorn: g = -90 ; Ng = 92.2 ( I + I) = 184.4 lbs/in. 

Add for possible 5 psi overpressure (uniform pressure case in Table 9-U: 

Ng = p R = 5 x 48 = 240 lbs/in. 

(b) Shear - fluid load case in Table 9-1 

(c) 

NxQ = y R <"2- - x) cos g; max NxQ = y R ~ at sides adjccent to support 

If shell is thickened for a width of I ft-6 in. on each side of the saddle centerline to 
resist local stresses at supports, the critical section for shear will be at l'/2 = 80 -18 
= 62 in. 

max NxO = 0.04 x 48 x 62 = I 19 lbs/in. 

longitudinal Stress 

Adjust the N stresses given in Table 9-1, fluid load case, for a cylindrical beam 
with simply s(4>ported span, L, to reflect the effect of the overhangs, as follows: 

11-611 

b el O 1d c d: 0 le b 

~ ~•3,~I 
thidcened 

shell -

Effect of Vertical Loads: 

W = 1069 X 68.6/(21.3 X 12) 

= 287 lbs/in. 

WI= 134 x 68.6 

= 9,192 lbs 

centroid of half sphere= j r 
: j X 48: 18 in. 

lilr2 
M

0 
= -9192 x (18 + 48) + 287 x 2 = -937,300 in.-lbs 

287 X 1602 . 
Mc= a - 937,300 =. 18,900 in.-lbs 

M - 937 300 2&7 x 182 + 45,900 x 18 = -570 '94 in,-lbs 
d-- ' - 2 2 ' 

302 
Me = -9192 x 48 - 287 x 2 = -570,366 in.-lbs 

9-121 



I Example ,_Is <cantlnued) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 3. 

I 3.t 
I 
I 
I 

Modifying Cose 6 in Tobie 9-1 for moment distribution with overhang instead of 
simple beam: 

L 2 Ma 
at support a: Nx = -y sin 0 T ~ 

. 287 X 1602 
where Ms = simple beam moment = 8 = 918,400 in.-lbs 

From vertical loads: 2 
at top and bottom: Nx = -0.04 x (! I.) x ~ x r/rJ,rJ~> = + 131 lbs/in. 

From fluid pressure on ends: Nx = ~ ~ - ~); h = R 
(Case 6, Table 9-1) 

at top: 0 = 90°; 0.04 x 482 I 
Nx = 2 ( I -1 ) = 23 lbs/in, 

at sides: 0 = 0 Nx = 46 (I - 0) = 46 lbs/in. 

at bottom: 0 = -90° Nx = 46 (I + ½ ) = 69 lbs/in. 

From 5 psi overpressure: Nx = e.p. = ~ = 120 lbs/in. 

Combined Nx at a and d (ore) (Point c is not critical): 

~a ~d 

top: 131 + 23 + 120 = + 274 lbs/in. 131 x ~~~:~ + 23 + 120 = + 223 lbs/in, 

sides: 0 + 46 + 120 

bottom: -131 + 69 

Trial wall thickness for strength: 

= + 166 lbs/in. 

= - 62 lbs/iri. -80 + 69 

= + 166 lbs/in, 

= - 11 lbs/in, 

Capacity reduction factors: Use ,J = 0.25 for long-term and environmental effects: 

tension 

compression 

axu = 10,000 x 0.25 = 2,500 psi 

0 XU= 16,()()(} X 0.25 = 3,750 psi 
I I 3.2 Load factor: Use 2.0 to cover uncertainties in load and analysis. 

I 3.3 Bottom section: N
0 

= 184 + 240 = 424 lbs/in. 
I 
I 
I 
I 3.4 

I 
I 
I 
I 
I 

req'cl t = 
4~~506 = 0.34 in. 

Side section at d: N0 = 92 + 240 = + 332 er + 92 lbs/in. 

Nxo = + 119 or + 119 lbs/in. 

Nx = + 166 or + 46 lbs/in. 
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i 
I 
I 

Example 9-15 (continued) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4. 
I I 4.1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

4.2 

4.3 

4.4 

Eq. 6.69a for principal stress: 
Ng + Nx + ,,....N_o __ -N~2---2-

NP = 2 - "'f'. 2 ~ + Nxg 

For maximum tension: 

NP= 332 i 166 + ✓<332 -
2

166)
2 

+ 1192 = 394 lbs/in. < 424 lbs/in. 

For minimum tension, or maximum compression: 

Np= 92: 46 _ ,fii...-
2
46) 

2 
+ 1192 "' -53 lbs/in. 

Angle of principal compression: 

Eq. 6.69b: 
2 Nxo 2 X I 19 ,I O 0 

ton 2" = - (Ng _ Nx) " - (n _ 46) = 5.17; 2., = 79.1 ; f = 39.5 

Top section: rninimum 

Check cylinder shell wall for buckling: 

Shear, o~ diagonal compression, is governing compressive condition in shell. Torsion 
bucl<ling of cylindrical shell is the closest case and will probably give conservative results. 

0.70 k E 
Eq. 9.91 for intermediate len~th cylinder: T - n 

xOc - (I _ v2//8 
k

0 
= 0.8- see discussion in Section 9.10 

L = 144 in., the clear distonce between inside edge of wddles. 

Use " = 0.7 for elastic moduli because of long terrn load, aggressive environment and 
manufacturing variations 

E = o. 7 x 800,000 " 560,000 

Try the 0.34 in. thick wall needed for strength: 

T = 0.70 X Q,8 X 560,()()() Q,34 48 : 395 psi 
C ) 5/4 ( Jl/2 

xQc (I _ .32)5/8 48 1'44 

NxQc = 395 x .34 = 134 lbs/in. 

Furnished load factor = -'#- = 2.5 o.k. 

A check using Eq. 9.89 for "long cylinder" buckling gives a much lower buckling stress,-""" . .,. 
showing that this cylinder behoves os an in!ermediate length cylinder. 

The highest longitudinal compressive stress resultant in the thin area between socldles for in 
overhang) is 11 lbs/in. and it con be shown using Eq. 9.74 that the buckling resistance is 
much higher. 
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I Exmnple ,_,s <continued) 

I 4.5 Check circumferential buckling of empty tank to determine sensitivity. 
I 
I 
I 
I 
I 
I 
I 
I 5. 

0.855 k E t2 2 
E • 9.870: p = -- __ n ___ = o.ass x 0.8 x S60,000 x 0.34 = 0.S8 psi 

q er ( I _ }>3/4 L R ,{FVt (I - .32)3/4 x 144 J< 48 { 48/0.34 

For L.F. = 2.5 for buckling: limit max. external pressure, o,· internal -..,ocuum, to 0.58/2.S = 
0.23 psi (or 33 psf). Thus, tile tank should be adequately vented against a vacuum and 
should not be unloaded too rar idly. 

Determine maximum membrane stress resultanh in hemispherical head shells: 

I I 5.1 Equation of pressure variation: 

I 
I 
I s.2 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 5.3 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pz = p0 - y r sin " cos 0 
p

0 
r 2 

Stress resultants for p
0

:N" = N0 = T = ~ = 
2 

.04 X 48 
2 = 46 lbs/in. 

NOii = 0 

-p = ·Tr top 

Gt· Cl P =yr 

End Section 

Stress resultants for y r sin " cos O - some os Table 9-2, wind 
Yr = Pw (Cose 8a) and ,J

0 
= 0 

u!_ N" = - ~-
cosOcos, ( 3..1) J 2 - 3 CC"'S " + COS ¥' 

sin 'rJ 

+ ~ 0 2 4 No = -y- cos (2 cos 4 - 3 sin f - 2 cos ,J) 
sin 3, 

N4 tan 0 
NOrJ = cos ,J ~ sin 0 ( 3 -') = - ,-- -:-:=-r:: 2-3cosc.'+cos., 

sin ,J 

loading, Case 8, with 

Some trial calculations show that maximum Nf is at 0 = 0, cos O -= 1.0, and f -=- -55°. 

2 
N 0.()4 X 48 "= - 3 

1.0 cos (-55) (2 3 ( 5~) 3 ( 5 )) . 3 - cos - , + cos - 5 = + 15 lbs/in. 
sin (-55) 

Maximum compressive Ng is at O = 0 and ,J = 9<f' (top) 

.04 x 482 I 0 
Ng = + 3 -f.u (0 - 3 x I - 0) = - 92.2 lbs/in. 
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I E>mmple '-15 (cantlnued) 
I 
I 
I 
I 

Maximum NQ,J where O = 9Cf', sin O = 1.0, d = .!. 9<1', sin d = I, cos f = 0 

2 
NO,J = .04 j 48 {:g (2 - 0 + 0) = .!. 61.5 lbs/in. 

I 5.4 Stress resultants for 5 psi overpressure: 

I 
I 
I 5.5 

I 
I 
I 

6. 

I 6.1 

I 6.2 I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

N9 =Ng= Pf = ¥ = 120 lbs/in. 

Maximum combined membrane stress resultants in heod 

Tension: N0 ot bottom: 46 + 92 + 120 = 258 lbs/:n. 

N9 @ 55° = 46 + 15 + 120 = 181 lbs/in, 

Compression: (without overpressure): 

Ng at too: 46 - 92 = -46 lbs/in. 

Shear: Determine principal compression at point of moximum shear, without 
overpressure 

N9 = Ng = 46 lbs/in., NfO = 62 lbs/in. 

,_,, N - 46 + 46 - r-;;~-~~~)- --2 62; 
...... p- 2 - ,/~2 + = - 16 lbs/in • 

Design thickness of heads - same rnoteriol as cylinder 

St th e ,..'d t _ 258 X 2 O 21 . re.g : r ... - 25oo = • ,n. 
Buckling: Maximum compression is circumrerential at joint with cylinder. Since no rib is 
provided at this locotion, the structure behoves like a cylindrical shell of intermediate 
length, with equivalent length equal to the distance between edge of rib at saddle and 
effective support point somewhere in the surface of the head where slope is low enough to 
provide diaphragm action. Estimate effective length, 

L = 48'' - half rib width + i r = 48 - 8 + j x 48 "' 72 in. 

2 
_ _ 0.855 kn E t _ 0,855 x o.a x 560,000 x 0.21 2 

Eq. 9.87: "'Oc - (I - v2)3/4 L-{rff - (I - .32)3/4 72-/ 48/,21 

= 16.6 lbs/in, < 46 x LF. N.G. 
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I ~le ,_ 1 s <continued) 

I 
I 
I 
I 
I 
I 
I 
I 
I 1. 
I 1.1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

· . ..-... • ..:.'.li...'1. 

I 
I 
I 
I 
I 
I 1.2 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Try increasing t to 0.34 in., thickness required for cylinder 

34 2.5 
N0c = 16.66 x C:7r) = 55.6 lbs/in. 

L.F. = 55.6/46 = 1.20. 1-towPver, N0 = - 46 lbs/in. occurs in only one small location 
at the top. It very likely will be reduced by continuity with the cylinder where Ng = 
0 under fluid load without overpres.-.ure (Step 3.5). Thus, a thickness of 0.34 in. will 
be tentatively adopted for the head shells. 

Support Ring Rib and Saddles 

General: Stiff rings must be provided at e<i.::h ~addle support 1o corr y the membrane shear 
stress resultants that deliver the shell loods to the saddle supports. Without !iiuch ri~s, the 
shell will be subject to very high circumferential and longitudinal bending stress resultanh 
in the sodd~e region. Longitudinal direct stress resultants will increose as the shell over 
the saddles deflects, softening the effective beam action of the cylinrter. See (9.40) for a 
detailed discussion of the behavior of saddle supported horizontal vessels without ring ribs. 

If a ring is used, an malysis for the moments, thrusts aid sheors that result from loading by 
the shell membrane in-Plane shear stress resultants and support on a saddle may be 
obtained by superimposing the appropriate ring onolysis coses given in (9.3). The following 
superposition of cases provides on aporoximate onolvsis for the required ring in this 
problem. 

Investigation of the equations for moment thrust and shear in the above cases in (9.3) gives 
the following maximum values: 

max M = -0.034 Q R } 
max N = -0.25 Q 

max M= +0.033 QR 1 
max N = +C\ 13S Q J 
moxV= 0.10 Q 

at sides, tension on outside 

at crown, compression on outside 

at 7 5° above the base 

Q • 46,000 lbs from ,tep I 

at sides: 

at crown: 

at 75° above bottom: 

o't\ : -0.034 X 46,()()() X 48 
t~ : -0.25 X 46,()()() 

= -75,000 in.-lbs 
= -11,500 lbs 

M = 0.033 x 46,000 x 48 = 73,000 in.-lbs 
6,200 lbs N = +0. I 15 x 46,000 = 

V ..: 0.10 x 4S,OOO = 4,600 lbs 
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I Example ,_Is (continued) 

I I 7.3 
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Check to determine if the following trial rib design provides the necessary resistance to 
the obove stress resultants: 

It" 2" 4" 2" I" I" 2" 4" 2" 4" 
I" _..,_,.._.,.._~~i-,...t...+ .... - ........... ---4 

0.34" 

effective wid1h r: thickened s~II Mddle 
'1... support 

f:ffective projection of shell wall beyond rib= 0.76 {Rt = 0.76 /48 x 0.9 = 5 in. 

Section Properties of Half of Rib - Transformed Section to E = 1,600,000 (0.6 to .3) 

2 

3 

4 

Areo 

0.6 x 14 x 0.8/ I .6 = 

0.J X 4 = 

0.3 x S.9 x 2 

0.5 x 4 = 

A 

4.2 

1.2 

3.5 

2.0 

s 0.3 x I = 0.3 
11.2 

- , 3-4 2 09 Y=rr:7=. 

131.4 31 2 . 3. = 1i:'2""r" = • 1n., 

= 2 x I I .2 = 22.4 in. 2 

At sides: outside: 

Ay Ayo 
2 

y Yo 

0 0 2.09 18.3 

0.45 o.s 1.64 3.2 

3.05 10.7 0,96 3.2 J.5x5.52 
12 = 8.8 

6.C'S 12.1 3.96 31.4 

0.45 0.1 1.64 8 

23.4 56.9 8.8 

I = (8.8 + 56.~) x 2 = 131.4 in. 4 

5oo 131,4 55 0. 3 t ;"T.39" ; • in. 

M N 75 000 11 500 . 
at = 'S" - X = .!jf.r- - '7i:ff = 1,890 ps1 

inside trCJnsformed: a = - 7 ~og<> - 1 !h52° = 1,877 psi 
C • • 

transform ac back to stress in actual moteriol with E = 800,000 psi: 

inside actual: a c = 18..[l- = 939 psi 
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E>aan,>le ,_ 15 (continued) 

I 
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At top: outside: ac = 7Jt'!l° + ~~~2° = - 2,063 psi 

inside transformed: at = + 73~goo + 61~~ = 1,604 psi 

transform o t bock to actual material: 

. 'de o 1604 802 · 1ns1 : t = -r = psi 

Check transverse stresses in flanges due to radial forces from cL1rvature 

No o t 
Radial pressure, pr = lf = ""Fr 

Outer flange: 

Inner flange: 

Outer flange, 
transverse bending: 

Inner f longe, 
transverse bending: 

2~3 X 0.5 
pro = 48 x 6 = 19.1 psi 

P 939 x 0.6 _ 1 1 7 ps· 
ri = 48 - • I 

2 
M 19.lx(4-0.6) 221 . /lb/· = jQ ·: • Ill. S Ill. 

22.1 530 . k a f = 2 = psi o •• 
I x 0.5 /6 

2 
M II. 7 x (8 - 0.6) . ,.4 . lb /' = IO = -> in.- s in. 

of= 64 = l,~8 psi o.k. 
I x 0.62/6 

Radial load on web= 19.1 x 2 = 38.2 lbs/in.; low 

Pro 

~ I ' ' outer flange .... __ ... >, 
/,;:_web }. r "tresses \ 

k---- .... \. f f f f , f mner flange 

Pri 

Note: The maximum web radial force should include the inclined value of 38.2 plus the 
radial effect of circumfe,·ential strP.ss in the web beyond the point of zero stress. This wiil 
be of the same order as the 38 lbs/In. and thus the web stresses due to radial loads will be 
about 200 to 300 psi, well below the allowable strength. 

Che<.k compressiv~ buckling of rib flanges. Use plate buckling equations because under 
circumferential stress flanges are very "short" shells and behave like plates whose length 
corresponds to the circumferential length of the rib flange and whose width corresponds to 
the clear width of the flange. 

Eq. 6.71a: k w2 ; E t 2 
oxc = 12 (I - }) <o> and k = 4.0 

Outer flanges 4. X ; X 0.7 X 1,600,()()() 
0 xc = 2 12 (I - .25 ) 

= 85,000 psi 

IMer flange: 4. X w2 
X .7 X 800,000 

0 xc = 2 
12 (I - .3 ) 

= 13,300 psi 

Both flanges have adequate safe1y c.gainst buckling. By inspection, the some is true of the 
webs. 
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I Example ,_15 <continued) 

I I 1.6 

I 
I 
I I a. 
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I 
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I 
I 9. 
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I 
I 
I 
I 
I 
I 

I Note: 
I 
I 
I 
I 
I 

Approximate check of shear in web: max V = 4,600 lbs 

V 
approx T =~ - 4,600 = 657 psi low 

- 3.5 X 2 1 

Summary: Tile required cylinder shell thickness is governed by tensile strength under the 
circumferential stre~ resultant at the bottom and buckling resistance under the principal 
diagonal compressive stress near the supports. The hemispherical head shells ore mode the 
some thickness as the cylinder shell to obtain adequate resi!ltonce to buckling Ul"der 
circumferential compressive stress at the top junction with the cylinder. A stiff rib with 
substantial bending strength is provided at the saddle locations to reduce local bending 
effects in the adjacent shells, thereby permitting the use of a shell that is only 0.34 inch 
thkk. A tubular section is used to obtain large bending strength in the rib without 
excessive material. 

Because of the curvature of the rib, the flanges are s.Jbject to transverse bending across 
their width from radial components of the flange forces, and the web is subject to in-plane 
tensile and compressive stresses in the radial direction. The thin flanges and web of the 
ring ribs must also be checked for adequate local buckling resistance. 

Final Comment: Lack of space precludes further examination of secondary bending effects 
from differences in radial deflection of the rib and membrane !hell, local rib stresses due 
to bearing in the saddle, discontinuity bending stresses at the junction of the head and 
cylinder~ etc. 

The preliminary design obtained in this example should be checked by a finite element 
analysis of the vessel and its support system and/or by the test of a prototype vessel using 
a fluid with a specific gravity that is greater than 1.1. Drilling mud is a possible cmdidote 
material. 

If a design without a full ring rib at the support channel is desired, the shell will have to be 
thickened substantially in the vicinity of the saddles and a check of the stresses in the shell 
using a finite element computer analysis is absolutely essential. See (9.40) for a guide to 
estimating design requirements near the saddles in such vessels. However, often 
assumptions ore mode for design of steel vessels based on static requirements and the 
premise that the- structure will yield at points of high local bending stress. This is not a 
valid assumption· for plastics vesse11. 

I in. = 25.4 mm, I ft = 0.305 m, I in.2 = 645 mm2, I in.J = 15376 nn3, I ft3 = 0.028 in,3, 

I in.4 = 416231 mm4, I lbf = ~.45 N, I lbf/in. = 175 N/m, I in,-lbf/in. = 4.45 N-m/m, 

I psi= 0.0069 MPo, I psf = 47.9 Pa, I lbf/in.3 = 0.27 MN/m3, I lbf/ft.3 = 157 N/m3, 

I in.-lbf = 0.113 N-m. 



I E>earnple '-": Develop a preliminary design for a IC,,000 gal. buried petroleum storage tank of 
I the type described In Section 4.1S. vse the some FRP materials as used in Example '-IS.• 

I I. 
I 
I 
I 
I 

I 
I 
I 
I 

2. 

I 3. 
I 
I 
I 
I 
I 
I 4. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I s. 
I I S.I 

I 
I 
I 

Shape, orientation, general configuration and general approach to design of tank: This is 
described in Section 4.15. See Fig. 4-2S for arrangement of tonk with horizontal axis. 

Design criteria: These are described in Section 4.15 and are briefly summarized below: 

• Earth cover ove:r top of tank: 3 ft. 
• Depth of ground water over top of tank: 3 ft. 
• Hold-down strops to resist buoyant uplift on empty tank: 4 (See above sketcb). 
• Stored product: Petroleum with maximum specific gravity of 0.7. 
• Bedding: well compacted granular n.aterial 
• Air press11re test: S psi. 

Design approach: This is described in Section 4.15. The tonk design is first developed to 
hove adequate buckling resistance under external earth and water pressure. Prototype 
tonks are built to meet the design required for this criterion, and are tested for adequacy 
to meet other design criteria that are less susceptible to theoretical evaluation by rational 
methods of shell analysis. This avo•ds •i1e necessity of defining the specific earth and 
bedding pressure distribvtions that result when the tonk is l00<1ed with 10,000 gals. of fluid, 
and/or by concentrated wheel pressure~. at ground surface ovt:r the tank. 

Effect of restraint by earth on buckling resistance: Preliminary tests ore performed on a 
prototype tank shell without ribs to determine whether the earth envelope around the tank 
increases its resistance to buckling under external pressure. These tests show no 
significant increase in buckling resistance resulting from earth restraint. This is because 
the tcnk is approximately in o state of ''neutral buoyancy", with the upward buoyant force 
of external ground water approximately equal to the submerg.ecl weight of the tank and 
earth cover. Thus, the external earth pressure is nearly zero i~ the bottom region of the 
tonk, while the water J;ressure is maximum at this location. Further, the circumferential 
buckle wove length of a cylindrical shell of intermedia~e length (the tonk) is short 
compared to the tonk circumference so that 1o be effective, earth restraint ~st act over 
the bottom region of the tonk. Since '!Orth pressure is zero in this reg,vn, no earth 
restraint Is provided. Thus, the tonk is designed to resist the external water pressure 
without restraint of buckling by the earth. 

Design for buckling resistance: 

Ribs are provided to attain required buckling resistance without an excessivel)' thick shell 
(without ribs, required shell thickness is over I in.). Rib1 are formed over cJrdboard or 

* See footnote, Exomple 9- I, Page 9- I 3. 
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I Example ,_ 1, (continued) 
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foam plastic cores to obtain the thin-waH trapezoidal tubular section show'l in the sketch. 
This shape can be fabricated by WP.t lay-up wlien the tank shell is being rnonufoctured on a 
mandrel. w sketch of rib section in Step 5.4. 

Shell thickness is determined bosed on required resist,mce to local buckling betwee'l ribs. 
~ trial number and arrangement of ribs shown in the sketch results in a center to center 
spacing of ribs of IS in. and an assumed effective length of shell between ribs of 10.S in. 

(a) 

(1) 

(2) 

(b) 

First the thicknes'i is determined for resistance tu maximum circumferential 
compression. This occurs at the bottom of the tonk and is produced by on 11 ft. 
head of ground water with the tank empty. 

I I x 62.4 x48 228 lb 1. Ng = pr = 144 = s in. 

Thickness required for strength: Use material properties given in Example 9-15, 
with ; = 0.4 and load factor (L.F.) = 2.5. In compression, a0 u 
= 0.4 X 15000 = 6()()() psi. 

N 
t = ~ = 

222ooJ·5 
= 0.10 in. 

Thickness required for buckling resistance: 
E = 800,000 x 0.8 = 640,000 psi, and use L.F. = 2.5 

First try 11sh1..'i"t shell" equation, !:>ased on plate b~kling: 

k,r2E t 3 
Eq. 6. 7 I: NQc = 2 z 

12( I- \I ) b 

Use 0.8, giving 

N
1
\: = 22fl x 2.5 = 570 lbs/in.; estimate k = 5. (Increased ab-Ove 4. because of 

edge restraint) _ 

t : r 570 X 12(1-.J~) X 10.5
2

] l/
3 

--- 5.0 n2 640,000 _ 
= 0.28 in. 

Also try intermediate length shell equation, with kn 0.8 

0 855 k E t 2•5 
• n 

Eq. 9.87: NQc = a Qc t = 
(I. " 2)3/4 L ·,/q_ 

t = 70 X {1-0.J ) X 10,5 ,/48 = Q,38 in. ~ 
2 3/4 =] 1/2.5 

0.855 X 0.8 X 640,()()J _ 
Use t = 0.28 in. as adequate for buckling resistance. f\lote that the length 
assumption giving the h~ buckling resistance, or the lowest thickness 
requirement is the correct assumption, 

Next, the thickness obtained for circumferential compression is checked for 
Cldequacy to resist the maximum longitudinal compression stress resultant. This also 
occurs ot the bottom under on external water pressure head of 11 ft. with the tank 
empty. If hold down straps are positioned at equal spaces, as shown in the sketch, 
the tank behoves o• a tubular beam subject to a net upward load equal to the 
bouyant force of the water reduced by the buoyant weight of the lcnk and earth 
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I f>lan'1>le ,_ 1, (continued> 
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over the tonk. If the earth weight is 110 lbs/cu. ft. and only the weight directly 
over the tonk is considered, the following net upward lood is obtained: 

Upward bouyont water pressure: 2 Ww = '!I' 4 x 62.4 = 3137 lbs/ft. 

Downward eorth: W = (7 X 8 
e 

l - -1L-)( I I 0-62.4) = • 1469 lbs/ft. 
2 

Net upward load: 

Span between strops: ' L = 

M _ 1668 X 6,252 
X 12 0 approx. - 16 = 48,86 in.-lbs. 

From Tobie 5-3, Case 10, for a thin ring: 

M 48860 6.75 
ax = -s = - ,,hat = - -t- ; Nx = -6.75 lbs/in.; 

16t.8 lbs/ft. 

5 spaces x 1.25 = 6.25 ft. 

= 7,238t in.3 

Add axial compression from fluid ond earth pressure on ends. Use a:, equivalent fluid 
weight of 100 lbs/cu.ft. for water .,1us submerged lateral earth pressure. Since the 
pressure on the hemiSf)here end cops i~ assumed to act normol to its surface, the resultant 
passes through the axis of the tank at the junction of cylinder and hemisphere. Thus ther~ 
is no net moment at the junction of the hemisphere and cylinder due to its pressure 
variation on the hemisphere and the axial force in the cylinder frorn pressure on the end 
shell is produced by the overage pressure at the cylinder and hemisphere axis of rotatio,1. 
Thus: 

(I) 

(2) 

yhoR 100x7xl2x48 , . 
2 = - 1728 x 2 = - I , 7 lbs/in. = 

Check adequacy of strength with t = 0.28 in. 

a = O I 7 + 7) = 443 psi < 6000 psi 
X 0.28 

Check adequacy of resist<YlCe to longitudinal buckling. 

