STRUCTURAL PLASTICS DESIGN MANUAL

Phases 2 and 3; Chapters 5-10

U.S. Department of Trensportation

Federal Highway Adminiestration
Urben Mass Transportation Administration
U.S. Depertment of Housing and Urben Development
and
Participating industrial Corporations

AUGUST 1892
Fmaperis ov
NATIONAL TECHNICAL
INFORMATION SERVICE
18 orpairlation compenc

Structural Plastics Design Manual, Volume 2. Phases 2 and 3, Chapters 5 to 10 .

Aug 82
Frank J. Heger, Richard E. Chambers, and Albert G. Dietz. PERFORMER: Simpson Gumpertz and Heger, Inc., Cambridge, MA.

SPONSOR: Federal Fighway Administration, Washington, DC. HUD-0002712 FRWA/TS-82/216

Sponsored in part by Urban Mass Transportation Administration, Washington, DC.. Department of Housing and Urban Development, Washington, DC. American Society of Civil Engineers, New York, Dow Chemical Co., Midland, MI. Monsanto Co., St. Louis, MO. Owens-Corning Fiberglass Corp., Toledo, OF. Dupont de Nemours (E.I.) and Co., Inc.. Wilmington, DE. and Rohm and faas So., Philajelphia, PA.

This manual provides guidelines to structural engineers designing plastics and reinforced plastics structural components. It discusses applications commonly used in building construction, transportation structures and vehicles, process industries, sanitary facilities, and marine vessels and structures. The volume devotes space to the fundamentals of elastic response of structures and provides quantitative methods for analysis and design of plates, beams and axial stressed members, flat sandwich structures, and thin rings and shells fabricated from plastic materials. It also reviews the tests and standards used for evaluating structural plastics' fire resistance. Tables, diagrams and chapter notes and references are supplied.
REYNORDS: *Structural members.
Available from the National Technical Information Service, Springfield, Va. 22161

PRICE CODE: PC A99/MP A01

STPUCTURAL PLASTICS DESIGN MANUAL - VOL. 2

Phoses 2 and 3 - Chapters 5 to 10

Simpson Gumpertz \& Heger Inc.

Frank J. Heger, Princ ipal
Richard E. Chambers, Senior Associate
Albert G. H. Dietz, Consultont

This publication was prepared under a contract from the Anverican Society of Civil Engineers with financial support provided by the sponsoring organizations listed on the reverse side.

SPONSORING ORGANHZATIONS

> Cibo-Geigy Corp.
> Dow Chemical U.S.A.
> \checkmark E. I. duPont de Nemours \& Co. Inc.
> \checkmark Federal Highway Administration
> Manufacturing Chemists' Association, Inc.
> Monsanto Company
> Morrison Molded Fiberglass Corp.
> Owens-Corning Fiberglas Corp.
> Pittsburgh Plate Glass - Fiberglass Divis on
> Reichhold Chemical, Inc.
> Rohm ond Hoas Company
> Shell Chemical Company
> U. S. Deportment of Housing and Urbon Development
> Urbon Mass Tronsportation Administration

NOTICE

This document is disseminoted under the sponsorship of the Department of Housing and Urbon Development, the Department of Transportation, the sponsoring industrial orgonizations tor this project, and ASCE in the interests of information exchange. The United States Government, ASCE, the industrial sponsors, and the contracting organization assurne no liability for its coutents or use thereof.

The contents of this report reflect the views of the controcting orgonization, and do not necessorily reflect the official views or policy of the sponsors. The purpose of the project is to summarize and interpret state-of-the-art information and concepts from various sources. Example designs and typical properties and behavior are provided only to illustrate engineering concepts. Neither the sponsors nor the controcting orgonization are responsible for their use in specific applications. This report does not constitute a standord, specification, or regulation. It creates no rights and imposes no duties on any person or oryanization.

The United Stotes Governinent does not endorse products, services, or morwfacturers. Trade or monufacturer's nomes appear herein only because they are considered essential to the object of this document.

FORWORD - BY ASCE TASK COMMITTEE ON DESIGN MANUAL

In order that this Manual be truly representative of up-to-date design practices and current technical information, the 'ask Committee on Design Manual invites responses from the readers and users of this portion of the Manuol. The responses may take the form of comments, discussion, questions, etc. and should be sent to:

Hkury N. Tuvel, Manager
Technical Services
American Saciety of Civil Enginaers
345 East 47 th Street
New York, New York 10017

Your responses will assist in ony pertinent editing which will be implemented prior to issuance of the formal Design Manual.

TASK COMMITTEE ON DESKCN | STRUCTURAL PLASTICS RESEARCH COUNCIL |
| :--- |
| AMERICAN SOCIETY OF CIVI ENGNEERS |
| SEPTEMBER IS81 |

Membership of Tak Committee on Design:

Eugene Gray, It., Chairman	Owens-Corning Fiberglas Corp. Granville, Ohio
H. C. Browne	Monsanto Compony St. Lovis, Missouri
T. J. Fowler	Monsonto Compony St. Lovis, Missouri
A. M. Lizzio	Deportment of Transportation Washington, D.C.
J. F. McDermott IV	U. S. Steel Monroeville, Pennsylvanio
D. E. White	Dept. of Housing ond Urbon Development Washington, D.C.
G. O. Widero	University of Illinois Chicago, Illinois
S. J. Gozzo	Tronsportation System Center (I. Litant, olternate)
A. Greenbridge, Massochusetts	

PREFACE

This Manual wos written to provide practical assistance and guidelines to structural engineers engaged in the design of plastics and reinforced plastics structural components. In the first phose of the work, the structural behavior of plastics-based materials is characterized in general; the significant types of structural plastics in current use are listed and described; and practical design criteria are synthesized and proposed for use in the design of structural plastics. Design approaches that lead to the mos: efficient use of plastics for structural applications are described and illustrated by design exanroles. These are presented in Volume I of the Manual, published in 1979 by the United States Government Printing Office, and available for distribution through ASCE.

This volurre presents the results of Phases 2 and 3 in the development of the Manual, consisting of Chapters 5 through 10. Chapter 5 presents a brief review of fundamental concepts of structural behovior. Chapters 6 through 9 provide quantitative methods for analysis and design of plates, beams and axial stressed members, sandwich components and ihin rings and shells that are fabricated from plastic materials with either isotropic or orthotropic elastic properties. Chapter 10 presents general information about the fire resistunce of structural plastics and the tests and standards used for evaluat ing this aspect of their behavior. These chapters complete the Structural Plastics Design Monual.

The ifanual is internded as a bosic text for engineers interested in a wide variety of structural applications for plostics; in particulor, the applications discussed include those commonly used in building construction, transportation structures and vehictes, process industries, sanitary facilities, and marine structures and vessels. It is assurned that engineers and structural designers using the Manual have a basic knowledge of strength of materials, but do not necessarily have a background in plastics and reinforced plastics.

The Manual has been prepared by Simpson Gumpertz \& Heger inc., of Cambridge, Massachusetts, under a research and development controct from the ASCE, with the Society's Structural Plostics Research Council monitoring the effort. The undersigned, a Senior Principal in the consulting engineering firm of Simpson Gumpertz \& Heger lnc., developed the conceptual outline for the content of the Marwal, and is principal author
of Chapters 4, 5, 6, 7 and 9. Richard E. Chambers, Senior Associate, Simpson Gumpertz \& Heger, Inc., is principal author of Chapters 2, 3 and 8. Albert G. H. Dietz, Professor Emeritus, Department of Architecture and Planning, Massachusetis Institute of Technology, was retained as a consultant to assist with certain portions of the Monval and is principal author of Chapters 1 and 10. The text was typed by Cynthia B. Topping and other word processing staff at Simpson Gumpertz \& Heger Inc. The illustrations were prepared by the drafting department at Simpson Gumpertz \& Heger lnc.

The finoncial support and technical review of the ASCE Structural Plastics Research Council and its task committee, which has made possible the development of the Manual, is gratefully acknowledged. Howard Browne, chairman of the Council, was an early initiator of the project to develop a Structural Plastics Design Manual and has been, over the yea.s, the prime mover in the effort to obtain financial support. Dr. Timothy Fowler, original chairman of the Council's task committee for the project, and Eugene Gray, current chairman have made valuable suggestions on the scope, organization, and content of the Manual - as have other members of the committee.

Financial support fir the project has been provided to the ASCE from the U.S. Department of Housing and Urban Development, the U.S. Departmen* of Transportation, Monsanto Co., Owens-Corning Fiberglas Corporation, Manufocturing Chemists' Association, Inc., Dow Chemical U.S.A., Rohm and Haas Company, and E.I. duPont de Nemours \& Co. Inc.

The development of a proctical plastics design manual specifically designed to meet the needs of structural engineers is the first project to result from the efforts of the ASCE Structural Plastics Research Council. The Monual was initiated to accomplish one of the Council's primary objec:ives - to further the rational use of plastics in structural applications. It is hoped that the Manual will serve as a guide that indicates the type of structural design data needed by structural engineers for rational design with structural plastics, as well as a catalyst to foster increased cooperation between industry, government, and the engineering profession in behalf of the future work of the Council.

Fronk J. Heger, ScD, P.E., F. ASCE
Simpson Gumpertz \& Heger Inc.
Cambridge, Massachusetts

TABLE OF CONTENTS - VOL. 2
Page
Forword iii
Preface \vee
5. FUNDAMENTALS OF ELASTIC RESPONSE OF STRUCTURES
Notations i
5.1 Introduction 5-1
5.2 Stress Resultants 5-2
5.3 Section Properties 5-7
5.4 Basic Relations for Stress ar:d Deformation 5-16
5.5 Stress Concentrations 5-38
5.6 Non-Linear Response 5-47
5.7 Buckling Under Compressive Stress 5-49
5.8 Brittle Fracture Under Tensile Stress 5-54
5.9 Structural Vibrations 5-67
References 5-76
6. FLAT PLATES AND MEMBRANES
Notation i
6.1 Introduction 6-1
6.2 Plate Cross Section Stiffness 6-6
5.3 Isotropic Plates Under Lateral Load 6-12
6.4 isstropic Flat Membrones Under Lateral Load 6-37
6.5 Approximations for Large Deflection Analysis of Isotropic Plates Under Lateral Loads 6-43
6.6 Orthotropic Plates Under Lateral Lood 6-54
6.7 Laminated Plates Under Laterai Loads and Internal Thermal Stresses 6-59
6.8 Isotropic Diaphragms 6-73
6.9 Stability of Isotropic Plates 6-83
6.10 Stability of Orthotropic Plates $6-i 12$
6.11 Natural Frequencies of Isotropic Plates and Membranes $6-121$
References 6-128
7. BEAMS AND AXIALLY STRESSED MEMBERS
Notation i
7.1 Introduction $7-1$
7.2 Tension Members 7-3
7.3 Centrally Loaded Columns 7-6
7.4 Bearns 7-24
7.5 Beams - Columns 7-68
7.6 Ribbed Panels 7-76
7.7 Large Box and T-Beams 7-77
7.8 Folded Plate Structures 7.93
References 7-105
8. FLAT SANDWICH STRUCTURES
Notations i
8.1 Introduction 8-1
8.2 Components of Sandwich Construction 8-2
8.3 Design Criteria for Sandwich Construction 8-4
8.4 Section Properties $8-11$
8.5 Members Under Axial Lood 8-16
8.6 Bearns 8-24
8.7 Bending and Shear in Sandwich Plates 8-49
8.8 Stability of Sandwich Elements in Compression 8-60
8.9 Proportioning to Minimize Cost or Weight 8-71
8.10 Response to Temperature and Moisture Movements 8-84 and Other Volume Clianges
8. 11 Ponel Subjecie io Wind Load and Temperature Gradients 8-90
References 8-103
9. THIN RINGS AND SHELLS
Notations i
9.1 Introduction $9-1$
9.2 Analysis and Design of Thin Rings 9-3
9.3 Shell Geometry $9-12$
9.4 Stress Analysis of Shells 9-17
9.5 Membrane Analysis of Shells 9-23
9.6
Edge Bending Analysis of Shells $9-41$
9.7
Special Edge Conditions - Cylindrical Vessels with Flat Bottoms and Knuckles 9-61
9.8 Concentrated Load Effects $9-79$
9.9 Thermal Stresses 9-81
9.10 Stability Analysis 9-84
9.11 Sandwich Shells 9-116
9.12 Design Examples - Vessels 9.119
9.13 Design Examples - Roofs and Skylights 9-136
9.14 Analysis and Design of Buried Pipe 9-146
References 9-172
10. FIRE SAFETY CONSIDERATIONE
10.1 Introduction 10-1
10.2 Steps Leoding to Combustion 10-2
10.3 Modification for Improved Behavior in Fire 10-7
10.4 Tests íor Evaluating Materials 10-9
10.5 Design Approoches for Fire Sofety 10-23
10.6 Building Codes 10-3|
10.7 Summary 10-42
Appendix 10-A - Description of Cumbustion 10-43
Appendix 10-8 - Effect of Temperature on Mechanical Properties 10-49
Appendix 10-C - Potential Heat of Plastics |0-5|
References 10-52

ASCE Structural Plastica Design Mamal

CHAPTER 5 - FUNDAMENTALLS OF ELASTIC RESPONSE OF STRUCTURES By Frank J. Heger

TABLE OF CONTENTS

PogeNotations 5-i
5.1 Introduction 5-1
5.2 Stress Resultants 5-2
5.3 Section Properties 5-7
5.4 Basic Relations for Stress and Deformation 5-16
5.5 Stress Concentrations 5-38
5.6 Iton-Linear Response 5-47
5.7 Buckling Under Compressive Stress 5-49
5.8 Brittle Fracture Under Tensile Stress 5-54
5.9 Structural Vibrations $5-67$
Peferences 5-76

NOTATION - Chopter 5

a diameter of hole; distance from concentrated load to support; long radius of ellipse; crock length; dimensions
$a_{f} \quad$ crack length at failure

A section areo
$A_{n} \quad$ section area of part n

A area enclosed by the centerline of a closed thin-wall section
$A_{w} \quad$ section area of web ($1, \Gamma_{-}$, or box beams)
b, b_{f}, b_{w}, b_{n} width; width of flonge; width of web, width of part n
b spocing between holes; distance to concentrated load from support; short radius of ellipse; dimension
$b_{t} \quad$ transformed width used in transformed section

C constant coefficient
c dimension; damping coefficient
$C_{I}, c_{m} \quad$ effective lood (or force) coefficient, effective mass coefficient
$c_{r} \quad$ critical damping coefficient
$c_{s} \quad$ shape factor for maxim'נm shear stress
d dimension; reduced width between notches (Fig. 5-9)

D overall width without notches (Fig. 5-9)

OLF dynomic lood foctor

$$
5-i
$$

e_{x}, e_{y}	strain in x and y directions
e	strain; eccentricity
E	elastic modulus
E_{v}	viscoelastic modulus (Chapters 2 and 3)
E_{x}	elastic modulus in \times direction
E_{11}, E_{22}	elastic modulus in materials direction 1, or 2, for normal stress in direction 1 , or 2
f	natural frequency of vibration, correction factor for stress intensity
F, F_{e}	dynamically applied force, effective dynamically applied force
F_{+}	force at time 1
F_{1}	force at time I
G	shear modulus
G_{12}	shear modulus for shear in plane of materials axes 1 and 2
G	energy release rate when cracks extend
h	height of rectongle; height of notch
H	horizontal reaction on looding diagram
1	moment of inertia of section
I_{x}, I_{y}	moment of inertia obout x and y axes, respectively
$I_{0}, I_{\text {xon }}$	moment of inertia about centroidal axis, and about centroidal axis parallel to x axis of part n

I_{u}, I_{v}	moment of inertia about u and v axes, respectively	
Iup	moment of inertia about principal axis, $u_{p x}$	
I_{1}, I_{2}	moment of i.ertia obout axes 1 and 2, respectively, in member cross section	
$I_{x y}, I_{x_{0} y_{0}}$	product of inertia about axes x and y, and product of inertia about centroidal axes parallel to axes x and y	
I_{2}	polar moment of inertia	
J	torsion constant for cross section	
k	part generalized designation; stiffness (spring constant)	
K	stiffness, or spring constant	
K, K_{1},	stress intensity factors	
$K_{\text {Il }}, K_{\text {III }}$		
K_{m}, K_{v}, K_{a}	coefficients for bending, shear :nd axial deflections, respectively	
$K_{t}, K_{t x}, K_{t g}$	stress concentration factor; stress concentration factor for stress in direction of x-axis; stress concentration factor for nominal stress on gross section	
$\begin{aligned} & K_{c}, K_{I c} \\ & K_{I l c}, K_{\\| l l} \end{aligned}$	critical stress intensity foctors for statically applied load	
$K_{l d}$	critical stress intensity foctor for dynamicaliy opplied lood	
L	member length	
L_{p}	length of periphery of closed tubular section	
m	dimension to centroid from reference axis	

M	bending moment
M_{p}	bending moment due to load, P
M_{s}	bending moment in spring
$M_{x_{1}, M_{x_{2}}}$	bending moment at a point along reference axis \times about centroidal axes $1-1$ and 2-2, respectively, in member section
π, M_{e}	mass; effective mass
n	modular ratio, $\mathrm{E}_{\mathrm{n}} / E_{\mathrm{v}}$; dimension; general part designation
N	axial force per unit width
N_{x}	axial force in \times direction
P	concentrated load
$P_{c r}$	critical buckling load
9_{m}	shear flow at centroidal axis I-1 (usually maximum for section)
$\bar{S}_{\text {sy }}$	first moment of the area of section above (or below) a distance y from the centroidal axis obout the centroidal axis
$Q_{s 1}$	first moment of the entire area above (or below) centroidal axis II about axis $1-1$
r	radius of notch or fillet
r_{0}	Polar rodius of gyration
$r_{x}{ }^{\prime} r_{y}$	redius of gyration about x and y 'sxes
r, R	radial distance from centrnid of section to point stressed in shear due to twisting; and maximum radial distance

R	ourer radius of circular section; reaction on looding diogram
S	section modulus
$S_{x t}, S_{x b}$	section modulus for top and bottom of section with respect to x_{0} axis
S_{1}, S_{2}	section modulus with respect to centroidal axes I and 2, respectively
t, t_{f}, t_{w}, t_{n}	thickness; thickness of flange; thickness of web; thickness of part n
1	time
T	torsional reaction in looding diagram; natural period of vibration
T_{x}	torque at point along \times axis
V	tronsverse shear force
$v_{x_{1}}, v_{x_{2}}$	tronsverse shear force at point along x axis for bending about centroidal axis 1-1, 2-2
w	uniformly distributed load per unit length
w	total uniformly distributed load
\times	distance in direction of \times axis, from a reference point
\bar{x}, \bar{y}	distance in direction of x axis from reference y axis to centroid; same in direction of y axis
x_{0}, y_{0}	distance form y axis parallel to x axis to centroid of area, and distance from x axis parallel to y axis to centroid of area

$$
5-v
$$

y, z	distance in y, and x oxes directions, respectively, fron. section centroid to another point in a member cross section
y_{i}	initial displacement in y direction
$y_{\text {max }} z_{\text {max }}$	distance in y and z axes directions, respectively, from section centroid to the extreme point on member cross section
α	coefficient in equation for twisting shear; angle of principal normal stress with beam axis
$\boldsymbol{\gamma}$	shear strain
γ^{\prime}	elastic surface energy of material when crack extends
δ, δ_{0}	deflection, initial deflection
$\delta_{m}, \delta_{v}, \delta_{0}$	bending, shear ond axial deflections, respectively
δ_{s}	static deflection
δ_{x}, δ_{y}	deflection in direction of x, and y axes, respectively
Δ	lateral deflection of frame
v	Poisson's Ratio
ν_{12}	Poisson's Ratio for stress in materials direction 1 and strain in direction 2
n	percent of critical damping
ω	circular natural frequency of harmonic vibration
Ω	circular forcing frequency of harmonic vibration
\checkmark	total angle of twist due to toique

$$
5-v i
$$

ϕ_{1}	coefficient for estimating natural frequency
$\phi_{x_{1}}$	curvature (change in slope)
\bigcirc	radius of curvature
$p^{\prime} 1$	radius of curvature associated with
σ	normal stress
$J_{n, a x}, \sigma_{\text {nom }}$	moximum normal stress; nominal normal stress
σ_{x}	stress in direction x
$\sigma_{x c}$	critical buckling stress in direction x
$\sigma_{x f}$	nominal tensile failure stress in direction x
$\sigma_{x u}$	ultimate strength of material in direction x
T	sheor stress
${ }^{1} \times{ }^{\prime} \tau_{\times m}$	shear stress at point along \times axis, and maximum shear stress at this point
${ }^{1} \times$	shear stress at distance r from centroid due to torque at a point along \times axis
0	angle of axis, U, from reference axis, x; slope; angle of twist per unit length due to torque; angle of rotation per unit length
0_{p}	angle of principal axis, U_{p}, from reference $a x$ is \times
0_{0}	initial rotation
0	slope of e'7stic beam axis at point x, angle of twist per unit length at point x

CHAPTER 5 - FUNDAMENTALS OF ELASTIC RESPONSE OF STRUCTURES

F.J. Heger

5.1 WTRODUCTION

The Chapter summorizes certain bosic concepts and important geome!ric properties of ...embers that define elastic structural behavior. These should be farmiliar to the practicing structural engineer, but for readers less familiar with conventional structural practice, they should serve as a review and summary of bosics needed to understand structural analysis and desigr. methods presented in subsequent chapters. First, the stress resultants that represent the eftects of applied loads on members in a structural system are defined. Determination of stress resultants is illustrated by a table covering certain common beam cases, as well as by solving an example problem. Next, important geometric properties of a member cross section are described, and equations are given for determining these sectional properties. Finally, conventional elastic "beam theory" is described and used to show how stresses and deflections are determined from stress resultants, member section properties and member support conditions. In later chapters, these concepts are employed to determine stresses and deflectioris in common types of structural members such as plates, columns, tension members, beams and shells.

The Chapter also presents a summary of the effects of notches, holes and other changes in geometry on structural behavior of plostics which is another topic of critical importance for desigr.. These produce sharply increased local stresses, called stress concentrations, with on increased potential for brittle fracture in plastics materials. Next, the concepts of non-linear response and buckling are introduced. These are needed to determine effects of large deformotions and instability α. the behavior and design of practical members. The problem of brittle frocture is fuither examined in an introductory discussion of fracture toughness and the effects of flows in the presence of tension. Finally, o brief discussion of structural vibration is presented to familiarize the reader with the effects of rapidly applied loods.

5.2 STRESS RESULTANTS

When a system of loads is applied to an assembly of beams and columns, as shown idealized in Fig. 5-1, the mermbers resist these loads and transfer them to the structural supports by bending and extension. Such bending and extension produces internal stresses whose overall effects at any cross section are termed the stress resultants at that section. Stress resultants that are considered in this Chapter are bending moments, M_{x} and $M_{x} 2$, thrust, N_{x}, shears $V_{x} 1$ and $V_{x 2}$, and twisting moment, T_{x}, as shown in Fig. 5-1. The planes in which these stress resultonts act are also shown in Fig. 5-1. The concepts that are explained here with respect to linear members may also be applied to more complex systems of stress resultants that occur in two and three dimensional components like plates and shells. These are discussed in Chapters 6 and 9 .

Statically Determinate and Indeterminate Systems

Stress resultants are determined from the laws of statics and compatibility of deformation at joints and supports. Two dimensional assemblies of linear members (bars) and supports are statically determinate when all of the support reactions to a system of applied loads can be determined by the three equations of stotic equilibrium:

- Sum of load and renction components in both the x and y directions are zero. (two equa'ions)
- Sum of moments of loads and reactions about any point in the plane of forces is zero. (one equation)

For three-dimensional assemblies, six equations of equilibrium are available:

- Sum of lood and reaction components in each of x, y and z directions are zero. (three equations)
- Sum of moments of load and reoction components in each of the $x-y, x-2$, and $y-z$ planes about any point in the respective planes are zero. (three equations)

Example 5-1 illustrates the determination of stress resultants for the statically determinate assembly of menibers and applied loadings shown in Fig. 5-1.

Whenever the number of unknown reaction components, or the internal restraints at joints in a structure exceeds the number of unknowns needed to satisfy the static laws, the structure and its supports, or the structural assembly, is statically indeterminate. In such assemblies, stress resultants must be determined so that deformations at joints between connected slructural members and/or between members and their supports are compatible. This requires a more complex analysis that is usually based on elastic bending theory. Methods of elastic analysis for indeterminate structures are well established and they are presented in many textbooks on structural theory. The most widely used methods for manual calculations are the "Method of Superposition" (5.1) and the "Method of Moment Distribution" (5.1, 5.2). The most widely used method for computer analysis is the "stiffness method" (5.1, 5.3). Analysis methods for indeterminate structures will not be treated in detail here.

Determination of Stress Resultanis

Stress resultants in the form of shear and bending moment diagrams, or coefficients for maximum shear, thrust and bending moment for many different loading cases and assemblies of beams, columns, and frames are found in various bondbooks $(5.2,5.4,5.5,5.6,5.7)$. A few of the most common cuses for individual beams are given in Table 5-1 to illustrate the type of information that is available and for use in the examples presented later. See (5.5) for more information obout these cases and for other common cases.

Stress resultants for more complex loading cases frequently con be determined by resolving the total load to combinations of simpler cases, for which solutions for stress resultants are ovailable. The stress resultants for each loading case may be superimposed to obtain stress resultants for the combined case. The law of superposition for elastic deformations is an important theorem that rnoy also be used to determine the stress resultants that produce compatible deformations at joints and supports in indeterminate structures (Method of Superposition (5.1)).

Example 5-1: Determine the reactions and the maximum bending moment, twisting momeni, shear force and thrust force in the beam member $1-4$ shown in Fig. $5-1$, if $w=1$ $\mathrm{kip} / \mathrm{ft}$. ($1 \mathrm{kip}=1000 \mathrm{lbs}$), $\mathrm{P}_{3 z}=5 \mathrm{k}, \mathrm{P}_{3 \mathrm{x}}=4 \mathrm{k}, \mathrm{L}=20 \mathrm{ft} ., \mathrm{a}=8 \mathrm{ft} ., \mathrm{b}=12 \mathrm{ft} ., \mathrm{c}=2 \mathrm{ft} . *$

1. Determine reactions using equations of equilibriurn, since the structure is "statically determinate".

$$
\begin{array}{ll}
\Sigma F_{z}=0 & R_{1}+R_{4}=w L+P_{3 z}=1.0 \times 20+5=25 k \\
\Sigma M_{y}=\Sigma M_{4}=0 ; & 20 R_{1}=w L^{2} / 2+P_{3 z} b=1.0 \times 20^{2} / 2+5 \times 12=260 \mathrm{k} \\
& R_{1}=13 k ; R_{4}=25-13=12 k \\
\Sigma F_{x}=0 & N_{4}=P_{3 x}=4.0 k \\
\Sigma F_{y}=0 & H_{1}-H_{4}=0 ; H_{1}=H_{4} \\
\Sigma M_{z}=\Sigma M_{4}=0 & 20 H_{1}=2 P_{3 x}=2 \times 4 ; H_{1}=0.4 k ; H_{4}=0.4 \mathrm{k} \\
\Sigma M_{x}=0 & T_{1}=2 P_{3 z}=2 \times 5=10^{\prime} k
\end{array}
$$

2. Stress resultants at distance x from origin, point 1 ;

$V_{x \mid}=R_{1}-w x ;$	$0 \leq x \leq 8$	$V_{x \mid}=R_{\mid}-w x-P_{3 z}$	$8 \leq x \leq 20$
$M_{x \mid}=R_{1}-w x^{2} / 2$	$0 \leq x \leq 8$	$M_{x \mid}=R_{\mid}-w x^{2} / 2-P_{3 z}(x-8)$	$8 \leq x \leq 20$
$V_{x 2}=H_{1}$	$0 \leq x \leq 20$		
$M_{x 2}=H_{1}-P_{3 x^{\prime}}$	$8 \leq x \leq 20$	$M_{x 2}=H_{1} x$	$0 \leq x \leq 8$
$T_{x x}=T_{1}-P_{3 z} c=0$	$8 \leq x \leq 2 n$	$T_{x x}=T_{1}$	$0 \leq x \leq 8$
$N_{x x}=N_{1}-P_{3 x}=-P_{3 x}$	$8 \leq x \leq 20$	$N_{x x}=N_{1}=0$	$0 \leq x \leq 8$

See Fig. 5- ; ior plots of obove equations giving varintion of stress resultants with 2 .
3. Maximum stress resultonts
$V_{x \mid \max }$ is af $d V x / d x=0$. This occurs at $x=0$, or of $x=20 ; V_{x \mid \max }=R_{f}$ or R_{4}
$V_{x l_{\text {max }}}=R_{I}=13 k$
$M_{x \mid \text { max }}$ is at $d M_{x \mid} / d x=0 ; R_{1}-w x-P_{3 z}=0$
Thus $M_{x \mid \text { max }}$ is at point of zero shear; $x=8^{\prime}$
$M_{x} 1_{\text {max }}=13 \times 8-1 \times 8^{2} / 2=72 \mathrm{k}$
$V_{x 2 \text { max }}=H_{1}=0.4 \mathrm{k}$
$M_{\times 2 \text { max }}$ at $d M_{\times 2} / d x=0$, but there is no singular solution. At $x=8^{\prime}$:
$M_{x 2 \text { max }}=8 H_{1}=8 \times 0.4=3.2^{\prime k}$, or
$M_{x 2 \text { max }}=8 H_{1}-2 P_{3 x}=3.2-2 \times 4=-4.8 k$
$T_{x x \text { max }}=T_{1}=10 \mathrm{k}$
$N_{x x \text { max }}=-P_{3 x}=-4 k$, from $x=8^{\prime}$ to $x=20^{\prime}$
Note: $1 \mathrm{ff}=0.3048 \mathrm{~m} ; / \mathrm{kip}-$ force $=4.448 \mathrm{kN} ; \mid \mathrm{f} \uparrow \mathrm{kip}=1.356 \mathrm{kN} \mathrm{m} ; / \mathrm{kip} / \mathrm{ff}=14.593 \mathrm{kN} / \mathrm{m}$

* Design loads, design criteria (such as safety factors, load factors and capacity reduction foctors, etc.) and materials properties used in design examples are for illustrative purposes only. The user of this Manual is cautioned to develop his own loads, criteria and materials properties based on the requirements and conditions of his specific design project.

Fig. 5-I LOADS, REACTIONS AND STRESS RESULTANTS

Table 5-1

Stress Resultonts in Bearns and Colurnns

for Common Looding and Support Cases

Once the stress resultants that act at various points along structural members are determined, the designer can determine the expected member stresses and deflections when member sections and structural properties are known, or he can proportion member sections to safely resist the applied stress resultants. How this is accomplished conceptually is presented in the next two sections of this chapter. However, detailed explanations of design pracedures for various types of members in actual components are deferred to later chapters.

Methods for determining the properties of cross sections that are either simple solid shapes, or assemblies of thin plates, ore presented in the next section. These section properties, logether with the stress resultants caused by applied loods, or environmental conditions, are needed in the analysis for stresses and deflections for the many structural configurations considered in subsequent chopters.

5.3 SECTION PROPERTIES

Section properties are structural characteristics of members that are defined by geometric properties of their cross sections. The principal section properties needed for design of most columns, tension members, benms, and ribbed panels are summarized in Table 5-2. Member cross sections used for such components usually hove at least one axis of symmetry and this results in simpler behavior in flexure, compression and buckling than occurs with unsymmetiical cross sections. Common sections used for plastics components are illustrated in Fig. 5-2.

Sprmmetrical Sections

The generalized cross section shown in Table 5-2 hos one axis of symmetry. Various reference axes and dimensional parameters that relate to the calculation of the section properties are shown. The $\lambda-y$ axes are arbitrary rectongular reference axes. They are often chosen to take advantage of symmetry, and/or to pass through the centroid of local parts of a composite section. This reduces the calculations required to locate the centroid of complex, or composite sections. The $x_{0}-y_{0}$ axes are the axes parallel to the $x-y$ axes that pass through the centroid (center of gravity) of the area.

Table 5-2
Section Properties Needed in Structural Design for Shapes with One or More Axes of Symmetry

Fig. 5-2 TYPICAL CROSS-SECTION SHAPES

When a section inas an axis of symmetry, several theorems can be opplied to simplify calculations for section properties:

1. An axis of symmetry is always a centroidal axis.
2. If one axis of a pair of rectangular axes is an axis of symmetry, these axes are principal oxes. Princpal axes of an area, with respect to a point in the plane of the area, are mutually perpendicular axes, lying in the plane with origin at the point, that give the lurgest moment of inertio for one of the axes and the smallest tor the cther. Determination of principal axes is discussed later with respect to properties of non-symmetrical sections.

A cross section composed of regular elements is also shown in Table 5-2. The calculation of the moment of inertia of such sections con be simplified by using the transfer theorem, as given by Eqs. 5.4 a and 5.5 a in the Table. The transfer theorem relates moment af inertia about any axis, 1 , to moment of inertia about o parallel centroidal axis, o, as follcws:

$$
\begin{equation*}
i_{1}=I_{0}+A Y^{2} \tag{Eq. 5.10}
\end{equation*}
$$

where I_{0} is the moment of inertic of area A ebout a centroidal axis $0, \bar{y}$ is the perpendicular distonce between centroidal axis a and a parallel axis 1 , and $1 /$, is
the moment of inertia of area A about oxis 1. Thus, in Eqs. 5.4 a in the Table, $I_{x o n}$ is the moment of inertia about the centroid of part n, and $I_{x n}$ is the contribution of the area of part n to the total moment of inertia about the centroid of the composite section, Ixo-

The area, location of centroid and moment of inertia about centroidal axes of regular shapes are found in handbooks (5.4) (5.5). Jome common cases are given in Table 5-3 as a design aid to the reader. Since plastic parts frequently contain fillets, properties of quarter circles, ellipses and parabolas are included to facilitate calculations of section properties when these elements are present. The Toble also contains equations for section modulus with respect to the edges, of the element (Eq. 5.9). Section properties for various standard I, L and tubular shopes are often given in handbooks prepared by manufacturers or trade associations. Where plastic members are manufactured tc match common steel shopes, section proper*ies of such shapes are found in (5.5).

Example 5-2 illustrates the calculation of section properties for a section composed of rectangular elernenis. Note the selection of reference axes and orgarization of calculation steps that are used to obtain the needed properties with a minimum of numerical operations. The transfer theorem is used to determine moment of inertias about the centroidal axes of the composite section.

Transformed Section Concept for Elements with Different Stiffnesses

When a cross section is comprised of materinls having different elastic modulii, It is convenient to work with a psuedo cross section that is termed the "transformed section". A reference elastic modulus for the tronsformed section is established, and this is usually taken as the elastic modulus of one of the materials in the cross-section. Furthermore, the octual width of each eiement is estublished parallel to the axis about which the moment of inertia is to be deter:nined. The transformed width of each element is obtained by multiplying the actual width by a ratio of the element modulus to the reference modulus, $\mathrm{n}=$ $E_{\cap} / E_{r e f}$. The ratio n is termed the "modular ratio".

1. Properties about x_{0} : Set up tabular solution to determine \bar{y} and $I_{x o}$. Use half the symmetrical section.

Centroid Moment of Inertio

	Centroid			Moment of Inertio			
n	Area, A_{n}	y_{n}	$A_{n} y_{n}$	\bar{y}_{n}	$A_{n} \bar{y}_{n}{ }^{2}$		
1	$1.5 \times 0.2=0.3$	2.2	0.66	1.22	0.447		$=.001$
2	$2.0 \times 0.1=0.2$	1.1	0.22	0.12	0.003		$=.067$
3	$2.0 \times 0.2=0.4$	0	0	-0.98	0.383		. 001
Σ	0.9		0.88		0.833		. 069
$\begin{aligned} & \bar{y}=\frac{\sum A_{n} y_{n}}{\sum A_{n}}=\frac{0.88}{0.9}=0.978 \mathrm{in.;} \bar{y}_{n}=y_{n}-\bar{y} \\ & I_{x 0}=2\left(\sum I_{x o n}+\sum A_{n} \bar{y}_{n}^{2}\right)=2 \times 0.902=1.804 \mathrm{in} .4 \end{aligned}$							
$S_{x t}=\frac{I_{x o}}{y_{o t}}=\frac{1.804}{1.322}=1.365 \mathrm{in}^{3} ; S_{x b}=\frac{1_{x o}}{y_{o b}}=\frac{1.804}{1.078}=1.673 \mathrm{in}^{3}$							

2. Properties about y_{o} : Set up tabular solution to determine $I_{x 0^{\circ}}$. Use half the

Note: 1 in . $=2.54 \mathrm{inm}$.

* See note on Example 5-1, page 5-4.

Table 5-3
Section Properties for Cormmon Shapes

Shope	area			
	m		$\frac{0^{3}}{1}$	$\frac{\mathrm{b}^{2}}{6}$
	$\frac{\text { ba }}{2}$	${ }^{\text {n }}$	$\frac{0^{3}}{6}$	
	, R^{2}	R	郘4	$\frac{1 R^{3}}{4}$
${ }^{20}$	100	- ${ }^{\circ}$	$\frac{{ }_{\text {m }}{ }^{3}}{4}$	$\frac{810{ }^{2}}{4}$
	${ }^{\text {nob }}$	$\frac{40}{7} \quad \frac{40}{75}$	$a^{3}\left(\frac{1}{18}-\frac{4}{93}\right)$	
	$\infty\left(1-\frac{1}{2}\right.$	$\begin{array}{l\|l\|} \frac{0}{61-\frac{7}{4}} & \frac{b}{61-\frac{7}{4}} \\ & \\ \hline \end{array}$	$a^{3} 0^{\left(\frac{1}{3}-\frac{1}{6} 6-\frac{1}{36\left(1-\frac{7}{4}\right.}\right)}$	

Table 5-3 (conty)

Thus, the transformed width, for use in calculating the section properties of the transformed section, is:

$$
\begin{equation*}
b_{t}=n b=\frac{E_{n}}{E_{\text {ref }}} b \tag{Eq. 5.11}
\end{equation*}
$$

Since this concept is very useful in the analysis of sandwich sections, it is described in more detail in Section 8.4 of Chapter 8 . Its use is illustrated in Examples 8-1 to 8-4. The effect of time-dependent variations in material stiffness pronerties is illustrated in Example 8-3.

Unsymmetrical Section

For those cases where section prcjerties are required referenced to axes that are not principal axes in symınetrical shapes, or that are either principal or arbitrary axes in non-symmetrical shopes, additional seciion properties are needed, along with the properties given in Table 5-2. Reference axes, dimensions, and section properties for a generalized unsymmetrical cross section are given in Table 5-4. As in the symmetrical case given in Table 5-2, the $x-y$ axes are arbitrary rectangular reference axes, and the x_{0} - yo axes are parallel reference axes with tirsir origin at the centroid of the area. The rectangular axes, $u-v$, have the sariee origin as the $x-y$ axes, but are rotated an angle 0 , and the rectangular axes, $u p-v p$, at an angle Q_{p}, are the principal axes through point a. The rectangular axes $u_{p o}$ - vpo, are the principal central axes through point b, the centroid of the area.

Again, there is a transfer theorem for product of inertia, ${ }^{\prime}$ xy, that is similar to the transfer theorem for moment of inertia:

$$
\begin{equation*}
I_{x_{|y|} \mid}=I_{x_{0} y_{0}}+A_{x_{0} y_{0}} \tag{Eq. 5.18}
\end{equation*}
$$

This theorem is used to calculate the product of inertia of each regular element of a cross section composed of an assembly of regular elements abou.t the centroid of the composite section. Note that for regular elements with an axis of symmetry, such as rectangles, $I_{x_{0} Y_{0}}=0$.

Table 5-4

Additional Section Properties Needed with Unsymmetrical or Complex Shopes

General Section

Property \quad| Ejuation |
| :--- |
| General |

Secrion Composed of Regulor Parts
For cross section with regular parts

Equarion Number

$$
I_{x y}=\int x y d A
$$

$$
5.12
$$

$$
I_{x_{0} y_{0}}=\int x_{0} y_{0} d A \quad \sum_{n=1}^{n=k} I_{x o n y o n}+A \bar{x}_{n} \bar{y}_{n}
$$

Note: If either the y axis or the x oxis is an axis of symmetry:
2. Moment of inertia about axes $u-v$ at ongle, 0 , with reference axes $x-y$

$$
'_{x y}=0
$$

Product of inertio
3. Polor moment of inertia

$$
I_{z}=I_{x}+I_{y}=I_{u}+I_{v}
$$

4. Polar rodius of gyrotion

$$
r_{0}=\sqrt{\frac{I_{Z}}{A}}
$$

5. Angle of principal axes, 0 , from ieferente oxes $x-y$.

$$
\tan 2 \theta_{p}=\frac{2 I_{x y}}{T_{y}-f_{x}}
$$

6. Moment of inertia coout principal oxes, $U_{p}-{ }_{p}$

$$
I_{u p}=\frac{1}{2}\left(I_{x}+I_{y}\right) \pm \sqrt{\frac{1}{4}\left(I_{y}-I_{x}\right)^{2}+I_{x y}^{2}}
$$

$$
\begin{array}{cc}
\\
3-15 & \text { if max. } 1 \\
\text {-if min. } 1
\end{array}
$$

Example 5-3 illustrates the use of the equations in Table 5-4 to determine the angle of principal axes and section properties of a Z-section. With a Z-section, the load axis frequently lies in the plane of the web, while the direction of the principal axes is unrelated to the direction of Icads.

Shear Center

The shear center, or center of twist, of a cross section is a point through which the transverse shear stress resultant, V , must be applied to avoid twisting a member. This is the point about which the sum of moments ploduced by the internal shear stress is zero. (See Eq. 5.30 in the next Section for internal shear stress.) Determination of the shear center is presented in more detail in (5.8), where it is shown that the shear center is a property of the cross section. Also, if a section has an axis of symmetry the shear center is always locared on this syminetry axis. Thus, for doubly symmetric sections, the shear center always occurs at the intersection of the symmetry axes. This is also the centroid. For other sections, the shear center and the centroid do not coincide. Equations for the shear centers of some common sections with a single axis of symmetry are given in Table 5-5. See (5.4) for a Table that gives the location of the shear centers of additional sections.

5.4 BASIC RELATIONS FOR STRESS AND DEFORMATION

Member design requires an evaluation of basic response to load in terms of stress and deformotion. Stresses within c member are a function of the member section properties and the stress resultants caused by the applied loading. Usually, stresses at the locations of moximum stress resultants govern the design, although if section properties vary with length, other stress resultants that are not maximum may produce maximum stresses.

The design of plastic structural components is usually based on the assumption that member response is elastic (5.9), (i.e., stress is proportional to strain at all points along a member length and over the entire member cross section). The same type of simplifying assumption is usually mode for reinforced plastics, except that these materials often have elastic properties that vary with direction, requiring the consideration of onisotropic elasticity. See Chapters 2,3 and 4 for discussions of complexities introduced by variation in elastic properties with time, temperature, environment and directional characteristics.

Example 5-3: Deterir.ine the angle of principal axes and the moment of inertio about both the x_{0} and y_{0} axes and the principal axes of the Z section shown.*

1. Properties about x_{0} : The centroid and lxo are the same as determined for the half setition in Example 5-2, since in this direction the Z section has the same configuration and dimensions of half the hat section of the previous example.

$\bar{Y}=0.978 \mathrm{in}. ;{1_{x o}}=1.804 / 2=0.902$ in. 4
2. Properties about y_{0}

Centroid
Morment of Inertio
Product of Inertia

	Areo, An	${ }^{\text {x }}$ y	$A^{*} y_{y}$	\bar{x}_{n}	$A_{n} \bar{x}^{2}{ }_{n}$	1 yon		7_{n}	$A_{n} x_{n} Y_{n}$
1	0.3	-0.70	-0.2!	-0.889	0.2371	$0.2 \times 1.5^{3} / 12=$	3.0563	1.22	-0.3254
2	0.2	0	0	-0.189	0.0071	$2.0 \times 0.1^{3} / 12=$	0.0002	0.12	-0.0045
3	0.4	+0.95	0.38	0.761	0.2316	$0.2 \times 2^{3} / 12=$	0.1333	-0.98	-0.2983
	0.9		0.17		0.4758		0.190		-0.6282
	$=\frac{0.17}{0.9}$	$=0.18$	in.;	$y_{0}=0$	$0+0.4 i$	$=0.606 \mathrm{in}^{4}$			

3. Product of inertio
$I_{x_{0} y_{0}}=I_{\text {xon yon }}+{i A_{n} x_{n} y_{n}}$
Parts 1, 2 and 3 all ore rectangles with axes of symmetry, $l_{\text {xon yon }}=0$ for each part; thus:
$I_{x_{0} y_{0}}=S A_{n} X_{n} \nabla_{n}=-0.628 \mathrm{in}$,
4. Direction of two principal axes, with x_{o} axis

Eq. $5.16 ; \tan 2 Q_{p}=\frac{2(-0.628)}{0.666-0.902}=5.322 ; 20_{\rho_{0}}=79.36^{\circ} ; \theta_{p}=39.68^{\circ}$
5. Moment of inertia about principal axes

Eq. 5.17; $I_{\text {up }_{0}}=\frac{1}{2}(0.902+0.666)+\sqrt{\frac{1}{4}(0.666-0.902)^{2}}+(-0.628)^{2}=1.423 \mathrm{in}^{4}$

$$
I_{v p_{0}}=\frac{1}{2}(0.902+0.666)-\sqrt{\frac{1}{4}(0.666-0.502)^{2}}+(-0.628)^{2}=0.145 \mathrm{in}^{4}
$$

* See note on Example 5-1, page 5-4.
$1 \mathrm{in} .=25.4 \mathrm{~mm}$

Table 5-5
Shear Center for Some Common Thin-Woll Sections with One Axis of Symmetry

Locotion of Shear Center
 e

Section

1. Chonnel

2. Tee

3. I with unequal flanges, thin web

4. Equal leg angle

$h \frac{l^{\prime \prime}}{T_{x}}$
I'xy is product of inertio of half section (above x_{0}) with respect to x_{0} and y axes.
$\frac{1}{2}\left(t_{1}+d_{1}\right) \frac{1}{1+\frac{d_{2}{ }^{3} t_{1}}{t_{2}^{3} d_{1}}}$
Note: for thin tee section, e ≈ 0
b $\frac{1_{2}}{T_{1}+T_{2}}$.
I_{1} and $\mathbf{I}_{\mathbf{2}}$ are moments of inertia of flanges
1 and 2 respectively about x-axis.

Shear center is at 0

Note: If leg thickness, t, is small relative to leg width, shear center is also of 0 for unequal leg angles

For a linear isotropic elastic member, the basic relation of stress to strain is:

$$
\begin{equation*}
v_{x}=E_{x} e_{x} \tag{Eq. 5.19}
\end{equation*}
$$

Deformations of a member are a function of the magnitude and variatior of applied stress resultants, the section properties provided along its length, length dimensions, conditions of end restraint and the elastic modulus, E_{x} (stiffness), of the material in the direction of stress.

The basic equations for determining stress and deformation at a cross section in terms of stress resultants produced by the application of external loading to linear members are presented below, and used in later chapters for the analysis and design of various siructural compcnents. The derivations of these expressions are foind in textbooks on elementary mechanics of materials and are not included here.

Normal Stress

Normal stress is stress that acts in a direction perpendicular (normal) to a cross section. Normal stress is produced by thrust and bending stress resultants.

Equations for normal stress are derived based on the assumption that "plane sections before bending remain plane after bending." Normal stresses produced by axial force (thrust) are constant over a member cross section as shown in Fig. 5-3, and normal stresses produced by bending moment vary linearly across the depth of a beam in the plane of bending as shown in Fig. j-4. Bending compresses the cross section above a plane of zero longitudinal displacement, called the neutral nxis, and elongates it below the neutral axis. Under pure bending without axial load, the neutral axis passes through the centroid (center of gravity) of the section.

Equations for calculating normal stress at any puint a distance y and z from the centroid (Fig. 5-4) of a section which is located at x along the member are (5.8):

Stress.ensultant	Normal Stress	Egs.
Thrust, N_{x}	$\sigma_{x}=\frac{11 x}{A}$	5.20
Pending, $M_{X_{1}}$	$\sigma_{x}=\frac{M_{x_{1}}{ }^{y}}{I_{1}}$	5.21
Bending, $\mathrm{M}_{\mathrm{x}_{2}}$	$\sigma_{x}=\frac{M_{x_{2}}{ }^{2}}{T_{2}}$	5.22
Combined thrust and bending, N_{x} and M_{x}	${ }_{x}=\frac{N_{x}}{A}+\frac{M_{x_{1}}{ }^{y}}{I_{1}}+\frac{M_{x_{2}}{ }^{z}}{T_{2}}$	5.23

Since y and z may be plus or minus, thrust may increase or decrease the bending stiesses.

The maximum bending stresses occur at the extreme fibers (farthest points from the neutral axis), where y and z attain their maxirnum values. The section modulus, S, is defined as the cross section property:

$$
S_{1}=\frac{I_{1}}{y_{\max }} ; S_{2}=\frac{I_{2}}{z_{\max }}
$$

Eqs. 5.24

For symmetrical sections, where S for each edge is the same:

	Stress Resultant	Maximum Normal Siress	F.qs.

Bending, $M_{x I}$

$$
y_{x}=\frac{M_{x_{1}}}{S_{1}}
$$

5.25

Bending, $M_{\times 2}$
$x=\frac{M_{x_{2}}}{S_{2}}$
5.26

Combined thrust and
bending, N_{x} and M_{x}

$$
\sigma_{x}=\frac{N_{x}}{A}+\frac{M_{x_{1}}}{S_{1}}+\frac{M_{x_{2}}}{S_{2}}
$$

See Tables 5-2 and 5-3 for methods and equations for determining I and S.

Fig. 5-4 ELASTK. FLEXURAL NORMAL AND SHEAR STRESSES \mathbb{N} BEAMS

Exarnple 5-4 gives calculations for the muximum normal stresses protuced in member 1-2 of Fig. 5-1 by the thrust and bending stress resultants determined in Example 5-1. The maximum compressive ond tensile norimal stresses produced by the combined effects of thrust and moments are also given.

Deformation Due to Normal Stress

Axial force, or thrust, produces the following linear deformation in a member having a length, L, and constont area, A (Fig. 5-3):

$$
\begin{equation*}
\delta_{x}=\frac{N_{x} L}{A E} \tag{Eq. 5.28}
\end{equation*}
$$

Morment produces curvature, defined as a change in slope over a unit length (Fig. 5-4):

$$
\begin{equation*}
\phi_{x_{1}}=\frac{1}{\rho_{x_{1}}}=\frac{d 0}{d x}=\frac{d^{2} y}{d x^{2}}=\frac{M_{x_{1}}}{E I_{1}} \tag{Eq. 5.29}
\end{equation*}
$$

$\phi_{x_{1}}$ is the curvature, and $\rho_{x_{1}}$ the radius of curvature, about axis I at point x.
Transverse deflection*, y, and slope, 0 , at a point x along a beam depend on the length of the member, the variation of moment along the length and the conditions of end restraint. The conjugate bean anology (5.1) (5.8) is useful for determining the slope of the tangent to the elastic curve and the deflection at points on a bent elastic member. In order to use the method, the bending stress resultants (moments) in the member must first be determined. This includes any indeterminate moments at supports that have rotational restraints.

The conjugate beam has the same length and support locations as the actual beom, but with all support points allowed to rotate (regardiess of end fixity concitions in the octual beam). Apply a distributed lood intensity on the conjugate bearn that is equal, at any point to the bending stress resultant along the beom divided by the section bending stiffness (EI) at each point. Thus, the looding diagram for the conjugate bearn is the same as the bending moment diagram of the actual beam, divided by EI at each section.

[^0]Example 5-4: Determine the maximum compressive and tensile normal stresses in member 1-4 of Fig. 5-1. Use the dimensions and loads given in Example 5-1. The thrust and bending stress resultants are calculated in that example. The member is a hollow tubular member as shown below.*

1. Member properties - Refer to Table 5-3, Shape \#9: b .. $9.5^{\prime \prime} ; h=19.5^{\prime \prime}$

$$
\begin{aligned}
& A=2 \times 0.5(9.5+19.5)=29 \mathrm{in.}^{2} \\
& I_{1}=\frac{0.5 \times 19.5^{2}}{6}(19.5+3 \times 9.5)=1521 \mathrm{in.}^{4} \\
& S_{1}=\frac{0.5 \times 19.5}{3}(19.5+3 \times 9.5)=106 \mathrm{in}^{3} ; \\
& \left(\text { or } S_{1}=\frac{1521}{10}=152.1 \mathrm{in.}^{3}\right) \\
& I_{2}=\frac{0.5 \times 9.5^{2}}{6}(9.5+3 \times 19.5)=511 \\
& S_{2}=\frac{511}{5}=102.3 \mathrm{in.}^{3}
\end{aligned}
$$

2. Maximum thrust, $N_{x}=-4.0 \mathrm{k}$ at points 2 to 4
normal stress: Eq. $5.20 \quad \sigma_{x}=\frac{-4000}{29}=-138 \mathrm{psi}$
3. Maximum beriding, $M_{x \mid}=72^{1 k}$ at point 2
max normal stress: Eq. 5.25: $\sigma_{x}= \pm \frac{72,000 \times 12}{152.1}= \pm 5680 \mathrm{psi}$
4. Maximum bending, $M_{\times 2}=+3.2^{k} \mathrm{k}$ or $-4.8^{k} \mathrm{k}$ at point 2
mox. normal stress: Eq. 5.26: $\sigma_{x}= \pm \frac{4800 \times 12}{102.3}= \pm 563 \mathrm{psi}$
5. Maximum combined compressive stress just to right of point 2

Eq. 5.27: $\max \sigma_{x}=-138-5680-563=-6381$ psi (compression)
6. Maximum combined tensile stress either just to right, or just to left of point 2
6.1 Just to right of point 2: Same stress resultants as for max. compression

$$
\sigma_{x}=-138+5680+563=6105 \mathrm{psi}
$$

6.2 Just to left of point 2: $N_{x}=0 ; M_{x 1}=72 \mathrm{k} ; M_{x 2}=3.2 \mathrm{k}$

$$
\sigma_{x}=0+5680+\frac{3200 \times 12}{102.3}=6055 \mathrm{psi}
$$

6.3 Location just to right of point 2 governs.

Note: I in. = 25.4 mm ; | kip-force $=4.448 \mathrm{kN} ;$ I ft-kip = $1.356 \mathrm{kN}-\mathrm{m} ; 1 \mathrm{psi}=6.895 \mathrm{kPo}$.

* See note on Examole 5-1, page 5-4.

The deformations of the actual beam are determined from certain siress resultants in the conjugate beam as follows:

- The slope (angle of tangert to clastic curve with original axis of beam before bending) at any point on tlic actual beam is the shear ot that point in the conjugate beam.
- The bending deflection at any point on the actual beam is the beriding moment at that point in the conjugate beam.

The above is summarized in Fig. 5-5. The areas and centroid locations given in Table 5-3 for parabolas are useful for determining areas and moments of the loads (parabolic moment diagram) on the conjugate beam. Also, calculations are often simplified when moments used as loads on a conjugate beam are broken down to reflect the separate application of each applied load, as well as the separate application of each end moment due to support restraints.

The conjugate beam method for determining deflections and slopes is further illustrated in Example 5-5, which gives the deflections and slopes at certain points in beam 1-4 shown in Fig. 5-1.

Deflection of specific types of members and components is discussed in each of the Chapters that follow. Also, see Table 5-1 for the maximum bending and axial deflections for certain common loading and support cases.

Flemaral Sheor Stress

In addition to bending moment, transverse loods also produce shear stress resultants that act on the plane of the heam cross section. Stresses caused by shear force ore termed "flexural shear" stresses or simply "shear" stresses. These may also be determined using the elastic beam theary. Shear stresses act as shown in Fig. 5-4; they are usually maximum at the neutral axis and reducing to zero at the upper and lower extremities of the sections. However, in sections of variable width, maximum shear stress may not always be at the neutral axis. Shear force is related to the chonge in bending moment along the beam. Also, equilibrium demonds that ot ony point in the beom, the vertical shear stress produced by shear force on the section have an equal horizontal shear stress as shown in skefch (d) of Fig.5-4.

Loading and Elastic Curve

Siriple Span Man , ent

ACTUAL BEAM \& BENDING MOMENT DIAGRAM IN 2 PARTS

CONJUGATE BEAM

Slope at a: $\frac{W L^{2}}{24 E T}-\frac{W L^{2}}{24 E T}=0$
Slope $a+b: \frac{W L^{2}}{24 E T}-\frac{W L^{2}}{48 E T}=\frac{W L^{2}}{48 E T}$
Deilection at $x=L / 2$:
$r \cdot y=\frac{W L^{3}}{48}-\frac{W L^{3}}{128}-\frac{W L^{3}}{96}+\frac{W L^{3}}{384}=\frac{W L^{3}}{93}$

Fig. 5-5 CONUUGATE BEFM ANAL OGY FOR BENDING DEFLECTIONS AND SLOPES

Example 5-5: Determine bending deflections at mid-span of member 1-4, Fig. 5-1, in the
z and y directions. Refer to Example 5-1 for loads, dimensions and stress resultants and to Example $5-4$ for member section properties. Assume $\mathrm{E}=2000 \mathrm{kips}$ per sq. in.*

1. Mid-spon deflection ir, z direction, prodised by $M_{x \mid}$
I.1 Consider conjugate beam loaded by $M_{x I} / E I$, diagram due to each load type separately.
(a) Uniformly distributed load

(b) Concentrased lood

1.2 Moment ($M_{x 1}$) ordinates on conjugute heams
(a) $M_{m}=1.0 \times \frac{20^{2}}{8}=50 \mathrm{k}$
(b) $\quad M_{2}=\frac{5.0 \times 8 \times 12}{20}=24 \mathrm{M}$.

$$
M_{m}=\frac{24 \times 10}{12}=20 \mathrm{k}
$$

1.3 Reactions on conjugate beams
(a) $\mathrm{EI}_{1} \mathrm{O}_{1}=\mathrm{EIO}_{4}=\frac{2}{3} \times 50 \times 10=333.3 \mathrm{k}-\mathrm{ft}^{2}$
(b) EI, $\mathrm{O}_{1}=\frac{24 \times 8 \times(8 \times 0.33+12)}{2 \times 20}+\frac{24 \times 12}{2} \times \frac{12 \times .67}{20}=70.4+57.6=128.0 \mathrm{k}-\mathrm{ft}^{2}$

$$
\mathrm{EI}_{1} \mathrm{O}_{4}=24 \times 20 \times 0.5-128.0=112.0 \mathrm{k}-\mathrm{ft}^{2}
$$

1.4 Deflection at $\mathrm{m}, \delta_{\mathbf{2 m}}=$ bending moment in conjugate beam at m
(a) From Table 5-3, Case 6: e.g. for inalf parabola, $n=\frac{3}{8} \times 10=3.75$

$$
\mathrm{EI}_{\mathrm{I}} \delta_{\mathrm{zm}}=333.3 \times 10-333.3 \times 3.75=2083 \mathrm{k}-\mathrm{ft}{ }^{3}
$$

(b) $\mathrm{FI}_{\mathrm{I}} \delta_{\mathrm{zm}}=128 . \times 10-\frac{24 \times 8 \times(2+8 / 3)}{2}-20 \times 2 \times 1-\frac{4}{2} \times 2 \times \frac{2 \times 2}{3}=786.7 \mathrm{k}-\mathrm{ft}^{3}$

$$
\delta_{\mathrm{zm}}=\frac{(2083+78 . .7) \times 1728}{2 \times 10^{3} \times 1521}=1.63 \mathrm{ir} .
$$

* See note on Example 5-1, poge 5-4.

$$
\begin{aligned}
& \text { Example 5-5 (continued) } \\
& \text { 2. Mid-span deflection in y direction produced by } M_{x 2} \\
& \text { 2.1 Consider conjugate beam loaded by } \mathrm{M}_{\times 2} / \mathrm{EI}_{2} \text { diagram } \\
& \text { 2.2 Moment ordinates } \\
& \text { at 2: From Example 5-1 } \quad M_{2}=3.2 \mathrm{k} ; M_{2}=-4.8 \mathrm{k} \\
& \text { at } m: M_{m}=-4.8 \times \frac{10}{12}=-4.0 \mathrm{k} \\
& \text { 2.3 Conjugate beam reactions } \\
& \mathrm{EIO}_{1}=\frac{3.2 \times 8}{2} \times \frac{14.67}{20}-\frac{4.3 \times 12}{2} \times \frac{8}{20}=-2.13 \mathrm{k}-\mathrm{ft}^{2} \\
& \mathrm{EIO}_{4}=\frac{3.2 \times 8}{2} \times \frac{5.33}{20}-\frac{4.8 \times 12}{2} \times \frac{12}{20}=-13.86 \mathrm{k}-\mathrm{ft}^{2} \\
& \text { check: } \frac{3.2 \times 8}{2}-\frac{4.8 \times 12}{2}=-16.0 \text {; o.k. } \\
& \text { 2.: Deflection at } \mathrm{m}, \delta_{\mathrm{ym}}=\text { bending moment in conjugate beam ot in } \\
& E I_{2} \delta_{y m}=-2.13 \times 10-\frac{3.2 \times 8}{2} \times\left(\frac{8}{3}+2\right)+4.0 \times 2 \times 1+\frac{0.8 \times 2 \times 2 \times 2}{2 \times 3}=-72.0 \mathrm{k}-\mathrm{ft}^{3} \\
& \delta_{y m}=\frac{-72.0 \times 1728}{2 \times 10^{3} \times 511}=-0.12 \mathrm{in} .
\end{aligned}
$$

Note: $1 \mathrm{in} .=25.4 \mathrm{~mm} ; 1 \mathrm{ft}=0.3048 \mathrm{~m} ; 1$ kip-force $=4.448 \mathrm{kN} ; 1 \mathrm{ft}$-kip $=1.356 \mathrm{kN}-\mathrm{m}$.

Shenr stress at ony distance y from the neutral axis is (5.8):

$$
\begin{equation*}
\tau_{x}=\frac{V_{x} Q_{s y}}{b I_{1}} \tag{Eq. 5.30}
\end{equation*}
$$

$Q_{5 y}$ is the first moment of the area above (or below) a distance y from the neutral axis, about the neutral axis. The maximum value of $Q_{s y}$ occurs when $y=$ 0 and is called Q_{s}, the first moment of the orea above or below the neutral axis about that axis.

In thin wall sections, "Shear flow" is a term used for the force represented by the shear stress times the width of a cross section at a distance y from the neutral axis, and thus, equals $\tau_{x} b$. Also, it follows from the above discussion that the moximum value of shear flow occurs at the neutral axis.

$$
\begin{equation*}
\text { max shear flow, } q_{m}=\tau_{x m} b=\frac{V_{x_{1}} \bar{Q}_{s i}}{I_{1}} \tag{Eq. 5.31}
\end{equation*}
$$

Shear flow is the force per unit length required to connect ciements such os flanges to webs of beams.

When thin wall cross sections, such os 1, C or tubular sections, are used for beams, a simpler relation for determining the appraxirnote maximum shear stress in the web of beam is useful (5.8) (5.10):

$$
\begin{equation*}
r_{x m}=\frac{V_{x_{1}}}{A_{w}} \tag{Eq. 5.32}
\end{equation*}
$$

A_{w} is the cross section area of the thin web from inside to inside of flanges. With sections hoving more than one web, include all the webs when calculating A_{w}.

Eq. 5.32 is only valid for sections that have substantial flanges connected by thin webs. In these sections, most of the bending normal stress is carried in the flanges. Since the shear flow equilibrates the chonge in lotal bending force above or below the shear plone for a unit length of member, the shear stress in the web of such a beam is nearly constant between the inside edges of the flanges. Eq. 5.32 may be used for other cross sections if A_{w} is replaced by
A / c_{s} where A is the total area of the cross section and c_{s} is a shape factor that relotes the maximum shear stress at the neutral axis to the average shear stress on the entire cross section, A. For solid rectangular sections, $c_{s}=1.5$, and for solid circular sections, $c_{s}=1.33$.

Shear Deformution

Shear stress deforms a square element into a rhombic shape (Fig. 5-4e). The shear strain is the angle change imposed during this deformation. The basic elastic relation between shear stress and shear strain is:

$$
\begin{equation*}
\tau=G \gamma \tag{Eq. 5.33}
\end{equation*}
$$

Shear deformation produces transverse deflection in members that are subject to shear force. For most practical beams, frames, plates, and shells, shear deflection is small relative to bending deflection and is usually neglected when calculating deflections and rotations of typical members. In fact, the usual assumption of beam flexure theory given previously that "plane sections before bending remain plane after bending" is based on neglect of shear deformation. An exception is sandwich panels with "shear flexible" plastic foam cores. Shear deflection can be very significant in such structures, and methods for calculating this deflection are given in Section 8.6 of Chapter 8. Maximum shear deflections for some common loading and support arrangements are given in Toble 5-1.

Principal Normal Stress

For any element in stressed body, there is a unique set of perpendicular axes on which only normal stresses act; shear stresses are zero. These axes are the principal stress axes and the corresponding stresses are the principal normal stresses acting on the element.

Element 1 in Fig. 5-6 has principal normal stresses shown on planes at angles, $\alpha_{\text {, }}$ and $(90+\alpha)$ with the planes that are parallel to and normal to the beam axis. The plones of principal stress are not related to the principal axes of the cross section discussed earlier. An important characteristic of principal stresses is that they represent the maximum and minimum normal stresses obtainable on two mutually perpendicular axes within the plane of the element. Another
important characteristic is that the maximum shear stress acts on a set of mutually perpendicular axes oriented at an angle of 45° to the principal axes.

The principal stresses, and the angle of the axes of principal stress, can be calculated from the stresses applied to any arbitrary axis. Eq. 6.69 in Chapter 6 give the angle of the planes of principal stresses and the magnitude of these stresses when the stress state on any iwo mutually perpendicular planes at the point is known. See also (5.8).

Fig. 5-6 PRINCIPAL NORMAL STRESS

For the majority of bending problems, the maximum normal stress occurs at the extremity of the cross section, and since shear stress is zero at this point, the
normal stress there is a principal stress. The principal stresses at other points within the beam are all lower. In a few cases, such as the diaphragms, and deep bearns discussed in Chapter 6, principal stresses must be calculated at points away from the extreme fibers. Another case where principal stress governs design is in the evaluation of web buckling in beams with thin webs. Element 2 in Fig. 5-6 illustrates this condition where the principol compressive stress at trie neutral axis of a bearn acts at 45 degrees to the planes of maximum shear stress. This is discussed further in Section 7.4

Torsion

Torsion also produces shear stress and shear deformation. The simplest model of torsion behavior is the response of a solid or hollow circular shaft under axial torque. The hollow circular tube is also the most efficient section for resisting torsion. Other compact shapes such as solid square, or single-cell and multi-cell closed tubular sections (Fig. 5-7) also provide efficient torsional resistance.

Shear stresses produced by a simple primary torque, T_{x}, applied to a solid, or tubular circular shaft (Fig, 5-7) are determined by the elastic theory for torsion (5.8):

$$
\begin{equation*}
\tau_{x r}=\frac{T_{x} r}{T_{z}} \tag{Eq. 5.34}
\end{equation*}
$$

where r is the rodial distance to the location of the point stressed in shear, and I_{z} is the polar moment of inertia of the shaft. The maximum shear occurs at the extreme fibers of the shoft.

The deformation of the twisted circular shaft results in an mgle of twist per unit length of (5.8):

$$
\begin{equation*}
\partial_{x}=\frac{T_{x}}{G I_{z}} \tag{Eq. 5.35}
\end{equation*}
$$

I_{z}, the polar moment of inertia of the circular area, is termed the torsion constant and is designated, J , for use with other shapes that exhibit more
complex behovior in torsion. Thus, the general relations for maximum shear stress, and angle of twist per unit length are:

$$
\begin{aligned}
& \tau_{x m}=\frac{T_{x} R}{J} \\
& \theta_{x}=\frac{T_{x}}{\tau_{1} J}
\end{aligned}
$$

Eq. 5.34 o

Eq. 5.35 a

b) Cross Sections

c) Variation in Stress

Fig. 5-7 PURE TORSION OF SOLID AND THIN-WALL SHAFTS

If the twisting moment is constant over a shaft length, L, the total twist of the shaft is:

$$
\phi=\frac{T L}{G J}
$$

Eq. 5.36

When the shoft cross section is a closed thin walled section of constant thickness t having any closed shape (Fig. 5-7), the torsional shear stress is constant around the perimeter of the shaft and is (5.10):

$$
\begin{equation*}
\tau_{x}=\frac{T_{x}}{2 A_{p}{ }^{\dagger}} \tag{Eq. 5.37}
\end{equation*}
$$

where A_{p} is the area enclosed by the centerline of the closed thin wall section. The torsion constant for any closed thin wall tube of constant wall thickness, t, is:

$$
\begin{equation*}
J=\frac{4 A^{2} t}{L_{p}} \tag{Eq. 5.38}
\end{equation*}
$$

where L_{p} is the length of the periphery of the tube. If the wall thickness of the tube varies, replace L_{p} / t in Eq. 5.38 with the integral from o to L_{p} of $d\left(L_{p}\right) / t$.

Example 5-6 illustrates the calculation of combined flezuras and torsional shear stresses in the hollow tubular section used for member $1-2$ (Fig. 5-1) in previous examples showing calculation of stress resultants (Example 5-1), normal stresses (Example 5-4) and deflections (Example 5-5).

The torsional behavior of non-circular sections that are not thin-walled closed tubular sections is more complex, involving warping of cross sections. The maximum shear stress produced by a simple primary torque applied to a shaft having a rectangular cross section is (5.8):

$$
\begin{equation*}
{ }^{\tau_{x m}}=\frac{a T_{x}}{b t^{2} / 3} \tag{Eq. 5.39}
\end{equation*}
$$

where b is the greater dimension and α is a coefficient that may be calculated with the fallowing approximate relation (5.8):

$$
\begin{equation*}
a=\left(1+0.6 \frac{t}{b}\right) \tag{Eq. 5.40}
\end{equation*}
$$

α is usually taken as 1.0 for narrow rectangles having $b / \uparrow \geq 10$. For such sections, the torsional constont is:

$$
\begin{equation*}
J=\frac{b t^{3}}{3} \tag{Eq. 5.41}
\end{equation*}
$$

An open thin-walled cross section comprised of an assembly of narrow rectanguIar sections is commonly used for various structural members. This type of section includes $I,[$, angle and hat shapes (Fig. 5-7). The torsional constant for such shapes is (5.11):

Example 5-6; Determine the maximum flexural shear stress, the maximum torsional shear stress and the maximum combined flexural and torsional shear stress in member 1-4 (Fig. 5-1) for the loads, dimensions ond siress resultants of Example 5-1. Also, determine the maximum principal normal stress in the flanges of this member. Dimensions and properties of the hollow tubular cross section to be used for member 1-4 are given in Example 5-4 (See sketch).*

1. Max. flexural shear stress caused by $V_{x \mid}$ occurs at point 1 , where inax. $V_{x \mid}=\mid 3 \mathrm{k}$.
1.: Max. shear stress occurs at neu:ral axis $1-1$, where $\bar{Q}_{\text {sy }} i^{\text {in Eq. }} 5.30$ is maximum. $J_{s y 1}=0.5 \times 10 \times \frac{19.5}{2}+0.5 \times 2 \times \frac{19}{2} \times \frac{19}{4}=93.9 \mathrm{in}^{3} ; I_{1}$ is given in Example 5-4.
1.2 Eq. $5.30{ }^{\tau} \times \mathrm{xm} \left\lvert\,=\frac{13,000 \times 73.9}{0.5 \times 2 \times 152 T}=802 \mathrm{psi}\right.$
or Eq. $5.32 \tau_{\times r .11}=\frac{13,000}{0.5 \times 2 \times 19}=684 \mathrm{psi}$ (approximate solution)
2. . Max. flexural shear stress caused by V_{x} occurs anywhere between points 1 and 4, since $V_{x 2}=0.4 \mathrm{k}$ of all points on the beam.
2.1 Max. $\mathrm{Q}_{5 y 2}$ in Eq. 5.30 occurs of neutrol axis 2-2:
$Q_{s y 2}=0.5 \times 20 \times \frac{9.5}{2}+0.5 \times 2 \times \frac{9}{2} \times \frac{9}{4}=57.6$ in $^{3} ; \mathrm{I}_{2}$ is given in Example 5-4
2.2 Eq. 5.30: ${ }^{\tau_{x m 2}}=\frac{400 \times 57.6}{0.5 \times 2 \times 5 T}=45 \mathrm{psi}$
or Eq. 5.32: ${ }^{T}{ }_{x m 2}=\frac{400}{0.5 \times 2 \times 9}=44 \mathrm{psi}$ (approximate solution)
3. Max. torsional shear stress caused by $T_{x x}=104 t-k$ occurs between points 1 and 2:
3.1 Eq. 5.37: $\tau_{\mathrm{xm} \mid}=\tau_{\mathrm{xm} 2}=\frac{10,000 \times 12}{2 \times 19.5 \times 9.5 \times 0.5}=648 \mathrm{psi}$
4. Max. contifed shear stress:
4.1 At point $1: T_{x m l}={ }^{x m l}$ fleyure $+\tau_{x m 1}$ torsion $=802+648=1450 \mathrm{psi}$
4.2 Anywhere between points 1 and 2: $r_{x m 2}=45+648=693 \mathrm{psi}$
4.3 At point I corner: $V_{x i}=1300 \mathrm{lbs}$.
$\sigma_{s x}=0.5 \times 10 \times \frac{19.5}{2}=48.8 \mathrm{in}^{3} ;{ }^{\tau} \times 1=\frac{1300 \times 48.4}{0.5 \times 2 \times 1521}=417 \mathrm{psi}$
$\bar{Q}_{s y}=0.5 \times 19 \times \frac{9.5}{2}=45.1 \mathrm{in}^{3} ;{ }^{\top}{ }_{x 2}=\frac{400 \times 45.1}{.5 \times 2 \times 522}=35 \mathrm{psi}$
$\left.\tau_{x}=\tau_{x 1}+\tau_{x 2}\right)$ flexure $+\tau_{x}$ torsion $=4 i 7+35+048=1100$ psi
5. Max. principal stress in flange occurs of left of point 2 where maximum flexural tension combines with torsional sheor stress:
5.1 Max. normal siress at left of point 2 at the corner of the tube (from Example 5-4): $\sigma_{x}=+5055 \mathrm{psi}$
5.2 Shear stress at corner of i دbe at left of point 2 :
$V_{x \mid}=5000 \mathrm{lbs} ; \tau_{x i}=\frac{5000 \times 48.8}{0.5 \times 2 \times 1521}=160 \mathrm{psi}$
$V_{x 2}=400 \mathrm{lbs}^{\mathrm{T}}{ }_{x 2}=35 \mathrm{psi}$
$T_{x}=\left(T_{x 1}+\tau_{x 2}\right)$ flexure $+T_{x}$ torsion $=160+35+648=843 \mathrm{psi}$
5.3 Referring to Eq. 6.6\% in Section 6.8 of the next Chopter:
$\tau_{m}=0.5(6055+0) \pm 0.5 \sqrt{(6055-0)^{2}+4 \times 843^{2}}=5170 \mathrm{psi}$
Noter $|\mathrm{in} .=25.4 \mathrm{mmm}|$ kip-force $=4.448 \mathrm{KN;} \mid \mathrm{ft}$-kip $=1.356 \mathrm{kNtm} ; 1 \mathrm{psi}=6.895 \mathrm{kPo}$

- See note on Exomple 5-1, poge 5-4.

$$
\begin{equation*}
J=\varepsilon \frac{b_{f} t_{f}^{3}}{3}+\varepsilon \frac{b_{w}{ }^{\prime}{ }_{w}^{3}}{3}=\sum_{n=1}^{n=k} \frac{b_{n}{ }_{n}{ }^{3}}{3} \tag{Eq. 5.42}
\end{equation*}
$$

The maximum torsional shear stress produred by a simple applied torque on a shaft of open thin-wall section that is free to warp (Fig. 5-7) is (5.10):

$$
\begin{align*}
& \text { flange : } \tau_{x f m}=\frac{T_{x} t_{f}}{J} \tag{Eq. 5.43}\\
& \text { web ; }{ }_{r_{x w m}}=\frac{T_{x}{ }^{\dagger} w}{J}
\end{align*}
$$

Eq. 5.44

Any part, n, with flange, t_{n} :

$$
\begin{equation*}
\tau_{x n m}=\frac{T_{x} t_{n}}{J} \tag{Eq. 5.45}
\end{equation*}
$$

The torsional constant, J, will be increased by the presence of fillets in a thinwalled cross section, and the maximum shenr stress will also increose somewhat from the value given by Eq. 5.45. If a more exoct evaluation is not made, the possibility of increased shear in the fillets can be taken into account in the safety foctor.