First, check short shell equation based on wide plate (Euler) buckling relations: 

ki E t 2 
Eq. 6.72a: a = 2 (-) ; k = say 2.0 - partial end fixity 

XC 12(1-\1 ) a 

a = 2.0 w
2 

x 640,000 ( 0.28 ) 
2 

= 823 psi 
xc 12( 1-.32) I 0.5 

Second, check axially loaded shell buckling with R/t = 
CEt Eq. 'J.74: a = -,r-; C = k k k ; k = 0.6 & 

XC I"'\ 0 n S 0 

Fig. 9-25 for R/t = 171: kn = 0.5 and C = 0.6 x 0.5 = 

Check for intermediate length case, Eq. 9.81b: 

lJS/0.28 : 171. 

k = 1.0 s 
O.J 

R -0.6 --0,6 
Eq. 9.8l(b): kn = (3.13 - 0.83 log f ) As < 0.87 A

5 

Ls 10.5 Eq 9 82· >. - - - -- = 2.86 
• • · s ~t ~ ~ 48 x ll:18 
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I EJaample ,_ 1, <continued) 
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kn = (3.13 - 0.83 log 171) 2.86-0.6 = 0.68 

or max kn = 0.8 x (2.86t0•6 = 0.43 < 0.5 

Contint•e to use k = 0.5 and C = 0.3 n 

a = 0.3 x 640t000 = 1120 psi > 823 psi 
XC 171 

1120 Use shell buckling case: Furn. L.F. = cilij = 2.53 > 2.5 o.k. 

Conclusion: Adopt a 0.23 ioch minimum shell thickness with an effective cle'lr dist~e 
between ribs of 10.5 in. (Ribs ore spaced 15 in. center-to center.) 

Determine minimum rib stiffne~s for odequote resistance to general instability of the 
entire tonk shell. This is governea by buckling resistance to circumferential compression. 
(The previous calculations how, olreody shown that the shell hos adequate resistc:J1Ce to 
longitudinal compression, with or without ribs.) 

S.Sk 'A )1/4 (l) )3/4 
Eq. 9.86a: per = n' x 0 

LR-{R 
and kn = 0.8 

62.4 x 11 x 2.5 at bottom: req•d per -= y h1 ,otfom x LF. = 144 = I 1.9 psi 

effective L = (21.25 + 2/., :< 4 x 2) x 12 " 319 in.; R = 48 in. 

Et 0.28E Eio 
~ ;;; --::z-:: ~ ; Dg = -:-7 = I.I Eio 

I - v 1 - .J 1 - v 

11.9 = 5.5 x 0.8 x I.Ix 640,000 (D.28)
114 

(i~)314 

)19 X 48 1•5 

req'd ig = 0.462 in. 4/in. 

For each rib, req'd I = 0.462 x IS 

*hlote: this is based on rib pr<>!)erties transformed to ,E = 640,000 psi 

A rib having a thin wall trapezoidal section comprised largely of er, 0.25 in. thick mot 
woven roving laminate with a.OS in. layers of filament winding applied to the inner and 
outer flanges to hold the rib in position during fabrication is provided, as shown in the 
sketch below. 

Effective Width 
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I Exan-1>1e 9-1, (continuect) 
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I • 
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I 7. 
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The "transformed" section properties based on c,E = 640,000 psi are determined below. 
The :-nodular ratio is as~~med to be 2.0 for woven roving and 8.0 for filament winding (i.e. 
E's of 1,600,000 and 6,400,000 psi, respective!y). The effective width of the inner flange 
(tank shell) is assumed to extend 0. 76-/Rt beyond the rib, but the maximum width is 
15 inches, the center to '.enter spacing of ribs. 

0.76{Rt = 'J.76,/4a-;;:iJ.28 : 2.8 in., or 0.76 {48 X (0.28 ♦-()j-:) = 4.0 in. 

Use on effective flange width of 12 in. as shown in the sketch. 

Transformed Area 
r.'E = 640,000 psi A y ,',.y yo Ayo •a 

2 

0.06 x 2 x R 
2.32 s. 13 I.SI 5.04 

0.25 x2.13x2x2 = 2.21 

0.25 x 2.13 x L x 2 = 2.13 I .141 2.52 0.33 0.23 2.13 X 22/12 = 0.71 
I 

0.06 x I x 8 x 22 
.29 o. 77 0.52 0. 72 

0.25xl.7x2x2 = 2.66 

0.28 X 12 = 3.36 0 0 I o.a1 2.20 

10.36 a.,,2 I 8.19 0.71 
8.42 

y = llr.l6 = 0.81 in. 8.19 
4 I= ~ in. 

rum. I= 8.90 6.9 in. 4 req'd; Furn S t = 81;/,, = 5.36 in. 3; S. 
OU 1.00 Ill 

8.9 9 36. 3 =~ = • ,n. 
Check design for adequate strength to support the full load of petroleum stored in tank plus 
the weight of earth and wheel loods above the tonk. 

This can be done by field tests, assisted by theoretical and experimental determinations of 
rib bending strength. The required calculations for estimating rib bending strength should 
include consideration of buckling of both the outer flange and the inner fknge (shell at rib) 
in circumferential compression, as well as transverse bending of these tlanges caused by 
radial components of the curved flange forces. This is illustrated for the ring rib design in 
Exan-1>1e 9-15, and will not be repeated here. Bending at hold down strap5 should also be 
investigated. Cose 24 in (9.3) is useful for this analysis. 

Determine thickness of head shell, baser! on b-x:kling resistance to external r,ressure. 

As shown in Example 9-15, the maximum :.tress resultant due to internal or external 
pressure in head shells subject to varying pressure is N at the bottom. Since a rib is 
located adjacent to this location and will restrain the ;Hell from buckling, determine the 
moximum N0 some distance away from the bottom, say ot r.' = 75°. Thus, using a uniform 
pressure p , at the axis of rntati!i" plus Case 8 in Table 9-2 for the t'ffect of pressure 
variation tPom p

0
, we get for <I= 7s-', Q = 0: 

PR "2 
Max. Ng = - T + .:i...Ji- ~ (2 cos 75 - 3sin27s - 2cos475) 

Sill 75 

= -0.5 y hR - 0.85 y R 2 
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I &ample 9-t, (continued) 
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Using y = 62.4 lbs/cu.ft. (= 0.036 lbsicu. in.) and neglecting any restraint of buckling by 
the soil: 

Max. Ng = - O.OJ6 x 7 x 12 x 48 - 0.85 x 0,036 x 48 x 48 = -143 lbs/in. (compression) 

It h, conservative to desigr. thickness for buckling of a spherical shell with 
everywhere in the shell (uniform pressure case) 

CEt RNOc: 1/2 
Eq. 9.108: a<k = oQc = R ; NOc: "'00ct; t = (~) 

Eq. 9. 79 C = k k k = 0.6 k 
o n s n / I/ .1. 

3 2 r.; ~I 4 R · 2 .,..k 
Eqs. 9,109 & 9,110: kn = 0.14 + -.,_~; A = 2 ~(1-v__j ( TJ ~in 7 

1/4 48 112 90 Trv t = 0,28; ). = 2(12 x ,91) ( ~ ) sin 7 = 33.6 

I< = 0.14 + 
3•2 

2 = 0.143 ; C = 0.6 x 0.143 = 0.086 
n (33.o) 

N0c: = 143 x L.F. = 143 x 2.5 = 357 lbs/in. 

1 ( 48 X 357 )112 : 0,56 in, 
if'q d t = 0.086 x 640.000 
Conclusion: Provide a O.S6 in. thick hemispheric.al head for buckling resistance. 

Max a = d.~~ = 255 psi 

Check required thickness at mid-height: 

N _ N _ .036 x 7 x IL x 48 ""2 6 lb ,. 2 5 ,- 0 -- = -,. ,;mx. = 181 lb/in 

req'd t = _ I 48 x 181 7 1/2 = 0.40 in. 
L 0.086 X 640,000 =-1 

The shell thickness could be tapered from 0.40 in. constant over the top half linearly to 
0.56 in. 75° below the horizontai diameter and constant to t~ bottom. 

~te that the tank design developed in this example is intended as a preliminary design, for 
use in further reinfinement in materials selection, materials properties, prototype testing 
etc. It is not the final dP.sign used for any particular commerci\llly produced tonk known to 
the author. 

•---------------------------------
: Note: 

I 
I 
I 

I in.= 2S.4 mm, I ft= 0.30S m, I in. 2 = 645 mm2, I in.3 = 16,387 mm3, I in.4/in. = 16,387 

mm4/mm, I in.4 = 4.16 x 105 mm4, I lbf/in. = 17S N/m, I lbf/ft = 14.6 N/m, I psi= 0.0069 

MPa, I lbf/cu. in,= 2.71 x 105 N/m3, I lbf/ft 3 
= 157 N/m3, I in.lbf = 0,113 N-m, I gallon= 

3.785 liters. 
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9.13 DESIGN EXAMPLES - ROOFS AN) SKYLIGHTS 

Plastic shells hove been widely used in building construction for skylight 

components. Occasionally, they are used as the entire roof structure to obtain 

special shapes or particular aesthetics. Curved components that provide both 

roof and wall enclosure have been marketed for housing and small buildings with 

some success. Sandwich construction has been used for large shell roof or 

building enclosure components. 

Example 9-17 illustrates the design of the transparent acrylic plastic skin panels 

whose overall design and configuration were discussed in Section 4.15. The 

required panel thickness is goverened by the buckling resistance requirea for 

snow and ice load. 

In Example 9-18, a skew hypar component is designed as a skylight over a cental 

assembly area in a church or meeting room. Fiberglass reinforcement is used to 

enhance the toughness and stiffness of the transparent thermoplastic polycarbon

ate resin b this fairly large component. Although each unit is about 30 ft long, a 

width of about 8 ft is achieved by the use of tne skew hypar geometry permitting 

shipment by truck. Also, the hypar configuration provides a doubly curved 

surface that resists wind and snow loads by both membrane tension and 

compression, thereby improving bl•:::kling resistance under both inward and 

outward load. However, a high load factor is used in the analysis fc,r buckling 

because of the reasons given in Section 9.to. 

The development of proportions and a prelirnincry investigation of thermo! 

gradient stresses and edge bending stresses in a large spherical dome of sandwich 

construction is illustrated in Example 9-19. This dome forms the roof over a 

sewage digester tank and ;>rovides desired thermal insulation in addition to its 

primary function as a structural enclosure. Prefabricated panels with mot 

reinforced FRP facings and a polyurethane foam plastic core, arranged in an 

"orange peel" layout, form the dome. Details for connecting panels developed 

here nre not included due to space lirr1itations. 

lack uf space precl.x!es the inclusion of more extensive shell design examples. 

Howevt,r, detailed design exc.mples for a large sandwich dome, and a space frame 

~ome \\ ith skew hypor roof pone Is, are presented in (9.21 ). See also (9 .41) and 

(9.42) for ,:,ther shE-11 roof design examples. 
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I Elcan1>1e 9-17: Deterl;line the sheet thickness required for the acrylic domed transparent 
I skin panel, or skylight panel, described in Section 4.15. See Figs. 4-28 and 4-29 for photos 
I of the actual unit. Assume thc.t the acrylic material has 011 elastic modulus of 400,000 psi 
I and tensile, compressive and flexural strengths in excess of 10,000 psi,* 

I i. 
I 
I 
I I 2. 

I 
I 
I I J. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 4. 
I 
I 
I 
I 
I s. 
I 
I 
I 
I 
I 
I 
I 
I 

Design criteria - see Section 4.15 for complete description: 

Inward pressure (snow): 43 psf; Outward pressure (wind): 65 psf 

Geometry - see Section 4.1S for more complete description. 

Rise: 27 in.; Radius of curvature in major region away frorn base: 
1-texogonal base inscribed within l 2 ff by IO ft recttJngle. 

60 in.; 

Thickness determination based on buckling under inward load. Apply d = 0.8 to E in 
determining buckling with snow load, and use a load factor of 2.0. 

2 
Eq. 9.108a: per :.: 

2 
CR~ t ; req'd Per=- -ft3li x 2.0 = 0.60 psi 

Eq.9.79 C = k k k ;k =-0.6;k = l,0;Eqs.9.109ond9.II0: k =0.14x~ 
onso s n >."' r.: Ll 1/4 R 1/2 "k 

X = 2 ~ ( I - v ~ (!..p sin T and trial t = 0.25 in. 

" cos dk = 60£0
27 

= 0.550; "k = 56.6°; sin -f = 0.474 

1/4 60 112 
X = 2 ( I 2 x .91) <o:n> x .4 74 = l.6. 7 

kn = 0.14 + ~ = 0.144; C = 0.6 x 0.144 = 0.087 
(26.7) . 

t _ r- 0.60 x 60
2 J I 12 . - LJ X 0.087 X 0.8 X 400,000 = 0•20 In, 

Check shell stress under wind load 

65 
PW = l7i4 X 2.0 -

43 
Ps = ffi X 2.0 = 

0.90 psi; a 
u 

0.60 psi; ou 

e___B. _ 0.90 X 60 
= TT - 2 x 0.20 

0.60 X 60 
= 2 X 0.23 = 78 psi 

Investigate base connection (see Fig. 4-30) 

= 135 psi o.k. 

Wind uplift and snow load produce local bending at the lip around the perimeter of 
the shell, resulting in the highest level of stress in the structure. The resistance of 
the shell to edge bending under at least 2.0 times the inward and outward design 
loads is determined by testing a full-scale phototrype structure mounted on an 
airtight box to simulate the restraints provided by the connection shown in Fig. 4-
30. The prototype is subject to at least 2.5 times the design pressures applied as 
vacuum (snow) and pressure (wind) loadings. 

I Note: I in. = 25.4 mm, I ft = 0.305 rr., I pi:i =- 0.0069 MPa, I psf = 47.9 Pa. 

I * 
I 

See footnote, Example 9-1, Page 9-13. 
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I ~le '-Uk Determine the required thickness of a gl0$'1 reinforced poly.~orbonate 
I thermoplastic transparent skew ~ypar skylight having the geometry shown in the slretch. * 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Equation of surface: z = ci6 xy 

--y 

z 

Plan of Four l.-.it "Stor Skylight" ove-r 
Central Areo 

: The design loads are: snow and dead load = ~2 lbs/sq ft downward; wind load = 20 lbs/sq ft 
I UJJword. 

I Assume an elastic modulus, based on short time tests of 800,000 psi and short time test 
I strengths in tension, compression and flexure above 9,000 psi. 

I I I. 

I <a> 
I 
I 
I 
I 
I 
I 
I 
I 
I (b) 
I 
I 
I 2. 
I 
I 
I 
I * 
I 
I 

F\JC:tors for limit analysis 

Use capacity reductlon factors " us follows: 

Strength 

Snow load 0.4 
Wind load 0.5 

Elastic Moduli 
(Buckling) 

o.s 
0.6 

The low capacity reduction factors for buckling ore used becuose local deviations in 
surface geometry from assumed shape may reduce buckling strength of a thin shell. 

Use a load factor of 3.0 for uncertainties about analysis and varia1 ions in design 
loads. 

Geotnetry: see Figs. 9-7 and 9-11; a = b = 12 .JI ; 2 :;:~ 72 = 186.8 in; c = 8.33 x 12 
= 100 in.; tan w/2 = 4.17/15 = 0.278; w/2 = IS.54°; w = 31.1° 

See footnote, Example 9-1, Page 9-13. 
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I EJCCJmple ,-18 (continued) 

I I 3. 

I <a> 
I 
I 
I 
I 
I 
I (b) 
I 
I 
I 
I 
I 
I 
I 
I 
I 4. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I s. 
I 
I 
I 
I 
I 
I 
I 

Membrane stress resultants: 

Snow load: p
5 

= 42/144 = 0.29 psi 

Eq 9 22• N _ ab sin 0.29 x 186.8
2 

sin 31.1 = 2,. .J lbs/in 
• • • xy - PS 2c :: 2 X 100 ° 

Eq. 9.23, a & b: N 1 = Nxycot w /2 = 26.3 cot I 5.54 = 94.6 lbs/in. 

N2 = - N tan w /2 = -26,3 tan I 5.54 = - 7 .3 lbs/in. xy 

Wind lood: p ~ -20/ 144 = -0.14 psi s 

Note: p is assumed P.quivalent to a uniformly distributed load, p
5 

normal to the 
plane 1-2:(horizontal plane). This gives a suitable approximate analysis. 

= 1:J~ x 26.3 = -12. 7 lbs. in. 

-g:~; x 94.4 = -45,6 lbs/in.; N2 = -g:~; X (-7.3) : 

Buckling governs required thickness: 

2c2 Et2 
Eq. 9.121c: p = 

er a 2 b2 sin 2 w ,/3(1 - }) 

For a lood factor of 3.0; req'd p = 0.29 x 3.0 = 0.87 psi er 

+3.5 lbs/in. 

1/4 
186.82 sin 3 I .08-/o.e7 [3( I - .32)] 

I 00 -,/2 x 0.5 x 800,000 

Use t = 0.25 in, 

= 0.242 in. 

Foc:tored Stresses: 26,3 X 3,0 3l 6 . 94,6 X 3.0 1135 , (t • ) 
'xy = o.25 = psi; o, = 0.25 = ~s,, ens1on 

~ -7.4x3.0 89 . ( . ) ,., 2 = 0_25 = - psi, compression 

Approximate edge bending stress for ''hinged" edgE" with translation prevented by 
edge member: 

0.149psa
2 

c 
Tobie 9-7: M = A 413 ; A = f = J.~ = 400 

u 0.15 x 0.29 x 186.8
2 

0 53. lb/' a 0.53 x 6 
IYI = (400)1.33 = • in- s in; b = 0.25-r = 51 psi, low 
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I &anl>le 9-18 (continued) 
I 
I 6. 

I 
Edge load and Support Reoction: The ed9e load is the summation of :;hears along the 
edges. 

I 1-torizontal edges: Length = a = 186.8 in. 
I 
I Snow load: 

I Wind load: 

max P = -Nxya == -26.3 x 186.8 = -4,913 lbs, (compression) 

max P = 12.7 x 186.8 = 2372 lbs, (tensjOC"I) 

I Inc lined edges: 
I 

Lengt!-1 = --{)-:C2 = ~ 2 + 1002 = 211.9 in. 

I Snow load: maxP = -26.3 x 211.9 : -5573 lbs, <compression) 

: Wind load: maxP = 12.7 x 211.9 = 2691 lbs, (tension) 

I Support React ion at Points 2: 
I 
I Snow load: 

I 
I 
I 
I 
I 

Vertical, P v = -5573 x 2 I ??9 = -2630 lbs at each point 2. 

Ho I (d 2 3) R -5573 X ~~t.i rizOl'lto in~tion - , H = 

also P for horizontal edges = PH 

: Thus, tie force, T 22 = 2 x 4913 x ,/2.a = 2630 lbs 

= -49131bs 

I Cleek total kxxl a, horizontal projec'ted <rea = o.29 x 15 x 12 x 100 x 2/2 = 5,220 • 2 x R o.k. 
I V 

I Wind load: The above reactions are all multiplied by -0.14/0.29 = -0,48 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Note: In this cose wind load is o~sumed to be uniformly distributed normal to the 
horizontal projection of surface, instead of normal to the surface. 

I Note: I in. = 25.4 rrtm, I ft = 305 m, I lbf "' 4.45 m, I lbf/in. = 175 N/m, i psi = 0.0069 MPo. 
I I psf = 47.9 Po. 
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I fxarnple 9-19: Develop sandwich section proportions and estimate stresses caused by a 
I 100°F thermal gradient across the sandwich section, and by edge bending effects for 
I preliminary design of a sandwich dome for a sewage digester tonk. The base diameter and 

rise of the dome ore 80 ft and 10 ft, respectively, as shown below. Assume tho'!' the 
I sandwich section is comprised of mot reinforced FRP faces and a polyurethane foam 
I plastic core. Also, assume that the base of the dome will be supported on a continuous 
I wall, and that a stainless steel ring that con freely move radially relative to the wall 
I belcw (i.e., ring is s1.1pported on a rubber pod having low shear rigidity) will be provided to 
I resist the radial thrust at the base. The ring v:ill be given sufficient section .:irea so that 

the maximum tensile stress in the ring will be 10,000 psi under full design snow load. The 
I centroid of the ring is concentric with the line of action of dome thrust and wall support. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

JOr []111111 111111 
10' 

I 

Bose Ring 

I Use a load factor of 3.0 for strength and buckling, and I .S for thermal gradient. Use the 
I following materials properties and capacity reduction factors. it 

: Property 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

lktit volumt 
3 cost, cf or cc, $/in 

.. 
Ultimate tensile strength and capacity 

reduction factor for snow load, ,jo , psi 
u 

Ultimate compression strength and capacity 
reduction factor for snow load, "<J , psi u 

Ultimate shear strength and capacity reduction 
factor for snow lead,; -r , psi 

u 
Modulus of elasticity ond capacity reduction 

factor, "Et' psi or ;Ee, psi 

Poisson's Ratio, vf 

Mooulus of rigidity and ca.,acity reduction 
factor,~, psi 

Coeffident of thermal expansion 
of faces, af' in,/in./'F. 

: it See footnote, Example 9-1, Page 13. 
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Face 
(mat FRP) 

0.08 

0.6 X 10,()(X} 

0.6 X 15,000 

0.8 X 0.9 X 106 

0.3 

20 x 10-6 

Core 
(foom plastic) 

o.oos 

0,5 X 35 

0.7 X 2,000 

0.7 x 1,000 



Example,_,, (continued) 

I. 

2. 

2.1 

2.2 

2.3 

3. 

3.1 

I 
I I 3.2 

I 3.3 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Geometry of dome: 

r2 = (40 x 12)2 + (r - 10 x 12)2; r = 1020 in.; sin qk:: ~:: 0.4706; qk = 28.07° 

Required fu for buckling resistance. Assume dead load = 2 lbs/sq ft. 

req'd Per :: (30 + 2)/ 144 x 3.0 = 0.67 psi 

N.; = Ng = +- = 0.67 x2 I 020 = 342 lbs/in. 

Bucking resistance given by [q. 9.107: Nck = 

Eq. 9.79: C" = k
0 

kn ks; k
0 

= 0.6 

2f3cM 
R 

Need Rite to determine kn, and Eftf/GcR tu determine k
5 

from Fig. 9-26. 

For first trial assume C = 0.12 

r;::-:;:- Etffl 
From Table 6-1: l L"<J'"'O = f2 f , when properties in (j end {.)directions ore tbe SJme. 

0-v) 
. 2 

'd-~ _ 1020x342xO-0.3) _ I 061 req V •tof - - • 
720,000 X 2{3 X 0.12 

Optim•Jm proportions to obtain req'd -/ii-;;; using · .. ndwich section with two 

symmetrical faces that ore both thin and stift relative tr. the core: 

Eq. 9. 122, t f =~ = {(2 21!'.lfa~ b-J/6~) = 0.185 ;n,, fadng thkknes, 

Eq. 9.12'.'): t c = ( 
2
~f - 2) t f .:. <2-u.~ -2) 0.185 = 5.55 in., core thickness 

C 

Eq. 9.83: te = {-3 (tc t ff) = {3 (0.185 + 5.55) = 9.93 in., t.qliivclent thickness 

C~ck C: 

k : R/t" = ~ ~. 103: First try f qs. 9.109 und 9,110, as tilt' rnost ,·,,iiservotive: n . 7.7~ 

A =2 [~2(1-o.l>j
1
'
4

<103)
1l2

sin~
84-I- H Q'), k · 0.14 + - )_.~.., = 0.18 

•- - ' fl ,L 
(8.95) 

Also, try r:q. 9.111 with l{/t , '•00, th<' lowt•st 1\/t in tlw rnnge of applicability: 
t' 

kn= 0.25 (I - 0.175 (!!l.:1(1'--~tl) )( I - ll.~)inn'Hlll ) - O.llti 

Use k 0.21 n 

?_2_(]_z
00
(l(Xxl_ xl ~S ·_ I'' 7 F 9 26 k - ll.95 

1, llLl' 0. o ; from ig. - , 5 -

C 0.6 x 0.21 x 0.9~ = 0.12; checks initial assumption. 
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I fxon1>1e ,_i, <continued) 

I I 3.4 

I 4. 
I 
I 
I 
I s. 
I 
I 
I 6. 
I 
I 6.t 
I 
I 
I 6.2 
I 
I 
I 7. 

I 
I 
I 
I a. 
I I s.1 
I 
I 
I 
I e.2 
I 
I 
I 
I 
I 
I 
I 
I e.3 
I 
I 
I 
I 
I 
I 
I 
I 

Use trial proportions of facings = 0.18 in. and core = 6.0 in. 

Local buckling resistance: 

Eq. 8.107: a = 0.5 (Ef E G ) 113 = 0.5(720,000 x 1400 x 700) 1 / 3 = 4,450 psi wr • c c 

Membrane stress - snow load: 

max. od = o0 = ~-~7
0~1~

0
;~ = 949 psi < 4,450 psi local buck. str. < 9,000 psi ult. str. 

Thermal gradient stress: 

+ E 11t (T 1 - T 2> __ ! 900,000 * x 20
2 

x I o-6 x I oo 
Eq. 9.71: o" = o0 : - z 
* Note: Maximum E without <J is u~ for upper bounds. 

+ ant\ • 
: - AIU PSI 

Multiply by load factor of 1.5 for ultimate strength checks: o9 = Og = .:!: 900 x 1.5 = 
.!. 1350 psi 

Combined thermal and load stresses for 1.:ltimate strength check in regions away 
from the edge. 

max a,= a0 = -949 - 1350 :a -2300 psi < ~,450 psi o.k. 

Estimate E'dge bending stress: 

If stainless steel (E = 28,000,000 psi) base ring is sized to hove o final circumferen
tial stress of 10,000 psi, the final rodiol def!ection of the base will be: 

o rx[r' 
ultimate Ar = r E I 0,000 x 40 x 12 x 3 0 514 . 

= 28,ooO,cxm-- :: . 1"· 
r 

Approximate membrale deformation of shell at edge due to maximum design 1011d 
times lood factor of 3.0 = 0.67 psi: 

o r 
Ar =- °t' (Note: this equation neglects Poisson effects). 

m 0 

Table 9-2, Case 3: Ng=-~ cos l~ =- - •61 il020 cos (2 x 28.07) = -190 lbs/in. 

190 529 .x 480 3 . 
a0m = 2-x o.m = -529 psi; A rm = - 720,()()() = -0. 53 ,n. 
Total radial def lecti'?° that must be opp lied by edge bending reaction, Hfic, is 
0.514 + 0.353 = 0.861 in. 

/,,.. edge locotion for compatibility with membrane stress 
/ ..>-

I / unstressed location of edge 
.. 

flnol location of edge if base ring is designed to have 
10,000 x 3.0 psi ring streu-at ultimate 
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I 
I 

Example ,_ 1, (continued) 

I 8.4 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 8.s 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 8.6 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Determine He; to produce ultimate t:,r -= 0.867 in. Use equations in Table 9-6. 
k 

2AR sin
2"k H,Sk Eg a0 t:,, r 

f. r = En ao . H-' = ---2-; " 
w ' "k 2AR sin "k 

= 1io □o ~2]1/4= (af_R2)1/4 

[4Ec; 1c; 41f 

Tobie 8-1: of= 2 x 0.18 

0.36 X 10202 l/4 

1 x 0.10 x (6.CI + o.1a>2 4 -----,.....--'"-------"" = 3.44 in /in. 

A = (4x3.44 ) = 12.84 

Ult ·,mate H -- 720,000 X 0.36 X o.r7 313 8 lb /" d = <. s ,n. 
k 2 x 12.8~ x 1020 x sin 28.07 

Maximum meridional moment and associated meridional thrust: 

Q.3]2 R sin _;k H"k 0.322 x I 020 (sin 2a07) 36.8 
Tcble 9-6: max. M" = --A -- = 12.84 

Location is 1jl = O~B = 1 tt = 0.0623 radians = 0.06~3 x 1 ~O = 3.57° 

Distance in from edge = R 1jl = I 020 x 0.0623 = 63.5 in. 

Meridional thrust due to H" at 1v = 3.57°: 

= 467 in.-lbs/in. 

k 
r:; . cot ,k sin().•~ - *) -{2 {sin 28.07) 38.8 cot 28.07 sin(0.8 -~ 

N' =1 L sin "k H~ e).t = ea.a = negl. 

Meridialol thrust due to membrane conditions at y = 3.57°, d = 28.07 - 3.57 = 24.5°: 

PsR 0.67x 1020 . 
N9 = -r-= - 2 =-342 lbs/in. 

Maximum meridional facing stress: 

Tobie 8-1: section modulus/11nit len<'th. s:: 2i/~ = 2 x 3,44/6.18 = I.I I ir. 3/in. 

clie~k: s = Ix td = I x 0.18 x 6.18 = I.I I in 3/in. 

Nr.' Mq 342 467 
a= 

0 
.:!:. s=~.:!:.r:n = ·-950±.421 = -1371 psi 

odd stress due to thermal gradient = -1350 

Total stress (ultimate) -2721 psi 

Upper bound maximum ultimate meridional stress in dor,,e < 4,450 psi, local 
wrinkling s1 ress. 
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I Example,_,, <continued) 
I 
I 8.7 Maximum circumferential facing stress. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 Note: 

I 

' I I 
I 

Stress at edge is compatible with I 0,000 x 3 = 30,000 psi edge ring stress: Thus, 

o = 30,000 x 72o,ooo = rJ I psi . 
0 28,000,000 -P R cos2d 

Cleek merrbrme end bending stress! I ~Q = s 2 k 

(From 8.2): 
t . sin {- 1) 

No = - I 90 - 2 x 12.84 sin 28.07 x 38.8 0 = + 279 lb:,/in. 
e 

a0 = J.~~ = +775 p~i:::: +771 psi 

To get approximate maximum stress, odd maximum therrr'JI gradient stress: 

E Cl (TI - T t ~ v 2 f; rc I - 0.32;7 
Eq.9.6&: cr 0 : lO -v, (I -v+l~ )xIT=900t0.3+-f 3 jx 1.5 

= .:!:. 1,689 psi 

Combined ultimate circumferential tension stress at edge: + 2460 psi < ti,000 psi, 
tensile strength 

Maximum circumferential bending ~tress occurs at Aill = fl.8 and is equal to !. "M
9 ~ !. 0.3 x 467 = .:!:. 140 psi 

This should be added to circumferential direct stresses due to load l.Jnd thermal 
gradient that ore slightly lower at tli = 0.8/'}.. than Ct!,.:ulated above for the edge, ~ 
= 0. Thus, maximum ultimate circumferential stress will be less than -2600 psi. 

I in. = 25.4 mm, I ft = 0.305 m, I in.2/in. = 25.4 mm2/mm, I in.3/in. =- 645 

mm3/mm, I ,n.4/in. = 16387 mm4/mm, I lbf/in, = 175 N/m, I psf = 47.9 Po, I psi= 

0.0069 MPo, I in.-lbf /in. = 4.45 N-m/m, 0 c = <°F - 32) (0.55), I in./in.!°F = 1.8 

mm/mmfc, I $/in.3 = 0.006 ¢/mm3• 
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9.14 ANALYSIS At,I) DESIGN OF Bl.fllED PIPE - (See Table 9-9 for 

Notations used in this Section). 

Most plastic pipe used in buried pipe systems behove as flexible rings that obtain 

support for vertical lood transfer from the surrounding soil. Rational structural 

analysis of such pipe requires ..:in evaluation of soil-structure interaction. Finite 

element methods have been used to obtain accurate soil-structure interaction 

analyses but they are not yet economical for routine design of practical buried 

pipe systems. Thus, buried plastic pipe are normally designed based on semi

empirical relationships for soil-structure interaction response. 

The practical approach for design of flexible buried pipe systems is based on 

simplified theory, tests, field observations and experience (9.44, 9.45). It is 

basically a method for determining the quality of installa-' ion required to permit 

the use of a ']iven pipe for given soil and surface wheel loading criteria. 

Soil load criteri,J include unit weight of soil and height of cover over the pipe. 

Surface wheel load crit~r:(" indud-.: wheel footprint, type of pavement (if any), 

magnitude and frequency of load, und required impact allowance. 

Typically, for nor,-pressure applications, buried plastic pipe systems of a 

particular material are supplied in only one or twc structural configurations. 

1-Jevertheless, these may be suitable for a wide range of cover heights and wheel 

loading conditions, if they are properly installed to meet the design require

ments. For conditions of deep fill or shallow fill with typical truck wheel loads, 

stiff embedments are required. These ore achieved with angu:ar crushed stone, 

or well-graded gravel and/or coarse sand materials compacted to near or above 

the top of the pipe. 

A well compacted side fill with support material carefully placed under the 

haunches of the pipe promotes a uniform reactive pres.;ure around the pipe, 

limiting bending stresses ood deflections to acceptable levels (Fig.9-32). Trench 

width is usually held to the minimum which will still permit proper installation of 

embedment material, In wide trenches or where trench walls ore especially soft, 

compacted material should extend at least 2.5 diameters each side of the pipe 
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for small pipe; special study is required for mhirnum compacted width for larger 

pipe. 

I- Excavated Trench ~·✓ idth --I 
{.), 

final Bockf,11 

I 
' 

Initial Backfill 

Fig. 9-32 INSTALLATION DETAILS 

Cover -
6 to 12 in. 

(ISO to 300 mm) 

Haunch 
Zone 

Haunching 

The design process is to select a trial pir.,e-soil system, and then to evaluate the 

adequacy of the i:-ipe for supporting the design fil I 1-ieight, surface ..-•heel load 

configuration, and internal pressure. if present. The installation is adequate, if, 

under design loads: 

• Deflection is within a maximum limit based on s~rvice requirements 

• Strains or stresses ore less than limits set for long term load and 
environmental exposure, or for fatigue due to multiple applications of 
wheel loading 

• Buckling reslstance is adequate 

Since maximum strain can be rnloted approximately to maximum deflection, the 

pipe will be structurally adequate if its installed rieflection is less than a 
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specified limiting deflection and provided that it possesses sufficient buckling 

resistance. 

A semi-empirical procedure for evalu\'.Jting the behavior of a buried pipe system 

having a uniform wall thickness is given in Tobie 9-9 os adapted from (9.45). The 

method, as presented, applies only to smooth-wall pipe without ribs or corruga

tions. The pipe material is assumed to be homogeneous; thus, tor fiberglass 

reinforced plastics, distribution of circumferential reir.forcement throughout the 

thickness must be reasonably uniform, balanced, and symmetrical (Section 2.S). 

The approach may be adopted to evaluate corrugated-wall pipe, ribbed-wall 

pipe, or double-wall "truss" pipe, providing the structural properties of the 

shaped wall system ore known. In these kinds of pipe, ring bending produces 

direct tension or compression on the thin wall elements; thus, limiting stresses 

and strains should be based O"'I tension or compression properties, rather than on 

bending properties of the wall material. Lor.al buckling of such thin elements 

may also prove critical. 

Table 9-9, together with subsequent tables ood graph~, provides relationships for 

pipe deflection and pipe strain resulting from soil loads, internal and external 

pressure, surface wheel locds, and initial installation effects. These values ore 

,_ then compared to limiting performance criteria for deflection based on ultimate 

strain. Also, maximum external pressure is compared to an estimated crit :cal 

buckling pressure. If any criterion is not met, soil properties can he upgraded by 

a change in materials or dE:nsity requirements, or a different pipe system can be 

tried. Procedures given in Table 9-9 are explained in more detail below. 

Des91 Criteria 

The first step in the design procedure is to set design criteria. These include 

characteristics of the installation, dimensional, strength, and stiffness properties 

of the pipe, and properties of the embedment material surroJnding the pipe. Key 

considerations ore a.~ follllws: 

Stlffnea Properties: Stiffne" properties of the pipe ood surrounding soil ore 

required for both deflP.Ction and stability calculations. ASTM standards for 

plo.~tic pipe systems intended for buriol f1 equently contain requirements for 
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!lhort-term pipe stiffness, PS
0

, measured in occord~nce with ASTM 2412 {see 

E>oample '-2). Short-term pipe stiffness con also be calculated if the circumfer-

entiol short-term elastic mod~lus and pipe dimension ore known or specified, as 

follows: 
Egi 

J'S = l_ = 6.7 -;:r 
o t:.Y R 

where the foliowing notations ore taken directly from ASTM D2412 

F = test load per unit length of pipe at 5% deflection. 

Eq. 9.154 

t:,.y -= deflection, or change in vertical diameter at the test load 
(i.e. 5% of vertical diameter) 

See Notations for defhition of other terms. 

Long-term pipe stiffness, usuolly established ot 10 years of load duration (50 

years in Europe) in the case of buried pipe, con be obtained by substituting 

extrapolated estimates of the viscoelastic mod~lus (Eq. J.I) intu Eq. 9.154. Or, 

if the creep factor CT= Ea1E 10 (same as R in Tobie 2-2) is known, the long-term 

pipe stiffneM becomes: 

r,s 10 = Eq. 9.155 

Embedment soil stiffness, E', is the modulus ot soil reaction, or stiffness of the 

soil. Average values for common embe<lmenr soils are given in Tobie 9-10. 

These values ore empirical, and ore bock-calculated from measurements on 

actual pipe installations. 

Material Strength: There ore few codes or industry concensus stondurds 

available to provide guidance on strength design of plastic pipe for the loading 

conditions encountered when buried. For example, methods are not available to 

determine strength under constant strain (relaxation), combined strains from 

sustained internal pressure and bending due to ovolling, ond various other 

combinations including cyclic loads, except in some coses for fiberglass rein

forced plastic water pipe (9.46). l.htil such guidance is available the strength 

equations (Eq. 9.156 a & b) in Table 9-11 together with interaction relations 

given in Tobie 9-9 pro.,..ide a basis for strength design which is consistent for both 

fiberglass-reinforced~lastic and thermoplastic pipe (9.45). Note that strength is 

expressed-in terms of strain rather than stress in Table 9-11. 
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Table?-, 

Design Procedure for Buried Plastic Pipe 
with U,iform Woll Thickness 

(SP.e End of Table for Notation) 

I. Design Crite,·ia 

2. 

4. 

a. Pipe Prop,,rties 

Tabulate pipe dimensions, modulus, and ultimate strength ond pipe stiffness. °"termine ultimate 
strength (in !erms of strain) from Tobie 9-11 or other source. Calculate pipe stiffness if not 
ovoiloble in specifications. 

Establish copacity reduction focl->r for pipe 
stiffness {cf') and pipe strength (f). Calculate 
reduced ul!imote strengths: 

b. Soil Properties 

Eq. 9.128a, b 

Select moduh.Js of soil reaction, Tobie 9-10, and deflection log foclor. Establish capoc:ity reduction 
factor, Id'), for modulus of soi I react ion. 

c. Load Foctoh 

Selec r I00d factors for each loading condition. 

Prei;sures OJe to applied loads: 

a. Earth load (Ys = mil density) 

b. Earth load reduced for buoycr,cy 

c. H20 wheel load (pwh from Fig. 9-33) 

Impact factor 

d. Ground water (Yw = water density) 

e. Vacwm in line 

f. lnterno I pressure 

Determine factored or ultimate pressures 

b. Averoge surface wheel load deflection 

c. Installation deflection 

d. Maximum estimated deflection 

Strain cornpor1ents: 

ps 

Pb 

C 
w 

Pw .. 
lF' 

Pg 

Py 

Pf 

Pr,u = 

p' = r.u 

a. Ring bending strain from external loads(~ from Tobie 9-12) 

Yh • 
P, C 

w 
h 

1-if 
Pwt, (I + lF) 

Pwt,/(pwh • ps) 

yw h w 

Pn X (J' 

I) X (t• 
n 

fn.,n fable 9-13 

Earth / E b1U 2:,, 
Vehicle , eb = 2.14 (ff) i1F ,c ~ 

X [}" 

X [F' 

X CT" ~11tollotion I Eb: ~ 
Total ebu = t Eq.9.138otoc 

b, Ring tension strain from internal preuure 

9-150 

Eq. 9,129 

Eq. 9,130 

Eq. 9.1 JOo 

Eq. 9.131 

E<1, 9.132 

Eq. 9,133 

Eq. 9.134a 

Eq. 9.llllb 

0t Eq, 9.135 

Eq, 9.136 

Eq, 9.137 

Eq. 9.138a 

Eq. 9.1381> 

Eq. 9,138c 

Eq. 9.138d 

Eq. 9.139 



5. 

Table 9-9 continued 

c, Ring compresoion strain from ex1em01 loads 

Earth1 Maximum C c ... 
Minimvm cc~ 

Vehicle: Maximum C 
cwu 

Minimum C • 
cwu 

Vacuum C cw 

Str~th Adequacy 

a. Maximum co~resion 
strain for all pipes 

b. Tension at perforations 
in nan-press•Jre pipe 

c. Tension in pressure pi_,e. Minimum 
lbctored compression strain ii uted 
fa- CONl'rwtive result (RF' = I for 
nan-pressure pipe). lnwstigote ca•s 
with cnt without whee I load acting. 

RF' for pres10rized pipe 

Redesign if I\, b, c > I. 

Ro 

~ 
X 

I\ 
'bu 

~ 

F\, 'bu 
'iw 

EQ.,.lliCla 

Eq. ,.114, 

Eq. 9.IIIOc 

Eq. ,.1/IOd 

Eq. ,.:.a. 

Eq. ,.141 

Eq. 9.143 

Eq. 9,1"4 

6. Allowable total deflection of pipe as ina1olled 

a. 

b. 

Gowrned by maximum con-.,resaion for all pipe 

Gowrrled by tenaion at perforations 
of nan,-pressure perforated pipe 

Eq. 9.145 

Eq. ,.14' 

Eq. ,.147 

7. Buc:lcling capacity1 

Modified AWWA formula 

For O < irr_ < 5 
a 

For S < trs:_ < 80 
0 

See Eq. ,.1 ](lo for Cw 

Eq. 9.148 

Eq. 9.ISO 

U. 6/'lR max in Eq. 9.1"8 If Eq. 9.145 to 9.147 ore uad in dahtrmin:ng maximum defltc:ti..ns. 

Buckling resi1tance ii adequate if F\i • ~ + Pgu + Pw + p_,) + (per)! I Eq. 9.151 

b. IM:kllnq under hy~ostatic ~• of load; Per' • O.S C
0 

~,(ll'tl" Eq. 9.1S2 

C0 • 2 to 3 for 10fter soils, ranging up to 6 for rigid na-tor encoa,,..,,t 

EM:lcllng resistorice <#Ider hy~ostotlc ,a ,_ ) ,_ ) 
loods is odequofl! if ·••"'tu • P.., • "''er i 1 Eq. 9.153 
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Table 9-10 

Averoge Values of E' for 
Equations 9.135, 9.13' & 9.148 (9.44) 

Average E' for Degree of Compaction of Bedding (lb/in.~) 1• 3 
I 

Embedment Material per 85 to95% of Greot~r thon 95% of Less than 85% of Unified Soi, Clossificotion Du"l)ed Maximum O..nsity Maximum Ma,d'TI\Jm 
Syatern ASTM D 2487 Density Density 

Crushed Rocle 1,000 3,000 3,000 3,000 

Coorle-Gl'ained Soil with Little 
or No Fines 

CW, GP, SW, SP contains 200 1,000 2,000 3,000 
less than 5 percent fines 

-
Coor!!:9roined Soils with Fines 

CW, CC, SM, SC contains 
more than 12 percent fines 100 400 1,000 2,000 

Fine4'ained Soi:s !LL < SO~ 2 

Soils with medium to no 
plasticity CL, Ml., ML-CL, so 200 400 1,000 
with more than 25 percent 
cocrae-groined port ic ·~s 

Fine-arolned Soils {bl S SOJ 2 

Soils with medium to no 
plasticity CL, ML, ML-CL, so 200 400 1,000 
with lfta t'-' 2S percent 
coorae-groined particles 

Fi!!!::i~olned Soils 0:L > .50~ 2 

!ioils with me<!ium to h~ No data ovoi lable 
plosriclty CH, MH, C~ 

Note11 I. Source ASTM D3839-7' 
2. LL ., Liquid limit. 
3. Maximum Density ~termlned in occordance with AASHTO T -99. 

•· I t,/in
2 

s I psi s '-' lcPo 
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Notations for Table 9-9. 

E' 

h 

h 
w 

HOO 

MF 

n 

PF 

~irical coefficient of elostic support 

buclcling coefficient for hydrosta•i<: pres
sure loo-tino or-, pipe 

correction factor to -xcount for loss of 
buclcling restraint by soil weight, due to 
ground water 

creep foctOI'; same as R in Section 3.3. 

deflect:o,, log factor 

short term elastic ,,._julus 

qJt:O!'ent elostit. rr.odulus ofter 10 years 
under constant st~ss or strain in linear 
viscoelastic r.Jnge 

modulus of soil reaction of embedment 
material (See Tobie 9-10) 

hei9ht of soil above top of pipe 

height of ground water above top of pipe 

hydrostatic design basis or 10-yeor 
strength of plastic pipe unJer sustained 
'1yd-ostotic internal pressure 

impact factor 

bedding const<Ylt for deflection (See Tobie 
9-12) 

,oad factor 

minimum load factor; moy be less than 
1.0 

ll1()fl'le!)t factor (bedding factor for ring 
bendingl (Table 9-12) 

reduction factor for ,oil modulus 

pressure on bottom region; earth load 
reduced for buoyancy 

critical huckling pressure on pipe; critical 
buckling external pressure on lateral sides 
of cone, without pressvre gn top and bot
tom ends 

critical buckling pt'essure on pipe under 
hydrostatic loading 

hydrostatic pressure in pi;1e due to in
ternol t luid 

hydrostatic pressure on pipe due to ground 
water 

pressures applied to pipe, und,:r lood;,,g 
"n" 

factored ultimate pressures oppli..cl to 
pipe, under loading "n" 

pressure at top of buried pipe due to earfh 
weight 

negative pc-essvre due to vocwm in pipe 

pressure due to wind load; pressore at top 
of bur :ed pipe diie to sur foce wheel loads, 
including impact 

pc-essure at top of buried pipe due to 
surface wheel loads (Me Fig. ,-33) 

strain concentration factor (See Tobie 9-
14) 

time-depencil,nt pipe stiffnnt 
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~ 

~ 

"' 

c:cwu 

'. cwu 

thort-term pipe 1tiffnffa 

long-term llO year) pipe stiffness 

mean radius 

index of strength odl,quocy for compr"
sion strain 

indeK of strength adequacy for tension 
strain 

index of strengt!, odequocy for tension in 
pressure pipe 

index of buckling strength odequocy baled 
on modified AWWA formula 

index of bvcklir•g strength adequacy boNd 
on hydrostatic buckling loads 

inside radius of pipe 

outside radius of pipe 

ret"ovndin~ factor for pressurized pipe 

thickness of pipe wall 

buried pipe deflection 

overage pipe deflection due to earth 
wei9ht 

average deflection due to WMe1 load 

ring bending strain in pipe 

factored strain due to _.th -ight 

sum of factored bending 1trains 

factored strain due to installation de
f!ec:tions 

factored strain due to avrfoce wheel loads 

ring compreuion stroin in pipe 

factored strain (i,c to _.,h -i9h• 
ring strain due to earth -icJht with 
minimum load factor applit,d 

factored stroit1 due to surface wheel load 

ring strcain due to -foce wheel lood with 
minimum load factor "JPl)lied 

fac:tored stroin due to ,_;uvm in pipe 

initial 111timofe strain in creep or constant 
stress 

initial recl,ced ultimate strain in creep 

initial ultimate strain in relaxation or 
constcs1t strain 

initial reduced ultimate strain in relollo
tlon 

maximum ring tenaile strain due to in
temol prnau,e in pipe 

damity of earth c;o,tff 

density of water 

CQPOCity redvct,on factor on materlol 
strength 

c:apoc:ity reduction factor far ,oil modulus 
of toil reaction 

CGPOCity recb:t,~ foctlllr ,_ lang-term 
pipe stlftnu, 



Table 9-: I also shows examples of ultimate strengths in terms of strain, 

calculated using the strength equations, for several specific types of thermo

plastic and fibergla~-reinforced plastic materials that have a demonstrated long 

term strength capacity (HOO) (Set: Sections 3.4 and 3.5). These limits should be 

valid for water exposures and non-aggressive environments for the specific 

moteria:s given in the table, The ultimate strains are to be reduced by capacity 

reduction factors, and then compared to sh<.>rt-term ~trains calculated for service 

loads, o,d increased by loc.d factors. It is recognized that the short-term values 

ore expected to change during creep and relaxation of the material. 

Table ,_1 I 

Ultimate long-lerm Strengths (Strains) of 
Pressure-Roted Plastic Pipe Materials 

Material 

T or Closs 

1-<>B, psi 

E
0

, psi 

! CF'= Ea1EIO 

I Strength in Creep 
(Constant Stress) 

I-OB 
EC: -r,% 

0 

(Eq. 9.1 S6o) 

Strength in Relaxation 
(Constant Strain) 

£ 
_H)Bxcra, 

R - ' lU 

Eo 
(Eq. 9 .1561>) 

Polyvinyl- Polyethylene 
chloride 

(PVC) (PE) 

1120 

4,000 

0,4 X 106 

2 

1.0 

2.U 

(3) 

1,450 

0.1 X 106 

2 

1.5 

2.9 

Fiberglass 
Reinforced 

(RTR) 

14,IOC 

J,0 X 106 

1.25 

0.48 

0.59 

(I) See R in Tobie 2-2 tor creep factor (CF') estimates 
(2) ASTM 01785 
(3) ASTM F714 
(4) Append ix of (9.46) 

(
(,~)) Consult moivfacturer for octunl values of I-OB, E & E 10 I psi = 6.9 kPa o 
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Fiber;,~;7 
Reinforced : 

(RPM) 

6,700 

6 2.0 X 10 

1.25 

0.34 

0.42 



Other strength criteria are needed to evaluCJ•e the effects of cyclic fatigue, in 

such coses as o shallowly buried installation subjected to heavy traffic, or o pipe 

subjected to cyclic internal pressures. For exam;>le, limited data on pressure

roted PVC pipe materials indicate that fatigue effects become important when 

cyclic strain amplitude exceeds 25% of the total strain amplitude (3.15). In some 

reinforced.plastics-based pipe, the long-term HDB is obtained by cyclic pressuri

zation (ASTM D2992, D2143) and hence fatigue strength is ulrec1dy reflected in 

the HOB. 

Capacity Reduction Foctors: Capacity reduction factors are applied to stiffness 

and strength properties to reflect variations in materials properties from those 

established in test or by specification. 

Capacity reduction factors used in specific designs should account for such 

factors os aggressive environments, scratches, gouges and other unavoidable 

damage, cyclic internal pressures, exposure to ultraviolet radiation during stor

age, difficulties anticipated in installfltion, and the consPquences of failure. 

Load Factors: Load factors (LF) ore applied to increase loads or stresses to 

account for the potential for overloads, ar,d other ummowns related to the loads 

and the analysis, as is done in structured design with conventional structural 

materials. See Section 3.2, 4.2, 4.IOand 8.11. As will be illustrated in Example 

,_zo, different lood factors may be applied to different cornponents of lood. For 

example, the load factor applied to vacuum might be lower than that for internal 

pressure. That is, the m.:iximum pressure due to vacuum is well defined, being 

thot of the atmosphere, while internal pressure in the line may be difficult to 

predict, particularly with regard to surges. 

In some coses such as in the evaluation of the effects of combined loadings 

(Eq, j, 143), the use of the de~ign load or a lood factor greater than one may 

produce <S'l unconservotive result. Therefore load fo..:tors less than one should be 

considered for use in such situations. 