In general, open sections do not provide efficient resistance to cmplied torque; hence, they are seldom used as shafts designed to resist torsion. However, shapes with open sections frequently are used as beams or columns. When applied loads produce twist, torsional behavior of the thin-wall open shapes must be evaluated. This requires consideration of lateral bending associated with restraint of warping, as well as consideration of torsional shear.

Torsion with Warping Restraint

When warping ot on open thin-walled section is restrained, some parts of the section resist twisting by bending (Fig. 5-8). This reduces the portion of the twisting moment resisted by torsion. The total twisting moment produces a combination of torsional and flexural shear stress and flexural normal stresses on the cross section, as shown in Fig. 5-8. A detailed solution for these siresses is complex and outside the scope of this elementary presentation. Detailed explanations and equations for warping flexural and torsional stresses are found in (5.10 and 5.11).

Fig. 5-8 TORSION OF I SHAPED BEAM WITH AND WITHOUT RESTRANT OF FLANGE WARPING

A useful approximation that occounts for the warping resistance of a doubly symmetric I section is discussed and illustrated with a design example in Section 7.4 of Chapter 7. Equations are provided for calculating the flexural normal and shear stresses that arise when the flanges bend as the bearn is twisted, and also for determining the torsional shear stresses, as reduced by the restraint of warping. The reduced twisting deformation resulting because of warping resistance is also given.

The warping resistance of closed sections is much sinaller than their torsional resistance, except for very short rembers. Thus, warping stresses are not usually investigated for closed thin-walled sections such as rectangular tubes and hollow ribs that are subject to twist (5.10).

Shear center

A transversely loaded beam will not be subject to torsion if the applied loads pass through the "shear center" (also sometimes called "center of twist" or "flexural center"). Loads that are applied in a plane of symmetry of the cross section (Fig. 5-2a, axes yo and x_{0}, Fig. 5-2b, axis x_{0} except y_{o} in sketch on right) always pass through the shear center. When load action lines pass through the shear center, the equations presented previously 'or flexural normal stress and shear stress may be applied for both symmetrical and non-symmetrical cross ser.tions. When load action lines do not pass through the shear center, loads may be resolved into a direct load applied at that lecation, and a twisting moment equal to the direct lood times the perpendicular distance from its line of action to the shear center.

The location of the shear center is determined from the geometry of the cross section. For sections with two axes of symmetry, the shear center is located at the intersection of the symmetry axes, and therefore it coincides with the centroid. For sections, with one symmeiry axis, it is located on this axis, as discussed in Section 5.3. See Table 5-5 in tnat Section for the location of the shear center for some common cross sections with one axis of symmetry. See (5.8) for the genera! case of sections without symmetry axes.

5.5 STRESS CONKENTRATIONS

When local discontinuities occur at member aross sections subject to stresses, maximum stresses may be substantially higher than the stress levels calculated for the general stress field. Examples of significant discontinuities include holes, notches, cracks and abrupt changes in thickness, width or depth. Failure to account for such effects has been a major factor in the failure of plastics structural components, but the problem has not been unique to plastics.

An evaluation of the increased stresses at points of stress concentration is particularly important when materials do not exhibit a ductile stress-strain relation prior to rupture. Since some plastics and reinforced plastics bethave esseritially elastically to rupture, consideration of the effects of stress concentrations are crucial in design. Even those plastics that exhibit large ductility and yielding before failure under short-term load may in effect lose much of this ductility under long-term stress, particularly when exposed to various oggressive environments (including daylight).
'jtress concentrutions are also significant when plastic materials are subject to cyrlic stress or strains weli below their short-term yield values. Also, parts subject to only a few cycles oi reversing stresses and strains above yield may fail prematurely by low cycle fatigue.

Design details that produce stress concentrations should be avoided whenever possible. The more brittle the material, the more careful the designer should be to eliminate or reduce stress concentrations. These effects are reduced by the use of fillets of adequate size when cross sections change size or shope, by the proper spocing of holes for connections, and by the design of bonded joints for gradual transfer of forces. See Section 4.5 for guidelines that minimize stress concentrations in molded components.

Most plastics cunnot be characterized as completely brittle or as completely ductile materials. Many thermoplastics have a yield point in short term tests, but also often have sciffered micro cracking and other structural damage at stresses below yield. This may result in dramatic reductions in strength and ductility under long term stress and/or in aggressive environments. Reinforced plastics generally do not exhibit a marked yield in short term tests, but noy also
develop micro cracks that damage and alter the structural properties of the resin motrix at stress levels well below the ultimate strength of the composite. See Chapters 2 and 3 for a detailed description of the mechanical behavior of thermoplastics and reinforced plastics.

The structural changes that occur prior to ultimate strength complicate the accurate consideration of stress concentrations at structurai discontinuities. The emerging science of fracture mechanics provides a means for developing more precise and generally less conservative ossessments of the quantitative effects of stress concentrations in plastics. Some elementary concepts of fracture mechanics are presented later in Section 5.8, but detailed analysis of specific plastics and composites is beyond the scope of this Design Manuol. The following elementary summary of information about the effects of several common types of stress concentrations in materials that behave elastically up to ultimate is presented to guide the designer toward an understanding of structural behavior under this often simplified assumption. He con then assess the need for a more thorough analysis using refined theoretical or experimental approaches.

The existence of bi-axial or tri-axial stress conditions also complicates assessment of behavior at stress concentrations. Some stress raisers produce bi-axial or tri-axial stresses even when the general stress field is uniaxial. Again, fracture mechanics and/or careful experimental work is needed for an accurate consideration of the impact of the st:ess raiser on structural behavior with specific marerials. This more detailed treatment is not within the srope of this Manual.

Stress concentrations in homogeneous elastic materials may not be accurate for non-homogeneous materials such as layered fiber reinforced composites. For example, limited research on the effect of holes in infinitely wide plates that show much lower stress concentration for small holes than for large holes, while the elastic theory for homogeneous moterials indicates that the maximum stress concentration at a hole in an infinitely wide plate is not a function of hole size.

Stress Concentration Foctor

The degree of stress concentration is usually expressed by the "siress concentration factor, ${ }^{\prime} K_{t}$, (5.12) where:

$$
\begin{equation*}
K_{t}=\frac{\text { peak stress }}{\text { nominal sfress on nef sertion }}=\frac{\sigma_{\text {max }}}{\sigma_{\text {nom }}} \tag{Eq. 5.46}
\end{equation*}
$$

$\sigma_{\text {nom }}$ is obtained from the elementary formulas given in the previous Section using the section properties of the net cross section. (Occasionally stress concentration factors ore reloted to stresses on the gross section, instead of the net section.) The nominal and maximum stresses for axial tension and bending in a notched bar ore shown in Fig. 5-9.

Fig. 5-9 NOMMAL AND MAXIMUM NORMAL STRESS AT NOTCH

The peak stresses caused by stress concentration usually are of most concern in elements subject to axial or flexural tension, and to diagonai tension resulting from shear. Peak stresses at discontinuities could also reduce compressive strength if materials behavior in compression remains linear elastic up to crushing. For most moterials, however, yielding, creep or local instability tend to dissipate peak compressive stresses, and thus to reduce the severity of stress concentrations in compression.

Stress concentration factors are obtained from the theary of elasticity and/or from experimental methods such as photoelasticity, precision strain gages, and membrane and electrical analogies for torsion. Much of the available informafion on stress concentration factors for elastic homogeneous isotropic materials is summorized in (5.12).

Notches

Notches can cause very high peak stresses in structural members. Cracks are a particularly severe type of notch. Deep scratches, gouges and similar damage caused by improper handling can reduce the load-resisting capacity of a member because "notch effects" result from such damage. Threads also are notches and reduce the strength of materials to a greater extent than the loss of cross section becruse of the stress concentration effect. Threads in shafts also cause torsional stress concentrations.

The information given below for notch effects is not intended for evaluating the effects of cracks in plastics. Fracture mechanics provides a quantitative approach that may be used in conjunction with the proper tests and experiments to assess the behavior of plastics that have been subject to various stages of cracking. See Section 5.8.

Approximate values of K_{t} for determining peak stresses covering a range of notch proportions are given in Fig. 5-10 for notched flat bar tension and bending in hornogeneous isotropic members. Additional charts giving more accurate values of K_{\dagger} and values of K_{\dagger} for larger ratios of r / d are given in (5.12). Also, see (5.12) for charts for notches on one side, multiple notches and notches in circular members.

Fillets

When member cross sections change, fillets are usually needed to reduce the peak stress caused by stress concentrations. The effect of changing the fillet radius at changes in the width of a thin flat bar subject to tension or to bending is shown in Fig. 5-11. The reduction in stress concentrotion that occurs with larger radii is readily apparent from the sharp reduction in K_{p} with increasing r/d. Fig. 5-11 applies to cases where the section having the larger dimension, D, extends for a considerable distance along the member axis beyond the fillets, and the material is homogeneous and isotropic.

Graphs for K_{t} with short lengths of shoulder are also given in (5.12), as are graphs for round members, shafts stressed in torsion and other conditions.

Fillets with variable radii, as shown in Fig. 5-12, produce lower stress concentrations than the circular fillets shown in Fig. 5-11. Some of these optimized fillets are discussed in (5.12).

Fig. 5-10 STRESS CONCENTRATION FACTOR, K, FOR A NOTCHED FLAT BAR SUBJECT TO TENSION AND BENDING (5.12)

Fig. 5-1I STRESS CONCENTRATION FACTORS FOR STEPPED FLAT BAR WITH FILIETS SUBVECT TO TENSION AND BENDING (5.12)

rig. 5-12 COMPOUND FILLET

Holes

Holes are another common type of discontinuity that causes stress concentrations. A single circular hole in an infinite plate produces $K_{t}=3.0$ for uniaxial tension in homogeneous, isotrapic materials. For biaxial stresses, σ_{x} and σ_{y}, calculate:

$$
\begin{equation*}
k_{t x}=3-\left(\frac{y}{v_{x}}\right) \tag{Eq. 5.47}
\end{equation*}
$$

to obtain maximum tension stress in the x direction.

For a homogeneous orthotropic plate of infinite width under uniaxial stress in direction 1-1, the stress concentration factor at a hole is (5.23):

$$
\begin{equation*}
k_{t}=1 \cdot \sqrt{2\left(\frac{E_{11}}{E_{22}}-v_{12}\right)+\frac{\bar{F}_{11}}{G_{12}}} \tag{Eq. 5.48}
\end{equation*}
$$

For u homogeneous isotropic plate of finite width, b, and a single hole of diameter, a, subject to uniaxial tension perpendicular to b, a good approximation for K_{p}, to be applied to stress on the net section, is:

$$
\begin{equation*}
K_{\dagger}=2+\left(1-\frac{0}{5}\right)^{3} \tag{Eq. 5.49}
\end{equation*}
$$

A more useful factor for static design purposes is K_{tg}, to be applied to stress on the gross section, where:

$$
K_{t g}=\frac{K_{t}}{\left(1-\frac{a}{b}\right)}
$$

Graphs giving $K_{t g}$ for eccentrically located circular holes, for various potterns of multiple circular holes, for plates with circular holes subject to shear, and for holes in solid and tubular cylindrical elements are given in (5.12). Fig. $5-13$ is a graph that gives K_{\dagger} for shear stress in an infinite plate of homogeneous, isotropic
material with 2 holes, as well as for a plate with infinite number of holes in a single line.

Fig. 5-13 STRESS CONCENTRATION FACTOR, K, FOR PRINCIPAL STRESS IN INFINITE PLATE WITH SINGLE ROW OF HOLES SUBJECT TO SHEAR (5.12)

The above stress concentration factors, based on completely elastic behavior, may be too severe for small holes in reinforced plastics. At such discontinuities, a relatively minor degree of micro cracking at the very localized points of peak stress may relieve much of the stress concentration caused by the hole (5.23). Thus, for small holes in fiber reinforced composites, the overall strength reduction con be lass than the factor Ktx given by Eqs. 5.47 or 5.48 for the peak elastic stress at a hole. For example, in experiments on one example plate cunprised of a glass fiber epoxy laminate of uni-directional layers at 0° and $\pm 45^{\circ}, \mathrm{K}_{t}$ was found to equal abuut 2.0 for a $1 / 8$ inch diameter hole, 2.45 for a $1 / 4$ inch diameter hole and 3.07 for a $1 / 2$ inch diameter hole (5.24). In contrast to the above findings, stress concentration factors, presented in (5.25), based on 3dimensional finite element analyses, are larger for the relatively thick example plates of boron epoxy laminates with holes of varying sizes, than for similar plates of isotropic materials.

See also (5.26) for detailed consideration and equations for stress concentration factors for holes in plates comprised of advanced fiber laminates.

Reference (5.12) gives K_{f} values for hole shapes other than circular, including elliptical, rectangular with rounded corners, and norrow slits. The graphs provided cover uniaxial tension, biaxial siress and shear stress. Also, see Section 5.8 for an equation for stress concentration with a particular elliptical hole.

Other Types

Stress concentration factors are also given in (5.12) for a number of common structural and mechonical components that have been investigated for stress concentrations. Included are bolts loaded in tension where threads, nuts and heads cause severe stress concentration. K_{t} values ranging from 2 to 9 are reported for bolts of various types.

Comments on Design Proctice

Becouse high peak stresses caused by stress conctintrations can cause premature failure of some plastics materials, design practice for structural use of materials such as acrylic is to avoid completely the use of holes, notches or other such discontinuities in connections or other details of strucural components. With reinforced plastics, strength at holes used for connections is determined by mechanical testing as discussed in Section 4.11. For any materials that behave elastically, at peak stresses the types of structural discontinuities described in
this Section can be estimated with the stress concentration factors given herein, or in (5.12), and component design developed to hold these stresses below appropriate materials strength limits.

Stress concentrations can severly reduce the fatigue strength of plastics; thus, it is particularly important to minimize stress concentrations by careful detailing of components subject to fatigue to avoid notches, holes and changer in cross section as much as possible.

See Example 7-1 in Section 7.2 for cn illustration of the use of stress concentration factors in the design of a tension member.

Frocture Mechanics

Fracture mechanics provides a rational approach to account for the effects of stress concentrations caused by flaws, cracks, and sharp notches. These cause very localized maximum stresses that usually exceed the theoretical ultimate tensile strength of materials. However, most materials con accomodate such effects by plastic yielding of local material near the crack tip or by other mechanisms inherant to various riraterials. See Section 5.8 for a summary of Fracture Mechanics concepts that provide a rational approach for determining the fracture strength of members with shorp cracks, flaws or other crack-like discontinuities. The effects of such discontinuities on fotigue strength and on stress-corrosion cracking in hostile environments are also treated in that Section.

5.6 NONLLINEAR RESPONSE

The stresses and deformations described in the preceding sections are determined bosed on the elostic response of structures whose initial geometry is assumed to remain unchanged after deformation. This assumption facilitates simple structural analyses that give results of acceptable occuracy for the large majority of design applications with structural plastics materials.

There are important structural applications, however, where the above assumption may not produce designs of acceptable accurocy. An example is the behavior of transversely loaded thin plates with edges held agninst trorslation. Here, changes in geometry os the plate deflects enable it to develop a significont increcse in resistance to tronsverse loading. The same bet:avior occurs with
flexible tension members such as cables. In Chapter 6, charts are provided which facilitate a simple evaluation of both bending and membrane (in-plane) stresses in plates with edges held against lateral trarislation. Equations are also given for stresses and deflections of membranes, or flexible plates without bending stiffness. Equations given for long rectangular membranes also apply to cobles held at their ends.

Changes in initial geometry can also result in significant reduction in load supporting capability of slender linear members subject to the combined effects of bending and compression. When these inembers deflect in bending, the bending deflection results in an eccentric application of compressive thrust that amplifies the initial bending effect. This problem is treated later in Section 7.5 which covers the design of beam-colurnns. It is also treated in Section 6.9 relative to behavior of plates subject to combined direct compression and lateral load.

Non-linear response also occurs when a flexible moment resisting frame deflects under lateral load. Any vertical load on the frame amplifies bending dive to loteral loods because of the eccentricities introduced by the loteral deflection of the frome. This is termed the P- Δ effect and is also discussed further in Section 7.5.

Buckling is a special type of non-linear structural response in members subject to compression. This is discussed in the next Section.

Non-linear behovior may olso result from non-linear stress-strain behavior of plastics materials. As noted previously, most conventional methods for determining stresses and deflections are based upon the linear relation between stress and strain represented by F, the elastic modulus. However, plastics materials do not alwoys exhibit a linear relation between stress and strain. Two types on nonlinearifies may occur: (1) E reduces with increasing stress in short-tirre tests; (2) E reduces with time under load at a constant stress (or strain). The above cases are considered in detail in Chapters 2 and 3.

Exact onalysis of materials with a non-linear stress-strain relation, where E reduces with increasing stress, or strain, is complex. When the stress-strain curve can be approximated by two straight lines at different slopes (bi-linear, with two values of El, simplifications are possible such as those developed for steel, a material idealized us having a constant stress for all values of strain above the yield point. Computer solutions have been developed to provide more general solutions for stresses and deformations in members with non-linear materials. Some of these are discussed in Chapter 4. Hhwever, they are seidom used in practical design and are not considered here.

When E reduces with time under load, pseudo-elastic anolyses ore possible if the reduced E is not siress-dependent also. As explained in Chapters 2 and 3, the reduced E is lermed the viscoplastic modulus, E_{v}. In this approach, elastic methods are used to determine stresses and deflections, with E_{v} (for the appropriate duration of load and expected service conditions of temperature and exposure) used in place of E.

5.7 BUCKLING UNDER COMPRESSIVE STRESS

Except for tension members, all components of structures, as well as structures in their entirety, can be subject to buckling. Therefore, the designer of plastic structures must thoroughly inderstand of the nature of strucfural instability. The fundamental concept of buckling or structural instabiity is illustrated by the simple model in Fig. 5-14 (5.10). This elementary structure is comprised of two very stiff struts connected at their midheight by a rotationally flexible spring hoving a stiffness or spring constont, K, where K is the moment in the spring required to rotate each adjacent strut through on ongle $0=I$ radian. Thus, by definition:

$$
\begin{equation*}
M_{s}=2 \mathrm{KO} \tag{Eq. 5.49}
\end{equation*}
$$

If the structure is subject to an axial load, P, as shown in the Fig. 5-14a, there appeors to be no force that would make the elastic hinge move horizontally (i.e. buckle the column), regordless of the magnitude of P. However, further investigation reveals that this is not true, and that at some lood, $P_{c r}$, the column will buckle laterally at the spring.

c) Eccentric Lood or End Moments

Fig. 5-14 DEFORMATION OF AXIALLY LOADED BAR WITH S TIFFNESS CONCENTRATED AT MID-HEIGHT

The critical load may be determined by investigating equilibriu:n of the column in a slightly deflected position with the hinge point deflected an amount, δ, cousing the hinge to undergo a total rotation of 20 . In this position, the bending moment applied by the lood, P, ot the spring is:

$$
\begin{equation*}
i_{p}=P \delta \tag{Eq. 5.50}
\end{equation*}
$$

Also, the spring has rotated an arnount:

$$
0=\frac{\delta}{[/ 2}
$$

Eq. 5.51
Thus:

$$
M_{3}=4 K \frac{\hat{E}}{L}
$$

Eq. 5.52

The laws of statics require that $M_{p}=M_{s}$. Thus:

$$
\begin{equation*}
P: \quad=\frac{4 K \delta}{L} \tag{Eq. 5.53}
\end{equation*}
$$

Eq. 5.53 can be satisfied in two wavs: (1), $\delta=0$, and any value of P; and (2), $\delta \neq 0$ and a unique value of $P=P_{c r}$, where

$$
\begin{equation*}
P_{c r}=\frac{4 K}{L} \tag{Eq. 5.54}
\end{equation*}
$$

In the second case, Eq. 5.53 is satisfied for any value of δ.

The above analysis shows that up to the critical load, the column stays straight. If it is deflected horizontally a small amount, δ, the spring stiffness, K, is high enough to return the column to a straight position as long as $P<P_{c r}$. When P equals $\mathrm{P}_{\text {cr }}$, any arbitrary deflection may be applied and the column will not be returned to a straight position by the spring because the spring stiffness is not high enough to return the structure to its initially straight position. Of course, if initially, the column was perfectly straight and no external force, however slight, occurred to produce horizontal deflection, then the structure would continue to carry the axial force P. In any real structure, however, slight imperfections, such as initial crookedness and load eccentricities, would inevitably lead to buckling at a load at, or just below, P_{cr}.

If the idealized column shown in Fig. 5-14(b) is assumed to have been ossembled with on initial deflection δ_{0}, the equality of external moment at midheight to internal moment in the spring, under a larger deflection, δ, becomes:

$$
P \delta \quad=2\left(\theta-\theta_{0}\right) K=\left(\delta-\delta_{0}\right) \frac{4 K}{L}=\left(\delta-\delta_{0}\right) P_{c r}
$$

Solving this equation for δ :

$$
\begin{equation*}
\delta=\delta_{0} \frac{1}{\left(1-P / P_{c r}\right)} \tag{Eq. 5.55}
\end{equation*}
$$

Eq. 5.55 shows that if the structure starts with an initial deformation δ_{0}, that deformation will be magnified by any axial load $\mathrm{P}<\mathrm{P}_{\mathrm{cr}}$ on the structure to become δ. The quontity, $\mathrm{I} /\left(1-\mathrm{P} / \mathrm{P}_{\mathrm{cr}}\right)$, is termed the "mognification," or "amplification" factor. Also, if a member that supports axial compression is also subject to loteral load (Fig. 5-14b), or to end moments (Fig. 5-14c), the deflection and bending stresses caused by the lateral load or end moment will be
mognified by the factor $1 /\left(1-P / P_{c r}\right)$. Eq. 5.55 is plotted in Fig. 5-15. The Figure shows that the amplification of δ_{0} is fairly small until the axial load approaches $0.6 \mathrm{P}_{\mathrm{cr}}$.

Fig. 5-15 LOAD-DEFLECTION PLOT FOR MEMBER WITH AXIAL LOAD AND INITIAL DEFLECTION

The concept of determining the approximote non-linear deflection or bending moment by applying the amplification factor to the linear deflection or bending moment is extremely useful in a wide variety of problems involving combined bending and axial compression. It also applies to cases of combined bending and axial tension, where the presence of tension reduces the linear bending deflections and stresses.

In oractice, the stiffness of structural members is not concentrated at one point, as in the case of the idealized column in Fig. 5-14. For linear members, the stiffness, El is distributed over the length of the member. Buckling of centrally loaded columns is treated in Section 7.3 of Chapte: 7. The magnification of bending effects in beams and frames that also carry axial compression is covered in Section 7.5.

Laterally unbraced beams that are bent about their strong axis may become unsiable and deflect laterally at their compression flange while rotating about
their tension flange. This is termed lateral-torsional buckling and is treated in Sectior, 7.4.

In-plane compressive stresses develop in plates from constant or variable inplane compressive stress resultants directed along either or both plate axes, or from in-plane shear stress resultants. Resistance to buckling is a function of flexural stiffness in both directions. Longitudinally compressed long plates, s! jpported along edges parallel to the load, resist buckling by virtue of their tronsverse flexural stiffness. Buckling of plates is treated in Sections 6.9 and 6.10. The results presented there are used in Chapter 7 for determining the local buckling resistance of thin flanges and webs of column and beam members.

Plates exhibit post-buckling strength. After initial elastic buckling occurs, the compressed plate does not collapse, but additional compressive load capacity develops as the stress continues to increase along the edges of the plate. Even through the interior region of the plate has buckled, compressive for ies can continue to be resisted in regions close to transversely supported edges so long as the ultimate strength of the edge region is not exceeded. In the post buckling range, the plate is considered to support in-plane compressive lood on a reduced effective width. This is explained in Section 6.9.

Thin faces of sandwich ponels may buckle if the care does not provide sufficient elastic support. Buckling resistance of sandwich facings and requirements for core stiffness are given in Section 8.8. Buckling of sandwich columns and plates is also covered in that Section.

The buckling resistances of shells depends upon a combination of axial, or inplane, stiffness in one direction and flexural stiffness in the other. Because axial stiffness is reduced by local imperfections and eccentricities in stress, shells do not develop the full buckling resistonce predicted by the "linear elastic" buckling theory exemplified by the simple model described obove. "Large duflection" theory is needed for accurate analyses of shell buckling. Because of the complexity of such analyses, however, the results of linear elastic analyses are often used together with semi-empirical nknockdown" factors that account for the effects of large deflections. These are determined from model tests and/or
from a limited number of "large deflection" solutions for simplified basic coses. Equations for buckling resistance of unifcrm thickness, ribbed and sandwinh shells ore given in Section 9.10.

5.8 BRITTLE FRACTURE UNDER TENSILE STRESS

All structural members contain crack-like flaws that cause local increases in stress. Quantitative methods for determining the magnitude of these stress concentrations for certain types of discontinuities such as holes, notches with rounded ends and chonges in cross section are presented in Section 5.5. In general, the magnitude of the stress concentration increases with the length and shorpness of the flow or discontinuity. For example, the stress concentration factor for an elliptical hole in an infinite plate subject to a tension stress field, as shown in Fig. 5-16, is (5.14):

$$
\begin{equation*}
K_{t g}=1+\frac{2 a}{b} \tag{Eq. 5.56}
\end{equation*}
$$

The radius of curvature at the end of an ellipse is

$$
\begin{equation*}
\rho=\frac{b^{2}}{a} \tag{Eq. 5.57}
\end{equation*}
$$

Thus, the maximum stress adjacent to an elliptical hole is

$$
\sigma_{\max }=(1+2-\sqrt{\sigma / \rho})
$$

Eq. 5.58
where σ is the averoge or nominal stress on the gross area.

If on elliptical hole becomes severly elongated, the radius at the end approaches zero and the ellipse represents a model for the crack-like discontinuity shown in Fig. 5-17. Since for small radii of curvature, $2 \sqrt{a / \rho}$ is large compared to 1.0 :

$$
\begin{equation*}
\sigma_{\max } \approx 2 \sigma \sqrt{a / \rho} \propto \sigma \sqrt{a} \tag{Eq. 5.59}
\end{equation*}
$$

As the crack tip rodius approaches zero, the peak stress odjacent to the crack opproaches infinity.

Fig. 5-16 ELLIPTICAL HOLE IN INFINITELY LARGE PLATE UNDER PLANE STRESS

Fig. 5-17 A TYPICAL CRACK-LKEE DISCONTINUITY \mathbb{N} A STRESSED BODY

Because the "Stress Concentration Factor" in Eq. 5.59, $\mathrm{K}_{\mathrm{tg}}=2 \sqrt{\mathrm{a} / \mathrm{p}}$, approaches infinity for sharp crocks, the elastic analyses used to develop stress concentration factors (Section 5.5) do not provide adequate information to define the behavior of proctical materials in the presence of notches. In order to overcome the shortcomings of elastic stress concentration analysis applied to crock-like discontinuities, Griffith (5.13) first examined the behovior of a local zone at the tip of a smoll crock in a large component in terms of the energy balarce required to propagate a crack. His pioneering work provided a foundation for the science of Frocture Mechanics. Inglis (5.14) postulated that frocture proceeds in a brittle material when the stress of the crack tip exceeds the theoretical cohesive strength of the material (which can be very high, possibly of the order of $\mathrm{E} / 10$), breaking atomic bonds ahead of the crack tip, to creote new fracture surfaces. Irwin (5.15) used the above concepts to define a parameter known as the "stress intensity Factor", K. This foctor is a measure of the mognitude, extent, and distribution of stress intensification at sharp notches of various types, and c an be used to characterize the materials susceptibility to brittle fracture. It can be used with brittle materials, as well as with materials where fracture is preceded by some yielding and redistribution of stress of the crock tip.

While Griffith's approach was widely used in the early development of Fracture Mechanics, it has largely been replaced by Irwin's concept of "Stress Intensity Factor". The Stress Intensity Factor approach will be described first in this section and then later compared with the Griffith theory of brittle fracture. However, the approactes of Inglis, Irwin and Griffith's all lead to the same general conclusions obout the fracture behovior of brittle and pseudo-brittle materials.

Fracture mechanics provides concepts for aseessing the safety and reliability of tension members or tension parts of members ogainst failure by brittle frocture. The "Stress Intensity Factor" provides a measure of the overall mognitude of the applied stress field around a crock (as related to a stress and crack length). In applying "frocture mechanics", a limiting or "Critical Stress Intensity Factor" is defined as the the limit of a material's capability to resist frceture through lecal increase in strength, plastir deformation, or other energy dissipating mechonisms.

The magnitude of the "Critical Stress Intensity Factor" is an important measure of a material's toughness. Under this concept, toughness is defined as the ability of a material to carry tensile load in the presence of notches.

Analyses to be described later show that if the relationship between nominal tensile stress, (without the presence of a crack), σ, and crack length, a, given by Eq. 5.60 is termed the "Stress Intensity Factor", K, a limiting or maximum value of K can be establihed as a basic property of most materials. In this approach:

$$
\begin{equation*}
K=C \sigma \sqrt{a} \tag{Eq. 5.60}
\end{equation*}
$$

C is a constant that is a function of a particular specimen and crack geometry. One type of geometry and lood configuration is shown in Fig. 5-17. For this crock and load configuration, $C=\pi$. Other test conditions result in different values of C. This will be discussed later.

A given material will fail by tensile rupture when a particular combination of tensile stress, $\sigma_{x f}$, and crack length, a_{f}, produce a critical value of stress intensity factor, $K_{c}, K_{I c}$, or $K_{I d}$, that represents a fracture condition. Thus:

$$
\begin{equation*}
K_{c}, K_{l c} \text { or } K_{l d}=C \sigma_{x f} \sqrt{\sigma_{f}} \tag{Eq. 5.61}
\end{equation*}
$$

The stress intensity factors, $K_{c}, K_{I c}$ and $K_{I d}$ are defined below.

Other variables that affect the critical stress intensity factor include the presence or absence of restraint of deformation normal to the plane of the primary stress field, the rate of lood application, the duration of load, and the temperature of the stressed member.

Members that can freely deform normal to the stress field plane are loaded in "plane stress" and a critical stress intensity factor for plone stress, K_{c}, applies. Members with a small thickness perpendicular to the plane of stress are usually considered as "plone stress" cases. When deformation normal to the plone of the stress field is completely prevented, "plane strain" conditions prevail and a critical stress intensity factor for "plane strain", K ${ }_{\text {Ic }}$, applies. Members that have appreciable thickness perpendicular to the plane of the stress field are
considered as "plane strain" cases. Because prevention of deformation normal to the plane of the primary stress field produces tensile stresses in this direction, $K_{l c}$ critical stress intensity factors are lower than K_{c} foctors. For this reason, the $K_{l c}$ critical stress intensity factor is usually used as the principa! measure of fracture toughness.

The toughness of 3 moterial also varies with rate of load application and temperature. The critical stress intensity factor for dynarnically applied load, $K_{I d}$ is less than $K_{l c}$ for most materirils. Also, $K_{l d}$ and $K_{l c}$ values should be related to specific temperatures or temperature ranges.

Thus, frocture inechanics shows that there are three primary factors that control the susceptibility of a structural component to brittle fracture (5.16):

- Moferial toughness, as defined by critical stress intensity fractors such as Kc, Klc or KId. In theory, these critical stress intensity factors are only applicable to linearly elastic homogeneous materials, although they find practical use in cases where some plastic deformation occurs in the vicinity of the crack tip, as well as with some composites which ore not homogeneous. Much more complex elastic-plastic theories (5.16) have been developed to define the toughness of elastic-plastic materials such as mild steel and some plostics. Some of these have also been applied to composites such as reinforced plastics (5.17, 5.18).
- Crack size, as defined by length, a. Prittie fractures initiate from discontinuities. These can be present initially due to fabrication and handling (air voids, surface scratches, etc.), or they can result from resin crazing or micro-cracking at low levels of stress. Cracks can grow by fatigue under cyclic loads, and by stress corrosion in hostile environmerits.
- Stress level. Brittle fractures occur only as a result of tensile stresses. These may result from residual stresses caused by differential shrinkage in manufacture or fabrication, and restraint of thermal deformation in a component configuration, as well as from applied loads.

A few important results of stress analyses for members with cracks are presented below to introduce the reader to fracture mechanics concepts. This treatment is limited to homogeneous elast ic materials. The fuither development of these concepts to account for the behavior of many actual plastics materials that are not homogeneous and/or completely elastic is not inclisied in the scope of this elementary presentation. References given in this Sectior provide much more extensive treatment of frocture mechanics for actual applications.

Linear-Elastic Fracture Mechanics

Linear-elastic fracture mechanics (LEFM) provides the analyses required to relate stress field magnitude and distribution in the vicinity of a crack tip to the nominal applied tension stress (without the presence of the crack) and to the size, shape and orientation of the crack or crack-like discontinuity. As explained obove, the stress intensity factor, K, represents the effect of stress field mognitude and distribution in the vicinity of the crack tip. The ability of a member to resist a given nominal stress with a given type and size of crack is determined by comparing the stress intensity foctor, K_{1}, produced by these conditions with the critical stress intensity factor, $K_{I c}$, for the material and configuration. The critical stress intensity factor represents the fracture toughness of the material. Thus, stress intensity factor, K_{J}, is to fracture toughness, $K_{I C}$, as stress, σ is to yield or ultimate strength, σ_{y} or σ_{u}.

In LEFM, three types of relative movements of two crack surfoces ore usually defined. These are shown in Fig. 5-18.

- Mode I opening mode, where crock surfaces move away from eoch cther. This is the most commonly investigated type of crack propagation.
- Mode 11 - shear mode, where two surfaces slide over eurh other in a direction perpendicular to the line of the c tip.
- Mode III - tear mode, where two crack surfaces slide wer each other in a direction parallel to the line of the crack tip.

Equations for stresses and displacements at any point in the vicinity of the crack tips are given in (5.16) for each of the 3 modes of relative crack surface movement with an isotropic material. See (5.18) for similiar equations for a specially orthotropic material (as defined in Sections 4.9, 6.6 and 6.7). These equations contain the stress intensity factor, $K_{I}, K_{I I}$ or $K_{I I I}$, for the particular mode, and ore applicable to the case of plane strain (Modes I and II) where no deformation is permitted in the z direction (Fig. 5-18). The analysis shows that the magnifude of the elastic stress field can be described by the single term parameters $K_{1}, K_{\| 1}, K_{1 \mid l}$. Also, dimensional analysis and consideration of "Griffith's" analysis for crack propagation (to be discussed later in this Section), shcws that $K \propto \sigma \sqrt{a}$, as given by Eq. 5.60.

Fig. 5-18 BRITTLE FRACTURE FAILURE MODES

Relationships between the stress intensity foctor for "plain strain" and various member configurations, crack orientations and shapes, and loading conditions are available in the literature ($5.16,5.17,5.19$, and 5.27). These provide numerica. values for the constant C in Eq. 5.60. Values of C for some simple common configurations are given in Table 5-6. The configurations shown in the table are important because they frequently provide the basis for tests and analyses used to determine the critical stress intensity factor, $K_{l c}$ or $K_{I d}$, that defines a material's thoughness.

Correction factors given in the Table enable the designer to improve estimates of stress intensity factors for a few common practical componenis.

See (5.27) for a more comprehensive presentation of an approach for obtaining stress intensity factors applicable to actual components by applying appropriate correction factors that account for the effect of stress concentrations such as holes, fillets and other changes in cross section to the basic coefficients, C. The impor rant influence of residual, stresses is also explained in (5.27).

Eq. 5.60 and the constants given in Table 5-6 apply for specially orthotropic materials (Section 4.9, 6.6 and 6.7), as well as for isotropic materials (5.17). The stress intensity factors, $K_{\text {, }}$ and $K_{I I}$, for specially orthotropic material may be used to characterize crock extension behavior and fracture in a manner that is identical to their use with isotropic mater:al. However, as stated above, the actual stress field around a crack tip in an orthotropic material differs from that associated with isotropic materials.

Taile 5-6

Coefficient, C, in Stress Intensity Equation

When several types of loads such as uniform tensile loajs, concentrated tensile loads, or bending loods act on a component that contains a crack, the total stress intensity factor can be obtained by adding the stress intensity factors that correspond to each load. In order for this to apply, however, each load must cause the some type of displacement of crack surfaces (i.e., all be Mode l, or all Mode II, etc.). Stress intensity factors for different modes of deformation cannot be added. One approach when both shear and tension stress fields may cause crock extension is to calculate a total energy release rate for each mode of deformation (to be described later in this Section) and to add these for each mode.

Modifications for Elastic-Plastic and Non-Homogeneous Materials

In theory, the stress intensity factor applies only to homogeneous materials that r main elastiz. In application, however, the critical stress intensity factor is determined experimentally, and the concept of maintaining calculated siress in eensity factors, K_{1}, etc. below a critical experimentally-determined stress intensity factor is generally valid for materials that develop smull plastic zones around the tip. For tougher materials having larger plastic zones near the crack tip, several advanced methods are available for characterizing loughness (5.16), but space precludes their presentation here. The simple stress intensity approach developed for homogeneous elastic materials has also been applied with reasonable success to composites such as fiberglass reinforced plastics (5.17). Some of the more advanced methods devised for elastic-plastic materials have ulso been applied to fibernus composites with some success (5.18).

Griffith Theory of Fracture

Since Griffitt's anclysis (5.13) of the fracture behavior of ideally brittle materials has been widely discussed and applied, the following brief presentation is included to summarize the equations that define the onset of fracture and to show their relation to the stress intensity factor approoch presented earlier in this Section. Griffith's theory is based upon the assumption that fractures will propagate in ar: ideally brittle material when the elastic surface energy required
for the formation of new surfaces ohead of a crack is less than the elastic energy released from the stressed body when the crack exiends.

Considering the infinite plate with crack shown in Fig. 5-17, for the case of "plane stress":

- Energy released by crack extension $=\frac{\pi \sigma^{2} a^{2}}{E}$
- Elastic surface energy required to extend crack $=2\left(2 a \gamma_{e}\right)$, where γ_{e} is the elostic surface eriergy of the materiol.
- Thus:

$$
\begin{equation*}
\sigma \sqrt{\pi a}=\left(2 \gamma_{e} E\right)^{1 / 2} \tag{Eq. 5.62}
\end{equation*}
$$

The quantity $\boldsymbol{\gamma r}_{e}$ is termed the energy release rate for the moterial, \bar{G}. Thus, for "plane stress":

$$
\begin{equation*}
\bar{G}=\frac{\pi \sigma^{2} a}{E}=\frac{K_{i c}^{2}}{E} \tag{Eq. 5.63}
\end{equation*}
$$

Similarly, for "plane strain":

$$
\begin{equation*}
\bar{Z}=\frac{k_{l c}^{2}\left(1-v^{2}\right)}{E} \tag{Eq. 5.64}
\end{equation*}
$$

Determination of Critical Stress Intensity Factor

Critical stress intensity factors are determined from various standord tests that have been developed to provide sufficiently occurate data about moterial foughness, consistent with the accuracy of data needed for desiyn, for a reasonable cost. As in the case of other material properties, the bulk of quantitative research and testing has been done for metals. For plastics and compositcs, there is limited understonding of the effect of importont variables like duration of load, stress corrosion in various environments, non-homogeneity of composires, etc. on the toughness of moterials. Thus, there are no widely accepted standards for specimen configuration und test conditions, as have been developed for metals. However, opplication or fracture mechanics to plastics
and composites provides a quantitative approach for assessing material toughness that should be an important tcol for developing improved engineering materials, as well as for the rational use of existing materials in structural applications. See (5.20) and (5.21) for consideration of some of the problems associated with fracture toughness testing of glassy plastics, and application of fracture mechanics with such materials. See (5.17), (5.18), and (5.23) for discussion of the application of fracture mechanics with fibrous-resin composites.

Cyclic Looding and Fatigue

The strengtin of most plastics is reduced when critical stresses are afplied as cyclic loads. Fatigue strength of plastics is discussed in Sections 2.11 and 3.7. Stress intensification at notches and discontinuities (Section 5.5) can severly reduce fatigue life compared to un-notched (flow free) members. Cyclic loading moy produce cracks at discontinuities that initially are not large enough to result in fracture, but which will propagate under continued cyclic loading until fracture finally accurs at a higher number of load cycles. Fracture mechanics provides quantitative approaches for describing the mechanisıns of crack initiation and crock propagation under cyclic loads. Criteria for defining fract are behavior and a basis for predicting fatigue life can be developed with the aid of fracture mechonics. The details of such analyses are found in texts such as (5.16).

Stress-Corrosion Cracking

Hostile environments may produce delayed failure of structural components under statically applied stresses that are well below material strength in a standard test environment. Such failures are due to stress-corrosion crocking. In studies of stress-corrosion cracking, the stress intensity factor, K_{1}, is used to characterize the mechanical component of the crack driving force. Environmental conditions can degrade the stressed material at the tips of cracks and flaws and con cause crack extension with time under exposure until the ciocks are large enough to result in fracture.

Fracfure mecionics studies of the resistance of materials to stress-corrosion cracking usually are baset on a critical "stress-corrosion cracking threshold"
stress intensity factor for plane strain, $\mathrm{K}_{\text {/scc }}$. (5.16). This factor is determined by subjecting several precracked test specimens to a particular hositle environment at different constant stresses and at various levels of initial stress intensity factors, $K_{1 i}$. The highest $K_{i i}$ that does not produce crack extension after a long test time is the stress-corrosion cracking threshold, $\mathrm{K}_{\text {Iscc }}$, for the particular material and environment. Statically loaded structural components exposed to the tested environment ore expected to have an infinite life when their $K_{\text {I }}$ value is less than $K_{\text {Iscc }}$.

Application to Design

For the designer of plastics structures, fracture mechanics provides the possibility of an important tool for the selection of appropriate materials, based on resistance to brittle fracture (toughness), and for the determination of safe design stress levels and allowable flaw sizes for given materials. The relationship of these three variobles are illustrated graphically in Fig. 5-19. The family of curves that relate nominal rensile stress at brittle fracture, $\sigma_{x f}$, to maximum flaw length, a, are similar to the curves that relate critical buckling stress, $\sigma_{x c}$, to column slenderness, L/r, (Fig. 7-3). The critical stress irtensity foctor, K Ic' is onologous to the elastic modulus, E, in column buckling. When viewed this way, whenever the combination of tensile stress and flaw size produces a value of $\sigma_{x f}$ that is less than $\sigma_{x u}$, tension or flexural member design is governed by tensile instability (brittle fracture), just as a compression member design may be governed by compressive instability (buckling) wherever $\sigma_{x c}$ is less than $\sigma_{x u}$.

Practical methods for applying the above described basic concepts of fracture mechanics to evaluation of components with common details are given in (5.27). Procedures for correcting basic stress intensity factors for various stress raisers such as holes, fillets or changes in cross section are presented and illustrated by application to practical details in steel structures.

Unfortunately, the state of the art in the application of fracture mechanics to plastics and composites has not yet made available an adequate body of reliable materials toughness parometers for use in design. Furthermore, more applied research should be undertaken to determine the extent to which LEFM can be applied to various plastics and composite moterials that cre of interest in structural applications. Thus, the above-described frocture mechanics approach is not yet available for widespread use by designers. Prudent part design in the absence of fracture toughness data is charocterized by the elimination of a!!
potential stress concentrating geometries, and over-design of critical dimensions to compensate for stress concentrations in the for n of flows that inay develop furing the service life of the structural conponent.

Definitions
$\sigma_{x u}=$ static tensile strength of material
$\sigma_{x f}=$ averoge terisile stress of frocture
$a_{u}=$ maximum crack length when fracture occurs at $\sigma_{x 1}=\sigma_{x u}$
$a_{f}=$ maximum crock length at frocture

Fig. 5-19 DIMENSIONLESS RELATION BETWEEN TENSION STRESS
AT FRACTUPE, $\sigma_{\text {wf }}$ AND CRACK LENGTH, a_{f} AT FRACTUPE, $\sigma_{x f}$ AND CRACK LENGTH, a_{f}

Hopefully, the industry will recognize the need for quantitative brittle fracture criteria and monufacturers of specific materials will undertake the research needed to demonstrate whettrer LEFM will choracterize the toughness of their materials. Where this approach can be used, reliable values for $K_{l c}, K_{\text {Id }}$ and other imporiant critical siress intensity factors that characterize the fracture toughness of specific plastics and composites must then be develaped. If LEFM connot characterize specific mnterials, wiiser criteria for fracture toughness must be developed to assist designers to aftain safe structural designs for members subject to axial or flexural tension.

5.9 STPUCTURAL VIBRATIONS

When a structural component or an assembly of components with a mass, M_{1}, is given a certain type of small instantaneous displacement and then released, it will initially oscillate about its neutral position with a frequency, f, that is termed the "natural frequency of vibration". Frequency is measured in cycles per unit of time (usually seconds). The time required to complete one complete cycle is termed the natural period, T. The period is related to the natural frequency by:

$$
\begin{equation*}
T=1 / f \tag{Eq. 5.65}
\end{equation*}
$$

Natural frequency of idealized systems

The simplest model to illustrate this behavior is the spring supported mass shown in Fig. 5-20a. If this mass is moved an arbitrary amount y_{i} and released, it will oscillate in accordance with the following simple equation of motion:
$y=y_{i} \cos \omega \dagger$

(i)

Fig. 5-20 IDEALIZED "MODELS" FOR VIBRATING SYSTEMS
ω is termed the circular natural frequency and is related to the natural frequency, f, by:
$\omega=2 \pi f$
Eq. 5.6 ?
f, the natural frequency is:

$$
\begin{equation*}
f=\frac{1}{2 \pi} \sqrt{\frac{k}{\pi}} \tag{Eq. 5.68}
\end{equation*}
$$

in which k is the stiffness of the spiing.

The simple structure shown in Fig. 5-20(a) is termed a "single degree-orfreeciom" system, and it has only one possible mode (displacement pattern) of natural vibration and one natural frequency. The idealized structure with 2 spring supported masses shown in Fig. 5-20(b) is termed a "two degree-offreedom" system, and it exhibits more complex vibrational behavior. It has two "modes" of free vibration, and a nutural frequency for each of these modes. When the structure vibrates in one of its modes, all points vibrate in phase; thot is, all points reach the maximum travel simultaneously. Texts on structural dynamics such as (5.22) present equations of mation, and both approximate and rigorous methods for determining notural frequencies and other characteristics involved in vibration analysis. Often, structurai systems are approximated as one degree-of-freedom systems, and the general conclusions and methods of analysis of behavior of such systems are used for the approximate determination of vibration effects for a more complex structure.

Damping

When a member is left freely vibrating, the amplitude gradually reduces because of the inherent damping of the material and the additional damping due to friction at structural supports and connections. In viscous damping (the usual assumption, the damping force is proportional to the velocity of motion. A damping coefficient, c, is defined as:

$$
\begin{equation*}
c=\frac{\text { Domping force on moss }}{\text { Velocity of moss }} \tag{Eq. 5.69}
\end{equation*}
$$

The domping coefficient is a function of the material's characteristics, shape of structural member and orrangements of structural system, as well as other variables such as level of stress. It is difficult to measure c with great precision. The amplitude decay in one cycle of a vibrating system gives an approximate estimate of damping which is usually satisfoctory for use in practicc.j design.

Damping is generally defined in quantitative terms as a percent ratio of the amount of damping beyond which the structure does not vibrate harmonically. Thus:

$$
\begin{equation*}
c=\eta c_{r} \tag{Eq. 5.70}
\end{equation*}
$$

in which c_{r} is termed the "critical damping", and the percent of critical damping is n. For a one degree-of-freedom systein, the critical damping is:

$$
\begin{equation*}
c_{r}=2 \sqrt{k \bar{M}}=2 \bar{M} \omega \tag{Eq. 5.71}
\end{equation*}
$$

and thus,

$$
\begin{equation*}
c=2 n \vec{M} \omega \tag{Eq. 5.72}
\end{equation*}
$$

Dynamic load factor

Structural vibrations occur when a member, or asseinbly of members is suddenly loaded or unloaded, when a structure is subject to certain types of cyclic loading or motion, or when the load varies with time. Sudden loads occur in impact and b!asts; cyclic loads occur as a result of ground shaking in earthquakes, rnoving loads like vehicles on a bridge, machinery with parts that rotcte or oscillate, forces from randorn wind gusts, or any laading conditions irvolving changes in applied forces over short time periods.

Structural vibrations often amplify the deflections and stresses produced by loods that are applied statically. In practical design, amplified stresses that result from dynamically applied loading are usually determined by roultiplying the stresses caused by the design loads, as applied statically, by a dynamic load factor (DLF). In cases where dynamic loads occur because a structure is subjec; \lrcorner to motion from external effects, such as an earthquake, equivalent static forces are often determined for use with conventional static design methods.

When an applied lood is varied over a time span that is less than about four times the natural period of a structural system, dynamic amplification of stresses may be significon:. The magnitude of the DLF depends on the variation of applied lood with time (forcing function) and the notural period of the stiucture. Quantitative values of DLF for various forcing functions are presented in texts on dynamics such os (5.22). Two limiting cases are useful for qualitative evaluation of certain important dynamic effects:

- An instantaneously applied lood that remains on the structure produces a maximum DLF of 2.0 for a linearly elastic system without ciamping. Damping reduces the DLF but the reduction is usually not significant for this type of forcing function. If the "rise time" (i.e. time to recch maximum load) of a rapidly applied load is less than about one-quarter of the natural period, the DLF is essentially 2.0, the same as for an instantaneously applied load. If the "rise time" is more than about 4 or 5 times the natural period, the response is essentially static because the DLF is close to 1.0 and dynamic effects are negligible. Thus, loads with a "rise time" that is more than about 4 times the natural period are slowly applied loads.
- If a forcing function is pulsating such that its value at any time, t, may be approximated by:

$$
F_{t}=F_{I} \sin \Omega \dagger
$$

the maximum DLF is approximated by (5.22):

$$
\begin{equation*}
\max D L F= \pm-\frac{1}{1-(\Omega / \omega)^{2}} \tag{Eq. 5.74}
\end{equation*}
$$

It is evident from the above equations that the appiicaton of pulsating loads to structures whose natural period is close to the period of the pulsating load (forcing function) can result in very large deflections and stresses. This condition is termed "resonance". Thus, it is important to avoid vibrating loadings that may produce resomant vibration.

Approximate lowest notural frequency of actual structures

The significance of the natural frequency (or period) of a structure is evident frorr. the above discussion of the effects of loads that vary over short time periods. The natural frequency of a single desree-af-freedom system is given by Eq. 5.68. The approximate lowest notural frequency of any structure whose dynamic behavior can be simulated by a single degree-of-freedom system can be
determined using Eq. 5.68 if the stiffness, k, the effective mass, $\bar{\eta}_{e}$, and the dynamically applied forces, F_{e} are determined by assuming that \bar{M}_{e} and F_{e} are concentrated at a single point on the structure that best represents its motion in its lowest vibration mode. For members with distributed moss and distributed dynamic forces, such as beams, this point is often the point where the deflection is maximum. In this approach:

$$
\begin{equation*}
k=\frac{1}{\delta_{s}} \tag{Eq. 5.75}
\end{equation*}
$$

where δ_{s} is the static deflection of the structure at the point of application of equivalent mass and force when the structure is subject by a unit load having the same distribution as the applied dynamic force. The effective mass, \bar{M}_{e}, can be defined in terms of the total mass, \bar{M}, as:

$$
\begin{equation*}
\bar{M}_{e}=c_{m} \bar{M} \tag{Eq. 5.76}
\end{equation*}
$$

Likewise, the effective force, F_{e}, can be defined in terms of the total distributed force, F, as:

$$
\begin{equation*}
F_{e}=c_{L} F \tag{Eq. 5.77}
\end{equation*}
$$

Procedures for determining c_{m} and c_{L} for single degree-of-freedom approximations of common structural systems are given in (5.22).

For beams, the unit lood deflection, δ_{s}, of the point where the equivalent mass and dynamic force are assumed to be concentrated takes the form given in Table 5-I for bending and shear deflection, with load, $W=1$. Thus:

$$
\begin{equation*}
\delta_{s}=K_{m} \frac{L^{3}}{E T}+K v \frac{L}{G A_{w}} \tag{Eq. 5.78}
\end{equation*}
$$

Values of K_{m} and K_{v} for midspan deflection are given in Table 5-1, for simply supported and rotationally fixed ended beams under concentrated and uniformly distributed loads. Substituting Eqs, 5.75, 5.76, 5.77 and 5.78 into 5.68, the lowest natural frequency for beams where shear deflection is small relative to bending deflection (the usual case except for some sandwich beams, Chapter 8) is given by:

$$
\begin{align*}
& \mathrm{f}=\frac{1}{2 \pi} \sqrt{\frac{c_{L} E I}{c_{m} K_{m} L^{3 M}}}=\phi_{1} \sqrt{\frac{E I}{L^{3} M}} \tag{Eq. 5.79}\\
& \phi_{1}=\frac{1}{2 \pi} \sqrt{\frac{c_{L}}{c_{m} K_{m}}} \tag{Eq. 5.80}
\end{align*}
$$

Examples of midspan concentrated masses that are equivalent to combinations of concentrated or distributed mass systems and dynamically applied force systems on beams with several conditions of end restraint are given in Table 5-7. The coefficient, ϕ_{1}, for approximate lowest natural frequency obtained using the tobulated equivalent single midspan concentrated mass and force and the static midspan deflection for the appropriate distribution of dynamizall; applied force is also given in the Table for each load arrangement. Only bending deflection is included in these examples. Note that the lowest natural frequency coefficient, ϕ_{1}, is approximatel, the same for beams with different distributions of applied dynamic force, but the same mass distribution and end restraint condition (i.e. Cases 2,6 and 7 and Cases 4 and 8 have approximately the same ϕ_{1}).

Approximate dynomic analysis of actual structures

Approximate methods are often used in dynamic analyses of practical structures. As alreay discussed for determining natural frequencies, the simplest methods involve idealizing a multi-degree-of-freedom structure, such os a beam or frame with distributed mass and distributed dynamically applied force, as an equivalent one degree-of-freedom system. Appropriate approximate analyses for determiniry dynamic response of practical structures ore described in (5.22). This reference olso gives design nids, such as charts of DLF for various forcing functions on single degree-of-freedom systems, and tabulations of equivalent masses, lcods, arid resistances for approximating respunse of multi-degree of freedom systems by single degree-of-freedom systerr.s. it also gives design examples covering response of various common structural components and systems to several types of dynamic loods and resistances, including consideration of ductility and plastic behovior.

In the approach developed in (5.22), the static deflection and the static stress resultants prociuced by the maximum dymamically applied forces are multiplied
by the maximum DLF to determine the maximum dynamic response. The static deflections and stress resultants produced by the mass looding on the structure ure added to the dynamic response produced by the applied dynamic force. This approach is used for the evaluation of maximum stresses in a reinforced plastic beam in Example 5-7.

Note that the dynamic reactions of the actual structural member have no direct counterpart in the equivalent single degree of freedom system (i.e. equivalent spring force is not the some as the real reaction since the simplified system was selected to produce the same deflection as the actual system, rather than the same force). Methods for obtaining the maximum reactions (and, hence, the maximum sheor) are given in (5.22).

Table 5-7
Equivalent Masses \& Coefficient for Lowest Natural Frequency for Beams (For use in Eq. 5.78)

Example 5-7: Determine the lowest natural frequency and the maxirnum combined static and dynamic flexural stress in the beam shown in sketch "a" subject to a maximum dynamic force of 600 lbs per foot (from blast pressure) uniformly distributed over the length of the beam, if the weight on the beam is 400 lbs per foot, also uniformly distributed over the length of the beam. The section shape and properties of the beam are shown in sketch "b". (The beam is the same as the beam designed for static load in Example 7-3). The "blast pressure" forcing function that defines the variatiol of the 600 lbs/ft maximum applied furce with tine is shown in sketch "c".*
$w=4(\mathrm{~K}) \mathrm{Hbs} / \mathrm{ft}$
Max. $F=600 \mathrm{lbs} / \mathrm{ft}$

a) Beam Arrangement and Lood

c) Dynamic Force Voriation with Time

b) Beam Section Section Properties

$$
\begin{aligned}
& I_{1}=2197 \mathrm{in}^{4} \\
& S_{1}=183 \mathrm{in}^{3}
\end{aligned}
$$

Material Properties

$$
E_{11}=1,400,000 \mathrm{psi}
$$

1. Natural frequency of beam with 0.4 k per ft . dead loud.

$$
\begin{aligned}
& f=\phi_{1} \gamma \sqrt{\frac{E l}{L^{3} M}} ; E=E_{1 I}=1,400 \mathrm{ksi} ; \text { Using inch units, } L=20 \times 12=240 \mathrm{in} . \\
& \bar{M}=\frac{W}{g} ; W=0.4 \times 20=8 \mathrm{k} ; g=385 / \mathrm{in} / \mathrm{sec}^{2} ; \bar{M}=\frac{8}{386}=0.0207 \mathrm{kip}-\mathrm{sec}^{2} / \mathrm{in} . \\
& f=d_{1} \downarrow \sqrt{\frac{1,400 \times 2197}{(24 n)^{3} \times 0.0207}}=3.28 \phi_{1} ; \quad \text { From case } 7, \text { Table } 3-7, \phi_{1}=1.58
\end{aligned}
$$

* See note on Example 5-1, page 5-4.

Example 5-7 (continued)

$\underset{i}{x}=3.28 \times 1.58=5.2$ cycles $/ \mathrm{sec} ; T=\frac{1}{f}=\frac{1}{5.2}=0.19 \mathrm{sec}$.
2. Max. dynamic load factor, (DLF) max:

From Fig. 2-8 in Ref. 5.22 (reproduced below) for the triangular pulse forcing function showil and $T=0.19 \mathrm{sec} ., t_{d} / T=0.2 / 0.19=0.96$: (DLF) max. $=1.5$
3. Static stresses:

Due to weight:

$$
\begin{aligned}
& M_{x}=\frac{W L}{8}=\frac{0.4 \times 20}{8} \times 20 \\
& \sigma_{x}=\frac{M}{5}=\frac{20 \times 12}{183}=1.311 \mathrm{ksi}
\end{aligned}
$$

Due to max. forcing function: $M_{x}=0.6 \times 20 \times 20=30^{\mathrm{m}}$

$$
\sigma_{x}=\frac{30 \times 12}{185}=1.967 \mathrm{ksi}
$$

4. Maximum stress $=$ max. dynamic stress + max. static stress:
${ }^{\text {nax. }{ }^{13}}{ }_{k}=1.967 \times$ (DLF) $+1.311=1.967 \times 1.5+1.311-4.262 \mathrm{ksi}$

DLF from (5.22)

Note: $1 \mathrm{in} .=25.4 \mathrm{~mm} ; 1 \mathrm{ft}=0.3048 \mathrm{~m} ;|\mathrm{kip}=4.448 \mathrm{kN} ; 1 \mathrm{ft}-\mathrm{kip}=1.356 \mathrm{kN}-\mathrm{m} ;| \mathrm{ksi}=$ $6.894 \mathrm{MPa} ; 1 \mathrm{lbf}-\mathrm{sec}^{2} / \mathrm{ft}=14.589 \mathrm{~kg}$.

REFERENCES - CHAPTER 5

5.1 Norris, Wilbur and Utku, Elementary Structural Analysis, 3rd ed., New York, McGrow-Hill, 1976.
5.2 Gere, J. M., "Moment Distribution", Van Nostrand Reinhold, New York, 1963.
5.3 Conner, J., Analysis of Structural Member Systerns, New York, Ronald, 1976.
5.4 Roark, R., Formulas for Stress and Strain, 5th ed., New York, McGrawHill, 1975. (See also 4th edition, 1965, for certain additional formulas.)
5.5 American Institute of Steel Construction, Manual of Steel Construction, 3th ed., Chicago, 1980.
5.6 Kleinlogel, A., Rigid Fraıne Forimulas, IIth ed., New York, Unger, 1952.
5.7 Lentovich, V., Frames and Arches, New York, McGraw-Hill, 1959.
5.8. Timoshenko, S., Strength of Materials, Part I, 3rd ed., New York, Van Nostrand, 1955.
5.9 Riddell, M., and O'Toole, J., "Significant Properties of Plastics for Design", ASCE Special Publication - Structural Plastics Properties and Possibilities, Symposium on Structural Plastics, Louisville, 1969.
5.10 McGuire, W., Steel Structures, Englewood, New Jersey, Prentice-Hall, 1968.
5.11 Bethlehem Steel Co., "Torsion Analysis of Rolled Steel Sections."
5.12 Peterson, R., Stress Concentration Foctors, New York, John Wiley, 1974.
5.13 Griffiths, A. A., Proc. of Int. Congr. Appl. Mech. (55) (1924).
5.14 Inglis, C., Trans. Inst. Noval Archit. (55), 219 (1913).
5.15 Irwin, G. R., Encyclopedia of Physics (6) (1958).
5.16 Rolfe, S. T. and Barsom, J. M., Fracture and Fatigue Control in Structures, Applications of Fracture Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey, 1977.
5.17 Corten, H. T., "Frocture Mechonics of Composites", Chopter 9, in Volume 7, Fracture of Non-iMetals and Composites, of series Fracture ed. by H . Liebowitz, Acodemic Press, N.Y., 1972.
5.18 Smith, G., Green A.K., and Bowyer, W. H., "The Fracture Toughness of Glass Fabric Reinforced Polyester Resins", Ciropter 16 in Frocture Mechonics in Enginearing Practice, ed. by P. Stanley, Applied Science Fublishers, London, 1977.
5.19 Hertzberg, R. W., Deforination and Fracture Mecianics of Engineering Materials, Wiley, New York, 1976.
5.20 Margolis, R. D., Dunlap, R. W., and Markovitz, H., "Fracture Toughness Testing of Glassy Plastics", in STP 601, Cracks and Fracture, ASTM, 1976.
5.21 Berry, J. P., "Fracture of Polymeric Glasses", Chapter 2 in Volume 7, Fracture of Non-Metals and Composites, of series Frocture ed. by H. Liebowitz, Acodemic Press, N.Y., 1972.
5.22 Biggs, J. M., Introduction to Structural Dynamics, McGraw-Hill, 1964.
5.23 Agarwal, B. D. and Broutman, L. J., Analysis and Performance of Fiber Composites, Wiley, Hew York, 1980.
5.24 Saba, D. L., "Stress Concentration Around Holes in Laminated Fibrous Composites", Masters Thesis NPS-57 3t75061, Naval Postgraduate School, Montery, CA, 1975.
5.25 Barker, R. M., Dana, J. R., Pryor, C. W., "Stress Concentrations Near Holes in Laminates", ASCE Journal of the Engineering Mechonics Division, June, 1:74.
5.26 Pipes, R. B., Wetherhold, R. C., and Gillespie, J. W., Jr., "Notched Strength of Composite Matericis" Journ. of Composite Materials, Vol. I3, Apr. 1979, Technomic Publistır.g.
5.27 Albrecht, F., ond Yamadrı, K., "Rapid Colculation of Stress Intensity Foctors", ASCE Journal o' the Structural Division, February, 1977.

ASCE Structural Plastics Manwl

CHAPTER 6 - FLAT PI_ATES AND MEMBRANES

By Frank 1. Heger

TABLEOFCONTENTS
arge

6-i
Notation 6-i
6.1 Introduction 6-1
6.2 Plate Cross Section Stiffness $6-6$
6.3 Isotropic Plates Under Lateral Lood $6-12$
6.4 Isotropic Flat Membranes Undur Lateral Lood 6-37
6.5 Approximations for Large Deflection Anaiysis of Isotropic Plates Under Lateral Loads $6-43$
6.6 Orthotropic Plates Under Lateral Looc 6-54
6.7 Laminated Plates Under Lateral Loads and Internal Thermal Stresses 6-59
6.8 isotropic. Diaphragms 6-73
6.9 Stobility of lsotropic Plates 6-83
6.10 Stability of Orthotropic Plotes $6-112$
6.11 Natural Frequencies of lsotropic Plates and Membranes $0-121$
References $6-128$

NOTA TION - Chapter 6

0
${ }^{\circ}$
a_{i}
$\overline{\mathrm{a}}$
A
b_{e}
D_{11}, D_{22} or D_{r} flexural rigidity in 1,2 , and radial directins

$D_{i j}$	flexural rigidity of plate along material axis i in airection j
D_{0}	flexural twisting constant as defined by Eq. 6.6
e^{\prime}	strain
$\mathbf{e}_{x}, \mathbf{e}_{y}$	strain in x and y directions
e_{T}	strain resulting from restraint of deformation due to tempera-

E, E_{o}
E_{v}
E_{11}, E_{22}, E_{r}, modulus of elasticity in 1,2 , radial, and circumferential direr-
or E_{θ}

f, f_{i}	sag; initial sag
f_{n}, f_{1}, f_{2}	frequency of natural vibration in $n^{\text {th }} 1^{\text {st }}$, and $2^{\text {nd }}$ inodes
F	orea of vibrating membrane
9	acreleration of gravity
G	modulus of shearing rigidity
G_{12}	modulus of sheoring rigidity in plane of directions 1 and 2
i	moment of inertio of unit width cross section
1	moment of inertia of cross section
k	buckling coefficiert; as subscript, indicates loyer number in laminated plote
k_{0}	coefficient for udjusting plate bending resul's when v varies from 0.3. $k_{0}=1.0$ when $v=0.3$
$\begin{aligned} & k_{1}, k_{2}, k_{3}, k_{4}, \\ & k_{5}, k_{6}, k_{7} \end{aligned}$	coefficients in plate tending equations obtained from graphical plots of plate bending solutions
K_{a}, K_{b}, K_{t}	stiffness coefficient for axiai, rotational and torsional edge restraints
l_{6}	wave length of buckle
\bar{m}	monnification factor for deflection and mornent for members subject to combined oxial load and bending
m	integer
M	bending moment per unit width
M_{-}, M_{e}	maximum bending rarrent at center and of edge of plate
$\mathrm{Mcr}_{\mathrm{Cr}}$	bending moment which couses loteral buckling
M_{0}, M_{a}	bending moment without effect of axial load and with effect of axia! lood.
M_{u}	ultimate bending moment is
M_{x}, M_{y}	bending moment in x and y directions
\rightarrow	integral exponent, node number, or integer
N	oxial force per unit width

$N_{x}, N_{>}$	axial forces in x and y directions
$N_{x y}$	shear for in xy plane
N_{c}	axial force at edge of plate
N_{h}, N_{v}	horizontal and vertical component of axial force
$N_{\text {he }}, N_{\text {ve }}$	horizontal and vertical components of oxial force at eidge
$N_{h i}, N_{h q}$	horizontal component of axial force of edge, due to initial tension, and due to loteral load q
${ }^{N}$	axial force due to restraint of deformation from temperature change
$N_{x c}$	critical buckling axial force in \times direction
P_{x}, P_{0}	applied axial force per unit area
P	concentrated lood
P_{u}	ultimate exial compression
Q	shear force per unit width
Q_{a}, Q_{b}	maximum transwerse shear force on edges with lengtlis a and b
$Q_{x \geq}, Q_{y z}$	shear force in z direction on planes perpendicular to x and y axes
9	uniformly distributed lateral pressure
R	reaction at corner of plate
3	section modulus of cress section
V	edge reaction per unit width
V_{a}, V_{b}	moximum edge reaction on edges with lengths a and b
$\Sigma V_{c}, \Sigma V_{b}$	sum of edge reactions on edges with lengths a and b
t	thickness of plate
t_{0}	thickness of central portion of plate
t_{k}	thickness of layer, k
ΔT	chonge in temperature
ω	deflection normal to plate

w_{x}, w_{c}	deflection at distance \times from support, and at center
w_{0}, w_{0}	deflection without effect of axial load, and with effect of axial lood
${ }^{2} k$	distance from centroid of plate to centroid of layer k
\bar{a}	coefficient given by Eq. 6.40
$\boldsymbol{\alpha}$	coefficient of thermal expansion
$\delta_{h}, \delta_{h i}$	axial deflection of membrone edge; edge deflection caused by initial pretension
ε	axiol stroin
$Y_{x y}$	shear strain in $x-y$ plane
\bar{r}	density
λ, λ_{0}	dimensional ratios
$\lambda_{1}, \lambda_{2}, \lambda_{3}$	stiffness ratios in orthotrovic plate onalysis
v_{1}, v_{1}, v_{2}	Poisson's ratic for isotropic materials; Poisson's ratio tor materials 1 and 2
$\begin{aligned} & v_{12}, v_{21}, v_{0} \\ & v_{r} \end{aligned}$	Poisson's ratio for stress in materials directions 1 and 2 for rectangular plates and circumferential and radial directions for circular plates, orthotropic materials
$\phi_{n}, \phi_{1}, \phi_{2}$	coefficients for inodes n in equatior, for matural frequency
ψ_{k}	angle of principal axis of materials stiffness with plate axis, x, for layer k
ρ	mass
0	normal stress
σ_{0}	oxial stress
σ_{b}	bending stress
$\sigma_{e}, \sigma_{c}, \sigma_{d}$	mayimum axial (in-plane) stress at edge, center, and diagonal of rectangular plate; maximum axicl stress at edge and at center of circular mernbrane
${ }^{0} E,{ }^{0} C^{\prime}{ }^{\circ} \mathrm{D}$	maximum combined axial and bending stress at edge, center, and aiagonal of rectangular plate
$\sigma_{e b}, \sigma_{c b}$	maximum bending stress at edge and center of rectangulor plate

$\sigma_{m r}, \sigma_{m \theta}$	maximum axial (in-plane) stress in radial and circumferential directions in circular plate
${ }^{\sigma} \mathrm{Tr}^{\prime},{ }^{\prime} \mathrm{TO}$	maximum total stress in radial and circumferential directions in circular plate
$\sigma_{u a}{ }^{\prime} \sigma_{u b}$	ultimate axial and bending strengths for use in design (i.e., reduced for effects of time, environmental degradation and materials variation)
σ_{x}, σ_{y}	stress in directions x and y
$\sigma_{x 0^{\prime}} \sigma^{\prime \prime}$	stress in x and y directions due to axial force only
$\sigma_{x b}, \sigma_{y b}$	stress in x and y directions due to bending only; also used for inplane bending stress where indicated in text
$\sigma_{x c}, \sigma_{r c}, \sigma_{\mathrm{nc}}$	critical buckling stress in \times direction on rectangular plate, in radial direction on circular plate, as shown in Fig. 6-42 on triangular plates
$\sigma_{x c c}, \sigma_{x c y}$	critical buckling stress corrected for biaxial stress, for creep
$\sigma_{x c}^{o}$	critical buckling axial stress without shear stress
$\sigma_{x b c}^{o}$	critical buckling in plone bending stress without shear stress
$\sigma_{x e}$	effective elastic axial stress in \times direction - Fig. 6-34
$\sigma_{x 1}$	ultimate stress in \times direction
${ }^{\text {L LT }}$	reduction factor tor creep buckling
τ	shear siress
${ }^{\text {x }}$ y	sheor stress in $x-y$ plone
$\tau_{\text {xyc }}$	critical buckling shear stress in $x-y$ plane, rectangular plate
$\tau_{x y c}^{0}$	critical buckling shear stress without normal stress
$\tau_{x z}{ }^{\prime} \tau_{y z}$	shear stress in z direction
0	angle of stress with \times axis
θ_{e}	rotation at edge of plate

6. FLAT PLATES AND MEABRANES

F. J. Heger

6.1 INTRODUCTION

Plastics structural components frequently contain elements that may be idealized as thin flat plates or membranes subject to loads perperidicular to their surfaces and to stress resultants within their planes. In a few cases, the entire component is a thin plate such as acrylic plastic window panels in separate support frames. In most cases, however, the thin plate element is a portion of a molded or formed unit that contains integral side panels, edge ribs, intermediate ribs, and the like. A very great variety of different configurations is pass:ble.