Load.i~ Soil pressure on the pipe due to eorth weight is deter mined simply as ttie 

weidlt of the column of earth directly above the pipe, as given by E.c,. 9.129 in 
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Tobie 9"9• This load is reduced by the buoyancy resulting from groundwater as 

indicated in Eq. 9.130. Soil pressure produced by surface wheel loads depends on 

the depth of burial~ and also the impact (rapid lood) factor which clso varies with 

d~th of cover (Eq. 9.131 and 9.132). The soi I pressure caused by earth load, H-

20 live load, and combined earth a,d live lood ore plotted versus depth of earth 

cover in Fig. 9-33. The reduction factor, Cw' given by Eq. 9.143a, is applied when 

a pipe is submerged below ground water level. 

Loads due to internal pressure should include the effects of surges. If frequent 

surges ore anticiJ)'lted, and these surges ore large compared to the normal 

operating pressure, special study moy be required for fatigue effects. (See above 

discussion on Material Strength.) Negative press11res OC<'omponyi-.g surges in 

pressure pipe may be significant. Some prodvcers of plastic pipe design their pipe 

for full vacuum, although refined dynamic analysis might result in lower values. 

Deflection 

LJs:.,ally a design objective is to maintain changes in vertical and horizontal 

diameter, resulting from installction and !oading, within a specified percentage of 

pipe diameter. Average deflection due to earth lood is estimated using the semi

empirical relationship for soil-structure interaction given by Eq. 9.135 in Tobie 9-

9. As is usual practice with other structural mot_erials, d~flections ore calculated 

on service, not foctore1, loads. This shoold be a primary consideration in setting 

maximum deflection lim:ts, and establishing occeptance criteria for the project. 

Historically, maximum defledion has been frequently limited by specifications, 

somewhat arbitrarily, to 3 to 7.5 percent of the diameter, depending upon 

characteristics of a given plastic i,·oe system. Such deflection limits are needed 

to retain fluid tightness at joints, 1."'ld to permit cleaning by plug pulling. A 

specifit: limiting deflection based on n-u~imum acceptable strengths should also 

be e~tabl;~hed for each plastic pipe system. Furthermore, to meet a maximum 

strer.9~h criterion, a lower deflection limit is required at joints that hove thicker 

walls than at the thinner pipe barrel away from the joints. 
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72 
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I 

.I: 

J 
0 48 

! 
24 

s 

Earth pressure, p
3

, y s = 120 pcf 

Total ,,re!Sure, P ~ + P..,h 

Note: Effect of Pavement 
Not Considered 

10 15 20 
Pressure ot Top of Pipe, p

1
, pwh - pai 

l'bte: I psi : '-' kPa; I in. s 25.4 mm 

Fig. ,_33 VARIATION IN SOIL PRESSLflES Wlll-f INCREASING 

OEPn-i OF COVER 

Initial Oeflectiom The expression inside the bt ackets of Eq. 9.135 is used to 

determine the initial pipe deflection due to earth load, Msed on the short-term 

pipe stiffness, F'S
0

, the modull,s of subgrade reaction, E', and a bedding factor, 

Kb, which d,:pends on the uniformity of embedment support near th.! pipe invert 

(Table 9-12). 
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Tobie 9-12 
Constants for Deflection md 
Ring Bending Equations (9.45) 

Haunched Haunched Not* 
Coefficient Symbol & Field & Not Haunched 

Monitored Monitored 
,-

Be ~ding Constant 
for Deflection Kb 0.09 0.11 0.13 
(Eqs. 9.135 & 9.136) 

Ring Bending MF (Cr'lwn) 0.75 0.75 0.75 
Moment Factors MF (Springline) 0.75 0.75 1.0 
for (Eq. 9.138) MF (Invert) 0.75 1.0 1.5 

* Omission of haunching not recommended. 

The initial short-term pipe deflection, as calculated above, is increased by the 

deflection lag factor, [5F, which reflects a "lag" in the development of maximum 

or final deflection that is frequently observed in field installations of flexible 

pipe. This ck-iayed deflection is attributable to the additional consolidation or 

densification of the embedment soil around the pipe, which occurs after 

installation. This deflection lag phenomenon is observed with flexible metal pipe 

as well as plastic pipe, and is usually related more to soils and tren..:h 

characteristics than to the creep, or time-dependent reduction in the modulus of 

the plastic pipe material. The magnitude of the deflection increase is a function 

of soil tyr<! and degree of compaction; DF is frequently taken as 1.5 although 

much higher values h~ve been recorded. 

Fiel.J test~ demonstrate that deflection lag effects in the ~ii may develop very 

soor. ofter installation as o result of construction traffic, or heavy rains, ond that 

the pipe deflection remains stable thereafter. While there is some further small 

defltction due to creep in the pipe material, it is usually sufficiently accurate to 

.:JSSIJme that the pipe shape is "frozen" in C11 oval configuration ofter the 

deflection lag has developed, and that the pipe is in a state of constant bending 

strain (relaxation) thereafter. 
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Deflections .!Je to s11rfoce applie~ wneel loads ore calculated using Eq. 9.136, 

whicn is similar to the equction discussed above for earth loads, The coefficient 

''n" is used to reduce the soil modulus E' to account for the effects of o reduction 

in soil support 'Nhich occurs under the localized wheel load. A tentative value of 

n ; C.S is recommended, provided p > 0.25 p • 
w s 

Installation Deflection: Measurements mode during the installation of flexible 

plastic pipe systems shows that an allowance should be made for deflections 

resulting from conditions that might occur during installation and compaction of 

soil around the pipe. These are in addition to the initial deflections calculated 

by conventional pipe-soil interaction formulas discussed above. The more 

flexible the pipe and the less ~tiff the embedment soil, the greater the expected 

installation deflection, A/2R. Suggested tentative values for A/2R for three 

embedrnent conditions are given in Tobie 9-13. Obviously, if installation is not 

properly performed, ~uch deflections become unpredictable and large. 

Tal>le ,-13 

Tentative Installation Deflections 
for Haunched Pipe (9.45) 

--~----------- -----------------------·---------------------
Installation Ddlection ( A ./2R) (%) (I) 

I 

Embedment Embedment Embedment 
Less Than 85% of 85% to 95% of Greater Thon 95% 

Pipe Stiffness PS 
(lb/in./in.) (4) 0 

Max. Dry Density (2) Max. Dry of Max. Dry 
or DJmoed (3) Density (2) Density(2) 

Le~s TI10n 40 6+ 4 3 

40 to 100 4+ 3 2 

Greater Thon 100 2+ 2 I 

Notes: I. 
2. 

3. 

4. 

Deflections of unhaunched pipe are significantly larger. 
Maximum dry density determined in accordance with AASHTO T 
99. 
(Nmped materials Cl'ld materials with less than 85% of maximum 
dry density are not recommended for embedrnent. Deflection 
values ore provided for information only. 
I lb/in./in. = I psi = 6.9 kPc 
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Strains in Pipe Wall 

Strains in the pipe wall result from bending or ovalization under non-uniform 

radial loads and from direct circumferential stress resulting from radial pressure 

distributions. 

Ring Bending Strain: Ma:11.irnum ring bending strains resulting from earth and 

surface wheel loads, as well as from installation deflections normally occur at 

the invert. t-bwever, under some conditions, strains at other locations may be 

important depending on strength limits established for environmental exposures 

inside ond outside the pipe. For example, tensile strains at the crown may 

~overn the design of FRP or RPM pipe, since exposure of the crown interior 

surface to sewer acids moy reduce ultimate strength below that experienced in a 

water environment, as is the case for values given in Table 9-11. 

The moment factor, ~, required for Eq. 9.138 a to c, accounts for the effects 

of bedding on bending moments and strains. Tentative values for the moment 

factor are given in Table 9-12. Strains occurring under service loads are 

increased by the load factor ~propriate for each loading condition. 

Ring Tension ca,d Coq,ression Strains: Factored ring or hoop tension strains 

resulting from the applied internal pressure, if any, ore calculated using 

Eq. 9.139. And Eqs. 9.140 a to d ore used to calculate the initial ring 

compression strains in the pipe. These strains ore as~umec! to be constant around 

the full pipe circumference, although in the real structure, particularly in large 

pipe, these strains may be less at the crown than at the invert. 

Both maximum and minimum ring compression strains under earth and vehicle 

loads are required in this ultimate strength approach. The maximum strain is 

used in later determination of the maximum compression strain in the wall 

(Eq. 9.141), and the minimum strain is needed for determination of the maximum 

tension strains in the ring (Eqs. 9.142 & 9.143). 
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Strength Adequacy 

Adequacy to resist the combinations of strain components calculated above is 

evaluated in a manner similar to that given in Eq. 8.130. In this case, an 

interaction index is proposed that reflects different strengths in creep Uixed 

stress or load) and relaxation (fixed strain). The interaction equations frnrn 

which Eqs. 9.141 to 9.143 ore derived ore expressed in terms of strain, below: 

and Eq. 9.156a, b 

Non-Pressure Pipe: Adequacy of buried non-pressure pipe is usueilly governed by 

maximum compression at extreme fibers resulting from combined ring bending 

and ring compression. This may not be the case for reinforced plastic pipe where 

the compression strength may be significantly greater than the tension strength, 

depending on the materials and construction. If this is the case, adequacy under 

both maximum combined tension and compression should be evaluated. 

Perforated Pipe: When a buried pipe is perforated, st~ess ?r strain concen

trations in a tensile stress field c;on be significant. Thus, a check of the effects 

of perforations sh0vld be mode in accordance with Eq. 9.139. This is in addition 

to that for maximum combi,1ed compression, discussed above. Table 9-14 

provides 'stress (strain) concentration factors" to be applied to the maximum 

tensile stress or strain calculated at the perforation location. If perforations ore 

located at or near inflection points, the effects of strain conr.entrations can be 

neglected. 

Pressure pipe: Maximum strains in pressure pipe ore the combined result of hoop 

stress due to internal or external pressures, bending due to earth and vehicle 

loads, and any reduction in Lending due to ''rerounding" of the ovalled buried pipe 

upon pressurization as discussed below. When a biJried pipe is svbj~-cted to 

inter'l<II pressure, circumferential (hoop) stresses develop, and deflection due to 

installation and earth pressure is reduced. The pipe returns to a more circular 

shape or ''rerounds." This re,.ounding reduces bending strains caused by external 

loads. The rerounding factor (FtF', Eq. 9.144) proposed in (?.4S) accounts for tile 

effects of internal pressL•re on bending strains in o very flexible buried pipe 
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subjected to external loads and installation deflections. Note that the above 

check for maximum compression in non-Pressure pipe should be made for 

pressure pipe as well since compression strength may govern design for periods 

when no pressure is applied. 

Table,_,, 
Perforation Factors for Strain Concentrations (,.44) 

Perforation Type Perforation Factor (PF) 

Circular hole, smooth-wall pipe in bending 2. 3 

Circular hole, uniform tension (e.g. in one shell ot 
ABS Composite or in flanges of corrugated tubir-Ji 3.0 

Circumferential slot, rounded ends, assume aspect 
rot lo = 8: I (e.g. I in. (25 mm) circumferential slot, 
1/8 in. (3 mm) wide; factor varies with actual 
aspect rot io I • 3 

Allowable Deflections aa.-1 on Ultimate Strain 

For purposes of writing s.>eeifications, or when establishing deflection limit 

criteria for existing or new produr.ts, it is useful to calculate the maximum 

allowable deflection. Eqs. 9.145 and 9.147, based on strength limits (in terms of 

strain) given above, provide a mems for calculating the moximum installed 

deflections of the pipe barrel. 

Budding 

The resistance of the pipe ring to buckling under external pressure becomes very 

important in large-diameter thin-walled plastic pipe, or in pipe with low modulus 

materials, such as PE. Resistance to buckling is significantly enhanced by the 

restraint of the embedment soil. The stiffer the embedment, the greater is the 

buckling resistance, as is shown by Eq. 9.148 in Table 9-9. The calculated 

factored compression stress should be less than the buckling resistance times the 

c'4)0Clty reduction factor. Methods for predicting buckling strength ore currently 

under review by industry, and the following approaches may be revised based on 

new research. 
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The buckling resistance of pipe under long term earth load reduces with time 

because of creep. Litt I" is known about ti-le effect of creep on buckling of buried 

pipe. For the present, it appears conservative to use the lt'ng term time

dependent pipe stiffness, PS10 in buckling calculations, Eq. 9.148. 1'510 is 

determined directly from special, non-standard long term parallel plate tests, or 

from Eq. 9.155. 

When the pipe is submergec: in ground water, it is assumed that the pipe remains 

err>pty. The factor, Cw' accounts for the reduction in buckling resistance that 

occurs when the confining soil pressure is reduced by the bt.•oyancy of the ground 

water. In this case, the external pressure in Eq. 9.151 is the combined pressure 

caused by ground w.1ter, the weight of saturated earth above the water table, and 

the buoyant weight of submerged earth below the water table. 

Some experiments with polyethylene pipe indicate that buckling is caused solely 

by the uniform hydrostatic component of pressure from ground water and internal 

vacuum, if any, rather than the pressure of earth combined with water aid 

vacuum. Buckling resistance on this basis may be less than given by Eq. 9.148. 

Various investigators suggPst that the maximum buckling strength u1lder thb 

approach is in th.-, range of 3 to 6 times the buckling resistance of a simple tube 

subject to hydrostatic pressure without constraint from the soil; the critical 

buckling load for this case is given by Eq. 9.152. 

A reduction in buckling resistance may also occur for shallow buried pipe when 

the upward force of buoyancy equals, or exceeds, the submerged weight of soil 

over the pipe. Obviously, in this case, the pipe requires anchor straps to restrain 

it from "floating" out of the embedment. More research is needed to determine 

the effects of such ''neutral buoyancy" conditions on the buckling resistance of the 

pipe. A lower limit of such resistance is given by Eq. 9.15 for buckling of rings 

under external pressure with no restraint from surrounding soil, 

Eq. 9.152 may govern over Eq. 9,148 in the case of large hydrostatic pressures. 

The actual ranQe of material modulus, pipe stiffness, cover depths and embedment 

stiffness over which each of the two buckling equations is valid remains to be 

determined. 
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Ott..- Conslderatlana: The above procedure covers only the structural adequacy 

of the pipe barrel in the circumferential direction. Joints, connections, and 

fittings display stiffness, strength, and stiffness-to-strength relationships, which 

ore iignificontly different from those provided in the barrel. A comprehensive 

structural evaluation of o plastic pipe system should include behavior evaluation 

of these ports of the system. 

Dynamic surge pressur'!l, impact loadings, longitudinal membrane and bending 

stress resvltonts due to internol pressure, unbalanced thrust forces resulting from 

changes in flow direction at bends, chcnges in flow ::ross-section oreo or line 

termination, and restraint of Poisson's contraction by soil friction may result in 

signlficont stress or strains and must be considered in any detailed evaluation of a 

specific installation. Also, as experience hos shown, bending of the whole tubular 

cross section as a beam con add significantly to ring deflections, as well as to 

stresses and strains as calculated herein. See (9.44), (9.45) and (9.46) for more 

complete presentations of design considerations for buried plastic pi~. 

0.'91 Exon1)1e 

'The application of the above procedure for evaluating the odequocy of a 32-inch 

diameter uniform wall polyethylene (PE) gravity flow industrial waste line is 

illustrated in E>mmple '-20. 
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I Example 9-20 Buried Polyethylene Industrial Waste Line: Determine the adequacy of a 
I polyethylene pipe, 32 in. in diameter, IPS (ANSI B36-10) sizi1lg system, with minimum wall 
I thick~ss of 1.882 in. Operating pressure is 45 psi. Burial dt:pth varies from 4 ft to 15 ft, 
I proposed embedment is well-graded grovel with less than 5~ fines, compacted to 90% of 

I 
maximum dry- density. Groundwater varies from below pipe to 5 ft below grade. Site will be 
trafficked. (See Table 9-9 for procedure and notations.)* 

I 
I I. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I * 
I 

Desi~ Criteria: 

a. Pipe Properties 

Outside diameter: 2R
0 

= 32.0 in.; R
0 

= 

Wall thickness: t = 1,882 in, 

16.0 in. 

Mean diameter: 2R = 30.1 in.; R = I 5.1 in. 

Inside diameter: 2R; = 28.2 in.; Ri = 14.1 in. 

Short term elastic modulus: E = 100,000 psi 
0 

Creep factor: assume CF = 2.0 

Calculate pipe stiffness since governing specification does not contain o pipe 
stiffness requirement. 

Moment of inertia: i = 1/12 t3 = 1/12 x 1.8823
-= 0.555 in.4/in. 

Pipe Stiffness: 
6.7 Egi 

l'S = 3 o R 
6. 7 x I 00,000 x 0.555 

= 1s.1 3 = 

Ps10 = -- = 108 
7.U = 54 psi 

cr 
Capacity Redvction Factors: Pipe strength , = 0.80 

108psi 

Pipe stiffness for buckling i' = 0.75 

Ultimate strength (strain basis, Table 9-11): £Cu - = 0.80 x 1.5 = 1.2% 

0.8() X 2.9 : 2,3% 

b. Soll Properties 

Modulus of Soil Reaction (Table 9-10): E' = 2,000 psi; for well-Qroded grovel@ 90% 
density 

Capacity re-duction factor for soil modulus in buckling equation: ,, = 0.50 

Deflection lag Factor: Ct = 1.S 

See footnote, Example 9-1 , Page 9-13. 
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I Example 9-20 (cominued) 
I 
I c. Load factors (LF} 

I 
I Eorth, ground water ond installation: 1.5 

I Minimum when earth load increases strength: 0.8 
I 
I 

Internal Pressurf>: 2.0 

I 
I 

Vehicle: 1.8 (max. vehicle wheel pressure unlikely to occur with fcctored 
internal pressure) 

I 
I 
I 2. 
I 
I 

a. 

I b. 
I 
I 
I 
I 
I I c. 

I 
I 
I 
I d. 
I 
I 
I 
I 
I 
I 
I 
I I e. 

I 
I 
I t. 
I 
I 
I g. 
I 
I 
I 
I 

Vacuum: 1.8 (vacuum cannot exceed atmospheric pressure) 

Loads: 

Burial Depth 

Earth: p = y h s s 

p' =P xCF" 
SU S 

hw 
Buoyant Earth: Cw = I - 3n 

Vehicle: 

Pb = Ps Cw 

pbu = Pb X IT 

pwh (Fig. 9-33) 

lT'" = Pwh 
pwh + Ps 

P =Ph(l.,.lfl w w 

p =P xCT 
WU W 

p' =P xCT" 
WU W 

Groundwater: p = 0.43 h 
g w 

Vacuum: 

Internal 
Pressure: 

p = 
V 

p :pxIT 
VU V 

ISft.~ 

120 X 15 , 
l44 = 12.5 psi 

12.5 X 1.5 = 18.8 psi 

12.S x 0.8 = 10.0 psi 

10 
I - J x 15 ::: 0.778 

12,5 X 0.778 = 9,7 psi 

9.: X 1,5 = 14.6 

0.8 psi 

~~ =0.06 u.o + I L.,:J 

0.8 X 1.06 = 0.8 psi 

0.8 x 1.8 = I .4 psi 

0,8 X 0,8 = 0.6 psi 

0.4J X 10 : 4.3 psi 

4.J X 1.5 = 6.5 psi 

14.7 psi 

14.7 X 1.8 = 26,5 psi 

45 psi 

45 X 2,0 :: 90 psi 
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4 ~t. cover 

120 X 4 . 
144 ::. 3.3 psi 

3.J X 1.5 = 5.0 psi 

3,j A 0,8: 2.6 psi 

1-0=1 

3.3 psi 

3.3 x l .5 = 5.0 

3.3 psi 

).J ~-b- = 0.5 

3.3 ( 1.5) = 5.0 psi 

5,Q X 1,8: 9.Q psi 

5.0 X 0.8 = 4.0 psi 

0,43 X O : Q psi 

0 

14,7 psi 

14,7 X 1.8 = 26.5 psi 

45 psi 

45 x l.O = JO psi 



I &ample 9-20 Cccntlnued) 

; 3. Maximum Deflection 

; a). Earth load ( OF = 1.5, Kb = 0.1 I from Table 9-12) 

1
1 

~ = Kb Ps x O'J!' = (""":'\,'"~I~ I 0x0
l
6
2
1
•5 

2
-h I .5 = 0.0149 in./in. = 1.49% 

l;r'\ 0.149 ~ + 0.061 E' u. 1 .. ., "' uo + • x UOU' 
I o 
I b). 

I 
I 
; c). 

Live load at 15 ft depth is small (neglect) 

A. w 0 
LR' = 

Installation deflection (for PS" = 
0 

A. • ZFr = 2.0% (from Tobie 9-13) 

108 psi) 

I 
I 
I d). Total deflection 

I 
I 
I._ 
I 
I a. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I b. 
I 
I 
I 
I c. 

I 
I 
I 
I 
I 
I 
I 
I 

A.w 
♦ LR' A. i 

+ "'2R" = 1.49% + 0 + 2.0% ..= 3.5% 

Strain Corupanents 

Ri~ Bending - Haunching is ~~ified, inspection is expected to be nominal. Select 
MF' = 1.0 from Tobie 9-12. 

Ring tension 

PfuRi 
£tu = ~ = 

0 

Ring compression 

£cwu 

A. s r-P"' 2R XLr 

A.w r-P"' m XLr 

90 X 14.f 
I .882 x I 00,000 = 

Psu 

P'su 

1.882 = 2. 14 (75:T) x I .o x 

= 

0.0067 in.Jin. = 0.67% 

18.0 

10.0 
16.0 X I()() 

0 Pwu = 1.992 x 100,000 X = 

Pw 26.5 
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1.49 X 1.5 0.60% 

0 X 1.8 = 0 

2.0 X 1.5 ~ 

l.4M> 

0.16% 

0.085% 

0% 

0.23% 



I Exmnple~ 9-20 <continued) 

I s. Strength Adequacy 

I o. Maximum compression before pressurization 

I, Ra = ~~ ~ £ +~ + ~ l = ii [ o.1i+o+o.2~ = 0•
90 ~ 1 

I 
~~ 1 __ CSU cwu V!:! I - 1.2 

£Cu . .....J _ 

I I b. 

I 
I 
I 
I 
I 
I 
I 
I 
I '
I 
I a. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Maximum tension 

~

-I 
2 X 45 X 14.1 

( 12.5 + 0) 16.0 (O.OJ 

£bu 
R 

c = £Ru f; o.~-f ~ 7 = o.~1 ~ 1 

L- i.2 J 
Note that rerounding reduces flexural strains by (I - 0.818) = 

Bu.:lcling 

Modified AW~W~ formula 3 j l/
2 

I - A max) 
p = 0. 77 LR" ~ C B' (E' d') 053 d") er A )2 w 10 

+1R"mox 

Cw = 0. 778 (From Step 2c) 

h 
"2R" 

0 

15 
= I = 

2 X 16,Q X T2' 

h B' = 0.150 + 0.014 2Ff = 
0 

5.63 

0.150 + (0.0 I 4 x 5.63) = 0.229 

0.18 or !8%. 

o.k. 

= 0.818 

o.k. 

I 
I 
I 
I 

Per = O.111/1
1 

- O.OJ
5

) 2) 
3 

"· 0. 778 x 0.229 x 2000 x 0.5 x 54 x o.J 112 
= 55.9 psi 

~ I + 0.035) J 
I 
I b. 
I 
I 
I 
I 
I 
I 
I 
I 

R .... = (pbu + p + p )/{p ) = ( 14.6 + 6.5 + 26.5)/(55.9) = 0.85 < I o.k. 
u ~ w cr -

Buckling under hydrostatic component of load. 

p' - 0 5 C 91 PS x 9" er - • a 10 

Soy C
0 

= 3 for well compacted grovel 

P'cr = 0.5 x 3 x 0.5 x 54.0 x 0.75 = 30.S psi 

F\ = (p ~ + Pw)/(p er') = (6.5 + 26.5)/(30.5) = 1.09 
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I Example 9-20 (contifwed) 

I 
I 7. 
I o. 
I 
I b. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I c. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I d. 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Check pipe design at 4 !t minimum cover 

Loads - 5ee Step 2 

Maximum deflection 

l1 s Kb Ps -F 0.11 x 3.3 I ,,. 0 0039. /i 0 39Ql 
~ = - - x D = 0 P,9 x I 08 0 Ob I x 2000 x • .J = • in. in. = • ~ 

0.149 PSO + 0.061 E' • + • 

Pw = ~ = 1.5 ..?. 0.25 (Therefore use n = 0.5) 
Ps • 

Aw Kb Pw 
1R' = 0.1 I x 5.0 ::0.0071 . ,. 0 710l = 0.149 X 108 + 0.061 X 0.5 X 2000 - ,o.in. = • 10 

0.149 PS
0 

+ 0.061 n E' 
td LR'= 2.0% 

A A~ Aw di 
~ = 1R"° + "2f!f" + 1R = 0.39 + 0.7 I + 2.0 = 

Strain cornponents 
E: ,_ 
bsu -

l1 s 1"""I"" 1R X Lr 

3.1 % = 0.031 in./in. 

I o.39 X 1.5 

Ebwu = 2.14 c;) Mr" x 4R x [r 

Ebiu # xIT 

: 2.14 ( I i~?t2) X 1.0 X 0.71 x 1.8 

I\, 16.0 X I()() 
&cwu = ~ Pwu = l.882 x I 00,000 x 

Edwu p'•vu 

ttu ; 0.0067 in./in. = 0.67% (Step 4b) 

Strenqth adequacy 

s.o 
2.6 

9.0 

4.0 

2.0 X 1.5 

0.04% 

0.02% 

0.08% 

0.03% 

0.16% 

= 0.34% 

0.80% 

= 1.30% 

tbu 
= ~ 

R1, - T.T I 0.04+0.08+0.23 - • _ 1.30 [ I ] _ O 80 

- 1.2 
< ; o.k. 

2 x 45 x 14.1 

[ 
~

-I 

:: I .. (3.3 + S.o) 16.o (0.03 I) = O. 77 
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I E,anpte 9-20 <cantlnuecl) 
I 
I R = c bu ~ ~ 1 J = 1.30 I c cRu 

1 
_ ttu- tcsu-tcwu "IT 

I cru 

' o.11 ~ = o.89 I ~ 0.61 - 0.02 - o.o3 L- 1.2 
I -
I A separate check w;thout wheel load, with Pw = 0, M2R = 0.024, £bu = 0.96, and 

I £ ' = 0, indicotP.s RF= 0.63 end R = 0.78. Therefore, above condition governs. 
CWU C I e. Buckling 

I Modified AWWA formula 

I
I Per : 0. 77 ~I - --b; mox)~ 3 C B' (E' t') ~ "]') I /2 

A )2 w 10 I + "Mmox 

1
1 cw = 1; * = 2

4
/ 1k~o ; 1.s0; B' = 0.01s .. o.041 k = 0.011 

0 0 
I 

I P , o.n [/Ji -0•031 ~ 

3 

x I x 0.011 "2000 x o.s x 54 x o.;J 
112

• 37.4 ps; 
I er ~I+ 0.031)/ J 
I R. = {pbu + p + p )/(p ) = (5.o + 9.o + 26.5) /(37.4): 1.08 I "'d wu vu er 

I 
I 
I 
I 
I 

Buckling becomes critical at shallow burial mai11ly oocause B', on ind ice ;or of 
stiffness of soil confinement, reduce~ drastically with decreasing depth according to 
the AWWA formula. (Compare with Step 6a.) 

•• 
I 
I 
I & 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Hydrostatic Buckling (vacuum only, no ground water) 

P'cr = 30.5 psi (from Step 6b) 

f\ = pw/P~r = 26.5/30.5 = 0.87 

Following is a summary of results: 

Deflection 

Maximum Compression 

Maximum Tension 

AWWA Buckling l\i 
Hydrostatic Buckling R 

e 

The desi~ meets all criteria except for 
hydrostatic buckling at deep burial. 
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15 ft Burial 

3.5% 

0.90 

0.97 

0.85 

i.09 

AWWA buckling at 

4 ft Buriul 

3.1% 

0.80 

0.89 

1.08 

0.87 

shallow burial and 



I 
I 
I 

Example 9-20 (continued) 

I I a. 

I 
I 
I 
I I b. 

I 
I 
I c. 
I 
I I d. 

I 
I 
I 
I 
I 
I 
I 

The following options are available. 

Accept 8% and 9% overstress ir. buckling since accuracy of analysis is not high. Note 
thot 8% overstress exists at shallow burial only when maximum vehicle wheel lood 
and short-term occasional vacuum due to surge occur simultaneously. Thti likelihood 
of both of these loads acting simultaneously is small, as indicated in the AWWA 
Standard. 

Increase compaction requirements of gravel to greater than 95%. This will increase 
E' by 50%. The increase in E' will result h an increase in buckling resistance such 
thot Rd and ~ < I for shallow depths. 

Change from gravel to crushed stone at 90% density. 
similar to (b.). 

Increase wall thickness of pipe. 

This will produce resu!ts 

I 
I 
I 
I 
I 
I 
I Note: I in.= 25.4 mm, I ft = 0.3048 m, I in./in. = I mm/mm, I in.4/in. = 16,387 mm 4/mm, 
I I psi = 0.0069 MPa. 

I 
I 

9-171 



REFERENCES - CHAPTER 9 

9.1 Widera, G.E.O. and Logan, D.L., ''Refined 1heories for Nonhomogeneous 
Anistropic Cylindrical Shells: Port I - Deviation and Part 11 -Applica
tion", Journal of the En~ineering Mechanics Division, Papers I 5933 aid 
15934, Vol. 106, No. E 6, American Society of Civil Engineers, New 
York, December 1980. 

9.2 Len1ovich, V., Frames & Arches, New York, McGraw-Hill, 1959 

9.3 Roark & Young, Formulas for Stress and Strain, 5th Edition, New York, 
McGraw-Hill, 1975. (See also 4th edition, 1965, for certain additional 
formulas.) 

9,4 Olander, H.C., Stress Analysis of Concrete Pipe, U.S. Bureau of Reclamo
tiort, Eng. Monograph No. 6. 

9,5 Peterson, R.E., Stress Concentratior. Factors, Wiley, New York, 1974. 

9,6 ASCE, Manual of Engineering Practice - No. 31, Design of Cylindrical 
Concrete Shell Roofs, ASCE, 1951. 

9,7 Timoshenko, S., one Woinowsky-Krieger, S., Theory of Plates or.cl Shells, 
2nd Ed., l\lew York, McGraw-Hill, 1959. 

9,8 Pfluger, A., Elementary Statics of Shells, l\lew York, :-=-.w. Dodge, 1961. 

9,9 Boker, E.H., Kovalev.;ky, L., a,,d Rish, F.L.; Structu~al AnaJris of Shells, 
New York, McGraw-Hill, I 972. 

9.10 Flugge, W., Stresses in Shells, Berlin, Springer-Verlag, 1960. 

9.1 I t-laas, A.M., Design of Thin'Concrete Shdls, Vols I & II, New York, Wiley, 
1962. 

9.12 Billington, D.P., Thin Shell Concrete Structures, New York, McGraw-Hill, 
1965. 

9.13 Candela, F., General Formulae for Membrane Stresses in 
Paroboloidical t r 

9.14 Parme, A.L., Hyperbolic Paraboloids md Other Shells of Double Curva
ture, ASCE Trans., 989 (1958). 

9.15 "State-of-the-Art Report on Air Supported Structures", American Society 
of Civil Engineers, New York, 1979. 

9.1& Rosato, D.V. & Grove, C.S., Jr., Filament Winding, lnterscience, 1964. 

9.17 Pr . . . is Vol. I - Anal sis. Vol. 11 

9-172 

compilation o tec!inical 
rs, New York, 1972. 



9.18 

9.19 

9.20 

9.21 

9.22 

9.23 

9.24 

9.25 

9.26 

9.27 

9.28 

9.29 

9.30 

9.31 

9.32 

9.33 

9.34 

Lundgren, H., Cylindrical Concrete Shell Roofs, Copenhagen, The Donish 
Technical Press, 1951. 

Buchert, K.P., Bucklin& of Shell & Shell-Like Structures, Columbia, 
Missouri, K.P. Buchert Assoc., 1973. 

Crandall, S.H., & Dahl, N.C.; An Introduction ~o the Mechanics of 
Materials, New York, McGraw-Hill, I 959, p. 370. 

Heger, F.J., "Design of Reinforced Plastic Shell Structures", Chapter 6 in 
Plastics in Building, edited by Skeist, 1., New York, Reinhold, 1966. 

Heger, F.J., "Design of FRP Fluid Storage Vessels", Journal of Structural 
Division, ASCE, Nov. 1970. 

Timoshenko, S.P. and Gere, J.M., Theory of Elastic Stability, 2nd Ed., 
New York, McGraw-Hill, 1961. 

Column Research Committee of Jopon, Honc~k of Structural Stability, 
Tokyo, Corona, 1971. 

Buckling of Thin-Walled Circular Cylinders, NASA SP 8007, 1968. 

Gerard, G. and Becker, H.: Handbook of Structural Stability: Ill, Buckl
ing of Curved Plates and Shells, NACA TN 3783, I 957. 

Becker, H., General Instability of Stiffened Cylinders, NACA TN 4237 
Washington, 1958. 

Kloppel, K. and Jungbluth, 0., "Beitrog Zurn Durchschlagproblem dunn
wondiger Kugelschalen" Der Stahlbou, vol. 22, p. 121, 1953 (ir. German). 

Structural Stability ReSt!arch Council, B.G. Johnston, Ed., Guide to 
Stability Design Criteria for Metal Structures, 3rd Ed., 1976. 

Kloppel, K. md Roos, E. "Beitrag zum Durchsct-lagproblem dunnwandiger 
versteifter und unversteifter Kugelschalen fur Voll-und halbseitoge 
Belastung, Dt::r Stohlbou, vol. 25, p. 49, 1956. 

Heger, F.J., Chambers, R.E., Dietz, A.G.; "On the Use of Plastics and 
Other Composite Materials for Shell Roof Structures", World Conference 
on Shell Structurf!s, San Francisco, 1967. 

Schnobrich, w. c., "Analysis of Hlpped Roof 1-typerbolic Paraboloid 
Structures", Journal of Structural Division, 1/ol. 93, ST7, American 
Society of Civil Engineers, New York, July I 972. 

Shaoboi, A. and Ketchum, M., ''Design of Hipped 1-typor Shells", Journal of 
Structural Division, Vol. 102, STI I, Ameri.:an Society of Civil Engineers, 
New York, t-.bvember I 976. 

White, R., "Reinforced Concrete Hyperbolic Porabolo:d Shells", Journal of 
Structural Division, Vol. IOI, ST9, American Society v~ Civil Engineers, 
New York, September 1975. 

9-173 



9.35 Ranjan, G. V. and Steel, C. R., "Anolysis of Torispherical Pressure 
Vessels", Journal of Engineering Mechanics Division, Vol. 102, EM4, 
American Society of Civil Engineers, New York, August 1976. 

9.36 Ghali, A., Circular Storage Tanks and Silos, London, Spon, 1979. 

9.37 McDermott, J. F., "Single-Layer Corrugated-Steel-Sheet Hypars", Journal 
of the Structural Division, Vol. 94, ST6, American Society of Civil 
Engineers, New York, June I 968. 

9.38 Reisner, E., "On Some Aspects of the Theory of Thin Elastic Shells", 
Journal of the Boston SociP.ty of Civil Engineers, Vol. 42, No. 2, Boston 
Society of Civil Engineers, April I 955. 

9.39 Miller, C. D., "Buckling of Axially Compressed Cylinders", Journal of the 
Structural Division, Vl)l. 103, No, ST3, American Society of Civil Engi
neers, New York, March 1977. 

9.40 Zick, L. P., "Stresses in Large t-brizontal Cylindrical Pressure Vessels O'n 
Two Saddle Supports", The Welding Journal Research Supplement, Sep
tember 1951, Reprinted in Vol. 2, Ref, (9.17) 

9.41 Heger, F. J., Chambers, R. E., "Design, Analysis and Economics of 
Fiberglass Reinforced Plastics World's Fair Structures", Proceedings, 21st 
Annual Technical and Mana~ement Conference, Reinforced Plastic-, Divi
sion, Society of the Plastics ndustry, Inc., New York, 1966. 

9.42 Heger, F. J., "Engineering Concepts in the Design of Two FRP Shell Roof 
Structures", Proceedings, 19th Annual Technical and Management Confer
ence, Reinforced Plastics Division, The Society of the Plastics Industry, 
Inc., New York, 1964. 

9.43 Kulkarni, S. and Zweben, C. (ed.), Composites in Pressure Vessels and 
Piping, PVP - PB - 021, American Society of Mechanical Engineers, New 
York, 1977. 

9.44 Chambers, R.t:., McGrath, T.J. and Heger, F.J., Plastic Pipe for Sub-
surface Drain e of Tron rtation Facilities, Natiooal Cooperative High-
way Research ogram eport 2 , ransportation Research Boord, 
National Research Council, Washington, DC, October 1980. 

9,45 Chambers, R.E., McGrath, T.J., "Structural Design of Buried Plastic 
Pipe", Proceed4s, ASCE International Conference on Underground Plas
tic Pipe, New Or eons, LA, March I 981. 

9,46 The American Water Works Association, "Standard for Glass Fiber Rein
forced Thermosetting Resin Pressure Pipe," (AWWA C950-80), l'.JB0. 

9-174 



ASCE Structwal Plastics Dmign MtnJal 

CHAPTER 10 - FIRE SAFETY CONSIDERATIONS 

By Albert G. H. Dietz 

TABLE OF CONTENTS 

I 0.1 Introduction 

10.2 Steps Leading to Combustion 

10.3 Modification for Improved Behavior in Fire 

10.4 Tests for Evaluating Materials 

10.S Design Approaches for Fire Safety 

I 0.6 Building Codes 

IO. 7 Summary 

10-1 

10-2 

10-7 

10-9 

10-23 

10-31 

10-42 

Appendix 10-A - Description of Combustion 10-43 

( 

Appendix 10-B - Effect of Temperature on Mechanical Properties 10-49 

Appendix 10-C - Potential Heat of Plastics 10-51 

References I 0-52 

10-I 



0-tAPTER I U - FIRE SAFETY CONSIDERATIONS 

A. C. H. Dietz 

I 0.1 INTRODUCTION 

WhP.n plastics are employed structurally, their behavior in fire must be consid

ered, as is true of other structural materials. Ease of ignitior,, rate of flam,e 

spread, rate of heat release, smoke release, toxicity of products of combustion, 

and other factors must be taken into account. Plastics are organic materials 

and, like other organic construction materials, can be destroyed by fire. Some 

burn readily, others with difficulty, and still others do not support their own 

combustion. Behavior in fire depends upon the nature and scale of the fire and 

the surrounding conditions. Fire is a highly complex, variable phenomenon, and 

th~ behavior of organic materials, including plastics, in a fire is equally complex 

and variable. 

No atternpt at an exhaustive treatment is mode here. Differences between 

behavior of plastics in controlled laboratory-scalP. fires and in large octuol fires 

are set forth. There is some discussion of the products of combustion including 

smoke and gases. Steps taken to modify the susceptibility of plastics to fire are 

briefly outlined. 

Fire tests of plastics, like fire tests generally, are frequently highly specific and 

the results are specific to the tests. The results of one type of test may not 

correlate directly with another. Some tests are intended mainly for screening 

purposes ~uring research and development; others, such as the large-scale tests, 

more nearly approximate actual fires. Con~uently, such often-used terms <.1s 

"self-extinguishing'' and "flame spread'' must be understood in the context of the 

specific tests with which th~y are employed. Commonly-used tests ore summar

ized in this chapter and their limitations indicated. 
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The principles of good design ,for fire safety are as applicable to plastics as to 

other materials. The specific design must be car~fully considered, the properties 

of the materials taken into account, and engineering judgment applied. 

Experience and tests have indicated approaches that may be utilized and 

applications that have been found satisfactory. 

Building codes have incorporated provisions for plastics since about 1955. The 

model codes contain such provisions. These are summarized os examples, but in 

any specific instance the local code that hes jurisdiction must be followed. 

10.2 STEPS LEADING TO COMBUSTION 

Small-Scale Burning (ID.I)• 

In small-scale fire tests, as in many laboratory screening tests, several stages 

are involved. At relatively low temperatures, such as 17 S-212°f· (80-1 oo°C), 
slow oxidation occurs, a feature also characteristic of aging, which is often 

enhanced as temperatures increase. As the temperature is raised, the process is 

accelerated. When the temperature becomes high enough, in the range 390-

570°1=" (200-300°C), the process in the presence of air (oxygen} becomes 

exothermic, that is, heat is evolved, giving off decomposition products which are 

often flammable. ThermoplasHcs soften or melt, whereas thermosets charac

teristically maintain their shapes. If more heat is added, auto-ignition occurs at 

approximately 750°F (400°C), resulting in combustion. (See Appendix A for 

more detailed description.) 

Lcrge-Scole Burning (10.2) (10.8) (10.10) 

The foregoing description of the successive stages of decomposition and ignition 

of plastics is for small-scale fires, as in laboratory tests. In reol fires, os in a 

room, the some reactions probably take place, but the scale and temperatures 

involved ore much larger and more cornplex, leading to phenomena not found in 

small-scale controlled laboratory burning. The following stages ore generally 

encountered: 

• Numbers in parentheses refer to the list of references ot the er.d of this 
chapter. 
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Ignition: A fire can start in man:• ways, not necessarily involving o plastic 

material. The location, temperature, energy output, and duration of an ignition 

source ore important. A burning mokh, o lighted cigarette, on electrical short, 

or any one of mory sources moy start a fire slowly or rapidly. At this stage, the 

decomposition temperature and behavior, ease of ignition, extent of exposure, 

anci exte~t of involvement of plastics are important. 

Buil~ and Spread. This and following stages are strongly influenced by 

ventilation, fuel load, composition, availability, configuration and moisture 

content of materials. Temperatures of moterials rise as the fire continues and 

contributes heat. Easily-ignited material5 catch fire. Fire moy begin to spread 

on flammable surfocPS such as finishes. Combustible and toxic gases begin to 

evolve and smoke is produced; these constitute a hazard to occupants. Early 

warning, as by smoke and fire detP.ctors, may be crucial. 

Flmhover. This phenomenon is familiar to firefighters and is the critical point in 

a fire. At th:s stage, most or oil of the combustible materials reach the ignition 

temperatures because of radiation, convectlon, and conduction from the original 

fire. An entire room and its contents, for example, seem suddenly to burst into 

flame simultaneously. Ease of ignition, surface flammability, extent of expo

sure, evolution of combustible gases and extent of involvement of oil combust

ibles, including plastics, are important. 

f ully-Oew!loped Fire. All of the combustibles ore essentially involved. 1 he 

total heat contributed by the moterials is now important. This is o function '>f 

the unit heat of combustion and the quantity of material. Fire gases and smoke 

production ore critical. Occupants may find it impossibl-e to e~ape. 

Propagation. Whether the fully-developed fire will spread to adjacent oreos 

depends upon the dimensions of the compartment, the fire resistance of the 

boundaries, and such deterrents as sprinklers. H walls, floors, and ceilings ore 

resistant to fire, and if openings con be closed to stop the spread, the fire may 

be contained. If not, it may spread to other ports of the structure. 

Fig. 10-1 illustrates fire-intensity phases in an energy-time relot:onship dllring 

fires that undergo flashover and those that do not. The lotter involve little 
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energy and may be confined to their points of origin. Floshover fires, on the 

other hand, involve large amounts of energy and may propagate across incombus

tible zones if not effectively block~d. Intensity may be high and of short 

duration, as in fires involving reodily-ovailoble combustibles and plenty of 

ventilation, or intensity may be low and of long duration, as in damped fires 

Involving less-readily burned materials, which may smolder for a considerable 

period. 

I 

I 
I 
I 
I 
I 

.....,.lalhowr Pt..l 
Cit,litm> I 

I 
I 
I 
I 
I 
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I 
I 
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(trCllllltlon) 

I 
I 
I 
I 
I 
I 
I 
I .(nan.fl._ fire) -----------------+--- ~ ,__ _ _,.::;-+---__ _. I 

TIME 

Fig. 10-1 FIRE INTENSITY PHASES (lo.&) 
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Srnalce (10.2) (10.3) (10.lt) (I0.7) (10.10) (10.11) (10.12) (10.13) (10.1-) (10.15) 

(IO. I&) (10.17) 

Smnke is recognized by firefighters as in rrany ways more dangerous than actual 

florne because it (I) obscures vision, making it impossible to find safe means of 

egress and leading to ponic, O) makes help or rescue difficult or il'T\)OSsible, and 

(3) leads to physiological reactions such as choking and lochrymotion. Smoke 

usually contains toxic gases such as carbon monoxide, often accompanied by 

noxious gases that may leod to nausea and other debilitating effects, as well as 

panic. Smoke particles may carry aerosols such (JS HCI on their surfaces. 

Whether plastics give off light or heavy smoke and toxic or noxious gases 

depends upon composition ond the conditions under which burning occurs. Some 

burn witn a fairly clean flame in the presence of plentiful air, but inay give off 

~nse smoke under smoldering conditions. Others are inherently smoke produc

ing. The composition of the smoke depends upon the composition of the plastic 

and the burning conditions, os is true of other organic materials of construction. 

In a particular application, therefore, careful consideration should be given to 

the relative importance of flame and smoke, including design favoring the rapid 

elimination of smoke by venting, for e><ample, or fending off smoke as in 

prf'SSurized corridors and stair towers. 

Table I 0-1 pr~sents flame spreod and smokf! evolved from o number of tests on 

plastics materials performed in the fire tunnel, ASTM E84 {see comments in 

Section 10.4). These- ore to be token as exarrples that show the rc,nge of results 

brought about by differences -~ composition, thickness, and configurat:ons of 

plastic materials, ine;luding high-preMUre laminates, molded plastics, reinforced 

plastics, polymer .oncrete, and miscellaneous materials when te"ted by this 

particular method. Variations ond anomalies in smoke and flame-sprf!Od values 

ore not unusual for several test runs of the some material in this tunnel test and 

in other tf'sts. 

Toxic and Noxious Gnses (10.7) (10.10) (10.11) (10.12) (10.13) (IO..-) (10.15) 

The subject of fo><ic o,,d noxious gases generated by the decomposition and 

combustion of plastics is so large, corrplex, and incorrpletely understood that no 

otterrpt is mode here to treat it exhaustively. 
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Tmle 10-1 

Burning Characteristics of Selected Plastics 
Flomespreod Test ASTM E84 

... ...., • ...,.Lgmi ..... (e> 
,.... ..... 

(I) C:..-ol~ '° FlreR.iatwd s 
Bonded • CA 8aard 

Cenwelfl\,rpaM ~ 
FlraR..atawt 5 

(2) C.-olPurpc!M 115 
Frre Resistant 45-70 

8clndN to CA Barwd 
C.-OIPl,rpale 70 
Fire Reelatont 25 

0) CenerolfJwPGN l20-JSO 
Fi,.Rniatcwit .55 

8clndN to CA Board 
C.-OIP\,rpale 55-70 
FJ ... Resistant 15 

Molded Plastics (o) 

Opan-Crid Panela 25 
Open-Crld Panela llo-160 
Tl'Wllluc:eftt Panel, 10 
Tl'Gftlluc:eftt Pa.ls 25 

CIOII Fiber Reinfarced Ploaticii (o) 

I IS 
2 20 
l 25 
4 30 
5 so 
' 70 
1 7S 

,,.,,,. .. eancr.tw {b) 3 

MiamU..OUa Motwrlols (c) 

Sold Vln,I Tile ,0 
Vln,IFloerlng 80 
YI"" Alli•,_ TIie 235 
Alpholt Tile 82 
1..-Matio,C' ~ 
Whtt.PI,. Ill~ 130 
Ho1•-~- Woad a 325-\20 
Whtt. Yln,t Celling Panela 20 

Co) Ref.-.nce (5.10) 
(W Malufacturw'I Ditta 
w Refwwace(S.11) 
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Smoke 0,,,,laped 
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25 
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5 

a 
'5 
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~250 
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4SO-., 500 
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Like organic materials generally, plastics and other polymers may generate both 

toxic and noxious gases, as well as smoke, when exposed to high heat and during 

burning. The gases that will be generated depend upon the cofT1)0Sltion of the 

plastic and the burning conditions. If the plastic contains only carbon, hydr~ 

and oxygen, and if it bur:,s under favorable conditions in the presence of plentiful 

oxygen, the products moy be mainly water vapc,r and carbon dioxide. Under 

unfavorable conditions, such as deficient oxygen, great quantities of carbon 

monoxide may be generated. Some ~oroon monoxide is generated in any fire. 

Carbon monoxide is by for the most dangerous gas oec'lUse it may be present in 

large quantities, but hes no odor or other identifyi;,g features. 

Again depending upon composition and burning conditions, plastics containing 

such elements as chlorine, nitrogen, phosphorous, and others may !,J,!llerote 

hydrogen chloride, corrosive to man)' materials and to living tissue, hydrogen 

cyanide, phosgene, ocrolein, oldehydes, and others, as well as release the basic 

monomers of which the molecular chains were composed. Frequently, small 

amounts of these gases are so noxious as to be intolerable before lethal levels 

are attained. 

It is difficult to ascertain octuol levels of gases in real fires; hence, the 

uncertainty respecting the hazards presented by burning plastics. Considerable 

research into and rTleU$Urements of gases as wel I as smoke is consequeni ly being 

undertaken, in light of the increasing uses of plastics in construction, Similar 

research is underway to diminish the levels of noxious and toxic gases as well as 

smoke. (see, also, Section 10.4.) Generally-accepted tests to evaluate toxicity 

ore locking. 

1~.3 MODIFICATION FOR IMPROVED BEHAVIOR IN FIRE (IO. I) (10.2) (IO.J) 

(I 0.5) (I 0.17) 

Susceptibility of unfilled, unmodified plastics to fire con be diminished in 

mcn.,focture by (I) development of plastics whose structures are inherently 

resistant to ignition when exposed to heat and oxygen, (2) modification, and (3) 

incorporation of additives. Whatever the material, including plastics, the design 

of o structure to minimize fire danger may be more important than any of these. 
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The first approach is problematical in many building fires. Polymers resistant to 

high te~ratures ore possible and are produced, but it is doubtful that any 

foreseeable structurally-useful ones con withstand the temperatures and heat 

found, in fully-developed b11ilding fires, although some will propagate flame 

much less rapidly than others. 

The second and third approaches ore actively pursued in the attempt to provide 

plastics of varying resistance to fire. 

Modification of the polymeric structure by incorporating reactive flame retard

ants and by incorporating additives usually involves one or more of the following 

approaches to achieve: 

I. Decomposition and combustion products which ore non-combustible, or 
heavy enough to blanket the plastic r:mn prevent or retard interaction 
with air. 

2. Decomposition and combustion reactions thai involve reduced heats of 
combu:.tion. 

3. Reduced ease of ignition, involving increa.srd ignition or decomposition 
te~rature, or increased energy t'lPt-ded for decomposition. 

4. Increased amount of solid residue so as to maintain structural integrity 
and i"l)ede access of h4eot and ox)·gen. Chor formation, similar to the 
char forrnf:d on structural timber, is one of the best ways to achleve this 
objective. Carbon monoxide and carbon dioxide formation releases large 
quantities of energy and the products go ·off as gases, whereas carbon as 
char releases no energy, protects the substrate, and helps to retain the 
integrity of the port. Other favorable aspects are impeded access of 
heat and oxygen, lessened oxygen depletion and reduced toxic gas 
(cnrbon monoxide). Decomposition of silicone plastics leaves o residue 
of silica. 

S. Increased specific heat or thermal conductivity to prever,t or retard 
local hot spots. 

6. Decreased amount of resin and other combustibles by use of incombus
tible fillers« reinforcements Sl'Ch as mineral particles and gloss fibers. 

The chemistry involved in accomplishing these ends is more fully set forth in 

Appendix A. 
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Zones of tlrne vs. temperature in which various plastics retain 50 percent of 

their mechanical and physical properties are shown in Appendix B. 

Weath!ring (10.18) 

Fire retardants frequently lead to decreased resistance to weathering. For 

exomple, the translucent gloss fiber-reinforced polyester sheets commonly 

employed in flat or corrugated form !or wall and roof covering and in sandwich 

panels may turn yellow and dork"° upon exposure to sunlight if the polyester is 

one of thf' chlorinated types. This phen.>menon may be accompanied by more 

rapid erosion of the surface, leading to exposure of fibers, than is true of the 

more highly weather-resistant types. 