The first step in the structural design process described in Chopter 4 is structural idealization to facilitate preliminary analysis and proportioning of a component or its key parts. Frequently, such ideolization involves consideration of the indivitual flat plare elements that together comprise a structural component. Obvicusly, approximations of slape, edge support, and constants that define materials behavior are required.

The purpose of this Chapter is to ossist the designer to analyze and proportion individual flat plate or membrane elements based on iood, shape, edge support, and materials characteristics that commonly occur in designing plastics structures. Plate structural behovior is described and methods ore presented for analyzing and designing plate components. Many design aids are presented for practical defermination of maximum stresses and deflections and for evaluating bucklirg strength under in-plane compression. It is not the purpose of the Chopter to present the underlying theory. This is orailable in many of the source references given herein and in Chapter 4.

When design problems require more comprehensive solutions, solutions involving variables in shape of plate, load distribution, edge support conditions or variations in materials constants, or consideration of interactive effects between contiguous elements that connot be bracketed by available plaie ideolizations,
computer solutions are readily available to determine stresses and buckling strenyth. These usually involve either linear or non-linear finite element analysis. In recent years, finite element analysis methods and prograns have become practical tools; frequently, these methods can be used in day-to-day design situations that were heretofore considered beyond the realm of practical solution. Sirce the details of such onalyses are beyond the scope of this Manual, their use is not covered in this Chapter.

Predaminant considerations in the structural behovior of thin flat plates are bending and deflection under lateral loads (norinal to their plane), in-plane diaphragn sitresses cuused by edge loading froin adjacent components, and stability (resistance to buckling) under various in-plane cornpression stresses. These topics are the principal subjects of this Chapter. In addi:ion, stress analysis of unidirectional, rectangular, and circular flat membranes is covered briefly. Such elements are too thin and flexible to resist load in bending, but if proper edge support is provided, they can support load by tensile membrane stresses that develop when they deflect. Finally, natural vibration frecpencies of plates and membranes are briefly discussed.

Definition of Thin Plate

This Chopter is devoted to thin plates, defined as flat structures of uniform thickness whose minimum span dimension exceeds 4 times the plate thickness, ond whose minimum dimension perpendicular to this spon is also at least 4 times thickness.

Limitations of Material Choracteristics

Miaterial characteristics may be uniform through the thickness (homogeneous) or they may be layeres in a balancea symmetrical distribution of layers with respect to the midplane. They may be uniform in all directions (planar isotropic), or they may vary with respect to two principal perpendicular directions (planar orthotropic). In all cases, materials are assumed to behave elastically, or visco-elastically, as described in Chapters 2 and 3.

Design Considerations for Plastics

Plastic plates frequently have characteristics of behavior that offer opportunities for design optirnization not cvailoble with conventional inetals. Also, nonconventioral asperts of their behovior often must be considered in design to avoid premature failure or unsatisfactory performance.

The following characteristics of plastics deserve special consideration when designing plate structures or components:

- Time-temperature dependent effects result in significant reductions in stiffness and in strength under long-term load ond/or elevated temperature, as explained in Chapters 2 and 3.
- Thin plates often deflect in excess of half their thickness and resist a signiticant portion of applied lateral loads by developing in-plane or inembrane stress resultants. This requires consideration of non-linear or large deflection behavior. This is particularly significant, and usually beteficial, in plates that develop restraint of in-plane edge translation.
- Stiffness and strength properties sometimes vary with direction of plate axes. Such directional characteristics of a plate material require analyses of stresses and stability that take these onisotropic propettics irito account. A much simplified anisotropic analysis, termed "specially orthotropic" plate anulysis, is used for the following cornmonly occurring special materials and stress conditions:
(1) Thin plate material has constant elastic or viscoelastic properties through its thickness, or is made up of distinct layers of moterials of constant thickness and properties,
(2) elastic properties of the constant thickness plate, or its loyers, have maximum and minimum values coinciding with the two orthogonal (perpendicular) axes of symmetry of the plate,
(3) the plate oxes of symmetry are also the principal oxes of stress.

Special orthotropic plate theory is sometimes used, even where its limitations are not strictly met, as a practical approximation of the expected behavior of anisotropic plastics.

- Composites, wnich are mixtures of resin binder and fibrous reinforcement, have unique characteristics that, in the present state of the art, usually cannot be determined quantitatively from the individual characteristics of the resin and fiber components. In practical design, the composite is considered as a unique material with its own elastic and strength properties.
- Some layered composites are fabricated frorr plies having particular directional characteristics which are usually orthotropic. Analysis of plate stresses and deflectior.: with such materials typically requires a laminated plate theory. Sorrai nes, however, behavior of layered materials is approximated using averoce elastic properties determined from testing the overall laminate. in this approach, "average stresses" are calculated from conventional "uniform thickness" plate theory, and these are compared to "average strengths," determined from test loads and average "uniform thickness" section properties.
- Most plastics and composites do not exhibit the ductile stress-strain behavior prior to rupture which is characteristic of inetals and properly designed reinforced concrete. Because of their relaiively low modulus of elasticity, and their usually high ratio of strength to modulus, these plastics and composites often develop relatively high strains af failure; however, they do not enjoy the beneficial redistribution of stress concentrations and other indeterminate effects that are characteristic of ductile metal structures. This non-ductile behavior requires accurate anolysis of stresses resulting from restraints and environmental effects that are often ignored with metal structures. Thus, it is frequently necessary to use more accurate inethods to analyze effects of loods, restraints, moisture and temperature gradients, and similar stress-producing phenomena when designing plastic and composite plate components, compared to design practice with inelal plotes.

In many practical design situations involving plate components, extensions or modification of conventional methods for analysis and design of inetal plates are required to account for the above characteristics of plastics and composiies. Significant results of the extended and modified theories are presented in the following sections to assist the designer of plastics plates to understand their behavior and to develop rational plate designs for commonly occurring component types and arrangements. Other results, particularly the equations for plate buckling, are presented in this Chapter for further use in Chapter 7 covering behavior and design of assemblies of this plates that are used as beams, columns, and ribbed flat panels.

Parameters Which Define Structural Performance

Generally, the design of plate components involves consideration of the following parameters which define structural performance:

1. Deflections, bending moment, shear and in-plane axial stress resultants, and support reactions in katerally looded piates. Laterally looded plates are plates with various strapes, edge support and restraint conditions, and load distributions, with load acting perpendicular to the plane of the
plate. Bending moments cause flexural stresses and strains that are assumed to vary linearly arross the plate thickness for plates of a homogeneous material. For plates of non-homogeneous materials, such as laminated plates, strains are assumed to vary linearly across the thickness and stresses are related to strains by elastic stiffness constants for each layer of materials. In-plane axial stress resultants (membrane stresses) are significant in loterally loaded plates whose edges cre held against inplane translation, whenever deflections exceed obout halt the plate thickness. They must be added (algebraically) to flexural stresses. Transverse shear stresses can be significant in materials with low shear strength, in layered materials with low interlaminar strength, and in low strength "core" layers which are sandwiched between much stiffer facing materials.
2. in-plane normal and shear stresses in diaphragm plates. Diaphragm plates are plates with various shapes, and edge suppori conditions which are loaded within their own plane. These plates frequently transmit their loads to supports by in-plane bending and shear, thus, they behave as narrow deep bearns. Frequently, their proportions of width-to-spon require consideration of shear, bending, and transverse sirains using methods of analysis termed "deep beam theory".
3. Buckling resistance of plates subject to in-planf compressive stress. Stress distributions of greatest interest in rectangular plates include uniaxially unif ormly compressed plates, uniaxially compressed plates with linearly varying stress, diagonally compressed plates (res ltiing from inplane shear), and biaxially uniformly compressed plates. The first three cases represent:

- compressed flanges of beams, columns, and panels;
- web bendiny in beams;
- web shear in bearrs or facing shear in ponels.

4. Natural frequency of free vibration. Dynamically applied loads cause responses which are greatly influenced by the nutural frequency of free vibration of pletes. Generally, the lowest mode is of greatest interest, but knowledge of higher modes is sometimes also necessary to evaluate dynamic behavior.

In order to evaluate the above types of structural periorinance, it is necessary to defermine plate stiffness. Stiffness is a function of the materials properties: modulus of elusticity and Poisson's ratio, the materials directional characteristics, and the material voriaticn through thickness (homogeneous or layered construction). It is also related to various geometrical and support paraneters. Stiffness relations for plate cross sections are presented in the next Section for plates of homogeneous materials and in Section 6.7 for laminater plates.

6.2 FL.. 1 TE CROSS SECTION STIFFNESS

Plate cooss section stifficss is a function of moterials properties and cross sectimal quonetry. In the equations presentea in this Chopter, moteriuls propertias are sssmied to be elnstic and to be either isotropic or orthotropic. These terms are ine... in Section 2.5, (hapter 2, with further explanations in Section 3.5 and Tits: 3-4 ef Chavter 3 and Section 4.9 of Chapter 4.

Elastic constants define the relationship oi stress to strain in a material that exhibits elastic aehavior. Pseudo-elastic constants ore used to relote stress and strain approxirriately for certain defined conditions with viscoelastic materials which exhivit time-depenjent relationsihips between stress and strain. See Sections 3.3 and 3.5 for a discussion of the materials clastic stiffness constant: modulus of elasticity, L_{-}, and Foisson's ratio, v. Methods for estinoting elostic constants for viscoelastic plastics materials subject to vorious durations of loading are also given in these Sections. Elastic conctants for short-term loading of some representative plastics materials are given in Section I.S, Table 1-1, and Section 1.9, Tables 1-5 through 1-9.

Stiffness Constants for Isotropic Plates

Stiffness constants relate load th deformation. The axial stiffness constant, A, is a mecsure of the axial force required to pioduce a unit axial ceformation in a filate of unit length. The tlexural stiffiness constont, D, is a meusure of the lateral force required to produce a unit bending deflection on a plate of unit span. These stiffness constants are determined from elastic constants that define stress-strain behavior and cross sectional properties that relate force to stress.

Stres-strain relationships must account for bi-directional interactions when thin plates are stressed. For plate structures, stressed in direction x, stiffness is increased, compared to bars of similar sectional properties, because of the restraint of Poisson's deformation in the pernendicular direction y. This behavior requires stiffness and stress-strain equations for plates, that differ from
equations for stiffness of narrow beams. The following stress-strain relations apply for isotropic homogeneous plates:

$$
\begin{align*}
& a_{x}=\frac{E}{1-v^{2}} e_{x}+\frac{v E}{1-v^{2}} e_{y} \\
& v_{y}=\frac{v E}{1-v^{2}} e_{x}+\frac{E}{1-v^{2}} e_{y} \\
& v_{x y}=G_{x y}=\frac{E}{2(1+v)^{\gamma}} \gamma_{x y}
\end{align*}
$$

Eq. 6.1 b

Eq. $6.1 c$

Thus, for isotropic materials, two basic independent materials constants, E, modulus of elasticity, and ν, Poisson's ratio, define stress-strain relations.

Based on the above stress-strain relations, the materials and cross sectional stiffness properties are defined in Table 6-1, part a, for plates of isotropic materiols with the same cross section in all direct:ons. The stiffness properties are given for both the more general case of non-homogeneous cross sections for later use in Chapter 8 on sandwich plates, and for the case of plates having uniform homogeneous thickness treated in this Chapter. Stiffness properties specifically organized for use with layered or laminated plates are presented in Section 6.7 of this Chapter.

Stiffness Constants for Specially Orthotropic Plates

As defined previously, the term orthotropic refers to plates whose elustic moterial constants hove maxirnum and minimum values in two perpendicular directions. The orthotropic plates treated here are further limited to the special case where the two principal axes of materials properties, 1 and 2 , coincide with the two principal plate axes, x and y, as shown in Fig. 6-1. Thase plates are termed herein "specially or thotropic."

Toble 6-1
Stifiness Properfies of botropic and Specially Orthotropic Plate Cross Sections (6.1, 6.2)

Stiffnese Properiy
a. Planor motrople plates

In-plane axial,	ス		$\frac{E \bar{a}}{\left(1-v^{2}\right)}$	$\frac{E_{\dagger}}{\left(1-v^{2}\right)}$	6.20
In-plone strear,	$A_{x y}$	$=$	$G \bar{O}=\frac{E \bar{a}}{2(1+V)}$	$G t=\frac{E t}{2(1+V)}$	6.2b
Tronsverse bending,	D	=	$\frac{E 1}{\left(1-v^{2}\right)}$	$\frac{E v^{3}}{12\left(1-v^{2}\right)}$	6.3a
Tronsverse twisting,	D。	\%	$\frac{E i}{\left(1-v^{2}\right)}$	$\frac{E t^{3}}{12\left(1-v^{2}\right)}$	6.36

b. Speciolly arthotrople platea

m-plane axiol,	A_{11}	$\frac{E_{11} \bar{a}_{x}}{T-v_{12} v_{21}}$	$\sqrt{-} \frac{E_{11}{ }^{\dagger}}{v_{12} v_{21}}$	6.10
In-plane axial,	${ }^{2} 2$	$\frac{E_{22}{ }^{\circ} y}{1-v_{12}{ }^{\prime \prime} 21}$	$\frac{E_{22}{ }^{\dagger}}{\Gamma=v_{12} v_{21}}$	6.50
In-plone axial,	$A_{12}=A_{21}$	$\frac{v_{21} E_{11} \bar{a}_{x}}{\Gamma_{12} v_{21}}$	$\frac{v_{21} E_{11}{ }^{\dagger}}{1-v_{12} v_{21}}$	4.58
In-plane axiol,	A_{12}^{\prime}	$G_{12} \sqrt{\bar{a}_{x} \vec{a}_{y}}$	$G_{12}{ }^{1}$	6.5d
Fiesurol,	D_{11}	$\frac{E_{11}^{\prime} x}{\Gamma-v_{12} v_{21}}$	$\frac{E_{11} t^{3}}{T 2\left(1-v_{12} v_{21}\right.}$	6.60
Finamol,	D_{2}	$\therefore \quad \frac{E_{22}^{\prime} y_{y}}{\Gamma-v_{12} v_{21}}$	$\frac{E_{22} t^{3}}{12\left(1-v_{12} v_{21}\right)}$	6.60
Flexamal,	$D_{12}=D_{21}$	$\frac{v_{21} E_{11}^{\prime} x}{1-v_{12} v_{21}}$	$\frac{v_{21} E_{11} 1^{3}}{12\left(1-v_{12} v_{21}\right)}$	6.60
Fiexamel,	0_{12}^{\prime}	$=G_{12} \sqrt{I_{x} l_{y}}$	$\frac{G_{12} i^{3}}{12}$	6.6d

The iwisting poramptar for orthotropic plotes iss

$$
D_{0}=D_{12}+20_{12}^{\circ}
$$

Fig. 6-1. ORIENTATION OF AXES OF PRINCIPAL STRESS
AND PRINCIPAL MATERIALS STHFNESS
PROPERTIES FOR ORTHOTROPIC PLATES

The elastic stress-strain relations for "specially or thotropic" plates are (6.2):

$$
\begin{array}{ll}
\sigma_{x}=\frac{E_{11} e_{x}}{1-v_{12} v_{21}}+\frac{v_{12} E_{22} e_{y}}{1-v_{12} v_{21}} & \text { Eq6.4d } \tag{Eq 6.40}\\
\sigma_{y}=\frac{v_{21} E_{11} e_{x}}{1-v_{12} v_{21}}+\frac{E_{22} e_{y}}{1-v_{12} v_{21}} & \text { Eq. 6.4b } \\
{ }^{\top}{ }_{x y}=G_{12} \gamma_{x y} & \text { Eq. 6.4c } \\
\text { also } v_{12}=v_{21} \frac{E_{11}}{E_{22}} & \text { Eq. 6.4d }
\end{array}
$$

Eqs. 6.4 show that for "specially orthotropic" plates, four basic independent materials constants: $\mathrm{E}_{11}, \mathrm{E}_{22}$, modeli of elasticity in the two principal directions of orthotropicity, G_{12}, modulus of in-plane sheor rigidity, and v_{12}, Poisson's ratio for stress in direction 1 , or ${ }^{2} 21$, Poisson's ratio for stress in direction 2, define stress-strain relations. The two Poisson's ratios are related os given by Eq. 6.4c.

Based on the above stress-strain relations, the in-plane and flexural stiftress constants for specially urthotropic piates are defined in lable 6-1, Part b.

Some thin plates are inode up of several layers of mnterials hoving different elastic and directional properties. This is characteristic of many composites. Overall flexural stiftiesses may be isotropic, quasi-isotropic, or "sperially orthotropic," and riay readily be determined using the elostic theory of laminated plates. See Section 6.7 in this Chapter for moditicotions to the above stiffness relations to cover the cases of isatropic and balanced symmetrical specially orthotropic laminated plates. Analysis of such plates is facilitated if stiffness relations are expressed in matrix notation.

Stiffness Constunts for Generally Orthotropic Plates

In the special orthotropic plate case given above, the princifal orthotropic axes of the material, 1 and 2, coincide with the prinsipal plate axes, x and y (Fig. 6-1). Stiffness coefficients $D_{i j}$ and $A_{i j}$ are related to the principal plate axes, x and y, as given in Equations 6.4 and 6.5. See Appendix B in (6.1) for similar stiffness relations for the more general orthotropic case, where the principal axes of the moterial stifiness do not coincide with the plate axes. This reference also covers the case of laminated orthotropic plates that are fabricated fiom layers whose principal axes of inaterials stiffness, I and 2 , are at an angle with the plate axes, x and y.

Application of Stiffiness Refaticns

In-plane axial stiffenss constants are required for determining:

- deflections, stress resultants, and buckling resistance of plates with inplane restraint of edge translation, where "large deflections" develop membrane action;
- stress resultants in "in-plane" loaded or thotropic plates;
- buckling resistonce of orthotropi : plates.

Flexural stiffness constants are required for determining:

- deflections of plates,
- stress resultants in plates with in-plane restraint of edge translation, where "large deflections" develop membrane action,
- stress resiltants in laterally loaded or thotropi:- plotes,
- buckling resistance of plates subject to in-plane compression.

Effect of Elastic Corstonts on Flexural Behovior

Both E and v are important parameters in determining deflection of isotropic plates. Obviously they both influence a!! aspects of the behovior of orthotropic plates.

Bending moments and flexurul siresses due to lateral loads on isotropic plates onalyzed with small deflection theory do not vary with E, but they do vary with Poisson's ratio, V. "Small deflection" isotropic plate theory solutions available in the literature for various shapes and load distributions are given tor specific values of v. Significant changes in stress may occur for other values of v. Some approximations for estimoting the effect of variations in v ore given in the next Section.

6.3 ISOTROPIC PLATES UNDER LATERAL LOAD

Plate elements frequently must be designed for resistance to lateral load. Plate -hickness must be proportioned to prov:de the necessary load resistance without excessive stress, strain, or deflection. Plate stresses, strength and deflection depend upon the following principal variables:

- Materials properties: stress or strain limits, elastic constants, directional characteristics (isotropic or orthotropic included in this Chapter), layered construction.
- Thickness. Only "thin" plates of uniform thickness are considered in this Chapter.
- In-plane shape and dimensions between edges.
- Arrangement and location of supporis.
- Restraints provided at supports: restraint of edge translction norınal to plane of plate, edge rotation, and edge translation in plane of plate.
- Intensity and distribution of lateral loading.
- In-plane loads: intensity and whether tension or compression.
- Non-load effects: thermal stiesses, stresses resslting from shrinkage and thermal and moisture gradients, stress caused by support deflections, built-in stresses caused by thermal effects in manufacture of laninated plates.

Structural Behavior

Lateral loods produce both flexural and membrane stresses in thin plates. These effects are shown schematically in Fig. 6-2. Membrane stresses become significant when edges are restrained from translating in the plane of the plate and when maximum deflection exceeds about half the thickness of the plate. Membrane stresses arise even when edges are not externally restrained from translating in the plane of the plate, but these do not become significant until the plate deflecis enough so that it begins to behave like a shallow shell.

Solutions that take into occount membrane stresses are often termed "large deflection" solutions. Large deflection effects frequently are significant in -

Fig. 6-2 LATERALLY LGADED PLATES AND MEMBRANES WITH TYPICAL DEALIIED LOAD AND SUPPORT ARRANGEMENTS
plastic plates because elastic moduli of plastics and many composites are much lower than elastic moduli of metals. Thus, deflections tend to be much larger in plastic plates than in comparable metal plates, and very often with plastics, deflection exceeds half the thickness. Furthermore, the membrane stresses that result froin large deflection behavior usually provide a very berreficial stiffening of the plate, especially where the plate edges are held ogainst in-plane translation. In this case, the plate resistance to effects of lateral load is nonlinear; increases in load produce beneficial changes in geometry with increasing plate deflection so that stresses increase at a slower rate than load. In view of this, it is often desirable to employ "large deflection theory" in designing plastics plates.

Available Sohutions for Isntropic Plates

Closed form solutions for stresses and deflections in plates under lateral load have been developed for a number of reyular shopes and loadings. The stote of the ort is very well presented in (6.2). Most solutions are obtained for the simpler "small deflection theory" in which membrane resistance is neglected. "Large deflection" solutions are ulso giten in (6.2) and the conditions which require considerotion of the more complex "large deflection theory" are discussed.

Approximate analysis methods based on various techniques of numerical analysis have frequently been employed to obtain stresses and deflections in plates with a large variety of shapes, edge conditions, and load distributions. Older methods, such as finite differences and various grid analogies, and new finite element computer anayses have been widely used. Formulas and coefficients for deflections and stress resultants for a large number of different plate shapes, edge support conditions, and lateral load distributions are available in various published reference books.

Tabulations of solutions for plate bending mornents and deflections for various conditions of load on rectangular and/or circular plates with several conditions of edge restroint are given in (6.2), (6.3), (6.4), (6.5), (6.6), (6.21), (6.22), (6.23), (6.24), (6.25), (6.26) and (6.27). See (6.3) for triangular plate salutions and (6.23) for skew plate solutions. In some cases, the tabulated solutions - (6.2), (6.3),
(6.4), (6.5), (6.6), (6.21), (6.27) - include the effect of geometry dinnges associated with targe deflections. Only a few of the tabulated solutions also include coefiicients for sheor imidor remetions. Solutions for some of the most cammon and signiticulat duses are given buter in this Section.

For the most part, tabulated solutions, based on small deflection theory, provide coefficients for determining maximum bending moment, shear, support reaction and corner reaction of a particular type or direction, ond deflection at a particular location. The "small deflection" solutions typically provide the following relotions between the above structural parameters and shape of plate, load, span dirrension, and cross sectional stiffness:

$$
\begin{align*}
& M=k_{1} q b^{2} \\
& Q=k_{2} q b \\
& V=k_{3} q b \tag{Eqs. 6.7}\\
& A=k_{14} q b^{2} \\
& w=k_{5} \frac{q b^{4}}{D}
\end{align*}
$$

In some cases, flexural stresses are directly presented by dividing bending moment by section modulus. See Eq. 6.10.

The constants, k, depend on the shape of the plate and the location and direction of a structural parameter such as bending moment. The span, b, usually is the smaller span diniension for rectangular flates, and the radius or diameter for circular plates. The lood, q, is usually uniformly distributed lateral pressure. However, some sobulated solutions cover concentrated loads or hydrostatic pressure distribution. Typical solutions for moments and stress resultonts are usually volid only for a specific value of Poissor.'s ratio, U. The cross section flexural stiffness, U, is needed for deflection calculations.

Solutions which include large deflection behovior require more complex relationships of variables as is illustrated Icter in this Section.

Adjustments in Tabular Solutions for Different Poisson's Ratios

Solutions given in typical tables for bending moments include Poissons Ratio, v, as a dependent variable. Tabulated bending moment coefficients are valid only for particular values of v. For isotropic materials, adjustments can be rnade to moments (small deflection theory) given for a particular Poisson's Ratio, v_{j}, to obtain moments for a material with another Poisson's ratio, v_{2}, with the following equations (6.3):

$$
\begin{aligned}
& \left(m_{x}\right)_{2}=\frac{1}{1-v_{1}^{2}}\left[\left(1-v_{1} v_{2}\right)\left(m_{x}\right)_{1}+\left(v_{2}-v_{1}\right)\left(m_{y}\right)_{1}\right] \quad \text { Eq. } 6.8 \mathrm{a} \\
& \left(M_{y}\right)_{2}=\frac{1}{1-v_{1}}\left[\left(v_{2}-v_{1}\right)\left(m_{x}\right)_{1}+\left(1-v_{1} v_{2}\right)\left(m_{y}\right)_{1}\right] \quad \text { Eq. } 6.8 \mathrm{~b}
\end{aligned}
$$

where the subscript \vdots denotes values obtained in a tabulated solution for Poisson's Ratio, v_{j}, and the subscript 2 denotes adjusted values for a nontabulated Poisson's Ratio, \cup_{2} •

Adjustment of deflection coefficients (small deflection theory) are not required with variations in v. See (6.3) for effects of variations in v on edge reactions, correr reactions, and twist.

Deflections and Stresses for Common Lood Cases

Rectangular pletes: Nomenclature, direction, and locatio's for maximum plate stresses shown in later figures are given in Fig. 6-3.

Midspan deflections in thin flat rectangular isotropic plates under uniformly distributed normal (iateral) pressure, with seve:al edge suppori conditions, are given in Figs. 6-4, 6-5, and 6-10 (6.4).

Maximum stresses in thin flat rectangular isotropic plates with uniformly distributed norinal (lateral) pressure, with several edge support conditions, are given infigs. 6-6 to 6-10 (6.4).

Unlooded Surfoce Moximum Tofol (Axial 8 Bending) Stress

Circula Plates

Looded Surfoce -
Total (Axial \& Bending) Stress

Untooded Surfoce Total (Axial \& Bending) Siress

Rectangulor Plates o>b

Fig. 6-3 NOTATION FOR MAXIMUM TOTAL STRESSES AND IN-PLANE STRESSES IN PLATE SOLUTIONS GIVEN N FIGS. 6-4 TO 6-10, 6-13 TO G-14

NOTE: These figures are odepted from graphs in "Enuineering Sciences Dota, Aeroncutical Series, Structures Sub-Series Volume 5" (6A) by Permission of "Engineering Sciences Dofo Unit Lith" London.

Fig. 6-4 CENTER DEFLECTIONS OF UNIFORMLY LOADED ISOTROPIC RECTANGULAR PLATES WITH EDGES FREE TO ROTATE, AND EITHER FREE TO TRANSLATE OR HELD FROM TRANSLATION N PLANE OF PLATE (64)

Fig. 6-5 CENTER DEFLECTIONS IN UNFORMLY LOADED ISOTROPIC RECTANGULAR PLATE WITH EDGES FIXED AGAINSI ROTATION AND EITHER FREE 10 TRANSLATE OR HELD FROM TT:ANSLATHON IN PLANE OF PLATE (6A)

Fig. 6-6(a) MAXIMUM STRESSES IN UNFORMLY LOADED ISOTROPIC RECTANGULAR PLATES WITH EDGES FREE TO ROTATE AND FREE TO TRANSLATE IN PLANE OF PLATE (6.4)

Fig. 6-6(b) MAXIMUM COMPRESSION STRESSES W UNF ORMLY LOADED ISOTROPIC RECTANGULAR PLATES WITH EDGES FREE TO ROTATE AND FREE TO TRANSLATE IN PLANE OF PLATE (6.A)

Fig. 6-7 MAXIMUM STRESSES W UNFORMLY LOADED ISOTROPIC RECTANGULAR PLATES WITH EDGES FIXED AGAINST ROTATION AND FREE TO IRANSLATE IN PLANE OF PLATE (6,4)

Fig 6-8 MAXIMUM STRESSES W UNWORMLY LOADED ISOTROFXC RECTANGULAR PLATES WITH EDGES FREE TO ROTATE AND HELD FROM TRANSLATION W PL ANE OF PLATE (6.4)

Fig. 6-9 MAXIMMM STRESSES \mathbb{N} UNF ORMLY LOADED ISOTROPIC RECTANGULAR PLATES WITH EDGE FIXED ATJAINST ROTATION AND HELD FROM TRANSLATION IN PLANE OF PLATE (6A)

Fig. ö-10 MAXIMUM DEFLECTIONS AND STRESSES \mathbb{N} SMALL DEFLECTION FANGE OF UNFORMLY LOADED ISOTROPKC RECTANGULAR PLATES WITH EDGES EITHER FREE TO RUTATE OR FIXED AGANST ROTATION

NOTE: Effect of Restraint of Translation in Plone of Plote is Nogligitle in Small Deflection Range (6,4)

These are cases of frequent interest to designers of plastics components. The stresses and deflections given in Figs. 6-4 to $6-9$ for various values of $\mathrm{o} / \mathrm{h}, \mathrm{b} / \mathrm{t}$, v, E, and q are obtained from solutions based on "large deflection" plate theory (6.4). The thin plate theory, which is their basis, is valid for b/t greater than 20.

Stresses giver, in Figs. 6-6 to 6-9 are maximum total combined bending and direct stresses in the central region of the plate, σ_{a}, and direct inembrane stresses in the middle surface, ${ }^{9}{ }_{c y}$, as explained in Fig. 6-3. Thus, the noximum bending stress in the central region of the plare is:

$$
\begin{equation*}
\sigma_{\text {cby }}=\left(\sigma_{C y}-o_{c y}\right) \tag{Eq. 6.9}
\end{equation*}
$$

and the maximum bendir. 3 moment per unit width in the central region of the plate is:

$$
\begin{equation*}
i_{c y}=\frac{u_{c b y} t^{2}}{6} \tag{Eg. 6.10}
\end{equation*}
$$

When edges are held against in-plane translation, the maximum in-plane edge reaction per unit width at the center of the long edge is:

$$
\begin{equation*}
N_{e y}=v_{e y} \dagger \tag{Eq. 6.11}
\end{equation*}
$$

For plates which are fixed ogainst rotation along all fcur edges, the maximum stress in the edge region, ${ }^{\text {E }}$ Ey, and the direct membrane stress in the middle surface, $v_{\text {ey }}$, are given in Figs. 6-7 and 6-9. The maximum bending stress in the edge region is:

$$
\begin{equation*}
\sigma_{e b y}=\left(\sigma_{E y}-\sigma_{e y}\right) \tag{Eq. 6.12}
\end{equation*}
$$

and the moximum bending moment per unit width in the edge region is:

$$
\begin{equation*}
M_{e y}=\frac{a_{e b y} t^{?}}{6} \tag{Eq. 6.13}
\end{equation*}
$$

For cases where deflections are small (less thon about $0.5+$ for plates which have in-plane edge restraint), and thus, where the "small deflection theory," neglect-
ing membrane effects, provides sufficient occuracy, maximum deflections and stresses may be obtained from Fig. ó-l0 (6.4). In this solution, there are no direct membrane stresses and stresses given in the rigure are bending siresses. The maximum Lending moments, M_{y}, may be obtained using Equations 6.10 or 6.13.

Maximum shear stress res:Itants, Q_{a} and Q_{b}, for uniformly loaded simply supported plates analyzed by sinall deflection theory, are given in Fig. 6-11. Naximum edge reactions normal to the plate, V_{a} and V_{b}, are also given in Fig. 6-11. Q_{a} and V_{a} are the meximum forces per unit length resulting trom lood sparning in the shorter direction, and occur next to the center of the longer edge. Q_{b} and V_{b} are the maximum forces per unit length resulting from .and spanning in the longer direction and occur next to the center of the shorter edge.

Because of twisting effects along the edges of the rectangular plates, the edge reactions do not equal the shears and the corners tend to lift. This lifting tendency results in concentrated uplift reactions, R, which are also given in $F i g$. 6.!1.

Fig. 6-11. MAXIMUM SHEAR STRESS RESULTANTS, Q_{0} AND Q_{b}, MAXIMUM REACTIONS PER UNTT LENGTH OF SIDE SUPPORT, V_{d} AND V_{b}, AND CORNER REACTIONS, R, N UNFORMLY LOADED, SIMPLY SUPPORTED RECTANGULAR PLATES (6.2)

Approximate total edge reactions may be estimated as follows:

For edge b, the shorter edge, distribution is approximately parabolic over the length of the edge, and:

$$
\begin{equation*}
\Sigma V_{b}=0.7 V_{b} b \tag{Eq. 6.14}
\end{equation*}
$$

For edge a, the longer enge, distribution is ussumed parabolic up to a length $b / 2$ from each end and uniform in the central region having a length of ($u-b$), and:

$$
\begin{equation*}
\Sigma V_{a}=0.7 V_{a} b+V_{a}(a-b)=V_{o}(a-0.3 b) \tag{Eq. 6.15}
\end{equation*}
$$

The total lateral load on the plate must equal:

$$
\begin{equation*}
q a b=2 i V_{b}+2 \sum V_{a}-4 R \tag{Eq. 6.16}
\end{equation*}
$$

For plates in which large deflections are significant, the above method may be used to estimate reactions, although it will slightly overestimate maximum edge reactions and corner reactions. If necessary, a better approximation for maximum edge reactions can be obtained using the approximate method of combining small deflection and pure membrane analyses which is described in Section 6.4.

Examples 6-1 and 6-2 illustrate the use of the design aids provided in this Section to evaluate several typical rectangular plastic plate components. The significance of "large deflection" effects is shown in the examples.

Circular plates: Deflections and stresses in thin flat circular isotropic plates under uniformly distributed normal (lateral) pressure are given in Figs. 6-12 to 614 for cases where edges are free to translate laterally and where edges are held ogainst lateral (in-plane) translation (6.5). These curves include "jarge deflection" effects which are most significant in plates with edges held against lateral trarilation and with higher values of (a / t). See (6.5) for additional curves for intermediate rotational edge restraint. See (6.6) for curves with increased

Example 6-1: Determine the maximum window size that con safely be glazed with o $1 / 4$-inch thick ocrylic plastic panel having a ratio of width to length of 1.5 and subject to a maxirnum uniformiy-distributed wind pressure of 50 psf . Edges are simply-supported in a neoprene gasket. Maximum allowable deflection is 0.5 in. The acrylic moterial is considered to be isotropic, with $E_{0}=400,000$ psi and $v=0.3$. Minimun ultimate flexural strength is 10,000 psi. ${ }^{\circ}$ Maximum allowable flexural stress during short-term wind load is 2,000 psi.* What total locds act on each edge and the corners?

Niaximurri size based on deflection:
$\max \frac{w}{t}=\frac{0.5}{.25}=2.0 ; \quad q=\frac{50}{144}=0.35 \mathrm{psi} ; \quad k_{0}=\frac{1-v^{2}}{.91}=\frac{1-(.3)^{2}}{.91}=1.0$
From Fig. 6-4 for edges free to translate: $\frac{b}{t}\left(k_{0} G\right)^{7 / 4}=2.4$
thus: $\frac{\dot{b}}{25}\left(\frac{1.0 \times 0.35}{400,000}\right)^{y_{4}}=2.40 \quad b=19.6 \mathrm{in}$.

$$
a=1.5 \times 19.6=29.4
$$

Check stress:
$\frac{b}{t}\left(k_{0} \frac{G}{E}\right)^{t^{m}}=2.40$ and from Fiy. 6-6(a): $\frac{{ }^{\circ} C_{y}}{q}\left(\frac{t}{b}\right)^{2}=0.333$;

$$
\sigma_{C y}=0.35 \times 0.333 \times\left(\frac{19.6}{0.25}\right)^{2} ; \sigma_{C_{y}}=716 \mathrm{psi}<2000 \mathrm{psi}
$$

Deflection governs design, allowable plate size is 19.6 in . by 29.4 in .
Edge Reactions: From Fig. 6-1 $1: V_{b}=0.480 \times 0.35 \times 19.6=3.29 \mathrm{lbs} / \mathrm{in}$.
From Eq. 6.14: $\Sigma V_{b}=0.7 \times 3.29 \times 19.6=45.1 \mathrm{lbs}$
$V_{a}=0.486 \times 0.35 \times 19.6=33.3 \mathrm{lbs} / \mathrm{in}$.
From Eq. 6.1 S: $\Sigma V_{a}=3.33(29.4-.3 \times 19.6)=78.3 \mathrm{lbs}$
$R=0.08 \mathrm{~s} \times 0.35 \times 19.6^{2}=11.4 \mathrm{lbs}$
Check: Eq. 6.16: $\quad 0.35 \times 19.6 \times 29.4=201.7 \mathrm{lbs}$;

$$
2 \times 78.3+2 \times 45.1-4 \times 11.4=201.3 \mathrm{lbs}
$$

$$
201.7 \because 201.3
$$

* Design loads, design criterio (suct as safety foctors, load foctors and capacity reduction factors, etc.), and materials properties used in design examples are for illustrative purposes only. The user of this Manual is cautioned to develop his own lizads, criteria and materials properties based on the requirements and conditions of his specific design project.

Example 6.2: Deterınine the maximum opening that can safely be covered with a $1 / 8$-inch thick inat reinforced FRP sheet having o ratio of width to length of 1.5 and subject to a maximum unif ormly distributed wind pressure of 50 psf. F.dges are anchored to a stiff frame with metal screws. The edge detail cari prevent the in-plane translation but does not clamp against edge rotation. ink ximum allowable deflection is 0.5 in . The FRP material is considered to be isotropic, with $E_{0}=1.000,000 \mathrm{ps}$: and $\nu=0.3$. Maxirnum allowable flexural or tensile stress during short-term wind laad is taken as $3000 \mathrm{psi*}$. Determine the maximum total stress and the maximum axial (membrane) and bending stress and maximum bending moment.

Maxinnum size, based on deflection:

$$
\frac{{ }_{c}^{w}}{t}=\frac{0.5}{0.125}=4 \quad \frac{a}{b}=1.5
$$

From Fig. 6-4, for edges held against in-plane translotion:
$\frac{b}{t}\left(k_{0} \frac{q}{E}\right)^{k}=6.35$
$v=0.3 \quad k_{0}=1.0 \quad q=\frac{50}{1 / 14}=0.35 \mathrm{psi}$
$\frac{b}{0.125}\left(\frac{1.0 \times 0.35}{1,000,000}\right)^{k}=6.35$
stress:
$\frac{b}{t}\left(\frac{k_{0.9}}{E}\right)^{k}=6.35 \quad$ and $\frac{a}{b}=1.5$
From Fig. 6-8: $\frac{\sigma_{\text {Cy }}\left(\frac{t}{\mathrm{D}}\right)^{2}}{} \quad=0.038$
Miax. total stress: $\sigma_{\mathrm{Cy}}=0.35 \times 0.038 \times\left(\frac{32.6}{0.125}\right)^{2}=905 \mathrm{psi} \quad 3000 \mathrm{psi}$
Deflection governs design, allowable plate size is 32.6 in . by 48.9 in .
Froin Fig. 6-8: $\frac{\sigma_{c y}}{q} \cdot\left(\frac{t}{5}\right)^{2}=0.023$
Max. membrane stress $-0.023 \times 0.35 \times\left(\frac{32.6}{0.135}\right)^{2}=548 \mathrm{psi}$

Max. required safe fastener lateral strength $=548 \times 1 / 8=68.5 \mathrm{lbs} / \mathrm{in}$.
Note: I psi $=\mathbf{C . 0 0 6 9} \mathrm{MPa} ; 1 \mathrm{in} .=25.4 \mathrm{~mm} ; 1 \mathrm{lbf}: 4.45 \mathrm{~N} ; \mid \mathrm{lbf} / \mathrm{in} .=0.18 \mathrm{~N} / \mathrm{mm}$

* See footnote, Example 6-1, p. 29.

Neter $\operatorname{see}(6.5)$ far estutions for rotational edge restraint between free and fixed, $0<K_{b}<\infty$

Fig. 6-12 CENTER DEFLECTIONS OF UNWFORMLY LOADED ISOTROPIC CRECULAR PLATES WITH DIFFERENT COMBMMATIONS OF EDGE RESTRANNT CONDITIONS (6.5)

Fig. 6-13 MAXIMUM STRESSES IN UNWF ORMLY LOADED ISOTROPIC CRCULAR PLATES WITH EDGE FREE TO TRANSLATE IN PLANE OF PLATE AND EITHER FREE TO ROTATE OR FIXED AGAINST ROTATION (6.5)

Fig. 6-14 MAXIMUM STRESSES W UNWORMLY LOADED ISOTROPIC CRCULAR PLATES WITH EDGE HELD FROM TRANSLATION N PLANE OF PLATE AND EITHER FREE TO ROTATE OR FIXED AGANNST ROTATION (6.5)
occuracy for smaller a/t values and for correction factors for stresses in plates of moderote thickness ($4<a / 1<20$).

Triangular platess Bending moment, deflections and reactions are given in Figs. 6-15 and 6-16 for thin flat isosceies iriangular isotropic plates ($v=0$) under uniformly distributed normal (lateral) pressure with simply supported and rototionally fixed edge conditions, respectively (6.3). These solutions are based on elustic "small deflection" plate theory. Thus, the total stresses equa! the bending stresses, $6 \mathrm{M} / \mathrm{t}^{2}$.

For plates where deflections exceed about one half the plate thickness, and where edges have translational restraint in the plane of the plate, significant membrane stresses orise which reduce bending stresses. In these plates, maximum total stress would be less thon the bending stresses given by the small deflection theory. See Section 6.5 for arl approximate inethod of estimating "large deflection" effects in thin plates with edye restraint in the plone of the plate.

Fig. 6-15 COEFFICIENTS FOR MAXIMUM MOMENTS M, DEFLECTIONS w, AND TOTAL REAC.THONS IN ISOCELES TRIANGULAR ISOTROPIC PLATES UNDER UNF ORMLY DISTRIBUTFD NORMAL PRESSURE WITH SIMPLY SUPPORTED EDGES, BASED ON "SMALL DEFLECTHON FLATE THEORY (6.3)

Fig. 6-16 COEFFICIENTS FOK MAXIMUM MOMENTS M, DEFLECTIONS w, AND TOTAL REACTIONS W ISOCELES TRIANGULAR ISOTROPIC PLATES UNDER UNFORMLY DISTRIBUTED NORMAL PRESSURE WITH ROTATKONALLY FIXED EDGES, BASED ON "SMALL DEFLECTION" PLATE THEORY (6.3)

6. 4 ISOTROPK FLAT MEMBRANES UNDER LATERAL LOAD

Plastics are sometimes used in structural applications where they behave as pure memtranes under iateral load. This behavior is illus rated in Fig. 6-2 in the previous Section. The following equations far moximum deflection and stress in memtranes of various shapes are useful for design of such components. In all the equations given below, the material is isstropic and elastic, bending effects are neglected, and, except where noted otherwise, the membrane is assumed to be initially flat, without slack, but with zero initial pre-tension in the ptane of the membrane. The membrane is loaded by a uniformly distributed lateral pressure, 9

Lang rectangular membrane, deflected to a cylindrical shape, spanning a distance, b, with membrane forces held on two opposite long edges, as shown in Fig. 6-2(b). All the equations given below are valid approximations for rotios of deflection to spon of 5 percent or less. These relations may be obtained using the equotions for cable tension with a sag equal to the deflection. "

Case 1 - Initially flat membrane, without initiol tension or tautness (6.3):

$$
\begin{align*}
& N_{\text {he }}=0.30 \sqrt[3]{\frac{q^{2} b^{2} E_{i}}{\left(1-v^{2}\right)}} \tag{Eq. 6.17}\\
& N_{v e}=0.5 q \mathrm{~b} \tag{Eq. 6.18}
\end{align*}
$$

where $N_{\text {he }}$ and $N_{v e}$ are the in-plane and normal edge reactions per unit length. respectively.

The membrane force in the edge region is obtained from the edge angle, θ_{e} :

$$
\begin{equation*}
\tan \theta_{e}=\frac{N_{\text {ve }}}{N_{\text {he }}} ; \quad N_{e}=\sigma_{e}^{t}=\frac{N_{h e}}{\cos \theta_{e}} \tag{Eq. 6.19}
\end{equation*}
$$

The membrane force of midspan is the same as $N_{h e}$, which is given by Eq. 6.17.

[^1]Deflection at the center of the span is (6.3):

$$
\begin{equation*}
w_{c}=0.41 \mathrm{~b} \sqrt[3]{\frac{\left(1-v^{2}\right) q b}{E+}} \tag{Eq. 6.20}
\end{equation*}
$$

Case 2 - Initially flat membrane, with initial pre-tension, $N_{h i}$. When sog is equated to deflection of a cable with initial tension, $N_{h i}$, plus tension due to loading, $N_{h q}$, the following relation for tension due to lateral loading on a lorig strip of span b is obtained:

$$
\begin{equation*}
N_{h q}=\left[0.20 q b \sqrt{\frac{E t}{1-v^{2}}}-N_{h i} \sqrt{N_{h q}}\right]^{2 / 3} \tag{Eq. 6.21}
\end{equation*}
$$

Eq. 6.21 may be solved by "cut and try" methods for the unknown additional inplane edge membrane force, $N_{h q}$, resulting from the applied load, q. The total in-plane mermbrane force at the edge, Nhe, then, is the initial pre-tension plus the additional force due to applied load:

$$
\begin{equation*}
N_{h e}=N_{h i}+N_{h q} \tag{Eq. 6.22}
\end{equation*}
$$

The normal component of the edge resction, $N_{v e}$, is obiained from Eq. 6.18 and the total membrane force and stress at the edge is given by Eq. 6.19.

The midspon deflection of the pre-tensioned me abrane may be obtained from the additional membrane force due to applied load:

$$
\begin{equation*}
w_{c}=0.61 \mathrm{~b} \sqrt{\frac{N_{h g}\left(1-v^{2}\right)}{E t}} \tag{Eq. 6.23}
\end{equation*}
$$

Axial deformation, or elongation, of the membrane associated with pretension is:

$$
\begin{equation*}
\delta_{h i}=\frac{N_{h i} b}{E t} \tag{Eq. 6.24}
\end{equation*}
$$

Case 3 - Initially sogged membrane, with initial sog, f_{i} (i.e. with initial length of membrane arc greater thon span, $b_{i}>b$), where initial sog is less than about 5 percent of the span, b.

Agoin, using relations between cable tension and sug *, initial sog and difference between initial lengtr of arc and span are approximately related as follows:

$$
\begin{equation*}
\frac{f_{i}}{b}=0.20 \frac{\left(b_{i}-b\right)}{b} \tag{Eq. 6.25}
\end{equation*}
$$

The edge reaction in the plane of the supports is:

$$
\begin{equation*}
N_{\text {he }}=\sqrt[3]{\left(0.625 \phi-5 \frac{f_{i}}{b} N_{h e}\right)^{2} \frac{E t}{\left(1-v^{2}\right)}} \tag{Eq. 6.26}
\end{equation*}
$$

Eq. 6.26 may be solved for ive by "cut and try" methods.

As before, the normal component of the edge reaction, $N_{v e}$, is obtained from Eq. 6.18 and the total membiane force and stress at the edge is given by Eq. 6.19.

The additional midspon deflection, w_{c}, of the initially sagged membrane may be defermined from the meiabrone edge force, $N_{\text {he, }}$ using Eq 6.23 above with $N_{\text {he }}$ substituted for N_{hq}. The total final sag of the membrone is:

$$
\begin{equation*}
f=f_{i}+w_{c} \tag{Eq. 6.27}
\end{equation*}
$$

Example 6.3 illustrates the use of the above method to determine the deflection and stresses in a long rectangular plastic sheet that is assimed to behave as a pure membrane. The membrane is "pretensioned" prior to receiving lateral load. The effect of the durition of the "pretension" lood is evaluated using the methods suggested in Chopter 3.

Rectongular membrone, with membrane forces held on four sides by tensile membrane reactions $N_{h x}$, and $N_{h y}$, as shown in Fig. 6-17, and $v=0.3$ (6.3):

$$
\begin{align*}
& N_{h x}=k_{1} \sqrt[3]{q^{2} b^{2} E t} \tag{Eq. 6.28}\\
& N_{h y}=k_{2} \sqrt[3]{q^{2} b^{i} E t} \\
& w_{c}=k_{3} b \sqrt[3]{\frac{g b}{E t}} \tag{Eq. 6.30}
\end{align*}
$$

Values of k_{1}, k_{2}, arid k_{3} are plotted in Fig. $6-17$ for a range of ratios of a/h.

* See footxote, p. 37.

Example 63: A long PE sheet, 0.1 inch thick, which has the mechonical properties given in Fig. 2-3 (Chapter 3) is suppoited and loaded as shown in the sketch below. This sheet is pretensioned by moving the clamped edges apart by 0.5 'v inches, and fixing them in that location. The lateral lood is a short-term lord applied 14 months $(10,000$ hours) after the initial application of pretension. The temperature does not vary.* Determine the maximum total membrane stress and the maximum deflection of the street. Neglect bending resistonce. Assume $v=0.3$.

Pretension: From Eq. 6.24: $\quad \delta_{h i}=\frac{N_{h i} b}{E t}=\frac{\sigma_{i} b}{E} ; \quad \sigma_{i}=\frac{E \delta_{h i}}{b}$
Initial Pretension: From Fig. 3-3u: $E_{0}=21,600$ psi @time $t_{0}=0$

$$
\sigma_{i}=21,600 \times \frac{0.5}{50}=216 \mathrm{psi}
$$

Check viscoelastic limit: $\varepsilon=\frac{0.5}{50}=.01<.0245$, viscoelastic limit, Fig. 3-3c.
Pretensicri efter relaxation at time 10,000 hours:
From Fig 3-3a: $\quad t_{v}=12,000 \mathrm{psi}$
$\sigma_{10,000}=12,000 \times 0.5 / 500=120 \mathrm{psi}$
$N_{h i}=N_{10,000}=120 \times 0 . i-12 \mathrm{lbs} / \mathrm{in}$.
From Eq. 6.21:

$$
N_{h q}=\left(0.20 \times 0.25 \times 50 \sqrt{\frac{21,600 \times 0.1}{1-.3^{2}}}-12 \sqrt{N_{h q}}\right)^{\frac{2}{3}}=\left(121.8-12 \sqrt{N_{h q}}\right)^{\frac{2}{3}}
$$

Sut and Try Solution:

18.6 17.3
$!7$
$N_{\text {he }}=17.3+12=29.3 \mathrm{lbs} / \mathrm{in} . \quad \tan \theta_{0}=6.25 / 29.3=.2133 ; \theta_{0}=12.0^{\circ}$
$N_{\text {ve }}=.5 \times 0.25 \times 50=6.25 \mathrm{lbs} / \mathrm{in} . \quad N_{e}=29.3 / \cos 12.0^{\circ}=30.0 \mathrm{lbs} / \mathrm{in}$.
$\sigma_{e}=30 \cdot 0 / 0.1=300 \mathrm{psi}$
From Eq. 6.23: $\quad w_{c}=0.61 \times 50 \sqrt{\frac{17.3\left(1-.3^{2}\right)}{21,500 \times 0.1}}=2.6 \mathrm{in}$.
Note: $1 \mathrm{psi}=0.0069 \mathrm{MPa} ;\left|\mathrm{lb} / \mathrm{min}_{\mathrm{L}}=1 \mathrm{~N} / \mathrm{mm} ;\right| \mathrm{in}=.25.4 \mathrm{~nm}$
See footnote, Example 6-1, p. 29.

Fig. 6-17. COEFFICIENTS k_{1}, k_{2}, k_{3}, FOR DETERMINATION OF MAXIMUM FORCES AND DEFLECTIONS IN RECTANGULAR MEMBRANES (6.3)

Example 6.4 illustrates the use of the above equations for determining the safe load capacity of a rectangular membrane supported by a rigid, unmoving frome.

Circular membrane, with membrane force held on outer circumference (6.3):

$$
\begin{align*}
& \sigma_{e}=0.21 \sqrt[3]{\frac{q^{2} E a^{2}}{t^{2}}} \tag{Eq. 6.31}\\
& \sigma_{c}=0.25 \sqrt[3]{\frac{q^{2} E a^{2}}{t^{2}} \frac{(3-v)}{(1-v)}} \tag{Eq. 6.32}
\end{align*}
$$

where σ_{e} and σ_{c} are the rodial tension stresses at the edge and center, respectively. For the circular membrane, the membrane edge reactions are:

$$
\begin{align*}
& N_{e}=\sigma_{e} \dagger \\
& N_{v e}=0.25 q \mathbf{q ~} \tag{Eq. 6.33}\\
& \sin \theta_{e}=\frac{0.25 \mathrm{qa}}{N_{e}} \\
& N_{\text {he }}=N_{e} \cos \theta_{e} \tag{Eq. 6.34}
\end{align*}
$$

Deflection at the center is:

$$
\begin{equation*}
w_{c}=0.40 a \sqrt[3]{\frac{9 a}{E t} \frac{(1-v)}{(3-v)}} \tag{Eq. 6.35}
\end{equation*}
$$

[^2]
6.5 APPROXIMATIONS FOR LARGE DEFLECTIUN ANAL YSIS OF ISOTROPIC PLATES UNDER LATERAL LOADS

An opproximate method, based on combining membrone and small deflection bending solutions, is available to determine the deflection, stresses, and reac. tions for plates under uniformly distributed lateral lood where large deflection effects are significant (6.2). This method is best explained by first illustrating its application to a long rectangular plate with simple supports that are held against translation (i.e.: also, a plate with similar supports on two opposite sides), and then generalizing for rectangular and circular plates. The plate is looded by a uniforinly distributed lateral pressure, q. This pressure is conisidered as comprised of two pressures q_{b} and q_{m}, where q_{b} is resisted by slate bending, and q_{m} is resisted by membrane action and: $q=q_{b}+q_{m}$.

The center deflection of the plate, considering only plate bending, is (6.2):

$$
\begin{align*}
& \frac{\text { Long Plaie }}{\left(1-v^{2}\right) q_{b} b^{4}} \\
w_{c} & =0.156 \frac{\text { General Plate }}{E t^{3}} \tag{Eq. 6.36}\\
\text { or: } \quad a_{b} & =\frac{6.4 w_{c} E t^{3}}{\left(1-v^{2}\right) b^{4}}
\end{align*}
$$

The center deflection of the plate, considering only plate membrone action as given by Eq. 6.20, is:

$$
\begin{align*}
w_{c} & =0.41\left[\frac{\left(1-v^{2}\right) q_{m} b^{4}}{E t}\right]^{1 / 3} \\
\text { or: } \quad q_{m} & =\frac{14.5 w_{c}^{3} E t}{\left(1-v^{2}\right) b^{4}} \quad \tag{Eq. 6.37}
\end{align*}
$$

Thus, considering both bending and membrane action:

Long plate:

$$
q=a_{b}+q_{m}=\frac{w_{c} E t^{3}}{\left(1-v^{2}\right) b^{4}}\left(6.4+14.5 \frac{w_{c}^{2}}{t^{2}}\right)
$$

Eq. 6.38

Ceneral plate: $\quad q=\frac{w_{c} E t^{3}}{b^{4}}\left(C_{1}+C_{2} \frac{w_{c}^{2}}{t^{2}}\right)$
Eq. 6.38a

In a typical design problem, the total load, q, the span dimension, b, and the material properties, E and v are usually known, and it is desired to select a minimum plate thickness, t, that will limit maximum deflection at the center of the plate, w_{c}, and maximum combined bending and axial (membrane) stress, σ_{c}, to an allowable deflection and stress, respectively. This is accomplished by selecting a trial thickness, t, and solving Eq. 6.38 (or 6.380) for the center deilection, w_{c}, by a cut and try process, or other suitable cubic equation solver. This value of w_{c} is then substituted into Eqs. $6.36 a$ and $6.37 a$ to obtain q_{b} and q_{m}. Maximum bending stresses at the center of the plate span (or at the edge for rotationally fixed edges) ore then determined from "sinall defiection" plate theory for q_{b}, and direct stresses from plate membrane theory for q_{m}. These are obtained using the following equations:

Max. bending stress:	Long plate \quad
$\sigma_{c b y}=$	$0.75 \mathrm{a}_{\mathrm{b}} \mathrm{b}^{2} \quad=\quad C_{3} \mathrm{q}_{\mathrm{b}}\left(\frac{\mathrm{b}}{\mathrm{t}}\right)^{2}$

Membrane stress:
Long plate
General plate

$$
\sigma_{c y}=0.30 \sqrt[3]{\frac{q_{m}^{2} b^{2} E}{\left(1-v^{2}\right) t^{2}}}=c_{4} \sqrt[3]{\frac{q_{m}^{2} b^{2} E}{t^{2}}}
$$

Eq. 6.3\%

Maximum total stress:

$$
\sigma_{\mathrm{Cy}} \quad=\quad \sigma_{c b y}+\sigma_{c y}
$$

See Fig. 6-3 and Eq. 6.9 for stress notation.

The deflection and inaximum stress coefficients in Eqs. 6.38a and 6.39, a and b, for plates with edges held against translation and $v=0.3$ are:

	- \square°	$\left[\begin{array}{c} C_{1} \\ \text { Eqs. } 6.36 a \& 6.38 a \end{array}\right]$		$\begin{gathered} \mathrm{C}_{2} \\ \text { Eqs. } \\ 6.37 \mathrm{~B} \\ 6.38 \mathrm{a} \end{gathered}$	C_{3} Eq. 6.39 a Supported Rotationany Edges Fixed Edges "*		$\begin{gathered} \mathrm{C}_{4} \\ \mathrm{Eq}^{2.3} \end{gathered}$
		Simply Supported Edges	Fotationally Fixed Edgys				
Rectangu lar plates	1.0	22.6	72.7	30.0	0.29	0.31	0.25
	1.2	16.2	$53 . ?$	24.4	0.38	0.38	0.26
	1.4	13.0	44.2	22.0	0.45	0.44	0.28
	1.6	11.0	39.8	20.0	0.52	0.47	0.29
	1.8	9.8	37.4	18.0	0.57	0.49	0.30
	2.0	9.0	36.0	17.5	0.61	0.50	0.31
	¢*	7.0	35.2	16.0	0.75	0.19	0.32
Circular plates	diam	20.9	93.8	55.6	0.31	0.19	0.40

* long plote, or plate supported, on 2 opposite edges, at ends of b
**max. stress ot edge of plate
For a moterial having a Poisson's Ratio, v, that differs from 0.3, multiply the coefficient C_{i} by k_{0} aid the coefficients C_{2} and C_{4} by $\left(k_{0}\right)^{1 / 3}$, where $k_{0}(1-v) / 0.91\left(=!.0\right.$ when $v=0.3$). The coefficient C_{3} also varies somewhat with v, but this may be neglected as a secondary effect.

Note that the values of $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4}, given above for a rectangular plate with an infinite ratic $1 \mathrm{~h} / \mathrm{b}$, are the same as the coefficients given in Eqs. 6.38 and 6.39 with $v=0.3$.

Exartule 6.5 illustrates the use of the above method for the evaluation of the same rectangular plate that was anclyzet in Example 6.2.

Alternate Method - Rectangular plate, simply supported an two opposite edges:
As on alternate to the approach used in Eq. 6.38, the following equations from (6.2) provide a convenient means for analyzing rectangular plates with supports only on two opposite sides (cylindrical bending) restrained against in-plane transtation:

$$
\begin{equation*}
\text { Let } \bar{a}=\frac{N_{h e} b^{2}}{\pi^{2} D} \tag{Eq. 6.40}
\end{equation*}
$$

For simply supp.erted edges (Fig. 6-2b):

$$
\begin{equation*}
\bar{a}(1+a)^{2}=\frac{3 w_{c o}^{2}}{t^{2}} \tag{ᄃq. 6.41}
\end{equation*}
$$

Example 6.5: Determine the maximum combined membrane and bending stresses at midspan and at the edges and the midspan deflection for the thin FRP panel of Examples 6.2 and 6.4 (applied $\mathrm{q}=0.350 \mathrm{psi}$) using the opproximate method given in this Section. Compare with results obtained in the previous two examples.*
For plate bending, with $\mathrm{o} / \mathrm{b}=1.5$, and $v=0.3: C_{1}=12$, from table after Eq. 6.39.

For membrane action with $a / b=1.5$, and $v=0.3: C_{2}=21$, from table after Eq. 6.39.
From Eq. 6.37a: $q_{m}=21 w_{c}^{3} \frac{E 1}{b^{4}}=\frac{21 \times 1,000,000}{32.6^{4}} \times 0.125 w_{c}^{3}=2.32 w_{c}^{3}$
For combined action: $q=q_{b}+q_{m}$

$$
q=0.35=0.021 w_{c}+2.32 w_{c}^{3}
$$

Cut and try solution:

	q_{b}	q_{m}
trial w_{c}	$0.021 w_{c}$	$2.32 w_{c}^{3}$

0.5	0.011	0.290	0.301
0.55	0.012	0.385	0.397
0.53	0.011	0.345	0.356
0.527	0.011	0.339	0.350

Plate bending lood is q_{b} and from above $q_{b}=0.011$ psi.
For plate bending, $a / b=1.5$ and $v=0.3: C_{3}=0.485$, from table after Eq. 6.39.
From Eq. 6.39o: $a_{c b y}=0.485 \times 0.011 \times\left(\frac{32.6}{0.125}\right)^{2}=363 \mathrm{psi}$
Membrane load is q_{m} and from above: $q_{m}=0.35-0.011=0.339=0.34 \mathrm{psi}$
For membrane action, with $a / b=1.5$ and $v=0.3: C_{4}=0.285$, from table after Eq. 6.39.
From Eq. 6.3\%: $\sigma_{c y}=0.285 \sqrt[3]{0.339^{2} \times 32.6^{2} \times \frac{1,000,000}{0.125^{2}}}=567 \mathrm{psi}$
Combined bending and membrane stress $=363+567=930$ psi
Plate deflection, $\quad w_{c}=0.527 \mathrm{in}$.

Note: 1 psi $=0.0069 \mathrm{MPa} ; 1 \mathrm{lbf} / \mathrm{in} .=0.18 \mathrm{~N} / \mathrm{mm} ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$

- See footnote, Example 6-1, page 6-29.
$w_{c o}$ is the center spon deflection when lateral load is resisted only by the bending resistance of the plate (i.e., sinall def'extion theory).

For uniforinly distributed lateral looding witn sirnply suppur ted edges:

$$
w_{c o}=\frac{54 b^{4}}{384} \bar{L}
$$

\bar{x} may be deterinined by a cut-and-try solution of Eq. 6.41.

The :nid-spon deflection is:

$$
\begin{equation*}
w_{c}=\frac{w^{\prime \prime} c o}{(1+\bar{\alpha})} \tag{Eq. 6.43}
\end{equation*}
$$

The horizontal edge reaction is equal to the membene force at the inidspin of true piste onc is:

$$
\begin{equation*}
N_{h c}=\frac{11^{2}}{b^{2}} \tag{Eq. 6.44}
\end{equation*}
$$

The inidspan berkling mo nent is:

$$
\begin{equation*}
d_{c}=0.811 \frac{11-\operatorname{sech} 1.57 \sqrt{\bar{x}}}{\bar{x}} M_{\mathrm{co}} \tag{Fq. 6.45}
\end{equation*}
$$

$u_{c o}$ is the :rid-spon bending inornent for simply supported edges. For uniformly distributed looding:

$$
\begin{equation*}
M_{c o}=\frac{q b^{2}}{8} \tag{Eq. 6.46}
\end{equation*}
$$

When the edges are not fully held ogainst translation and move towards each uther a known or assunsed arnount, σ_{h}, the following modified relotion for \bar{a} may be used with the above-described equations for the simply supported edge case:

$$
\begin{equation*}
\bar{a}(1+\bar{a})^{2}\left(1+\frac{12 b \delta_{n}}{\pi^{2} t^{2} \frac{n}{w}}\right)=\frac{3 w^{2}}{t^{2}} \tag{Eq. 6.47}
\end{equation*}
$$

When the plate has on initial curvature with initial mid-span deflection of \mathbf{f}_{i} and simply supportec edges, the following modified relation for $\bar{\alpha}$ applies:

$$
\begin{equation*}
\bar{\alpha}(1+\bar{\alpha})^{2}=\frac{3\left(f_{i}+w_{c o}\right)^{2}}{t^{2}}-\frac{3 f_{i}^{2}(1+\bar{\alpha})^{2}}{t^{2}} \tag{Eq. 6.48}
\end{equation*}
$$

If the plate has rotationally built-in and fised edges, replace the term $(1+\bar{\alpha})$ with $(1+\bar{\alpha} / 4)$ in the above equations $6.41,6.47$, and 6.48 for $\bar{\alpha}$. Also:

$$
w_{c}=\frac{w_{c o}}{\left(1+\frac{\bar{\alpha}}{4}\right)}
$$

For uniformly distributed lateral locding with built-in edges:

$$
\begin{align*}
& w_{c c}=\frac{q b^{4}}{384 D} \tag{Eq. 6.50}\\
& M_{e}=\frac{1.216(1.57 \sqrt{\bar{a}}-\tanh 1.57 \sqrt{\bar{\alpha}})}{\bar{a} \tanh 1.57 \sqrt{\bar{a}}} M_{e o} \tag{Eq. 6.51}
\end{align*}
$$

For uniformly distributed load with built-in edges:

$$
\begin{equation*}
M_{e o}=-\frac{q b^{2}}{12} \tag{Eq. 6.52}
\end{equation*}
$$

Example 6.6 illustrates the evaluation of ship plating as a lang flat plate using the above approximate onalysis for cases (a) where the edges are held without inplane movement, and (b) where the supports allow a fixed inward movement. The former case is compared with results obtained using the curves of Figs. 6-4 and $6-9$, with $\mathrm{a} / \mathrm{b}=\infty$.

Example 6.6: Determine the maximum stress and the mid-span deflectior, in the bottom plating of the boat hull shown below.

(a) First assume that the frames do not move longitudinally relative to each other, thereby making the edge condition for analysis of bottom plating
(b) Take into account relative longitudinal displacement of adjocent frames due to hull bending and reaction to me:nbrane tension from plate action of the bottom plate under lateral pressure.

Solution:

(a) When the longitudinal movement of transverse supports is neglected, the bottorn plate resists lateral fluid pressure as a plate with multiple equal spans supported on the transverse frames without edge rotation (since adjacent spans and restraints are identical) and is also held against inplane translation. Using the approximate method for a plate essentially sponning in one direction given in this Section of the text:
$q=100 \times 62.4 * 1728=3.61 \mathrm{psi}$
$D=\frac{1 \times 0.5^{3} \times 1,500,000}{12\left(1-.3^{2}\right)}=17,170 \mathrm{Ibs}-\mathrm{in}^{2} / \mathrm{in}$.
$w_{c o}=\frac{3.61 \times 30^{4}}{384 \times 17,170}=0.44 \mathrm{in}$.
Notes 1 in $=25.4 \mathrm{~mm} ; 1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2} ; 1 \mathrm{in}^{3}=16,387 \mathrm{~mm}{ }^{3}$;
$1 \mathrm{in}^{4}=416,231 \mathrm{~mm}^{4} ; 1 \mathrm{psi}=0.0069 \mathrm{MPa}^{2} \mid \mathrm{lbf}-\mathrm{in} .^{2} / \mathrm{in} .=113 \mathrm{~N}-\mathrm{mm}{ }^{2} / \mathrm{mm} ;$
I lbf/ir.. - $0.18 \mathrm{~N} / \mathrm{mm} ; 1$ in.-lbf/in. $=4.45 \mathrm{~mm}-\mathrm{N} / \mathrm{mm}$
See footnote, Example 6-1, p. 29.

From Eq. 6.41 , modified for rotationally fixed end conditions:

$$
\bar{\alpha}\left(1+\frac{\bar{\alpha}}{4}\right)^{2}=\frac{3 \times 0.44^{2}}{0.5^{2}}=2.32
$$

Cut and try solution:
Trial $\bar{a} \quad\left(1+\frac{\bar{a}}{4}\right)$

(1)	(2)	$(1) \times(2)^{2} \stackrel{?}{=} 2.32$
1.5	1.375	2.83
1.3	1.325	2.33
1.32	1.33	ok

$$
w_{c}=\frac{0.44}{1+\frac{1.32}{4}}=0.33 \mathrm{in} .
$$

From Eq. 6.40:

$$
1.32=\frac{N_{h e} \times 30^{2}}{\pi^{2} \times 17,170}
$$

$$
N_{\text {he }}=248.5 \mathrm{lbs} / \mathrm{in} \cdot ; \quad \sigma_{\text {memb }}=248+0.5=497 \mathrm{psi}
$$

From Eq. 6.52:

$$
M_{e o}=-\frac{3.61 \times 30^{2}}{12}=-271 \mathrm{in} .-\mathrm{lbs} / \mathrm{in} .
$$

From Eq. 6.51 $\quad M_{e}=\frac{1.216(1.57 \sqrt{1.32}-\tanh 1.57 \sqrt{1.32})(-271)}{1.32 \tanh 1.57 \sqrt{1.32}}$

$$
M_{e}=-226 \mathrm{in} .-\mathrm{lbs} / \mathrm{in} ; \quad 5=\frac{1 \times 0.5^{2}}{6}=0.0417
$$

$$
\sigma_{\mathrm{eb}}= \pm \frac{226}{0.0417}= \pm 5420 \mathrm{psi}
$$

Total stress:

$$
\sigma_{E}=497+5420=5917 \mathrm{psi}
$$

Compare with results using direct solution, Fig. $6-9$ with $a / b=\infty$:

$$
\frac{b}{i}\left(k_{0} g\right)^{k}=\frac{30}{0.5}\left(1 \times \frac{3.61}{1.5 \times 10^{6}}\right)^{k}=2.36
$$

	$\text { . } 6-9 \text { for } a / b=\infty: \frac{{ }^{U} y}{q}\left(\frac{1}{b}\right)^{2}=0.46 ; \sigma_{E y}=0.46 \times 3.61 \times\left(\frac{30}{0.5}\right)^{2}=5978 \mathrm{psi}$
	$\frac{{ }^{9} \mathrm{ey}}{7}\left(\frac{1}{6}\right)^{2}=0.04 ; \mathrm{v}_{\text {ey }}=0.04 \times 3.61 \times\left(\frac{30}{0.5}\right)^{2}=520 \mathrm{psi}$
$M=0_{e b}{ }^{5}=5458 \times \frac{0.5}{6}=227 \mathrm{in} .-1 \mathrm{bs} / \mathrm{in}$.	
Fromi Fig. 6-5: $\quad \frac{w_{c}}{t}=0.65 ; \quad w_{c}=0.65 \times 0.5=0.325 \mathrm{in}$.	
Conclude: Solutions from graphs and from approximute method are in good agreement.	
(b)	The hogging moment couses bending of the hull which results in relative
	longitudinal movement between frames. Furthermore, the membrane tension which develops in the botton plating due to lateral load also
	produces a compressive reaction on odjacent longitudinal elements which
	tend to act as compressive bars to resist the opplied membrane tension in the plating. These two effects may be taken into account by considering
	a cut through the bottom plate with on applied tension force $N_{\text {he }}$ and the remainder of the longitudinal structure (having area $A_{\text {, }}$ and moment of inertin I, vithout the hattom pintel nrmvitina resistonce to the applied

Cross Section $X-X\left(\right.$ Areo $\left.A_{1}\right) \quad$ Longitudinal Section
Sertion properties without buttom plutiny:

$$
A_{1}=A-01=500-150 \times 0.5=425 \mathrm{in}
$$


```
\(\left\{\begin{array}{l}c_{1}=\frac{25,000}{425}=58.8 \mathrm{in} . \\ l_{1}=1,090,000-220,692=869,308 \mathrm{in} .{ }^{4} \\ \mathrm{~S}_{1_{\text {bot }}}=\frac{1_{1}}{c_{1}}=\frac{869,308}{58.8}=14,784 \mathrm{in.}^{3}\end{array}\right.\)
```

Relative Longitudinal Displacement Between Frames:
$\begin{aligned} \delta_{h} & =\frac{b\left(1-v^{2}\right)}{E}\left[\frac{a N_{h e}}{A_{1}}+\frac{a N_{h e^{c}}}{S_{1}}+\frac{M}{S_{1}\left(1-v^{2}\right)}\right] \\ \delta_{h} & =\frac{30 \times 0.91}{1,500,000}\left[\frac{150 N_{h e}}{425}+\frac{150 N_{h e} \times 58.3}{T 4,784}+\frac{10,000,000}{14,784 \times 0.9 T}\right] \\ \delta_{h} & =18.2 \times 10^{-6}\left[0.95 N_{h e}+743\right]=\left(0.0173 N_{h e}+13.52\right) 10^{-3}\end{aligned}$
From Eq. 6.40: $N_{\text {he }}=\frac{\pi^{2} \times 17,170 \bar{\alpha}}{30^{2}}=188.3 \bar{\alpha}$
$\delta_{h}=3.26 \times 10^{-3} \bar{a}+13.5 \times 10^{-3}$

From Eq. 6.47, modified for rotationally fixed edges:

$N_{\text {he }}=\frac{0.23 \times \pi^{2} \times 17,170}{30^{2}}=43.3 \mathrm{lbs} / \mathrm{in} . ; \quad \tau_{e}=\frac{43.3}{0.5}=87 \mathrm{psi}$

Stress in longitudinal ulements of bottom hull, other than plate:
$\sigma_{\text {bot }}=-\frac{10,000,000}{14,784}-\frac{150 \times 43.3}{425}-\frac{150 \times 43.3 \times 58.8}{14,784}=-676-15.0-26=-717 \mathrm{psi}$

Stress in longitudinal elements of hull if influence $u^{\mathbf{4}}$ bencing of bottor, plate on longitudinal stress is neglected:
$\sigma_{\text {bot }}=-\frac{10,000,000}{21,8,800}=.460 \mathrm{psi}$
Bending moment in bottom plate:
$M_{e}=\frac{1.216(1.57 \sqrt{0.23}-\tanh 1.57 \sqrt{0.23})}{(0.23) \tanh 1.57 \sqrt{0.23}} M_{e o}$
$M_{e}=0.96 M_{\text {eo }}=0.96 \times 3.61 \times 30^{2}+12=260$ in. $-\mathrm{Ibs} / \mathrm{in}$.
$\sigma_{\text {eby }}=\frac{6 \times 260}{0.5^{2}}=6,240 \mathrm{psi} ; \quad \sigma_{\text {Ey }}=6,240+87=6,327 \mathrm{psi}$
Deflection of bottom plate:
From Equations 6.49 and 6.!0:
$w_{c}=\frac{3.61 \times 30^{4}}{384 \times 17,170\left(1+\frac{0.23}{4}\right)}=0.42 \mathrm{in}$.

Conclude: Strain due to hogging moment and reaction to membrane tension in bottom plates causes in-plane translation of bottorm plate supports which results in a large decrease in membrane action in the bottom plating and an increase in stress in the plating resulting from the increased bending moment which accompanies the decreased membrane tension. Furthe:more, the lacal deflection and develoument of membrane tension in the Lattom plating reduces its effectiveness as a hull girder compression flange, resulting in an increase in longitudinal stresses in the other elements which comprise the tull girder.

Note: For purposes of simplification, the effect of deflection and membrane tension in the tull side plates has been neglected. This would cause further loss in membrane support of plate loads and further increases in plate and huil girder stresses.

6.6 ORTHOTROPIC PLATES UNDER LATERAL LOAD

Some unisotropic olastics inaterials can be approximated as planar orthotropic moterials with stiffness properties deternined as described in Section 6.2. Also grids cari be evaluated as equivalent orthotropic plates as described in (6.2) and (o.j). Only a limited number of solutions for comunon lomalings, shapes, and support conditions are available in the literature.

Deflections and Bending Monients in Common Approximations for Rectongular Plates

If on average Poisson's ratio is defined as:

$$
v_{c}=\frac{v_{12} E_{22}}{\sqrt{t_{11} E_{22}}}=\frac{v_{21}{ }^{t_{11}}}{\sqrt{E_{11} E_{22}}}
$$

then

$$
D_{12}=v_{c} \sqrt{D_{22}{ }^{11_{11}}}
$$

also, sometimes the shear stiffness, a_{12}^{\prime}, may be npproximuted as:

$$
v_{12}^{\prime}=\frac{1-v_{c}}{2} \sqrt{0_{11} v_{22}}
$$

In this case, from tquation 6.6e:

$$
\begin{equation*}
D_{0}=\sqrt{U_{11} D_{22}} \tag{Eq. 6.53}
\end{equation*}
$$

When \dot{D}_{0} is given by Eq. 6.53, the deflection of the center of an orthotropic plate with rigidities L_{11} and D_{22} and sides a and b is the same as the deflection of an isotropic plate with a rigidity $D=D_{0}$ and sides

$$
a_{0}=a \sqrt[4]{\frac{D_{0}}{D_{11}}} ; b_{0}=b \sqrt[4]{\frac{D_{0}}{D_{22}}}
$$

Using the above approximation, the deflection and bending moments at the center of a uniformiy loaded, rectangular, simply supported, orthotropic plate with principal axes, I and 2 , coinciding with the plate axes of symmetry, x and y, may be obtained using coefficients given by the curves of Fig. 6-18 and the following equations (6.2):

$$
\begin{align*}
& w_{c}=k_{1} \frac{q b^{4}}{D_{22}} \tag{Eq. 6.55}\\
& \lambda_{3}=\frac{a}{b} \sqrt[4]{\frac{D_{22}}{D_{11}}} \\
& M_{x}=\left(k_{2}+k_{3} v_{21} \sqrt{\frac{D_{11}}{D_{22}}}\right) \frac{q a^{2}}{\lambda_{3}^{2}} \\
& M_{y}=\left(k_{3}+k_{2} v_{12} \sqrt{\frac{D_{22}}{D_{11}}}\right) q b^{2}
\end{align*}
$$

Eq. 6.56

Eq. 6.57

Eq. 6.58

For isotropic plates, $D_{22}=D_{11}=D$ and $v_{21}=v_{12}=v$, and λ_{3} is simply the ratio a / b. In this case, approximately the same results are obtained from either Fig. 6-10 or Fig. 6-18.

Direct solutions for maximum bending moments in or thotropic rectangular plates with Poisson's Ratio, $v_{12}=v_{21}=0$, where principal axes of material stiffness coincide with plate symmetry axes, x and y, respectively, with uniformly distributed lateral load, q, and both simply supported and rotationally fixed edges are given in Figs. 6-19 and 6-20 respectively (6.3). Moments vary with $\lambda_{1}=$ $b / a \sqrt[4]{D_{11} / D_{22}}$ and with $D_{0} / \sqrt{D_{11} D_{22}}$, where D_{0} is determined using Eq. 6.6e. Moments are obtained from coefficients given in the Figures as follaws:

$$
\begin{align*}
& M_{x c}=k_{4} q a^{2} \\
& M_{y c}=k_{5} q b^{2} \tag{Eqs. 6.54}\\
& M_{x e}=k_{6} q a^{2} \\
& M_{y e}=k_{7} q b^{2}
\end{align*}
$$

Fiq. 6-18 COEFFICIENTS FOR MAXIMUM MOMI NIS AND DEFIECTIONS
 WHERE $D_{0}=\tilde{D}_{1}, \ddot{D}_{22}$ (SMALL DEFLECTION SOLUTION) (6.2)

Fig. 6-19 COEFFICIENTS FOR DETERMINATION OF BENDING MOMENTS IN SIMPLY SUPPORTED RECTANGULAR ORTHOTROPIC PLATES (SMALL DEFLECTION SOLUTION) (6.3)

Fig. 6-20 COEFFICIENTS FOR DETERMINATION OF BENDING MOMENTS IN RECTANGULAR OR THO TROPIC PLATES WITH ROTATIONALLY FIXED SUPPORTS (SMALL DEFLECTION SOLUTION) (6,3)

In the case of simply supported plates, the maximum moments occur at the center of the plate. In the case of rotationally fixed edges, maximum moments ox:cur at the center of the plate and minimum (maximum negative) moments occur at the center of the fixed edge. The following approximate corrections for specific v values may be used (6.3):

$$
\begin{align*}
& M_{x}=M_{x_{0}}+v_{21} \sqrt{\frac{D_{11}}{D_{22}}} M_{y_{0}} \\
& M_{y}=M_{y_{0}}+v_{12} \sqrt{\frac{D_{22}}{D_{11}}} M_{x_{0}} \tag{Eqs. 6.60}
\end{align*}
$$

where $M_{x_{0}}$ and $M_{y_{0}}$ are moments for $v=0$ (Figs. 6-19 and 6-20).
Maximum bending stresses are:

$$
\begin{equation*}
\sigma_{x}=\frac{6 M_{x}}{t^{2}} ; \quad v_{y}=\frac{6 M_{y}}{t^{2}} \tag{Eqs. 6.61}
\end{equation*}
$$

When deflections determined from these small deflection solutions exceed about 0.5 t , deflections and moments will be overestimated by amounts which increase with increases in flexibility. If more accurate solutions are required, it may be necessary to use a non-linear finite element analysis. See Section 4.9. Sometimes, approximate results of sufficient occuracy can be obtained by the methods suggested in the previous Section, using equations for isotropic membranes to approximate the membrane part of the problem.

Example 6-7 in the next Section illustrates the evaluation of a rectangular orthotropic plate using the curves presented in this Section for determining bending moments in each principal direction and moximum center deflection.

6.7 LAMNATEDPLAIFS UNOEK LATERAL L.OADS AND INTERNAL THERMAL STRESSES

Plastics and composites are used in laminated or layered thin flat plate contigurations as described in Chapters 1 to 4 . Such plates are sometimes built up from layers of undirectional composites, such as yraphite or aranid reinforced epoxy, which die oriented in two or more directions to form an anisotropic layered plate (See Table 1-8, Fias. 2-12 and 4-15).

Procedures for determining stiffnesses, flexural stresses, and deflections in laminated plates are discessed below, together with a design example, to illustrate the use of laminated piate theory. Because of space limitutions, the presentation is limited t., speciclly orthotropic plotes where the principal axes of each layer coincide with the plate axes, x and y, and to plates with balanced

Fig. 6-21. ORIENTATION OF REFERENCE AXES FOR BALANCED SYMMETRICAL ORTHOTFOPIC LAMINATED MATERIALS - PRINCIPAL AXES, I AND 2, OF MATERIAL STIFFNESS OF EACH LAYER ARE PARALLEL TO PLATE REFERENCE AXES, X AND Y

Presentation of the underlying theory of larninated plates is beyond the scope of this design inanual. See (6.7) and (6.8) for detailed expositions of the relevant theory.

Ciross Section Stiffness

In or ter to determine deflections, benting notiments, wixil tiruste, shears, twists, und reoktions due to external loods on laminoted plote cooponents, it is necessury to determine the in-plane and flexural stiffnesses of the overall plate, either from direct tests on the plate, or tron the elastic properties of the individual layers, if they are known. The latter oppromen is lescribed in this Section.

Stiffess relationships are given in Table $3-5$ of Section 3.5. They are also given in Appendix ${ }^{3}$ of (6.1) tor a more yeneral case of balanced laninutes where the principal axes of sone of the syinmetrically placed layers noy be at any anole, ψ_{k}, with plate axis x. See also (6.9) for a mor: detriled and general presentation which intruduces the use of matrix motation. viearause of the nurinder of componeats involver! in the analysis, presentution is tacilitated and connututional work systemarizeri by the use of matrix notution. ilowever, because of pace limitutions, natrix notation will not be introduced here, See (0.1) and (0.9) for examples of the use of matrix notation for laninated plate unalysis. Reference (6.1) also covers larninated plates with unbolanced construction, therrial stresses, and built-in layer strosses resulting fron alevated assenbly temperatures. ixamples illustrating the ase of the anolysis procedures are included.

For a single plote consisting of on assembly of $2 n$ layers arranyed in a balanced configuration obout the mid-plane, with the principal orthotropic axes of each layar cuinciaing with the x and y axes of the plate (Fig. 6-21), plate stitfnesses are determined using Lig. 6.5 and 6.6 by sumining the contributions from each layer, k, over the total number of layers, $2 n$.

The following stiffness cocfficients for the k th layer, defined inore extensively in (6.1), facilitate the organization of r.lfulations, as well as use of matrix algebra, in analyzing specially orthotropic plates:

$$
\begin{equation*}
b_{11 k}=\pi-\frac{E_{11}}{v_{12}} \frac{1}{v_{21}} \tag{Eq. 6.620}
\end{equation*}
$$

$$
\begin{aligned}
& b_{22 k}=\frac{1}{\pi-v_{12}} v_{21} \\
& b_{12 k}=t_{21 k}=\frac{v_{21} L_{11}}{\left(T-v_{12} v_{21}\right)}=\frac{v_{12} E_{22}}{\left(T-v_{12}-v_{21}\right) \quad \quad \text { F. } 6.6 .62 c} \\
& { }^{13} 33 k=C_{12} \\
& \text { F.q. } 6.62 \mathrm{~b} \\
& \text { r.c. } 6.62 \mathrm{c} \\
& \text { E4. } 6.62 \mathrm{~d}
\end{aligned}
$$

Note that the notatio $\{$ does not reter to a thard axis perpendicular to plone 1-2. The analysis presented herein covers only two-dimensional thin plates, and the 33 notutiun is used tor convenience in organizing calrulations (6.1).

The stifiness coefficients for each loyer, $b_{i j k}$, are defined by E.qs. 6.62 for layers with ;rincipal axes paralicl to the plate axes, x and y. However, for layers with mojor axes at 90° to the x oxis of the plate, it is convenient to redefine the stifiness coefficients for these layers os follows:

$$
\begin{aligned}
& v_{11 k}=\left(\pi-\frac{E_{22}}{v_{12}}-\quad \text { for layers of } 90^{\circ} \text { with } x\right. \\
& { }^{1} 2<k=\frac{E_{1}}{\left(\pi-\frac{11}{v_{12}} v_{21}\right)} \text { for loyers at } 90^{\circ} \text { with } x
\end{aligned}
$$

Fa. $6.62 e$

The terms in Lqs. 6.62c and d do not require modification for loyers at 9$)^{2}$ with x.

The obove stiffness coefficients are used in Table 6-2 to define the basic stiffress properties for larrinated specially orthotropic plate cross sections. These are similar to the properties presented previously in Table 6-1, Section 6.2, for horrogeneous uniform thickness special'y orthotropic plates.

Table 6-2

Stiffness Properties of Specially Orthotropic Laminated Plate Cross Sections

Stiffness Proper!y	Balanced Symmetrical l-ayered Cross Section	Eq. No.
In plane, $\bar{A}_{i j}$	$2 \sum_{k=1}^{k=n} t_{k} b_{i j k}$	Eq. 6.63a
Flexural, ! ${ }_{\text {ij }}$	$\begin{aligned} & 2 \sum_{k=1}^{k=n}\left(t_{k} z_{k}^{2}+i_{k}\right) b_{i j k} \\ & i_{k}=\frac{t_{k}}{12} * \end{aligned}$	Eq. 6.63 b Eq. 6.63 c
	$\mathrm{D}_{12}^{\prime}=\mathrm{D}_{33}$ for matrix notation	Eq. 6.63d

The twisting parameter is:

$$
i_{0}=D_{12}+2 D_{33}
$$

Eq. 6.63 e

* Note: For plotes with thin layers, this term is often very small, relative to $t_{k} z_{k}^{2}$.

Flexural Stresces and Deflections

After the overoll plate stitfnesses are calculated using Eqs. 6.63, bending moments in the direction of plate axes can be calculated for laterally loaded plates using the design aids given in the previous Section, or in the references nt the end of this Chopter. For looding or support cases not covered by design aids, the overall stiffness constants can be used in a finite element computer analysis of the orthotropic plute (Section 4.9).

Maximum plate deflection is determined using the above mentioned design aids or computer analysis with the calculated stiffness constants.

Stresses in the various layers are then determined from the following equations:

Flexural and axial stress in \times direction:

$$
\begin{equation*}
\sigma_{x k}=b_{1 \mid k}\left[\frac{N_{x}}{\bar{A}_{\| \mid}} \cdot \frac{M_{x} z_{k}}{D_{\| \|}}\right] \tag{Eq. 6.640}
\end{equation*}
$$

Flexural and axial stress in y direction:

$$
\sigma_{y k}=b_{22 k}\left[\frac{N_{y}}{A_{22}}-\frac{M_{y} z_{k}}{D_{22}}\right]
$$

Shear stress on x and y faces in plane of plate:

$$
\tau_{x y k}=\tau_{y x k}=b_{12 k}\left[\frac{N_{x y}}{A_{12}}-\frac{M_{x y} z_{k}}{D_{12}}\right]
$$

The above method for determining plate stiffness and stresses in each layer of a balanced symmetrical orthotropic laminated plate is illustrated in Example 6.7 at the end of this Section. The example also illustrates the use of Fig. 6-19 for determining bending moments and deflections in a lanninated orthotropic plate.

The above method can be used for balanced laminated plates having layers at angles other than 0 degrees and 90 degrees with the plate \times axis with the aid of the more complex relations for $b_{i j k}$ given in Appendix B of (6.1) and the additional stress transformation equations given in (6.9) to obtain stresses in the principal axes direction of the layers located at an angle with the x-axis. The nore general method given in (6.1) and (6.9) could easily be computerized to facilitate solution of a wide variety of laminated plate problems.

Transformed Section Method

A method commonly known as the "transformed section" method of elementary beam theory is very similar to the laminated plate theory given above for
orthotropic layers balanced and with principal axes at 0 and 90 degrees to the x axis. In the elementary "transformed section" methad, however, the effects of restraint of "Poisson deformation" in plates are neglected and the effects of inplane shear and twist are not considered. See Chapter 8 for further discussion of this elementary method for determining stitfness properties and stresses in sandwinh beams and plates.

Transverse and Inierlaminar Shear Stresses

Plates which transmit lateral load are subject to iransverse shear forces, Q, which are proportional to the change in plate bending and twisting moments. These shear forces produce a system of equal transverse and interlaminar (between planes) shear stresses, $\tau_{x z}$ and $\tau_{z x}$ (or $\tau_{y z}$ and $\tau_{z y}$), which vary through the thickness of the plate from a maximum at the neutral axis to zero at the surfoces. Some layered composites may have relatively low interlaminor shear strength, and thus, require more extensive investigation oi the effects of shear than is needed in conventional homogeneous plates. The "rolling shear" strength used in plywood design is a familiur example of an interlaminar shear criterion.

Fig. 6-22. TRANSVERSE AND INTERLAMHNAR SHEAR STRESSES CAUSED BY TRANSVERSE SH EAR FORCE ON PLATE ELEMENT

Referring to Figs. 6-21 and 6-22, the maximum interlaminar shear stress occurs between layers 1 and 2 just above the neutral axis. This stress is determined from the tronsverse shear forces on faces of the plate perpendicular to the x and y axes, respectively, as follows:

$$
\begin{align*}
& \tau_{x z ~} 1-2=\tau_{z \times 1-2}=\frac{Q_{x Z} \sum_{k=2}^{k=n} i_{1} z_{k} b_{11 k}}{D_{\|}} \\
& \tau_{y z 1} 1-2=\tau_{z y} 1-2=\frac{Q_{y z} \sum_{k=2}^{k=n} t_{k} z_{k} b_{22 k}}{\left(j_{22}\right.}
\end{align*}
$$

F.q. $6.65 b$

In design, the above stresses must not exceed the transverse shear or interlaminar shear strength limits for tine material. With layered composites, the intertaininar shear strength is usually much lower than the transverse shear strength, thereby dorrinating the shear behavior of such plates. In contrast, sheor strength of a concrete member is ejoverned by the principal diogonal tension stress resulting frcirr the transverse and horizontal shear stresses.

Transverse shear forces also produce transverse shear deforimations that are usually neglected in conventional anolyses of stresses and deflections in plates. In laminated plates where sone layers or interfoces have low shear sliffness, significant errors may be intraluced when shear defornation is neglected. This is especially Irue for sandwich piates with "shear flexible" cores, as discussed in Chapter 8.

Consideration of the effects of shecr deformation on plate bending moments and deflections is beyond the scope of this Chopter. See (6.8) for plots showing the siynificance of shear deformation with varying shear stiffness for several specific example plates. See Section 8.7 for further discussion of shear deformation in sandwich plates.

Infernal Thermal Siresses

Sometives, layered composites are assembled at temperatures which vary substantially from service temperatures, and thus are subject to significant thermal changes. If the coefficients of expansion of the various layers, a_{k}, are different, thermal changes will cause internal stresses within the laminate. For the syrnmetrical balanced constructions considered here, the following steps may be used to determine the stresses in ayer, k, resulting from a temperature variation, ΔT, from the assembly temperature (6.9):

1. Determine strain in each layer, k, due to full restraint of a temperature change, ΔT (ΔT is + for temperature drop):
$e_{T x k}=a_{x k} \Delta T ; e_{T y k}=a_{y k} \Delta T$
2. Determine total forces, N_{T}, to fully restrain the plate in its assembly position:

$$
\begin{align*}
& N_{T x}=2 \sum_{k=1}^{k=n} e_{T x k}{ }^{b_{11}} k^{\dagger_{k}} \tag{Eq. 6.670}\\
& N_{T y}=2 \sum_{k=1}^{k=n} e_{T y k}{ }^{b} 22 k^{\dagger}{ }_{k}
\end{align*}
$$

3. Determine stress in each layer which equals stress to fully restrain temperature strain, $e_{T k}$, less stress when total holding force, N_{T}, is
released:

$$
\begin{align*}
& \sigma_{x k}=b_{11 k}\left(e_{T x k}-\frac{N_{T_{x}}}{A_{I 1}}\right) \\
& \sigma_{y k}=b_{22 k}\left(e_{T_{y k}}-\frac{N_{T y}}{A_{22}}\right)
\end{align*}
$$

The final total farce across the thickness of a unit width section in each direction must equal zero.

Example 6.7 also illustrates the determination of thermal stresses arising fro.n fabrication of the plate at an elevated temperature, and use of the plate at other temperotures.

Matrix methods for more complex cases involving built-in stresses in balanced symmetrical laminates with some layers at angles ψ_{k} with the plate axis, x, and also built-in stresses in unbalanceci laminates are given in (6.9).

Other effects that may require consideration in the design of kuminated composites include radial tension within and between layers in curved members, and thermal grodients across the laminate thickness. Detailed considerotion of these is beyond the scope of the limited treatment of iuminated plate theory in this Section. To some extent, the discussion of grodient effects in sondwich panels, which is given in Chapter 8, is relevant. Radial tension is discussed in Chapter 9.

$$
\begin{aligned}
& \text { Plan } \\
& \text { Cross Section A-A Through Laminate } \\
& b_{11}=\frac{1.67 \times 10^{6}}{1-0.3 \times 0.02^{-}}=1.68 \times 10^{6} \mathrm{psi} \\
& b_{12}=\frac{0.02 \times 25 \times 10^{6}}{1-0.3 \times 0.02}=0.503 \times 10^{6} \mathrm{psi} \\
& \text { or } \quad b_{12}=\frac{0.3 \times 1.67 \times 10^{6}}{1-0.3 \times 0.02}=0.503 \times 10^{6} \mathrm{psi} \\
& b_{33}=0.65 \times 10^{6} \\
& b_{22}=\frac{1}{1-0.3} \frac{10^{6}}{0.3} \times 0.03=1.01 \times 10^{6} \mathrm{psi} \\
& b_{11}=\frac{10 \times 10^{6}}{1-0.3 \times 0.03}=10.09 \times 10^{6} \mathrm{psi} \\
& b_{12}=\frac{0.3 \times 1.0 \times 10^{6}}{T \times 0.3 \times 0.153}=0.303 \times 10^{6} \mathrm{psi} \\
& { }^{b_{2}} 33=0.3 \times 10^{6} \mathrm{psi}
\end{aligned}
$$

For Aramid L $\left(A_{L}\right)$: (tqs. 6.62)		$\begin{aligned} & \mathrm{b}_{22}=\frac{10 \times 10^{6}}{1-0.3 \times 0.03}=10.09 \times 10^{6} \mathrm{psi} \\ & \mathrm{~b}_{11}=\frac{1 \times 10^{6}}{1 \times 0.3 \times 0.03}=1.01 \times 10^{6} \mathrm{psi} \end{aligned}$ b_{12} and b_{33} same as A_{T}.						
Table (a)								
Layer No.	\dagger	z_{k}	$\begin{gathered} t z_{k}^{2} \\ \left(\times 10^{-3}\right) \end{gathered}$	$\begin{gathered} \mathrm{D}_{22} \\ \mathrm{~b}_{22 \mathrm{k}^{\mathrm{tz}}{ }^{2}} \\ \left(\times 10^{3}\right) \end{gathered}$	$\begin{gathered} D_{11} \\ b_{\\| 1} 1 z_{k}^{2} \\ \left(\times 10^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{D}_{12} \\ \mathrm{~b}_{12 k^{1 z_{k}^{2}}} \\ \left(\times 10^{3}\right) \end{gathered}$	$\begin{gathered} D_{33} \\ b_{33^{i 2_{k}}} \\ \left(\times 10^{3}\right) \end{gathered}$	
$1 G_{L}$. 06	. 30	5.40	136	9	2.7	3.5	
$2 \mathrm{~A}_{T}$. 06	. 24	3.46	3	35	1.0	1.0	
$3 G_{L}$. 06	. 18	1.94	49	3	1.0	1.3	
$4 \mathrm{~A}_{T}$. 06	. 12	0.86	1	9	0.3	0.3	
$5 A_{L}$. 06	. 06	0.22	2	0	0.1	0.1	
$6 A_{T}$. 06	0	0	0	0	0.0	0.0	
			11.88	191	56	5.1	6.2	
				$\times 2$	$\times 2$	$\begin{array}{r} \\ \times \quad 2 \\ \hline\end{array}$	6.2 $\times \quad$	
				382	112	10.2	12.4	
$\mathrm{U}_{22}=382 \times 10^{3} \mathrm{lbs}-\mathrm{in} .^{2} / \mathrm{in} . ; D_{11}=112 \times 10^{3} \mathrm{lbs}-\mathrm{in} .^{2} / \mathrm{in}$. From Eq. 6.63e: $D_{0}=D_{12}+2 D_{33}=(10.2+2 \times 12.4) \times 10^{3}=35 \times 10^{3} \mathrm{lbs-in} 2 /$.in .								

2. Analysis for Bending Moment - use Fig. 6-19

$$
\begin{aligned}
& \lambda_{1}=\frac{b}{a} \sqrt[4]{\frac{D_{11}}{D_{22}}}=\frac{24}{36} \sqrt[4]{\frac{112}{382}}=0.49 \approx 0.5 \\
& \lambda_{2}=\frac{D_{0}}{\sqrt{D_{11} D_{22}}}=\frac{35}{\sqrt{382 \times 112}}=0.17
\end{aligned}
$$

FromFig. 6-19: $\quad k_{4}=0.006 ; \quad k_{5}=0.132$
From Eq. 6.59: $M_{x c}=0.006 \times q \times 36^{2}=7.78 q$ in.-k/in. for $v=0$

$$
M_{y c}=0.132 \times q \times 24^{2}=76.0 q \mathrm{in} .-\mathrm{k} / \mathrm{in} .
$$

Correction for $v \neq 0$: Use Eq. 6.60 and a weighted average for v as follows			
Layer ivo.	${ }^{t}{ }^{2} k$	$v_{2 j}{ }^{1}{ }^{2} k$	$v_{12} t_{k} z_{k}$
$1 C_{L}$. 0180	. 0054	. 0005
$2 A_{T}$. 0144	. 0003	. 0043
$3 \mathrm{G}_{\mathrm{L}}$. 0108	. 0032	. 0003
${ }^{4} A_{T}$. 0072	. 0001	. 0022
$5 \mathrm{~A}_{\mathrm{L}}$. 0036	. 0011	.0001
$6 A_{T}$	$\begin{array}{r} 0 \\ .0540 \end{array}$	$\text { . } 0$	$\begin{array}{r} 0 \\ .0074 \end{array}$

Av. $v_{21}=\frac{.0101}{.054}=0.19$;
av. $v_{12}=\frac{.0074}{.054}=0.14$
From Fq. 6.60: $\begin{aligned} \quad M_{x c} & =7.78 q+0.19 \sqrt{\frac{112}{382}} 76.0 q=15.6 q \\ M_{y c} & =76.0 q+0.14 \sqrt{\frac{382}{12}} 7.78 q=78.0 q\end{aligned}$
Average Bending Stresses in Each Layer:
x direction, Eq. 6.64a: $\quad \sigma_{x k}=\frac{b_{11 k} z_{k}^{N}}{D_{11}}-\frac{150}{112 \times 10^{-5}} b_{11 k} z_{k}$
y direction, Ea. 6.64b: $\quad \sigma_{y k}=\frac{{ }^{b_{22}} k_{k}{ }^{M} M_{y c}}{D_{22}}=\frac{78.0 g_{3}}{382 \times 10^{3}} b_{22 k} z_{k}$
Table (b)

Loyer No.	$\begin{gathered} z_{k} \\ \text { (in.) } \end{gathered}$	$10^{-6} \mathrm{~b}_{22 \mathrm{k}}$	$10^{-6} \mathrm{~b}_{1 / \mathrm{k}}$	$\frac{\sigma_{y k}}{(p s i)}$	$\frac{\sigma_{\text {xk }}}{\text { (psi) }}$
1 GL	0.30	25.15	1.68	1532	70
$2 A_{T}$	0.24	1.01	10.09	49	337
3 GL	0.18	25.15	1.68	920	42
$4 A^{\prime}$	0.12	1.01	10.09	25	168
$5 A_{L}$	0.06	10.09	1.01	123	8
$6 A_{\text {T }}$	0	1.01	10.09	0	0

Thermal Stresses

Assume that Modulus of Elasticity and Coefficient of Thermal Expansion have the average values given above over the full range of variation in temperotire. Assume that the thermal change is a long-term effect which reduces the effective moduli E_{L} to 80% of values given in the table above and E_{T} to 50% of short-term values given above.

Strain in each layer from full restraint of movement after tenperature change, T.
Eqs. 6.65: $\quad e_{T x k}=\alpha_{x k} \times 100 ; e_{T y k}=\alpha_{y k} \times 100$
Axial stiffness of laminate:
Eq. 6.63o:

$$
A_{1 \mid}=2 \sum_{k=1}^{k=6} t_{k} t_{1 \mid k} ;
$$

$$
A_{22}=2 \sum_{k=1}^{k=6} t_{k} b_{22 k}
$$

Force on laminate if fully restrained fro:n thermal movement:
Eq. 6.66: $\quad N_{T_{x}}=2$
Thermal stresses in layers:

$$
k=6 \quad k=6
$$

Eq. 6.67: $\quad \sigma_{x k}=b_{l \mid k}\left(e_{T x k}-\frac{N_{T x}}{A_{11}}\right) ; \quad \sigma_{y k}=b_{22 k}\left(e_{T x k}-\frac{N_{T y}}{A_{22}}\right)$
Thle (c)

aror Nour	${ }^{1}$	$\begin{aligned} & b_{22 k} \\ & \times 109 \end{aligned}$	$\begin{aligned} & 011 \mathrm{k} \\ & (\times 109 \end{aligned}$	$\begin{aligned} & A_{22} \\ & i_{k} b_{22 k} \\ & \left.110^{G}\right) \end{aligned}$	$\begin{aligned} & A_{11} \\ & 1_{k} D_{11 k} \\ & (x \mid 10) \end{aligned}$	$\begin{gathered} \alpha_{x} \\ \left(\times 10^{-6}\right) \end{gathered}$	$\begin{aligned} & q_{*} \\ & \times 10^{-6} \end{aligned}$	$\begin{gathered} \mathrm{N}_{T y} \\ { }^{{ }^{1} \mathrm{~T}_{y+} b^{b} 22 k_{k}{ }^{i_{k}}} \end{gathered}$		$\begin{aligned} & { }^{N}{ }^{N} T_{y} \\ & \left(n 10^{-6}\right)^{-6} \end{aligned}$	$\sigma_{\text {d }}$		$\sigma_{\text {* }}$
$1 G$. 06	8 $\times 25.15$. 5×1.60	1.207	0.050	0	20.0	0	100.0	- 45	- 905	1976	1682
${ }^{2} A_{1}$.06	. 5×1.01	\& $\times 10.08$	0.030	0.484	32.0	-2.2	\%.0	-106.5	3155	1593	- 242	-1933
$3{ }^{3}$. 06	5×23.15	. 5×1.60	1.207	0.050	0	20.0	0	100.0	- 45	- 905	1974	1462
- A_{1}	. 06	5×1.01	8×1009	0.030	0.404	32.0	-2.2	\%.0	-106.5	3155	1593	- 242	- 1953
s^{1}	.04	E $\times 10.00$. 5×1.01	0.4at	0.030	-2.2	32.0	- 106.5	$\% .0$	- 265	-2138	317	1005
6^{4}	. 03	. 5×1.01	+ $\times 10.09$	0.019	0.242	32.0	-2.2	48.0	- 53.0	3155	1593	- 242	-1853
				2.973	1.300			133.5	30.0				
				B 2	$\times 2$			$\times 2$	$\times 2$				
				S.sen	2.400			267.0	$\omega .0$				

Thermal stresses greatly reduce the allowable stresses available for lateral load, particularly in the transverse direction. The allowable lateral pressure, q, is determined using the σ / q ratios calculated in Table (b) and the difference
between allowable inateriai stress and thermal stress (Table (c)) for the various layers and lateral directions of inaterial axis:

Transverse - Aramid

$$
\frac{{ }^{U_{y}}}{q}=49 ; \quad q=\frac{3000-1593}{49}=29 \mathrm{psi}
$$

Transverse - Graphite

$$
\frac{U_{x}}{q}=70 ; \quad q=\frac{2400-1662}{70}=10.5 \mathrm{psi}
$$

Longitudinal - Graphite

$$
\frac{\sigma_{y}}{q}=1532 ; \quad q=\frac{33,000-905}{1532}=21 \mathrm{psi}
$$

Longitudinal - Aramid

$$
\frac{\sigma_{x}}{q}=337 ; \quad q=\frac{13,000-1,978}{337}=33 \mathrm{psi}
$$

Thus, Transverse Graphite in out: :r layer governs and allowable lateral pressure (short term) $=10.5 \mathrm{psi}$.

6.8 ISOTROPIC DIAPHRAGMS

Thin plates that tronsmit applied loads to edge supports with oll forces acting in their mid-planes ore often referred to as diaphragms. A state of plane stress exists in such plates. A plate loaded in this way is shown in Fig. 6-23. In order to evaluate the structural adequacy of such a plate, it is necessary to determine the maximum tension and compression stresses, and their directions. These are compored to the material strength for the conditions of use (stress duration, temperoture, and other environmental conditions) and the required safety tactors. Also compressian stress is evaluated based on stobility considerations, as described in the next Section.

Fig. 6-23. DIAPHRAGM PLATE - LOADS, SUPPORTS AND STRESS VARIATIONS

Examples of plates where diaphragm stresses mov be significant include floot and roof slabs and sheor walls which distribute wind and seismic loads in buildings, bearing walls on intermiftent supports, and webs of I or boxed shaped beams and deep girders.

Maximum tension and compression are "principal stresses." They may be determined, by first determining the general plone stress state at any point in the diaphragm, v_{x}, σ_{y}, and $\sigma_{x y}$. Princifal stresses, σ_{m} and σ_{n} are then:

$$
\sigma_{m, n}=0.5\left(\sigma_{x}+\sigma_{y}\right) \pm 0.5 \sqrt{\left(\sigma_{x}-\sigma_{y}\right)^{2}+4 \tau_{x y}^{2}}
$$

and their directions (principal axes) from the x-axis, $\theta_{m, n}$ are:

$$
\tan 2 \theta_{\mathrm{m}, \mathrm{n}}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}
$$

In some common cases of diaphragm plates, maximum values of σ_{x} and σ_{y} occur of locations where shear, $\tau_{x y}$, is zero. In such locations, σ_{x} and σ_{y} are the principal stresses and no further calculations are required.

Determination of diaphragm stresses

In the general case of a diaphragm with arbitrary shope, loads and boundary conditions, stresses con readily be determiniod using elastic finite ele,nent analysis. See Section 4.9 and the related refefences in Chapter 4. Often, however, diaphragm elements of components can the idealized with shope, loading, and support conditions for which ruioulations of maximum stresses ore available in_reference handbooks.

Available solutitins for isotropic platess Diaphragm plates are often loaded and supported such that they behave as deep beams. Stresses in deep beams are significantly influenced by the distribution of in-plane shear and beuring stresses at boundaries, as well as by the location of the points of application of external in-plane loadings. Furthermore, shear deflection cannot be neglected relative to flexural defiection in deep beams. Because of this, magnitude and distribution of stress is significantly altered from results of conventional beam theory in continuous, or other "indeterminant" deep becms.

For statically determinate simply supported diaphragm plates, in-piane stresses differ substantially from stresses determined with conventional beam theary when the span of the diaphragm, a, is less than about twice the depth, b. For
continuous diaphragm plates, becouse of the additional rotational displacement over the supports resulting from shear deflection, in-plane stresses differ substantially from stresses determined with conventional bearn theory when the span of tine diaphrogm is less than about three timies the depth, b.

Graphs for determining maximum longiturinal stresses, ${ }^{0} x$, in common loading cases are given below. Tables of coefficients for maximum stresses in other loading and support coses ure given in (6.3). See (6.10) for more detailed discussion of solutions for continuous deep beans.

For rectangular diophragn, plates having proportions of length to depth (a/b in Fig. 6-23) grenter thun about l.5 for cantilever spans, 2.0 for simple spans, and 3.0 for fixed ended or continuous spans, in-plane stresses moy usually be determined with sufficient accuracy by considering tle diaphragm as a rectangular beam whose cross sections deform as a linear plane (plane sections remain plane ofter deformation) during bending. In this case:

$$
\begin{array}{ll}
\max . \sigma_{x}=\frac{6 M_{\text {in-plane }}}{t b^{2}} & \text { Eq. } 6.70 \mathrm{a} \\
\max . \tau_{x y}=\frac{1.5 Q_{i n-p l a n e}}{t b} & \text { F.q. } 6.70 b
\end{array}
$$

Diaphragm stresses in common looding coses: Maximum in-phine stresses for some common idealizations of rectangular diaphragin plates are given in Figs. 6-24 (a), (b), and (c) 6.3), 6-25, and 6-27 (6.10). Deflections are given in Fig. 6-25 (6.3).

Example 6.8 illustrates the use of these curves for determining naximum stresses in a diophragn which behoves as a deep beam.

Stresses at selected points in on equilateral triangular diaphragm are giver, in Fig. 6-28 (6.3). Stresses in the vicinity of a short length of uniform load ulong one edge of an infinite plate are given in Fig. 6-29 (6.3).

FIg. 6-24 VARIATION OF MIDSPAN a_{x} WITH yß FOR UNIFORMLY LOADED, SIMPLY SUPPORTED RECTANGGLAR DIAPHRAGM PLATE (6.3)

Fig. G-25 MAXIMUM MBDSPAN DEFLECTION AT TOP OF UNIFORMLY LOADED, SIMPLY SUPPORTED RECTANGULAR DIAPHRAGM PLATES (6,3)

Fig. 6-26 VARIATION N a_{x} WITH y/b FOR UNWFORMLY LOADED CONTMUOUS DIAPHRAGM PLATES WITH EQUAL SPANS (6.10)

(b) Load on Tap Edge

Fig. 6-27 VARIATION IN y_{x} WITH y/b FOR MDSPAN CONCENTRATED LOADING AT THE TOP AND BOTTUM EDGES OF CONTINUOUS CIAPHRAGM PLATES (6.10)

Assu:ne that the lood is long tern. Allon for tegrudation in ultimate strerigth due to long term load, envirunmental conaitions, und labrication variation, and minimize resin microcracking iy designing for a usable long-:erm ultimate strength of 25 percent of the above values. Then use a load factor of 2.0 to obtain the design laod based on the above reduced ultimate strengths. Assume that modulus of elasticity reduces to 80% of its original value due to creep and degradation. Use a load iactor of 2.5 for failure by instability.*
(a) Assume that the load is uniformly distributed along the bottom edge with an intensity of $100 \mathrm{lbs} / \mathrm{in}$.
(b) Assurie that the load is uniformly distributed aling the top edge with an intensity of $100 \mathrm{lbs} / \mathrm{in}$.

Solution: (a) Idealize the diophragm as a simply supported deep beam loaded on its lower edge, and determine maxirnum longitudinal stresses at midspan from Fig. 6.24 (c).

Tension - strength, $\mathrm{a} / \mathrm{b}=1.0$:
${ }^{1} \max \frac{\sigma_{x}{ }^{\dagger}}{q}=1.85$
allowable $\sigma_{x}=0.25 \times 12,000 / 2=1500 \mathrm{psi}$
req.sired $t=\frac{1.85 \times 100}{1500}=0.12 \mathrm{in}$.

Note: I psi $=0.0069 \mathrm{MPa} ;|\mathrm{lbf} / \mathrm{in} .=0.18 \mathrm{~N} / \mathrm{mrn} ;| \mathrm{in} .=25.4 \mathrm{~mm}$.

* See footnote, Example 6-1, p. 29.

```
Compression-strength, \(a / b=1.0\) :
\(\max \frac{\sigma_{x}^{\dagger}}{q}=0.40\)
max. allowable \(\sigma_{x}=0.25 \times 20,000 / 2=2,500 \mathrm{psi}\)
required \(t=\frac{0.40 \times 100}{2,500}=0.016-\) does nut govern.
Compression - stability, \(a / b=1.0:\)
Equate compression stress along the top edge at ultimate to critical buckling
stress from Eq. 6.72 a in the next Section, with \(k \approx 2.08\) fron Case 11, Table
6-5. Case \(1!\) is used to represent the parabolic build-up of compression due to
varying bending moment along the span length.
\(\frac{-0.4 \times 100 \times 2.5}{t}=\frac{-2.08 \pi^{2} \times 1,200,000 \times 0.8 t^{2}}{12\left(1-0.3^{2}\right) \times 36^{2}}\)
\(t^{3}=0.072 ;\) required \(t=0.42 \mathrm{in}\).
Stobility governs required thickness.
(b) For stresses in a simply supported deep beam loaded clong its top edge,
use Fig. 6-24(a):
Tension-strength, \(a / b=1.0:\)
\(\operatorname{mox} \cdot \frac{\sigma_{x}}{q}=1.20\)
required \(t=\frac{1.20 \times 100}{1500}=0.08 \mathrm{in}\).
Compression - stability, \(a / b=1.0\)
\(\max \frac{{ }^{0} x^{\dagger}}{q}=0.15\)
\(\frac{-0.75 \times 100 \times 2.5}{t}=\frac{-2.08 \pi^{2} \times 1,200,000 \times 0.8 t^{2}}{12\left(1-0.3^{2}\right) \times 36^{2}}\)
\(t^{3}=0.135\) in. \(^{3} ; t=0.51 \mathrm{in}\).
Result: Use \(t=0.51\) in. minimum thickness, as governed by stability in compression when loaded along the top edge under a uniformly distributed edge lood.
```


Fig. 6-28 STRESSES N EGULATERAL TRIANGULAR DIAPH-RAGM UNDER VARIOUS LOADS (6.3)

Fig. 6-29 STRESSES σ_{y} AND $\tau_{x y}$ N MFINITE PLATE FROM EUGE FORCE, q, DISTRIEUTED ON LENGTH, a (6.3)

6.9 STABILITY OF ISOTROPIC PLATES

Plate elements often coniprise flet portions of thin walled structural members such as l-shaped, box, chnimel, angle, or hat-shaped sections, and stressed skin, ribbed or thollow core panels. These assemblies of plates function as beams, columns, wolls, diaphragms, roofs, floors, covers, stiffeners, and the like. In such members, the plares incy serve as flames or webs that are stressed in uniform or varying in-plane rompression. They also may function as webs stressed in shear or diagonal compression. These thin compression elements are subject to local buckling as plates with various conditims of edge restraint.

The overali behavior and design of members comprised of assemblies of plates is presented in Chapter 7. Determination of the stability of their local plate clements is essential for analysis and design of the overall member. Puckling criteria for isotropic flat plates are presented in this Section and for orthotropic flot plotes in the next Section.

General Behavior

When a thin plate is loaded in compression within its own plane, it is subject to sudden buckling, or lateral deflection at a stress that depends upon its stiffness, and this stress is often less than the limiting compressive strength of the material. While this initial buckling couses a usually undesirable rippling in the plaie, it does not always result in catostrophic failure. For example, when buckling occurs in a longitudinally compressed rectongular plate at a stress below the yield stress or proportional linnit of the material, the effective stiffness of a plate that is supported along its longitudinal edges is reduced after buckling. in this case, the longitudinal stresses near the plate edges increase more rapidly than the load, while the stresses in the buckled central portion increase less rapidly or decrease. The plate has "post buckling" strength that depends upon the ratio of initial buckling stress to material strength and the geometry of the plate os well os its edge restraints. In the case of thin plates with edge supports ihat restrain lateral or in-plane movement, the post-buckling strength can be quite significant due to the transverse membrane action that supports the plate os it buckles.

Stability of Lang Rectangular Plates

Long rectangular plates subject to lonqitudinal compression, and having one or both of the longer edges suppurted perpendicular to their plane, with various rotatianal and in-plane edge restraints, are common cases of interest for buckling onalysis. Tronsverse edges are also usually supported, but these will not influence the plate stability if the plate is sufficiently long. A long plate under uniaxial compression, with all edges simply supported, will buckle into a series of waves having half-wavelengths about equal to plate width (Fig. 6-30a). This means that the minimum buckling stress in the long simply-supported plate with uniaxial load is about the same as the buckling stress in a square simplysupported plate. If the long plate has longitudinal edges clamped against rotation, the half-wavelength will be obmit two-thirds of the plate midth.

Fig. 6-30. BUCKLING OF L.ONC, RY' UNDER UNAXIAL COMPRESSIONS

A useful analogy is to consider the longitudinally compressed long rectangular plate as comprised of longitudinal strips. or thin compressed bars, that obtain lateral support agoinst buckling perpendicular to the plone of the plate from the elastic stiffness of transverse strips (Fig. 6-30b). However, because of the variation in stiffness that occurs transversely, quanitative results for plate
stability cannot be obtained from direct application of the theory of compressed bars on an elastic foundation, because the approprinte foundation modulus cannot be defined in a simple way. Nevertheless, the anology is an aid to a physical understanding of how buckling resist ance develops in plates.

Rectangular Plates in Direct Stress

When a rectangular plate is subject to a compressive stress resultant N_{x} in its own plane (Fig. 6-300), the ehastic huckling resistance is (6.15):

$$
\begin{equation*}
N_{x c}=\frac{k n^{2} D}{b^{2}}- \tag{Eq. 6.71}
\end{equation*}
$$

k is a buckling coefficient that depends on edge support conditions, the plate proportions, a / b, and the voriation of N_{x} over the plate width b. in terms of stress and plate thickness, Eq. 6.7 i becomes:

$$
\sigma_{x c}=\frac{k \pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{t}{b}\right)^{2}
$$

Eq. 6.71 a
k has minimum values for those ratios of o/b that result in buckling of the plate in an integral number of half-wavelengths in the x-direction, with lengths equal to the critical half-wavelength of buckle. For example, as was indicated previously, the critical half-woveiength is ic for a uniformly compressed rectongulor plate with simple edge supports (Fig. 6.30a). Consequently, for plate lengths, a, greater than b, the minimum value of $k=4.0$ is frequently used for determination of critical buckling stress, and plates with this londing and edae condition are considered "long" when $a \geq b$. The maximum error in this ossumption is an underestimate of buckling stress by 12 percent at $a=1.4 b$. The error is only 4 percent at $a=2.45 b$, with minimum values of k folling in betiveen the above a / b ratios.

Minimum values of the buckling coefficient, k, for use with Eqs. 6.71 or 6.7la are presented in Table 6-3 for common cases of edge restraint and in-plone stress distribution. See (6.11) for solutions for criticel buckling stress in many
other pectencular phate orror vements aith wifferent combination of exte ree straint conditions and londing distributions. Nost of these ure refineretents th the values for k given in Table 6-3.

Toble 6-3

BUCKLING COEFFICENTS FOR LONG ISOTROPIC PLATES SUPPORTED ON THREE OR FOUR SIDES UNDER LONGITUDINAL COMPRESSION

(Source 6.14)

Cose	Looding	Ratio 0 ! Bending Stress to Uniform Compression Stress	Minimum duckling Coefficient,* k					
			Unlooded Edges Simply Supporfed	Unlcooded Edges Fixed	Top t. dge Free		Sottom Edge F ree	
					Botiom Edge Simply Supporied	Bottom Edge Fixed	Top Edge Simply Supporied	Top Eage Fixed
1	$1-1$							
		$\begin{gathered} 0.0 \\ \text { (pure compression) } \end{gathered}$	4.0	6.9	0.45**	1.33	0.45**	1.33
	tran. o/b for long plate:		(1.0)	(0.0)	(5.+) ${ }^{\text {a }}$	(1.5)	(5.*)	(1.5)
2		0.50	5.8					
3	$\theta+b B$	i. 00	7.8	13.6	0.57	1.61	1.70	5.93
4	10	200	11.0					
5		5.00	15.7					
6			23.9	39.6	0.85	2.15		
	(min. o/b for lang plate)		(0.6)					

[^3]Example 6.9 and Fxample 6.1 1 , which are given later in this Section, illustrate the use of Eq. h.7la to establish proportions of flange plates that will develop the full compressive strength of the walls of hollow tubular sections without Incal burkling. This is riscussed further in Chanter 7.

In cases where the plate is not lateraliy supported along its longitudinal (unloaded) edges (Fig. 6-31), or for wide plates where bis much greater than \mathfrak{a}, the critical buckling stress resultant and stress are given by Euler's Formula and are as tollow, (6.15):

Fig. 6-31. BLKKLING OF WIOE PLATES UNDER UNIAXIAL COMPRESSION

$$
\begin{align*}
N_{x c} & =\frac{k \pi^{2} D}{a^{2}} \tag{Eq. 6.72}\\
\text { or } \quad \sigma_{x c} & =\frac{k \pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{i}{a}\right)^{2}
\end{align*}
$$

Values of the bukkling coefficient, k, for various conditions of end restrcint and application of compression force, $N_{x c \text {, }}$ ore given in Table 6-4. Values of k for additional conditions are given in (6.11).

When edges are held in the plane of the plate, longitudinal compression produces iransverse compression due to restraint of Poisson expansion. This results in some recurction in the buckling coefficient. A buckling coefficient correction factor, C_{b} to be applied to $k=4$, the coefficient for uniaxial compression on

Table 6-4

Buckling Coefficients for Wide botropic Plates or Plates Supported Only on Transverse Edges Under Uniform Longitudinal Compression (6.1 I)

long plates with simple support of longitudinal edges is given in Fig. 6-32 (6.12). The correction factor for simply-supported edges and varying amounts of restraint of in-plone edge movement, K_{a}, is given on the left side of the Figure and is to be applied to $k=4.0$ for use in Equations 6.71 and 6.71 a.

When longitudinal edges are also restrained ogainst rotation, the correction factor increases with increasing edge restiaint, K_{b}, as shown in the main part of the Figure. The asymptote values given on the right side of the Figure are for fully clamped edges. The "coirected" critical buckling stress, $\sigma_{x c c}$, is (6.12):

$$
\sigma_{x c c}=\frac{4 C_{b} \pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{t}{b}\right)^{2}
$$

For a given amount of rotational restraint, the correction factors that reduce elastic buckling coefficients when restraint of in-plane tronslation is provided have little practical significance, since restraint of in-plane translation substanrially increases the post-buckling strength of the plate. This type of restraint develops the plate's membrane resistonce to large lateral deflection, but since this effect is non-linear, it does not enhance the initial buckling resistance.

Biaxiol stress conditions also hove significont influence on plate buckling strength. Correction factors, C_{b}, for various ratios of uniform transverse ttnsion or compression stress to uniform longitudinal compressive buckling stress on a plate with simply supported edges are given in Fig. 6-33 (6.12). Note that in the curves given in the Figure, the longitudinal stress term, $\sigma_{x c}$, in the tronsverse stress ratio, $\sigma_{y} / \sigma_{x c}$, is obtained from Eq. 6.71a. These factors are multiplied by $k=4$ in Equations 6.71 or 6.7 la to obtain critical buckling stresses in the longitudinal direction, as given in Eq. 6.7 lb above. See (6.12) for similar curves for plotes with other edge conditions.

Effect of Creep

Creep in plastics subject to long-duration stress was discussed in Chapters 2 and 3. The use of a reduced modulus of elasticity, termed the viscoelastic modulus, was recommeided to account for creep. In the linear range, the viscoelastic modulus depends on the duration of stress. In the case of a plate, stress

Fig. 6-32 CORRECTION FACTORS TO $k=40$ FOR DETERMMATION OF k W EQS. 6.7I FOR VARIOUS CONDITIONS OF LONGITUDINAL EDGE SUPPORT IN UNAXIAL COMPRESSED LONG PLATES (6.I2)

Fig. 6-33. CORRECTION FACTORS TO $k=40$ FOR DETERMMATION OF k N EQS, 6.71 FOR VARIOUS BIAXIAL LOADNG CONDITIONS N SIMPLY SUPPORTED COMPRESSED PLATES (6.12)
intensity, and perhaps duration, frequently is , freater in, say the x direction than in the y direction. Since the nuckling strencth of a longitudinally loaded rectangular plate, for exomple, is largely deterinined by the tronsierse flexural stiffness, a question arises about the proper modulus of elasticity to use in the plate bucklina equations. The following madifiration fortor is cherived from on approach suggested by (Bleich (6.13) for metal plates lorded beyond their propartional limits:

$$
\begin{equation*}
\tau_{I_{-} T}=\frac{F_{0} v \text { longitusdinal }}{F_{0} \text { trunsverse }} \tag{Гq. 6.73}
\end{equation*}
$$

Madify a_{xc} (or N_{xc}, from the previously given formulas for clastir buckling of rectongular plates as follners:

$$
\begin{equation*}
v_{x c v}=u_{x c} \sqrt{r_{L T}} \tag{Eq. 6.74}
\end{equation*}
$$

The approach suggested above is semi-empirical in concept, an! thus, should be confirmed or adjusted using plate buckling tests on s!eecific plastics materials.

Example 6.9 illustrates the calculation of the maximum bucklina stress in a compressed plate which is a romponent of a rectangulir tube column fabricated from a plastic materiol exhibiting the creep characteristics determined in Chapter 3, Fig. 3-2.

Post Puckling Strength of Rectangular Plates in Direct Stress

When the critical buckling stress is less thon the yield strength or proportional limit strength of the matericl, the ultimate strength of a thin plate mas exceed its bucikling strength. After initial buckling occurs in a rectongular plate subject to uniform uniaxial compression and supported along each longitudinal edge, siresses decrease in the central area of maximum buckle deflection, and they increase in the strips aljocent to the lonaitudinal supports (Fig. 6-34). At the collapse condition, two strips adjocent to the longitudinal support, haring a width b_{e}, as shown in Fig. 6-34, ore considered to carry the entire plote locid at a stress equal to the ultimate usable compressive strength of the plate raterial (first damage, or yield strength).
Example 6.\% Determine the minimum thickness required to develop the full ultimate compressive strength without local buckling of a hollow 10 -in.-square tubular compression member extruded of PVC plastic haring the viscoelastic properties given in Fig. 3-2. (a) Assume short-term loading, 0.1 hours or less; (b) assume long-term loading, 100,000 hours. *
Solution: (a) From Fig. 3-2 for 0.1 hour duration of luoding, $E_{y}=E_{0}=550,000$ psi and maximum usable stress, $\sigma_{v}=4,500$ psi. Assume "hinged" edge condition for longitudinal edges because asjocent sides can buckle alternately inward and outward, as shown in the sketch.

From Eq. 6.71 la with $k=4.0$ for hinged edges:

$$
\sigma_{x c}=\sigma_{v}=4,500=\frac{4.0 \times \pi^{2} \times 550,000}{12\left(1-.3^{2}\right)}\left(\frac{1}{10}\right)^{2}
$$

$t=0.676 \mathrm{in}$. (use $\mathrm{min} . t=0.48 \mathrm{in}$.)
(b) From Fig. 3-2 for 100,000 hour duration of looding, E_{y} is reduced because of creep and the muximumi usable stress is also reduced because of reduction in long-term uitimote strength. Thus, $E_{v}=300,000$ psi and $\sigma_{v}=2,300$ psi.
First, using isotropic buckling theory:
$\sigma_{x c}=\sigma_{v}=2,300=\frac{4.0 \times \pi^{2} \times 300,000}{12\left(1-.3^{2}\right)}\left(\frac{1}{10}\right)^{2}$
$t=.46 \mathrm{in}$.
Note: 1 psi $=0.0069 \mathrm{MPa} ; \mid \mathrm{in} .=25.4 \mathrm{~mm}$
See footnote, Example 6-1, p. 29.

Comment: The buckling tieory for isotropic materials may produce an overly conservative evaluation of the buckling sirength of a uniaxial compressed plete, depending on the effect of duration of load on the flexural rigidity transverse to the direction of compression. If we assume that buckling resistonce is governed hy short-terin modulus of elasticity transverse to the direction of lood, the plate buckles as on orthotropic plaie ard we cai use the following solutions:
(1) Simplified Solution: From Fus. 6.73 and 6.74 with:

$$
\begin{aligned}
& \tau=\frac{E_{v \text { long. }}=\frac{300,000}{E_{0 \text { transv. }}}=0.15}{550,000} \\
& \sigma_{x c v}=2,300=\frac{4.0 \times \frac{\pi^{2} \times}{12\left(i-\frac{550}{3}\right.} \frac{000 \sqrt{2}}{125}\left(\frac{1}{10}\right)^{2}}{t=.40 \mathrm{in} .}
\end{aligned}
$$

(7) Applinatim nf arthritrnnir burklinc, adoction given in tire next Section:

$$
\begin{aligned}
& D_{0}=D_{12}+2 D_{12}^{\prime} \approx \sqrt{U_{11} D_{12}} \\
& \sigma_{x c}=\frac{2 \pi^{2}}{b^{2} t} \times 2 \sqrt{D_{11} D_{12}}=\frac{4 \pi^{2} t^{2} \sqrt{E_{v} E_{0}}}{12\left(1-v_{12} v_{21}\right) 10^{2}} \\
& \sigma_{x c v}=\frac{4 \pi^{2} t^{2} E_{0}}{12\left(1-v_{12} v_{21}\right) 10^{2}} \sqrt{\frac{E_{v}}{E_{0}}}
\end{aligned}
$$

This is the some as the ahove simplified expression it $\nu_{12} \cdot v_{21}$

Fig. 6-34. POST BUCKLING STRESSES WN THN PLATES WITH SUPPORT ALONG BOTH LONGITUDNAL EDCES

The following semi-empirical relations have been developed (6.14) tor effective post-buckling strength of thin metal plates simply supportert along longitudinal edges (refer to Fig. 6.34):

$$
\begin{equation*}
\frac{b_{e}}{b}=\sqrt{\frac{\sigma_{x c}}{\sigma_{x e}}}\left(1.0-0.22 \sqrt{\frac{\sigma_{x c}}{\sigma_{x e}}}\right) \tag{Eq. 6.75}
\end{equation*}
$$

$\sigma_{x c}$ is determined from Eq. 6.710 with the opproprinte value of k for a plate supported olong two longitudinal edges.

$$
\begin{align*}
& \sigma_{x e}=\frac{N_{x} b}{t b_{e}} \tag{Eq. 6.76}\\
& \sigma_{x}=\frac{N_{x}}{1}=\sqrt{\sigma_{x c} \sigma_{x e}}\left(1.0-0.22 \sqrt{\frac{\sigma_{x c}}{\sigma_{x e}}}\right) \tag{Eq. 6.77}
\end{align*}
$$

In proctical design, $a_{x e}$ and b_{e} are determined by cut and try solution of the above equations whenever $\sigma_{x u}>\sigma_{x c}$.

For a plate supparted alona only one longitudinisl edge:

$$
\begin{equation*}
\frac{b_{e}}{b}=1.19 \sqrt{\frac{\sigma_{x c}}{\sigma_{x e}}}\left(1-0.30 \sqrt{\frac{\sigma_{x c}}{\sigma_{x e}}}\right) \tag{Eq. 6.78}
\end{equation*}
$$

$\sigma_{x r}$ is determined from Eq. 6.7la with the appropriate value of k for a plate supported along only one longitudinal edge.

$$
\begin{equation*}
\sigma_{x}=\frac{N_{x}}{t}=1.19 \sqrt{\sigma_{x c} \sigma_{x e}}\left(1-0.30 \sqrt{\frac{\sigma_{x c}}{\sigma_{x e}}}\right) \tag{Eq. 6.79}
\end{equation*}
$$

The coefficients in the above Eqs. 6.75 to 6.79 are not greatly affected by the restraint conditions slong longitudinal edges and use of the above relations is appropriate for all types of restraint at supported edges. Of course, $\sigma_{x c}$ will vary with tive type of edge restraint.

No dato are ovailable to evoluate whether the above relations are suitable for use with plastics materials. Tests on thin plates under direct compression should be conducted for each specific material of interest.

Combined Direct Compressian and Lateral Laod

Plates are frequently subject to combined direct compression forces and lateral loods, requiring consideration of interoction effects. An example is ship bottom plating which serves as a portion of the hull girder flange and also resists substantici hydrostatic pressure. The following opproximate interaction relafions are extremely useful for practical design:
I. Elastic buckling stress: Unlike o slender column, the presence of lateral load in combination with direct thrust does not reduce the elastic buckling strength of a plate (6.13). On the contrary, some increase in buckling
strerigth may occur if the shape of the deflection curve produced by loteral load differs significontly from the shope of the lowest mode buckle.
2. Deflertion due to lateral lood: Deflection due to lateral lood is increased by the presence of compressive axial force and is decreased by the presence of tensile axial force. This increased (or decreased) deflection is determined by a magnification factor, \bar{m}, as follows (6.13):

$$
\begin{align*}
& w_{a}=\bar{m} w_{0} \tag{Eq. 6.80}\\
& \text { where } \bar{m}_{m}=-\frac{1}{1-\frac{\sigma_{x a}}{\sigma_{x c}}} \tag{Eq. 6.81}\\
& \text { and } \sigma_{x a} \leq \sigma_{x u} ; \sigma_{x a} \leq \sigma_{x c} \\
& w_{0} \leq \frac{1}{2}
\end{align*}
$$

3. Bending rroment and stress dive to lateral lood: In a sirnilar way, bending moment is increased by the presence of compressive axial force and decreased by the presence of tensile axial force, as follows (6.13):

$$
\begin{aligned}
& M_{o}=\bar{m} M_{0} \\
& \sigma_{x}=\sigma_{x a}+\bar{m} \sigma_{x b} \\
& \sigma_{y}=\bar{m} \cdot \sigma_{y b}
\end{aligned}
$$

Eq. 6.82

Eqs. 6.83

The some limitations to $\sigma_{x a}$ and w_{0} as described above for deflection also apply to the use of the magnification factor for moment.

Example 6.10 illustrates the determination of combined axial and bending stress in a box-shoped cross saction used for corrosion resistont ducting that supports both internal pressure and axial load on the side walls.

Rectangular Plates in Shear

Under o state of pure shear stress in a thin plate (Fig. 6-35), compressive and tensile principal stresses (Eq. 6.69) equal to the shear stress are directed of ± 45

[^4]
$$
\sigma_{x a}=704 \times 3 / 2=1,056 \mathrm{psi}
$$

degreas to the x oxis respectively. The limiting shear stress that results in elastic buckling in the direction of diagonal compression is (6.14):
$\tau_{x v C}=\frac{k_{x y}{ }^{n}{ }^{2} E}{12\left(1-v^{2}\right)}\left(\frac{1}{b}\right)^{2}$

Fig. 6-35. PURE SHEAR LOAD ON RECTANGULAR PLATES

The buckling coefficient, $k_{x y}$, depends on the ospect rotio, b / a, and the conditions of edge restraint. The following equitions may be used to determine $k_{x y}$ for plotes with $b<a(6.14)$:

Simply supported edges:

$$
\begin{equation*}
k_{x y}=5.34+4\left(\frac{b}{a}\right)^{2} \tag{E4. 6.85}
\end{equation*}
$$

Ali edges clomped:

$$
k_{x y}=8.98+5.60\left(\frac{b}{a}\right)^{2}
$$

Eq. 6.86

Equations 6.84 and 6.85 ore frequently used to evaluate elastic stability of thin webs of plote girders, where a is the spacing of stifieners and b is the depth of the girder, except that a and b are rcsersed where stiffeners are closer than the depth of the girder.

Example 6.11 illustrates the use of Eas. 6.84 and 6.85 to estoblisin proportions of wet plates in box sections that will develop the fill shear strength of the web without local buckling in shear. This is discussed further in Chmpter 7.

Stiffened airder webs have significant post-buckling strength. After buckling occurs in the direction of fiononal compression, the wet, behnves like o truss with diggonal tension (tension field) in the weh ond compression in the stiffering ribs which extend isetween flanges. This is discussed in Chapter 7.

Rectangular Plates in Combined Sheor and Uniaxial Compressive or In-Plane Bending Stress

The critical buckling stress (for both shear ond direct stress) is reduced when a plate is subjected to the combined effects of shear and uniaxial compressive or in-plone bending stress (Fig. 6-36). For such cases, the critical hucklina stresses can be closely approximater with the followina inferaction formitrack 12)(k 1).

Fig. 6-36. COMBMED SHIEAR AND UNHAXIAL COMPRESSION OR N-PLANE BENDNG STRESSES ON RECTANGULAR PLATES

Example 6.1 I: Determine the minimum thicknesses of web and flange in the FRP box section beam shown in the sketch to develop the full ultimate web shear strength and flange compressive strength without local wall buckling. Assume that the material is isotropic and that the web and flange plates are long relative to their widths with longitudinal edges, pinned."

Material Properties

$E=1,200,000$
ult. compression strength $=16,000 \mathrm{psi}$
ult. shear strength $=8,000 \mathrm{psi}$

Solution:

Web:
From Ey. 6.82: $\quad k=5.34+.4(15 / 00)^{2}=5.34$
From Eq. 6.81: $\tau_{x z c}=8,000=\frac{5.34 \pi^{2} \times 1,200,000}{12\left(1-.3^{2}\right)}\left(\frac{\left.{ }^{1}{ }_{w}^{15}\right)^{2}, ~}{}\right.$
$t_{w}=0.56 \mathrm{in}$.

Flange: From Eq. 6.7 I a and Table 5-3:

$$
\begin{aligned}
& \sigma_{x c}=16,000=\frac{4.0 \pi^{2} \times 1,200,000}{12\left(1-.3^{2}\right)}\left(\frac{t_{f}}{10}\right)^{2} \\
& t_{f}=0.61 \mathrm{in} .
\end{aligned}
$$

Comment: For wall thicknesses greater than given above, the ultimate strength of a beam using this box section is governed by material strength; for wall thicknesses less than these values, ultimate strength is goverred by local wall buckling, which is a function of the stiffness rather than of the strength of the material.

Note: $1 \mathrm{psi}=0.0069 \mathrm{MPu} ; 1 \mathrm{in} .=25.4 \mathrm{~mm}$

* See footnote, Example 6-1, p. 29.

Combined shear and viiiform compression (Fig. 6-36o), where a/b > 1.0;

$$
\begin{equation*}
\left(\frac{\tau_{x y} \tau_{x y c}^{0}}{\tau_{x y c}}\right)^{2}+\frac{0_{0}^{0}}{{ }_{x c}^{0}}=1 \tag{Eq. 6.87}
\end{equation*}
$$

When $a / b<1.0$, the above formula is very conservative and more occurate relations are given in (6.13).

Combined shear and pure in-plone bending (Fig. 6-36b); where a/b $>1.0:$

Eqs. 6.87 and 6.88 muy be combined into one three-part interaction equation when all three types of stress occur simultanecusly (6.14).

Rectangular Plates Without Lateral Support Along Comrressed Longitudinal Edges

Sometimes, as in Example 6.9 in Section 6.8, a diaphragin plate transfers lood as a "deep beam" without lateral suoport along the compressed edge, as shown in Fig. 6-37. In such plates, a conservative estimote of criticol buckling stress may be obtained by consitering that a strip of unit width along the compressed edge (or other location of maximum compression) behaves as a slender strut hetween points of lateral support. The critical buckling stress in such a strip is given by Eq. 6.72a. The buckling coefficient, k, reflects the end restraint conditions and the variotion in build-up of compression stress over the unsupported length. This approoch neglects the additional resistance which can be provided by odjocent strips which are stressed to lower levels. Mobilization of this odditional resistance brings inta play the torsional stiffness of the plate.

If the spon-depth ratio of the diaphragm plate exceeds about two, a more accurate determination of buckling stress may be obtained from the theory of loteral-torsional buckling of rectangular beams (6.15). For this case, the critical buckling stress at the laterally unsupported compression edge of a diaphragm

(a.) CONSTANT MOMENT OVER SPAN Q UNERACED SPAN $=r$

Fig. 6-37 LATERAL-TORSIONAL BUCKLING OF DIAPHRAGM PLATES WITHOUT CONTINUOUS SUPPORT ALONG LONGITLDINAL EDGES a/b > 2
plate of thickness, l, deptit, b, span, a, ard laterally unsupported length, c, subject to variuus loading distributions and cor: 'itinns of restraint at supports, as shown in Fig. 6-37, is (6.15):

$$
v_{x c}=\frac{k \pi}{c} \frac{t^{2} E}{b} \quad \sqrt{\frac{\left(1-0.63 \frac{t}{b}\right)}{2(1+v)}} \quad \text { Eq. } 6.89
$$

The buckling coefficient, k, veries for different distributions of loading on the diaphragin plate, for different locations of lond application relative to the centroidal \times axis, and for different trpes of restroint at the points of lateral support. Some values of k for the commonly occurring icad and restroint conditians shown ir. Fig. 6-37 are given in Table 6-5.

The value $k=1.0$ for pure bending without restraint of rotation at points of lateral restraint may often be used to establish proctical design lirrits for buckling becnise it conservatively approximates the other conditions with reasonajle occuracy in most cases.

The above solution is based upon twisting of the plate as a rigid body, neglecting transverse bending of the plate which reduces its torsional rigidity. This could result in an overestimate of the b okling stress, depending on the a / b and b / t ratios of the diaphragm plate.

Circular Plotes

The critical buckling stress on the perimeter of a radially compressed circular plate (Fig. 6-38) is (6.11):

$$
\begin{align*}
\sigma_{r c} & =\frac{4 k}{a^{2} t}{ }^{2} D \tag{Eq. 6.90}\\
\text { or } \quad \sigma_{r c} & =\frac{k}{3\left(1-v^{2}\right)}\left(\frac{t}{a}\right)^{2}
\end{align*}
$$

The following values of k apply to variou: coses of support restroint:

Trble 6-5

Buckling Coefficients for Narrow Ructangular Beams With $a / b>2$, Subject to In-Plane Bending (6.1 1) (6.15)

Buckling Coefficient, k, in Eq. 6.89

> lateral restraint of \quad loteral resiroint al indicated spocing with- indicated spocing with out lateral ntational fixity full loterol rototional fixity

1. Pure bending in plane of ptote - Fig. o-37(o) with 1.02.0 lateral unbraced length $=c$
2. In-plone concentroted lood ot mid-spen, applied at centroidal x axis - Fig. 6-37(b), simple surports in-plane span a, lateral suppert spon 0
3. Sarne as 2 , except load is applied at distance d dove centroidal x oxis Fig. 6-37 (ch or -d below.

$$
1.35\left(i-1.74 \frac{\mathrm{~d}}{\mathrm{a}} \sqrt{\left.\frac{(1+v)}{2\left(1-0.63 \frac{t}{6}\right)}\right)}\right.
$$

4. Unitarmly distributed lood applied at centrc dal x-axis - Fig. 6-37(d), simple supporis in plone span on lateral support epon o
5. Concenirated lood at end of contilever. applied ot centroidal x cxis -
n.a.

Fig. 6-37(e), no in-plone or lateral support at point of lood application
6. Some os 5 , except lood is epplied at d coove centroid axis, Fig. 6-37 (f) or -d below
. Uniformly distr ibused lood an contilever, applied of
centroidal x-axis - Fig
n.a.
2.05

6-37 (g), no in-plane or lateral suppert of contilever end

Fig. 6-38 BUCKLING COEFFICIENTS k F OR CIRCULAR ISOTROPIC PLAIE WITH ROTATHNALLY RESTRAINED EDGES (6.1 I)

Fig. 6-39 BUCKLING COEFFICIENTS F OR ANWULAR ISOTROPIC PLATES WITH SIMPLY SUPPORTED (\mathbf{k}_{1}) OR CLAMPED OUTSIDE EDGES (\mathbf{k}_{2}) - NTERIJAL BOUNDARY FREE IN BOTH CASES (6.1I)

$$
\lambda=\frac{0}{0} ;+=+1\left(1-\lambda^{2}+\frac{\dagger_{1}}{T_{1}} \lambda^{2}\right)
$$

Fig. 6-40 BUCKLING COEFFICIENTS FOR CRCULAR ISOTROPIC PLATES WITH ANMULAR THICKENING (6.1I)

For simply supported edges:
$k=0.426$

For clamped edges:
$k=1.49$

For elastically supported edges:

For simply-supported or clamped plate with unsupported annular openings:

For simply supported plates and clamfed plates with annular thickening:

For an eliiptical plate with boundaries clamped:

See Fig. 6-41

Fig. 6-41. BUCKLING COEFFICIENT FOR ELLIPTICAL PLATE WITH CLAMPED EDCES (6.11)

See (6.11) for buckling of circular plates under partial external rodial compression, external radial compression with boundary partially simply supported and partially clamped, various cases involving support of on annular opening normal to plate, various circular sectoral plates, and buckling of plates with compression applied rodially at internal boundaries of annular openings and combined with radial compression on external boundaries.

Triangular and Polygonal Plotes

The critical buckling stress on the perineter of equally stressed triangular plates (Fig. 6-42) is as follows (6.11):

$$
\begin{equation*}
\sigma_{n c}=\frac{k}{12\left(1-v^{2}\right)} E^{2}\left(\frac{t}{a}\right)^{2} \tag{Fq. 6.91}
\end{equation*}
$$

For equilateral triangle with simply supported edges (Fig. 6-42a):
$k=4.0$

For right angled isosceles triongular plate with simply supporfed edges (Fig. 6-42b):

$$
k=5.0
$$

See (6.11) for biskling of incny other polygonal plates under various conditions of shape, propartions, edge loads, and edge restrnint.

(a)

(b)

Fig. 6-42. DRECI STRESS ON SIMPL.Y SUPPORTED IRIANGULAR PLATES

6.10 STABILITY OF ORTHOTROPIC PLATES

When plate materials are not isotropic, stability relations become much more complex. Only a few basic cases involving buckling of specially orthatropic rectangular plates are presented here. In these plates, the principal plate axes, principal axes of materials stiffness and a.ses of principal stress (except in pure shers case given below) all coincide.

Uniform Unioxial Compression

For the basic case of uniaxial compression on a simply supported rectangular plate stressed in the x direction (Fig. 6-43a), the critical buckling stress resultont is (6.1 $1 \times 6.18)(6.19)$:

$$
N_{x c}=\frac{2 \pi^{2}}{b^{2}}\left(\sqrt{D_{11} D_{22}}+D_{1,}\right)
$$

(a) Plate simply supported along all
(b) Plate with one edge free, others simply supported four edges

Fig. 6-43. BUCKLING OF PLATES IN UNMAXIAL CONPRESSION

For single thickness plates, the critical buckling stress is:

$$
\sigma_{x c}=\frac{N_{x c}}{t}
$$

For specially orthotropic, lamirated plates, the critical buckling stress in layer k, with its stiffness properties referenced to direction I in the x direction, is:

$$
\sigma_{x c k}=\frac{N_{x c} b_{\| k}}{A_{\| \|}}
$$

also $N_{x c}=2 \sum_{l}^{n} J_{x c k}{ }^{t_{k}}$

The half-wavelength of buckle, ℓ_{b}, is:

$$
\begin{equation*}
\ell_{b}=b \sqrt[4]{\frac{n_{11}}{D_{22}}} \tag{Eq. 6.93}
\end{equation*}
$$

See Eq. 6.6 for D_{0}. For an isotropic plate $D_{11}=D_{22}=D$ and $D_{0}=D(1-$ $\left.v^{2}\right) /(1+v)+V D=D$; thus, $\sigma_{2 \varepsilon}$ is the same as riven in Eq. 6.7la. Also the half-wavelength of buckle is b.