Beco•Jse this type of deterioration is caused by ultraviolet radiation, it con be 

combated by employing overlays of ultraviolet-screening films. It hos been 

found, for eYOmple, that applying a thir, film (several mils) of polyvinyl fluoride 

to the surface of glass fiber-reinforced chlorinated polyester sheet greatly 

reduces surface breakdown, and such protected sheets are employed in regions of 

intense sun'ight. 

Surface erosion can frequently be repaired and ~•Jrfoces restored by the 

application of liquid acrylic films which harden in place, protecting the fibers 

from expcsure to the elements and retaining translucence. Opaque points and 

other finishes can also be used to protect plastics from weathering. Although 

surface-protecting filrns may in~rently exhibit higher or lower flame-spread 

characteristics than the substrate, depending upon the nature of the film, they 

frequently ore so thin as to have little or nc, effect. Upon burning or 

decomposing, some may evolve noxious or toxic gases. 

10.- TESTS FOR EVALUATING MATERIALS 

The structural engineer considering fire-related aspects of materials in his 

design has access to quantities of fire data, drown from o variety of tests. In 

assessing such data, he must have some understanding -,f the tests ond their 

limitations in order to ovoid relyi~ ~pan data where they are not app!i<:oble. In 
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mis section, an attempt is mo~ to assess the tests most commonly employed for 

plastics. 

Fire testing in general, ·10t only for plastics, is undergoing intensive revii,w, 

Test methods hove evolved with inadequate undi,rstonding of the growth of fires, 

with the consequence that such tests and standards hove often r.~essarily been 

piecemeal, applicable essentially to limited test conditions, and difficult, if not 

Impossible, to correlate. 

Knowledge of fire behavior hos recently advanced considerably, and the devising 

of new test methods based on fire dynamics is proceeding, albeit many such tests 

ore still largely in the development stage. 

Laborotory-M:ale flammability test methods hove evolved over many years. 

Thei:- sponsorship by consensus organizations such as the Amer:can Society for 

Testing and Mc.!er'als (ASTM) is formalized after on intensive screening process 

performed by committees of experts. 

Many of the approximately 118 ASTM flammability test methods were adopted 

to cope with specific situations. It is therefore necessary for authorities 

concerned with the writing of codes and regulations to select those standards 

which most closely meet their requirements. In order to do this, the authorities 

must hove a thorough knowledge of the standards and be aware of the techniques 

used and the limitations inherent in each. The long and successful application of 

these standards by code and regulatory bodies demonstrates their usefulness. 

New testing procedures involving the colorimetric determination of ignition 

conditions, rate of heat and smoke release and other parameters at several heat 

flux levels hove been develcped and are being examined by the standards 

\Jrganizations. When these procedures hove been developed as standards, they 

will probably replace many of the current laboratory tests ;n providing quanti

fiable fire parameters that will more closely relote these tests to the behavior of 

materials in actual fires. 

Large-scale and full-scale tests hove been proposed with the objective of 

providing better understanding of the behavior of materials and components in 
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actual fires. Although the performance of these tests can be useful, no standord 

methods for their ~rformance hove been developed. One of the reasons for this 

is the very large number of variables that are associated with reol fires. 

Another problem is that they can be very expensive to run. 

With these observations in mind, the present status of fire testing as it relates to 

plastics may be reviewed, realizing that the situation is subjoct to considerable 

change. 

Tlie most-commonly u~ed tests ore those of the American Society for Testing 

and Materials (ASTM), although model codes (Section 10.6) often designate their 

own standards boseci upon accepted ASTM tests. There are others such as those 

of the Underwriters' Laboratories (UL), the National Fire Protection Assc~lation 

(NFPA), and the Factory Mutual System (FM). Many ore similar. Many of these 

standards ore adopted by the American Notional Standards Institute ond become 

ANSI standards os well. 

As any engineer knows, the results of te-sts must be interpreted and employed 

with caution and judgment. They cannot simulate all conditions of use. Tests 

are run under specified conditions, which ore on opproxim.:ite average of use 

conditions. Nowhere is this more the case than with fire tests. Different tests 

are used for different purposes, ond the restJlts may appear to ce widely 

different, dependiny upon test conditions. Some materials that behove well in a 

srnoll-scale laboratory bench test, and may app~or to be nonburning or self

t"xtinguishing, may burn vigorously in a larger-scale test or in actual use. It is 

tht"rc>fr•rt" n~·.-ssorv to l•nde-rstond the test procedures ond know their limito-

h ti,,, .,1!1•. !',•··,• ;•~--~•,v,~•;,t:,1 ,,f new materials hove used fovoroble results of 

s·n,,ll-:,1.·.,:t• •t•~•:' ••• .~c>:l:~:n,,tt" thc>ir rnlltc>rials "non-flammable" or "fireproof" or, 

rn,,,-,. -,·,•.'t•: -~•<· , • ":l-,'" -~-•rnir,,;,". with :some disostrovs results in actual use. As 

Ll ,.,,,,st'-l•'•'''•<', ~·••• ' ,,i..-r,,I T rndf' C'omrttission found it necessary, in the case of 

.. ·.-lll•ktr ►•l,tst,,:-, ,,, ::-:-,••' ,, ,.l,rnpl .. ,int rt"specting such claims. The Society of the 

Pla~ti,·:1 ln.il•str, i,,,,.,r~,,,rntt"s this caution: 
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"This numerical flamespreod rating is not intended to reflect 
hazards presented by this or any other material under actual fire 
conditions." (See ASTM E84 below.) 

ASTM odds this caution to its fire tests: 

"This standard should be used solely to measure and describe the 
properties of the materials, products, or systems in response to 
heat and flcme under controlled laboratory conditions and should 
not be considered or used for the description, appraisal, or regula
tio11 of the fire hazards of moterinls, products, or systems lKlder 
actual fire conditions." 

This puts it squarely up to the designer and the building official to interpret the 

results of fire tests according to their appraisal of the conditions surrounding any 

particular building design. Nevertheless, ASTM and other tests are the available 

and accepted tests, and are commonly used as ir,dicotors of the comparative 

behavior of materials such as plastics among themselves and with other 

materials employed by the designer. Codes (Section 10.6) customarily refer to 

them as requirements for the guidance of building officials and designers. 

With these general observations in mind, some of the commonly-used ASTM and 

other tests ore reviewed. Some are specifically for plastics, but others are for 

materials generally. The larger-~ale tests reviewed first relate to materials 

generally, not only to plastics. The smaller-scale bench or laboratory tests, 

many for polymer testing, ore mainly useful as screening tests during research 

and developmer,t. 

ASTM El.,, J',,FPA 251, U.. 253 
Fire Tests of Building Construction and Materials 

These methods are frequently called the "Standard Fire Tests" and the perform

ance is usually expressed as "2-h", "I /2-h", etc., h mecw,ing hours of resistance as 

defined by this test. 

The methods are applicable to bearing and non-bearing walls and partitions, 

columns, girders, beams, slobs, COl11)0Site beams a.id slabs, and other assemblies 

such as surfoce protection for combustible framing and combustible facings. 

They apply to all materials and co'Tibinotions, including plastics. 
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The standard is intendeci to determine the period of time that a test assemblage 

(Fig. 10-2) will contain fire or retain its structural integrity, or both, when 

subjected to a standard fire exposure which may or may not be followed by a 

stream of water from a standard fire hose. It provides a relat:ve measure of fire 

performance of comparable assemblies of moterials under these fire conditions. 

The stondord does not provide information as to performance oi assemblies of 

sizes 6ther than specified, nor does it evaluate products of corr>bustion. It does 

not measure flame spread (see ASTM E84), nor effects Jt joints or such elements 

as pipe and electrical receptacles unless specifically provided for (see below). 

Tftl Woll 
r.lum,\ ,._,, celling, raof) 

Fig. 10-2 ASTM El 19, FIRE ENllRANCE TEST (10.19) 

Gos burners in the furnace ore orrar,ged to raise the temperature in accordance 

with the time-temperature relation shown in Fig. 10-3. Flames may or rnoy n?t 

ifT1)inge directly upon the face of the specimen, which is often horizontal, rather 

than vertical as shown. The specimen is left exposed for the prescribed period of 

time, or until failure occurs as defined for that type of specimen, including 

penetration by flame or gases, unacceptable rise in temperature on the unexpos

ed side, and unacceptable rise in temperature of protected framing rnerri>ers. 
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Fig. 10-3 ASTM El 19, TIME-TEMPERATUE CUWE (10.19) 

One point not covered by the test is the effect of pipes, conduits, ducts, and 

other meMbers that pass through a wall or ceiling and may therefore allow fire 

to penetrate through or around tne member. The insulation on electrical coble, 

for example, may burn ond carry fire through an otherwise acceptable wall. 

Steps are being taken to establish tests and standards for such features. 

This is one of the most widely-specified tests in building codes. Hourly ratings 

established by the test ore the bosis for permitting the use of materials and 

combinations or excluding them from vario11s occupancies as defir.e:f in codes. It 

is probably the one standard fire test that most nearly approximates actual fire 

conditions. 

ASTM EM, IA. n3, l'FPA 2SS 
Sur•ace Burning Charocteristks of Building Materials 

This test is also extensively referred to in codes. It is often called the "flame

~reod'' or Steiner "tunnel" te~t. Its purpose is to determind comparative surface 

burning characteristics of materials by measuring the rate of flame spread over 

their surfaces when exposed to the test fire. Fuel contributed and ;imoke deiisity 

are also recorded, although then'! is no necessary relationship among the three 

measurements, and fuel contr lbuted is often omitted. 
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The test chamber or "tunnel" is o horizontol duct approximotely 25 ft (7,62 m) 

long, lined with insulating fire-resistive material such as refractory fire brick· 

(Fig. 10-4). Test panels are placed in the ceiling of the duct. Windows provided 

along one side permit observotior. of the fire as it spreads along the lower 

surface of the test material. TY.o gos burners deliver flames upword against the 

test material at the "fire" end of the tunnel. At the other, or "vent," end is 

placed a photo-electric cell to meosure smoke-caused loss in light tronsmission, 

Fig. 10-4 ASTM E84, FLAME-SPREAD TLN-EL TEST (10.19) 

The tunnel is first calibrated by lining the top with 23/12-inch ( 18.3 mm) thick 

seiect red oak flooring at 6 ~o 8 pt"rcent moisture content. The flame is applied 

and the time required to reach the end of the test specimen is determined. 

Temperatures and smoke density, as measured by photo-electric cell readings, 

ore recorded. Following the red oak triols, the test calibration is repeated with 

cement-asbestos board. Time to travel the length of the tunnel, and the smoke 

density in the red oak trials ore arbitrarily rated 100, whereas the cement

asbestos is roted zero. 

Materials to be evaluated ore tested in the same manner. Depending upon the 

time required for the flame to travel along the tunnel and the relative amount of 

smoke involved, the material may hove flame-spread ratings of less or more than 

100, and, similar,ly, smoke-density ratings of less or more than 100. 

This is the test most widely specified in building codes for flame-spread on 

materials, including interior finish. Materials ore, or are not, permitted in 

various building occupancies, depending upon flame-spread 'lOd smoke-density 

ratings. For example, a flame-spread roting of les., than 25 muy allow a material 

to be used in occvponcies closed to intermediate ratings such as 25 - 50 and 51 -

200. A high flame-spread rating m:iy rule out a material completely. 
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Although the test is commonly specified, its validity is challenged on the basis of 

larger tests such a.~ the corner, corridor, and room tests (~ee below) and actual 

experience in fires. Materials with favorable ratings in the tunnel test may burn 

readily and rapidly in these other tests and in actual use. Results are strongly 

dependent upon the geol'TlE'try of th" test. The test does not show flashover. It 

appears to be sensitive to small variations in test conditions, and results may 

differ from test to test olld from laboratory to labor, 1tory. Its results hove been 

used for other purposes than their intended use, wh;c·, is flame spread and not 

fire endurance. It measures flame spread on the bothm of a horizontal surfac~, 

not on vertical surfaces. Thermoplastic materials rnc,y rne!t and fall and require 

special support not representative of actual use. The rate of fuel supply has 

been criticized os too low to reflect actual fire conditions. Smoke is measured 

on a linear scale (photo-electric) but light obscuration is a log function. A 75X 

reading, therefore, does not indicate optical demity 3 times as much as 25X, but 

more nearly 8 to 10 times. 

Nevertheless, it is widely used; many test data (e.g., Table I 0-1) are available, 

and are relied upon in design. They must be employed judiciously, recognizir.g 

the limitations of the test. 

Comer Tests and Room Tats (10.12) (10.24) (10.25) (10.26) 

Because many of the standard tests do rot correlate Wt;II with the observed 

behavior of plastics and other organic materials in actual fires, efforts are 

underway to develop tests that more nearly approximate such fires. 

One such test is the corner test (Fig. 10-5). It consish of a corner wh"re two 

vertical walls meet and ore surmounted by o ceiling, fo,·ming a three-way corner. 

Generally, the surfaces of the walls and ceiling are mode of the material to be 

tested, although, in some instances, either the ceiling or the walls may be a fire

resistant material such os concrete or cement-asbestos board. 
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Wall.! Wallj 

Fig. 10-5 CORtER TEST (I0.12)(10.25) 

A given fire source is placed on the floor near the corner and ignited. The 

behavior of the material in walls and ceilings i:; ob,erved visually and timed. 

Thermocouples measure temperatures at selected spots. Criticol points, such as 

the time that sudden rapid propagation of flome occurs (if at all), ore carefully 

noted. 

Dimensions of corner test installations vary. The largest ore up to 25 ft (8 m) 

high with side wails up tG 50 ft (16 m) long. Smaller ones ore of the order of 6 to 

10 ft (1.8 to 3 m) high, with correspondingly shorter walls. In larger installa

tions, wood cribs or stacks of wood pallets, of weighed ,uoritities and specified 

moisture content, are employed for fuel. Gos bur ~ ore also being 11sed by 

leading laboratories for consistency and cleaner fires. Other types of fuel may 

also be used. For example, fuel in smaller installations may consist of weighed 

polyeth:,lene wastebaskets filled with milk cartons of coated paper. 

These tests are considered to be closer approximations of actual fire conditions 

than the smoiler laboratory tests or the tunnel test. However, the larger ones, in 

J}'lrticular, are obviou!ly e~pensive and require large amounts of material, no~ 

always easy to obtain with new naterials under development. Investigations of 

smaller corner tests and methods of scaling them to correspond To the larger 

tests are therefore underway. 
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Room tests ore one step beyond the corner tests. Rooms of various dimensions, 

usually with standard door and window openinqs, ore bui It with walls and ceilings 

mode of the materials to be tested. Some are essentially corner tests with 

additional walls to form on enclosure, and oper,ings such as doors for ventilation 

and observation. Specified quantities of fuel, such as wood cr1bs, or specified 

furniture such as choirs, beds, mottresseit, draperies, and "thers, are placed in 

the room and ignited. As in the corner tests, progress of fire, flashover, and 

te"l)eratures are carefully noted and timed. 

Somewhat similar to room tests ore corridor tests. Dimensions approximating 

thoie of corridors, and openings commonly found in corridors, are used. Mea

surements are similar to those mode in corner and room tests. 

DeterminotiOf'\S of quantitative performance levels from these tests are not so 

easily made as from some of the small-scale laboratory tests, but are much more 

likely to provide better judgment of behavior in actual fire conditions. 

ASTM °'3S- Rate of Burning and/or Extent and Time of Burning of 
Self-Supporting Plastics in a Horizontal Position 

This small-scale laboratory test is designed to compore the relative rote of 

burning, extent, and time of burning of self-supporting plastics bars molded to 

rize or cut from sheets, plates, or panels, when tested in o horizontal position. 

Specimens ore 12S .! S mm (4.,2 .! .20 in.) long, 12.5 .! 0.2 mm (.492 ! .O I in.) 

wide, and thickness of the material normally supplied. 

At least ten specimens ore employed. Each specimen is clomped at one end with 

its long axis horizontal and transverse axis at 40 degrees to the horizontal. The 

tip of a specified bunsen burner flame is placed in contact with the free end c.f 

the specimen for 30 seconds. The progress of the flame along the specimen is 

timed until it goes out or has bun.eel 100 mm ('3.,4 in.) along the specimen. This 

is called the burning mark. 
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If two or more specime-,,s burn to the burning mork, the average 1-\urninq rate, in 

cm/min, for oil specimens that burn to the mork, is reported as the average 

burning rote (ABR). 

If none of ten specimens, or no more than one of twenty specimens burns to the 

mark, the overage time of burning (ATB) and the overage extent of burning ..ire 

reported. 

Although widely used as an exploratory laboratory test, it is only that. The 

results ore limited to the test conditions. It is only o horizontal test and does 

not measure the vertical component of burning. On a vertical specimen ignited 

at the bottom, flamP- spread may be many times as rapid and extensive. 

ASTM oa,i, - lgnitior. Properti.es of Pl4dics 

Self-ignition and flash-ignition temperatures of plastics ore determii)ed by ~his 

laboratory test. 

A 102-mm (4-in.) diameter tubular furnace 216 to 254 mm (8-1/2 to 10 in.) high 

surrounds o 76-mm (3-in.) diameter inner tube of the same length. Granular or 

stocked 19-mm (3/4-in.) ~uore specimens ore placed in the furnace, and heated 

air flows post th~m. A pilot flame is ::,rovided at the top of the furnoce. 

In the Flash-Ignition Test, the pilot flame is ignited and air ot various velocities 

is passed through the furnace. The temperature of the air is set to rise at 

various rotes until a lo~st temperature is found at which combustible gases 

evolvfl!d from the specimen are ignited by the pilot light. 

In the Self-Ignition Tut, essentially the same process is employed, but without 

the pilot flame. Self-ignition occurs when the specimen flames, exploJes, or 

glows. 

Both tests ore repeated with air ot constant temperotvres. 

The ,,,;nimum temperatures at which flash occurs are reported as Flash Ignition 

Temperature or.d Self-Ignition Temperature. 
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ASTM E'62, IIFPA 258 - Smoke Generuted by Solid Materials 

The method uses a chamber in which smoke- is generated, and measures the 

smoke by photometric system. It employs either a radiant energy source for 

non-flaming pyrolitic de<-ol'l1)0sition of the te:o1t specimen or a si:-<-tube propane

air burner for flaming conditlons. 

The specimen is 76.2 mm (3 in.) square. For n011-floming tests, u central 65. I -

mm (2-9/16-in.) square area is exposeu to the radiant source. For flaming 

conditions, flomelets ore applied to the lower edge of the vertically-placed 

!'.peeimen. A vertical light beam passes upward through the chamber to a photo

multiplier tube above the top. Smoke density is measured by loss in transmission 

of light, from which the specific optical density is computed. Other porometers 

such os maximum rate of smoke occumulotion, and time to a specific optical 

density level, may be obtained. 

ASTM E"2 - S..fOCI! Flammability of Materials Using a Radiant Energy Source 

Surface flammability is measured with an inclined specimen placed in front c,f a 

vertical radiant heat source col'l1)0Sed of a ceramic plate heated by a gos flame. 

The carefully ;>reconditioned specimen is 152 x 457 mm (6 x 18 in.) and the 

radiant source is 305 x 457 mm (12 x 18 in.). Opaque specimens ore bocked as 

they would be in practice. Transparent specimens are bocked with highiv

reflective aluminum foil. The radiant pant.-l is of porous refractory material 

capable of operating at tamperoture up to 8t6°C (1500°F). A pilot flame at the 

top of the l"r,ecimen is present principally to initiate igniti0i, and to ignite 

combustible evolving gases. 

Rate and extent of burning and liberation of heat are determined. A flarne

apread Index Is derived from the rote of progress of the flame front and the rate 

of heat liberation. Special note is mode if flash occurs during the test. 

This is a laboratory t@'st and is intended for research and development only. It is 

cmsldered by many practitioners to be superior to the widely-used ASTM E84 

test. 
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ASTMDJgS. 

A comparison test, ASTM D3675-78, hos been ~roved for testing of foamed 

plastics, specifically. It is almost identical to ASTM E 162. 

ASTM D3014-Flame, Time of Burning, and Loss of Weight of 
Rigid Cellukr Plastics in a Vertical Position 

This is a small-scale screening test for comparing relative extent of burning and 

loss of weight of rigid cellular plastics When bur,1ing from the bottom in an 

upright position. 

A specimen 254 x 19 x 19 mm (10 x 3/4 x 3/4 in.) is supported in an upright 

position in a vertical test chimney. A propane or natural gos burner applies o 

flame to the bottom of the specimen. A small aluminum pan under the specimen 

catches any drippings. 

The flame is ~lied for 10 seconds. The he:ght of flame produced and the time 

to e)ftinction are recorded. After flaming has stopped, the specimen, holder, and 

drip pan ore weighed, and the weight loss of material determined. At least six 

specimens ore tested and the aver.Jge results determined. 

ASTM 2863 - Oxygen Index 

Becouse many of the standard tests only roughly distinguish the relative 

flammability of plastics ond other materials, a test known as the Oxygen Index 

Flammability T~st, also called the Limiting Oxygen Index Test has been devised. 

In it, a test sample is held upright inside a tube and o precisely-controlled 

mi:dure of oxygen ond nitrogen is passed upwcrd around the specimen. A pilot 

flame is touched to the top of the specimen to ignite it. The percentage of 

oxygen in the oxygen-nitrogen mixture is adjusted undl it will just maintain the 

flame. The index is 100 times the ratio of the amount of oxygen to the total 

oxygen-nitrogen mixture. 

Sincf! the percentage of oxygen in normal air is approximately 21, a lower oxygen 

index generally indicates a material that will burn :-eadily, the lower the more 
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flammable, whereas a higher index indicates that the material will nor burn 

readily, the higher the index, the less flammable. Tht> test has been found to be 

considerably more sensitive and reproducible than ASTM D635, for example. 

Like all tests, this must be interpreted within its context. It measures relative 

flammability under controlled conditions. It does not model er1ergy feedback, or 

measure flame spreod, dripping, ignition temper•Jture, ond heat and smoke 

production, although it con probably be modified to include some of these. It is 

on indicator of relative oxygen requir,~ments. The test is of interest primarily os 

a laboratory technique for the evolution and gvidonce of the development of new 

materials. 

FM Constructio.l Materials Calorimeter (10.16) 

In this test, the he'.lt contributed by a test specimen when exposed to flame is 

measured. The specimen is a panel (such as a wall or roof) of the whole 

construction to be tested. It forms the horizontal cover of the liquid fuel-fired 

furnace with the top of the sample exposed to the open atmosphere. The fuel is 

ignited and fed at a predetermined rote, Flue temperature is recorded versus 

time until no further significam .:ornb11stion occurs. 

The test is repeated with on incombustible panel. Auxiliary burners in the ~est 

chamber ore adjusted to produce the some flue temperature-time curve as the 

test panel, The fuel required to match the performance of the test sample is a 

measure of the fuel contributed by ;·he test sample in the original test. 

teS Differential Bomb Calorimeter· (10.34) 

Toe National Bureau of Standards has developed a bomb calorimeter used to 

me:isure potentiul heat of materials. Representative values obtained on a 

numcer of materials are given in Appendix C. 

Toxicity Tests (I 0. 7) 

Tests for, and determination of, incapacit~tion and death comm:>nly involve 

animals such as mice and rats exposed to gases and smoke evolved by burning 
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materials. lncapodtotion is deemed to hove occurred when the animal loses 

control of his movements, as by falling from a revolving support. Death is 

determined by cessation of breathing. Whereas incapacitation bv these tests 

moy be determined withil"I quite narrow time iimits, death is more difficult to 

ascertain. Furthermore, onir removed frnrn the test before death mar nie 

hours or days later. The some delayed d~oths have been observed in human 

victim~ of fires. 

The problem of toxicity is highly complex. Currently, there ore no widely 

accepted toxicity tests. 

10.S DESIGN APPROACt-ES FOR FIRE SAFETY (10.S) (10.6) (10.7) (10.8) 

(10.9) (10.13) (10.14) ( 10.1 S) (10.17) 

In structural or load-bearing applications, plastics or,-1 combinations employing 

plastics should be judged on the same basis as any other structural materials 

under the some loading and fire conditions. Much can be done to minimize fire 

hazard by employing the some basic principles of design for fire safety as are 

applied to any stn,.::ture. The objective is to minimize hazard, irrespective of 

materials ut i Ii zed. 

In str Jc:turol design the foremost considerations respecting fire ore prevention of 

(:) loss of Ii fe, (2) loss of property, and (3) loss of services such as files, office 

equipment, and others. Good design involves (I) prevention of ignition, (2) 

controlling o, ;nonoging a fire once started, and (3) extinguishil"lg the fire. 

Reduction of hazard involves early warning of a fire as by smoke and heat 

detectors. This is of paramount importance in saving life and bringing in fire

control equipment. Occupants, once alerted, must he able to leave a structure 

rapidly by protected paths ond exits. Other de~ign features include, for example, 

containment by tnermol barriers on~ fire-spread breaks, knockoo~ panels, venting 

as by roof vents, minimization of fuel content, avoidance of build-ui-> and 

C"v,lCentration of heat and smoke, and prompt fire suppression. Automatic 

supression s;stems such as sprinklers con go far toward stopping a fire in its 

crucial early stages. "Active" devices such as sensors and ~,.,rinklers mi,st he 
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maintained in working condition; otherwise, fol~e reliance will be placed upon 

them. These ore general considerations not confined to any particular materials. 

In considering firt! ho7ards of plastics, it should b~ kept in mind th'lt thermo

plastics may soften, distort, melt, drip, and flow, whereas thermosetting plastics 

generally keep their shapes, although they moy soften to some degree and 

distort. Different plastics, depenJing upon composition, behave differently at 

different ternp~raturcs (see Appendix B). 

The softening qualities of thermoplastics ore sometimes put to use in fires. 

Thermoplastic tronslucer.t sheets in ceiling illumination, for example, may soften 

and fall at temperatures well below ignition. This may remove them from o 

ceiling fire, and may expose sprinklers situated above the translucent ceiling, but 

may foll into and augment a fire below. Frequently, codes permit such sprinkler 

installations, as with egg-crate diffusers or thin thermoplastics; in other coses, 

sprinklers must be below the translucent ceiling, and sometimes sprinklers ore 

required both above and below. 