Equations 6.92 and 6.93 only apply for plates whose lengith, n, equals or exceeds ℓ_{b}. See (6.16) for buckling coefficients for smaller a/b ratios.

Example 6.12 illustrates the determination of crit al local buckling stress in a rectongular tube column fabricated from the orthotropic laminote whose stiffness was colculated in Example 6.7.

When the longitudinal plate edges are rotationally fixed, the critical buckling stress is $\mathbf{i} 6.16$):

$$
\begin{align*}
& v_{x c}=\frac{4.52}{b^{2}+\pi^{2}}\left(\sqrt{D_{11} D_{22}}+\frac{D_{0}}{1.84}\right) \tag{Eq. 6.94}\\
& \ell_{b}=0.67 b \sqrt[4]{\frac{D_{11}}{D_{22}}}
\end{align*}
$$

Eq. 6.95

Equations 6.94 and 6.95 apply only for plotes whose length, a, cquals or exceeds ℓ_{b}.

When irformation about the in-plone shearing rigidity of the specially or thotropic material is not available to calcuiate D_{0}, an estimate of the effect of the differing stiffness in the 1 and 2 directions on the buckling stress in the x direction con be obtained by modifying the buckling formulc: for isotropic plates os follows:
Iterm lood in a square tube section constructed with the laminate whose stiffness properties were determined in Example 6.7 and whose cross section dimensions are shown in the sketch: *
Solution:

From Example 6.7:

Flexural Stiffness:	Longitudinal:	$D_{22}=382 \times 10^{3} \mathrm{lbs}-\mathrm{in} .^{2}{ }^{2} \mathrm{in}$.
	Transverse:	$D_{11}=112 \times 10^{3} \mathrm{lbs}-\mathrm{in} .^{2} / \mathrm{in}$.
Twisting Stiffness:		$D_{0}=35 \times 10^{3} \mathrm{lbs}-\mathrm{in} .^{2} / \mathrm{in}$.

From Eq. 6.89, modified for a laminated plare:

In each layer:
$\sigma_{y c k}=\frac{N_{y c}{ }^{b} 22 k}{A_{22}}$
$\bar{A}_{22}=\quad \Sigma+b_{22}=0.06(25.15+1.01+25.15+1.01+10.09) \times 2 \times 10^{6}$
$+0.06 \times 1.01 \times 10^{6}=7.55 \times 10^{6}$
Graphite, longitudinal: $\sigma_{\text {yck }}=\frac{5,304 \times 25.15 \times 10^{6}}{7.55 \times 10^{6}}=17,670 \mathrm{psi}$
Aramid, longitudinal: $\quad \sigma_{\text {yck }}=\frac{5,304 \times 10.09 \times 10^{6}}{7.55 \times 10^{6}}=7,089 \mathrm{psi}$
Aramid, transverse: $\quad \sigma_{\text {yck }}=\frac{5,304 \times 1.01 \times 10^{6}}{7.55 \times 10^{6}}=710 \mathrm{psi}$
Check total lood:
Graphire, L: $17,670 \times 0.06 \times 4$ layers $=4,240 \mathrm{lbs} / \mathrm{in}$.
Aramid, L: $\quad 7,089 \times 0.06 \times 2$ layers $=851$
Aramid, T: $710 \times 0.06 \times 5$ layers $=\quad 213$
5.304 Ibs/in.
Nate: $1 \mathrm{lbf}-\mathrm{in} .^{2} / \mathrm{in} .=113 \mathrm{~N}-\mathrm{mm}^{2} / \mathrm{mm} ; 1 \mathrm{lbf} / \mathrm{in} .=0.18 \mathrm{~N} / \mathrm{mm} ; 1 \mathrm{psi}=0.0069 \mathrm{MPa}$

* See footnote, Example 6-1, p. 22.

1. I'se E_{22} (or D_{22}) in isotropic forimulas to determine $\sigma_{x c}$ isotropic. Direction I lies olong the x axis.
2. Nootify buckling stress os follows:

$$
\sigma_{x c o r t h o}=\sigma_{x c} \text { isotropic } \sqrt{\frac{F_{-11}}{F_{22}}}
$$

Fq. 6.96

This is the sane relntion that was suggested in a previous Section to account for creep in buckling of isotropic plotes under long-ter:n londs.

Two other conditions of proctical importance are the rases of uniaxial cornpression with one edge at $y=b$ free and the other edge at $y=0$ either simply supported or fixed as shown in Fig. 6-43(b). These cases are limiting conditions in the local buckling of an outstanding flange of on I or C shaped beam.

The following equations for the approximate critical buckling stress in specialty orthotropic plates with me unlmaded edge free are given in (6.18)(6.19). These were developed for homoneneous plates of uniform thickness, and are given for the above two limiting conditiuns of edge restroint:
(a) edge at $y=b$ free and at $y=0$ simply supported:

$$
\begin{equation*}
\sigma_{x c}=\frac{\pi^{2}}{b^{2}}\left[D_{11}\left(\frac{b}{a}\right)^{2}, \frac{12}{\pi^{2}} D_{12}^{\prime}\right] \tag{Eч. 6.97}
\end{equation*}
$$

for a very long plate, where a / b is large:

$$
\begin{equation*}
\sigma_{x c}=\sigma_{12}\left(\frac{t}{b}\right)^{2} \tag{Eq. 6.88}
\end{equation*}
$$

For this edge condition, the half wove length of buckle equals the length of the plate, a. This is similar to the isotropic plate buckling conditions qiven in Case 4, 「able 6-3.
(b) edge of $y=b$ free and at $y=0$ fixed:

$$
\sigma_{x c}=\frac{\pi^{2}}{b^{2}+}\left[\left(0.935 \sqrt{D_{11} D_{12}}-0.656 D_{12}+2.092 D_{12}^{\prime}\right)\right] \text { Eq. } 6.99
$$

For this edge condition, the half wave length of buckle is:

$$
\begin{equation*}
\ell_{b}=1.46 \mathrm{~b} \sqrt[4]{\frac{D_{11}}{D_{12}}} \tag{Eq. 6.100}
\end{equation*}
$$

See Chapter 7 for a design example showing the application of the above equations for design of composite beam flanges.

Effect of Shear Deformation in Laminoted Plotes

Buckling relations become very complex when transverse (interlarninar) shear deformation is not neglected, as it is in the classical buckling relations presented obove. Buckling stresses, including tronsverse shear deformation, for uniformly compressed specia!ly orthotropic rectangular plates with loaded edges simply supported and unloaded edges: (a) simply supported, (b) clamped, and (c) one simply supported and one free, are given in (6.8), but the equations are too cumbersome to present here. Plots comparing buckling stress including shear defarmation with stresses neglecting it are also given in (6.8) to illustrate conditions when shear deformation may be significant. These may occur when $E_{11}{ }^{t / G_{13}}{ }^{b>2}$, where the direction of the buckling stress is in the materials direction 1. See Chapter 8 for further discussion relative to consideration of shear deformation in the buckling of sandwich panels.

Pure ln-Piane Bending

For in-flane stresses distributed across the plate width b in pure bending (Fig. 6-44), with varying aegrees of edge restraint from torsionai rigidity of a flange, the critical buckling stress is (6.1):

$$
\begin{equation*}
a_{x c}=\frac{k \pi^{2} D_{11}}{b^{2}} \tag{Eq. 6.101}
\end{equation*}
$$

The buckling coefficient k is obtained from the curves given in Fig. 6-44.

Fig. 6-4 BUCKLING COEFFICIENTS FOR RECTANGULAR ORTHOTROPIC PLATE IN PURE GENDING (6.11)

Pure Shear

For pure shear stresses on a simply supported rectangular plate (Fig. 6-45), the critical buckling stress is (6.11):

$$
\begin{equation*}
\tau_{x y c}=\frac{4 k_{x y}\left(D_{1}\left(D_{22}^{3}\right)^{4}\right.}{b^{2} t} \tag{Fq. 6.102}
\end{equation*}
$$

The buckling coefficient $k_{x y}$ is obtained from the cur ves in Fig. 6-45.

See (6.11) for several other cases of rectangulor plates in pure shear. See (6.17) for the criticai buckling stresses in shear for long plates with various degrees of rotational restraint α, the longitudinal edges. These solutions ore usefut for determining shear buckling of orthotropic webs of plate girders whose flanges provide verying degrees of cotational restraint. However, the solution given by Equation 6.102 above may be used in many cases where the rotational restraint from the flanges is low, or is neglected.

Combined Sheur and Direct Stress

The interaction equations 6.87 and 6.88 suggested in the previous Section for buckling of isotropic plates may be used to obtain a tentative estimate of the stability of ai orthotropic plate under combined loading. Tests should be conducted to confirm the applicability of these relations.

Circular Plates

The critical buckling stress for a circular orthetropic plate with uniform radially applied edge loads and with orthotropic axes of inaterial arranged rodially and circumferentially is (6.11):

$$
\begin{equation*}
N_{r c}=\frac{4 k D_{r}}{a^{2}} \tag{Fq. 6.103}
\end{equation*}
$$

See Fig. 6.46 for values of k for a range of ratios of $\sqrt{E_{\theta} / E_{r}}$.

Fig. 6-45 BUCKLIMG COEF:IICIENTS FOR RECTANGULAR SIMPLY SUPPORTED ORTHOTROPIC PLATES W PURE SHEAR (G.11)

Fig. 6-46 BUCKLING COEFFICIENTS FOR SIMPLY SUPPORTED OR CLAMPED CRCULAR ORTHOTROPIC PLATES (6.11)

6.11 NSIURAL FREGUENCIES OF PLATES AND MEMBRANES

In problems of investigation or design involving transversely loaded plate elements subjected to dynamically applied loading or support inotion, the natural frequencies of free harmonic vibration of the plates must first be determined. Generally, the lowest notural frequency is of greatest interest, but sometimes higher modes must also be investigated. See (6.3) and (6.20) for tobulated formulas for natural frequencies of transversely loaded rectangular, circular, triangular, and iniscellaneous shaped plates with various conditions of edge resiraint. Some common cases ore presented here based on equations given in these references. These equations are fairly accurate "upper bound" approximations for the lowest and second more natural frequencies of the indicated plate types.

Rectangular lsotropic plates

The notural frequencies of rectongular plates shpporting a uniformly distributed mass p on a unit area are give: by the following relation (6.3):

$$
\begin{equation*}
f_{n}=\frac{\Phi_{n}}{a^{2}} \sqrt{\frac{D}{\rho}} \tag{Eq. 6.104}
\end{equation*}
$$

for a plate loaded only by its own weight, where $p=\frac{\bar{\gamma} t}{g}$:

$$
f_{n}=\frac{\phi_{n}}{a^{2}} \sqrt{\frac{E 1^{2}}{12\left(1-\frac{g}{\left.v^{2}\right)}\right.} \bar{\gamma}}
$$

The frequency coefficient ${ }^{\prime}$, in the above Equations varies with the mode and with the edge support conditions. See (6.3) for values of ϕ_{n} for the two lowest modes of vibration for rectangular plates with various erge restraints. For two common coses, where $\lambda_{0}=o / b$:

Simply supported edges:

$$
\begin{array}{ll}
\text { First mode: } & \Phi_{1}=1.57\left(1+\lambda_{0}^{2}\right) \tag{Eq. 6.105}\\
\begin{array}{l}
\text { Second mode: } \\
\text { (use lowest) }
\end{array} & \Phi_{2}=6.28\left(1+0.25 \lambda_{0}^{2}\right)
\end{array}
$$

Eqs. 6.106

$$
\Phi_{2}=1.57\left(1+4 \lambda_{0}^{2}\right)
$$

Rotationally fixed edges:

$$
\begin{array}{ll}
\text { First mode: } & \phi_{1}=1.57 \sqrt{5.14+3.13 \lambda_{0}^{2}+5.14 \lambda_{0}^{4}} \\
\begin{array}{l}
\text { Second mode: } \\
\text { (use lowest) }
\end{array} & \phi_{2}=9.82 \sqrt{1+0.299 \lambda_{0}^{2}+0.132 \lambda_{0}^{4}} \tag{Eq. 6.108}\\
& \phi_{2}=1.57 \sqrt{5.14+11.65 \lambda_{0}^{2}+39.06 \lambda_{0}^{4}}
\end{array}
$$

When the plate is subject to in-plone tensile or compressive forces, N_{x} and N_{y}, the notural frequencies are modified. in-plane tensile forces ($+N$) increase the natural frequercy and compressive torces ($-N$) reduce it. Compressive forces equal to the plate buckling lond reduce the matural frequency to zero. The following equation is a fairly accurate "upper bound" estimate of the natural frequency of a plate with simply supported edges subject to in-plane forces N_{x} and $N_{y}(6.20)$.

$$
f_{n}=\frac{1.57}{a^{2} \sqrt{o}} \sqrt{\left\{D\left[m^{2}+n^{2}\left(\frac{a}{b}\right)^{2}\right]^{2}+N_{y} a^{2}\left(\frac{m}{\pi}\right)^{2}+N_{x} a^{2}\left(\frac{n}{\pi}\right)^{2}\left(\frac{a}{E}\right)^{2}\right\}} \text { Eq. } 6.109
$$

where a, b, x, y, N_{x}, and N_{y} are directed as shown in Fig. 6-47, and m and n are integers which define mode frequencies.

Fig. 6-47. ORIENTATION OF PLATE AXES, MATERIAL AXES AND PLATE EDCE DIMENSIONS

The lowest, or first mode occurs when $m=n=1$, except in certain coses where $a \neq b$ and N_{x} is negative and appi aches $N_{x c}$. Other modes must be deteinined by cut and try substitution of vorious values of m and n. When $N_{x}=N_{y}=0$, the above equation reduces to Eq. 6.104 and Eqs. 6.105 or 6.106 , using the appropriate values of m and n.

When the amplitude of vibration exceeds about half the plate thickness, the plate is stiffened significantly by the change:; in its shape, and its natural frequency increnses. An approximate determination of the increased non-linear natural frequercy, relative to the frequencies given above for "small deflections," is given by the curves in Fig. 6-48. The ratio of linear frequency to nonlinear frequency for various ratios of vibration amplitude to plate thickness is given for limiting ratios of a / b and several conditions of ente restidint.

The greutest efiert of stiffening due to "large deflection" shape changes occurs with simply supported edges that are held against !ateral translation (Curves 2 in the Figure). For this case, the ratio of linear to non-lineor frequency does not vary significantly with a / b. The other edge conditions given in the Figure are Curve I for simply supported edges, not held against in-p!ane translation, Curve 3 for clamped edges, nut held aqainst in-plane translation, and Curve 4 for clamped edges, held against in-plane translation.

Rectangular "Specially Orthotropic" Plates

The natural frequencies of rectangular specially orthotropic plates supporting a uniformly distributed mass ρ on a unit area are given by the following relation for plates with all edges simply supported (6.20):
where a, b, and materials axes 1 and 2 are directed as shown in Fig. 6-47, and m and n are integers which deife mode frequencies. The lowest or first mode frequency occurs when $m=n=1$. The second mode frequency is the lowest of the results from Eq. 6.110 with $m=2, n=1$, or with $m=1, n=2$. Higher mode frequencies are obtained with various combinations of integral values of m and n.

Fig. 6-48 RATIO OF LNEAR TO NONLINEAR FREQUENCY AS A FUNCTION OF AMPLITUDE/THICKNESS RATIO FOR LARGE DEFLECTIONS OF RECTANGULAR PLATES (6.20)

Fig. 6-49 RATO OF UNEAR TO NONLINEAR FREQUENCY AS A FUNCTION OF AMPLITUDE/THICKNESS RATIO FOR LARGE DEFLECTIONS OF CRCULAR PLATES (6.20)

Eq. 6.1 10 , with appropriate values of in and n, reduces to Eq. 6.104 and Eqs. 6.105 or 6.106, for the first and second mode frequencies of isotropic simply supported rectangulor plaies $\left(D_{11}=D_{22}=D_{0}=D\right.$). It also reduces to Eq. 6.109 with $N=0$.

Ciroular Plates

The lowest natural frequency of a simply supported, transversely loaded circular plate is (6.3):

$$
\begin{equation*}
f_{1}=\frac{\pi}{a^{2}} \sqrt{\frac{D}{\rho}} \tag{Eq. 6.111}
\end{equation*}
$$

An approximote determination of the increased nonlinear natura! frequency which occurs when the plate undergoes large deflections is given by the curves of Fig. 6-4\%. The ratio of iinear frequency to nonlinear frequency for various ratios of vibration amplitude to plate thickness is obtained using Curve I for simply supported edges, not held against in-plane translation, and Curve 2 for simply supported edges held against in-plone translation. Curves 3 and 4 give the same information for circular plates with clamped edges.

Triangular Plates

The lowest notural frequency of a simply supported, transverseiy loaded right miangular plate with two perpendicular sides of length, a, is (6.3):

$$
\begin{equation*}
f_{i}=\frac{7.85}{a^{2}} \sqrt{\frac{D}{\rho}} \tag{Eq. 6.112}
\end{equation*}
$$

See (6.20) for many more plate edge propartions and support conditions.

-
 Membranes

The lowest natural frequency of various membrane;s stretched with a uniform edge tension force per unit length, N, and having the shapes listed below, is (6.3):

$$
\begin{equation*}
f_{1}=\frac{k}{2 \pi} \sqrt{\frac{N g}{F q}} \tag{Eq. 6.113}
\end{equation*}
$$

F is the ared of the nembrane g is the accelerotion due to gravity q is the uniformly distributed transverse pressure k is a coefficient which depends on the shape of the nembrane. For some common shapes, k is:

	$\frac{k}{4.26}$	
Circle	4.264	
Square	4.44	
Equilateral triangle	4.77	
60° sector of circle	4.62	
Semicircle	4.80	
Rectargle	$\pi \sqrt{\frac{b}{a}\left[1+\left(\frac{a}{b}\right)^{2}\right]}$	$a>b$

Example 6.13 illustrates the use of the above equations to determine the lowest notural frequency of several rectangular plates, such as might be used in plastic glazing and screen wall panels, respectively. Excessive wind-induced vibration may occur in such panels if the frequency of wind gusts approaches the natural frequency of the plates. This is not likely in the first plate in the example, but may occur for the first mode vibration of the second example plate.

An exhaustive summary of avoilable solutions for natural frequencies, mode shapes, nodal lines, and amplitude coefficients in plates of various types is presented in (6.20). Information provided covers many different shopes of plates, conditions of edge restraint, behavior of anisotropic plates and plates of variable thickness. Helaiions for effects of in-plane load, "large deflections," and tronsverse shear deflection on the natural frequency of certain types of plates are aiso included.

Example 6.13: Deterinine the two lowest natural frequencies of the plates in (a) Exumple 6.1 and (b) Example 6.2. Use specific gravity of thermoplastic materials given in Table 4-4, and FRP given in Table 1-6.*
(a) Solution: Specific gravity of acrylic $=1.17$

From Eqs. 6.102 and $\epsilon_{.} 103$ with $\lambda_{0}=1.5$
First Mode: $\quad \omega_{1}=1.57\left(1+1.5^{2}\right)=5.10$
Second Mode: $\quad \phi_{2}=6.28\left(1+0.25 \times 1.5^{2}\right)=9.81 \quad$ Use or $\phi_{2}=1.57\left(1+4 \times 1.5^{2}\right)=15.7$

From Eq. S.lOla:
$f_{1}=\frac{5.10}{29.4^{2}} \sqrt{\frac{400,000 \times 0.25^{2} \times 32.2}{12\left(1-0.3^{2}\right) \times 1.17 \times 0.036}}=7.81 \mathrm{cps}$
$f_{2}=\frac{9.81}{5.10} \times 7.81=15.01 \mathrm{cps}$
(b) Solution: Specific gravity of mat reinforced polyester $=1.4$

Using equations for plotes with small deilections:
From Eqs. 6.102 and 6.103 with $\lambda_{0}=1.5$ and from part (o) above: $\phi_{1}=$ $5.1 ; d_{2}=9.81$
From Eq. 6.97a:
$f_{1}=\frac{5.1}{48.9^{2}} \sqrt{\frac{1,000,000 \times 0.125^{2} \times 32.2}{12\left(1-0.3^{2}\right) \times 1.4 \times 0.036}}=2.04 \mathrm{cps}$
$f_{2}=\frac{9.81}{5.1} \times 2.04=3.92 \mathrm{cps}$

The natural frequencies determined for small deílections will increase as the plate stiffens when it is subjected to sufficiently i:igh loads to cause oppreciable deflection. At the moximum design deflection of $1 / 2$ in. the amplitude/thickness ratio is 4.0 . If the approximate curve for any value of a/b in Fig. 6-48 is exirapolated to the above amplitude/thickness ratio, the estimated lowest natural frequency is:
$f_{1}=2.04 / 0.2 \approx 10$.

See footnote, Example 6-1, p. 29.

Chopter 6 - REFERENCES

6.1 Engineering Sciences Data Unit, "Stiffness of laminated flat plates," Item I ©. 75002, Jan. 1975, Structures Sub-series, Voi. 8, London.
6.2 Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, 2nd Edition, McGrow-Hill, 1959.
6.3 Bares, R., Tables for the Analysis of Plate, Slabs, Diaphragms Based on the Elastic Theory, Bauverlag, Wiesbaden, 1969.
6.4 Engineering Sciences Data Unit, "Elastic direct stresses and deflections for flat rectangular plates under uniformly distributad normal pressule," Item No. 71013 , May 1971, Structures Sub-series, Vol. 5, London.
6.5 Engineering Sciences Data Unit, "Elastic Stresses and Deflections for Flat Circular Plates With D/ $\uparrow>20$ Under Uniform Pressure," Item No. 65003, Sept. 1965, Structures Sub-series, Vol. 5, London.
6.6 Engineering Sciences Data Unit, Elastic Stresses and Deflections for Fiat Circular Plates with $D / \dagger>4$ Under Unifarm Pressure," It $\in \mathrm{m}$ No. 65002, Sept. 1965, Structures Sub-series, Vcl. 5, London.
6.7 Ashton, J. E., and Whitney, J. M., Theory of Lominated Plates, Technomic, Stamford, Connecticut, 1970.
6.8 Vinson, J.R., and Chou, T.W., Composite Materials ond Their Use in Structures, Wiley, New York, 1975.
6.9 Engineering Sciences Data Unit, "Stress analysis of laminated flat plates," Item No. 74039, Feb. 1975, Structures Sub-series, Vol. 8, I.ondon.
6.10 Portland Cement Association, "Design of Deep Girders," No. ST 66, 1944,
6.II Column Research Committee of Japan, Handbook of Structural Stat ility, Corona, Tokyo, 1971.
6.12 Engineering Sciences Dota Unit, "Buckling of flat isotropic plates under uniaxial and biaxi-ll looding," Item No. 72019, Sept. 1976, Structures Subseries, Vol. 2, London.
6.13 Bleich, F., Buckling Strength of Metal Structures, McGrow-Hill, New York, 1952.
6. 14 Structural Stability Research Council, Guide to Stability Design Criteria for Mietal Structures, 3rd Edition, Ed. by B. G. Johnston, Wiley, New York, 1976.
6.15 Timoshenko, S. and Gere, Theory of Elastic Stability, 2nd Edition, McGrow Hill, 1961.
6.16 Engineering Sciences Data Unit, 'Buckling of thin flat orthotropic plates under uniaxial compression," Item No. 71015 , Sppt. 1971 , Structures Subseries, Vol. 8, London.
6.17 Engineering Sciences Uata Unit, "Buckling of long flat orthotropic plates in shear," Item No. 74005, Feb. 1975, Structures Sub-series, Vol. 8, London.
6.18 Haaijer, G., "Plate Buckling in the Stra:n-Hardening Range," Paper No. 2968, Tronsoctions of ASCF, 1959.
6.19 Haaijer, G. and Thurlimann, E. "Inelastic Buckling in Steel," Paper No. 3023, Tronsactions of ASCE, 1960.
6.20 Leisso, A. W., Vibrotion of Plates, NASA Report SP-160, 1969.

Additional references for tubulations of plate bending formulas:
6.21 Engineering Sciences Data $1 /$ nit, "Elastic stresses and deflections for flat square plates under uniformly distributed normal pressure." Item No. 70001, April 1970, Structures Sư-series, Vol. 5, Londun.
6. 22 Erturk, I. N., Zwei-, drei- und vierseitig gestutzte Rechteckplatten, Verlog von Wilhelm Ernst \& Sohn. Ser lin, Munchen, 1965.
6.23 Schliecher, C.., Wegener, H., Continuous Skew Slabs, Tables for Statical Analyses, VËB Verlog fur Bouwesen, Berlin, 1971.
6.24 Stiglat, K., Wippel, H., Platten, Verlog von Wilhelm Ernst \& Sohn. Berlin, Niunchen, 1966.
6.25 Roark, R. J., Young, W. C., Formulas for Stress and Strain, Fifth edition, McGraw-Hill, 1975.
6.26 Griffel, W., Plate Formulas, Frederick Ungar Publishing, 1968.
6.27 Engineering Sciences Datc Unit, "Elastic Stresses and deflections for long flat rectangular plates under uniformly distributed and linearly varying normal pressure." Item No. 69018, September 1:69. Siructures Subseries, Vol. 5, London.

ASCE Structural Ptastics Design Marmal

CHAPTER 7 - BEAMS AND AXIALLY STRESSED MEMBERS By Fionk J. Hteger

TABLEOFCONTENTS

Poge
Notation 7-i
7.1 Introduction 7-1
7.2 Tension Members 7-3
7.3 Centrally Loaded Columns 7-6
7.4 Beams 7-24
7.5 Beams - Columns 7-68
7.6 Ribbed Panels $7-76$
7.7 Large Box and T-Beain, $7-77$
7.8 Folded Plate Structures 7.93
References $7-105$

$$
7-1
$$

NOTATION	Chapter 7
0	see Fig. $7-7$ \& Fig. 7-12
A	cross sectional orea
$A_{e}, A^{\prime}{ }_{e}$	effective cross sectional areas after local buckling of compressed plate
A_{b}	area of broce member
A_{f}	area of one flange of thin-wall beam
A_{n}	area of net section
A_{n}, A_{m}	area of plotes n and m , respectively, (Fig. 7-25)
$A_{\text {top }} \text {, } A_{\text {bot }}$	effective area of top and bottom flanges of a box section
${ }^{\text {A }}$ w	area of web between inside of flanges of thin-wall beam
b, b_{f}, b_{w},	width; width of flange; width of web
b_{c}	distonce defined after Eq. 7.85
b_{e}	effective width of local plate in post buckling stote, or for resistance to concentrated lood, or for corrected flange stress becouse of sheor lag
b_{e}^{\prime}	effective flange width for corrected deflection because of shear \log
b_{s}	longitudinal spocing between transverse stiffeners; also, width of substitute ponel in shear lag enalysis
c	dimension in Fig. 7-12

$$
7-i
$$

c_{f}	maximum transverse deflection of thin flange caused by curvature produced by longitudinal stress
c_{b}, c_{c}, c_{1}	coefficients in buckling equations
C_{m}	reduction factor in equations for effect of combined bending and axial compression
C_{w}	warping constant
d, d_{w}	depth of section, depth of web
d	dimension in Fig. 7-12
Of_{f}	transverse flexural rigidity of flange
e	distance from shear center to centroid along I-I axis of symmetry
E, E_{T}	elastic modulus, tangent modulus
E_{L}	elastic mavulus in longitudinal direction
$E_{v}, E_{v T}$	viscoelastic modulus (Chapters 2 and 3), viscoelastic tangent modulus
E_{x}	elcstic modulus in x direction
E_{b}	elastic inodulus of brace member
G	shear modulus
$G_{x y}$	s.ear modulus in x-y plane
1	moment of inertia of cross section
I_{1}, I_{2}	moment of inertia about axes 1 and 2, respectively, in inember cross section

le	effective moment of inertia ofter local buckling of compressed plate element, or as reduced by shear lag
I_{3}	moment of inertia of web stiffener about the plane of the web; centroidal moment of inertia of support element for stiffened plate
-J	torsion constant for cross section
k	plate buckling coefficient; width defined ir, Fig. 7-7
$k_{m n}, k_{n m}$	stress distribution foctors given by Eqs. 7.89 and 7.90
F	effective length coefficient for buckling of columns
K_{m}	coefficient for bending deflection of beoms
K_{s}	sp-ing stiffness of braces
K_{1}	stress concentration factor
L	member length
M	bending moment
M_{f}	lateral bending moment on each flange of 1 section coused by torque
$M_{x u l}$	ultimate design bending moment at a point along reference axis x in a plone perpendicular to centroidal axis $1-1$
n	width of bearing (Fig. 7-7)
N	axial force per unit width
N_{n}	maximum axial thrust of fold line n in folded plate

$N_{x}{ }^{\bullet}$	axial force in \times direction
$N_{x c}$	critical buckling load on centrally loaded column
$N_{x c F l},$	critical elastic buckling loud in flexure about axis i, and in torsion, respectively
$N_{x U}$	ultimate axial force in x direction
P	numerical value given by Eq. 7.63; uniformly distributed load intensity norinal to surface of folded plute
P_{y}	uniformly distributed load intensity on horizontal projection of folded plate
P	applied load
$P_{e 2}$	Euler buckling load for weak direction
q	uniformiy distributed ioad normal to beam axis
7_{r}	radial load on thin flange due to curvature with longitudinal stress
$q_{s n}$	shear flow at fold line n in folded plate
Q	form factor for local buckling
Q_{s}	form foctor for local buckling of unstiffened plate
Q_{0}, Q_{0}	form foctor for local buckling of stiffened plates where post buckling strength is considered
r, r_{0}	rodius of gyratiori; polar radius of gyration

r_{1}, r_{2}	rodius of gyration obout strong axis 1-1 and weak axis 2-2, respectively
${ }^{\text {r }}$ le	radius of gyration about axis $1-1$, based on effective section properties
$\mathbf{r}_{\mathbf{s}}$	polar radius of gyration about shear center
R_{u}	concentrated load or reaction normal to beam oxis
S	section modulus of cross section
S_{1}, S_{2}	section modulus with respect to centroidal axes 1 and 2 , respectively, in member cross section
${ }^{\text {Sle }}$	effective section modislus after local buckling of compressed plate element, or as reduced by shear lag
$t_{,} t_{f}, t_{w}$	thickness; thickness of flange; thickness of web;
T	torque (twisting moment)
V	transverse shear force
T_{s}	portion of total torque resisted by torsionally induced shear stresses
V_{f}	loteral shear on each flange of I section caused by torque
$v_{x u l}$	ultimate transverse shear force at print along x axis for bending about centroidal axis $1-1$
w	total uniformly distributed load
x	distance in direction of \times oxis, from a reference point

B
\& \& deflection, initial deflection

A lateral deflection of frame
$v \quad$ Poisson's ratio
$\psi \quad a$ function defined b; Eq. 7.75
$\sigma \quad$ norinal stress
$\sigma_{n} \quad$ normal stress at fold line n in folded plate
$\sigma_{x}, \sigma_{x a N} \quad$ stress in \times firection, nverage normal stress
$\sigma_{x b} \quad$ bending stress in flange caused by torque
$\sigma_{x c}, \sigma_{y c} \quad$ ultimate buckling normal stress in x direction, and in y direction
$\sigma_{\text {xce }} \quad$ elastic buckling normal stress in x direction
$\sigma_{x u}, \sigma_{w u} \quad$ reduced ultimate strength of moterial (normal stress) in \times direction, and in y direction

T shear stress

If shear stress in flange coused by bending resistance to torque
$T_{s}, \tau_{s f}, \tau_{s w} \begin{aligned} & \text { shear stress coused by torsional resistance to torque, same in } \\ & \text { flange, some in web }\end{aligned}$
$T_{x}, \tau_{x m} \quad \begin{aligned} & \text { shear } \\ & \text { point }\end{aligned}$

$$
7-v i
$$

ultimate shear stress that produces buckling at a point along x axis
${ }^{1} \times u \quad$ reduced iltimate shear strength of material at a point along \times axis

7-vii

7. BEAMS AND AXIALLY STRESSED MEMBERS

F.J. Heger

7.1 INTRODUCTION

Plastics may be formed to obtain tension members, columns, beams, ribbed panels, and other beam-like components that have efficient sections fo: resisting direct thrust and bending. These sections are usually rectangular or circular hollow tubular shapes, or $1,, T$, hat, or other open thin wall shapes that are assemblies of thin plate elements. Stin shapes may be formed by extrusion, or other processes as described in Chapter I. Glass or other fiber reinforcements are used in larger and more significant structural members. Fiberglass reinforced polyester members made by the pultrusion process are described in Chapter 1. Reinforced plastic tubular sections and ribs are also fabricated by filament winding, spray up, hand layup, compression molding and other suitable processes.

Design methods for plastic and reinforced plastic structural members that resist axial forces and bending are provided in this Chapter. These members are uswally termed "columns or struts" when they resist primarily compressive thrust, "ties", or tension members, when they resist tensile thrust, and "beams" when they resist transverse loads that produce bending. Members subject to combined compression and bending are often termed "beam-colurnns". Flat panels having ribs spanning in one direction behave essentially as columns, beams or beam-columns, with each rib and its adjacent plate acting as a repetitive structural member. Other components, or assemilies of components, that behave like beams include large stressed skin components such as aircraft bodies, box beams, ISO-type cargo containers, vehicle bodies, and folded plate sections.

Equations and methods of analysis are presented for designing columns, beams and ribbed panels considering axial strength and stability, benaing strength, twisting strength, lateral-torsional stability, stability of local plate elements, and deflection. These methods are based on conventional elastic theory for bending and buckling of bars in which a basic assumption is that "plane sections before bending remain plane after bending." Certain modifications are introduced when needed for members with wide flanges, deep webs, and other special
considerations. Since some plastics and reinforced plastics do not have isotropic elostic properties, design considerations for members with orthotropic elastic properties are included.

Many of the design recommendations presented in this Chapter are based on design proctice for metal members. Design procedures and formulas for metal members have evolved from theuretical formulations of structural behovior that account for fundamental materials properties such as elastic modulus and yield strength. Often these may also be used for other materials, such as plastics, and the theoretical relations required for designing beams and axially stressed members are presented and discussed in this Chapter, or elsewhere in this Manual. However, implementation of accurate design methods for metal members has required over 50 years of careful structural research to determine significant parameters that govern structural behavior. Impartant examples are residual stresses that reduce the effertive elastic :iodulus in buckling when stresses exceed about one-half to two-thirds the yield strength, and inelastic resistance to buckling that permits plastic deformation witheut buckling in some members. Residual stresses are introduced by the manufacturing process, and inelastic behovior is affected by the ductility and post yield performance of the material. The same type of comprehensive research has yet to be done for plastics and reinforced plastic structural members.

The experience gained in developing design practice for metal members should provide a large heodstart toward the development of a proven design practice for the various plastics and composite materials that are useful for structural applications. However, as has already been discussed in Chapters 2 and 3, plastics are much more sensitive to variations in temperature and duration of load than metals and, unlike common metals, some plastics and reinforced plastics have elastic properties that are anisotropic (i.e., vary with direction of stress relative to materials property axes). Futhermore, each plastics material and manufocturing method will hove its own characteristics relative to residual stresses, manufacturing tolerances and inelastic behavior near ultimate strength. Thus, design practice for metal members may require significant modifications beyond those required due to differences in fundamental materials properties in order to provide an accurate basis for design of plastics. Further research is needed to investigate the effects of the above factors on the behavior of plastic structural members. Until this is completed, design approoches and tentative
recommendations of specific design procedures presented in this Chapte; as well as elsewhere in this book, bosed on theoretical concepts that have been proven for metal members, will provide useful interi:n design nethods. They should also assist the desiyner to understand the fundonental structural behavior involved in member designt, and they may help the plastics industry to define the type of applied research that is needed for rotional prediction of structural behavior and design of members.

The design practice that hus evolved for cold-formed steel structural members (7.1) provides the nost comprehensive model for design recommendations for structural plastics because of its extensive coverage of local and overall buckling of thin-walled sections. Also, the cold-formed steel design specification has an excellent commentary that describes the basis of the design recommendations in terms of fundamental materiol properties such as E and σ_{y}, where possible. Another excellent description of the basis for many of the design provisions for compression in the structural, cold-formed steel ond aluminum specifications is found in (7.2). These are the primary sources for design recommendations for local plate buckling, column buckling and lateral buckling of beams given in this Chapter. However, modifications to occount for orthntropic properties of plate elements are included in the buckling relations presented later in this Chopter. The designer should recognize that tests on specific structural plastics are especially needed to develop the "effective section" concept of post buckling resistance of thin, stiffened plate elements and to define the effect of local element and overall member buckling when elastic buckling stresses exceed about one-half to two-thirds of the ultimate si:ength. This is explained in the relevant sections of this Chapter.

7.2 TENSHON MEMBERS

Members subject to direct tensile axiol stress without significant bending are used as ties, struts, braces, hangers, and chords ard diagonals in trusses. These members must be designed to have adequate strength, and olso some level of control of deformations. The member requires a minimum net cross sectional area, An, that is determined as follows:

$$
\begin{equation*}
\text { req'd } A_{n}=\frac{N_{x u} K_{t}}{\sigma_{x u}} \tag{Eq. 7.1}
\end{equation*}
$$

The stress concentration factor, K_{\dagger}, is determined for the worst type of discontinuity ervisioned for the mernber. (See Section 5.5.) Stress may be amplified odjacent to holes for conrections, variotions in the dimensions of th: cross section, notches, threads, or other discontinuities. If the expected discontinuity produces an eccentricity between the net section at the discontinvity and the line of action of the applied load, this may be taken into account in the $K_{\boldsymbol{\dagger}}$ value, or the combined bending and axial stress on the net section may be determined using Eq. 5.23, and this stress amplified by a suitable lo ner ! K_{f} value.

The materiai strength, $\sigma_{x u}$, should be reduced, if the applied load is a long term load, or a cyclic load, or if elevated temperatures, and exposure to aggressive environments are expected. The reduced strengtn should then be multiplied br a suitable capacity reduction factor (<1.0) that allows for variations in the strength of production materiais to obtain ${ }^{3}$ xu. If the material has low toughness (i.e., is brittle), and/or if significant flaws may be introduced during material production, or component fabrication, the noterial strength should be based on fracture toughness requirements. Quantitative procedures for this are not well developed. See Section 5.8 for a summary of frocture toughness concepts.

The design load should be multiplied by an appropriate load factor (>1.0), as discussed in Chapters 3 and 4, to obtain the required ultimate load, Nxu. In selecting a load factor, the designer should consider whether accidental eccentricity in load application may increase stresses above the nominal axial stress. Alternctively, the designer moy include ar, accidental eccentricity in the design criteria and design the member for combined bending and direct stress, as explained in Section 7.5

The total elongation of tension members is determined from Eq. 5.28. See (5.1) for elementary methods for determining the deflection of assemblies of oxially louded members such as trusses and bracing. In determining axial deformation, the time-dependent viscoelostic modulus is used to occount for the expected duration of lood, service temperature and other environmental conditions. This is discussed in detail in Chapters 2 and 3.

The design of a thermoplastic henger strap for a hung storage tank, including the stress concentration effect caused by connection holes, is illustrated in Example 7-I.
Example 7-1: Design a Polycarbonate thermoplastic strap hanger to support each end of a water storage tank that hangs from the roof structure of a railrood car as shown. Loteral loads are taken by a second syste n of strups. Assime that bolts are $5 / 8 \mathrm{in}$. diameter. Weight supported by each U strap is 1,000 lbs. Assume that the material has a minimuin tensile strength of $8,000 \mathrm{psi}$, and a minimum compressive strength of 12,000 psi for bolt bearing. Use a capacity reduction factor of 0.3 in tension and 0.5 in compression for establishing the maximum long term strength. as well as the strength under repetitive loading. Use a lood factor of 2.0 to obtain the
 design ultimate lood. *

1. Thickness required for bolt bearing with $6-5 / 8$ in dionneter bolts:
Reduced ultimate compression strength $0.5 \times 12,000=6,000 \mathrm{psi}$;
Ultimate design lood, $2 P_{u}=1,000 \times 2.0 \times 1.50^{*}=3,000 \mathrm{lbs}$.
(*Note: load is increased 50 percent for impact.)
$\sigma_{u c}{ }^{\dagger} a=2 P_{u}$, where $\sigma_{u c}=$ bolt bearing strength $=6000 \mathrm{psi}$
$\min . t=\frac{3000}{6,000 \times 5 / 8 \times 6}=0.14$ in.; Try a $1 / 4$ in. (0.25) thick strap.
2. Triul width required at section with hole: hole dianeter $a=.625+.063=.69 \mathrm{in}$.;
Estimate stress concentration factor, $K_{t}=2.8$
Reduced ultimate tension strength, $\sigma_{c t}=0.3 \times 8,000=2,400 \mathrm{psi}$

3. Calculate stress concentrotion factor, K_{t}, for net section stress. Try $b=7.5$:

Eq. 5.49: $K_{t}=2+\left(1-\frac{.69}{7.5}\right)^{3}=2.75$
4. Determine minimum width, b, for section at hole:
$\min b=\frac{3,000}{2 \times 0.25} \times \frac{2.75}{2,400}+0.69=7.56$ in.; Could use $1 / 4 \mathrm{in} . \times 8$ in. strap. $A=2$. in 2.
5. Alternate design with $1 / 2 \mathrm{in}$. thick material:

Trial $b=4$ in. \& $K_{t}=2+\left(1-\frac{0.69}{4}\right)^{3}=2.57$; min. $b=\frac{3,000 \times 2.57}{2 \times 0.50 \times 2,400}+0.69=3.90$
Use I/2 in. $\times 4$ in. strap. Bolt bearing will be lower with this alternate design
6. Bearing pressure under strap on tank wall: $T=1000 / 2=500 \mathrm{lbs}$

From Eq. 9.1: $\frac{T}{\text { width }}=$ pr, $p=\frac{500}{20 \times 4}=6.25 \mathrm{psi}$

* Design loads, C.esign criteria (such as satety factors, load factors, and capacity reduction factors, etc.), and materials properties used in design examples are for illustrative purposes only. The user of this Manual is coutioned to develop his own loads, criteria and matericls properties bosed on the requirements and cunditions of his specific design project.

7.3 CENTRALLY' LOADED COLUMNS

Columns and other compression members are centrally looded when the line of action of an applied load coincides with the centroidal axis of the member. Eccentricity between the applied load and the centroidal axis results in bending stress in addition to axial stress. Beharior under combined bending and axial lood is treated later in Section 7.5

As in the case of terision members, design of columns involves proportioning for both adeq:ate strength and control of axial deformation. The presence of stress concentrations may also require consideration when determining the strength of compression members, and the stress concentration foctors described in Section 5.5 moy also ber applied to compression members. There are more situations in proctical design, however, where compression members can be arranged without holes or changes in cross section, as compared to tension and bending members.

Buckling or instability is frequently a critical consideration in the design of compression members. Buckling occurs when either local or overall member stiffness is inadequate to prevent large deflections when a slight lateral force is applied or when slight deviations in member straightness exist. This behavior is illustrated in Section 5.7, where the buckling resistance of an idealized compression member is derived. As is shown below, buckling considerations greatly influence the level of compression stress that can be ailo red in the design of a column.

Strength

The compressive strength of the material is the highest compressive stress that can be used in the design of a short centrally loaded column. Similar to a tension member, the minimum section orea of a centrally looded column, as governed by moterial strength, is given by Eq. 7.1. The guidelines for establishing tensile copocity given eorlier also apply to compressive capacity. However, except for very short columns, or columns having significant stress concentrations, the full compressive strength of the column material can seldom be mobilized, becouse compression stress must be maintained below the materials' compressive
strength, $\sigma_{x u}$, to provide safety against buckling. Furthermore, small flows and brittle fracture usually are mit design considerations for compression elements.

As for tension members, axial shartening of a centrally loaded column is determined from Eq. 5.28. The same considerations given for tersion members also influence the selection of elastic inodulus, E, for control of deformation in compression members.

Buckling

Members that are subject to compressive thrust rnust have adequate stiffness to safely resist failure by buckling. The following types of buckling must be considered:

1. Local buckling of thin parts of a section comprised of on assembly of thin plates (i.e. flanges, and webs of tubes and I sections)
2. Lateral bending (flexural buckling) of overall member
3. Twisting (torsional buckling) of overall member
4. Combined flexural-torsional buckling of overall member.

Lacal buckling of thin plate elernents may limit the maximum stress that can be developed in a short colurm that has adequate resistance to overall buckling. Since plastic coluinns frequently are comprised of thin plate elements, consideration of local buckling of plate elements is important. Equations for buckling of thin longitudinaliy compressed plates are given in Section 6.9 for isctropic materiois, and in Section 6.10 for or thotropic materials.

For stresses in the elastic range, the local buckling stress in the plate elements that comprise typical thin-walled sections (Fig. 5-2) are given by Eq. 6.7la in Section 6.5 for isotropic materials. The longitudinally compressed plate elements are considered to be "long plates" and buckling coefficients are presented in Table 6-3. Various idealized conditions of edge restraint are assumed along longitudinal edges. Most commonly, a conservative assumption that edges are simply supported is mode. Sometimes the buckling coefficient is increased slightly to reflect some edge restraint provided by adjoining members, or a
special analysis can be mode that accounts for the restraint provided by adjocent plates in the member cross section. Buckling relations for orthotropic plates are given in Section. 6.10.

It is useful to classify local plate elements as "stiffened" or "unstiffened". A plate that can support additional csial load after initial elastic buckling (See Section 6.9) is termed "stiffened", while a plate wtiose maximum strength can not exceed its initial elastic buckling strength is termed "unstiffened". Unstiffened plates are usually plates with only one longitudinal edge supported, such as outstanding flonges, while stiffened plates have both longitudinal edges supported.

A : olve of $k=0.5$ in Eq. 6.7la is suggested in (7.1) for unstiffened outstanding flanges of channels, I sections and similar sections, when such flanges are subject to uniform compression. For plates that are supported on each longitudinal edge (stiffened plates), $k=4.0$ is used when edges are assumed to be simply supported and plates are subject to uniform in-plane compression stress across their width. Values of k for other conditions of restraint and for plates where inplane stress varies linearly across the width are given in Table 6-3 and in Figs. 632 and 6-33. See Section 6.10 for orthotropic plates.

When stiffened plates are supported by an element of limited width such as the Hip" of a stiffened channel (Fig. 7-1), the supporting element must have sufficient in-plane stiffness to support the stiffened plate. For isotropic materials, the following relations for minimum moment of inertia, I_{s}, about the centroid of support elements, (derived froin requirements for cold-formed metal members), may provide a suitable guide for design with plastics (7.1 X7.3):

Edge stiffener (Fig. 7-1):

$$
\begin{equation*}
I_{s} \geq 2.0 t^{4} \quad\left(\frac{b}{t^{2}}-\frac{0.19 E}{\sigma_{x u}} \geq 10 t^{4}\right. \tag{Eq. 7.2}
\end{equation*}
$$

Intermediate stiffener-centrally located (Fig. 7-1):

$$
\begin{equation*}
I_{s} \geq 4.0 t^{4} \quad\left(\frac{b}{f}\right)^{2}-\frac{0.19 E}{6 \times U} \geq 20 t^{4} \tag{Eq. 7.3}
\end{equation*}
$$

Intermediate stiffener - not centrally lorated (Fig. 7-1):

$$
\begin{equation*}
I_{s}=4.04^{4}\left[\sqrt{\left(\frac{b_{1}}{f}\right)^{2}}-\frac{0.19 E}{\sigma} x u \sqrt{\left(\frac{b_{2}}{t}\right)^{2}}-\frac{0.19 E}{\sigma_{\mathrm{xu}}}\right] \tag{Eq. 7.4}
\end{equation*}
$$

The applicability of these relations to plastics should be checked by tests with specific materials.

o) Unstiffened Ftenges

d)
b), c) and d) - Stiffered Flanges

Fig. 7-1 ARRANGEMENT OF SUPPORT ELEMENTS FOR STIFFENED PLATES

In design proctice for unstiffened cold-formed steel members (7.1), when $\sigma_{x c}$ obtained from elostic buckling theory (Eq. 6.7la), exceeds $0.65 \sigma_{x u}\left(\sigma_{x u}=y i e l d\right.$ strength in the cose of steel members), the critical buckling stress in the metal members, $\sigma_{x c}$ ' is reduced, as shown in Fig. 7-2. If $\sigma_{x c}$ obtained using the elostic relotions for local buckling, Eq. 6.71 a , is designuted, $\sigma_{\text {xce }}$, then the reduced $\sigma_{x c}$ in the tronsition region is:

$$
\begin{equation*}
\sigma_{x c e}>0.65 \sigma_{x u}: \quad \sigma_{x c}=1.3 \sigma_{x u}\left(1-0.4 \sqrt{\left.\frac{\sigma_{x u}}{\sigma_{x c e}}\right)} \leq \sigma_{x u}\right. \tag{Eq. 7.5}
\end{equation*}
$$

This reduction is used because for stresses above about $0.65 \sigma_{x u}$, effects of residual stresses and tolerances in flatness reduce the actual buckling load that unstiffened plates can carry, os shown by tests of the buckling strength of metal members. For plastics, it is uncertain whether the reduced buckling stress given by Eq. 7.5 should be used instead of the elastic buckling stress (Eq. 6.71a) since the residual stress state, flatness in manufacture and inelastic properties near ultimate are different than in metal members. However, since in Eq. 7.5, $\sigma_{x c}$ is reduced over the elastic buckling stress when $\sigma_{x c e}>0.65 \sigma_{x u}$, Eq. 7.5 is tentatively recommended for design with plastics.

Fig. 7-2 VARIATION OF LOCAL BUCKLING STRESS $\sigma_{x c c} / \sigma_{x a y}$ WITH (b/t)

For convenience in design, a form factor, Q, is used to relate the local bucking stress, $\sigma_{x c}$, to the material strength, $\sigma_{x u}$ (7.2). This form foctor is determined as follows:
(I). For unstiffened plate elements, or for stiffened elements where the post buckling strength of the plates is neglected:

$$
\begin{equation*}
Q=Q_{s}=\frac{\sigma_{x c}}{\sigma_{x u}} \leq 1.0 \tag{Eq. 7.6}
\end{equation*}
$$

where, for isotropic moterials, $\sigma_{x c}$ is obtained from Eqs. 7.5 and 6.71a with k coefficients from Table 6-3 for the plate component in a column section that has the lowest local buckling strength, based on idealized conditions of longitudinal edge restroint. If the rotational stiffness at longitudinal edge supports can be established, Eq. 6.7 lb with C_{b} correction foctor for edige stiffness given in Fig. 6-33 can be used. Eqs. 6.92a, 6.94, 6.97 or 6.98, together with Eq. 7.5, should be used for determining $\sigma_{x c}$ with orthotropic materials.
(2). For a thin-walled member made up only of stiffened plate elements that are allowed to buckle incally (if they can still support load after buckling), the form foctor is:

$$
\begin{equation*}
Q=Q_{0}=\frac{A_{e}}{A} \leq 1.0 \tag{Eq. 7.7}
\end{equation*}
$$

The effective area, A_{e}, of the above member for resisting compression as a short column is the sum of the products of the effective widths, b_{e}, times the thickness of each stiffened plate. The effective width, b_{e}, after initial elastic buckling may be obtained from Eq. 6.75 by letting $\sigma_{x e}=\sigma_{x u}$. For a stiffened plate of isotropic material supported on two longitudinal edges, the effective width, b_{e}, may be obtained directly using the following relation, derived from Eq. 6.75 with $\sigma_{x e}=\sigma_{x u}$:

$$
\begin{equation*}
b_{e}=1.94 \sqrt{\frac{E}{\sigma_{x u}}}\left(1-\frac{0.145}{(b / t)} \sqrt{\left.\frac{E}{\sigma_{x u}}\right)} \leq b\right. \tag{Eq. 7.8}
\end{equation*}
$$

The more general Eq. 6.75 with $\sigma_{x e}=\sigma_{x u}$ should be used to calculate b_{e} for or thotropic materials and for other types of local plate elements.

The effective area, then, is:

$$
\begin{equation*}
A_{e}=\Sigma b_{e} e^{t} \tag{Eq. 7.9}
\end{equation*}
$$

Eq. 6.75 (and thus, Eq. 7.8) was developed based on tests of thin metal plates that are ductile. Furthernore, as previously discussed, local buckling is influenced by residual stresses that exist after fabricating operations such as cold-forming, and hot-rolling for steel shapes, or extruding, molding, and casting for plastics. Thus, tests are required to verify that specific plastics inaterials can sustain post buckling loads without damage or fracture. This verification is needed for both reinforced plastics which are not ductile, and for therinoplastics where stresses beyond the viscoelastic limit are undesirable.

The effective width of plates that do not buckle locally at a stress less than $\sigma_{x u}$, (Eq. 7.5) is taken as their full width, b.
(3). For a thin-walled compression nember comprised of a combination of stiffened plates that buckle locally at a stress below the buckling strength of the unstiffened plaies in the section, stiffened plates that do nor buckle locally, and unstiffened plates that buckle at a stress, $\sigma_{x c}<\sigma_{x u}$, the maximum compressive stress in a short column is limited to the Icwest local buckling stress in the unstiffened plates, $\sigma_{x c}$. The effective area of the column section is denoted A_{e}^{\prime} and is determined by summing the thickness times the effective width of each partially buckled stiffened plate, based on $\sigma_{x e}=\sigma_{x c}$ (for the lowest buckling strength of the unstififened elerrents), instead of $\sigma_{x u}$ ir, Eq. 6.75, plus the full area of all unstiffened ralements. Thus, if b_{e}^{\prime} is the above described eifective width of stiffened plates that buckle inifially at a stress below $\sigma_{x c}$ and b is the width of the other elements which have not buckled at the lowest bucking stress of the unstiif fened elements:

$$
\begin{equation*}
A_{e}^{\prime}=\Sigma b_{e}^{\prime} t+\Sigma b t \tag{Eq. 7.10}
\end{equation*}
$$

The partial form factor that accounts for local buckling of some of the stiffened plates at a stress below $\sigma_{x c}$ then becomes:

$$
\begin{equation*}
Q_{a}^{\prime}=\frac{A_{e}^{\prime}}{A} \leq 1.0 \tag{Eq. 7.11}
\end{equation*}
$$

Also, the partial form foctor that accounts for a maximum stress level $\sigma_{x e}<\sigma_{x U}$ is Q_{s}, given by Eq. 7.6 with $\sigma_{x e}=$ lowest $\sigma_{x c}$ for unstiffened plates. Thus, the form factor for the column sections having both stiffened plates that buckle locally, siiffened plates that do not buckle locally, and unstiffened plates is:

$$
\begin{equation*}
Q=Q_{a} Q_{s}=\frac{A_{e}^{\prime}}{A} \frac{\sigma_{x c}}{\sigma_{x u}} \leq 1.0 \tag{Eq 7.12}
\end{equation*}
$$

where $\sigma_{x c}$ is the lowest critical buckling stress of the unstiffened elements and $A^{\prime}{ }_{e}$ is the effective area to develop $\sigma_{x c}$, rather than $\sigma_{x u}$.

Specific tests should be made to confirm both the ability of a thin stiffened piate to support load after initial elastic buckling and the method for determining the effective width, b_{e}. If test data is not available, the form factor, Q, shourd be determined using Eq. 7.6 with the 'owest $\sigma_{x c}$ for all the plates in the cross section, both stiffened and unstiffened. This will usually result in a conservative estimate of the form factor.

For very short compression members, the form factor is applied to the maximum stress in Eq. 7.1:

$$
\begin{equation*}
\operatorname{req} g^{\prime} A=\frac{N_{x u}}{\hat{U}^{\sigma}} \tag{Eq. 7.13}
\end{equation*}
$$

For longer compression nembers, Eq. 7.13 gives the minimum cross section areo required for adequate local buckling resistance. In this case, however, larger values of recid A may be necessary, as explained later.

Structural steel specifications given in (5.5) establish design rules for b/t rotios that will result in $Q=1.0$. When $Q=1.0$, the full design strength of the material can be developed, whenever other buckling or deflection criteria do not -estrict the maximum design stress. This can result in desirable simplifications in design specifications, but buckling provisions moy in some cases be overly conservative.

Some eximples of b / t and d / t limits to develop a maximum material strength, $\sigma_{x u}$, are given in Table 7-1. These are derived by letting $\sigma_{x c}$, from Eq. 6.7la, $=$

Table 7-1

Maximum Width-io-Thickness Ratios to Prevent Local Buckling Below the Material Design Strength

σ_{xu}. The d/t ratios that are given for in-plane bending and shear of beam webs are explained in Section 7.4. The limiting b / \dagger and d / \dagger ratios given in the Table are for isotropic plate elements with the idealized conditions of edge restraint noted. Similar ratios for orthotropic plate elements may be obtained by letting $\sigma_{x c}=\sigma_{x u}$ in the buckling equations in Section 6.10. When these ratios are used as maximum limits in design specifications, local buckling will not govern the strength of a section.

Overall flexural buckling. A slender column may experience large lateral deflections, and become unstable under a central load, termed the critical load, that is less than the capocity governed by material strength (Eq. 7.13). When the critical lond is applied to the columns, any slight deviation in straightness, or any small lateral force, will produce an unlimited amplified bending moment, $N_{x c} \Delta$ (Fig. 7-3), a condition of flexural instability. This type of behavior is described conceptually in Section 5.7 for a very simplified and idealized type of compression member in which flexibility is modeled by a concentrated single spring at mid-height. In the Euler bucking theory, the same conceptual approach is applied to more practical centrally loaded columns where the stiffness, EI, is constant over the column length (Fig. 7-3). In this case, the critical buckling load is:

$$
\begin{equation*}
N_{x c}=\frac{\pi^{2} E I}{(K L)^{2}} \tag{Eq. 7.15}
\end{equation*}
$$

Pin End: $K=1.0$

Restrained End: $K=4.0$ for full fixity

Fig. 1-3 FLEXURAL BUCKLING OF SLENDER COLUMN
K is on effective length coefficient that is determiried by the conditions of end restraint. For the basic case of pin ends, $K=1.0$. For other end restraints, K may vary from 0.5 to infinity. The effective length coefficient, K, may be determined from the buckling coefficient, k, given in Table 6-4, as follows:

$$
\begin{equation*}
k=\frac{1}{k} \tag{Eq. 7.16}
\end{equation*}
$$

It is useful for design purposes to combine Eqs. 5.2^{\prime}, 5.6 and $7.1 r$, obtaining:

$$
\begin{equation*}
\sigma_{x c}=\frac{2^{2} E}{\left(\frac{K L}{r}\right)^{2}} \tag{Eq. 7.17}
\end{equation*}
$$

KL is the effective unbraced length in the direction of buckling, while r is the radius of gyration (Eqs. 5.6 or 5.7) for bending in that direction. The lowest value of $\sigma_{x c}$ will be obtained for buckling in the direction with the highest ratio, KL/r.
E is the elastic modulus for bending in the direction of lowest $\sigma_{x c}$ for materials with a linear stress-strain behavior. If E is not constant, the tangent modulus, E_{T}, for the stress level, $\sigma_{X c}$, should be used in Eqs. 7.15 or 7.17 (7.2). For plastics, the elastic modulus used in buckling calculations should reflect the moximum duration of load and the range of temperature and exposure conditions expected for a particular component design. Usually, the lowest viscoelastic modulus for the range of expected design conditions can be used so long as σ_{xc} remains below the viscoelastic limit (Chapters 2 and 3).

A non-dimensional plot for Eq. 7.17, divided by $\sigma_{x u}$ is given in Fig. 7-4 (Curve 2). However, curves 3,4 and 5 are more representative of the actual test behavior of steel and aluminum columns, where buckling capasiiy is lowered by modulus reduction at higher stresses, residual stresses and accidental eccentricities coused by deviations in column straightness (7.2). Similar curves should also apply to plastic columns, although their shapes might vary somewhat, depending upon specific stress-strain relations, residual stresses fro:n fabrication, and eccentricities of the part.

Fig. 7-4 MAXIMUM STRESS FOR CENTRALLY LOADED COLUMNS GOVERNED BY FLEXURAL BUCKLING

In the absence of test data for columns of specific plastic materials, shape, fabrication process, and arrangement, the approach used for steel coluinns may be used as a trial approximation for plastics naterials that essentially exhibit a linear stress-strain relation up to $\sigma_{x u}$. In this approach, the maximuin stress is reduced below $\sigma_{x c}$ given by Eq. 7.17 whenever:

$$
\begin{equation*}
\frac{K L}{r}<C_{c}=\sqrt{\frac{2 \pi E}{\sigma_{x u}^{2}}} \tag{Eq. 7.18}
\end{equation*}
$$

Eq. 7.17 gives $\sigma_{x c}=0.5 \sigma_{x u}$ when $\mathrm{KL} / \mathrm{r}=C_{c}$. For lower values of $\mathrm{KL} / \mathrm{r}, \sigma_{x c}$ is determined froin the following semi-empirical equation, giving a parabolic transition of stress from the Euler stress at $\alpha_{x c}=0.5 \sigma_{x u}$ to $\sigma_{x u}$ at $K L / r=0$;

$$
\begin{align*}
& \text { For } \frac{K L}{r}<C_{c} \text { (given by Eq. 7.18): } \\
& \sigma_{x c}=\sigma_{x u}-\frac{\left(\sigma_{x u}\right)^{2}}{4 \pi^{2} E}\left(\frac{K L}{r}\right)^{2} \tag{Eq. 7.19}
\end{align*}
$$

This equation, divided by $\sigma_{x u}$ is plotted in non-dimensional form as Curve 3 in Fig. 7-4.

For column sections where the form factor, $Q<1.0, Q \sigma_{x u}$ should be substituted for $\sigma_{x u}$ in Eqs. 7.18 and 7.19 (7.1). Curve 4 in Fig. $7-4$ shows this case.

An alternate approach that is more conservative, and perhaps appropriate for materials with an elastic modulus that decreases significantly at stresses approaching $\sigma_{x u}$, is to use a straight line increase in $\sigma_{x c}$ from $0.5 \sigma_{x u}$ to $\sigma_{x u}$. This results in the following equation:

$$
\begin{align*}
& \text { For } \frac{K L}{r}<C_{c} \text { (given by Eq. 7.18): } \\
& \sigma_{x c}=\sigma_{x u}-\frac{\left(\sigma_{x u}\right)^{3 / 2}}{2 \pi 2 E}\left(\frac{K L}{r}\right) \tag{Eq. 7.20}
\end{align*}
$$

This equation, divided by ${ }^{\sigma_{X U}}$, is plotted in non-dimensional form as Curve 5 in Fig. 7-4. Again, for column sections with $Q<1.0, Q \sigma_{x u}$ should be substituted for $\sigma_{x U}$ in Eqs. 7.18 and 7.20.

Torsional buckling may occur at a lower critical load than the flexural buckling load given by Eq. 7.15 for certain types of doubly symmetric thin wall cross sections having low torsional stiffness. Torsional buckling does not prove critical with the tubular and I shaped sections that are commonly used as centrally compressed columns. Hiowever, it may govern the critical load for a cruciform shoped section and it contributes to the reduced torsional-flexural buckling resistance of open thin-wolled sections that are not doubly symmetric, as explained below.

The torsional buckling resistance is (7.4):

$$
\begin{equation*}
N_{x c}=\frac{1}{r_{a}^{2}}\left(G J+\frac{\pi^{2} E C_{w}}{(K L)^{2}}\right) \tag{Eq. 7.21}
\end{equation*}
$$

The torsional constant, J, was defined previously in Section 5.4 and the warping constant, C_{w}, will be defined later in Section 7.4. The polar radius of gyration, r_{0}, is given in Table 5-4.

For a cruciform shape, the term in Eq. 7.21 containing C_{w}, (i.e. the warping resistance), is negligible and the following approximation for the critical torsional buckling stress is valid (7.4):

$$
\begin{equation*}
\sigma_{x c}=\frac{E}{Z(T+v)}\left(\frac{t}{b}\right)^{2} \tag{Eq. 7.22}
\end{equation*}
$$

This stress is approximately the same as the critical local buckling stress for a longitudinally compressed plate with one longitudinal edge free and the other simply supported, (7.4). Furthermore, for cruciform columns that are long relative to their width, flexural buckling (Eqs. $7.17,7.19$ or 7.20) may result in a lower buckling strength. Thus, since the torsional buckling stress is the same as the local buckling stress, the same procedure for determining the maximum design stress may be used for these torsionally flexible sections, as was given previously to determine whether local buckling or flexural buckling governs maximun strength.

Torsional-flexural buckling may be critical for thin-wall open sections with unsyminetrical and singly symınetrical configurations, such as angles and sone channels with thin wide flanges. In this type of buckling, coupling of the flexural and forsional modes of buckling reduces the critical load below the lood calculated for either mode independently. The elostic torsional-flexural buckling strength of centrally loaded compression struts with a singly symenetric section, such as chonnel, hat or I with unequal flanges, is (7.1):

$\mathrm{N}_{\text {xcF }}$ is the elastic flexural buckling strength about the axis of symunetry (axis 1-1, Fig. 5-4), obtained using Eq. 7.15, and $N_{x c T}$ is the elastic torsional buckling strength, oblained using Eq. 7.21. B is a cross sectional property as follows:

$$
\begin{equation*}
\beta=1-\left(\mathrm{e} / \mathrm{r}_{\mathrm{s}}\right)^{2} \tag{Eq. 7.24}
\end{equation*}
$$

where \mathbf{e} is the distance from the shear center to the centroid along the $\mathrm{I}-\mathrm{I}$ axis (Table 5-5, $x_{0}-x_{0} a x i s$) and r_{s} is the polar moment of inertia of the cross seciion about the shear center:

$$
\begin{equation*}
r_{s}=\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}+e^{2}} \tag{Eq. 7.25}
\end{equation*}
$$

A "centrally loaded" (without bending) member of the above type must have the thrust load applied through the shear center. If thrust is applied elsewhere on the section, the member will be subject to combined bending ond axial load (Section 7.5).

The critical elastic buckling stress for torsional-flexural buckling of singly symmetric sections is:

$$
\begin{equation*}
\sigma_{x c e}=\frac{N_{x e}}{A} ;\left(N_{x c}\right. \text { from Eq. 7.23) } \tag{Eq. 7.26}
\end{equation*}
$$

When $\sigma_{x c e}>0.5 \sigma_{x u}$ the elastic value of $\sigma_{x c e}$ obta:ned using Eqs. 7.26 and 7.23 should be reáuced to provide a transition between elastic flexural-torsional buckling and stort column strength. A transition similar to curve $\mathbf{3}$ in Fig. 7-4 is obtained with the following equations (7.1):

$$
\begin{align*}
& \sigma_{x c e}>0.50 \sigma_{x u}: \sigma_{x c}=\sigma_{x u}-\frac{\sigma_{x u}}{4 \sigma_{x c e}} \tag{Eq. 7.27}\\
& \sigma_{x c e}<0.50 \sigma_{x u}: \sigma_{x c}=\sigma_{x c e} \tag{Eq. 7.28}
\end{align*}
$$

Ïorsional-flexural buckling of singly symmetric sections involves deformation by twisting abou, the shear center and bending about the axis of symmetry (usually the strong axis). Thus, only members, s ir portions of members, that ore free to deform this way need to be checked for torsionol-flexural buckling.

Flexural buckling involves bending obout the weak axis of the section lusually axis 2-2), with a member length that is free to deform obout that axis. For a centrally loaded column with a singly symmetric section, the permissible column lood is the lessor of the buckling load for flexural buckling about the weak axis (usuaily 2-2), as given by Eqs. 7.15-7.20, and the buckling load for torsionalflexural buckling by twisting about the sheor center and bending about the axis of symmetry, as given by Eq. 7.23.

With thin-wall sections when the forin foctor $Q<1.0$, the term $\sigma_{x u}$ in Eq. 7.27 should be multiplied by the form factor, Q, as described previously for flexural buckling.

For single angles, buckling resistance can usually be approximated by the lower of the buckling stresses givetı by Eq. 7.22 for torsional buckling or Eqs. 7.17, 7.19 or 7.20 for flexural buckling about the weak axis. A typical plot of the critical stress vs. length is given in Fig. 7-5. Flexural buckling is determined with reference to each of the principal axes $1-1$ and 2-2. The weak axis is usually 2-2. Again, a transition region shoulci be included as shown in the Figure.

Fig. 7-5 BUCKLING STRESS IN SINGLE ANCLE

See (7.3) or (7.4) for additional torsional-flexural buckling relations for open thin wall sections that do not meet the limitations discussed above. The subject is considered ogain in Sections 7.4 and 7.5 with reference to the stability of
laterally unsupported beams and of columns under combined bending and direct stress, respectively.

Summary of Design Procedure for Cent ally Looded Plastic Colurns.

The above described aspects of column behavior are reflected in the following procedure for the design of centrally loaded plastic compression members.
(1) Select a plastic material, a trial column cross section and a manufacturing process. Establish design criteria: luads, duration of loading, service temperature and other environimental conditions, and restraint. condition at ends of column.
(2) Determine material constants for use in design. These are:

E Use $E_{X T}$ at $0.5 \sigma_{x u}$, as a trial value, or establish plot of Ex vs. σ_{x}. For time-dependent considerations, use EvxT at 0.5 times the viscoelastic limit stress (or ot another appropriate stress) for the longest time duration required for design, or establish plot of EvxT vs. σ_{x}. If material is orthotropic, stiffness properties in direction 2-2 will also be required for determining locul buckling strength.
$\sigma_{\text {xu }}$ Use the appropriate strength limit for the specific materials, load duration, and environmental conditons. Frequently, for unreinforced plastics, this will be the viscoelastic limit stress for the design time-temperature-exposure cunditions. For reinforced plastics, it ma; be either the first damage strength, or the rupture strength, again taking into account the time-temperature-exposure design conditions.

See Chopter 3 for further discussion of siructural properties for use in design.
(3) Select load and strength reduction foctors for use in comporing required strength with provided strength:

- Multiply aesign load by a load factor (greater than 1.0) that allows for over foads, inaccuracies in analysis, etc., to obtain required ultimate capacity
- Multiply materials properties, E and $\alpha_{x u}$, by capacity reduction factors (less than 1.0) that allow for variations in structural properties to obtain the reduced material properties for use in design. Different capacity reduction factors may be used for E and $\sigma_{x u}$.
(4) Determine the form foctor, Q, for thin wall sections, bosed on Eq. 7.12, and the appropriate local buckling reiations (equations in Chapter 6). Use E. for the appropriate local buckling stress level.
(5) For $Q=1.0$ with doubly symmetric sections, calculate:
$C_{c}=\sqrt{\frac{2 \pi^{2} E}{\sigma_{X U}}}$
For $Q<1.0$, use:
$C_{c}^{\prime}=\frac{C_{c}}{Q}$
Eq. $7.18 a$
(6) If $K L / r \geq C_{c}\left(C_{c}^{\prime}\right.$ for $\left.Q<1.0\right)$, determine compressive strength, $a_{x c}$, from Eq. $7.17{ }^{-}$

If $K L / r<C_{c}\left(C_{c}^{\prime}\right.$ for $\left.Q<1.0\right)$, determine compressive strength, $\sigma_{X . c}$, from Eqs. $7.1 \overline{9}$ or 7.20 . If $Q<1.0$, replace $\sigma_{x u}$ in the above equations with $\mathrm{QO}_{\mathrm{xu}}{ }^{\text {• }}$

In general, Eq. 7.20 will give lower estimated strengths than Eq. 7.19 and is more appropriate for materials with a non-linear stress-strain relation (i.e. when ET reduces for stress above 0.50 xu). However, an accurate determination of critical strength in the transiition zone, where KL/r < C_{c}, requires experimental verification of centrally loaded plastic column behovior with specific plastic materials and column configurations.
(7) Determine:
$\max N_{x c}=\sigma_{x c} A \geq \operatorname{req}{ }^{\prime} d N_{x u}$
If $Q<1.0, \max N_{x c}=\sigma_{x c} A_{e}$ or $\sigma_{x c} A_{e}^{\prime}$
Eq. 7.29a
A_{e}, or A_{e}^{\prime}, are determined from Eqs. 7.9, or 7.10, respectively
(8) With singly symmetric sections, use Eqs. 7.26 or 7.27 to determine moximum Nace for lengths of sections tha: are free to twist and to bend about the symmetry axis 1-1. Also, check to determine if $N_{x c}$ is more critical by Eq. 7.15 for buckling about the weak axis 2-2. For single angle members use Eqs. 7.22 and 7.15 . For members with general unsymmetrical sections, see (7.1).
(9) Limit the moximum slenderness ratio, KL/r:
$\max \cdot \frac{K L}{r}=200$
Use the highest value of KL/r for the section. This arbitrary limit has been troditionally used in structural steel practice to preclude the design of members that meet theoretical requirements for buckling resistance, but that are excessively slender from a practical standpoint.
(10) Intermediate bracing may be used to increase buckling resistance by reducing the slenderness ratio, KL/r, about either or both principal axes. To be effective, such brocing must provide strength and stiffness that is adequate to prevent excessive distortion of the column at the brace point,
thereby forcing the column to buckle in the shape of a higher mode, with the rraximum buckle length equal to the unbraced length. (7.5).

Brace stiffness. The required minirnum stiffness for an intermediate brace in a direction perpendicular to the main member depends on the out-of-straightness of the column and the number of intermediate brace points. Ninimum brace stiffness is recommended in (7.4) ns:
$\begin{array}{lll}\min . \text { req'd } K_{s}=\frac{4 N_{x c}}{L} & \begin{array}{l}\text { for a column with one } \\ \text { intermediate broce }\end{array} & \text { Eq. 7.31a } \\ \text { min. req'd } K_{s}=\frac{8 N_{x c}}{L} & \begin{array}{l}\text { for a column with two, } \\ \text { or more intermediate braces }\end{array} & \text { Eq. 7.3lb }\end{array}$
Where K_{s} is the spring stiffness of the brace (i.e. the broce force thot produces a unit axial displacement in the trace), L is the length of the column between braced points, and $N_{x c}$ is the buckling load, $\sigma_{x c} A$, for the main inember with length, L. For a strut biace with length L_{b}, area $A b$ and elastic modulus Eb:

$$
\begin{equation*}
K_{s}=\frac{A b E b}{L_{b}} \tag{Eq. 7.32}
\end{equation*}
$$

Brace strength. The requirements for minirnum strength of intermediate bracing depend on the out-af-straightness of the main member and the stiffness of the brace. Typical rules for minimum bracing strength are discussed in (7.4). Required strengith of braces range between one and three percent of the buckling strength of the braced main member. The higher brace strengths are needed when bracing stiffness is near the minimum requirements, while the lower values are appropriate for stiff bracing systems and main members with low deviations from straightness (L/500 or less, where L is the length between brace points). A minimum broce strength of two per cent of the compressive enpacity of the main member is often used as u practical design requirement.

The above design procedure is used in Example 7-2 to determine the design capacity of a centrally loaded tubular reinforced plastic column.

7.4 BEAMS

As discussed in Thapter 5, beams support transverse loads by a combination of bending, shear and sometimes torsion. Beam sections in the form of rectangles, thin wall tubes, I-sections, channels, hat sections, T-sections, Z-sections, and many shapes of open corrugations or closed ribs in flat panels, are commonly found in plastics structural components. Considerable simplification in anslysis and design is possible when the beam has at least one longitudinal plane of symmetry and when the load axis is aligned with an axis of symmetry of the cross section. Except for a few special cases to be discussed later, the design procedure that follows is limited to the above types of sections and lood axes.

Example 7-2: Dctermine the maximum long term axial compression thrust load that can be safely applied to the fiberglass reinforced plastic column shown in the sketch. Service temperature is 00 to 1000 F . Assume thet the column is pin ended, and has the tubular section shown in the sketch. This section is mode by a pultrusion process that produces the following ultimate strength and stiffness properties based on standard short term tests: longitustinai compression: 25,000 psi, elastic noduli: $E_{11}=2,000,000 \mathrm{psi}$; $E_{22}=1,000,000 \mathrm{psi} ; G=450,000 \mathrm{psi}$, Poisson's Ratios: $v_{12}=0.36 ; v_{21}=0.18 *$

Column Section

1. Section properties from Table 5-3, Case 9:
$A=2 \times 0.40(7.6+1 \mid .6)=15.36$ in. 2
$I_{I}=\frac{0.40 \times 11.0^{2}}{6}(11.6+3 \times 7.6)=308.6 \mathrm{in}^{4}$
$I_{2}=\frac{0.40 \times 7.6^{2}}{6}(7.6+3 \times 11.6)=163.3 \mathrm{in}^{4}$
2. Reduced material properties to allow for long term load effects and manufacturing variations: Capacity reduction factor 0.5 for ultimate compressive strength, and 0.7 for elastic moduli; Thus:
$\sigma_{X U}=0.5 \times 25,000=12,500 \mathrm{psi} ; E_{I I}=0.7 \times 2,000,000=1,400,000 \mathrm{psi}$
$E_{22}=0.7 \times 1,000,000=700,000 \mathrm{psi}$
3. Load factors for ultimate strength: Multiply the design load by a load factor of 2.5 to account for variation in applied load, accidental bending, and differences between analytical models and real behavior.
4. Local buckling stress: Eq. 6.92 for long plate with "pinned" longitudinal edges gives;
$\sigma_{x c}=\frac{2 \pi^{2}}{t b^{2}}\left(\sqrt{D_{1} D_{22}}+D_{0}\right) ; b$ is the moximum inside width of plate elements $=11.2$ in.
Eq. $6.6 \mathrm{a}, \mathrm{b}: \quad \mathrm{D}_{11}=\frac{1,400,000 \times 0.4^{3}}{12(1-0.36 \times 0.18)}=7,984 ; D_{22}=\frac{1}{2} D_{11}=3992$

* See note on Example 7-1, page 7-5.

Exomple 7-2 (contimued)

Eq. 6.6c: $D_{12}={ }_{21} D_{1}=0.18 \times 7984=1437$
Eq. 6.6d: $D_{12}^{\prime}=\frac{315,000(0.4)^{3}}{12}=1,680$
Eq. 6.6e: $\quad D_{0}=1437+2 \times 1680=4797$
$\sigma_{x c}=\frac{-2 n^{2}}{0.40 \times 11.2^{2}}(7,984 \times 3992+4797)=4108 \mathrm{psi}$
If we neglect post buckling strength of the plates in the column:
Eq. 7.6: $Q=\frac{\sigma_{x c}}{\sigma_{x v}}=\frac{4108}{\Gamma 2500}=0.33<0.65$ no need to consider transition for local buckling.
5. Slenderness factor, $\mathrm{C}_{\mathbf{c}}$, for column buckling:

Eq. 7.18: $C_{c}=\sqrt{\frac{2 \pi^{2} E_{11}}{Q \sigma_{x U}}}=\sqrt{\frac{2 \pi^{2}}{0.33} \times \frac{1}{4000,000}}=81.8$
6. Column buckling stress, $\sigma_{x c}$:
rodius of gyration:
$r_{1}=\sqrt{\frac{I_{1}}{A}}=\sqrt{\frac{308.6}{15.36}}=4.48$ in.; $r_{2}=\sqrt{\frac{l_{2}}{A}}=\sqrt{\frac{163.3}{15.36}}=3.26$
column has "pin" ends; thus, $K=1.0$
$\frac{K L_{1}}{r_{1}}=\frac{1.0 \times 16 \times 12}{4.48}=42.9$ governs; $\frac{K L_{2}}{r_{2}}=\frac{1.0 \times 8 \times 12}{3.26}=29.4$
$\mathrm{KL} / \mathrm{r}_{\mathrm{r}}<\mathrm{C}_{\mathrm{C}}$; thus, use either Eq. 7.19 or 7.20 to determine σ_{xc}. In the absense of buckling test results, the more conservative Eq. 7.20 will be used.
Eq. 7.20: $\sigma_{x c}=Q \sigma_{x u}-\frac{\left(Q \sigma_{x u}\right)^{3 / 2}}{2 \pi \sqrt{2 E}} \quad\left(\frac{K L}{r}\right)$

$$
=0.33 \times 12,500-\frac{(0.33 \times 12,500)^{3 / 2} \times 42.9}{2 \sqrt{2 \times 1,400,000}}=3044 \mathrm{psi}
$$

7. Column design load

Eq. 7.29: $N_{x c}=3044 \times 15.36=46,756 \mathrm{lbs}$
Max. design axial load, $P=\frac{N_{x c}}{[. F .}=\frac{46,756}{2.5}=18,702 \mathrm{lbs}$

Example 7-2 (continued)

Alternate design with consideration of post buckling strength of stiffened plate elementss

40. Local buckling stress:

Eq. 6.75: $\frac{b_{e}}{b}=\sqrt{\frac{\sigma_{x c}}{d_{x u}}} \quad\left(1-0.22 \cdot \sqrt{\frac{\sigma_{x c}}{\sigma_{x u}}}\right)$
long sides: $\frac{\sigma_{x c}}{\sigma_{x u}}=\frac{4180}{\Gamma 2,500}=0.33 ; \cdot \sqrt{0.33}=0.574$
$\frac{b_{e}}{b}=0.574(1-0.22 \times 0.574)=0.50 ; b_{e}=0.50 \times(12-2 \times 0.4)=5.60 \mathrm{in}$.
short sides: $\sigma_{x c}=\frac{2 \pi^{2}}{0.40 \times 7.2^{2}} \quad(\sqrt{7,984 \times 3,992}+4797)=9940=\sigma_{\text {ace }}$
$\frac{\sigma_{\text {xce }}}{\sigma_{x u}}=\frac{9940}{12,500}=0.79>0.65 \sigma_{x u}$
Reduced $\sigma_{x c}$ for transition, Eq. 7.5:
$\sigma_{x c}=1.3 \sigma_{x u}\left(1 \frac{0.40}{\sqrt{\sigma_{x c e}}} \sqrt{\sigma_{x u}}\right)=1.3 \sigma_{x u}\left(1-\frac{.40}{\sqrt{.79}}\right)=0.715 \sigma_{x u}=8937 \mathrm{psi}$
$\sqrt{\frac{\sigma_{x c}}{\sigma_{x u}}}=0.715=0.85 ; \frac{b_{e}}{b}=0.85(1-0.22 \times 0.85)=0.69 ; b_{e}=0.69(8.0-2 \times 0.4)=4.97 \mathrm{in}$.
Effective area and $Q: A_{c}=5.60 \times 0.4 \times 2+4.97 \times 0.4 \times 2+0.4 \times 0.4 \times 4=9.10 \mathrm{ir}^{2}{ }^{2}$
Eq. 7.7: $Q=\frac{A_{e}}{A}=\frac{9.10}{15.36}=0.59$
50. Slenderness factor:
$C_{c}=-\sqrt{\frac{2 \pi^{2} \times 1,400,000}{.59 \times 12,500}}=61.2>\frac{K L}{r}$
6a. Column buckling stress:
$\sigma_{x c}=0.59 \times 12,500-\frac{(0.59 \times 12,500)^{3 / 2} \times 42.9}{2 \pi \sqrt{2 \times 1,400,000}}=4791 \mathrm{psi}$
Column design load:
7a. Column design load:
$N_{x c}=4791 \times 15.36=73,590$ lbs
Max. design lood, $P=\frac{73,590}{2.5}=29,436$ lbs
Conclusion: the buckling load with the alternate solution is 57% larger than the buckling load that neglects post buckling strength. Note, however, that the key relation for post buckling strength, Eq. 6.75, has not be checked experimentally with the type of orthotropic fiberglass reinforced plastic material being used in this example design.

Note: 1 psi $=6.895 \mathrm{KPa},|\mathrm{in} .=25.4 \mathrm{~mm},| \mathrm{in}^{2}=645.2 \mathrm{~mm}^{2}, 1 \mathrm{in} .^{4}=416,233 \mathrm{~mm}, 1 \mathrm{ft}$ $=6.305 \mathrm{~m}, \mathrm{I}^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8, \mathrm{I} \mathrm{lbf}=4.45 \mathrm{~N}$

The design of beams made from plastics must consider the following:

- Strength in both bernding and shear must be odequate to safely support the design loads.
- When thin wall sections are used, width-thickness ratios of compression elements must be proportioned to avoid premature local buckling of flanges and webs, or reduced stresses governed by local buckling must be used in design.
- Thin webs must be designed to avoid premature local buckling, and must not be overstressed or lacally buckled by concentrated loads and reactions.
- When compression flanges are laterally unbraced, either lateral-torsional stiffness must be adequate to preclude premature failure by lateraltorsional buckling, or distance between points of lateral bracing must be limited to avoid this type of buckling.
- Stiffness must be adequate for seflection control.
- When fiexural members have very thin compresrion elements that are allowed to buckle elastically prior to reaching maximum design strength, the change in section properties and the loss in flexurai stiffness must be raken into account in proctical design.
- The loss in effective cross section properties that occurs due to shear lag when thin bearn, flanges are very wide relative to span length must be considered.
- The flange curling that results from beam curvature in beams with thin flanges and flonges with a high width to thickness ratio sometimes should be considered.

Practical design approaches that recognize the above behavior are presented below. Limited consideration is given to the design of beams having unsymmetrical sections and to the design of beams subject to torsion. References are given for inore complete treatment of these more complex subjects.

Flexural Strength

Beams are designed for flexural strength based on the elastic beam theory (Section 5.4). The validity of this engineering theory has been investigated for application to conventional I-shaped beam sections fabricated with pultruded FRP structural composites (7.25). Test results presented in this reference confirm that the theory provides stresses and deflections that agree closely with calculated values.

Section modulus must be adequate to resist the bending moment, Mxu which is usisally applied about the strong axis, $1-1$, of the beam section.

$$
\begin{equation*}
\text { req'd min. } S_{I}=\frac{M_{x u I}}{\sigma_{x u}} \tag{Eq. 7.33}
\end{equation*}
$$

$\alpha_{x u}$ is the reduced ultimate strength, including the capacity reduction foctors described previously for tension members and columns. For solid materials, $\sigma_{x u}$ should be the bending strength. This may differ from both the tensile and compressive strengths of the material because of the stress gradient in test samples. See Chapters 2 and 3. For thin wall sections, ${ }_{x u}$ should be the tensile strength of the tension flange and the compressive strength of the compression flange. For some materials and design applications, the fructure ioughness considerations described in Section 5.8 shouid be taken into account when selecting the limiting value of $\sigma_{x u}$ for tension elements in beams.
S_{1} is the required minimum section modulus with respect to either the extremity of the tension flange or the compression flange, whichever gives the more critical requirement. See Table 5-2 in Chapter 5 for methods of calculating S, and see Table 5-3 for expressions for determining S for some common regular shapes. Also values of S for standard shapes like wide flange beams and tubes are often given in handbooks prepared by monufacturers or trade associations (1.9) (5.5).
$M_{x u l}$ is the maximum design moment in a plane perpendicular to section axis 1 1. multinlied by the load factor, as explained previously.

When a beam is subjected to bending about both principal axes, the resulting combined stresses on a trial section are determined using Eq. 5.23. The maximum combined stress must be less thon $\sigma_{x u}$.

The reduced sectional properties of the net section should be used to calculate stresses when holes or other disconfinuities exist near points of maximum moment. Furthermore, the calculoted stress adjacent to these discontinvities, σ_{x}, should then be multiplied by a suitable stress concentration factor, K_{p}, as explained in Section 5.5, and the increased stress, $\sigma_{x} K_{t}$, must be less than $\sigma_{x u}$.

Locol Buckling of Compression Flanges

For thin wall sections, the capocity of the compression flange may be limited by local buckling, rather than by the compressive strength of the flange materials. Two conditions are considered for practical design:
(1) The maxirnum compressive stress is limited te the local buckling stress of the flange. In this cose:
req'd $S_{I}=\frac{M_{x u l}}{\sigma_{x c}}$
Eq. 7.34
As discussed in the previous Section, the critical local buckling stress, ${ }^{0} \mathrm{xc}_{\mathrm{c}}$, may be determined using the local plate buckling equations given in Sections 6.9 and 6.10. Buckling coefficients for isotropic materials are given in Table 6-3 for various stress distributions and longitudinal edge conditions. Case 1 is used for flanges subject to uniform compression. Buckling equations and coefficients for or thotropic material:: are given in Section 6.10. Equations and coefficients given in Sections 6.9 and 6.10 include the important cases of uniformly compressed plates with one edge free, and the other simply supported, corresponding to outstanding flanges of I or [- shapes, and both edges simply supported, corresponding to the flanges of \square or Ω stcupes.

For rectongular tube sections, and hat sections or lipped sections where the compression flange having a width bf is supported on each side by webs of depth d_{w} (Fig. 5-2), the web provides edge restraint that increases the buckling coefficient for the compression flonges of such members. For these sections, the critical buckling stress is:
$\sigma_{x c}=\frac{k \pi^{2} E}{12\left(1-v^{2}\right)\left(\frac{b f}{T}\right)^{2}}$
where (7.6):
$k=5.2+0.16 \frac{\mathrm{bf}_{\mathrm{f}}}{\mathrm{d}_{w}} \leq 6.97$
When $\sigma_{x c}>0.65 \sigma_{x u}$ the some reduction in $\sigma_{x c}$ below the elastic value given by Eq. 7.35 that was explained previously for columns (Eq. 7.5 and Fig. 7-2) is appropriate.
(2) For stiffened flanges only, the flange may be allowed to buckle elasticaily. Since a stiffened flonge exhibits post-buckling strength, the actual orea of the flange is reduced to an effective area, as explained previously for local buckling of stiffened eiements in colurns. The maximum compressive strength of the flange is taken as the effective area times the material compressive strength. The "effective" cross section properties are determined based on the "effective" width of the compression flange (Eqs. 6.75 or 7.8) and:
requd $S_{\text {le }}=\frac{M_{\text {xul }}}{\sigma_{\text {xu }}}$

The relation between $S_{l e}$ and $S \mid$ must be determined by a "cut and try" calculation of be of the compression flange ar,d Sle, using trial section proportions. The effective section is usually symmetrical about only the 2-2 axis, and the effective moment of inertia, Ile, and effective section modulus, Sle, for the compression flange may be determined as explained in Section 5.3.

The first condition, Eq. 7.34, is used for all beoms with unstiffened compression flanges and for designs with stiffened flanges when local buckling is not to be permitted. It is the more conservative of the two conditions and the simpler criterion to use in design, since it requires only a substitution of $\sigma_{x c}$ for $\sigma_{x u}$ in the equations given previously for required section modulus.

The second condition, Eq. 7.37, may be needed for design economy where the b / t ratio of the compression flange is large, resulting in a low ratio of $\sigma_{x c} / \sigma_{x u}$. In this case, it may be desirable to use the post buckling strength of a stiffened element. As noted previously for columns, the equations for effective width of local plate elements in the post buckling range given in Section 6.9 were developed for metal members, and they should be verified, or modified as required, for use with plastics. Also, design for the iecond condition is complicated because the behavior of the beam in the post buckling range is nonlinear as the effective compression area changes with stress levei. This results in reductions in effective section modulus $S_{1 e}$, moment of inertia, $I_{1 e}$, area, A_{e}, and radius of gyration, $r_{l e}$, as stress level incraases above the initial buckling stress. However, the section properties can readily be determined for the effective compression flange area that exists under the full materials strength $\sigma_{x u}$ (Eq. 6.75 with $\sigma_{x e}=\sigma_{x u}$, or Eq. 7.8) and the limiting ultimate strength can be excmined on this basis.

Limiting width-thickness ratios required to prevent local buckling at stresses below $\sigma_{x u}(Q=1.0)$ can be established by setting $\sigma_{x c}=\sigma_{x u}$ in the equations for local buckling of various types of compressed plates. This approach is used in structural steel specifications. Limiting width-thickness ratios for certain plate नlements that frequently occur in beam members are given in Table 7-1 for isotropic materials. As was discussed earlier for columns, these width-thickness ratios can be used to establish proportions of thin walled cross sections that can be stressed to their ultimate strengths without buckling. The use of limiting width-thickness ratios in proctical design is illustrated in Example 7-3, given
later in this Section under the heading "Design Procedure for Beams". However, proportions based on this approach may not provide economical sections, compared to thinner "stiffened" flonges that have odequate post buckling strength.

Stear Strength

Maximum shear stress resultants often occur at poirts where normal stresses caused by bendiny are low. In this case, the interaction of shear and bending effects need not be considered, and shear effects can be examined independently from berding, as discussed below.

Shear strength is adequate when the maximum shear stress, determined using Eq. 5.31 , or 5.32 , is less than the shear stength of the material. The material's shear strength is the "interlaminar" shear strength for layered materials in sections with plones of layers parallel to the plone of horizontal shenr (axis of bending), or it is the "in-plane" shear strength for thin wall webs with their plane perpendicular to the axis of bending. In some sections, it may be necessary to investiqute in-plone shear stresses in one part of a cross section and interlaminar shear stresses in another part. This is illustrated in Example 7-3, given later.

Design of Webs

In sections such as $1,[]$, or $]$, , the web carries the major portion of the shear stress resultant applied to the section. For many practical beams, the web is subject to almost "pure shear" (i.e. shear without normol stress) at sections of maximum shear, and to pure, in-plone flexural normal stresses at sections of maximum bending. However, in some cases, the web must be designed to resist combined in-plane bending and shear, or even combined in-plane thrust, bending, and shear. Design considerations for webs include in-plane shear strength, inplane flexural or axial strength, in-plane shear buckling, in-plane flexural or axial buckling, and local strength and buckling resistance of concentrated loods and reactions. Webs may also be stressed in shear due to torsion, but this will be considered separately.

Web thickness musi be adequate to resist the inaximum shear stress resultant that acts in the plane of the web. For the thin-wall sections described above, the approximate Eq. 5.32 for shear stress in a flexural inember may be recust as:

$$
\begin{equation*}
\text { req'd min. } t_{w}=\frac{v_{x u l}}{\tau_{x u} d_{w}} \tag{Eq. 7.38}
\end{equation*}
$$

$\tau_{x U}$ is the reduced in-plane shear strength of the web, d_{w} is the depth of the web between insides of flanges, t_{w} is the total required thickness of all webs that are in the plane of bending, and $V_{x u l}$ is the maximum design shear force mutipled by a load factor. If torsion produces additional shear stresses, these must be included when determining web thickness. This is discussed loter.

Heb buckling in shear. If the ratio, d_{w} / \dagger_{w}, is too great at the section of maximum shear (Section 1-1 in Fig. 7-6), the web may fail by buckling at a str sss below the sheor strength, $\tau_{x u}$. The local buckling strength of the web in pure shear is given by Eq. 6.84 for isotropic webs and Eq. 6.102 for orthotropic webs. Replace b with d_{w} in these equations. See Table $7-1$ for the $d_{w} /{ }_{w}$ ratios that give $\tau_{x c}$ equal $\tau_{x u}$ for isotropic materials.

Use $T_{x c}$ in place of $\tau_{x u}$ in Eq. 7.38, whenevar $\tau_{x c}$ is less than $\tau_{x u}$. Alternatively, $\tau_{x c}$ may be increased by adding transverse web stiffeners at the proper longitudinal spacing, a, to make $\tau_{x c}$ equal $\tau_{x u}$ in Eqs. 6.84 or 6.102 . Longi:udinal stiffeners may also be used to reduce the effective unsupported depth, d_{w}. The design of stiffeners is presented later.

Web buckling in flexare. If the ratio d_{w} / t_{w} is too great at the section of maximum compressive bending siress (Section 2-2 in Fig. 7-6), the web may fail by buckling due to in-plane flexure. For isotropic materials, the local buckling stress at the compression extremity is given by Eq. 6.7la with the coefficient for Case 6 in Table 6-3. For orthotropic materials, use Eq. 6.101, with the coefficient from Fig. 6-44.

If $\sigma_{x c}$ is less than the maximum web compression thot occurs when the adiocent flange is fully stressed, the web thickness sto use of the adjacent flange material. Since, for thin flanges and and deep webs in doubly symmetric beams, the maximum web compression stress is nearly equal to
the adjocent flange stress, in many cases the maximum d_{w} / t_{w} ratio will be the ratio that develops $\sigma_{x u}$ without buckling of the web. If the flange is considered to provide partially fixed rotational restraint of the web, the maximurn d_{w} / t_{w} to preslude flexural buckling of a thin isotronic web bufore the maximum in-plane strength of the moterial is developed is:

$$
\begin{equation*}
\max \cdot d_{w} / t_{w v}=5.0 \sqrt{\frac{E}{\sigma_{x u}\left(1-v^{2}\right)}} \tag{Eq. 7.39}
\end{equation*}
$$

Section 1-1: Governs Web Burkling in Sheor
Section 2-2: Coverns Web Buckling in in-plane Bending

Fig. 7-6 WEB BUCKLNNS DUE TO SHEAR AND MHPLANE BENDHK

See Table 7-1 for d_{w} / t_{w} ratios for the bnsic conditions of zero and fixed rotational reitraint from the flanges.

The obove web slenderness is greater than proportions used in most proctical webs. However, a larger overall depth of web may be obtained by providing a longitudinul stiffener in the compression region of the web. The buckling stress
will then depend on the d / t ratios between the compression flonge a.dd the stiffener, and the tension flange and the stiffener. For isotropic materials, it will be given by Eq. 6.7Ia, with coefficient from the uppropriate cases in Table 6-3 (using the appropriate stress variations between stiffener and each of the flonges).

Web buckling in combined shear and flexure. When high shear and in-plane compression due to flexure occur at the same section, the web thickness selected based on the previously discussed criteria should be checked for adequacy under the combined effects of sinear and in-plane compression, as described in Section 6.9. The interoction equation, Eq. 6.88, moy be used for this check. If this equation gives a ratio summation grealer thari l.0, the web thickness rrust be increased. This will increase the critical shear and in-plane flexure buckling stresses while of the same time decreasing the ortual shear stresses. Alternotively, web stiffeners may be added to increase either the shear buckling or the flexurol buckling stresses, as required.

Web stiffeners. When $\tau_{x c}$ is less than $\tau_{x u}$, or $\sigma_{x c}$ is less than $\sigma_{x u}$ in the web, it may be advontageous to increase these critical buckling stresses to ailow the use of the full materiol strength by providing tronsverse or longitudinal stiffeners. If used at all, transverse web stiffeners are usurally only applied in regions of high sheor stress to increase the shear buckling strength of the wei. However, the maximum d_{w} / t_{w} ratio usually connot exceed the ratio given by Eq. 7.39 , the limiting rotio for flexural buckling of the web.

To be effective, stiffervers must be properly spaced, and they must not deform excessively as they support the thin web. This requires that they have sufficient lateral moment of inertia, I_{s}, about the plane of the web. When the stiffeners and web are isotropic with the some E, the minimum required I_{s} is (7.4):

$$
\begin{equation*}
I_{s}=0.34 d_{w}^{4}\left(\frac{w_{w}}{b_{s}}\right)^{3} \tag{Eq. 7.40}
\end{equation*}
$$

I_{s} is the minimum required moment of inertio of the stiffener about the plane of the web, and b_{s} is the longifudinal spocing of stiffeners.

When the web is braced by both longitudinal (horizontal) stiffeners, located between 0.2 and $0.25 \mathrm{~d}_{\mathbf{w}}$ from the compression flange, and transverse (vertical) stiffeners spaced at b_{s}, the minimum lateral moment of inertia of the iongitudinal stiffener should be (7.4):

$$
\begin{equation*}
I_{s}=d_{w}+{ }_{w}^{3}\left[2.4\left(\frac{b_{s}}{d_{w}^{2}}\right)^{2}-0.13\right] \tag{Eq. 7.41}
\end{equation*}
$$

The required moment of inertio of the transverse stiffener should continue to be given by Eq. 7.40.

Web crippling. When localized bearing loods are applied to thin webs by concentrated loads or reactions, the loads or reactions may produse significant transverse compression stresses in the web. This stress state is shown in Fig. 7-7 The web must be checked for adequate strength and resistance to local buckling, sometimes called crippling. If the web provides the entire transverse resistance to the concentrated forces stown in the Figure, web thickness must be adequate to meet the following tronsverse strength and buckling requirements (7.4):

Strength:

$$
\begin{array}{r}
\text { Interior Rearing } \\
\sigma_{y u} \geq \frac{R_{u}}{} \quad \text { End Bearing } \tag{Eq. 7.42}\\
f_{w}(n+2 k)
\end{array} \quad \text { or } \geq \frac{R_{u}}{\dagger_{w}(n+k)}
$$

where n and k are shown in Fig. 7-7.

Buckling resistance:

$$
\begin{equation*}
\sigma_{y c}=\frac{\pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{w_{w}}{d_{w}^{2}}\left(2+\frac{4 d_{w}^{2}}{a^{2}}\right)\right. \tag{Eq. 7.43}
\end{equation*}
$$

Buckling resistance, as given by Eq. 7.43, shall be greater than the following transverse stress in the web (Fig. 7-7):

$$
\begin{gather*}
\text { Interior Bearing } \\
\sigma_{y c} \geq \sigma_{y}=\frac{R_{u}}{\dagger_{w} \delta_{w}} \quad \text { or, } \quad=\frac{R_{u}}{\dagger_{w}\left(0.5 d_{w}+n\right)}
\end{gather*}
$$

and for uniformly distributed load:

$$
\begin{equation*}
\sigma_{y c} \geq \sigma_{y}=\frac{q}{q_{w}} \tag{Eq. 7.45}
\end{equation*}
$$

The above equations are used for structural steel sections, and are believed to be conservative, but should be considered as highly rentative for application to thin plastic webs. Extensive tests of cold-formed steel members provide the basis for the empirical web crippling criteria used for cold-formed sections (7.1). Because the iatter criteria do not include variables for basic materials parameters, they are not useful for design of plastics members with thin webs. Tests of specific materials and typical bearing configurations are required for accurate evaluation of web crippling and local buckling at bearings with thin-walled plastics sections.

Fig. 7-I CRITICAL SECTIONS FOR WEB CRIPPLING AND VERTICAL BUCKLING

Loteral buckling

In most proctical design cases, beams are supported against lateral deformation by plates or other locc' omponents that transfer load to the beam. In such coses, the bean can deform only in one direction, usually the direction of the load. There are situations, however, where beams have no lateral support or brocing over part or all of their span. Sometimes, such laterally unbraced beams can buckle at a lower lood than the lood that develops the full flexural or shear strength of the beam.

Fig. 7-8 shows a beam in pure bending, simply supported and also held against tipping at both ends. The top flange is in uniform compression, tending to buckle laterally like a column in its unsupported direction. The bottom flange is in tension and tends to remain straight. As a consequence, during buckling the entire cross section rotates as the top flange moves laterally and the bottom flange remains straight. Botl: the resistance of the ton flange to lateral bending and the resistance of the cross section to twisting are mobilized as the beam resists lateral buckling. Thus, a more occurate, but less commonly used, description of this behovior is lateral-torsional buckling.

Lateral-forsional buckling seldom 'imits the load resistance of unbraced beams hoving closed thin-wall sections or stocky solid sections such as a round or square shopes. However, open thin-wall shapes are torsionally flexible, and when unbraced, they are prone to buckling in the lateral-torsional mode.

The lateral-torsional buckling resistance of an unbraced beam with an open thin walled cross section derives from its la;eral bending stiffness, from its torsional stiffness, and from its worping stiffness. Warping involves bending of thin wall elements (such as flanges) as the ang!e of twist of the beam changes along its length. This is shown in Fig. 7-8. This behovior is discussed again later in this Section under the heoding, Torsion.

Equations are given below for the critical bending moment that causes lateraltorsionol buckling of beams witt, the following limitations:

- moterials are isotropic and elastic
- beam cross sections are doubly symmetric
- louds are applied at the centroid of the cross section, which is also the center of twist of a dou'bly symmetric section.
- loads are directed along the weak axis, perpendicular to the strong oxis. They produce only bending, or bending and flexural shear, about the strong axis.

Fig. 7-8 LATERAL-TORSIONAL BUCKLING OF UNBRACED BEAM

The basiz equation for critical buckling flexural stress is (7.2):

$$
\begin{equation*}
\sigma_{x c}=\frac{C_{1}}{S_{1}} \sqrt{M_{x c}^{2}+\frac{d^{2}}{4} P_{e 2}^{2}} \tag{Eq. 7.46}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{x c}=\frac{\pi}{K L} \sqrt{E I_{2} G J} \tag{Eq. 7.47}
\end{equation*}
$$

For open thin-woll sections, such os I sections, $\mathrm{P}_{\mathrm{e} 2}$ is the Euler column lond for buckling in the weak direction, and is:

$$
\begin{equation*}
P_{e 2}=\frac{\pi^{2} E I_{2}}{(K L)^{2}} \tag{Eq. 7.48}
\end{equation*}
$$

For rectangular solid or tubu!ar sections, $\mathrm{P}_{\mathrm{e}_{2}}$ is taken as zero. Thus, for these types of sections, $M_{x c}$ is the critical buckiling moment under applied moment that is constant over the unbraced lengit.
$C_{\text {I }}$ is a coefficient that depends on lood distribution and end conditions, and K is the effective length foctor (see Section 7.3) for column buckling in the weak (22) plane of berding. Values of C_{I} and K for common lood cases and end conditions are given in Table 7-2. If a beam has intermediate lateral supports, the lateral buckling coefficient, C_{1}, is approxirroted by:

$$
\begin{equation*}
c_{1}=1.75+1.05\left(M_{1} / M_{2}\right)+0.3\left(\frac{M_{1}}{M_{2}}\right)^{2} \leq 2.3 \tag{Eq. 7.49}
\end{equation*}
$$

Table 7-2
Lateral Buckling Coefficients for Bearns with Various Load and Support Arrangements

- All beame are restrained at each and agoinat rotation about the x-axis and cisplacement in ine y out z airections. Loods applied of beam centroidal axis.
* Citical Soreas baed on center moment (WL2*).
where M_{1} and M_{2} are the moments at each end of a segment between brace points, and $M_{1}<M_{2} ; M_{1} / M_{2}$ is positive for reverse curvature bending and negative for single curvature bending. Thus, if M is constant between two brace points, $M_{1}=-M_{2}$ and $C_{1}=1.0$.

Equations for determining the section properties, S_{1}, I_{2}, and J are given in Section 5.3. Also, for isotropic materials, the modulus of shearing rigidity, $G=$ $\mathrm{E} / 2(1+\mathrm{v})$.

Simplifications of Eq. 7.46 are usually used for practical design. For example, in structural steel proctice, sections have signifin, unt torsional rigidity because thickness of flanges and webs is noi "thin." For these types of symmetrical I beams with $S_{1}=21_{1} d ; I_{2}=2+b^{3} / 12, J=2 b t_{f}^{3} / 3$, when $\left(d / 4 P_{e 2}\right)^{2}$ is small compared to $M_{x C}^{2}, v=0.3$, with isotropic materials, and $K=1.0$ for simple support of flange bending obout the weak axis:

$$
\begin{equation*}
\sigma_{x c}=0.65 C_{1} E\left(\frac{b t_{f}}{L d}\right) \tag{Eq. 7.50}
\end{equation*}
$$

In another simplification, applicable for very deep I sections, and sections with very low torsional rigidity (with "thin" flanges and webs), the entire resistance to lateral buckling is assigned to the lateral buckling resistance of the top flange.

$$
\begin{equation*}
\sigma_{x c}=\frac{C_{1} \pi^{2} E}{\left(\frac{K L}{r_{2}}\right)^{2}} \tag{Eq. 7.51}
\end{equation*}
$$

This is further simplified with a rectangular compression flange of width b to:

$$
\begin{equation*}
\sigma_{x c}=\frac{0.8 C_{1} E}{(K L / b)^{2}}=\frac{C_{1} \pi^{2} E d I_{2}}{(K L)^{2} S_{1}} \tag{Eq. 7.52}
\end{equation*}
$$

In cases where it is not clear whether Eq. 7.50 or 7.51 (or 7.52) should be applied, the highest buckling stress obtcined with either of these equations governs. Othe: equations for approximate critical buckling stress are given in (7.1) and (7.2).

The lateral-torsional buckling resistance of closed thin wall sections, such as rectangular tubes, is obtained from the critical buckling moment $M_{x c}$ given by Eq. 7.47 (7.2), and the buckling stress is:

$$
\begin{equation*}
o_{x c}=\frac{C_{1} M_{x c}}{S_{1}} \tag{Eq. 7.53}
\end{equation*}
$$

In design proctice for cold-formed steel beams (7.1), the lateral buckling stress given by the above Eq. 7.52 is reduced when $\sigma_{x c}>0.55 \sigma_{x u}$. The reasons for this are the same as already discussed for buckling of centrally compressed columns and local buckling of thin-walled plate elements. The following reduction equations represent the basis of design requirements given in (7.1): Let $\sigma_{x c e}=\sigma_{x c}$ for elastic buckling using Eq. 7.52 (or $\sigma_{x c}$ in Eqs. 7.46, 7.50, 7.51 or 7.53 could also be used):

$$
\begin{align*}
& \text { For }\left(\frac{K L}{b}\right)^{2} \geq \frac{1.4 C_{1} E}{c_{x u}}: \sigma_{x c}=\sigma_{x c e} \tag{Eq. 7.540}\\
& \left(\sigma_{x c}<0.55 \sigma_{x u}\right) \\
& \text { For }\left(\frac{K L}{b}\right)^{2} \text { betw. } \frac{1.4 C_{1} E}{\sigma_{x u}} \& \frac{0.3 C_{1} E}{\sigma_{x u}}: \sigma_{x c}=1.1 \sigma_{x u}-\frac{\sigma_{x u}}{3.2 \sigma_{x c e}} \\
& \text { For }\left(\frac{K L}{b}\right)^{2}<\frac{0.3 C_{1} E}{\sigma_{x u}}: \sigma_{x c}=\sigma_{x u}
\end{align*}
$$

Design practice for structural steel (5.5) does not incorporate the above reduction equations. Rolled steel beams derive most of their resistance to lateral buckling from the St . Venant torsion resistance of their flanges, and Eq. 7.50 usually best approximates the resistance of such shapes. Neglect of the other terms in Eq. 7.46 may compensate for the simplifying omission of reduction foctors when $\sigma_{x c}>0.55 \sigma_{x u}$.

The lateral-torsional buckling resistance of beams hoving thin rer.tangular cross sections (Fig. 6-37) is given by Eq. 6.89, with coefficients for the looding cases of Fig. 6-37 given in Table 6-5. These are useful for determining the strength of plates that behave like beams with a compressed unsupported edge due to inplane flexure. (Such plates are termed diaphragms in Chopter 6.)

When loads are opplied at the top flange, instead of at the centroid of a beam section, buckling resistance is slightly reduced. Conversely, when loads ore applied at the bottom flange, buckling resistance is larger than given by the preceeding equations. These refinements are presented in (7.2). Generally, they are not taken into account in practical design; thus, the mere complex lateral buckling equations with these refinements are not included here.

Lateral buckling solutions for beams with singly symmetric or with unsymmetrical cross sections are given in (7.1) (7.2) and (7.4); since the use of such sections is not common, these more complex solutions also are not given here. When an unbraced beam is designed with a singly symmetric cross section, a compression flange with increased lateral stiffness is frequently used. An example is an I section with the cuter edges of the compression flange turned down (or a channel added to the compression flange). Eq. 7.51 usually provides a suitable approximation of the buckling stress in this type of beam. However, the radius of gyration, r_{2}, should be for the compression flange only.

When lateral buckling resistance is inadequate, the designer may selec: a beam section with improved interal and/or torsional stiffness, or he may reduce the unbraced length by using bracing at intermediate points along the spon of the beam. The bracing must be effective in preventing lateral deflection of the compression flange, and torsional rotation of the beam cross section, and it must limit the unbraced length of the beam to obtain odequate levels of critical buckling stress, as given by the preceeding equations. Effective bracing arrangements are generally one of the following two types, shown schematically in Fig. 7-9:

- The Type I system supports the compression flange by a lateral system that prevents significont lateral deflection. The minimum required strength and stiffness of this type of bracing system is that required to stabilize the compression force in the beam when its compression side is considered as a column.

The methods given in Section 7.3 for minimum requirements of column brocing may then be applied to obtain conservative estimates of the required strength and stiffness of the bracing system. Eoch lateral support should be designed for two percent of the total compression force at that brace point in the laterally braced beam (7.2). When compression flonge bracing is provided by a continuous diaphragm that is elastic, approximate methods for determining the usually very low minimum required strength and stiffness are discussed in (7.4).

- The Type 2 system prevents twisting of the entire cross section at the brace points. Rigid diaphragms are provided between two parallel bearns. This bracing system is effective without any system for increasing the lateral strength and stiffness of the top chord (7.7). Each diaphragm should be designed to resist a minimum shear force of two perc:s \dagger of the total compressi flange force at the brace point and the same shear applied in the opposite direction at the tension flange. See Fig. 7-9. These forces must be balanced by small upward an:d downward loods on the adjacryt beams as shown in the Figure.

Another arrangement of some interest in design is the case where lateral support is provided at the tension flange, instead of at the compression flange. This is not on efficient location for lateral support, but sometimes the irnprovement in lateral buckling resistance afforded by available lateral restraint on the tension side requires consideration in practical design. Some examples of flexural members with this type of cross section are shown in Fig. 7-10.

In general, when the tension flange is braced and compression flange unbraced the compression flange behoves like a compressed strut laterally supported by o continuous elastic foundation. The foundation stiffness is the stiffness provided by the web and tension flange against lateral translation and torsional rotation. This behovior is complex and simple relations are not available to predict the buckling strength of the flange. See (7.1) or (7.3) for an approximate procedure.

Fig. 7-9 EFFECTIVE LATERAL BRACING SYSTEMS

Fig. 7-10 LATERAL BRACING ON TENSION SIDE OF BEAM

Deflection

Because the elostic and viscoelastic moduli of plastics are low, deflection is frequently a critical design criterion. Performance criteria often limit maximum deflection under service load to avoid unsatisfactory appearance, disiress in attached non-structural combonents, flutter in wind, leakage at weather seals and excessive movement at joints. Typical limits range from L/I80 or less for visual acceptance to $\mathrm{L} / 400$, or less, for adequate rigidity for resistance to rertain vibratory motion.

Beam deflection results from both flexural and shear deformution. Except for beams with sandwich constructions having low derisity cores, or for beams that hove large depth to span rotios, shear deflection is small conipared to bending deflection, and is usually neglected. Only bending deflection is considered here. Shear deformation of scondwich beams is presented in detail in Chapter 8.

A general expression for curvature produced by bending moment is given in Section 5.4. The integration of curvature, together with boundary conditions at
supports, gives the slope at any point along the beam axis caused by bending. Then, the integration of slope, together with boundary conditions at supports, gives the deflection ot points along the beam axis. See (5.8) for the derivation and solution of the differential equation for the deflection of elastic beams, based on E.q. 5.29, the basic elastic curvature relation.

In practical calculations, slopes and deflections of beams are often jetermined using the conjuyote bearn anology. This simple method is explained in Section 5.4 ard illustrated in Fig. 5-5. It may be used effectively whenever the bending moment diagram has first been determined.

The maximum bending deflection occurs at a point of zero slope or at a boundary. A general expression for the maximum bending deflection in the plone of the loods for a member with a constant aross section over the iength, L, and symmetric about the load plane is:

$$
\begin{equation*}
w=\frac{K_{m} w L^{3}}{E I_{I}} \tag{Eq. 7.55}
\end{equation*}
$$

The bending deflection constant, K_{m}. varies with the distribution of total load, W, on the bearn and with end-support and end-fixity conditions. Values of K_{m} for some common load and end support cond:tions are given in Table 5-1 in Chapter 5. See also Table 8-3 in Chapter 8. The elastic modulus in Eq. 7.55 is the modulus in the longitudinal direction. See Section 5.3 and Tabies 5-2 and 5-3 for methads and equations for determining i.

See (5.1), (5.3), and (5.8) for general methods for determining deflection of beams and rigid frames and (5.4) and (5.5) for tables giving formulas for deflection and coefficients for maxinum deflection.

When bearns with thin flonges are designed to allow local buckling at loads below the design load, bosed on the "effective width" concept that was explained previously, the moment of inertia decreases in the region of high moment where the effective width is less than the actual width. In this case, the beam stiffness, El, is variable over the beam length as shown in Fig. 7-11. Stiffness depends on stress level and behavior is non-linear. An accurate determination of deflection, if needed, can be obtained using a computer analysis for bearns with variable stiffness. An upper limit of deflection can be obtained by taking the
smallest effective moment of inertia at the section of maximum mornent as a constant I, or a better estimate can be obtained with some weighted average between the I of the gross section and the I of the effective section at the location of highest stress.

Fig. 7-II EFFECTIVE WIDTH VARIA TICIV WITH MAXIMUM STRESS

Design procedure for bearns

The design procedure for beams is similar to the step by step summary given at the end of Section 7.3 for centrally loaded colurns. Of course, the equations for bending strength and lateral stability of unbraced compression flanges presented earlier in this Section are used insiead of the equations fc: compression strength and stability given in the summary for columns. Also, odditional considerations involving shear strangth and stability, locai stresses at reactions and concentrated loads and deilection frequently are important with beum members. These are described in derail in the precedim paragraphs.

When standardized structural members are aviluble, manufocturers usually develop tables of section properties such as section modulus, S, and moment of inertia, I, and members that have the required S and I properties may be selected directly with the aid of such information. However, when the designer has to determine his own proportions for members, a procedure for selecting trial proportions, bosed on approximate relations for S_{1} and I_{1}, is useful. Trial proportions for designing thin-wall I and rectangular tube sections can be established as follows:
I. Determine maximum tlange $b_{f} / t f$ and web d_{w} / t_{w} ratios that permit $x u$ in these members without local buckling. Also, determine maximum $\mathrm{d}_{\mathrm{w}} / \mathrm{t}_{\mathrm{w}}$ that permits $x u$ in the web. See Table 7-I.
2. Determine minimum required area of web, A_{w} (i.e., ${ }{ }_{w}{ }_{w}$), from Eq. 7.38. Select a trial depth and web thickness that provides Aw and the deepest section that has d_{w} / t_{w} less than the limiting value for buckling, or that provides practical proportions for the beam:.
3. [Determine the reqiired minimum section modulus, $\mathrm{S}_{\text {I }}$, from Eq. 7.33.
4. Determine a trial area of each flange to obtain the required section modulus from the following approximate relation:

$$
\begin{equation*}
\operatorname{trial} A_{f}^{*}=\frac{S_{l}}{\left(d_{w}+t_{f}\right)}-\frac{A_{w}}{6} \tag{Eq. 7.56}
\end{equation*}
$$

5. Determine the required minimum moment of inertia, II, from Eq. 7.55.
6. Determine a trial area of each flange to obtain the required moment of inertia from the following opproximate relation:
trial $A_{f}^{*}=\frac{21_{1}}{\left(d_{w}+t_{f}\right)^{2}}-\frac{A_{w}}{6}$
Eq. 7.57
7. If a greater flange area is required for I_{1}, than S_{1}, it may be more economical to use a deeper section, if permitted by functional requirements and manufacturing limits.
*Note: See steps 6.2 and 6.3 in Example 7-3 for derivation of these equations.
8. Establish a width and thickness of flange that develops the flexural strength required with the governing flange urea. If $S_{\}$ governs, the $\mathrm{Df} / \mathrm{tf}$ ratia must be limited to develop $\sigma_{x u}$ without local buckling of the flange. If I_{1} requires a larger flange area, the permissible bf/tf ratio can be increased, since σ_{x} will be less than $\sigma_{x u}$. After trial proportions are selected, check thot the maximum flexural compressiva stress under the factored desigri load is equal to, or less than, the reduced ultimate strength of the material, $\sigma_{x u}$, or the maximum buckling strength, $\sigma_{x c}$ ' whichever is less.
9. Check the adequacy of web thickness and bearing length for bcaring strength and stability at concentrated reactions and loads.
10. If the compression flange is not laterally braced, check the member for adequate resistance to lateral-torsional buckling. If resistance is not adequate, provide appropriate lateral bracing.

Application of the beam design procedure is illustrated in Example 7-3. Also, the flexural behavior of the same beam uriter a dynamically applied load from blast pressure is illustrated in Example 5-7.

A few odditional considerations for special cases involving plates that behave like beams, beams with thin and wide flanges, and bearns subject to torsion are given in the remainder of this Section.

One-way plates as bearns

Plates that are supported on opposite edges and span in one direction are essentially wide beams. The methods for analysis and design of beams presented above moy also be applied to such plates. However, the effective stiffness of the plate as a jeam is increased because contraction and exponsion of the "wide beom ${ }^{\prime \prime}$ due to the Poisson effect is restrained. The increased stiffness is taken into account by replacing the elastic modulus, E, in the equations above by $E /\left(1-v^{2}\right)$. This is discussed in detail in Chapter 6.

When plates sparining in one direction are subject to concentrated loads (Fig. 7-12), shear and bending effects result in directions both parallel to and perpendicular to the direction of the span. The maximum stresses occur at the lood, but significant bending in the direction of the span extends longitudinally along the plate, distributing the concentfated load effects to adjacent strips.

[^5]
Example 7-3 (continued)

Thus req'd $I_{I}=\frac{1000 w L^{3}}{384 E}=\frac{1000 \times 1000 \times 20^{3} \times 144}{384 \times 1,400,0070}=2143 \mathrm{in}^{4}{ }^{4}$
5. Determine minimum ratios of flange width to flange thickness, $\mathrm{b}_{\mathrm{f}} / \mathrm{ff}$, and web width ro web thickness, $d w / t w$ to develop ultimate flexural compression strength of 12,000 psi and ultimate shear strengtio of 3000 psi , respectively:
5.1 Flange - to develop ultimate compression strength (based on conservative assumption of pinned edge at web):
Eq. 6.93: $\left(\frac{b_{f}}{2 t_{f}}{ }^{2}=\frac{G_{12}}{\sigma_{x c}} ; \sigma_{x c}=\sigma_{x u}=12,000 \mathrm{psi}\right.$ $\max \frac{b_{f}}{2 t_{f}}=\sqrt{\frac{315,000}{12,000}}=5.1$
5.2 Web - to develop full 12,000 psi flexural stress at flange:

Eq. 6.101: $\frac{d_{w}{ }^{2}{ }^{\dagger} w}{D_{I I}}=\frac{k \pi^{2}}{\sigma_{x c}}$
Eq. 6.60: $D_{11}=\frac{1,400,000 t^{3}{ }_{w}}{12(1-0.36 \times 0.18)}=124,800 t^{3}{ }_{w}$

Fig. 6-44: for $\frac{D_{22}}{D_{11}}=0.5$: estimate $k=20 ; \max \frac{d_{w}}{1_{w}}=\pi \sqrt{\frac{20 \times 124,800}{12,000}}=45$
5.3 Web - to develop full 3000 psi reduced ultimote shear strength:

Eq. 6.102: $\left.\frac{d^{2}{ }_{w}{ }_{w}}{\left(D_{11} D_{22}{ }^{3}\right)} \right\rvert\, 74=\frac{4 k_{x y}}{r_{x y c}}$
Eq. 6.6b: $D_{22}=\frac{700,000 t_{w}{ }^{3}}{12(1-0.36 \times 0.18)}=62,400 t_{w}{ }^{3}$
Fig. 6-45 \& Eq. 6.6c: $D_{12}={ }_{21} D_{11}=0.18 \times 124,800 t_{w}{ }^{3}=22,500 \dagger_{w}{ }^{3}$
Eq. 6.6d: $D_{12}^{\prime}=\frac{G_{12}{ }^{t_{w}}{ }^{3}}{12}=\frac{315,000}{12} t^{3}=26,25 \mathrm{Ct}_{w}{ }^{3}$
Eq. 6.6e: $D_{0}=D_{12}+2 D_{12}^{\prime}=(22,500+2 \times 26,250) t_{w}{ }^{3}=75,000 t_{w}{ }^{3}$
$\lambda_{2}=\frac{D_{0}}{\sqrt{D_{11} D_{22}}}=\frac{75}{\sqrt{124.8 \times 62.4}}=0.84 ; \quad \lambda_{1}=0$ for long plate; Fig. 6-45: $k_{x y}=12$
$\max .\left(\frac{d_{w}}{t_{w}}\right)=\frac{4 \times 12 \times\left(124,800 \times 62,400^{3}\right)^{1 / 4}}{3,000}=34.5$
6. Select trial I section with $b_{f} / t_{f} \leq 6, d_{w} / t_{w} \leq 45, S_{I} \geq 100$ and $I_{I} \geq 2143$.

Exarnple 7.3 (continued)
 6.1 Trial web design with depth $=24 \mathrm{in} . \mathrm{i}_{\mathrm{w}}=22 \mathrm{in} . ; \mathrm{t}_{\mathrm{w}}=\frac{22}{45}-0.50 \mathrm{in} . ;$
 $A_{w}=.50 \times 22=11 \mathrm{in}^{2}$

6.2 Trial flange design for strength, based on S:
$5 \quad A_{f}\left(d_{w}+t_{f}\right)+\frac{A_{w} d_{w}}{6}$ and $\left(d_{w}+t_{f}\right) \quad d_{w}$
Eq. 7.56: Trial $A_{f} \frac{S}{\left(d_{w}+t_{f}\right)}-\frac{A_{w}}{6}$; estimate $t_{f}=1.0$
Trial $A_{f}=\frac{100}{23}-\frac{11}{6}=2.51$ in. ${ }^{2}$
6.3 Trial flange design for stiffness, based on I

$$
\frac{A_{f}\left(d_{w}+t_{f}\right)^{2}}{2}+\frac{A_{w} d_{w}^{2}}{T 2} \text { and }\left(d_{w}+t_{f}\right) \approx d_{w}
$$

Eq. 7.57: $\operatorname{Trial} A_{f}=\frac{21}{\left(a_{w}+t_{w}\right)^{2}}-\frac{A_{w}}{6}$
Trial $A_{f}=\frac{2 \times 2143}{23^{2}}-\frac{11}{6}=6.3 \mathrm{in}^{2}$ (governs)
6.4 Trial Section: Depth $=24 \mathrm{in} . ; \mathrm{b}_{\mathrm{f}}=9 \mathrm{in.}, \mathrm{t}_{\mathrm{f}}=\frac{6.3}{9}=0.70 . \mathrm{in}$.
$d_{w}=24-2 \times .70=22.6 \mathrm{in}_{\mathrm{o}},{ }_{\mathrm{w}}=0.5 \mathrm{in}$.
$\frac{b_{f}}{2 r_{f}}=\frac{9}{2 \times .70}=6.4>5.2 \begin{aligned} & \text { but may be acceptuble because stiffness, rather than } \\ & \text { strength, governs design. }\end{aligned}$ strength, governs design.
$\frac{d_{w}}{t_{w}}=\frac{22.6}{0.5}=45.2 \approx 45$
6.5 Check properties and stresses:
$1=9 \times .70 \times \frac{(23.10)^{2}}{2}+\frac{0.5 \times 22.7^{3}}{12}=2162$ in. ${ }^{4}>2143$ o.k.;
$S=\frac{2162}{12}=180 \mathrm{in}^{3}>100$ o.k.
req'd $\sigma_{x c}=\frac{100 \times 12}{180}=6667$ psi; furn. $\sigma_{x c}=\frac{315,000}{(6.4)^{2}}=7690$ psi, o.k.
7. Check adequacy of web for shear:
7.1 Table 5-1, Case Ia: $\max V_{x u l}=\frac{w_{u} L}{Z}=\frac{2 \times \frac{1}{2} \times 20}{2}=20 k$
7.2 Eq. 7.58: req'd min. $t_{w}=\frac{20,000}{3000 \times 22.6}=0.30<0.50$ furn., o.k.
$\tau_{\text {xyu }}=\frac{0.3}{0.5} \times 3000=1800 \mathrm{psi}$

Example 7-3 (continued)

7.3 Check for buckling in shear:

Eq. 6.102: $\tau_{x y c}=\frac{4 \times 12 \times\left(124,800 \times 62,400^{3}\right)^{1 / 4}}{(45.8)^{2} \times 0.5}=\frac{3396}{}$ with pi, ${ }_{\text {hinged" edges }}$
o.k.
8. Check maximum interlaminar shear in flange. Assume thickness of inside layer of longitudinal fibers is 0.03 in . and calculate maximum horizontal (interlaminar) strear on plone $a-a$:
$Q_{s y}=9 \times 6.67 \times(12.0-0.33)=70.4 \mathrm{in} .3$
Eq. 5.30: $r_{x}=\frac{20,000 \times 70.4}{9 \times 2797}=71.2$ psi <900 psi, o.k.
9. Determine minimum length of bearing based on web crippling and local web buckling at supports.
9.1 Tuble 5-1, Case 1a: $R_{u}=\frac{2 . \times 1 . \times 20}{2}=20 \mathrm{k}$
9.2 Eq. 7.42: Req'd $(n+k)=\frac{R_{u}}{\sigma_{y u}{ }_{w}^{\dagger}}=\frac{20,000}{7500 \times 0.5}=5.33 \mathrm{in}$.

If a $1 / 2 \mathrm{in}$. fillet is used, $k=0.75 \mathrm{in}$., and required bearing length $n=5.33-0.75=4.58 \mathrm{in}$
9.3 Try 5 in. bearing length:
"a" for local buckling $=\left(5+\frac{h}{2}\right)=\left(5+\frac{24}{2}\right)=17 \mathrm{in}$.
$\sigma_{y u}=\frac{20,000}{0.5 \times 17}=2353 \mathrm{psi}$
9.4 Eq. 7.43*: $\sigma_{y c}=\frac{\pi^{2} E_{22}}{\left(2\left(T-v_{12}{ }^{v_{21}}\right)\right.}\left(\frac{i_{w}}{d_{w}}\left(2+\frac{4 d_{w}^{2}}{\sigma^{2}}\right)\right.$
$\sigma_{y c}=\frac{\pi^{2} \times 700,000}{12(1-.36 \times .18)}\left(\frac{0.5}{22.7}\right)^{2}\left(2+\frac{4 \times 22.7^{2}}{17^{2}}\right)=2,728$ psi >2353 o.k.
*Note: Since $E_{1 /} \gg E_{22}$, it is conservative to use isotropic tuckling equations with E_{22}
9.5 Use 6 in. minimu.n length of bearing, allowing 1.4 in . for tolerance.
10. Minimum spacing of lateral supports:
10.1 Approx. check with Eq. 7.50: $\sigma_{x c}=0.65 C_{1} E_{I I} \frac{t_{f} t_{f}}{L d} \&$ take $C_{1}=1.0$
$J_{x c}=0.65 \times 1,400,000 \times \frac{9 \times 0.7}{L \times 24}=\frac{238,875}{L} ; \max . L=\frac{238,875}{\sigma_{x c}}$

Example 7-3 (continuea)

req'd $\sigma_{x c}=\frac{M_{u}}{5}=\frac{100 \times 12}{183}=6557$ psi; mox. $L=\frac{238,875}{6557}=36.4 \mathrm{in}$.
10.2 Approx. check with Eq. 7.52: $\sigma_{x c}=\frac{0.8 C_{1} E_{1 I}}{(K L / b)^{2}}=\frac{0.8 \times 1.0 \times 1,400,000}{L^{2} / 9^{2}}$ max. $L=9 \sqrt{\frac{0.8 \times 1,400,000}{6557}}=117.6 \mathrm{in}$.
10.3 Try a 10 ft . unt)raced length (one brace of midspan), and use Eq. 7.46 for critical buckling stress:
Eq. 7.46: $\sigma_{x c}=\frac{C_{1}}{S_{1}}-\sqrt{M_{x c}^{2}+\frac{d^{2}}{4} P_{e 2}{ }^{2}}$
Eq. 7.47: $M_{x c}=\frac{\pi}{K L} \sqrt{E I_{2} G J}$
$t_{2}=\frac{0.7 \times 9^{5}}{12} \times 2=85 . \mathrm{J} 5 \mathrm{in}. .^{4} ; \mathrm{J}=\frac{9 \times 0.7^{3} ; 2}{3}+\frac{22.6 \times 0.5^{3}}{3}=3.00 \mathrm{in} .^{4}$
$M_{x c}=T x^{\pi} 120 \sqrt{1,400, v 00 \times 85 . \times 315,000 \times 3.0}=277,625$ in-lbs.
Eq. 7.48: $P_{e 2}=\frac{\pi^{2} E I_{2}}{(\mathrm{KL})^{2}}=\frac{\pi^{2} \times 1,400,000 \times 85 \text {. }}{(120)^{2}}=81,561 \mathrm{lbs}$
From Eq. 7.49 with: $M_{1}=0: C_{1}=1.75$
Eq. 7.46: $\sigma_{x c}=\frac{1.75}{183} V(277,625)^{2}+\frac{24^{2}}{4} \times 81,561^{2}=9729$ psi >6557 psi o.k.
Conclusion: One brace at midspan and one ot each support are adequote.
IC.4 Min. brace stiffness, $K_{b s}$, (Section 7.3): Eq. 7.31a: min. $K_{b s}=\frac{4 N_{x c}}{L}$
$N_{x c}=\left(A_{f}+A_{w} / 6\right) \sigma_{x c}=\left(9 \times 0.7+\frac{22.6 \times 0.5}{6}\right) 9729=80,000 \mathrm{lbs}$
$\min . K_{b s}=\frac{4 \times 80,000}{120}=2667 \mathrm{lbs} / \mathrm{in}$.
10.5 Min. brace strength, $N_{b u}$, (Section 7.3): min. $N_{b u}=0.02 \times 80,000=1600 \mathrm{lbs}$.

Note:
1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{in}^{3}=16.387 \mathrm{~mm}^{3}, 1 \mathrm{in}^{4}=416,231 \mathrm{~mm}, 1 \mathrm{ft}=$ $0.3048 \mathrm{~m}, \mathrm{I} \mathrm{lbf}=4.448 \mathrm{~N}, \mathrm{I} \mathrm{Kip}=4.448 \mathrm{KN}, 1 \mathrm{ft} \mathrm{k}=1.356 \mathrm{KN}-\mathrm{m}, \mathrm{I} \mathrm{in}-\mathrm{lb}=0.113 \mathrm{Nm}$,
$\mathrm{I} \mathrm{lb} / \mathrm{in}=0.175 \mathrm{~N} / \mathrm{mm}, 1 \mathrm{Kip} / \mathrm{ft}=14.59 \mathrm{KN} / \mathrm{m}, 1 \mathrm{psi}=6.895 \mathrm{KPa},{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}=32\right) / 1.8$

Fig. 7-12 EFFECTIYE WIDTH FOR CONCENTRATED LOAD ON ONE-WAY SPAN PLATE

The entire concentrated load is assumed to be carried iy a strip of the plate having on "effective width", be, whose maximum flexural normal stress, "xe, uniformly distributed over width, b_{e}, is equal to the maximum flexural normal stress in the plate, σ_{x}.

The following equations for approximating the effective width are useful (5.4):

1. Concentrated load on central circular orea of diameter c (Fig. 7-120):

$$
\begin{equation*}
b_{e}=0.58 a+4 c \tag{Eq. 7.58}
\end{equation*}
$$

2. Concentrated load on mid-span off-center circular oreo of diameter c, located a distance, d, from nearest edge of plate (Fig. 7-12b):

$$
\begin{equation*}
b_{e} \quad=\quad 0.29 n+2 c+d \tag{Eq. 7.59}
\end{equation*}
$$

but not greater than be in Ea. 7.58.

See (7.8) or (7.9) for more accurate and comprehensive procedures for determining stress resultonts caused by concentrated loods on plates.

Shear \log in wide flonges of beorns

When the flange of a beam is wide relative to its span length, shear deformation produces a non-uniformity in the distribution of bending stresses over the width
of the flonge that can be significant. Eq. 5.30 gives the shear stresses in the flange of an il or box type beam shown in Fig. 7-13. The shear deformation associated with these stresses results in the distribution of flexural stresses shown in the same Figure.

Fig. 7-13 SHEAR LAG IN I OR BOX BEAMS WITH WIDE FLANGES

Shear lag can be taken into account in design by using an "effective width," similar in concept to the effective width used in the post buckling behavior or thin stiffened compression flanges. The bending capocity of a becm having the effective flange widih, $b_{e, ~ u n i f o r m l y ~ s t r e s s e d ~ t o ~} \sigma_{x r n}$ is equal to the banding copocity of the actual beam hoving a maximum flange stress, $\sigma_{x m}$, at the flange location adjacent to the web.

Graphs giving an effective reduced flange width, b_{e}, that acrounts for shear lag in simply supported, continuous and contilever box or l-stioped beams are provided in Fig. 7-14. The graphs in Fig. 7-14a give the effective width, b_{e}, that is needed for calculating on effective section modulus at the section of maximum moment in the above iypes of beams. Maximum flange stress is:

$$
\begin{equation*}
\sigma_{x m}=\frac{M_{x \mid}}{S_{l e}} \tag{Eq. 7.60}
\end{equation*}
$$

Fig. 7-I4(a) EFFECTIVE BREADTH RATIOS FOR SHEAR LAG AT SECTIONS OF MAXIMUM MOMENT

Fig. 7-14(b) AVERAGE EFFECTIVE BREADTH RATIOS FOR SHEAR LAG AT SECTIONS FOR DEFLECTION CALCULATIONS

The following equation provides an estimate of flexural stress, σ_{x}, at any point in the flange width a distance y from the web (7.10):

$$
\begin{equation*}
\sigma_{x}=\sigma_{x m}\left(\frac{1}{b}\right)^{4}-k\left(i-\frac{y}{b}\right)^{4} \tag{Eq. 7.61}
\end{equation*}
$$

where: $\sigma_{x m}=$ maximum stress adjacent to web;
$K=(5 b e / b-1) / 4$ for flanges that extend between webs (box sections);
$K=\left(4.25 b_{e} / b-1\right) / 4$ for flanges that overhang the web.

The graphs in Fig. 7-14(b) give the average effective width, $b^{\prime}{ }_{e}$, that is needed for calculating an average moment of inertia, l_{e}, to be used for calculating midspon deflection with equations given in Table 5-1.

The graphs in Figs. 7-14 a and b, show that consideration of shear lag becomes more important (i.e., effective width reduces) as the ratis of span to flange width reduces, and as the load distribution becomes more concentrated at the section of maximum moment. The amount of shear lag also varies with the ratio of G / E and with the quantity, $m=3 I_{w}+I_{f} I_{w}+I_{f}$, where I_{w} and I_{f} are moments of inertia of web and flanges, respectively, about the neutral axis of the beam.

The results presented in the graphs were developed in shear lag studies of composite steel and concrete box girders (7.10). Thus, they are most valid for members with isotropic materials an! with proportions similiar to the box and I girders used in the investigation reported in (7.10).

See also (7.3) for a summary of effective widths for shear lag, os determined by various investigators for cantilever and simply supported bearss with various load distributions.

Flange curling

When a beam with thin wide flariges bends, the flanges curl inword toward the neutral axis because the radial components of the curved flange tension and compression forces cause transverse bending (see Section 9.2). This behavior is illustrated in Fig. 7-15 for doubly syrnmetric thin wall I and \square sections.

The averoge rodial component, q_{r}, of the longitudinal flange force, $\sigma_{\text {xav }}{ }{ }_{f}$, that results from the flexural curvature of the beam is (7.3):

$$
\begin{equation*}
q=\frac{\sigma_{x a v} t_{f}}{E_{x} / / M}=\frac{2 \sigma_{x a v}^{2}{ }_{f}}{E_{x}} \tag{Eq. 7.62}
\end{equation*}
$$

Datoil A

a) Wide Flange

b) Box Section

Section A-A
Fig. 7-15 WIDE FLANGE CURL.MG DUE TO CURVATURE OF DEFLECTED BEAM

The tronsverse deflection of the curled flange (Fig. 7-15) of thin-wall I and sections under the distributed radial lood, q_{p}, is:

$$
\begin{equation*}
c_{f}=\frac{K_{m} q_{f} b_{f}^{4}}{D_{f}}=24 K_{m}\left(1-v_{f}^{2}\right)\left(\frac{\sigma_{x a v}}{E_{x} E_{y f}}\right)^{2} \frac{b_{f}^{4}}{t_{f}^{2} d} \tag{Eq. 7.63}
\end{equation*}
$$

The bending deflection ccefficient, K_{m}, is given in Table $5-1$ for beams under uniformly distributed load with various suoport arrongements. The uniformly looded cantilever bearn case should be used for curling of an I bearn, giving K_{m}
$=1 / 8$. Uniformly loaded beams with simply supported ends, and with rotationally fixed ends represent limits for the flange of a box section, with the actual K_{m} dependent on the amount of end restraint provided by the web. K_{m} equal to $2 / 384$ to $2.5 / 384$ is probably a reasonable approximation for many practical box shapes. E_{x} is the elastic modulus for axial stress in the tongitudinal direction, while $E_{y f}$ is the transverse elastic modulus of the flange in flexure. The flance stress $\sigma_{x a y}$ is the average stress ot the mid-depth of the flange caused by the design loods on the beam.

Aesthefic considerations or other performonce criteria may require a limitation on c_{f}. If a maximum value for c_{f} is established, the width or thickness or the flange in the thin-wall beam can be adjusted, if necessary, to limit c_{f}. Generally, the radius of curvature in primary bending is larye enough so that the resulting transverse stresses due to curling are small. In the case of curved thin wall beams, however, the radius of curvature may be such that both transverse stresses and deflections are significant, and constitute a primary design consideration. This is discussed in Section 9.2.

Torsion

Torsion of shafts was discussed in Section 5.4, along with equations for determining the resulting shear stresses. However, as noted in that section, support contitions moy prevent the free warping that occurs when non-circular cross sections are subject to twist. When warping of a thin-walled section is prevented, torsionally induced shear stresses are reduced, but additional bending and shear stresses are produced by the lateral bending that results from warping restraint. Bending due to warping restraint is most significant in the torsional resistance of beams hoving open thin wall cross sections (i.e. I,L,C,J,J). Also the relative importance of warping restraint increases as the beam span decreases.

The torsional deformation of an open thin-wall section is illustrated in Figs. 5-8 and $7-8$ given previously. The first figure illustrates how torsion is resisted by shear stresses developed individually in each rectangular element of the open cross section and by lateral bending stresses that arise in the flonge elements as the top and botforn flanges deflect laterally in opposite directions during fwist.

These bending stresses nust be added to stresses that arise from primary benoing in the planes of the applied loads to obtain the maximum bending stresses that occur at the tips of the flanges.

Closed thin-wall sections: From a design viewpoint, a mernber that is subject to significant turque should be provided with a torsionally efficient section, such as a closed thin-wall (i.e. tubular) shape. For members with these sections, the equations presented in Section 5.4 for the shear stresses caused by primary torsion provide a sufficiently accurate basis for design, and the longitudinal stresses and torsional resistance that develop from warping restraint can be neglected as very small in all but unusually short members.

When designing a beam with a tubular section for combined bending and torsion, the combined web shear stresses must be kept below the in-plane shear strength of the material. They must also be less thon the critical shear buckling stress as discussed previously. (See Design of webs, this Section). Also, thin flange elements must be checked for local buckling under combined shear and axial compression. Eq. 6.87 may be used for this check. The design of a beam with a tubular cross section subject to combined bending and torsion is illustrated in Example 7-5 given later.

Open thin wall sections generally provide inefficient resistonce to torsional moments. Nevertheless, their widespread use as efficient bending members, and the need to consider situations where loads are sometimes applied eccentrically, producing twisting as well as bending, occasionally requires the deiermination of torsionally induced stresses in members with open thin wall sections.

The theory for torsion of open thin wall sections is somewhat complex. See, (7.3), (7.4) (7.6) $\mathbf{7 . 1 1}$) and (7.12) for theorefical development cf the theory and for explanotions of its use, including concise presentations of equations for stress and deformation. See (7.11) for extensive design aids such as a table of warping constants and function charts for determining stress and deformation in many cornmon looding and suppert arrangements. See (7.12) for on extensive treatment of torsion in mony types of members.

To illustrate the proctical evaluation of torsional effects in members with open thin wall sections, equations are presented below for the simplified basic case of a beam with an l-shaped section (doubly symmetric), and hoving flanges that are rotationally fixed ir. Interal bending at ane end (full warping restraint). The beam is subject to a constont torque, r, over its length, L. Fig. 5-8b illustrates the arrangement and torsional behavior of this structure while Fig. 5-8a shows that same beam subject to uniform twist when the ends of the flanges are free to rotate (warp). The following step-by-step procedure can be used to determine maximum stresses raused by the forque, T, for the case where warping is restrained (Fig. 5-8b):
I. Determine warping constont, C_{w}
$C_{w}=\frac{l_{2} d^{2}}{4}$

The warping constants for standard metal shapes are given in handbooks such as (5.5) and (7.1 I).
2. Let $p^{2}=\frac{G J}{E C_{w}}$
3. Determine the bending moment and shear force induced in the flange by lateral deformation during tryist. Also determine the portion of the total torque, T, resisted by torsionally induced shear, T_{5}. Only the case of constant torque, T, over a length, L, as shown in Fig. $5-8, b$ and c, is given frere. See (7.11) for solutions to cases with different variations of torque along the beam length and various conditions of end restraint of lateral deformation.
3.1 Flange Bending: $\quad M_{f}=-\frac{T}{p d} \frac{\sinh p(L-x)}{\cosh p L}$
3.2 Flange Shear: $\quad V_{f}=\frac{T}{d} \frac{\cosh p(L-x)}{\cosh p L}$
3.3 Torque taken by forsional strear:

$$
\begin{equation*}
T_{s}=T\left[1-\frac{\cosh p(L-x)}{\cosh p L}\right] \tag{Eq. 7.68}
\end{equation*}
$$

4. Determine the maximum lateral bending and shear stresses induced by M_{f} ard Vf acting on each of the flanges and Ts acting on the assembly of flange and web plates. (See Fig. 5-8e, f and g for illustration of stresses).
4.1 $\max . \sigma_{x b}= \pm \frac{M_{f \text { max }}}{S_{f}}=\frac{6 T \tanh p L}{p d t_{f} b_{f}^{2}}$

This stress occurs at the tips of flanges at the fixed support.
4.2 max. $^{T_{f}}=\frac{3}{2} \frac{V_{f \text { max }}}{A_{f}}=\frac{3}{2} \frac{T}{d t_{f} b_{f}}$

This stress occurs at the junction of flange and web at the fixed support.
$4.3 \max _{\tau_{s}}$ in flange:
$\max \tau_{s f}=\frac{t_{f} T_{s \text { max }}}{J}=\frac{t_{f} T}{J}$
where $J=\frac{2 b_{f} f_{f}^{3}}{3}+\frac{d_{w}{ }^{\dagger}{ }_{w}^{3}}{3}$
This stress occurs olong the outside surfaces of the flange at the point of lood opplication.
4.4 max $\boldsymbol{\tau}_{\mathbf{s}}$ in web:
$\max _{\tau_{s w}}= \pm \frac{t_{w}{ }^{\top}}{J}$
This stress occurs along the outside surfaces of the wob at the pcint of lood application.

The above case also applies to a beam of length 2 L with a concentrated torque applied at mid-spon, and flange ends simply supported (no rotational fixity) with respect to lateral bending (Fig. 5-8c). In this case, worping is restrained at midspan because of symmetry, and behavior is the same as a cantilever with its built-in end at mid-span of the actual beam subject to one half the total midspon torque (i.e., the torque tronsmitted to each support).

The above procedure is used in Example 7-4 to determine the stresses in an Ishaped beam subject to combined torsion and bending. L.ocal buckling resistance under the combined stress state is also investigated in this example.

Beorns curved in plane

Beams loaded perpendicular to their plane of curvatire are subject to combined torsion and bending. Example 7-5 illustrates the determination of bending and forsional stresses in a curved beam of this type hoving a fubular section that resists torsion efficiently. See (7.13) for detailed treatment of this type of member.

Example 7-4: Determine the moximum bending and sheor stresses in the I-beam designed in Example 7-3, if the loods shown below are applied to the beam. Determine if these stresses exceed the safe strength of the beam, bosed on tive moterio. proper ties, copocity reduction foctors and load foctors given in Example 7-3 and the criteria oiven in the text for resistance to lateral and local buckling.