Skylights, such os domed transparent or translucent plastic skylights, ore 

frequently designed to be self-venting by springing open at specified tempera

tures by meons of fusible links. If not, they may burn through to open VP.n~s, or 

may be broken. Windows, similarly, may burn or be broken. Some tough 

transparent plastics ore not easily shottert:d; in such coses, it is often recom

mended that they be installed in openable sash. 

Foams 

Because of their excellent thermal insulation properties (Chapter I), plastics 

foom.1 are widely used as theirmal insulatiln and in eomposites s-,ch as structural 

sandwiches (Chapter 8). Their very le-· ge surface areas coupled with resistance 

to inward heat flow leads to rapid flame spread. Because of their low den~ities 

they may contribute relatively little foel to a fire, if quantities invol ,ed ore 

small, but foams are frequently used in large quantities. Fuel contribution is 

!iignificant because ihe rote of heat release is high, which can cause tempera

tures to rise rapidly. Combustioo is usually complete. Smoke ond toxic gas 

(HCN) f'mission are very significant in overall fire hazard evoluot ion (See SectiO!l 
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10.2 - Smoke). Some theonoplastic foams melt and retract from o heat source 

such as a flame, but falling molten droplets may contribute to a fire. Therm.>•· 

setting foams tend to retain their sh~es instead of retracting, but some, such a~ 

the phenolics, form o surface char resisic.nt to fire. 

Plastic foams have beEn subjected to CllOSiderable examination and test under all 

conditions from small-scale laboratory tests to large corner and room tests. As 

a consequenr.e, thermal barriers to shield the plastic from fire ore ',trongly 

recommended for use with both thermosetting and thermoplastic foams and llre 

required in some States. A common specification requires at least a 15-minute 

roting for such barriers, e.g., 26-gouge (0.45 mm) steei, 0.5--in. ( 13 mm) gypsum 

board or 0.75-in. (19 mm) fire-retardant plywood! fastened through the foam to a 

firm substrate to make sure the barrier stays in place for the specified time even 

if the foam underneath should soften. The some holds true of me.fol lath and 

plaster. Some States require sprinklers. Local codes should be consulted. 

When thermal barriers ore employed with S<'"Tle foams, esp«iolly thermoplastics 

such as polystyrene, th,'! foam may, upon being hected through the barrier, 

contract and retract away from the barrier, leaving on insulating air space. If 

hot enough, however, the foam may melt, and if it can rur1 out at the bottom of a 

wall panel, for example, it may ignite and help to spread the fire. If fire can 

penetrcte an air space between foam and cover, it may ignite the foam. Barriers 

should be designed to prevent melting, runnin,J, and ingress of flame. F oon,. 

cored sandwich panels may be sealed along the edges for this reason. However, 

some foams will decompose urider such conditions, releasing combustible gases. 

A retracting foam loi:J horizontally, as 'lver a ceiling, may be pro!t:eted from 

flame or heat above by o layer af loose fill such as vermiculite. If the foam does 

retract, the fill settles and follows, avoiding an air gap. 

All foamed plastics may be employed in cavity matonry walls and under concrete 

floors where the cover is at least 0.5 in. ( I J mm) thick. When used in roofs, 

depending upon the roting of thP, roofing, foams over sheet l'Tlt"tul roof suworts 

may need o barrier of lncomi>ustible material. (Codes, Section I 0.6). n,~rmo

setting foams ore not prone to melt and drip through seams in thf- roof, as 

thermoplastics may. 
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With sandwich panels, depending upon the composition of facing and foamed 

plastic core, sprinkiers may '>r may not be required. If facings ore metal, steel 

must be at least 26 gouge (0.45 mm), and aluminum at least 0.032 in. (0.8 mm) 

thick, llnd sprinklers are usually required. 

Care must be exercised to ovoid undue hazard with foamed plastics during 

construdion. Boord stock should be stored at least 50 ft (15 m) from a building 

or important structue. In sprinklered buil<iings, :t may be :.toreci in piles up to 6 

ft (1.8 m) high. Only limited 4uontitie::. should be placed in unsprinklereL areas. 

As installation proceeds. the thermal barriers should follow closely, so as to 

avoid having large areas ex;,osed. 

Thermosetting Plastics 

Because therm::>setting plastics, as described in Chapter I, consist of crosslinked 

or interlinked molecular aggregations, they tend to retain their configurations as 

temperatures rise to the combustion point, unlike thermoplastics whirl-) charac

teristically soften and may melt and drip. This attribute of thermosetting 

materials may be favorable or unfavorable in a given situation. 

Depending upon molecular stfucture, ti1ermosetting materials have varying 

degrees of resistance to temperature and flame. Phenolics, for exompie, are 

difficult to ourn under ordinary conditions of flame exposurP., and properties do 

not b~in to degrade u;1til temperatures of S00°F (260°C) are reached. They 

produc~ surface chars difficult to burn that protect the material underneath. 

BecouSP. phenolics are commonly modified with fillers, their fire behavior 

depends to some degree upon the nature and omQUnt of filler present, e.g., wood 

flour, cotton flock, mica, asbestos or glass. Silicones, because of their stable 

~ilicM-oxygen linkage, ore highly resistant to flame and elevated temperatures. 

1·he amines, urea formaldehyde and melamine formaldehyde, and the polyesters 

are less so. The burning cha:-acteristics of the unsaturated po~yesters widely 

used in reinforced plastics (see below) con be modified by chemical modification 

of the monomer coostituents, by the addition of organic fire retardants, the 

adcl;tion of inorganic fillers, and the chemical introductior1 of organometalLc 

compounds. Epcxy resins, similar, con hove their flammability reduced hy 

introducing phosphorous and halogen-containing monomers or additives. 
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Reinforced Plastics 

The relative resistance of glass-reinforced phe11olics, silicone, melamine, and 

polyester when exposed to different temperatures is shown in Fig, 10-6. At still 

higher temperatures, the rate of weight loss increases, as shown in Fig. 10-7 Tor 

asbestos-filled silicones. Even at 1he highest temperatures shown, some silicones 

do not burn, and have been known to resist short-time ternperatures as h:gh as 

2000°F ( I I00°C) without oc tually burning through (Appendix B). 

Clau - hi temp. phenolic (11) 

Gloss - melamine 

0 2 ' 8 10 

Fig. I 0-6 PERCENT WEIGHT LOSS OF LAMINA TES AFTER VARIOUS 

BAKING TEMPERA TURES ( I 0.17) 
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Fig. 10-7 WEIGHT LOSS Of SILICOf£-ASBESTOS LAMINATES (10.17) 

Reinforced plastics ponels, whether fire-retardant treated or not, may be 

expected to burn i,1 t-..uilding fires, but the thin panels ordinarily employed 
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frequently burn through quickly, creoting openings or vents through which heat 

can escape. Under these conditions, ten.peratures moy drop quickly, and flames 

stop propagating. It is therefore recommended that space for venting be 

provided behind such panels to allow the ready esr.ope of heat, This is 

particularly true of hung ceiling panels; the space above should be sufficient to 

prevent the build-up of hect ond to allow for the escape of hot gases. 

Several examples may illustrate suggested applications: 

I. In sprinklert-d area~, walls and roof bonds, up to 30 ft (9 m} high and of 
unlimited horizontal length may be constructed of commor.ly-found fire
reta~dant panels such as those 1/16 in. (1.5 min) thick, weighkig 8 oz/,q 
ft (24 kg/rr,2) and having o flame spread of 25 or less in th-! ASTM E84 
test. 

2. In unsprinklered areas, such bands may ~ up to 8 ft (2.4 m) high. 
Successive tiers should I>'! separated far eoovg:, to ovoid jumping of fire 
from onP. to another. 

3. Similar con~,derotions hold for interior partitions and spoce dividers. 

Epoxies ore similar to the polyesters in their general flammability behavior. As 

indicated in Chapter I, because of their higher cost they ore normolly e"l)loyed 

only where polyesters ore inadequate. In addition to glass fiber, reinforcements 

are commonly S}•nthetic high-strength high-modulus fibers. Flammability char

acteristics of such composites hovP. not been extensively investigated. 

Furans, lika phenolics, hove inherently good rt-sistance to fir~, and Jlas:; fiber

reinforced furans are report~ to hove superior resistance to flame. They are 

difficult to process. 

eon.,c.1tes 

C0'1'1)0Sites ore frequently relied upon to provide performance not otherwise 

attainable. Gloss fiber reinforced polyesters may be faced with a thin acrylic 

cover, and backed with foam in turn covered with still another material to obtain 

a combination of surface c<"'l")r and texture, strength, insulating volue, and 

protection ogains1 damage. Fire resistance of combinations moy or may not be 
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superior to that of the constituen,s alone, and should, therefore, be subjected to 

flammability tests. 

A composite consisting of layers of materials often ~,c.hibits better fire endur

ance (resistance to penetration) than the sum of the endurances of the layers 

exposed to fire separately. A foam-cored sandwich panel, for example, is likely 

to resist fire bette, than the facings and core separately. Closely related to this 

generalization is the observation that the farther an air gop or cavity is from the 

surface exposed to fire, the more beneficial it is. F oomed plastics in o cavity 

wall, for example, ore more useful in rP.tording heat flow through the wall If 

protected by a thick effective thermal barrier than if l!Xposed to high heat 

through a thin thermal barrier which may permit the foam to be destroyed. 

Plastics foams hove low thermal conductivities. Thus when they are used in a 

layered structure, such as a wall, floor, ceiling or roof, they con be highly 

effective in retarding heat flow from the exposed to the unexposed side. This 

slows the dse in temperature on the unexposed side, and may increase the hour:;• 

fire resistance rating of the entire assembly. However, previous comments 

respecting flammability of foams should be noted. 

Particular composites, such as polymer-impregnated concrete and polymer 

concrete, in which the great moss of the material is heavy mineral particles, con 

be expected to retard penetratic.in of flame because of the small percentage of 

polymer COIT1)0red with the moss and heat capacity of the minerals. Howew.r, 
polymer concrete cannot be expected to hove the fire resistar.ce of all-mineral 

concrete. 

Area Interruptions 

Building Codes (Section 10.6) limit « prohibit the use of materials that e,chfblt 

rapid surface flame spread or evolve large quantities of snr...ke. In general, 

combustible materials should not be applied continuously over large areas or for 

long distances. Breaks wicie enough to stop flame spread should be provided at 

frequent intervals. This is particularly true of ceilings. 
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Protective Coatings 

Fire-retardant coatings attempt to delay the time to reach ignition temperature 

and to reduce the spread of flame. They ore of three types: heat-resistant, 

flame rP.tordant, and insulative. 

Heat-resistant coatings usually con withstand elevated temperatures. Silicones, 

for example, ore effective to 650°F (340°C); zinc or aluminum pigments may 

raise this to 1000°F (5l~0°C) and ceramic frits to 1400°F (760°C), but may not 

withstand direct flame. Flame-retardant coatings, such as fluorocarbons and 

polyimides, retard the spread of flame but do not necessarily protect the 

!ubstrate. 

lnsulative coctings, commonly called intumescents, when heated by flame, 

bubble and swell to form an insulating moss of char. One ingredient in the 

coating forms a carbonaceous foam, another makes the foam resistant to flame, 

and a ttiird forms a non-ignitoblE: gos trapped in the foam. Other ingredients 

decompose and absorb heat, lowering the temperature below the ignition 

temperature. Such coatings ore used not only on plc,stics but on wood and other 

combustible materials. 

Considerations with Air Supported Structures !10.35) 

Membranes used in air supported structure~ are either plastic films or flexible 

co:nposites comprised of plastic coatings on organic or inorganic fiber fabrics. 

The mos1 commonly used fabrics ore orgonics: nylon arid polyester, both readily 

combustible. Most comf'l10nly, these fabrics ore coated with "in> I formulated to 

limit flame spreod so that the coated fabrics conform with NFPA Standard 70 I

? I, a vertir.al flame test that ~eq•Jires extinction of combustion within 2 seconds. 

As a protection ¥inst leaching out of the retardants, the Standard requires that 

the test material be artificially aged in a weatherometer. 

The vinyl coated fabric- is generally considered to hove a service life of 7 to I 0 

years, when it must be recooted. Obviously, if limitation of flame spread is a 

design consideration, the material used in the r~ooting must continue to provide 

this prote-:tion. 
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A relatively neY• and more expensiv£ composite fabric of fluoroplostic (PTFE, 

Chapter I) coated fiberglass con achieve a flame spread roting of "incombust

ible," on the basis of tests that check for flame spread, smoke generation, no 

fuel co.,tribution and strvctural integrity. The fiberglass fabric hos a high 

temperatun resistance; the PTFE coating melts at temperatures in the range 

600 - 700°F. Under elevated temperature, the fabric strength is limited by the 

strength of the PTFE seams which may soften if the temperature rise is 

sufficient. 

Flexible membrane materials do net prov:de fire b~rriers or barriers to pre·.,ent 

temperature build-up on the for side. They would melt or burn in tests for fire 

resistance. Although many building codes do not require c fir-:-resistive rating 

for arches nnd roof decks located more tha'l 20 ft (6.1 m) abovP. floor level if the 

materials of the roof structures ore incombustible, such !ltruc:tures have been 

vulnerable in fires. However, such code stipulations may permit the use of 

PTFE-cooted fiberglass fabric in c~rtain applications if fire load and height 

separation preclude loss of structural integrity of the fabrics f,·om elevated 

terl"f)erature. 

Fire Barriers AgaiNt Penetration Around Pipe, etc. 

Fire l"'lOY penetrate an otherwise fire-resi:tont wall or other barrier by moving 

along o .:able, pipe, conduit or other fixture that passes through a barrier, or in o 

pipe chose not adequately blocked, for example, Gt floor levels. Various 

materials hove been developed to c.lose such openings. Some ore designed to 

form o char upon exposure to fire, thus retarding penetrctior,. Others, such as 

those based upon si Ii cones, ore resistant to high t~r.lpf"rotures. Such barriers 

may be annular rings, foamed in place (den~ foam), or designed to be sprayed, 

pNred, trowelled, or forced IJS mastics into the openings to be blocked. 

10.6 BUILDING COOES uo.,, c10.2n (10.28) (10.2') (10.30) (IO.]I) 

There ore no Federal buiiding codes. However, the Department of H01.,.~ing and 

Urban Development (HUD) and the Genera: Services Administration (GSA) hove 

their own regulations, as mentioned below •. "vlony States hove builc!1"',. codes, but 

tt ese m.:iy not be completely binding unpon municipalities. Conseqt·ently, for 
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any given huilding design, it is necessary to consult the local code and officials 

to be certain what regulations apply. 

On the other hand, 5everol organizations write model building codes that may be 

and frequently are adopted l:y municipalities with or without modification. 

Three of the most widely-employed ore those written by Building Officicl~ and 

Code Administrators, International (BOCA); International Conference of Building 

Officials (ICBO); and Southern Building Code Conference, International (SBCC). 

Their provisions for plastics are similar, and unoergo periodic changes as the uses 

of plastics in =onstruction grow and change. In this discussion, these codes are 

used to illustrate the types of provisions to t;e found in building codes, but it 

must be e"l)tlOSized again that in any specific instance the local code having 

jurisdiction must be consulted and followed. Further:nore, codes ore subject to 

chonge, sometimes rapid in on evolving oreo such as plastics. 

Coverage ( IO.,) 

The model codes hove general provisions respecting fire that must be met by oil 

mo~eriols. They also hove ~ific provisions for plastics. 

General 

Fire sofety r:,eosures generally cover: 

I. Reguloti0"1S respecting egress. These ore based upon type and physical 
condition of occupants, and time required tc reoch a place of safety or 
to leave the building. Regulations also cover type of building construc
tion, det~Uon systems, self-closing doors, number and location of exits, 
etc. 

2. Protection of structur'ol membe,.s. This is generally in the form of on 
incombustible insulating barrier such as concre~ ,, masonry, plaster or 
gypsum. The required resistance ratings mt:o..ured in hours ore based 
upon occupancy, fire loading, and height OM areas of a building. 

3. Prevention of the spre,Jd of fire and smdce. This is accomplished by 
aubdividing the t-uilding into limited areas by means of fire-resistant 
walls, floor-ceiling assemblages, anJ fire doors. 

4. Restrictions on combustibility. Combusti'>le building materials ore not 
permit!ed in some occupancies ond are limited in area and exposure in 
others. Flame spa eoct ot" interior surfaces of Cf!ilings, walls, and floors is 
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limited according to results of tests such os ASTM E84 (Section 10.4). 
s~-,oke generation is limited according t'l the results of either ASTM f:84 
c,.r ASTM 02843. Snme Federal agencies utilize NFPA 258 or ASTM 
E 162. Son: codes have specified that products of combustion of interior 
finishes must be no more toxic than burning wood, but these are being 
discontinued as too uncertain and diff:cult to measure. 

S. Fire detection and alarm systems. These are being increasingly required, 
e.g., smoke detectors in residential living units, hotel rooms, nursing 
homes, etc., ore required in some jurisdictions. Voice alarm and 
communication s;stems and smoke detectors are sometimes required in 
retail stores, opcrtment buildings, and office buildings that have floors 
more than 75 ft (23 m) abo•,e the level of access by fire equipment. 
Monual fire alarm systems are generally required in schools, hospitals 
and similar occupancies in buildings more than three stories high. 

6. Fire-suppress!on systems. Various requirements for fire extinguishing 
systems and automatic sprinkl~rs depend upon floor area, occupancy, and 
access by fire deportme!'lts Several States now require sprinklers in all 
buildings over five stories high. 

7. Size of bu;lding unit. Permitted heights and areas vary witt> types of 
occupancy, type of construction, and requirements for fire extinguishing 
systems. 

Plastics 

All three codes named above hove ~,ecific sections covering Light-Trm~mitting 

Plastics and Plastic Foams. Other applications are implied in these and other 

sections of the codes. Structural applications of J:>lastics, for example, must 

meet the some general satety requirements as other structural materials. 

Light-Tl'Gnlfflitting Plastic Construction 

The BOCA provisions in effect in I '78 are used os a basis in this discussion, with 

voriations, if any, among the other two codes noted. ICBO and SBCC hove 

adopted essentially the some provisions. It should be emphasized that local 

codes must be consulted in eoch individual case. 

Approve-cl materials ore those :·hot meet the strength, durability, sanitary ond 

fire-resistive requirements of the code. Among the tests cited ore ASTM ™35 

Standard Method of Test for Flammability of Self-Supporting Plastics, ASTM 

0374 Method of Testing for Thickness, ASTM D1929 Method of Testing for 

Ignition Properties of Plastics, ASTM E662, NFPA 258 Smoke Generated by Solid 
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Materials, and ASTM E84 Method of Test for Sl.rface Burning Characteristics of 

Building Materials. Api>roved plastics, thermoplastic, thermosetting, or rein

forced, must hove self-ignition temperature 650°F (350aC) or above when tested 

according to ASTM DI 929, a smoke density rating n<.' great.er than 450 when 

tested according to the way intended for use by ASTM EB4, or a smoke density 

roting no greater than 75 according to ASTM D2843, 

Two combustibility classes are: 

• C-1, burning extent I in. (2.54 cm) or less, 0.060 in. ( ! .5 mm) thick 
material, or the thickness intended for use, tested in accordance with 
ASTM D635. 

• C-l, burning rate 2.5 in. · (6.35 cm) per min. or less, 0,060 in. { 1.5 mm) 
thick material, or the thicl<ness intended for use, tested in accordance 
with ASTM 0635. 

Types of application are: 

• Glazing 
e Plastic wall ponE'ls 
• Roof panels 
• Skylights 
• Light-diffusing syster,,s 

Three classes of plastics are: 

• Gl...ass fiber reinforcej (20 percent or more glass fiber by weiQht) 
• Thermosetting 
• Thermoplastic. 

Approval of a plastic material requires suitable technical information an<1 

identification by trade formula number, name, or other acceptable identifica

tion. 

In addition to fire-safety requirements, design and installation must meet 

strength and <llrabi lity requirements of the code, as well as recognize the 

properties peculiar to plastics, such as large coefficients of expansion. 
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Glazing of Uiprotected Openirgs 

In unprotected frame construction and in factory and industrial buildings, such 

doors, sash, and framed openings os are 'lot realjired to be fire-resistance roted, 

may be glazed with approved plastics. In other classes of construction, such 

openings as are not required to be fire-resistance rated may be glazed with 

approved plastics if: 

• the area is not more than 25 percent of the woll face of the story in 
which it is installed; areo of each pone above five stories not more than 
16 sq ft (1.49 m2), not m.>re than 4 ft (1.22 m) high, a minimum 3-ft-high 
(91 cm) vertical spandrel betv·een stories, arid installed not more than 75 
ft (23 m) above ground. (Note: ICBO requires 4 ft ( 1.22 m) vertical 
panels, or flume barriers extending 30 in. (76 cm) beyond exterior wall in 
.)lane of floor, and limited to installations not more than 65 ft (19.8 m) 
Jbove ground. 

• Exception: If each floor above the first hos a 3-ft-wide (91 cm) 
horizontal orchitectural projection (fir,a canopy), thermoplastic materials 
mo~ be insralled up to 50 percent uf the wall area of each story in 
buildings less than 150 ft (46 m) high. Sizes and dimensions of glazed 
1.,nits ore unlimited except to meet structural loading requirements. 

If a complete approved automatic fire suppressant system is supplied, the 25 

percent areo restriction above may be increased 100 percent. ICBO permits a 

maximum 50 percent increase if sp!'inklered, and SBCC permits a 50 percent 

increase of the area permitted lKlder the exception with the use of .;anopies, and 

waives the bosic area provisions. 

Exter-ior Poiel Walls 

Approve<l plastics may be used os wol! panels in exterior walls of oil buildings not 

required to hove a fire resi~tonce rating, except theaters, dance l,olls and similar 

high-hazard and institutional buildings, provided that: 

• They do not alter the type-of-construction classification. 

• TI1ey are r.ot installed more than ;5 ft (23 m) above ground, except as 
noted above under Glazing of Ulprotected Openings. (The ICBO lir:iit is 
40 ft (12.2 m). 

• Vertical spandel wall separations b:>tween stories are: 
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Closs C-1, at leost 3 ft c, I cm) 

t::loss C-2, at leost 4 ft ( 1.22 m) 

If there is a fire canopy (see above, Glazing of Ulprotected Openings), 
no vertical separation ls needed except thickness of canopy. 

If a complete approved automatic fire suppressant system is provided, maximum 

oreo of exterior wall and maximum square feet of single area may be increased 

100 percent, but not more than 50 percent of total wall area, and is exempt from 

height limitations. 

Combinations of plastir. glazing and plastic wall panels ore subject to the same 

limitations as ore a~licoble to the class of plastic for plastic wall panels alone. 

II 

Roof Panels I 

I 
Approved plastics mkJy be used in roof PQ'lels of oil buildings except theaters, 

: 
dance halls ond simil<i, occupancies, amusement ood recreation buildings without 

stage, ond high-hazard and institutional buildings, provided that: 

• 
• 

• 

• 
• 

Roofs ore not required to meet the fire resistance requirements • 

Roof panels meet the requirements for roof coverings o! the particular 
~Y• 

'The roof is protected by u complete approved automatic fire suppressant 
system. 

Roof panels must be separated at least 4 ft (1.22 m) horizontally • 

If exterior wall openings must be fire-resistonce roted, roof pcnels must 
be at least 6 ft ( 1.83 m) away from such walls. 

Individual Class C-1 plastic panels ore limited to 300 sq ft (27.9 m2), and io a 

total of JO percent of the floor area directly helow the roof. For !n.:fividu<JI 

C'°8 C-2 panels the corresponding limits are 100 sq ft (9.3 m2) and 25 percent. 

Area limitations ere waived for one-story buildings not more thon 16 ft (4,87 m) 

hfd\, not exceeding 1200 sq ft ( 111.3 m2) in areo, and at least 11 ft (3.35 m) from 

another hulldlng. 'They ore also waived for low-haza!'d buildings such as 

Nlmmlng pool shelters and greenhouses, p:-ovided that the building is not more 
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than 5,000 sq ft {4&5 m2) in oreo and at least 11 ft (3.35 m) from o property line 

or another building. Approved plastics may be u~ as roof coveri-.gs over 

terraces and patios of one and two-fomily dwellings. 

Slcyli91t Aaemblies 

except in high-hazard buildings, skylight assemblies of approved plastics may b,o 

used, provided that: 

• They are mounted on curbs at least 4 in. ( I 0.2 cm) above the plane of the 
roof and of material consistent with requirements for the type of 
construction. 

• Edges of plastic are p:-otected by noncombus~ ible material. 

• Dome-shaped skylights rise at least 10 percent of maximum span, or not 
less than 5 ir.. (12.7 cm). 

• MoxiMUm oreo per skylight within curb is not more than 100 sq ft (9.3 
m2). 

• Aggregate area of skylights is not more than 33 percent for C-1 plastics 
md 25 percent for C-2 plastics of 'loor oreo directly below. 

• Skylights ore separated at leost 4 ft (1.22 m) horizontally. If exterior 
woll ~ings must be fire resistance roted, skylights must be at lecst & 
ft { 1.83 m) from that wall. 

. 
Exeept in high-h(uord and institutional buildings, the oggregnte area of ikylights 

may be increased 100 percent if skylights ore used as f;re venting systems, or the 

'>Vilding hos o complete outc.mo•ic fire-suppr'!ssion system. The provisians ,Jre 

waived for one-story buildings at least 30 ft (9.15 m) from adjacent buildi~ and 

the space below the roof is not classed as high t-azord or institutional or rneons 

of egress, or if the plastic meets the fire-resista,,ce require,nents of the roof. 

Corminations of roof panels and skylights must meet the some requirements os 

roof po,els. 

li"t-Olffusing Systems 

Plastic light-diffusing syst~ms ore prohibited in high-hazard and institutional 

buildings, and in exit ways •,nless protected by a fire-suppressant system. They 
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must comply with interior finish requ:rements unless they will fall from 1:1eir 

mountings at temperatures at least 200°F (93°C) below their ignition tempera

tures, but remain in place at ambient temperatures of 175°F (79°C) for at least 

15 minutes. Diffusers must be supported directly or ;,.directly by incombustible 

hangers. 

Individual ponels may not exceed 30 sq ft (2. 79 m?) in area, nor IO ft (3.05 m) in 

length. 

If the building has a complete fire-svppressant system, sprinklers must be both 

above and below the diffuser panels, unless specifically approved for only <-'">ove. 

Diffuser areas are not limited, if protected by an approved fire-suppressant 

system. 

Plostic light-transmitting and light-ciffusing panels installed in electrkoi light• 

ing fixtures rm.st conform with interior finish requirements unless they meet the 

retention and falling requirements described above. In fire exits and corridors, 

th,! area of upprove,j plastics materials must not be greater than 30 percent of 

the total orea of the ceiling unless the oc~upancy is protected by an approved 

fire-suppressant system. 

Partitions 

Partitions bcorporating plastics must meet code requir~n'ents for partitions in 

the occupancy class involved 

Bott.-oom Accessories 

Approved plastics a:-e ~rmitted in shower doors, bathtub enclosures, and similar 

uc:cessory units. 

Awnings and Similar Structures 

Approved plastics may be used in conformity with provisions of the code. 
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Approved light-transmitting plastics may be used in place of plain glass. 

Foam Plastics 

The model codes hove similar language for foam plastics. A general require

me·nt, except where specifically exempted, is that foam plastics shall hove a 

fla,ne-spreod rating of not mor~ than 75 and a smoke developed rating of not 

more •hon 450 when tested accorJing to ASTM E84 (the tunnel test) or the 

eqdvalent Underwriters' Laboratories (UL 723) or model code tests, (e.g., ICBO 

42-1). However, insurance companies consider E84 on unsuitable and frequently 

misleading test for foams. A further general requirement, now being elimin-1ted 

in rnost cities, is that the products .,f combustion shall be no more toxic. than 

those of untreated wood burned under s:milar conditions. The requirement is 

hard to enforce because of the difficulty of measuring toxicity under the 

conditions sp~ificd. Codes typically require thermal barriers, sprinklers, or 

both in conjunction with foam plastics (see below). So,ne localities do .iot permit 

foam plastics. 

Specific Requirements: These requirements, unless otherwise specified, apply to 

all uses of foam plastics in or on walls, ceilings, attics, roofs, floors, crawl 

spaces or similar areas. 

Foam plostics may be used: 

a. Within the cavities of masonry or concrete walls regardless of type of 
construe t ion. 

b. f'ln rN>m side surfaces, such as walls or ceilings, if the foam plastic is 
protected on the interior side by a thermal barrier having o finish roting 
of at least 15 minutes, e.g., I /2-inch Cl 2. 7 mm) gypsum wallboard, 
installed to stay in r,loce at least 15 minutes. 

c. Within wall cavities, or as elemen~s of walls classified os combustible 
,lOO-fire resistive, h installed according to (b) above. --

d. Within wall cavities, or as elements of walls classified os combustible 
fire-resistive, provided fire tests are conducted according to ASTM 
El 19, or equivalent Underwriters' Laboratorie& or model code tests, and 
the protection from the ir.terior is at least equi'V";lent to (b) above. 
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In cold-storage rooms and similar installations requiring thick insulation, foam 

plastics insulation having a flame spread of 75 or less when te.:;ted according to 

ASTM E84 in a thickness of 4 in. (10.2 cm) may be used in thicknes~s of up to 10 

In. (25.4 cm) when the room is protected inside by o thermal bQrrier having a 15-

mlnute finish roting (e.g., portland cement plaster) os determined by ASTM E 119 

or equivalent Underwriters' Laboratories or :nodel code tests. Thermal barriers 

must stay in place at leost 15 minutes. 

EJ<cept where codes require noncombustible or fire-resistive construction, foam 

plastics having a flame-spread roting of 25 or less may be used in tnickne$es not 

greater tian 4 in. (I0.2 cm) in or on walls if tr-e foam is covered by not less tnan 

O.O32-in. (0.81-mm) thick aluminum, or 26-gouge (0.45 mm) galvanized steel, and 

the insuloted space is protectN:f by automatic sprinklers. 

Codes specify barriers and types nf foams used witn Closs A, B, C and ordinary 

roofing moterials, similarly for foam cores of doors that do not require a fire

resistive roting, and foam plastic bockerboord for siding. 

Foams for applications not meeting the above requirements may be approved on 

the basis of tests such as ASTM E84, ASTM E 119, corner tests, and tests related 

· to actual end-use items, or upon "-onsiderations of quantity, location, and similar 

pertinent items where tests are not applicable or practical. These must be token 

up with the building official. An exarnple might be sandwich roof panels for 

~Id-storage warehouses in which the foam core not only acts os insulation but os 

on essential port of the load-bearing ~lement. In that case, structural and fire 

requirements for the class of building involved must be met in addition to the 

fire requirements set forth above. 

of Hauling and Urbcrt Dewlc,pment 

Hll) Minlnun Prciperty Standanll. The Department of Housing end Urbal De

velq)ment issues standards governing construction of One and Two-Family 

Dwellings (No. 11900.1) Mult i-F omily I-busing (No. 4910.1 ), and t:are-Type Hous

ing (No. 4920.1 ). These apply to 1-iUD's numerous housing programs, and should 

be consulted for any specific design. 
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The standards, especially as they apply to fire safety, are general and are os 

applicable to plast;cs as to any other materials. Fire-resistance ratings are 

determin~d by ASTM E 119, or by judgment based on tests of similar assemblages. 

HUD has issued Materials Use Bulletins for plastics materials. 

Md>ile Homes. The Department issues similar standards covering mobile homes. 

The standards cover all materials including plastics. Like the Minimum Property 

Standards, the Mobile Home Standards should be consulted in cases involving the 

design of such structures. 

Other Federol Agencies 

Other Federal agencies issue specifications and standards covering materials, 

including plastics, utilized in structures under th~:r jurisdiction. These are 

exempt from local codes and should be consulted for designs of such structuras. 

Life Sofet) Code, t-FPA No. IOI, Notional Fire Protection Association (10.31) 

This Code for Safety to Life from Fire in Buildings and Structures, issued by tht

National Fire Protection Association, is widely quoted. It contains provisions for 

classifications of occupancy and hazards of contents, means of egress, features 

of fire protection, building service equipment, and nine classes of occupancies. 

Of particular interest in applications of plastics as interior finish ore the 

following: 

Interior Finish ~t.JFPA 255, ASTM E84, UL 723) 

Closs A. 

Closs B. 

Closs C. 

Flame spread 0-25, smoke developed 0-450. 

Flame spread 26-75, smoke developed 0-450. 

Flame spread 76-200, smoke developed 0-450. 

The Life Safpfy Code does not hove provisions for the use of light-transmitting 

plastics materials for glazing, skylights and similar uses. 

Cellular or foamed plastics moy be permitted on the basis of fire tests which 

reasonably s,:,bstontiate their intended combustibility characteristics, under 

actual fire conditions. They may be used as trim, if density is not less than 20 

pcf (321 kg/~3), and the aggregate wall surface covered is not greater than 10 

percent, With these restrictions, Class C interior finish materials may be used in 
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occupancies where Class A or B is required. Model building codes hove similar 

restrictions. 

10.7 SUMMARY 

Plostic.i are organic mareriuls and should be handled in much the same manner as 

other ?"ganic mater ,als, keeping in mind their own distinctive properties. 

I 
I 

Behavior !;1 o fire depends upon the chemical structure and composition of 

plastics, as well as the noture of the fire itself. All plastics burn. Re~avior in 

fire is variable, including rote of burning and emission of smoke and noxious or 

toxic gases. Various r.hemical and physical means ore employed to ~ify the 

fire behavior of plastics. 

Results of fire tests, by and large, are specific to the conditior,s of the test, and 

cannot readily be correlated with other tests. Small-scale tests can provide a 

great deal of information, provided the data user ,.mderstonds how the test is 

conducted, and its limitations. Larger-scale tests that more nearly approximate 

actual fire conditions come closer to depicting behavior, but even these do not 

necf!ssorily predict how material:; will behave under actual fire conditions. The 

field is undergoing active development. 

Design and manner of use of plastics in structures are frequently more 

significant than their inherent fire properties. Fire hazards can be reduced by 

good design for rapid evacuation of inhmited structures and by confining fire by 

suitable encl<'sures, fire breaks, thermal barriers, and venting, as well as by 

judicious selection of materials for a particular application. 

Building codes, in addi•ioo to general requirements respecting fire, incorporate 

specific sections respecting plastics. In the model codes, these are related 

particularly to foams and to light-transmitting plastics materials ond instolla

tioos. In cny specific design, the local code having jurisdiction must be followed. 

As is true of cny material, pie.sties must be utilized in such c way as to toke 

advantage of their favorable properties and to minimize their limitations, 

including their behavior in fire. 
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APPENllX l~A - DESCRIPTION OF COMBUSTION (IO.I) 

All polymers, noturol and synthetic, undergo progressive degradation and, 

ultimately, destruction including combustion, os temperatures ore raised pro

gressively to the critical points in a favorable environment, usually normal air. 

Some burn reoc:ily, others slowly, and still others do not Sl;iJPOrt combustion in 

ordinary atmospheres. 

Steps Leading to Coni>ustion 

Several stages are involved. Most polymers and objects mode of them ore 

reasonably stable at ordinary temperatures, and exposure for several hours even 

at 175-212°F (80-I00°C) hos no appreciable effect, even though slow oxidation 

resulting in hydroperoxyl groups occurs. Tne rote of oxidation depends upon 

composition. Some groups, such as cyanide (CN), and halogens (Cl, for example), 

retard the reaction, while others, such as methyl (CH3), promote it. 

The formation of hydroperoxyl groups is a feature of the slow progressive 

degradation known as aging, which is of ten accelerated by elevated tempera

tures. It con be counteractP.d by chain transfer agents (antioxidants) such as 

amines and phenols. A relatively small amount suffices to protect on object 

against deterioration for months or yeors. 

As the temperature is raised, e.g., to 212°F { I 00°C), the process is accelerated 

to form more hydroperoxyl groups by scission of polymer chains, the rote 

depending upon composition. Degradation also occurs because of accelerated 

scission or separation of -C-C-bonds in the polymeric chains. Here again the 

stabilizMs mentioned above servf! to reduce this reaction to prevent degradation, 

and ore effective at proces.1ing temperatures such as 355-390°F ( I 80-200°C). 

At still higher temperatures, in the range of 390-570°1=' (200-300°C), the rote of 

reaction increases rapidly enough to overcome stabilizers, the chain reaction in 

the presence of oxygen becomes exothermic and raises the temperature, 

chemical decomposition of the polymer produces volatile flammable products, 

and many 1,10lymers, especially ther-r,oplostics, soften or may even melt, leading 

to deformation and possibly to increHsed surface oreo accessible to oxygen. 
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If more heot is added and oxygen is available, open flame :•r autoignition moy 

Jevelop at approximately 750°F (400°C). The steps leading to combustion are 

complete. 

Among the steps that con be tuken to lessen flammability ore the incorporation 

of flome-reiardant ingredients tl-iat decompose to give off non-combustible gases 

such as water vai:,.'.>r, carbon dioxide, and ammonia, and form inhibitors, such as 

H3r, against radical chain reactions. Finely-powdered inorganic fillers such as 

carbon block, alumina, silica, and limestone increase the thermal conductivity 

and thus reduce local flot spots and at the sam~ time raise the softening 

temperature. Still other additives such as borates, phosphates, and silicates con 

form glossy coatings around the polymeric inoss, thereby reducing the oc.::ess of 

oxygen o'ld the escape of volatile flammable gases, increasii,g the thermal 

conductivity, and p;-eventing flaming and dripping. 

Phosphoric acid salts, preferably, or heavy metals such as zinc or1,:I molybder.um 

In addition to mineral fillers, assist in char formation. Cthers include chromcted 

zinc chloride and antimot1y oxides, sometimes combined with tricresyl phosphate. 

Among the most effective flame retardants are the halogens, especially chlorine 

and bromine. These ore employed in a variety of ways, e.g., halogenated 

plasticizers, additions to the polymer chain, halogenated hardeners as in epoxies, 

and halogenated blowing agents as in polyurethane foarn. 

Phosphorous is another effective flame retardant, os in the prornotior, of char 

mentioned above. It is used in various ways, e.g., in plasticiz~rs. 

Alumina trihydrote, by giving off water as it c!er-ornposes, absorbs a great deal of 

energy and holds down temperatures os the water is released and vaporizes. 

Inorganic fillers, especially those having high thermal conductivities, densities, 

and specific heats, ossi.~t in retarding ignition by absorbing energy and preventing 

high local tel'l'1)erofures. 
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Synergism 

Some ho!ogen (Cl, Br) compounds useful in fire retord.Jtion are listed in Table 10-

2. Because some are ordinarily volati!e and may be lost at temperatures below 

the critic'll or1es1 e.g., below 570°F (300°C), other ingredients are added that 

combine with tt--.e halogen.~ and keep them in place. Among them is antimony 

trioxide (Sb2o3) which displays outstandingly this "synergistic" e:ffect. The 

amovnt of halogen needed to be effective as a flame retardant can frequently be 

markedly reduced hy the Sb2o3, thus alleviating property losses that might be 

caused by high halogen co.itent. Zinc salts and bromine compounds act well 

together. The effectiveness of pho~phorous compounds is (7ften increased by 

adding bromine compounds. Phosphites, metophosphitet. and silicates of zinc, 

titanium and otht-r heavy metals display similar synergism. 

Table 10-2 
Representotiw Halogenated Flame Retardants 

Summary 

Chlorendic acid 
Clllorinoted bisphenyl 
Chlorinated poroffin 
Hexochloro-cvclo-pentodiene 
T etrobromo-bis-phenol 
Tetro-bromo-phtholic onhvdride 
Tribromo-phenol 

To summo~ize, the important components of o system modified by a flame

retordont (.hemical are: 

I. Chain transfer agents to retard free radical chain reactions. 

2. Reduction of flammable gases, and keeping flash-points of decc>rr4>osition 
gases high. 

J. Formation of glossy coatings. 

4. Char formation. 

5. Re<b:tion of volatility and synergistic retention of important cor.,.,o
nents of flame;,roofing systems. 

6. Fixing of flame-retardants. 
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Additional fo-:tors affecting flammability include the following: 

I. Gloss transition temperature, Tg, below which amorphous and partially 
crystalline polymers become $11assy. ?ipes sag and plates warp above 
this temperature (Tobie 10-3). Structural components cannot be per
mitted to reach this temperature. 

2. Melting point, Tm, at whir-h crystalline polymers abruptly change into 
mobile liquids, iosing all mechanical properties (Tobie 10-4). 

3. Decompositi\JO temperature range, Td, in the presence of oxygen, with 
generation of volatile products, many flammable. The rote and extent of 
decomposition are increased with increasing temperature. This depends 
strongly upon not only the chemical composition, but the configuration, 
e.g., chunk, rod, plate, film, fiber, sponge or foam, web, or other shape 
(Tobie I 0-5). 

Specific heats a,d heat condur.tivities are additional important aspects (Tables 

10-6, 1-2). 

Finally, the flash ignirion and autoignition te11:peratures at which polymers react 
' with oxygen to star't burning are important (TablE- I 0-7). The flosh-ignit ion 

temperature is the temperature at which a moterial flashes into enveloping 

flame in the presence of oo igniting flame. The self-igr.ition temperature is the 

tempe,ature at which the some effect occurs without on igniting flame (see 

ASTM D1929, Section 10.4). 

Table 1~3 
Glass Transition <TJ Values for Various Polymers 

Polyethylene 
Polypropylene 
Polybutylene 
Polybutodiene 
Polyvinyl fluoride 
Polyvinyl chloride 
Polyvinylidene chloride 
Polystyr.me 
Poly ocetal 
,-Nylon 
66-Nylon 
Polyestrr 
Polycarbonate 
PolYtetraf luoroethy lene 
Silicone 

OF 
~ 

-8 
-13 

-112 
-4 

185 
-4 

203 
-112 

158 
122 
230 
302 

-175 
-193 

oc 
:-J'ffi 

-22 
-25 
-80 
-20 
85 

-20 
95 

-80 
70 
50 

110 
150 

-115 
-125 



Table IM 
Melting T emperotures (T rJ for Vcrious Crystalline Polymers * 

°F" oc 

Low density polyethylene 230 110 
High density polyethylene 266 130 
Polypropylene (isotactic) 347 175 
6-Nylon ,., 9 215 
66-Nvlon 500 260 
Polyester ~00 260 
Polytetrafluoroethy le~ 626 31n 
Polyarylamides 

.., , , 
, ,o 380 

* Amorphous polymers exhibit a softening range of temperatures. 

Table 10-5 
~ition Ranges CT J r.,nges for Various Polymers 

Polyethylene 
Polypropylene 
Polyvinyl acetate 
Polyvinyl chloride 
Polyvinyl fluoride 
Polytetrafluoroethylene 
Polystyrene 
Polymethyl methacryinte 
Poltacrylonitrile 
Cellulo.,e acetate 
Cell;,,lose 
6-Nylon 
66-Nylon 
Polyester 

10-47 

645-82: 
61'J-i50 
420-600 
390-570 
700-880 
930-1020 
570-750 
355-535 
480-570 
480-590 
535-~ I 5 
570-660 
610-750 
535-610 

340-440 
320-400 
215-315 
200-300 
370-470 
500-550 
300-400 
lq0-280 
250-300 
250-310 
280-380 
300-350 
320-400 
W0-320 



Table I~ 
Specific Heats for Vcrious Materials 

Polyethylene 
Polypropylene 
Polytetrof luoroethylene 
Polyvinyl chloride 
PolY"·inyl flvoride 
Polystyrene 
SBR (Styrene Butodiene Rubber) 
ABS (Acrylonitrile Butadiene Styrene) 
Cellulose acetate 
6-Nylon 
66-Nyloo 
Polyest~r 
Phenol formaldehyde 
Epoxy resin~ 
Polyimide 

Table 1~7 

cal/g, 0 c 

0.55 
0.46 
0.25 
0.25 
0.30 
0.32 
0.45 
0.35 
0.40 
0.38 
0.40 
0.30 
0.40 
0.25 
0.27 

¥1itlon T emperatwes of Various Polymers 

Self Ignition 
OF OC 

Polyethylene 662 350 
Polypropylene 1022 550 
Polytetraf luoroethylene 1076 ~ 
Polyvinyl chloride 842 450 
Polyvinyl fluoride 896 480 
Polystyrene 914 490 
S8R (Styrene Butodiene Rubber) 842 450 
ABS (Acrylonitrile Butodiene Styrene) 896 480 
Polymethyl methacrylate 806 430 
PAN (Polyocrylonitrile) '040 560 
Cellulose (paper) 446 230 
Cellulose acetate 878 470 
66 Nylon cost 842 450 
6' Nylon spun ar.d drawn 986 530 
Polyester 896 480 
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Flash l2Jifion 
OF _0£. 

644 340 
968 520 

1040 560 
734 390 
788 420 
602 350 
680 360 
734 390 
572 300 
896 480 
410 210 
644 340 
788 420 
914 490 
824 440 



APPEN:>IX 10-8 - EFFECT OF TEMPERATI.R: ON MECHANICAL PR<PER
TIES (10.17) (lo.32) 

Figure 10-8 and Tobie 10-8 present information respecting the ability of eight 

classes of plastics to retain SO percent of their mechanical properties in various 

temperature ranges fnr various periods of time. Figu!"e 10-8 shows temperature

time zones, and Tobie 10-8 lists the plastics that fall in the various zones. 

•c -,. 
·1'4,0JIXIIP-.--------------.. 

538 

'82 

'27 

I 371 

3" ... 

' " ~... ZONI ...... -... ....... _____ _ 
... _ -.. ...... ..... ...... .... 

' 

ll IOOa----------------4 0.1 10 100 ICIOO 10.000 100,000 

Fig. lo-& HOW PLASTICS PERFORM ON TtE BASIS OF 

TEMPERATI.ft AN> TIME (10.17) (10.32) 



Table 10-8 

Plastics Retaining SO-. Mechmlical or Physical Properties 
Tested at TelT1)el"OflWes in Air 

z.on... I -Fig. 10-8 

Acrylic 
Cellulose acetate (CA) 
Cellulole ac:etute-butyrate (CAB) 
Cellulole aeetote propionate (CAP) 
Cellulose nitrate (CN) 
Cellulose propionate 
Polyallomer 
Polyethylene, low~ity (LOPE) 
Polystyr- (PS) 
Polyvinyl acetate (PV AC) 
Polyvinyl alcohol (PVAU 
Polyvinyl butyral (PVC) 
Polyvinyl chloride (PVC) 
Styr--ac:rylonitrile (SAN) 
Styr--butodi- (SBA) 
lkea-formaldehyde 

Ac~tal 
Acrylonitri le-butodiene-styrene (ABS) 
Chlorinated polyether 
Etnyl cellulose (EC) 
Ethylene vinyl acetate cq>olymer (EVA) 
Furan 
lonomer 
Phe-,oxy 
Polyamides 
Polycarbonate (PC) 
Polyctthylene, hlgh4nsity (HOPE) 
Pl,lyethylene, cross-linked 
P<.•!yethylenia tuephthalate (F-ETPl 
Pol}'Pl"op)'lene IPP) 
Polyvinylidene chloride 
lkethcwle 

References (IO. 17) (I 0.32) 

Zane 3 

Polymonochlorotrifluoroethylene (CTrE) 
VinylidPne fluoride 

Zane 4 

Alkyd 
Fluorinated ethylene propylene (FEP) 
Melamine-formaldehyde 
Phenol-furfvral 
Polyphen~ lene oxide (PPO) 
Polysulfone 

Zane 5 

Acrylic thermoset 
Dio!lyl phthalate (OAP) 
Epoxy 
Phenol-formaldehyde 
Polyester 
Polytetrofluoroethylene (TFE) 

Zone' 
Porylene 
Polysulfone 
Polybenzimidazole (PBI) 
Polyphenylene 
Silicone 

Zane 7 

Polyamide-imide 
Polyimide 

l.ane 8 

Plastics now being developed using 
intrinsically rigid linear macro
molecules rather than the usual 
crystallization and cross-linking, 
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APPENDIX 10-r: - POTENTIAL I-EAT OF PL.ASTlCS (10.3') 

Tobi~ 10-9 lists potentioi heat values obtained with the Notionol 8ureau of 
Standard~ D;ff-?rentiol Bomb Colorimeter (Section 10.4). 

Table 1~9 
Potential H~t of Selectett Building Mc1teriala 

,.._tlOIHlot 

Moterio1 lhlclawu Dcnalty W.ltl't VoMM 
llaol1 ..... 

(i,,.) (lb/ft3> C&tv/lb) 18tulft3> 

J. Woods 

a. Douglas fir, untreated o. 75 18.0 a • .oo 319 • 101 

b. Douglas fir (retordan, treatnwnt •·•) o. 75 37.2 a.2'0 l08.0 
c. Dougie-, fir (r"'ardant treatment "fr) o. 75 ,1.2 7.8'0 m.o 
d. Douglo<, fir (retard.. ,r tre<>tment "C") 0.75 l8.8 7,050 21,.0 
e. Maple, .,.ft, untreot.-n 1.0 3'.5 -,,-a Ji..o 
f. lb-:lboard untreated 0.25 s,.a 11,SlO s10.0 

2. Pku.tics 

o. Polyilyr.,,. , wall tile 0.075 ,5.4 17.420 1,1.0.0 
b. Rfg;d, !>Ol)'VinYI chloc1de, etordant treated o. 1117 8'.0 t,2'0 m.o 
C, Phenolic 'Clf'r. inat~ 0.0'3 1, •• 1.1~ s,2.0 
d. Pol,corbonc:•e resin 0.25 78,7 IJ,llO 1,oso.o 

3, lnwlot,on 

a. c,,.,. fiber, eemor iq,d, no vapor boriff 1.0 3.0 l,OIIO ,.1 ~- Roe~ wool baftiA\j, paper enclclaure J.0 2 .• 1,050 l.S 
C, Root insulation boc;,,' ,.o 10., l,:91 )S. I 
d. Cork (r..c«utituted c,rk ,,._,) 0.25 ••.a , , ,110 '""·o .. Cellu- -,ineral board 2.0 .1.e 2,2SO IOI.O 

4. ':oncr~te 

a. Cinder aw,eg,,,., ,,,.:, ),(Wj() 216.0 
D, 51<'9 "99'"90''" 110.1 80 8.!f 
C, 51-.ole awegate _,,S 10 0,) 
d. Calco:"WS gr.,.,.I ~le lll,1 -250 .3; I 
e. Silice<..JS gr-I ODc. ~ 1te '"·· -.cl .,. 1 

s. Otment Boord 

0, Asbnta. ce.,._,t board 3/a. li7.0 ., \.2 
b. Albestos cenent board • ,0 mil point 3(16 u,.z :i,o '2.41 

,. GYl)IUrr 

a. Ca!.:), 2H 0, h,aro1Wd ..at ll)'IIIUffl 0.111 137.t -2'0 0 11.l 
b, Perlita ~te plOltw, 21 perc«,t aggr-vate 1.0 5,.1 10 ,.o 
C, Sane: aggrevatw plastw, '8 percent agi,.~ 1.0 ,01.e -50 .s., 
d, l"ermicvlite aggreq<,te ploetw, 15 percen• ,-,gr-.,tw 1.0 s1.i .,o ... , .. c,,.,....,, board •it.• 318 ,o.s 7'0 --~ f. ~-,m board •,A·• with~ re-.-.ct l/1 "'·' -l1C -12. S 
(I, Gl'JISl,m board •it.• • a•)'CI glou point l/8 "' : 

., 1,1. i 
h. G)'PIUfn bam-d "B" 0.30 51. 2 '5( Jl.O 

7. Mi.cetic.-,, 

0. Paint •e- (dried poi,,t film) C.C) l,cAl(I 
h. Alpholl lhlngles Cfir. ,.tardant) 0.2s 10.1 8.32<1 saa.o 
C, Building papa, Imphal! •~led) o.w u., 11,,20 513.0 
d. Bo•l!ding paper !rosin •ired) 0.011 u., 1."° 111.0 .. Linoleum Ii~ ,,. 16.0 7,HO '61.0 
f. Brick, reel, foc:e z.zs IJ9,I JO 2.1 
g. Chor-I, cocenut n.110 

~· All -~ts - lll'centaoea NW .. •lglnol olr4"}, weilh'· ..... ,o.:i.. 
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