Toble 5-1:

$$
\begin{aligned}
& M_{x}=0.2 \times \frac{10^{2}}{8}+\frac{1 \times 10}{4}=2.5+2.5=5.17 k \\
& v_{x}=0.2 \times 5+1 \times 0.5=1.5 \mathrm{k}
\end{aligned}
$$

2. Bending stress - vertical loods: Eq. 7.23: $\sigma_{x}=\frac{M_{x u l}}{5_{1}}=\frac{5.0 \times 2 \times 12}{183}=0.66 \mathrm{ksi}$
3. Shear stress - vertical iood

Eq. $5.30 \% \tau_{w}=\frac{V_{x u} \bar{Q}_{s 1}}{6 T_{I}} ; Q_{s}=0.70 \times 9 \times(12 \cdot 0.35)+\frac{0.5 \times 11.3^{2}}{2}=105.3 \mathrm{in}^{3}$
$\tau_{w}=\frac{1.5 \times 2 \times 105.3}{0.5 \times 219}=0.29 \mathrm{ksi}$
4. Torsional effects
4.1 Torque: $T_{x u}=\frac{\mid \times 1 \times 2}{2}=1 . ' k$, constant between midspan and supports
4.2 Sonsiants:

Eq. 7.64: $\quad C_{w}=\frac{85 \times 24^{2}}{4}=12,240$
Eq. 7.65: $p^{2}=\frac{G J}{E C_{w}}=\frac{315,000 \times 3.0}{700,000 \times 12,2420}=0.00011 ; p=0.0105$
4.3 Maximum flange bending stress due to warping resistance of flanges:
E.4. 7.69, $\sigma_{x b}=\frac{6 T \text { tanh } p L}{p d i_{f} b_{f}^{2}} ; p L=0.0105 \times 5 \times 12=0.63 ; \tanh p L=0.5581$
$U_{\times b}=\frac{6 \times 1.0 \times 12 \times .5581}{0.0105 \times 24 \times 0.7 \times 9^{2}}=2.81 \mathrm{ksi}$, ot midspon

- See note on Exomple 7-1, poge 7-5.

Excorple 7-4 (continued)

4.4 Maximum flange shear coused by lateral bending of f!ange:

Eq. 7.70 $\tau_{f}=\frac{3}{2} \frac{T}{d \tau_{f} b_{f}}=\frac{3 \times 1.0 \times 12}{2 \times 24 \times . \delta \times 9}=0.12 \mathrm{ksi}$, at midspan
4.5 Mrximum flange shear coused by twist:

Eq. 7.71: $T_{s f}=\frac{t_{f} T}{J}=\frac{0.7 \times 1.0 \times 12}{3}=2.80 \mathrm{ksi}$, max. at supports
4.6 Maximum web sheor cowsed by twist:

Eq. 7.72: $\tau_{s w}= \pm \frac{{ }^{\dagger} T}{J}=\frac{0.5 \times 1.0 \times 12}{3}=2.00 \mathrm{ksi}$
5. Combined stresses
5.1 Bending at midspon: max. $\sigma_{x}=0.66+2.81=3.47 \mathrm{ksi}$
5.2 In-plane sheor of supports: Flange: $\tau_{f}=0.12+2.80=2.92 \mathrm{ksi}$

Web: $\tau_{w}=0.29+2.00=2.29 \mathrm{ksi}$
6. Adequacy, based an material properties and section given in Example 7-3.
6.1 Bending: Use interaction equation similiar to Eq. 7.80 for combined axial and bending, for reduction in ultimate strength coused by lateral buckling effects.
$\frac{\sigma_{b} \text { (bending from vertical lood) }}{\sigma_{x c}(\text { lateral buckiling resisfance })}+\frac{\sigma_{\text {bending from twist }}^{\sigma_{b}}}{\sigma_{x u}\left(1-\frac{b}{\sigma_{x c}}\right)} \leq 1.0$
With taterol support at ends mily, $C_{1}=1.0$, lateral buckling resistance is:
$\sigma_{x c}=\frac{238.9}{L}=\frac{238.9}{10 \times 12}=2.00 \mathrm{ksi}$ (from Example 7-3)
$\frac{0.66}{2.00}+\frac{2.81}{12.0\left(1-\frac{0.66}{2.00}\right.}=0.33+0.35=.68<1.0$ o.k.;
Conclusions Normul stress, σ_{x}, coused by bending is not excessive.
6.2 Flange sheor: $\tau_{f}=2.92 \mathrm{ksi}$ max. at supperts $<3.0 \mathrm{ksi}$ in-plare web shear strength given in Exomple 7-3, o.k. in sheor
6.3 Web shear : $\tau_{w}=2.29$ kai max at supports < 30 ksi, in-pkore web thect strength, ak.
6.4
-3468
$+3468$

Local buckling of compression flange: Use Eq. 6.98 for buckling stress in orthotropic plate, uniformly stressed across width, as conservolive approximotion for flange of this beom with stress distribution shown in sketch:

Eq. $6.98: \sigma_{x c}=G_{12}\left(\frac{2 t_{f}}{b_{f}}\right)^{2}=315\left(\frac{2 \times .7}{g}\right)^{2}=7.62 \mathrm{ksi}>3.47 \mathrm{ksi}$ o.k.
$1 \mathrm{in} .=25,4 \mathrm{~mm}, 1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{in}^{3}=16,387 \mathrm{~mm}^{3}, 1 \mathrm{in}^{4}=416,231 \mathrm{~mm}^{4}, 1 \mathrm{ft}=$ $0.3048 \mathrm{~m}, 1 \mathrm{Kip}=4.449 \mathrm{~N},|\mathrm{fr}-\mathrm{k}=1,356 \mathrm{KNLm}, 1 \mathrm{k} / \mathrm{ft}=14.59 \mathrm{KNm}| \mathrm{ksi}=6.895 \mathrm{MPo}$

Eximple 7-5 (continuad)

Eq. $6.60: D_{11}=\frac{1400 \times 0.5^{3}}{12(1-0.36 \times 0.18)}=15.6 ; \mathrm{O}_{22}=1 / 2 \mathrm{D}_{\mathrm{J}} 1=7.8$
Eqs. $6.6 e, \quad D_{0}=D_{12}+2 D_{12}^{\prime}=\frac{0.18 \times 1,400 \times 0.5^{3}}{12(1-0.36 \times(.18)}+\frac{2 \times 315 \times 0.5^{3}}{12}=9.37$
$\sigma_{x c}=\frac{2 \pi^{2}}{0.5 \times 9^{2}}(15.6 \times 7.8+9.37)=9.94 \mathrm{ksi}<\sigma_{x u}=12.5 \mathrm{ksi} ;$ Use $\sigma_{x c}$
4.2 Flange - shear buckling stress, $\tau_{x y c}$

Eq. 6.102: $\quad \tau_{x y c}=\frac{4 k_{x y}\left(D_{11} D_{22}{ }^{3}\right)^{1 / 4}}{b^{2} t}$;
Fig. 6-45: $\lambda_{1}=\left(\frac{b}{0}\right) \quad D_{11} / D_{22}=0_{i} \lambda_{2}=D_{0} / D_{11} D_{22}=\frac{9.37}{15.6 \times 7.8}=0.85$
$k=12.2$
$k_{x y}=12.2 ;$
$r_{x y c}=\frac{4 \times 12.2\left(15.6 \times 7.8^{3}\right)^{1 / 4}}{9^{2} \times 0.5}=11.2 \mathrm{ksi}>\tau_{x y u}=3 \mathrm{ksizuse} \tau_{x y u}$
4.3 Flonge adequacy in combined shear and bending, Eq. 6.87:
$\left(\frac{1.5}{3.0}\right)^{2}+\frac{4.5}{9.9} \leq 1.0 ; 0.25+0.45=0.70<1.0$, o.k.
4.4 Web - normal buckling stress, $\sigma_{x c}$

Eq. 6.101: $\sigma_{x c}=\frac{k \pi^{2} D_{11}}{b^{2} t}$; Fig. 6-442 $k \quad 20$ for $D_{22} / D_{11}=0.5$
$\sigma_{x c}=\frac{20 \pi^{2} \times 15.6}{19^{2} \times 0.5}=17.0 \mathrm{ksi}>\sigma_{x u}=12.5 \mathrm{ksi} ;$ Use $\sigma_{x u}=12.5 \mathrm{ksi}$
4.5 Web - shear buckling stress, Ixyc'
$k_{x y}$ from 4.2 above;
Eq. 6.102:

4.6 Web adequacy in combined shear and normal stress; Eq. 6.89:
$\left(\frac{2.4 .5)^{2}}{2.5}+\left(\frac{4.5 \times 9.5}{2.5 \times 10}\right)^{2} \leq 1.020 .92+.12=1.04 \quad\right.$ 1.C. o.k.; close enough
Conctusion: Since the flange is understressed, o slightly wider and shailower tute would be more efficient becouse the torsional effects are more significant than the fiexural effects.

Swe note on Example 7-1, page 7-5.

7.5 BEAM - COLUMNS

Beam-columns are subject to combined bending and axial compression. As shown previously in Section 5.7, when axial compression is applied to a member already bent (laterally deflected) as a result of bending stress and/or initial crookedness, these initial deflections are eccentricities that produce more deflection tue to the applied compression force. As a result, stresses increase non-linearly as axial load increases. A simple method for estimating the magnified bending moment caused by axial load, involves the determination of a "magnification facter," as defined in Section S.7. The estimated maximum bending moment is determined from the calculated moment, $M_{x 0^{\prime}}$, and axial thrust, N_{x}, obtained in a linear analysis:

$$
M_{\max }=M_{x 0}+N_{x} \delta_{0}\left[\frac{1}{1-\frac{N_{x}}{N_{x c}}}\right]
$$

In this equation, δ_{0} is the maximum lateral deflection in a member of length L coused by initial crookedness and/or an applied bending moment, $M_{x o}$, based on linear analysis. $N_{x c}$ is the Euler buckling load for a pin ended member, and N_{x} is the applied lood.

The term ($1-N_{x} / N_{x c}$) is called the "magnification" or "amplification" factor, since it provides a simple multiplier for determining the approximate effect of the non-linear magnification of initial crookedness, eccentricities in the application of axial load, and deflections due to lateral loads as calculated using linear elastic analysis.

Eq. 7.74 is written in more convenient form by defining (5.5) (7.2):

$$
\begin{equation*}
\psi \quad=\frac{o^{N_{x c}}}{M_{x 0}}-1 \tag{Eq. 7.75}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
M_{\operatorname{mox}}=M_{x 0} \frac{\left(1+\Psi \frac{N_{x}}{N_{x c}}\right)}{\left(1-\frac{N_{x}}{N_{x c}}\right)} \tag{Eq. 7.76}
\end{equation*}
$$

Maximum deflections of bearns with several conditions of end restraint, end monents and transverse loods are given in Table 5-1. When these deflections, and the related Euler column buckling loads, N_{xc}, (Eq. 7.15) are applied to Eq. 7.76, values may be obtained for ψ. These are given in Table 7-3 for some common load cases. This Table shows that $\psi=0$ for the case of equal end moments of the same sign, producing single curvature with constont moment over the length of the mernber. Also, this is the largest value of ψ, since ψ is negative for the other cases. In view of this, the term in the numerator of Eq. 7.76 is called the "Reduction Foctor", C_{m}, where:

$$
\begin{equation*}
c_{m}=1+\psi \frac{N_{x}}{N_{x c}} \tag{Eq. 7.77}
\end{equation*}
$$

Table 7-3
Reduction Factor for Combined Bending and Axial Load

* Ar, ${ }^{\text {inxd }}$ for $C_{m 1}$ and $\sigma_{x a l e}$ when $1-1$ is axis of bending and for C_{m} when 2-2 is axis of bending

Values of C_{m} for common cases are also given in Table 7-3. Thus, the following modified version of Eq. 7.75 will be used in the design equations presented later:

$$
\begin{equation*}
M_{\max }=M_{x 0} \frac{C_{m}}{\left(1-\frac{N_{x}}{N_{x c}}\right)} \tag{Eq. 7.78}
\end{equation*}
$$

If it is desired to include an additional amount of deflection, $\delta_{0 i}$, for initial crookedness, this may be done using Eq. 7.75. However, as a design simplificotion, no initial crookedness is included for the determination of \downarrow ustd in sifuctural steel design proctice (7.2).

The cominon coses where end moments are unequal are not included in Table 7-3 because they involve theoretically complex relations for ψ. An approximate approach given in (7.2) greatly simplifies the calculation of C_{m} for this important case (Fig. 7-16, a or b), giving the following pructical approximation:

$$
\begin{equation*}
c_{m}=0.6+0.4 \frac{M_{1}}{M_{2}}, \text { but not less than } 0.4 \tag{Eq. 7.79}
\end{equation*}
$$

where M_{1} is the numerically sinaller end moment, and $M_{1} i M_{2}$ is positive for members bent in single curvature (Fig. 7-16(a)), and negative for members bent in double curvature (Fig. 7-16(b)).

a) Single Curvature

b) Double Curvature

Fig. 7-16 SINGLE AND DOUBLE CURVATURE OF BEAM-COLUMNS

Bending combined with axial compression implies the absence of lateral support in at least the plane of bending. The beam-column may, or may not, have lateral support in the direction perpendicular to the plane of bending. An accurate determination of the behovior of a laterally unsupported beam-column is complex (7.4). The same is true for a member subject to axial compression combined with biaxial bending. An approach based on a simple interaction formula has proved to give a conservative approximation of the effects of combined bending and axial compression tixat is very useful for practical design. The generalized form of an interaction equation for members such as those shown in Fig. 7-16 is (7.2) (7.4):

$$
\frac{\sigma_{x a}}{Q \sigma_{x a c}}+\frac{C_{m 1}{ }^{\sigma_{x b 1}}}{Q \sigma_{x b \mid c}\left(1-\frac{\sigma^{\sigma a}}{x a l e}\right)}+\frac{C_{m 2^{\sigma}}}{Q \sigma_{x b 2 v}\left(1-\frac{\sigma_{x a}}{\sigma_{x a 2 e}}\right)} \leqslant 1.0 \text { Eq. } 7.80
$$

where $\sigma_{x a}=a x i a l$ design streus times lood factor, $Q \sigma_{x a c}=a x: a l$ strength in compression (including any reduction for local buckling), based on Fig. 7-4 for buckling in weak direction (usuolly axis 2-2), $0_{x b l}=$ bending design stress about I-1 axis times lood factor, $Q_{\sigma_{x b l e}}=$ bending strength obout $1-1$ axis (including any reduction for iateral ond/or local buckling), $\sigma_{x a l e}=$ axial Euler buckling stress (Eq. 7.17) when laterally unsupported normal to $1-1$ axis, $C_{m l}=$ reduction factor for bending about $1-1$ axis, $\sigma_{x b 2}=$ bending design stress about $2-2$ axis times load factor, $\mathrm{Ga}_{\mathrm{xb} 2 \mathrm{e}}=$ bending strength about $2-2 \mathrm{axis}, \sigma_{x a z e}=$ axial Euler buckling stress (Eq. 7.17) when laterally unsupported normal to $2-2$ axis and $C_{m 2}=$ reduction factor for bending about 2-2 axis. If the member is not subject to bi-axial bending, the third term in Eq. 7.80 is not required.

Because the reduction factor, C_{m}, may be as low as 0.4 , it often is necessary to check the effects of combined stress at joints where no amplification of bending con occur (except in frames subject to sidesway). In this case, neither the axia; strength, $\sigma_{x o u}$, ior the bending strength, $\sigma_{x b u}$, need be reduced for lateral buckling. Any reduction due to local buckling is taken into account in the determination of the Q factor. Thus, the interaction formula becomes:

$$
\begin{equation*}
\frac{\sigma_{x a}}{Q_{x a w}}+\frac{\sigma_{x b 1}+\sigma_{y b 2}}{Q_{\sigma} \sigma_{x b w}} \leq 1.0 \tag{Eq. 7.81}
\end{equation*}
$$

Design of members subject to combined bending and axial stress usually requires on initial or trial design, based on the designer's judgement about the interaction of oxial stress and berding. The factored ultimate stresses obtained with this design, $\sigma_{x a}, \sigma_{x b l}, \sigma_{x b 2}$, must be investigated using both Eqs. 7.80 and 7.81. Example 7-6 illustrates the investigation of a linear member subjected to combined bending and axial stress resultants.

When members form part of a frume in which joints may deflect laterally, design for combined bending and axial load becomes more complex. The behavior of laterally and vertically loaded rigid frames and slender braced frames (Fig. 717(a) and (b)) exemplifies the non-linear increase in deflection and bending that occurs due to interaction of effects produced by these loads (Section 5.6). Lateral load produces lateral deflection of joints. The product of vertical load, P_{v}, and lateral joint deflection, Δ, produce additional bending in rigid moment frames (Fig. 7-17(a)) and additional axial load in "pin jointed" braced frames (Fig. 7-17(b)). These effects are significont in certain slender or flexible structures but methods for their determination are beyond the score of this Design Monual. See (7.14) for a comprehensive presentation of a practical opproximate method for determining $P_{v} A$ effects.

Fig. 7-17 ADDITIONAL STRESS RESULTANTS DUE TO FRAME DEFLECTION

Example 7-6: Determine the maximum design axial compressive load that can be applied to the beam shown in the sketch. The fiberglass reinforced plastic materials are the same as for the beam in Example 7-3. The design beam load applied perpendicular to axis $1-1$ is 500 lbs per ft. The beam is laterally braced at midspan. The beam section is shown in Section 0-a.*

Section 0-0

1. Reduced ultimate strength ond stiffness properties (See Example 7-3):
$\sigma_{x u}=12,500$ psi (compression); $\tau_{x u}=3,000$ psi
$E_{11}=1,400,000$ psi; $E_{22}=700,000$ psi; $G_{12}=315,000 \mathrm{psi}$
$v_{12}=0.36 ; v_{21}=0.18$
2. Section properties:
$A=0.7 \times 9 \times 2+0.7 \times(16-1.4)=22.82$ in 2
$I_{1}=0.7 \times 9 \times 7.65^{2} \times 2+\frac{0.7 \times 14.6^{3}}{12}=918.9 \mathrm{in}^{4} ; S_{1}=\frac{918.9}{8}=115 \mathrm{in}^{3}$
$I_{2}=\frac{.7 \times 2 \times 9^{3}}{12}+\frac{14.6 \times .7^{3}}{12}=85.5 \mathrm{in}^{4}$
$r_{1}=\sqrt{\frac{\Gamma_{1}}{A}}=\sqrt{\frac{918.9}{22.87!}}=6.35 \mathrm{in;} r_{2}=\sqrt{\frac{85.5}{22.82}}=1.94 \mathrm{in}$.
2.1 Bending. Use luod factor of 2.0
$M_{u}=\frac{0.5 \times 12^{2} \times 2}{8}=18.0^{\prime} k \times 12=216 "-k ; \max \sigma_{\times b 1}=\frac{216}{115}=1.88 \mathrm{ksi}$
3. Determine the form factor, Q, for local buckling under axial compression alone: This may be governed by either the local buckling resistance of the flanges or the web.
Flange: $\quad \frac{b_{f}}{2 t_{f}}=\frac{g}{2 \times .70}=6.4$

Example 7-C (fontimued)

Eq. 6.98: $\sigma_{x c}=\frac{G_{12}}{\left(b_{f} / 2 \dagger_{f}\right)^{2}}=\frac{315,000}{(6.4)^{2}}=7,690 \mathrm{psi} ; Q=\frac{7690}{12,500}=0.615$
Web - for uniform compression: Eqs. 6.92 and ó.92a: $\sigma_{x c}=\frac{2 \pi^{2}}{b^{2}}\left(\sqrt{D_{11} D_{22}}+D_{0}\right)$
$\sigma_{x c}=\frac{2 \pi^{2}}{(14.6)^{2} \times 0.7} \quad\left(0.7^{3} \sqrt{124,800 \times 62,400}+75,000 \times 0.7^{3}\right)$
Note: See Example 7-3 for calculation of D_{11}, D_{22} and D_{0}
$\sigma_{x c}=7,396 \mathrm{psi} \quad 7,400 \mathrm{psi} ;$ Use $\mathrm{Q}=\frac{7,400}{12,500}=0.59$
Post buckling stremth of the web is not used because web must also carry shear and bending from lateral load.
4. Ultimate axial compression strength: $K=1.0$ for simply supported ends, with respect to both $1-1$ and $2-2$ axes; $L_{1}=12 \mathrm{ft}$; $L_{2}=6 \mathrm{ft}$.
$\frac{\mathrm{KL}}{\mathrm{r}_{1}}=\frac{12 \times 12}{6.35}=22.7 ; \frac{\mathrm{KL}_{2}}{\mathrm{r}_{2}}=\frac{6 \times 12}{1.94}=37.1$
Еч. 7.18a: $\quad C_{c}^{\prime}=\sqrt{\frac{2 \pi^{2} E}{Q \sigma}{ }_{x u}}=\sqrt{\frac{2 \pi^{2} \times 1,400,000}{7,400}}=61$.
Note: $Q \sigma_{x u}=0.59 \times 12,500=7,400 \mathrm{psi}$
When $\frac{K L}{r_{2}}<C_{c}^{\prime}$, use Eq. 7.20 for transition zone (Fig. 7-4, curve 5):
$\sigma_{x a c}=A^{\prime}{ }_{x u}-\frac{\left(Q^{\sigma}{ }_{x u}\right)^{1.5}}{2 \pi \sqrt{2 E}}\left(\frac{\mathrm{KL}}{r_{2}}=7,400-\frac{(7,400)^{1.5} \times 37.1}{2 \pi \sqrt{2 \times 1,400,000}}=5154 \mathrm{psi}\right.$
5. Ultimute bending compression strength, based on Iateral buckling resistance, material compression strength, or local buckling resistance.

Eq. 7.50: $\sigma_{x b l c}=0.65 C_{1} E_{11} \frac{b_{f} t_{f}}{L f} \leq Q \sigma_{x U}$
With brace at midspan ($M_{2}=M_{\text {max }}$ and $M_{1}=0$), from Eq. 7.39: $C_{1}=1.75$
$\sigma_{x b l c}=0.65 \times 1.75 \times 1,400,000 \times \frac{9 \times 0.7}{72 \times 16}=8708 \mathrm{psi}>Q \sigma_{x u}=0.615 \times 12,500 \mathrm{psi}=7700$
Use $Q \sigma_{x b u}=7.7 \mathrm{Ksi}$
6. Bending amplification factor (Eq. 7.80):

Exomple 7-6 (continued)

Eq. 7.17: $\sigma_{x a l e}=\frac{\pi^{2} E_{1 \mid}}{\left(L / r_{1}\right)^{2}}=\frac{\pi^{2} \times 1,400,000}{(22.7)^{2}}=26,815 \mathrm{psi}=26.8 \mathrm{ksi}$
Note: Use Euler stress ever, if $\sigma_{x a l e}{ }^{>} \sigma_{x u}$
also, $\sigma_{x a}$ is the axial stress, $P_{u} / A: \sigma_{x a}=P_{u} / 22.8$
Thus, amplification factor $=1-\frac{P_{u}}{22.8 \times 26.8}=1 \cdot \frac{P_{u}}{6 T T}$
7. Bending reduction foctor, $C_{m l}$ (Eq. 7.80): Table 7-3, Case 1 ; $C_{m l}=1.0$
8. Determination of P_{u}, based on interaction equation, Eq. 7.80
 $\frac{P_{u}}{\Pi 7.5}+\frac{0.244}{\left(T-P_{u} 16 \pi\right)}=1.0$

Cut and Try Solution:

$P_{\text {kirs }}$	$\left(1-P_{u} / 611\right)$	$P_{u} / 117.5$	$0.244 /\left(1-P_{u} / 611\right) \Sigma=1.0$		
85	0.801	0.723	.283	1.006	
84	0.863	0.715	.283	.998	1.00

Result: Maximum ultimate axial thrust that can be added $=84 \mathrm{k}$. Using a load foctor of 2.C, the maximum design axial thrust is 42 k .

Note:
1 in. $=25.4 \mathrm{~mm}_{1}, 1$ in $^{2} 645 \mathrm{~mm}^{2}, 1$ in $^{3}=16,387 \mathrm{~mm}^{3}, 1 \mathrm{in}^{4}=416,231 \mathrm{~mm}^{4}, 1 \mathrm{ft}=$
$0.3048 \mathrm{~m}, 1 \mathrm{Kip}=4.448 \mathrm{KN}, 1 \mathrm{in-k}=113 \mathrm{Ntm}, 1 \mathrm{ft}-\mathrm{k}=1.356 \mathrm{KN-m}, 1 \mathrm{lbf} / \mathrm{ft}=14.59 \mathrm{~N} / \mathrm{m}$,
$\mathrm{I} \mathrm{psi}=6.895 \mathrm{KPa}, \mathrm{I} \mathrm{Ksi}=6.895 \mathrm{MPa}$

7.6 RIBBED PANELS

When plastics are used for flat components that resist transverse loads, configurations comprised of corrugated shapes or flat sheets with ribs are often used. See Figs. 4-4, 4-5 and 4-6 in Section 4.4 for typical panels with various types of open corrugations, solid ribs or closed hollow ribs. Mast of these panel types have a system of ribs that span between support members along ends of the panel. Such panels are designed as one-way spanning beams. Panels may be simply supported by members located at panel ends, or they may be multiple span continuous bearns supportcd by members locatcd at intermediate points in the panel length.

Design considerations are the same as previously described in Section 7.4 for beams having open thin-wall sections or tubular sections. These include panel flexural strength based on tension and compression strength of the respective tension and compression flanges, in-plane bending and shear strength of the web, in-plane and interlaminar shear strength of the flanges, local buckling of both the compression flange and the web, and panel deflection. If a ribbed flat panel is used to st'pport axial load as a column or bearing wall, design procedures given in Sertion 7.3 should be followed.

The section properties of a common type of corrugated panel formed of undulating circular arcs of equal radii are given in Fig. 7-18 as a function of the pitch-depth ratio, as defined in the Figure. This chart facilitates the rapid calculation of section properties for this type of corrugated panel.

When a concentrated lood is applied at a single rib, or ot a point between two ribs, on a ponel with multiple ribs, the lood effects are distributed partly to the directly loaded ribs and partly to ribs beyond the loaded ribs. The analysis required for an occurate determination of the lood distribution between ribs is complex and beyond the scope covered here. Studies developed for bridge decks (7.8) (7.9) provide some useful approximate procedures for obtaining load distribution between the transverse ribs. Also, as explained in Chapter 6, the ribbed panel can be considered to be an orthotropic plate; in this approach stress resultonts may be determined using charts or tables provided in references given in Chopter 6. Sometimes, it is sufficiently accurate for design to consider that the eritire concentrated load is carried by the loaded rib, or ribs, with no distribution of lood effects to adjocent ribs. This assumption is most applicable
to ribbed panels with thin facings that do not have "distribution ribs" running perpendicular to the primary ribs spanning between panel supports.

Fig. 7-18 SECTION PROPERTIES OF PANELS WITH CIRCU. AIR ARC CORRUGATION (7.15)

The design of a single-span ccrrugated wall panel with circular arc corrugations is illustrated in Example 7-7. The design of a single span flat panel with hollow ribs that forms the deck of a marine floating dock is illustrated in Example 7-8.

7.7 LARGE BOX AND T-BEAMS

When structural plastics are considered for large structural componenets, a "box type" configuration, comprised of wide ribbed or sandwich ponel flanges integral with deep webs, is often an efficient struiture that can be economically fabricated. Such a member is shown in Fig. 7-19a. A few examples in existing usage include footbridges in ser,age plants, flooting docks and walkways at Marinas, freezer truck bodies, cargo containers, and aircraft bodies.

If the wide flanges or covers of a box beam with multiple webs accur only on ane side of the webs, the overall cross section is a T configuration instead of a box as shown in Fig. 7-19b. Large structures with "box" or "T" configurations often behove as beams and their design is based on the methods and criteria given above in Section 7.4. However, flange components may first have to be designed as local bending members, spanning transversley between webs. This is illustrated in Example 7-8 in Section 7.6.

Example 7-7: Determine the required thickness of a transpartent acrylic plastic corrugated sheet wall panel with a pitch of 5 inches and a depth of 2 inches to safely span 60 inches (simply supported) under a short-terin (wind) design lood of 20 lbs per sq. ft. (suction or pressure). Limit the maximum service load deflection to span length divided by 120 (i.e., 0.5 in.) Assume the following minimum test properties for the acrylic material:*

1. Reduced ultimate strength and stiffness: Assime capacity reduction factors for wind load as $i .3$ for tension, 0.4 for flexure, 0.5 for compression and 0.9 for elostic modulus. Tine inwer sapcicity reduction factors for tension and flexure are selected becouse ocrylics tend to behorie as brittle materials.

Use loud fa=tor of 2.5
2. Bending strength:
$N_{X U}=\frac{20 \times 5^{2} \times 2.5}{8}=1565 t-1 \mathrm{bs} / \mathrm{ft}$ or in-lbs/in, where 2.5 is the load factor
$\begin{aligned} & \text { Required section mudulus, } S_{j}: \text { Eq. 7.33: } S_{I}=\frac{M}{\sigma_{x u}}=\frac{156}{.3 \times 9000} \\ & \text { in } 3 / \mathrm{in}\end{aligned}=0.058$
Thus, $t_{1}=S_{1} d / 2=0.058 \times 1.0=0.058$ in $^{4} / \mathrm{in}$
** Note: "tension" rather thon "flexure" aoverris, because the full thickness of the sheet is stressed at the maximurn tension stress at the trough at midspan. In this formulation, the variation in stress over the thickness of the sheet is neglected for thin sheets.
From Fig.7-18 for pitch/depth ratio $=5 / 2=2.5: 1_{1}=0.180+d^{2}$; thus:

$$
\text { requt } t=\frac{\|_{1}}{.180 \times d^{2}}=\frac{0.058}{0.180 \times 2 \times 2}=0.081 \mathrm{in} .
$$

3. Bending deflection: On one inch wide strip: $W=20 \times \frac{60}{144}=8.33 \mathrm{lbs} / \mathrm{in}$. width

Table 5-1: $\quad \delta_{m}=\frac{5 \mathrm{WL}^{3}}{384 E T}=\frac{5 \times 8.33 \times 60^{3}}{384 \times .9 \times 400,000 \times 0.058}=1.122 \mathrm{in}$.
alliow $\delta_{m}=\frac{L}{T 20}=\frac{60}{120}=0.50 \mathrm{in}$.
Increase thickness to $t=\frac{1.122}{0.50} \times 0.081=0.182$ in., since I_{1} increases linearly with 1

F See note on Example 7.1, page 7.5.

Example 7-7 (continued)

4. Local buckliag resistance: furn $S_{1}=21_{1} / d=2 \times 0.180 \times 0.182 \times 2^{2} / 2.0=0.131 \mathrm{in}^{3} / \mathrm{in}$ max. req'd $\sigma_{x}=\frac{156}{0.131}=1190 \quad 1200 \mathrm{psi}$
Cunservative approxirnate buckling strength is given by buckling resistance of cylindrical shell under longitudinal compression (Section 9.10):

Fig 7-18: radius of curvature, $R=0.65 d$ for pitch/depth $=2.5 ; R=0.65 \times 2=$ 1.30 in .

Eq. $9.74 \quad \sigma_{x C}=\frac{C E t}{R}=\frac{k_{0} k_{n} E t}{R}$
Fig. $9-25$ for bending with $R / \uparrow=\frac{1.30}{.182}=7.14: k_{n}-0.85$
Also for isotropic materials with $v=0.3 ; k_{0}=0.6$

$$
\sigma_{x c}=\frac{0.6 \times 0.85 \times 0.9 \times 400,000 \times 0.182}{1.3}=25,700 \mathrm{psi}>1200 \mathrm{psi}
$$

Local buckling does not govern
5. Use a thickness of $3 / 16 \mathrm{in}$. with a corrugation having 5 in pitch and 2 in . depth center to center of sheet.

From Fig. 7-18, the required width of equivalent flat sheet is $K_{m}=1.45$ times the laying width of corrugated sheet plus any required side laps. Area of sheet section $=1.45 t \times$ (laying width + side laps).

I in $=25.4 \mathrm{~mm}, \mid \mathrm{in}^{3} / \mathrm{in}=645 \mathrm{~mm}^{3} / \mathrm{mm}, 1 \mathrm{in}^{4}=16,387 \mathrm{~mm}^{4} / \mathrm{mm}, 1 \mathrm{ft}-\mathrm{lbf} / \mathrm{fi}=4.448 \mathrm{~N}$ $\mathrm{m} / \mathrm{m}, \mathrm{I} \mathrm{in}-\mathrm{ibs} / \mathrm{in}=4.448 \mathrm{lt}-\mathrm{mm} / \mathrm{mm}$, I $\mathrm{lbf} / \mathrm{in}=0.175 \mathrm{~N} / \mathrm{mm}, \mathrm{Ipsi}=6.895 \mathrm{KPa}, 1 \mathrm{lbf} / \mathrm{ft}^{2}=$ 47.88 Pa

Example 7-8: Design a deck panel that spans 6 ft . (simply supported) and provides a walkway for floating slipways in a srall boai marina. Transverse and longitudinal sections through the walkway showing the required deck panel are:*

Assume the following design loads: Uniformly distributed: $100 \mathrm{lbs} / \mathrm{sq}$ ft. (includes panel weight) Line: $250 \mathrm{lbs} / \mathrm{ft}$ (See longitudinal section)

Use a fiberglass reinforced plastic laminate with alternate layers of mat and woven roving and polyester resin. Assume the following mechanical properties, based on short time tests in wet environment:

Tension Strength: 20,000 psi; Compression and Flexural Strength: 25,000 psi;
Sivear Strength (in-plane): 6,000 psi; Shear Strength (interlaminar): 1,500 psi;
Elastic Moduli: $\mathrm{E}_{11}=\mathrm{E}_{22}=1,500,000 \mathrm{psi} ; \mathrm{G}_{12}=450,000 \mathrm{psi} ;$
Poisson's ratio: $v_{12}=v_{21}=0.2$

Use the rib arrangement shown in the sketch at the right. The rib is layed up wet over a cardboard core whose contribution to strength, stiffness and local buckling resistance is neglected.

1. Use the following capacity reduction factors, ϕ, for reduced ultimate strength properties and service stiffness properties (design loads are applied intermittently over a long period of time): Tension, Compression, flexure and in-plane shear: $\phi=$ 0.5 ; Interlominar shear strength: $\phi=0.3$; Elastic Moduli: $\phi=0.8$
2. Use a lood focior of 1.7
3. Determine thickness, t_{j}, of deck sheet, and clear spacing between ribs.
3.1 Try $t_{1}=0.3 \mathrm{in}$. Let clear span between supports $=s^{\prime}=s-(a+d)$. Line load will goverh local flexural stresses, tronsverse direction, between ribs.

F See note on Example 7-1, poge 7.5.

Example 7-8 (continued)

$P_{u}=\frac{250 \times 1.7}{12}=35.4 \mathrm{lbs} / \mathrm{in}$. width
3.2 Check strength criteria:
applied $M_{u}=\frac{P_{u} \times s^{\prime}}{5}=\frac{35.4 \times s^{\prime}}{5}=7.08 \mathrm{~s}^{\prime}: n$-lbs/in
Note: Coefficient I/5 allows for effects of some end fixity.
Flexural strength, $\sigma_{x u}=0.5 \times 25,000=12,{ }^{5} \times 0$.su:
$S_{1}=\frac{b t_{1}{ }^{2}}{6}=\frac{1 \times 0.3^{2}}{6}=0.015 \mathrm{in}^{3} / \mathrm{in}$.
allowed max. $M_{u}=\sigma_{x u} S_{1}=12,500 \times 0.015=187.5 \mathrm{in}-\mathrm{lbs} / \mathrm{in}$
max. allowed clear span: $7.08 \mathrm{~s}^{\prime}=187.5 ; \mathrm{s}^{\prime}=26.5 \mathrm{in}$
3.3 Check deflection criteria:

Table 5-1: Assume end restraint results in deflection midway between simply supported and fixed end cases.
$\delta_{m}=\frac{K_{m} P s^{\prime^{3}}}{E I} ; P=250 / 12=20.8 \mathrm{lbs} / \mathrm{in}$. at midspan; $K_{m}=\left(\frac{1}{48}+\frac{1}{192}\right) \times \frac{1}{2}=0.013$;
$E=0.8 \times 1,600,000=1,280,000 \mathrm{psi} ; 1=\frac{b t_{1}^{3}}{T 2}=\frac{1 \times 0.3^{3}}{12}=0.00225 \mathrm{in}^{4}$
allow $\delta_{m}=\frac{\text { span }}{300}=\frac{s^{\prime}}{300}$ to avoid excessively "soft" feel
$\frac{s^{\prime}}{300}=\frac{.013 \times 20.8 \mathrm{~s}^{1^{3}}}{1,280,000 \times 0.00225}=\frac{0.094 \mathrm{~s}^{1^{3}}}{1000} ; \max s^{\prime}=\sqrt{\frac{10}{.094 \times 3}}=5.95 \quad 6 \mathrm{in}$.
Corclusion: If deck sheet is 0.3 in thick, clear distance between ribs should not exceed 6 in.
4. Determine center to center rib spacing and rib dimensions:
4.1 Try ribs at 12 inches on center: Either line load or uniformly distributed load may govern design. Ribs span 6 ft . as simply supported beams
$P_{u}=250 \times 1.0 \times 1.7=425 \mathrm{lbs} . ; W_{u}=100 \times 1.0 \times 6.0 \times 1.7=1020 \mathrm{lbs}$.
Since distribrsted lood, W_{u}, is more than twice concentrated line load, P_{u}, W_{u} will govern desigr..
4.2 Strength criteria:
applied $M_{U}=\frac{1020 \times 6 . \times 12}{8}=9,180 \mathrm{in}-\mathrm{Ibs} / \mathrm{rib}$
if we can develop full strength of laminate: $\sigma_{x u}=0.5 \times 20,000=10,000 \mathrm{psi}$

Example 7-8 (continued)

Eq. 7.33: req'd $S_{1}=\frac{M_{u}}{\sigma_{x u}}=\frac{9180}{10,000}=0.92 \mathrm{in}^{3} / \mathrm{rib}$
4.3 Stiffness criteria
$\frac{\mathrm{L}}{300}=\frac{5}{384} \frac{\mathrm{WL}^{3}}{\mathrm{ET}}$; req'd $\mathrm{I}=\frac{3.91 \mathrm{WL}^{2}}{E}=\frac{3.91 \times 600 \times 72^{2}}{\mathrm{I}, 280,0000}=9.50 \mathrm{in}^{4} / \mathrm{rib}$
4.4 Rib dimensions, using trial approximations
(1) Initial estimate of propertions and section properties:

Compression flange area $=0.3 \times 12=3.6$ in 2
If effective tensior flange area $\approx 0.2 \times$ compression flange $=0.2 \times 3.6=0.7 \mathrm{in}^{2}$

Trial min. $\mathrm{S}_{1}=\frac{0.586 \mathrm{~d}^{2}}{.84 \mathrm{~d}}=0.7 \mathrm{~d}=0.92$; trial $\mathrm{d}=1.31 \mathrm{in}$.
Trial min. $I_{1}=0.586 \mathrm{~d}^{2}=9.50$; trial $d=4.0 \mathrm{in}$.
(2) Limiting width-thickness ratio of deck sheet to preclude local buckling with
$d=4 \mathrm{in} . \& I=9.50$ in $/ \mathrm{ft}$:
top $S=\frac{9.50}{0.16 \times 4}=14.8 \mathrm{in}^{3} / \mathrm{rib} ;{\underset{x}{x}}=\frac{9,180}{14.8}=620 \mathrm{psi}$
Eq. 6.71a: $\quad \sigma_{x c}=\frac{k \pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{\dagger}{b}\right)^{2}=620 ; k=4.0$
$\max \left(\frac{b}{f}\right)=\sqrt{\frac{4 \pi^{2} \times 1,280,000}{620 \times 12\left(1-0.2^{2}\right)}}=84.1$; if $t=0.3, \max b=25.2$ in o.k.
Use max. $(a+d)=6 \mathrm{in} .$, as governed by transverse stiffness, $d=4 \mathrm{in} ., \mathrm{a}=2 \mathrm{in}$.,
(3) if tension flange $A=0.7 \mathrm{in}^{2}: 0.7=(1.12 \mathrm{~d} \times 2 / 6+\mathrm{a}) \mathrm{t}_{2}$
$0.7=(0.37 \times 4+2) t_{2} ; \min _{2}=\frac{0.7}{3.49} \approx 0.20 \mathrm{in}$.
Try $t_{2}=0.25 \mathrm{in}$.

Example 7-8 (continued)

(4) Trial proportions of rib and section properties:

Segment Areo
$\begin{array}{ccccc}A & y & A y & A y_{0}{ }^{2} & I_{0} \\ \text { in }^{2} & \text { in } & \text { ir. }^{3} & \text { in }^{4} & \end{array}$

t2 may be reduced to about $.25 \times 9.5 / 14.3=.17$ in and the above calculation for section properties repeated.

Local buckling will not govern bottom flange which is in tension, nor webs which are o.k. by inspection, since stresses are low berause of the rib depth required for stiffness.

I in $=25.4 \mathrm{~mm}, 1 \mathrm{jn}^{2}=645 \mathrm{MM}^{2}, 1 \mathrm{in}_{4}^{3}=16,387 \mathrm{~mm}^{3}, 1 \mathrm{in}^{3} / \mathrm{in}=645 \mathrm{~mm}^{3} / \mathrm{mm}, 1 \mathrm{in}^{4}=$ $416,231 \mathrm{~mm}$, $1 \mathrm{in}^{4} / \mathrm{ft}=1,365,587 \mathrm{~mm}^{4} / \mathrm{m}, 1 \mathrm{ft}=0.3048 \mathrm{~m}, 1 \mathrm{lbf}=4.448 \mathrm{~N}, 1 \mathrm{lbf} / \mathrm{in}=$ $0.175 \mathrm{~N} / \mathrm{mm}, \mid \mathrm{ibf} / \mathrm{ff} \dagger=14.59 \mathrm{~N} / \mathrm{m}, \mathrm{I}$ in-lbs $/ \mathrm{in}=4.448 \mathrm{~N}-\mathrm{mm} / \mathrm{mm}, 1 \mathrm{psi}=6.895 \mathrm{KPa}, 1$ ibf.ft ${ }^{2}=47.88 \mathrm{~N} / \mathrm{m}^{2}, 1 \mathrm{in}-1 \mathrm{bf}=113 \mathrm{~N}-\mathrm{mm}$

Sometimes, the proportions of large box and T beams require consideration of effects that are normally neglected in the elementary theory of flexure used for practical design of most bending members. The elementary theory is based on the assumption that "plane sections before bending remain plane after bending". By this assumption, shear strain is neglected. However, shear strain causes important modifications of the distribution and mugnitude of normal and shear stress when either the depth, or the width, of a box section is large relative to the span of the box beam.

Fig. 7-19 BOX AND T-BEAMS

Box T or beams that have span to web depth ratios that are less than about 1 to 2 (for simple spans) or span to flange width ratios that are less than about 5 for uniform lood and 8 for concentrated load (for simple spans) should probably be
analyzed by methods that account for effects of shear strain. This can be done using finite element analysis with element stiffnesses that account for both axial and shear deformation. Also, the above span-to-depth, and span-to-width, ratios are based on isotropic materials having a Poisson's Ratio, v, of 0.3. Significant differences may be expected with orthotropic materials and with materials with a low in-plane shecr modulus, G.

Solutions for stresses in deep rectangular isotropic beams are given in Section 6.8. These are not applicable to deep beams with flanges, but indicate the general nature of the effects of low span-depth ratios. In deep beams, the effectiveness of the flange is reduced and rough design could be based on the web only behaving as a rectangular diaphragm plate.

The modification in flange normal stress caused by shear deformation in wide flanges is usirally called shear log. This is discussed in Section 7.4. Again, the approximations given in that section apply only to beams with isotropic materials and $v=0.3$. Shear lag in members with wide flanges is usually taken into acccunt by using a reduced flange width, termed the "effective" flange width.

The "effective flange width" is the flange width of an equivalent bean with uniform flange stress having the same maximum flange stress, or mid-span, deflection, as the maximum flange stress in the actual beam with non-uniform flange stress caused by shear lag. See Fig. 7-14 for graphs giving effective flange width/actual flange width ratios as a function of span/flange width ratio's for simply supported and contilever box and l-beams subject to uniformly distributed load or concentrated loods at midspon or one-third span. Fig. 7-14(a) gives the effective width, b_{e}, for culculating effective section modulus for determining maximum flange stress at the section of maximum noment, while Fig. 7-14(b) gives the effective width, b_{e}^{\prime}, for calculating the average moment of inertia for determining mid-span deflection.

The design of a large box section beam with a wide flange is presented in Example 7-9. An effective flange width is determined using the above method to account for shear log.

Example 7-9: Develop a prototype design for the entrance conopy roof shown in the sketch as a transparent glass reinforced polycarbonate plastic cantilevered box beam.*

(b) Transverse Section

(c) Section Thru Transverse Rib

(1) Section Thru Longitudinal Rib

Design loads are 100 psf at the wall, varying linearly to 50 psf at tip, for drifted snow and dead load of structure, and 15 psf for net wind uplift. Assume the following materials properties, based on short time tests: tensile strength $=12,000$ psi, flexural strength $=$ $15,000 \mathrm{psi}$, compressive strength $=12,000 \mathrm{psi}$, in-plane shear strength $=8,000 \mathrm{psi}$, initial elastic modulus $=810,000$ psi, Poisson's ratio $=0.35$. Limit the tip deflection to 1.5 in . under maximurr design snow load, and the deflection of ritis and deck sheet to 0.5 in .

1. Use capacity reduction factors for snow loud of 0.5 for tension and shear, 0.6 for local flexure ard for compression, and 0.8 for initial elastic modulus. Multiply the above values by 1.2 for wind lood.

Thus, for snow load: $\sigma_{x u}$ in tension $=0.5 \times 12,000=6,000$ psi; $\sigma_{x u}$ in local flexure $=0.6 \times 15,000=9,000$ psi; $\sigma_{x u}$ in compression $=0.6 \times 12,000=7,200$ psi, $\sigma_{x U}$ for in-plane shear $=0.5 \times 8,000=4,000$ psi; $E=.8 \times 800,000=640,000$ psi.

Use a load factor of 2.0 for strength under snow and wind loads.
2. Determine top skin t:ickness for 3 longitudinal ribs equally spoced at $\mathbf{2 4}$ inches.
2.1 Establish trial thickness for deflection control with the aid of Figs. 6-4 and 6-5. Estimate that edge restraints are midway between rotationally fixed and pinned, and also about midway between "edges held" and "edges free to translate." $\frac{a}{b}=\frac{48}{24}=2.0 ; \frac{w_{c}}{f}=\frac{0.5}{t} ;$ in boy closest to wall, load overages $(100+83)+2 \cdot 144=0.64 \mathrm{psi}$

[^6]
Example 7-9 (continued)

Poisson's index, $k_{o}=\frac{0.35}{0.30}=1.17 ;\left(k_{o} E^{g}\right)^{1 / 4}=\left(\frac{1.17 \times 0.64}{640,000}\right)^{1 / 4}=\frac{1}{30.4}$
Try $\uparrow=0.3$ in.; for $\frac{w_{c}}{T}=\frac{0.50}{0.30}=1.67$ arid $a / b=2.0$ in Figs. $6-4 \& 6-5$ for average of edge support cases in these Figures:
req'd $\frac{b}{f}=\left(k_{0} \frac{g}{E}\right)^{1 / 4}=(2.1+3.3+2.8+3.6) s 4=2.95$
$\frac{24}{t} \times \frac{1}{30.4}=2.95 ; t=\frac{24}{30.4 \times 2.35}=0.27 \mathrm{in}$.; Use trial sheet thickness $=0.30 \mathrm{in}$.
2.2 Check strength: First try 1 in. wide simple beam strip as a conservative approximation.
$M_{U}=\frac{0.64 \times 2.0 \times 24^{2}}{8}=92 \mathrm{lbs} / \mathrm{in} .: S=\frac{1 \times 1^{2}}{6}=\frac{0.3^{2}}{6}=0.015 \mathrm{in}^{3}$
$\sigma_{x}=\frac{92}{0.015}=6133 \mathrm{psi} \quad 9,000 \mathrm{psi}$
Actual maximum stress wil be substantially less because of two-way bending and membrane action. A more accurate check could be made using Figs. 6-6 to 6-9 for "large deflection" plate analysis. However, since $\sigma_{x}<9,000$ psi above, there is no need for this.
3. Design Inngitudinal ribs for 1.2 inch trial width. (4-0.3 in thick strips laminated vertically, see Sketch d.) Span $=48$ in between transverse ribs.
3.1 Strength: End span has maximum moment.

Req'd S $=\frac{8832}{6000}=1.47 \mathrm{in}^{3}$
Note: 6000 psi tensile strength is used instead of 9000 psi flexure; bottom laminalion is mostly in tension.
if we neglect flange of "T" section: $S=\frac{b h^{2}}{6}$ and $b=1.2$ in.
req'd $h^{2}=\frac{6 \times 1.47}{1.2}=7.36 ; h=2.71 \mathrm{in}$.
Try : $=2.5$ in and consider an effective T-flange width of $8 t$ on each side of stem.

3.2 Check deflection - End span:

Approx. $\delta_{m}=\frac{1}{2} \times \frac{5}{384} \frac{\mathrm{WL}^{3}}{\mathrm{EI}}-\frac{1}{2} \times \frac{5 \times 184 \times 4 \times 48^{3}}{384 \times 640,000 \times 3.76}=0.22$ in. o.k.

Example 7-9 (continwed)

4. Transverse ribs: Assume glued laminated wood used. Design is not presented for lack of space.
5. Design of Main Box Beam: (Use one side of symmetry line.)
5.1 Ultimate loods:
$w_{l u}=50 \times 1.0 \times 2.0$ (lood factor) $=100 \mathrm{psf} ; w_{2 u}=100 \times 1.0 \times 2.0=200 \mathrm{psf}$
$P_{\text {IU }}=\left(50 \times 3 \times 2+17 \times \frac{3}{2} \times \frac{4}{3}\right) \times 2.0=668 \mathrm{lbs}$
$P_{2 v}=\left(50 \times 3 \times 2+17 \times \frac{3}{2} \times \frac{8}{3}+67 \times 3 \times 2+17 \times \frac{3}{2} \times \frac{4}{3}\right) \times 2.0=1608 \mathrm{lbs}$
$P_{3 v}=\left(67 \times 3 \times 2+17 \times \frac{3}{2} \times \frac{8}{3}+83 \times 3 \times 2+17 \times \frac{3}{2} \times \frac{4}{3}\right) \times 2.0=2004 \mathrm{lbs}$
5.2 Maximum ultimate shear \& moment - stress resultants:
$v_{u}=100 \times 12+100 \times \frac{12}{2}+668+!608+2004=6080 \mathrm{lbs}$
$M_{u}=100 \times 12 \times \frac{12}{2}+100 \times \frac{12}{2} \times \frac{12}{3}+668 \times 12+1608 \times 8+2004 \times 4=38,496 \mathrm{ft}-\mathrm{lbs}$
5.3 Required Section Modulus, Web Area for Shear and Moment of Inertia:

Upper flange in tension: req'd $S_{1}=\frac{M_{u}}{\sigma_{x u}}=\frac{38,496 \times 12}{6000}=77 \mathrm{in}^{3}$
Lower flange in compression: req'd $S_{1}=\frac{38,496 \times 12}{7200}=64$ in 3
Web in shear: req'd $A_{w}=\frac{V_{u}}{\tau_{x u}}=\frac{6080}{4000}=1.5 \mathrm{in}^{2}$
Deflection limit: Cantilever beam not included in Table 5-1. Use Ref. (5.5), cases 18 and 19. For service loods:
$\delta_{m}=\frac{W L^{3}}{15 E T}+\frac{W L^{3}}{8 E I}$
$\delta_{m}=\frac{50 \times 4 \times 12 / 2 \times 12^{3} \times 12^{3}}{15 \times 640,0001}+\frac{50 \times 3 \times 11 \times 12^{3} \times 12^{3}}{8 \times 640,0001}=1.5 \mathrm{in}$.
$1.5=\frac{373}{T}+\frac{962}{T}=\frac{1335}{T} ; \mathrm{min} .1=890 \mathrm{in}^{4}$
5.4 Trial Proportions - Try ta maintain 0.3 in constant thickness so that shape can be thermoformed. Section modulus for bending strength, or moment of inertia for bending stiffness will govern by inspection.
(1) Maximum width of lower flonge to develop compressive ${ }^{{ }_{x u}}$ without local burkling. $\frac{b_{f}}{f_{f}}=C_{b} \sqrt{\frac{E}{\sigma_{x u}\left(1-v^{2}\right)}} ; C_{b}$ from Case 3 in Table $7-1=1.8$, as trial value $\frac{b_{f}}{t_{f}}=1.8 \sqrt{\frac{640,000}{7,200\left(1-.35^{2}\right)}}=18.1$

Example 7-9 (continued)

Mox. width of bottom flange to develop $\mathbf{7 2 0 0}$ psi in compression:
$b_{f}=0.3 \times 18.1=5.4 \mathrm{in}$.
(2) Moximum depth of web to develop compressive $\sigma_{x u}$ without local buckling:
C_{b} from Table $7.1=4.4 ; d_{w}=5.4 \times 4.4 / 1.8=13.2 \mathrm{in}$.
(3) Moximum depth of edge return for inner edge of bottom flange to develop compressive $\sigma_{x u}$ without local buckling - assume uniform compression. C_{b} from Case 1 in Table $7-1=0.6 . b_{f}=5.4 \times 0.6 / 1.8=1.8 \mathrm{in}$.

Min. stiffness to brace inner edge of tottom flange:
Eq.7.2: $I_{s}=2.0 t^{4} \sqrt{\left(\frac{a}{T}\right)^{2}-\frac{0.19 E}{\sigma_{x U}}}=2.0 \times 0.3^{4} \sqrt{\left(\frac{5.5}{0.3}\right)^{2}-\frac{0.19 \times 640}{7.2}}=0.29 \mathrm{in}^{4}$
Determine I_{s} about centroid of 2 in . trial lip plus 2 in . radius section;

(4) $\operatorname{Tr} y$ the following section:

(5) Estimute effeciive properties of beam including correction for shear keg in top flange.

Effective Top flange area, os reduced the to shear log.
(a) For moximum flange tension:

From Fig. 7 -14(a) for $b / 2 L=8 / 2 \times 12=0.33$
and using 0.8 times a cantilever b:am with uniformly distributed load case as an approximation for our case of combined uniform and triangular (drift) distribution:
$b_{e}=0.8 \times 0.25 b=0.20 b$

Example 7-9 (continued)

The factor 0.8 is used because the triangular portion of the load produces a sharper build-up of moment near the root of the contilever thon in the uniformly distributed case, causing more lag in developing flexural normal stress in portions of the flonge away from the edge.
Thus, toke effective area of half the top flange, ${ }^{\text {Top }}$, for maximum stress as ($A_{w} / 6+b_{e} e_{f} / 2+b_{e} / b \times 1.5 A_{\text {stringer }}$
$A_{\text {Top }}=\frac{0.3 \times 18}{6}+\frac{0.20 \times 96 \times 0.3}{2}+0.20 \times 1.5 \times 1.2 \times 3=4.8 \mathrm{in}^{2}{ }^{2}$
(b) For deflection:

From Fig. 7-14(b) for b/2L $=0.33$ and using the same contilever beam case described above for flonge stress: $b_{e}^{\prime}=0.8 \times 0.74 b=0.59 b$
Thus, take effective area of half the top flange, $A_{\text {Top }}$ for deflection as:
$A^{\prime}{ }_{\text {Top }}=0.9+\frac{0.59 \times 96 \times 0.3}{2}+0.59 \times 1.5 \times 1.2 \times 3=12.6 \mathrm{in}^{2}{ }^{2}$
Bottom Flange Area:
$A_{B o t}=\frac{A_{w}}{6}+b_{1} \dagger+b_{2} \dagger \quad \frac{0.3 \times 18}{6}+0.3 \times 9.5+0.3 \times 2=4.4 \mathrm{in}^{2}$
Section Properties - Stress
Centroid, $\bar{y}=\frac{4.8 \times\left(17_{ \pm}\right)}{9.2}=8.87$ in up from c.g. bot. flange.
$I_{\text {ie }} \quad 4.8 \times(17-8.9)^{2}+4.4 \times 8.9^{2}=663.5$ in 4
$S_{\text {leTop }}=\frac{663.5}{8.6}=77.1 \mathrm{in}^{3} \approx$ req'd $77 \mathrm{in}^{3}$
$S_{\text {leBot }}=\frac{663.5}{9.4}=70.5$ in $^{3}>$ req'd 64 in 3
Section Properties - Deflection:
Centroid $-\bar{y}=\frac{12.6 \times(17 \pm)}{17.0}=12.6$ in. up from c.g. bot. fiange
$I_{\text {le }}=12.6 \times(17-12.6)^{2}+4.4 \times 12.6^{2}=942.5$ in 4 < req'd 1182 in 4
Section may be overly flexible since estimated eifective I is only about 80% of the required I.
A protatype should be built, and tested since approximations have been used in the analysis and design of the prototype. Thickness could be increased to 1.2×0.5 :0.36 in . or allowable deflec! ion could be increased by 20%, if necessary, based on tests on the prototype. An additional longitudinal rib con:1才 be added in lieu of thickening the shect. The protutype design will be continued using the previous section.
5.5 Check for web buckling:

Av. shear stress $\tau_{x}=\frac{V_{u}}{A_{w}}=\frac{6080}{0.3 \times(14+)}=1444 \approx 1450 \mathrm{psi}$

Example 7-9 (continued)

To develop this stress: Table 7-1

6. Checks for wind uplift looding case:
6.1 Ultimate loads and stress resultants.

To sove space, only the check for overall bending of the box shape will be presented here.

Net $w_{\text {lu }}=15 \times 1.0 \times 2.0=30$ plf.; $P_{\text {lu }}=15 \times 3 \times 2 \times 2.0=180 \mathrm{lbs}$
$\mathbf{P}_{2 u}=2 \times P_{1 u}=360 \mathrm{lbs} . ; P_{3 u}=P_{2 v}=360 \mathrm{lbs}$
$V_{u}=30 \times 12+180+360+360=1260 \mathrm{lbs}$
$M_{u}=30 \times 12 \times 12 / 2+180 \times 12+360 \times 8+360 \times 4=8640 \mathrm{ft}$-lbs
6.2 Effective width of top flange in buckling. Treat flange as an sutstinding flange of channel, with remainder of fiange toward inside assumed as loccilly buckled. Determine maximum effective b_{f}, for various trial values of maximum stress. Use Case I in Table 7-1.
If $S_{\text {top }} \approx 40 \mathrm{in}^{3}$, trial ${\underset{x}{x}}=\frac{8640 \times 12}{40}=2592 \mathrm{psi}$
$b_{f}=t_{w} C_{b} \sqrt{\frac{E}{\sigma_{x}\left(1-v^{2}\right)}}=0.3 \times 0.6 \sqrt{\frac{640,000 \times 1.2}{2592\left(1-.35^{2}\right)}}=3.3 \mathrm{in}$.
Estimate A_{e} for top flange $=\frac{.3 \times 18}{6}+.3 \times(3.3+2)=2.5$ in 2
6.3 Section Properties: $A_{\text {Top }}=2.5 \mathrm{in}^{2} ; A_{B_{01}}=4.4 \mathrm{in}^{2}$

Centroid: $\bar{y}=\frac{2.5 \times(17 \pm)}{6.9}=6.16 \mathrm{in}$. up from c.g. bot. flange
$I_{1} \quad 2.5 \times 10.84^{2}+4.4 \times 6.15^{2}=461$ in 4
$S_{\text {Itop }}=\frac{461}{11.3}=41 \mathrm{in}^{3} ; S_{\text {bot }}=\frac{461}{6.6}=70 \mathrm{in}^{3}$
$S_{\text {liop }}$ furnished is slightly larger than the assumed value of $40 \mathrm{in}^{3}$. Thus, shape is o.k. for wind load, as governed by lor:al buckling of the top flange.
$1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{in}^{3}=16387 \mathrm{~mm}^{3}, 1 \mathrm{in}^{4}=416.231 \mathrm{~mm}^{4}, 1 \mathrm{in}^{-1}=$
$0.04 \mathrm{~mm}^{-1}, \mathrm{l} \mathrm{ft}=0.3048 \mathrm{~m}, 1 \mathrm{lbf}=4.448 \mathrm{~N}, 1 \mathrm{lbf} / \mathrm{in}=0.175 \mathrm{~N} / \mathrm{mm}, 1 \mathrm{psi}=6.895 \mathrm{KPa}, \mathrm{Ipsf}=$
$47.88 \mathrm{~N} / \mathrm{m}^{2}, 1 \mathrm{in}$-lbf $=113 \mathrm{~N}-\mathrm{mm}, 1 \mathrm{ft}-\mathrm{lbf}=1.356 \mathrm{~N}-\mathrm{m}$.

Shear and normal stresses in the vicinity of large flange openings, and open joints, can be estimated bosed on shear lag approximations developed for analysis of aircraft structures. Space precludes the inclusion of a quantitative presentation here, but numerous cases are covered in (7.16).

7.8 FOLDED PLATE STRUCTURES

Mettrods of anolysis and design previously presented for plates and beams may also be applied to more complex structures such as "folded plate" suructures. Folded plate structures are assemblies of plates of rectangular, triangular or other shapes that behove overall as beams, portal frames, archs or shells. Some typical configurations with rectangular plates are shown in Fig. 7-20. Configurations with triangular and tropazoidal shapes are shown in Fig. 7-21.

Stresses in some folded plate structures an be determined with acceptable accuracy by applying the elementary beam theory (Eq. 7-33) to the overall cross section of the plate assembly. In this "beam method", the overall section properties are determined using the methods given in Section 5.3 and 7.4. Assemblies of plates whose lengths are large relative to tireir dimensions of cross section (i.e. thin-wall beam sections, ribbed panels, etc.), and assemblies of large plates whose fold lines deflect identically (i.e. interior bays of roof shown in Fig. 7-20c), can be analyzed as beams.

The following more elaborate procedure may be used to determine transvarse bending stresses in assemblies of large plates and to determine longitudinal stresses in structures with "pinned" connections along fold lines which do not deflect identically (exterior bay of roof stown in Fig. 7-20c). For procedures covering structures with monolithic joints that hove varying deflections at fold lines, see (7.17), (7.18) or (7.19). For a more comprehensive review of methods of analysis for folded plate structures, see (7.20).

Procedure for aralysls of folded ploies (7.17)

1. Reploce actual structure with equivalent compound structure comprised of transversely looded plates (slab structure), and plate system looded "inplane" at fold lines as shown in Fig. 7-22.

Fig. 7-20 FOLDED PLATE CONFIGURATIONS

Fig. 7-21 FOLDED PLATE FRAMES AND ARCHES FORMED FROM TRIANGULAR PLATES

Fig. 7-22 FOLDED PLATE SECTION AS A COMPOSITE OF SLAB AND PLATE STRUCTURE
2. Analyze "slab structure" os one way plate, spanning between fold lines with lateral loods (Fig. 7-22a):

$$
\begin{equation*}
p=p_{y} \cos \alpha \tag{Eq. 7.82}
\end{equation*}
$$

If the "slab structure" is monolithic with adjocent plates at fold lines, assume for this part of the analysis that "slab structure" supports do not have relative deflection and analyze a unit width strip of "slab structure" as a continuous beam on unyielding supports at the fold lines. If "slab structure" is not monolithic with odjacent plates at fold lines (pin ended), differential deflections of "slab structure" at fold lines do not produce changes in "slab structure" moments. Deter.nine "slab structure" reactions at fold lines and maximum transverse bending moments at governing sections of "slab structure".
3. Apply slab reactions at fold lines as ridge reactions on system of longitudinal plates, as shown in Fig. 7-22b. Resolve these ridge reactions into plate loads by determining their components in the planes of the two intersecting plates at a ridge.
4. Temporarily assume that each plate is independent from its neighbors (Fig. 7-23a). Calculate in-plane flexural and shear stresses due to the inplane components of the ridge reactions. Use elementary beam theory (Eq. 5.25) to determine normal stresses olong the adges (free edge stresses).
5. Apply equal and opposite shear loads along each edge where odjocent plates intersect to equalize normal (longitudinal) strasses in contiguous plates. This is shown in Fig. 7-23b. Shear loods cre given the same longitudinal distribution as the "free edge" flexural stresses. Their summation produces a thrust stress resultant with a line of action along the edge. The moximum thrust occurs at the location of maximum free edge stresses. This thrust stress resultont prodices correction normal stresses that vary linearly across the plate (Fig. 7-23b).

The correcting normal stresses con be determined using a stress distribution procedure that is similar to "moment distribution". In this procedure the "free edge stresses" are equivalent to fixed ended moments in

Fig. 7-23 EDGE SHEARS APPLIED AT JOINTS TO FORCE COMPATABILITY OF LONGITUDINAL STRESSES \mathbb{N} FOLDED PLATE STRUCTURES
"moment distribution". For rectongular plates, the stress distribution factors af each fold line, $m-n$, are:

$$
\begin{align*}
& k_{m n}=\frac{A_{n}}{A_{n}+A_{m}} \tag{Eq. 7.83}\\
& k_{n m}=\frac{A_{m}}{A_{n}+A_{m}} \tag{Eq. 7.84}
\end{align*}
$$

See Fig. 7-23 for notation. The stress distribution foctor, $k_{m n}$ is the normal stress that must be imposed ar the $m-n$ edge of plate m by the axial thrust resultant, Nm_{m}, to remove a 1 psi difference in free edge normal stress between adjacent edges of plates m and n. For rectangular plates, the carry over ractors for stress correction at edges opposite joint $\mathrm{n}-\mathrm{m}$ are 1/2. See Example $\mathbf{7 - 1 0}$ given later for an illustration of the stress distribution process.

The magnitude of the applied shear loads is determined so that the cambined "free edge" normal stress plus the correcting normal stress in each plate at a fold line are equal.
6. Determine thrust stress resultants required to obtain equal longitudinat stresses at fold lines: These are determined from the final stresses calculoted in Step 5 above, starting from a free boundary, using the following equation.
$N_{n}=N_{n-1}+\frac{\left(\sigma_{n-1}+\sigma_{n}\right) A_{n}}{2}$
Eq. 7.85
7. Determine shear forces per unit length (shear flow) at fold lines and maximum shear in the plane of the plate. The sum of the shear torce along the fold lines to the point of maximum normal stress is equal to the maximum fold line thrust N, and the shear flow at a fold line has the same distribution along the lengith of the plate as the plate shear stress resultant in the free edge plate (Step 4). Thus, for a plate system with uniformly distributed load, the maximum shear flow is at the end of the longitudinal span and its magnitude is:
$\max q_{s n}=\frac{4 N}{i n}$
The shear flow (shear stress times thickness) in a rectangular plate is determined by odding the corrective edge shears and the free edge plote shears. The maximum shear flow in a rectangular plate is either the shear flow at one of the edges, or the shear flow within the plate given by:
$q_{s}=\frac{3}{2} \frac{V_{0}}{h_{n}^{-}}+\frac{q_{s a}+q_{s b}}{4}+\frac{h}{\Gamma 2} \frac{\left(q_{s a}-q_{s b}\right)^{2}}{2 V_{0}+h_{n}\left(q_{s a}+q_{s b}\right)}$
The notation used in Eq. 7.93 and the variation in shear over the height of the plate is shown in Fig. 7-24.

Fig. 7-24 SHEAR STRESSES IN FOLDED PLATE SIRUCTURES

Resistance to local buckling of plate elements may be investigated using the plate buckling equations given in Chapter 6. See also (7.21) and (7.22) for a more comprehensive consideration of buckling of folded plate structures, including test results and an extensive bibliography of additional references.

The design of a folded plate roof with sandwich plates and pin joints using the above procedure is giver, in Example 7-10. The stress distribution method outlined above is used to obtain the final longitudinal stresses in the various plates of the structure. The maximum shear stresses at fold lines and within plates are also determined. The longitudinal stresses obtained in the interior plates of the example structure are compared with stresses at the same location obtained using the "beam method".

The procedure given above can be extended to cover structures with monolithic joints whose fold lines deflect differentially. Space does not pe:mit a detailed consideration of such cases. See (7.17) for a compretrensive treatment of this problem. This type of structure is also analyzed in (7.18) and (7.19).

Results of tests of two aluminum faced plastic core foldeci sandwich panel roof structures are presented in (7.23). Experimentally determined behavior correlates well with behovior predicted by folded plate theory.

Structural configurations that require complex analyses with the above approaches can probably be analyzed more efficiently and accurately using finite element computer analysis. Existing general purpose programs such as ANSYS, NASTRAN or STARDYNE can readily hondle such problems. These are discussed in Chapter 4.

Example 7-10: Design a steel foced, polyurethane foam core sandwich panel folded plate roof having the arrangement shown in the sketch. (Refer alss to Chapter 8).*

Solid End Walls or Sliff Tronsverse Beam

Properties of materials:
Focings - steel: $E=30,000,000$ psi; tensile, compressive and flexural yield strength $=$ $30,000 \mathrm{psi}$

Core - polyurethane foam, $2.5 \mathrm{lbs} / \mathrm{cu} . \mathrm{ft}$. min.; density: $G=500 \mathrm{psi}, E=1,500 \mathrm{psi}$, tensile strength $=25 \mathrm{psi}$, compressive strength $=20 \mathrm{psi}$ and shear strength $=20 \mathrm{psi}$.

1. Capacity reduction factors: Use 0.9 for strength and 1.0 for E for steel and 0.6 for strengths and 0.8 for E and G for foom core. Thus: Steel; $E=30 \times 10^{6} \mathrm{psi}, \sigma_{\mathrm{xu}}=$ $0.9 \times 30,000=27,000 \mathrm{psi}$; Foom core: $E=0.8 \times 1,500=1,200 \mathrm{psi}, G=0.8 \times$ $500=400 \mathrm{psi}, \alpha_{x u}=.6 \times 25=15 \mathrm{psi}$ in tension, $\sigma_{x u}=.6 \times 20=12 \mathrm{psi} \mathrm{in}$ compression and $\sigma_{x u}=.6 \times 20$ psi $=12 \mathrm{psi}$ in shear.
2. Load Factor: Use a load factor of i.6

* See note on Example 7-1, page 7-5.

Excmple 7-10 (continued)

3. Trial Design of Sandwich Elements:

Plate 1: 18 ga. steel skins, polyurethane foam plastic, $\mathbf{2} \mathbf{i n}$. core:
$I_{f}=.0478 \mathrm{in} ., A f_{f}=.0478 \times 2 \times 12=1.15 \mathrm{in}^{2} / \mathrm{ft} . ; A_{c}=2 \times 12=24 \mathrm{in} 2 / \mathrm{it}$.
Plates 2, $3 \& 4: 22$ ga. steel skins, 2 in. foam plastic core:
$\mathrm{t}_{\mathrm{f}}=.0299 \mathrm{in} ., \mathrm{Af}_{\mathrm{f}}=0.0299 \times 2 \times 12=0.72 \mathrm{in}^{2} / \mathrm{ft} ; 1=0.72 \times 1.0152=0.74$ in $4 / \mathrm{ft} ; \mathrm{S}=0.74 / 1.03=0.72 \mathrm{in} 3 / \mathrm{ft}$.; $A_{c}=2 \times i 2=24 \mathrm{in} 2 / \mathrm{ft}$.

4. Lood components:

Normal to Plate Snow
$30\left(\frac{6.0}{6.95}\right)^{2}$
$=22.45$
Dead
4.3 ($\frac{6}{6.95}$)
$=3.75$
Total
$\mathrm{p}=26.2 \mathrm{psf}$
Equivalent on
Snow 30
$=30$
Horizontal
Dead
$4.3\left(\frac{6.95}{6}\right)$
$=\quad 5$
Total
P_{y}
$=35 \mathrm{psf}$
5. Slab Analysis - Pinned Joints - For service loods:

Slabs $B C, C D, D E: M=\frac{w_{v} / h^{2}}{8} 35 \times \frac{6^{2}}{8}=158 \mathrm{lbs} / \mathrm{ft}$.

$$
V=\frac{w_{v} I_{h}}{2}=35 \times \frac{6}{2}=105 \mathrm{lbs} / \mathrm{ft} .
$$

Check Flexure Stress:
$\sigma=\frac{158 \times 12}{0.72}=2600 \mathrm{psi} ;$ Ultimate $\sigma_{x}=2600 \times 1.6=4160 \mathrm{psi}<27,000 \mathrm{psi}$
Check local buckling (face wr inkling):
Eq. 8.107: $v_{w r}=0.5\left(E_{f} E_{c} G_{c}\right)^{1 / 3}=0.5\left(30 \times 10^{6} \times 1200 \times 400\right)^{1 / 3}=12,150 \mathrm{psi}>4160 \mathrm{psi}$
Secondury bending of sandwich section focings is discussed in Chapter 8. It can be shown by the analysis given in Cliapter 8 that for the very thin facings of this beam, secondary bending stresses are negligible.

Example 7-10 (continued)

Check shear in core:
$T_{c u}=\frac{V_{u}}{A_{c}} ; V_{u}=26.2 \times 6.95 / 2 \times 1.6=146 \mathrm{lbs} / \mathrm{ft}$.
$\varepsilon_{u}=\frac{146}{2 \times 12}=6.1 \mathrm{psi}<12 \mathrm{psi}$ o.k.
Check Deflection:
Eq. 8.27: $w=\frac{5 \mathrm{FL}^{3}}{384 \mathrm{D}_{\mathrm{m}}}+\frac{\mathrm{PL}}{8 D_{v}}$
$D_{m}=\frac{30 \times 10^{6} \times 0.74}{\left(1-0.3^{2}\right)}=24,395,600{\mathrm{lbs}-i{ }^{2}}^{2} ; D_{v}=2 \times 12 \times 400=9600 \mathrm{lbs}$
$N=\frac{5 \times 26.2 \times 6.95^{4} \times 1728}{384 \times 24,395,600}+\frac{26.2 \times 6.95{ }^{2} \times 12}{8 \times 9500}=0.056+.198=0.253 \mathrm{in}$.
$w_{\text {allow }}=\frac{L}{300}=\frac{6.95 \times 12}{300}=0.28$ in. o.k.
6. Plote Analysis:

To find plote components of the vertical reaction of $2 \mathrm{~V}=2 \times 105=210 \mathrm{lb} / \mathrm{ft} @ \mathrm{C}, \mathrm{D} \& \mathrm{E}$: $w_{R}=210 \times 1 / 2 \times 6.95 / 3.5=208 \mathrm{lbs} / \mathrm{ft}$
Plote 1: "Free Edge" Stresses:

[^7]

Maximum ultimate plate stress $=15,000 \times 1.6=24,000$ psi tension < $27,000 \mathrm{psi}$; $7.6 \times 1.6=12,160$ psi compression $\approx 12,150$ psi.
8. Conclusion: Strength is adequate, as governed by tensile strength of facings, local buckling compressive strength of focings, and sthear strength of core.

Example 7-10 (continued)

9. Check Overall Buckling of Sandwich Plates:

Eq. 6.71: $N_{x c}=\frac{k \pi^{2} \Gamma}{b^{2}} ; \sigma_{x c}=\frac{N_{x c}}{2 t} \& k$ from Table 6-3
Check plate 2: In-plane uniform compression, $\sigma_{x}=\frac{4.1+2.7}{2}=3.4 \mathrm{ksi}$
and bending $=4.1-3.4=0.7 \mathrm{ksi}$
Ratio $=\frac{.7}{3.4}=0.20$; estimate $k=4.0+.5=4.5$

Stiffness D is greatly reduced by shear deformation of core. Based on the ratio of shear to bending deflection calculated in the plate analysis of step 5 obove, use Deff. = $24,395,600 \times .056 / .253=5,400,000$ Ibs-in2.
$S_{x c}=\frac{4.5^{2} 5,400,000}{2 \times .0299 \times(6.95 \times 12)^{2}}=577,000 \mathrm{psi} \gg 1.6 \times 4,100 \mathrm{psi}$
Conclusion: Buckling of sandwich plates under in-plane longitudinal compressive stress will not limit resistance of structure.
10. Maximum plate shear (in plane of tocings) may be determined using equations given in text. Calculations for plate shear and development of connection details are omitted due to lack of space.
11. Alternate Approximate Analysis Using Beam Method

Il.1 Interior bay
$A=0.72 \times 6.95 \times 2=10.0 \mathrm{in}^{2}$

$t_{0}=10.0 \times 42^{2} / 12=1471 \mathrm{in}^{4}$
$S^{\prime}=1471 / 21=70 \mathrm{in}^{3}$
$M=\frac{210 \times 2 \times 30^{2} \times 12}{8}=567,000$ in-lbs
$\sigma_{x}=\frac{567,000}{70.0}=8,093 \mathrm{psi}$

Example 7-10 (continued)

11.2 Exterior bay

	A	y	Ay		$A y_{0}{ }^{2}$	10	
1	5.00	0	0	7.7	296	1471/2	$=735$
21.15×1.5	$\frac{1.73}{6.73}$	30	$\frac{51.8}{51.8}$	22.3	$\begin{array}{r} 860 \\ T 156 \\ 782 \end{array}$	$1.73 \times 18^{2} / 12$	$=\frac{47}{782}$

$\bar{y}=51.8 / 6.73=7.7 \mathrm{in} . \quad \quad_{0}=\quad 1938 \mathrm{in}^{4}$
$S_{\text {top }}=\frac{1938}{28.7}=67.5 \mathrm{in}^{3} ; S_{\text {bot }}=\frac{1938}{31.3}=61.9 \mathrm{in}^{3}$
$M=567,000 \times 1 / 2=283,500$
top $\sigma_{x}=\frac{283,500}{67.5}=4200$ psi; bat. $\sigma_{x}=\frac{283,500}{61.9}=4580 \mathrm{psi}$
Compare the above results with stresses shown in sketch given in Step 7.
Conclusion: "Beam Method" is fairly accurate for interior bay, but is extremely inaccurate for bottom plate of end bay.

1 in $=25.4 \mathrm{~mm}, 1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{in}^{2} / \mathrm{ft}=? 117 \mathrm{~mm}^{2} / \mathrm{m}, 1 \mathrm{in}^{3}=16,387 \mathrm{~mm}^{3}, 1 \mathrm{in}^{3} / \mathrm{ft}=$ $53763 \mathrm{~mm}^{3} / \mathrm{m}, 1 \mathrm{in}^{4}=416.23 \mathrm{Imm}^{4}, \mathrm{Ift}=0.3048 \mathrm{~m}, \mathrm{libf}=4.448 \mathrm{~N}, 1 \mathrm{lbs} / \mathrm{ft}=14.59 \mathrm{~N} / \mathrm{m}, 1$ psf $=47.88 \mathrm{~N} / \mathrm{m}^{2}, 1 \mathrm{psi}=6.895 \mathrm{KPa}_{\mathrm{P}}, \mid \mathrm{ksi}=6.895 \mathrm{MP}_{7}, 1$ in-lbs $=113 \mathrm{~N}-\mathrm{mm}, \mid \mathrm{lbs}-\mathrm{in}^{2}=$ $2870 \mathrm{Nmm}^{2}$.

The "beom method" may also be used to obtain approximate estimates of plate stresens for many irregular assemblies of plates that comprise folded beam, frame and arch-like structures (Figs. 7-20e). This is discussed in (7.24). Approximate methods are also given in (7.21) for determining plate deflections and moments in thin folded plates without edge supports, where deflections often ore large enough to require consideration in the onalysis. Several forms of folded plate structures with triongular plates (Fig. 7-20, d, Fig. 7-21) are discussed in (7.24), and design examples using approximate analyses are given.

CHAPTER 7 - REFERENCES

7.1 "Specification for the Design of Cold-Formed Steel Structural Members, 1980 Edition," and "Commentary on the 1980 Edition of the Specification. ..", American Iron and Steel Institute, Washington, 1980.
7.2 Johnston, B., (Ed.), Guide to Stability Design Criteria for Metal Structures, 3rd ed., New York, Wiley, 1976.
7.3 Wei-Wen Yu, Cold-Formed Steel Structures: Design-Analysis-Construction, New York, McGraw-Hill, 1973.
7.4 McGuire, W., Steel Structures, Englewood, N.J., Prentice-Hall, 1968.
7.5 Winter, F., "Lateral Bracing of Columns and Bearns," Journal of Structural Division, ASCE, Vol. 4, No. 572, March 1958.
7.6 Walker, A.C., (Ed.), Design and Analysis of Cold-Forrried Sections, New York, Wiley, 1975.
7.7 Timoshenko \& Gere, Theory of Elastic Stability, 2nd ed., New York, McGraw-Hill, 1961.
7.8 Cusens, A., and Pama, R., Bridge Deck Analysis, London, Wiley, 1975.
7.9 Hendry, A., and Jaeger, L., The Analysis of Grid Frameworks and Related Structures, London, Chatto and Windus, 1958.
7.10 Moffati, K., and Dowling, P., "British Shear Lag Rules for Composite Girders," Journ. of Struct. Div., ASCE, Vol. 104, ST7, July 1978, p. 1123.
7.11 Bethlehem Steel Co., Torsion Anolysis of Rolled Steel Sections, New York, 1963.
7.12 Kollbrunner, C., and Basler, K., Torsion in Structures, Berlin, Springer Verlog, 1969.
7.13 Heins, C., Bending and Torsional Design in Structural Members, Lexington, MA, Heath, 1975.
7.14 LeMessurier, W., "A Practical Method of Second Crder Analysis/Parts 1 and 2, AISC Engineering Journal, Vol. 13, No. 4, 1976, and Vol. 14, No. 2, 1977.
7.15 Sechler, E., and Dunn, L., Airplone Structural Analysis and Design, New York, Dover, 1963.
7.16 Kikn, Paul, Stresses in Aircraft and Shell Structures, McGraw-Hill, New York, 1956.
7.17 Yitzaki, D., Prismatic and Cylindrical Sheel Roofs, Haifa, Isroel, Haifa Science 1958.
7.18 Simpson, H., "Design of Folded Plate Roofs", ASCE Journal of the Structurol Division, January 1958.
7.19 Portland Cement Association, "Direct Solution of Folded Plate Concrete Roofs", Advanced Eing. Bulletin 3, Chicogo, 1960.
7.20 Ifflond, J., "Folded Plae Structures," Journal of the Structural Division, ASCE, January 1979.
7.21 Swortz, S. E., and Rosebraugt, V. H., "Local Buckling of Long-Spon Folded Plates," Journal of the Structural Division, ASCE, May 1975.
7.22 Swortz, S. E., and Rosebraugh, V. H., "Local Buckling of Long-Span Concrete Folded Plates," Journal of the Structural Division, ASCE, October 1976.
7.23 Fazio, P., "Failure Moder, of Folded Sandwich Panel Roofs," Journal of the Structural Division, ASCE, May 1972.
7.24 Benjamin, B.S., Structural Design with Plastics, New York, Van Nostrand Reinhold, 1969.
7.25 Johnson, J. E., Lee, J. W., Dupuis, R. M., "Structural Behavior of Reinforced Plostic Beain Shapes", Proceedings of ASCE Specialty Conference on Selection, Design and Fabrication of Composite Materials for Civil Engineering Structures, ASCE, Nov. 1972, New York.

ASCE Structurol Plostics Design Manwal

CHAPTER 8 - FLAT SANDWICH STRUCTURES

By Richerd E. Chambers

TABLEOFCONTENTS

poge
Notations 8-i
8.1 Introduction $8-1$
8.2 Components of Sondwich Construction 8-2
8.3 Design Criterio for Sandwich Construction $8-4$
8.4 Section Properties 8-11
8.5 Members Under Axial Load 8-16
8.6 Beams 8-24
8.7 Bending and Shear in Sandwich Plates 8-49
8.8 Stobility of Sandwich Elements in Compression 8-60
8.9 Proportioning to Minimize Cost or Weight 8-71
8.10 Response to Temperature and Moisture Movements 8-84 and Other Volume Changes
8.II Panel Subjected to Wind Load and Temperature Gradients 8-90
References 8-103
8-1

NOTATKNS - Chapter 8

a

$\overline{\text { a }} \quad$ width of bearing

A transformed area of cross section
$A_{c} \quad$ transformed area of core
A_{f}
tronsformed area of faces
A
in-plane or axial stiffness
Av effective shear area
b
$b_{i} \quad$ width of "i" foce
c thickness of sandwich core; indicates "core" when used as a subscript.
C_{c}
$C_{f} \quad$ cost per unit volume of face material
$C_{p} \quad$ cost per unit surface area of sandwich panel
d distance between neutral axes of sandwich faces.
d' $\quad \begin{aligned} & \text { diameter of circle inscribed within hexagon or square of honeycomb } \\ & \text { cell }\end{aligned}$ cell

D stiffness
$\mathrm{D}_{\mathrm{m}} \quad$ bending stiffness
$D_{m x}, D_{m y} \quad$ bending stiffness in x and y directions respectively
$D_{m f} \quad$ total bending stiffness of faces, about their own neutral axes
$\mathrm{D}_{\mathrm{mfi}} \quad$ bending stiffness of the "i" foce
$D_{v} \quad$ sheor stiffness
$D_{v x}, D_{v y} \quad$ sheor stiffness in x and y directions respectively

NOTATIONS (continued)

E	elastic modulus
E_{c}	elastic modulus of the core
E_{e}	effective elostic modulus
E_{f}	elastic modulus of the faces
E_{i}	elastic modulus of the "i" element in the transformed section
E_{0}	tangent modulus of a viscoelastic plastic subjected to constant strain rate
E_{r}	reference elastic or viscoelastic modulus for use in the transformed section
E_{v}	viscoelastic modulus
f	indicates "foces" when used as a subscript
F	ultimate strength
$F_{u c}$	Ultimate compression strength
$F_{u L}$	long-term ultimate strength
$F_{u S}$	short-term ultimate strength
$F_{u t}$	ultimate tensile strength
$F_{u v}$	ultimate shear strength
G	shear modulus of rididity
G_{c}	shear modulus of rigidity of sondwich core
$G_{c x}, G_{c y}$	shear modulus of rigidity of the core in the x and y directions respectively
i	integer designating loyers in sandwich composite
1	moment of inertia
1.	moment of inertia of core
If_{f}	moment of inertia of both foces about their own neutral axes
10	moment of inertin of both faces about neutral axis of the cross section of the whole sondwich.

NOTATIONS (contimued)	
k	buckling coefficient
K_{i}	coefficient for stresses and deflection in orthotropic sandwich
K_{m}	coefficient for deflection due to moment
K_{v}	coefficient for deflection due to shear
L	span length
$\overline{\mathbf{L F}}$	load foctor
m	cost coefficient for direct optimum cost design
M	bending moment on beam; benoing moment per unit width (bending stress resultant) or plate
M_{x}, M_{y}	bending stress resultants on faces indicated by subscripts
M_{p}	primary bending moment applied to transformed section
M_{s}	secondary bending moment applied to sandwich faces
n_{i}	modular ratio of element " i " in transformed section of beam or column
n_{i}^{\prime}	modular ratio of element "i" in transformed section of plate
N	direct force per unit width (direct stress resultant)
N_{x}, N_{y}, N_{z} direct force per unit width in x, y and z directions, respectively.	
$N_{x y}$	shear stress resultant applied in the plane of sandwich
NA	neutral axis
P	concentroted load; or total lood applied to sandwich beam
$\mathrm{P}_{\text {cr }}$	critical buckling lood
$\mathrm{P}_{\mathrm{crv}}$	critical column buckling lood governed by initial eccentricities
P_{e}	Euler buckling load
P_{v}	buckling load governed by shear rigidity of core

NOTATKONS (continued)

q	uniform load per unit length or area
q_{p}	primary component of uniform load
q_{5}	secondary component of uniform load acting on faces
Q	shear force on beam
Q_{p}	primary component of shear on sandwich beam havirig shearflexible core
Q_{s}	secondary component of shear acting on faces of sardwich beam having shear-flexible core
Q_{x}, Q_{y}	shear force per unit width (stress resultant) transverse to plane of sandwich plate
$\overline{\mathbf{Q}}_{\mathbf{i}}$	first moment of an element "i" about the neutral axis of the cross section
$\bar{Q}_{N A}$	first moment of all elements about the neutral oxis of the cross section
S	section modulus
S_{f}	section modulus on face
$\overline{\mathbf{S F}}$	sofety factor
t	thickness of one face in sandwich having equal foces; indicates "tension" when used as a subscript.
${ }_{i}$	thickness of i foce in sondwich having unequal foces
T	temperature
$T_{x z}{ }^{\prime} T_{y z}$	twisting stress resultants in planes designated by superscript
v	indicates "ultimate" when used as a subscript
v	indirates "shear" when used as a subscript

NOTATIONS (continved)

w	total deflection of sandwich plate
w_{0}	allowable deflection of sandwich beam
${ }^{w}$	total deflection of sandwich plate with "effective" properties
w_{5}	secondary component of deflection along face
w_{m}	deflection of sondwich beam or plate due to moment
w_{0}	initial eccentricity or lateral displacement of column centerline
w_{p}	primary companent of deflection of sandwich beam or plate
${ }^{*}$	deflection of a sandwich beam or plate due to shear
x	in-plane axis of sandwich plate; distance from centerline along spon of beam
x	distance from support alang span of beam
y	in-plane axis of sandwich plate
2	axis of plate normal to plane
$z_{e f}$	distance from neutral axis to extieme fiber
z_{i}	distance from neutral axis to "i" foce centroid
z_{i}^{\prime}	distance from reference axis to "i" foce centroid
\bar{z}	distance from reference oxis to neutral axis
$\boldsymbol{\sim}$	coefficient of thermal expansion; shear deformation
Δ	change
ε	strain
ε_{i}	strain in "i" foce
v	Poisson's ratio
$\mathbf{v}_{\mathbf{1}}$	Poisson's ratio of faces
i	Poisson's ratio of "i' faces
ψ_{i}	coefficients for sandwich bearri with shear flexible core

NOTATIONS (contirued)

σ_{0}	stress
$\sigma_{c r}$	critical buckling stress
σ_{i}	stress in "i" face
σ_{L}	long-term stress
σ_{S}	short-term stress
$\sigma_{w r}$	critical stress for face wrinkling
τ	shear stress
τ_{u}	ultimate strear stress
θ	shear flexibility coefficient for beams
$\bar{\theta}$	shear flexibility coefficient for plates

CHAPTER 8 - FLAT SANDWICH STRUCTURES

Richard E. Chambers

8.1 Introduction

The state of the art in the analysis and design of structural sandwich ponels is well advanced. Early theory was developed mostly for "stressed-skin" wood construction, and it has been refined and extended over the years as sandwich construction has been used ir a wide range of structural applications, including those as diverse as doors for residences, and components for aerospace vehicies. Several texts and handbooks are availmble which provide theoretical treatment of a wide voriety of sandwich arrangements, under various lood and support conditions (8.1, 8.2, 8.3, 8.4, 8.5).

Typical structural sandwich constructions have lightweight cores that are significantly less stiff and less rigid than the foces. Structurai analysis and design of sandwich constructions must account for the effects of such cores. This is especially important in this Mamual on plastics, since low density plastic foam cores, or plastics in other configurotions that have low shear rigidity, are frequently used in sandwich constructions for reasons of low weight, low cost, and high thermal resistance.

The objective of this Chopter is to present significont considerations in the structural analysis and design of sandwich components that are fabricated, in whole or in part, from plastics. The Chapter deals with flat sondwich ponels subjected to transverse and in-plame forces, and to loads seveloped while ponels are restrained agoinst thermal, strinkage, or other dimensional changes. Ponels hoving cores that are flexible relative to their foces are considered in detail because many plastic cores have low rigidity. Design examples are developed to illustrate implementation of key concepts, including direct design for minimum cost. While this Chapter is devoted to flat sandwich panels, the concepts presented are also applicable to curved sondwich shells and rings which are treated in Chapter 9.

8.2 Iomponents of Sandwich Construction

A structural sandwich is a composite that is comprised of two foces, seporated by and connected to a structural core that is less stiff and less dense (Section I.10). The faces and core are usually connected by on adhesive that provides structural continuity ocross the panel depth (Fig. 8-1). In some special constructior,s, a separate adhesive layer is not needed because faces and core are integrally formed. Plastics may comprise all or part of a typical structural sandwich panel, since they may be used for either or both faces, for the core, and for the ochesive.

Faces

The primary structural role of the faces of a sandwich panel is to carry tensile, compressive, flexural, and shear stress resultants that act parallel to the plone of the panel. Foces may also serve to distribute localized loads and reactions to the softer and weaker core. Typical forms of faces are shown in Fig. 8-2a; any of these types of faces may be fabricated from: plastics, as well as from other sheet materials.

Fig. 8-1 GENERAL ARRANGEMENT OF SANDWICH CONSTRUCTION

Fig. 8-2 TYPICAL ELEMENTS OF SANDWICH CONSTRUCTION

In addition to their structural rule, the foces may provide nan-structural attributes such as texture or color, and resistonce to weather, flame spread, fire, heat, abrasion, erosion, skidding, water and moisture, chemicals, rodiation, and biological attock.

Cores

The core of a sondwich panel separates the two faces and holds them in a stoble position. It provides the shear lood path between foces, it stabilizes the foces against buckling, and, together with the foces, it corries loads that are applied normal to the plane of the panel. Typical types of sandwich cores are shown in Fig. 8-2b. Cores are usually fabricated from plastics, although they may also be monufoctured from other materials such as metal, gypsum, foamed cement, wood particle board, or end-grain balsa. Honeycomb cores may be fabricoted from resin impregnoted paper, or from ;einforced piastic or metal if structural performance requirements are stringent.

The sandwich core may also provide thermal or ocoustical resistance, and occosionally fire resistance or visual effects.

Face/Core Interface

The primary structural role of the foce/core interface in sandwich construction is to transfer transverse shear stresses between faces ond core, to stabilize the faces agoinst buckling away from the core, and to carry loods applied normal to the panel surface. For the most part, the foces and core of sondwich constructions that contain plastics are connected by acthesive bonding. In some special cases, such as truss-core pipe, for example (Fig. 4-6), faces and core are formed together during the extrusion process, resulting in on integral homogeneous connection between the components. Fasteners are seldom used to cunnect foces and core becouse they moy allow erratic shear slippage between faces and core or buckling of the faces between fosteners; also, they moy compromise other at tributes such as waterproofing integrity and appearance.

23 Deaign Criteria for Sandwich Construction

The formulation of design criteria for plostir-based sandwich structures, must inctude both the unique characteristics introduced by sondwich construction, and the special behavior introduced by plastics. This is discussed below.

Overall Component Stiffness

The awerall stiffness provided by the interaction of the faces, the core, and their interfaces, must be sufficient to meet deflection and deformation limits set for the structure. Overall stiffness of the sandwich component is also a key consideration in design for general instability of elements in compression (Fig. 8-30).

In most typical sandwich constructions, the foces provide primary stiffness under in-plane shear stress resultants, $\left(N_{x y}\right)$ direct stress resultonts (N_{x}, N_{y}), and bending stress resultants (M_{x}, M_{y}) (Fig. 8-4). Furthermore, and as important, the adthesive and the core provide primary stiffness under normal direct stress resultants $\left(N_{z}\right)$, ond transverse shear stress resultants $\left(Q_{x}, Q_{y}\right)$. Resistance to twisting moments ($T_{x z}, T_{y z}$), which is important in certoin plate configurations, is provided by the foces.

Local Burkling

The stiffness of the face and core elerrents of a sandwich composite must be sufficient to preclude local buckling of the faces. This local buck ling can take either of two forms (Fig. 8-j). Local crippling occurs when the two faces buckle in the same mode (anti-symmetric). Local wrinkling occurs when either or both faces buckle locally and independently of each other. Local wrinkling can occur under either axial compression (Fig. 8-3c), or bending compression (Fig. 8-3b). Resistance to local buckling is developed by an interaction between face and core which depends upon the stiffness of each.

General hastability

General instability, or overall buckling, of sandwich components subjected to inplane compression (Fig. 8-3a) may be a governing limit state. In sondwich construction, buckling resistance depends on both the flexural rigidity of the faces and the shear rigidity of the core. Core sheor deformation reduces the buckling resistance os calculated by typical handbook formulos, which are based on flexural rigidity alone.

Fig. 2-3 BUCKLING MODES IN SANDWICH CONSTRUCTION

Strength of the General Ponel

The structure must have sufficient strength to resist direct (in-plane) and transverse stress rescltants without rupture or buckling. In most sondwich constructions, the foces are designed to resist direct stress and shear stress resultants applied in the plane of the ponel and bending stress resultants acting across the panel (Fig. 8-4). Capacity of faces may be limited by either materia! strength or resistance to local buckling.

Fig. 8-4 COORDINATE SYSTEM AND STRESS RESULTANTS

The core and acthesive are designed to rerist transwerse sheor and normal compressive and tensile stress resultants. These elements must also have sufficient tension and compression strength and stiffness to restrain the face against local buckling, since during local buckling the foce tends both to indent and to pull away from the core.

Choracteristics of the Core

The properties of the core, and especially the relative properties of core and faces, have significant effect on the structural behovior of sandwich constructions. The key characteristics of the sandwich core are delineated below:

In-Pione Stiffness-Soft and Stiff Cores: If either the elastic or the viscoelastic modulus of the core in the plane of the panel is very low relative to that of the foces, the core is termed soft herein. As compared to a stiff core, a soft core does not contribute significantly to either the in-plane or the bending stiffnesses of the cross section. Usually, the in-plane bending and stiffnesses of soft cores are neylected; stiffness properties in other directions are usually assumed to be finite.

The majority of commonly used core materials (honeycambs, low density plastic foams, and balsa), when used with stiff faces (steel, aluminum, wood, FRP), passess relatively low in-plane stiffness. Thus, the emphasis of the analyses presented herein is on constructions hoving soft cores.

Shear Stiffness-Sheor-Flexible and Shear-Rigid Cores: A sheor-flexible core has a transverse shear stiffness that is low enough to result in shear deformotions that are significant relative to bending deformations. A shear-rigid core has a shear stiffness that is high enough to render shear deformations negligible compored to bending deformations. Since low-density plastic foom cores for sondwich constructions usually provide low shear rigidity compared to the flexural rigidity of the sandwich, behovior of panels having shear-flexible cores will be discussed subsequently.

Resistance to Lxcallzed Loads

The structure must susrain localized effects due to concentrated loads, reactions, attachmerits, or at other discontinuities in the panels (Fig. 8-5 and Section 8.7). Localized loads are frequently the source of panel failures, and in many instances, they are the result of faulty design. Sometimes, however,

Names Shaded areas indicate schernotic strese dietribution in core.

Fig. 8-5 EFFECTS OF LOCALIZED NORMAL LOADS
localized connections are a necessary compromise, and they require detailed evoluation. The effects of such localized loods are difficult to estimate accurately by calculation, and ervaluation by tests is usually required. Local stiffeners, or reinforcing elements, end and edge closures, and the like, usually proved the most suitable load paths for normal loads that are applied locally.

Volurre Changes due to Environmentel Exposure and Curing

Ponel elements may be subjected to stresses and strains due to causes other than external loads. Moisture, temperature, curing or cooling shrinkage, and expansion and contraction due to exposures to chemical environments may create strains and warping in the panel. Furthermore, large cumulative movements and rotations may require special detailing at connections to prevent rupture of sealants at panel edges. Finally, very substantial stresses can result when internal strains are restrained by either the supporting siructure or by the geometry of the component itself. This will be discussed in more detail in Section 8.IO.

Compatibility

Compatibility among the various materials used in a sandwich composite, as well os compatibility with the environment to which they are exposed, are important, but frequently overlooked, design considerations. The chemical and physical compositions of all materials strould be compatible initialiy, and this compatibility should be preserved for the life of the product in its environment.

While compatibility is not considered further herein, a few examples drawn from experience are cited here to emphasize the importance of this criterion. An achesive thot shows high levels of actresion at room temperature may cleave cleanly from its acherend on impoct, or at low stress levels, when temperatures are below freezing. An oil-based plasticizer may leach from the thermoplastic compand used in the face or core, and ultimately destroy what was initially a sound achesive bond. A "blowing" agent may dissipate from a plastic foam core and alter its thermal resistance or cause significant shrinkage effects. An
alkaline ingredient may leach from a cementitious face, and chemically degrade an adhesive that is not resistant to alkalies. When on element is made from plastic, the preserice of heat, stress, and other aggressive environments may help to accelerate or oggravate some of the cbove degradation processes.

84 Section Properties for Bearns and Columns

Inherently, the elasic, or viscoelastic, modulus of the core and faces of a structural sandwich are different; the moduli of the two faces moy be different as well. Thus, section properties of sandwich cross sections, required for the analysis of beams and columns, are defermined from fransformed section theory. Application of this theory is well developed, as it is used in the determination of section properties of reinforced concrete, plywood, laminated and stressed-skin timber construction, and composite concrete/steel design; it is treated only briefly herein.

Analysis of Transformed Section

The following procedure is used in the determination of transformed section properties of sandwich beams and columns that are comprised of elastic elements. Modifications to account for both viscoelastic behavior and plate behovior will be discussed subsequently.
a) A reference elastic modulus, E, is selected for convenience of calculation. This is usually taken as the elastic modulus of one of the faces. The reference modulus is arbitrarily taken herein as the modulus of the bottom face of the cross section, as drawn; that is $E_{r}=E_{\mid \text {. Another }}$ appropriate criterion is that the reference modulus is that of the foce hoving the higher modulus. The refererice modulus becomes the effective modulus of the whole cross-section for purposes of determining stiffness and deformation of the section under transverse bending and under inplane loods.
b) The whole width of the beam cross section moy be used in calculations. However, for sandwich constructions hoving a continuous cross-section, selection a unit width usually proves convenient. When elements of the cross-section ore not uniform in depth or thickness, as in the case of a corrugated face, the width mignt be taken as the wave-length of the corrugation. Whatever the choice of reference width, it is referred to here as the octual width.
c) The modular ratio n is determined for each element of the cross-section. This is the ratio of the actual elastic modulus, E_{i}, of the element to the reference modulus.

$$
\begin{equation*}
n_{i}=E_{i} \tag{Eq. 8.1}
\end{equation*}
$$

This relationship is modified to account for the effects of plane strain conditions in Section 8.5 for columns in compression, and Section 8.7 for wide beams and plates in bending.
d) The actual width of each element of the cross section is multiplied by the modular ratio, n_{i}, to obtain the transformed width. Tre new crosssection is the fransiormed section.

Once the above transformations are accomplished, the section properties of the transformed section are obtained directly by estoblished methods for isotropic sections having varidble width (Table 8-1).

Thrme-Dependent Section Properties: The time-dependent behovior of linear viscoelastic plastics is readily taken into account in the determination of timedependent section properties of the sondwich cross-section. The elastic component, E_{0}, of the viscoelastic modulus, E_{v}, is used in place of E_{i}, if short-term stresses and strains are applied. If long-term. sustained loods or strains are anticipated, the appropriate value of the vurioble time-dependent viscoelastic mortulus, E_{v}, is used in p!oce of E_{i} (see Section 3.3). When the modulus changes with shifts in temperature, the temperature-dependent moduius is required.

For constructions that contain plastics displaying time-dependent behavior, it may prove cumvenient to select the reference modulus as that of on element of the cross section which demonstrates elastic (non-time-dependent) behavior. If all elements are viscoelastic, the criteria for selecting the reference viscoelastic modulus are as given in a) above for the eiastic modulus. In ony esent, the modular ratio, n_{i}, will normally vary with time unless the moduli of all elements of the cross section demonstrate the same relative deca; with time (i.e. all materials have the same creepocity. See Available Estimates of Viscoelastic Response, Section 3.3).

Table 8-1
Section Properties of Beam and Column Sandwich Cross-Sections*

Characteristics of the Transformed Section: The following are important characteristics of the transformed section, particularly as they pertain to sandwich structures.

- The strain in any element of the transformed section is the same os that in the actual section.
- The stress in the transformed section is a pseudo strass which must be transformed to the actual siress by multiplying the psuedo stress by the modular rotio, n_{i}. This transformation is included in formulas for section modulus, Eqs. 8.16a, 8.17a, and 8.18a.
- In the general case of a layered cross-section, a rigorous solution for the shear stiffness of the transformed section would account for the different shear stiffnesses of the individual layers. For the special case of sondwich structures, the transverse shear stiffness of the faces is usually much greater than tha. of the core. Hence, only the core is considered in computation of shear deformation; shear deformation in the faces is assumed negligible.
- The shear stress on the core and adthesive layer is the shear stress colculated for the actual width of these elements.

Equations for determining section properties for typical sandwich beam and column cross-sections hoving varying degrees of complexity are given in Table 8I. The section properties in bending for the whole transformed section are appropriate for elementary onolyses of constr uctions having shear-rigid cores. The other expressions for the components of moment of inertia and bcanding stiffness (e.g. $I_{0}, J_{f}, D_{m f}$, etc.) are needed in the analysis of sandwich ponels having shear-flexible cores. This is discussed in more detail in Sections 8.6 to 8.8.

Example Colculations

Example 8-1 illustrates calculations for section properties of a simple cross section having thin faces and a plastic honeycomb core. Because the faces are thin anc identical, and the core is "soft", the calculations are simple and straightforward.

Example 8-1: Transfarmed Section Properties of a Sandwich Beam Hoving Thin Equal Faces*

Determine the section properties of a sandwich beam laving the cross-section shown below. Assume that the 12 in . width of the beam is smail enough that plate action can be neglected (See Section 8.7):

I. Materials Properties (in direction of spon)

Properties (psi)
Elastic Modulus, E_{i}
Shear Modulus, G_{c}

Foces (Toble 1-6)
$2.2 \times 10^{6} \mathrm{psi}$
Assume $=\infty$

Core (8.2)
Neglect
5,000 psi
2. Calculations: Follow Table 8-lb for thin faces. Use unit width of $b=1.0$ in., $E_{r}=E_{1}$ $=2.2 \times 10^{6}, d=2.0^{\prime \prime}-t_{f}=2.0-0.05=1.95 \mathrm{in}, \mathrm{c}=2.0-2 \mathrm{t}_{\mathrm{f}}=2.0-0.1=1.90 \mathrm{in}$.
$A=A_{f}=2 t_{f}=2 \times 0.05 \times 1=0.10 \mathrm{in} . / 1 n$.
$\bar{A}=A E=0.10 \times 2.2 \times 10^{6}=0.22 \times 10^{6} \mathrm{in} .{ }^{2} / \mathrm{in}$.
$\bar{z}=\frac{d}{\mathbf{Z}}=\frac{1.95}{2}=0.975 \mathrm{in}$. (mid-depth)
$1=I_{0}=\frac{\mathrm{btd}^{2}}{2}=\frac{1 \times 0.05 \times 1.95^{2}}{2}=0.095 \mathrm{in}^{4} / \mathrm{in}$.
$D_{m}=E I=2.2 \times 10^{6} \times 0.095=0.209 \times 10^{6} \mathrm{lb}$-in./in.
$S \quad=b t d=1 \times 0.05 \times 1.95=0.0975 \mathrm{in}^{3} / \mathrm{in}$.
$\bar{Q}_{\mathrm{NA}}=\frac{\mathbf{I}_{0}}{\mathbf{d}}=\frac{0.095}{1.95}=0.349 \mathrm{in}^{3} / \mathrm{in}$.
$A_{v}=b d=1 \times 1.95=1.95 \mathrm{in} .^{2} / \mathrm{in}$.
$D_{V}=A_{V} G=b d G=1 \times 1.95 \times 5,000=9,750 \mathrm{psi}$
Note: $|\mathrm{in}=25.4 \mathrm{~mm} ;| \mathrm{psi}=6.9 \mathrm{kPa} ; 1 \mathrm{in} .^{4} / \mathrm{in}=16,.387 \mathrm{~mm}^{4} / \mathrm{mm}$

* Design loads, design criteria (such os safety factors, locd factors, copscity reduction factors, etc.) and material properties used in design examples are for illustrative purposes only. The user of this Manual is cautioned to develop his own loods, criteria and materials properties based on the requirements and conditions of his specific design project.

Example 8-2 illustrates colculations for section properties of a more complicoted sandwich beam with dissimilar foces. The tabular arrangement for calculations organizes hand calculations for more complicated constructions and it provides convenient arroy for checking purposes. Other formats are more suitable for computer use (8.4).

The calculations for the sandwich construction of Example 8-2 show that the core does not contribute significantly to the uxial and bending stiffness, in this example. As is typical for soft cores, A_{c} and I_{c} are both small. Whether or not the core is sheor-flexible will be determined ir, Section 8.6.

Any time-dependent changes in modulus will usuolly result in a shift in the neutral axis, and a change in area, stiffness, and moment of inertia of the transformed section. Example 8.3 illustrates these changes in properties of the structural cross-section, for a sandwich ponel with one viscoelastic face. Note that for sandwiches having soft cores and thin foces, the section modulus remains unchanged, even though the neutral axis shifts significantly. This, of course, is the expected result since the two faces carry the applied moment by statics.

Example 8-4 illustrates the calculation of section propertios for a cross section having one corrugated face.

8.5 Members Under Axial Load

Once the neutral (or centroidal) axis and section properties of the transformed section hove been established, stresses, strains and displocements occurring under axial in-plone icads applied at the neutral axis are readily calculnted from the following relationships:
I. Material Properties - Short Term

Element	Foce 1	Face 2	Core 3
Material	10 Oz FRP	Mat FRP	2.5 pcf PU Foom
Reference	(Table 1-6)	(Toble 1-6)	(8.6)
Elostic Modulus, E_{i} • psi	2.2×10^{6}	0.82×10^{6}	1,500
Shear Modulus, G_{c}, p si	∞	∞	500
Tensile Strength, $\mathrm{F}_{\text {Ut }}$ (${ }^{\text {psi }}$	24,000	11,000	25
Compression Strength, $F_{\text {uc }}$, psi	21,000	22,000	20
Shear Strength, $F_{u v}$, psi	-	-	20

* See Footnote, Example 8-1.

Example 8-2 contioned

2. Sectien Proserifies

Praperitie	Unit	Coce 1	Face 2	Core 3	Total
E_{i}	$10^{6} \mathrm{pei}$	$2.2=E_{r}$	0.82	0.0015	-
C_{c}	$10^{6} \mathrm{pel}$	-	-	0.0005	-
n_{i}	-	1.0	0.373	0.00068	-
$n_{i} b_{i}$	in	1.0	0.373	0.00068	-
i_{i}	in	0.1	0.15	2.35	-
$n_{i} A_{i}-n_{i} b_{i} t_{i}$	in ${ }^{2}$ /in	0.1	2.056	0.00165	$0.15{ }^{*}$
$\mathrm{z}_{\mathbf{i}}$	in	0	248	1.23	-
$n_{i} A_{i} z_{i}^{\prime}$	$\mathrm{in}^{3} / \mathrm{in}$	0	0.139	0.00197	0.139 *
$\bar{z}=\frac{\sum n_{i} A_{i} z_{i}}{\sum n_{1} A_{i}}$	in	0.89	-	-	-
$\overline{\mathbf{z}}_{\mathbf{1}}=-\overline{\mathbf{z}}+\mathbf{z}_{\mathbf{\prime}}^{\mathbf{j}}$	in.	-0.89	1.59	0.34	-
$i_{0}=E_{n j} A_{1} z_{1}^{2}$	in ${ }^{6} / \mathrm{in}$.	0.0792	0.142	-	0.221
$I_{1}=E n_{j} b_{i}{ }^{3} / 12$	in ${ }^{4} / 1 n^{2}$	0.060083	0.00010	-	0.000183
$I_{\infty}=n_{3} b z_{3}{ }^{2}$ $I_{c}=n_{3} b c^{3 / 12}$	$\begin{aligned} & \text { in }^{4} / \mathrm{in} \\ & \text { in. } / \text { in. } \end{aligned}$	these sof		0.000079 0.00074	-
$1=10+1$	in. $/ \mathrm{in}$.	-	-	-	0.221*
$D_{m}=E_{p} I=E_{1} 1$	B -in. ${ }^{2} / \mathrm{in}$.	-	-	-	486,000
$D_{\text {mif }}=E_{1} 1 /$	$b-i n^{2} / \mathrm{m}$	-	-	-	403
z (extrome fiber)	in	0.94	1.66	1.51	-
$s=\frac{1}{n_{1} 2}$	$1 m^{3} / \mathrm{m}$	0.235	0.357	636	-
$s_{f}=\frac{2 \frac{1}{n}^{n_{1}}}{n_{i}}=\frac{b_{1} i_{1}^{2}}{6}$	ir. ${ }^{3} \mathrm{~mm}$	0.00167	0.00375	-	-
$Q_{M A}=n_{1} A_{1} z_{1}{ }^{\text {a }}$	$\mathrm{in}^{3} / \mathrm{m}$	- 0.089 **	-	-	-
$=n_{2} A_{2} z_{2}$				0.089 **	-
$A=\frac{b 1}{a_{M M}}$	$m^{2} / \pi n$	-	-	2.48	-
$D_{v}=A_{v} G_{c}$	D/in	-	-	1240	-

* Chates as equal ter soff cere
$1 \mathrm{~m}=250 \mathrm{~mm} \mid \mathrm{pai}=6.9 \mathrm{kPog} 1 \mathrm{~b}=2.2 \mathrm{Kg}$

Example 8-3: Time Dependent Section Properties of a Sandwich Plate Panel

Howing Elastic and Viscoelostic Faces*

Determine the short-term and long-term section properties in bending for a sandwich prnel hoving aluminum and PVC foces, and a soft core, as described below:

Actual Section
Tirme-Dependent Transformed Sections

Solution: Establish E_{r} as the viscrelastic modulus E_{v} of PVC. Assume stort-term modulus $E_{0}=0.55 \times 10^{6} \mathrm{psi}$, and since $R \simeq 2\left(\right.$ Table 2-2) the long-term modulus $E_{v}=0.55 \times 10^{6} / 2=$ $0.27 \times 10^{6} \mathrm{psi}$. Take E of aluminum as $10 \times 10^{6} \mathrm{psi}$, and assume that this modulus is not time dependení. Assume, G, of foam is 500 psi short-term and 250 psi long-term. Use format of Example 8-2, and neglect in-place stiffness of core since it is soft. Neglect effects oi - Poisson's ratio.
! - * See Footnote, Example 8-I.

** See Footnote, Examp's 8-1.
Example 8-4 continued
2. Section Propartlet (b=2in)

Properties	Unit	Elements of Cross Section					Total
		Foce 1	Face 2			Core 3	
			20	2b	2c		
$E_{i} \times 10^{6} \mathrm{pei}$	29	29	29	29	-	-	-
G_{c} (tong-term)	pai	-	-	-	-	250	-
n_{i}	-	1	1	1	1	-	-
b_{i}	in.	2	1.024	0.048	1.024	2	-
i	in.	0.024	0.024	0.4.76	0.024	3.976	-
A (see Eq 8.20)	in^{2}	0.048	0.025	0.023	0.025	-	0.121
i_{i}^{\prime}	in.	0	4	4.25	4.5	-	-
$n_{i} A_{i} z_{i}^{\prime}$	in ${ }^{3}$	0	0.100	0.098	0.113	-	0.311
x_{i}	in.	-2.57	1.43	1.68	1.93	-	-
J_{0} (see Eq 8.8a)	in. ${ }^{4}$	0.317	0.051	0.065	0.093	-	0.526
$\mathrm{l}_{1} 1$ (me Eq- 8.9)	in ${ }^{4}$	2.3×10^{-6}	-	-	-	-	23×10^{-6}
$1_{12}\left(\sec \mathrm{Eq}_{4} 8.79\right)$ *	in. ${ }^{4}$	-	0.00154	0.00043	0.00154	-	-
If_{f}	in. ${ }^{4}$	-	-	-	-	-	0.0035
$1=10+1$	in ${ }^{4}$	-	-	-	-	-	0.530
$D_{m}=E_{1} \times 10^{-3}$	$0-\mathrm{in} .^{2}$	-	-	-	-	-	15,370
$D_{\text {mfi }}=E_{1} 1_{i} \times 10^{-3}$	H-in. ${ }^{2}$	0.067	44.7	12.5	44.7	-	102.0
$s_{i}=\frac{1}{n_{1}\left(x_{1} \pm 0.5 t_{2}\right)}$	in ${ }^{3}$	0.205	0.374	-	0.273	-	-
$s_{i 1}=\frac{0.167 b_{j} i_{1}^{2}}{n_{i}}$	in $^{3} \times 10^{-3}$	0.192	-	-	-	-	-
$s_{62}=\frac{2 I_{4}}{n_{1}\left(0.5+1_{2}\right.}$	in^{3}	-	0.0134	-	0.0134	-	-
$a_{M M}=n_{1} A_{1} z_{1}$	in 3	-0.123	-	-	-	-	-
$A_{V}=\frac{b 1}{C_{N a}}$	in ${ }^{2}$	-	-	-	-	8.618	-
$D_{V}=A_{V} G_{c}$	b	-	-	-	-	2012	-

Note: 1 in $=254 \mathrm{~mm}$ I pal $=6.9 \mathrm{kPa}$ I $\mathrm{b}=2.2 \mathrm{Kg}$

* Since the corrugoted face in liself resambles key features of a andwich (thin foces reparnted by o core or thin webl, it is a special cose of Table $8-10$, and Eq. 8.7 a for 1 is sepornted by o corre of hin

Table 8-2
Stress, Strain and Stiffness Relationahips for Members under Axial Lood

Relationship	Compression Element		
	Columns and Struts	Plates (Plane Strain)	
	$\sum n_{i} A_{i}$	$\sum n_{i} A_{i}$	$8.2 a$
Stiffness, A	$\sum n_{i} A_{i} E_{i}=A E_{r}$	$\sum n_{i}^{\prime} A_{i} E_{i}=A E_{r}$	$8.22 a, b$
Stress, σ_{i}	$\frac{n_{i} P}{\hbar}$	$\frac{n_{i}^{\prime} P}{A}$	$8.23 a, b$
Strain, E	$\frac{P}{A}$	$\frac{P}{A}$	8.24

Note: If $\mathrm{b}=\mathrm{I}, \mathrm{P}=\mathrm{N}$

The term n_{i} in the above relationships is defined as follows:

$$
\begin{equation*}
n_{i}^{\prime}=\frac{1}{1-v_{i}^{2}}\left(\frac{E_{i}}{E_{v}}\right)=\frac{n_{i}}{1-v_{i}^{2}} \tag{Eq. 8.25}
\end{equation*}
$$

In effect, n_{i}^{\prime} reflects the increase in axial stiffness in cases where lateral movements due to the Poisson effect are restrained. Such conditions occur in axially loaded plates subjected to plane strain conditions.

Bending stiffness is important in the evaluation of the behovior of columns and plates subjectec to loads that are eccentric from the neutral axis, and for evaluating buckling capacity. Bending stiffness is discussed in Sections 8.6 and 8.7.

As illustrated in Example 8-3, certain arrongements of viscoelastic plastics in sandwich cross sections with dissimilar faces may result in very significont ahifts in the neutral axis with time under stress and strain. This means that an axial load upplied initially at the centroid will gradually become eccentric with respect to the shifting neutral axis. When this accurs, the load is no longer
purely axial, and the resulting additiunal bending effects should be taken into occount. When the material stress is within the viscoelastic limit, this can be considered a linear problem, independent of stress level. If the viscoelastic limit is exceeded (which is not recommended), the neutral axis shift would become a function of both stress level and time, and the analysis becomes non-linear.

See Section 8.8 for stability of sandwich members under axial ioad. Example 8-7, in Section 8.8, illustrates the evaluation of a sandwich meraher under axial load.

8.6 Bearrs

Two approaches to the analysis of sandwich beams are presented herein. An elementary theory, which is appropriate for constructions having shear-rigid cores, is presented first. It is merely an extens on of well established concepts based upon conventional beam theory. A more rigorous theory, which is oppropriate for cons:ructions having shear-flexible cores, is presented subsequently.

Elementary Theory (Shear-Rigid Cores)

Sandwich structures having shear-rigid cores are very eificient, becouse the rigid core provides on effective load path to carry shear from one face to the other. Hence, direct or membrane stress resultants are mobilized in the faces to provide high strength and stiffness. As in any efficient bending structure, such as a truss, the objective is to maximize direct stress and minimize bending stress in all elemer's.

Elementary bending theory, based on plane sections remaining plane after bending, applies to sar. J wich beams that have adequate core shear rigidity. In :his case, beams can be analyzed by conventional transformed-section theory, as descrihed below.

Deflection: In the elementary theory, the total deflection is the sum of the deflection due to bending of the transformed section and the deflection due to shear deformation of the core (Fig. 8-6).
$w=w_{m}+w_{v}$
where
$w=$ total deflection
$w_{m}=$ bending deflection of transformed section under total load
$w_{v}=$ shear deflection of core under total load
In essence, the bending deflection is that of a beam having a finite bending stiffness and a core hoving infinite shear rigidity; the shear deflection is that of a beam hoving on infinite bending stifíness and a finite shear rigidity of the core.

For certain simple support and looding cases, the combined maximum bending and shear deflection for bearns with span length, L, can be found by using properties of the transformed section in conjunction with the following equation (8.7):

$$
\begin{equation*}
w=\frac{K_{m} P L^{3}}{D_{m}}+\frac{K_{v} P L}{D_{v}} \tag{Eq. 8.27}
\end{equation*}
$$

where
$P=$ total icod on beam
$K_{m}=$ deflection coefficient for moment (Tabie 8-3)
$K_{v}=$ deflection coefficient for shear (Table 8-3)
The first term on the right of $\mathrm{E}_{4}, 8.27$ is the conventional beam-itheory formula for the deflecticn of elastic beoms due to bending, as typically found in handbooks. The second term accounts for shear deflection, and is generally less reodily available. Values of the coefficients are given in Table 8-3 for a number of loading and support conditions.

c. Deflection due to Shear in Core

d. Combined Deflection

Fig. 8-6 COMPONENTS OF DEFLECTION OF CENTRALLY LOADED SANDWKCH BEAM

Table 8-3
Coefficients for Bending and Sheor Deflection of Sandwich Bearns for Use in Eq. 8.27 (8.7)

Beam Type	Loading Conditions	Location of Deflection	Coefficients	
			$\begin{aligned} & \text { Bending } \\ & K_{m} \end{aligned}$	$\begin{gathered} \text { Shear } \\ K_{v} \end{gathered}$
Simply Supported	Uniformly Distributed	Midspan	5/384	1/8
	Concentrated of Midspan	Midspan	$1 / 48$	1/4
	Concentrated at Both Quarter Points	Midspon Quarter Points	$\begin{array}{r} 11 / 768 \\ 1 / 96 \end{array}$	$\begin{aligned} & 1 / 8 \\ & 1 / 8 \end{aligned}$
Both Ends Fixed	Uniformly Distributed	Midspon	1/384	1/8
	Concentrated at Midspan	Midspun	1/192	1/4
Contilever	Uniformly Distributed	Free End	1/8	1/2
	Concentrated at Free End	Free End	1/3	1

Non-Symmetric Loads: Shear deflection in a sandwich beam may lead to significant amplification of deflection when loads or support conditions ore unsymmetrical. An exconple this is shown in Fig. 8-7. Physical reasoning (and theory) shows that the shear forces in span AB do not produce vertical deformation and that the shear deformation in that span is merely the lateral displacement of the original square $a-b-c-d$ into a rhombus, creating an angle change of a_{j}. The shear deformation within the cantilevered portion $B C$, then, must be taken relative to α_{1}. Thus, the vertical shear deflection of point C is $\left(\alpha_{1}+\alpha_{2}\right) \times B C$.

Indeterminate Support Conditions: When shear deformations become significunt in indeterminate structures, handbook formulas based only un bending stiffness

c. Unflection Due to Shear Showing Amplificotion at Contilever

Figh 8-7 BENDMG AND SHEAR DEFLECTION COMPONENTS W A BEAM WITH CANTILEVERED OVERHANG
$m a y$ produce large errors in the calculation of reactions, shears, moments, and

- deflections due to bending. Therefore, shear deflections should be included when determining redundant reartions in such structures. Example 8-5 ill strates such a calculation for a two-span panel subjected to uniform lood. The results of this example are used in the numerical example given in Section 8.11.

Viscoelastir Properties: When viscoelastic plastic moterials are used for either the faces or the core of a sandwich panel, the time-dependent transfor nedsection properties which are derived from the appropriate viscoelastic modulus should be used in the calculation of deflections. The stress levels occurring in the various viscoelastic sandwich elements should be checked to verify that they are below the viscoelastic limits for the materia. in each element.

Stresses: With the properties of the transformed section established, bending and shear stresses are readily calculated using conventional beam theory for a crosssection of variable width. Characteristic bending and shear stress distribution, together with elementary formulas for determining actul stress levels, are given in Fig. 8-8, for several cases as follows:
(a) Thick faces and a stiff and shear-rigid core. This corresponds to the most general cross section having uniform thickness (See also Table 8-1a). The rigid core in ihis case carries a portion of the applied bending moment and the shear stress in the core varies with distance from the neutral axis.
(b) Thick faces and axially soft, but shear-rigid, core. As discussed earlier, this case allows some simplification, since the suft core does not carry signifizant bending stress. The core shear stress is essentially unifor:n. Whil the soft core does not contribute significantly to bending capacity, the stresses in the rore should never he neglected out of hand, since :nost soft cores are very weak compared to the faces. Note tho: the approximote Eq. 8.38b is conservative by 8% or less for practicol sandwich constructions where t / d is less tha.? 0.5 .
(c) Thin faces and axially soft, but shear-rigid, core. The faces are sufficiently thin to permit the simplifying assumption that there is a negligible stress grodient between the neutral axis of the face and the extreme fibers of the section.

Example 8-5: Derivation of Reactions, Moments and Shears in a Two-Spon Beam Subjected to Uniform Lood *
 I. Structura: Arrangernent

2. Determine Deflection due to Uniform Laod with Redundant Support RuL Removed

$$
\begin{equation*}
w_{b}=\frac{K_{m} P L^{3}}{D_{m_{1}}}+\frac{K_{v} P L}{D_{v}} \tag{Eq. 8.27}
\end{equation*}
$$

fur uniform load (Table 8-3)

$$
\begin{align*}
& K_{m}=5 / 384 ; K_{v}=1 / 8 ; P=q L=2 q a \\
& w_{b L}=\frac{9 a^{2}}{2} \frac{5 a^{2}}{12 D_{m}}+\frac{1}{D_{v}} \tag{Eq. 8.38}
\end{align*}
$$

3. Determine Restoring Deflection with Redundant Support Reoction Acting Alone

for concentrated lood at midspon (Table 8-3)
$K_{m}=1 / 48 ; K_{v}=1 / 4 ; P=R_{b L}$
$w_{b R}=-\frac{R_{b L} a}{2}\left[\frac{a^{2}}{3 D_{m}}+\frac{1}{D_{v}}\right]$

Sotwe for Ryd by Setting Defiection at $b=0$

$$
\begin{equation*}
w_{b L}+w_{b R}=0 ; R_{b L}=90\left[\frac{\frac{5 a^{2}}{12 D_{m}}+\frac{1}{D_{v}}}{\frac{a^{2}}{3 D_{m}^{2}}+\frac{1}{D_{v}}}\right] \tag{Eq. 8.30}
\end{equation*}
$$

- See Footnote, Example 8-1.

$$
\begin{aligned}
& \text { Example 8-5 continued } \\
& \text { 5. End Reoctions } R_{a L} \text { and } R_{c L} \\
& \qquad-q(2 a)+R_{b L}+R_{a L}+R_{c L}=0 \\
& \qquad R_{a L}=R_{c L}=\frac{-R_{b L}+2 q a}{2}
\end{aligned}
$$

Eq. 8.31
6. Moment in Span ab

$$
\begin{aligned}
M_{o b} & =R_{o L} x-\frac{q x^{2}}{2} ; \text { ot midspon, } x=\frac{a}{2}, \text { and } \\
M & =R_{a L} \frac{a}{2}-\frac{q a^{2}}{8}
\end{aligned}
$$

Eq. $8.32 \mathrm{o}, \mathrm{b}$
7. Morment of $b(x=a)$

$$
\begin{equation*}
M_{b L}=R_{a L} a-q \frac{a}{2}^{2} \tag{Eq. 8.33}
\end{equation*}
$$

8. Shears of a and b

$$
V_{a L}=R_{a L} ; V_{b L}=R_{a L}-90
$$

Eq. $8.34 a, b$

9. Deflection at Midepun ob

Superimpose two looding cases on span a b. Case A is deflection of simply supported uniformly loaded beam (Eq. 8.27) moment $M_{b L}$ not acting. Case B is deflection (in opposite direction) of simply supported beom with no load, and octed upon by $M_{b L}$ (8.14) at b. (Note: $M_{b L}$ is negative.)

$$
\begin{align*}
& w_{L}=w_{A}+w_{B} \\
& w_{L}=\left[\frac{K_{m} P_{a}^{3}}{D_{m}}+\frac{K_{v} P a}{D_{V}}\right]_{A}+\left[\frac{M_{b L} a^{2}}{16 D_{m}}\right] B \\
& K_{m}=5 / 384, K_{v}=1 / 8 \text { (Toble 8-3) } P=90 \tag{Eq. 8.35}\\
& w_{L}=\frac{1}{8} 9 a^{2}\left[\frac{5 a^{2}}{48 D_{m}}+\frac{1}{D_{v}}\right]+\frac{M_{b L} a^{2}}{16 D_{m}}
\end{align*}
$$

o. Thick faces - oxially stiff and shear-rigid core

b. Thick foces - axially soft and shear-rigid core

c. Thin foces - axially soff and stear-rigid core

Fig. 8-8 BENDING AND STEAR STRESS DISTRIBUTION IN SANDWICH BEAMS HAYING SHEAR-RIGID CORES

In all of the above cases, it is implicit that plane sections before bending remain plone ofter bending. This is only valid for shear-rigid cores. The importont effects introduced by shear-flexible cores ore discussed be!.nw.

Analysis for Shecr-Flexible Cores

The term shear-flexible, as used herein, defines a relative condition in which the core provides a low shear rigidity compared to the flexural stiffness of the faces. Sandwich panels having shear-flexible cores do not behave in accordance with conventional beam theory. Stear deformations and deflections become significant, and conventional elementary theory described earlier may fail to predict behavior within suitable limits. Such limits will be discussed subsequently.

Sondwich constructions which have shear-flexible cores are not efficient beoms. The shear-flexible core is only partially effective in carrying shear from one face to the other, and hence, resistances to bending by direct or membrane stress resultonts in the faces moy not be fully mobilized. The result is that the faces carry a larger share of the lood in bending about their own neutral axes thon is indicated from elementary theory, In the extreme, lacking help from the core, the two faces may carry all of the load as separate beorns, sponning between reactions, independent of the core.

While it is the objective of structural design to develop efficient primory structures, there are other criteria that may require a compromise in this design objective, and lead to structural orrangements where the core acts in a shearflexible monner. Examples ore as follows:

- The use of low dersity foamed plastics may be desirable for reasons of weight, thermal resistonce, or cost. Such cores frequently hove very low shear rigidity compored to the faces, as well as in comparison with other cores available for sandwich construction, such as honeycombs mode from metal or plastic-impregnated paper. For example, the long-term viscoelastic ntrear modulus of a low density plastic foam may be as low as $\mathbf{2 0 0}$ psi - such cores prove to be shear-flexible in most practical sandwich constructions.
- Faces moy be corrugated, ribbed, or exceptionally thick for aesthetics, stobility against local buckling, end many other reasons. Furthermore, the modulus of elasticity of some odvanced-fiber reinforced plastics facings may be very high, and approach that of metals. Thus, the bending stiffness of faces may be high, relative to the shear rigidity of mony proctical cores.

Thus, in view of the above, there may be many practical cases where the shearflexible core condition exists, and the application of rigorcus theory may be required.

Deecription of Analysis: The analysis for shear-flexible cores employs differential equations to enforce compatibility between the bending and shear deflections of the tronsformed section, and the bending deflection of the faces, along the full length of the bearn. In the elementary theory, summing the shear and moment deflections to obtain the total deflection neglects the resistance to deflection offered by the secondary bending of the faces. Therefore, the deflection of the member according to the refined theory will generally be less than tirat calculated from the elementary theory, but the faces stresses will be greater because the secondary bending is less efficient than the primary bending in resisting loads. Using the refined theory, the total deflection (\mathbf{w}) is the sum of the primary (w_{p}) and secondary bending deflentions, where the secondary bending deflections are the same as the shear deflections, (w s).

The following expressions describe the components of loads and transverse shear and moment stress resultants at any point along the beam length assumed in the refined tieory:

$$
\begin{align*}
& q=q_{p}+q_{s} \tag{Eq. 8.41}\\
& Q=Q_{p}+Q_{s} \tag{Eq. 8.42}\\
& M=M_{p}+M_{s} \tag{Eq. 8.43}
\end{align*}
$$

In each case, the subscript " p " indicotes the component carried by the frll transformed se:tion (Fig. 8-9a). The subscript "s" denotes the component carried by shear and bending in the faces, over and above that which occurs in the tronsformed section (Fig. 2-yb).

The total deflection (w) is as follow:

$$
\begin{equation*}
w=w_{p}+w_{s} \tag{Eq. 8.44}
\end{equation*}
$$

where

$$
\begin{aligned}
w_{p}= & \text { primary tending deflection o? transformed } \\
& \text { section due to primary shear stress } \\
& \text { resultants }\left(Q_{p}\right)
\end{aligned}
$$

$w_{s}=$ secondary deflection
$=$ deflection of core due to primary shear stress resultants (Q_{p})
$=$ deflection of faces bending about their own neutral axes due tc secondary shear stress resuitants $\left(Q_{s}\right)$

Consideration of both statics and compatibility of deflections leads to the following differential equations (8.3):

$$
\begin{equation*}
-Q_{p}=D_{w_{1}}^{m \prime}=E I_{0} w_{p}^{m \prime}+E I_{f} w_{p}^{m \prime \prime} \tag{Eq. 8.45}
\end{equation*}
$$

from which

$$
\begin{equation*}
G_{P}^{\prime \prime}-\frac{4 \theta^{2} Q_{p}}{L^{2}}=-\frac{4 \theta^{2} Q}{L^{2}} \tag{Eq. 8.46}
\end{equation*}
$$

and

$$
\begin{equation*}
w_{s}^{\prime}=Q_{p}\left(\frac{L^{2}}{4 e^{2}}\right) \tag{Eq. 8.47}
\end{equation*}
$$

where

$$
\theta=\frac{L}{2}\left[\frac{A G I}{E_{f} J_{0}}\right]^{d / 2}=\frac{L}{2}\left[\frac{D_{v} I}{D_{m f} I_{0}}\right]^{1 / 2} \simeq \frac{L}{2}\left[\frac{D_{v}}{D_{m f}}\right]^{1 / 2}
$$

Eq. 8.48a, b, c

Primes deicite differentiation with respect to x, the distance along beam length.

In any puticular problem in which the total shear, Q, is a given function of, x_{1} Eq. 8.16 can be solvec' for Q_{p}. The quantities M_{p}, " ${ }_{p}$, and q_{p} moy be obtained by integration and differentiation. The slope, $w_{s}{ }^{\prime}$, can be obtained from Eq. 8.47, and the quantities M_{s}, w_{s}, and q_{s} are obtained by subsequent integration and differentiation. Eq. 8.41 to 8.45 and suitable boundary conditions are needed to effect the above solutions.

a. Distribution under Primary Bending and Shear on Tronsformed Section - Axially Soft and Sheor-Rigid Cores

b. Dtstribution under Secondory Berding and Sheor on Facings

C. Nat Diatr ibution under Applied Moment and Shecr

Fig 8-9 EENDING AND SHEAR STRESS DISTRIBUTION N SANDWICH BEAMS HAVNGG SHEAR-FLEXIELE CORES

In essence, in the analysis for shear-flexible cores, the iotal shear (Q) and the total moment (M) acting on ony cross section are divided into two components, as described below and shown in Fig. 8-9:

- The primary shear $\left(Q_{R}\right)$ and moment $\left(M_{p}\right)$ stress resultants act on the full transformed section in exactly the same way as shown earlier for the e lementary theory in Fig. 8-8. (Compare Figs. 8-8h and 8-9a.)
- The secondory shear $\left(Q_{s}\right)$ and moment $\left(M_{s}\right)$ stress resultants oct only on the faces (Fig. 8-9b). These secondary stress resultants cause the faces to bend about tneir own neutral axis. This bending of faces, which is over and above the bending imposed on the transformed section by the primary stress resultants, is neglected in the elementary analysis.

Nernerical Solutions: The analysis for shear-flexible cores is general and can be applied to any loading condition (8.3, 8.8). Only the simpler cases of simply supported beams loaded with a uniformly distributed load or concentrated loads are presented herein. Of course, by symmetry and superposition, these cases can be readily altered to handle both cantilever and continuous beams. Numerical solutions for other load and support cases must be derived from the general differential equations as given in (8.3, 8.5, 8.8), and sumrnarized from (8.3), below:

Equations giving numerical results for the anolysis of shear-flexible cores, are given for certain lood and support conditions in Table 8-4. Relotions are given for deflections, moments, and shears at any point along the beam length. Equatio:zs for maximum values are also given. Note that the origin ($x=0$, or $X=$ 0) is differant for different loading cases.

Effects of 0 : The shear flexibility coefficient, θ, Eq. 8.48 has a strong influence on the mognitude of the deflection, moments, and shears, calculated in accordance with the theory for shear-flexible cores. The mannitude of the shear flexibility coefficient, θ, depends upon the spon, the ratio of shear rigidity of the core to the flexura! stiffness of the faces, and the ratio of I to $I_{0^{\circ}}$ Since $\left(1 / I_{0}\right)^{1 / 2}$ is usually close to one, even for relatively thick faces, ite effect on θ is negligible. (See Table 8-1 for definition of 1 anci I_{0}. .) Hence, for a given spon, θ

Demartion For Midepon Deflection sea Maximum Vhtrea below. Equotion

$$
(a<x<0, b) M_{3}=M \frac{L}{a} \frac{\sinh \left[20\left(1-\frac{x}{[}\right] \sinh \left[20 \frac{a}{[}\right]\right.}{24\left(1-\frac{X}{L}\right) \sinh 20} \quad M_{3}=\frac{\cosh \left[0\left(1-\frac{2 x}{L}\right] \sinh \left[20 \frac{c}{a}\right]\right.}{20 \frac{0}{[\cosh \theta}}
$$

cases

Secandory
$\theta_{s}=Q-Q_{p}$
$Q_{s}=Q-Q_{D}$
64

COEFFKCIENTS

$$
\begin{aligned}
& t_{4}=1-\frac{L}{(L-2)} \frac{\sinh \left[2 \theta\left(1-\frac{a}{[}\right)\right] \sinh \left[20 \frac{a}{[}\right]}{20 \frac{0}{[} \sinh 20} \quad t_{7}=1-\frac{L}{(L-a)} \sinh \left[20\left(1-\frac{a}{L}\right)\right] \\
& 4 s=1-\frac{\operatorname{coch}\left[0\left(1-\frac{20}{L}\right] \sin \left[20 \frac{0}{[}\right]\right.}{20 \frac{a}{L} \cosh \theta} \quad \phi_{1} \cdot 1-\frac{1}{6}-\frac{\sin \left[20 \frac{0}{2}\right]}{20} \\
& t_{6}=1-\frac{\sinh \left[20 \frac{0}{[}\right]}{20 \frac{0}{[\cosh 0}} \quad \theta_{9}=1-\frac{\operatorname{com}\left[0\left(1-\frac{20}{L}\right)\right]}{\cos \pi} \\
& 0 \cdot \frac{L}{2}\binom{A G G_{i}}{F T_{1} T_{0}}^{1 / 2}=\frac{L}{2}\left(\frac{D_{v}}{D_{m i} T_{0}}\right)^{1 / 2} \frac{L}{2}\left(\frac{D_{V}}{D_{m i}}\right)^{1 / 2} \\
& \text { for } 0>54_{4}=1-\frac{1}{40 \frac{0}{L}\left(1-\frac{\theta}{L}\right)} \geqslant 1
\end{aligned}
$$

Anas.

0750
0. Kat
eng, b, c 8760
depends on $D_{v} / D_{m f}$, and Eq. 8.48 c can be used for most practical sandwich structures.

The magnitude of the shear flexibility coefficient, θ, governs the relative importance of secondary face bending. This is illustrated in Fig. 8-10 which shows the distribution of primary and secondary shear and moments along the length of a centrally loaded, simply supported sandwich beam, for a range of $\boldsymbol{\theta}=$ I to ∞. Following are significant results shown in the Figure:

- The faces carry the full shear near the center of the span for all values of Q. In the elementary analysis it is assumed that the core carries the full shear for the whole length of the beam.
- As θ decreases, faces carry an increasing share of the total shear over substantial portions of the beam.
- As 0 decreases, an increasing share of the totul moment in the central portion of thee beam is corried by the foces in secondary bending about their own neutral axes. At $\theta=3$ for example, the faces carry about 25% of the total midspon moment.

With θ equal to obout 5 or greater, $\tanh \theta=1$ for all practical purposes, and simplified coefficients, \boldsymbol{d}, are given in Table $8-4$ for this case. Further simplifications for two commen coses are:

for concentrated ioads at midspan	$M_{s \text { max }}=\frac{M_{\text {max }}}{\theta} ; \theta \geq 5$	Eq. 8.78
for uniformly distributed loads	$M_{s \text { max }}=\frac{2 M_{\text {max }}}{\theta^{2}} ; \theta \geq 5$	Eq. 8.79

As θ increases further, the shore of the total moment carried by the fanes in secondary bending about their own axes decreases rapidly and the primary transformed section carries most of the total moment. The structure thus becomes a more efficient composite, and the behnvior approaches that assumed in elementary theory. However, even though M_{s} oecreases to small values with increases in θ, face stresses may still be significant, since the section modulus of thin foces is smoll.

b. Distribution of Shear Strees Resultionts

c. Distribution of Bending Strese Reaultonts

Fig 8-10 DISTRIBUTION OF MOMENTS AND SHEARS N SIMPLY-SUPPORTED SANDWICH BEAMS HAVNGG SHEAR-FLEXIBLE CORES

Effects of Concentration of Lood: In the analysis for shear-flexible cores, concentrated loads are assumed to be applied as line or knife-edge loads. In practical structures, concentrated loads are actually distributed locally over a finite width. Whether it is important to account for the actual width of the load can be determined by comparing this width to the distance over which the secondary bending moment from the knife-edge load decays to a small value.

For a knife-edge lood applied at midspan of a simply supported sandwich beam, the bending moment decays to $\mathrm{p} \%$ of its maximum value at a distance, $(2 \times)_{d}$, defined by the following relationship:

$$
\begin{equation*}
(2 x)_{d}=0.408\left[\frac{t^{3} E_{f}}{d G_{c}}\right]^{1 / 2} \log _{e}\left(\frac{100}{p}\right) \tag{Ec. 8.78}
\end{equation*}
$$

This equation, derived from Eqs. 8.48 and 8.51 a , holds only for relatively thin foces where the problem of large foce stresses resulting fram knife-edge loads is most critical, and for values of θ greater than about 5 . The calculation of the distance $(2 x)_{d}$ is illustratid in connection with a practical design in Fig. 8-11, which will be discussed in more detail later.

In application, if the actual width of the load is on the order of $(2 x)_{d}$, it can be divided into a number of knife-edge loods distributed over the actual width. The effects of each concentrated load are then superimposed to determine the maximum moment under the load.

Effects of Overhangs of Beam Ends: For simplicity, equotions given in Table 8-4 pertain to beams without overhangs at supports. The effects of overhangs, which are unlooded, are foirly small,' and such overhangs are not usually encountered in practical framing. However, flexural test coupons of sandwich constructions are usually significantly longer than the test span, and the effects of the overhonging ends should be considered in interpreting test results. Equations which account for the effects of overhangs on centrally loaded and unitormly looded bearns are given in (8.3).

Application of the Anolysis for Sheor-Flexible Cores: The following procedure is used to analyze sandwich cross sections having shear-flexible cores:

- Section properties and bending stiffness of both the trarsformed section and the faces, and shear stiffness of the core, are calculated using equations given in Table 8-1.
- The equations given in Table 8-4 are used to determine the shearflexibility coetficient Q, deflections, and the primary, secondary, and total bendin; moments.
- The primary moment, M_{p}, is applied to the transformed section of the whole cross-section, and primary bending stresses are calculoted in the saine fashion as described previously for 'the elementary theory.
- The secondary face moment, M_{s}, is applied to Foces 1 and 2 in proportion to the ratio of bending stiffness of the respective foces, $D_{m f 1}$, and $D_{m f 2}$ to the total bending stiffness of both faces ($\mathrm{D}_{\mathrm{mf}} 1+\mathrm{D}_{\mathrm{mf} 2}$). The moments so calculated, $M_{s 1}$ and $M_{s 2}$, are then divided by the section modulus of each respective foce (about its own neutral axis; to obtain secondary face stresses.
- The stresses due to the primary and secondary moments are added to obtain the total stresses in the faces.
- The primary shear stress resultants are calculated from equations given in Table 8-4. These are then divided by the shear area, Tadle 8-1, to obtoin shear stresses in the core, and in the achesive bond as appropriate.
- The secondary shear stress resuitants which oct on the foces may be colculated from equations given in Table 8-4. The sthear stresses are then calculated for eact. foce from elementary beam theory. These stresser are seldom critical in practical sandwich constrictions.
- If concentrated loads have a width on the order that given by Eq. 8.78, the load can be divided into a number of knife-edge loads, as discussed ear:ier, to provide a refined estimate of maximum secondary moment on the faces (see above, E.ffects of Concentration of Lood).

Example 8-6 illustrates the calculations required to analyze for secondary bending effects in an unbaionced, metal-foced, sondwich heam hoving one corrugated face and a plastic foam core. In this example, maximum combined foce stress coused by primory and secondary bending of the stiff corrugoted face is $6,133 \mathrm{psi}(42.4 \mathrm{MPa})$. As is shown, elementary theory, which neglects the flexibility of the core, would have given a total stress of $3,436 \mathrm{psi}$ (24.1 MPa)

Example 8-6

 Evaluate Foam Core Sandwich Beam with One Face Corrugated *Determine adequacy of the steel-faced panel for which section properties were determined in Example 8-4. Span is 100 in., and the long-term design load is 30 psf. Use Load Factor of 1.8. Deflection Limit is L/200.

Actual Section
(from Example 8-4)
(Use 2 in wide repeating strip)

Stress
Distribution
Transformed Section Analysis

Stress
Distribution
Sheor-Flexible
Core Analysis

1. Design Load $(b=2 \mathrm{in}) ~ a=\frac{30 \times 2}{144}=0.417 \mathrm{lb} / \mathrm{in}$. (unfoctored)
2. Coefficients (See Example 8-4 for section properties and Table 8-4 for equations)

$$
0=\frac{1}{2}\left[\frac{D_{v}!}{D_{m f} r_{0}}\right]^{0.5}=\frac{100}{2}\left[\frac{2012 \times 0.530}{102 \times 10^{3} \times 0.526}\right]^{0.5}=7.1
$$

for $0>5$ use Eq. 8.6 la , c, Table 8-4.

$$
\begin{aligned}
& \phi_{3}=\frac{\theta^{2}-2}{0^{2}}=\frac{7.1^{2}-2}{7.1^{2}}=0.96 \text { for moment and deflection } \\
& \phi_{1}=\frac{0-1}{0}=\frac{7.1-1}{7.1}=0.86 \text { for shear }
\end{aligned}
$$

- See Footnote, Example 8-1.

Example 8-6 continued

3. Ulimate Bending Moment ($L F=1.8$)
$M=\frac{1}{8} q L^{2} \times L F=\frac{1}{8} \times 0.417 \times 100^{2} \times 1.8=938 \mathrm{lb}-\mathrm{in}$.
4. Determine Primary and Secondary Moments:

Primary: $\quad M_{p}=\phi_{3} M=0.96 \times 938=900 \mathrm{lb}-\mathrm{in}$.
Secondary: $M_{s}=M-M_{p}=938-900=38 \mathrm{lb}-\mathrm{in}$.
Secondory moment is assigned to faces in proportion to their bending stiffness.

$$
\begin{aligned}
& M_{s 1}=\frac{D_{m f 1}}{D_{m f}} \times M_{s}=\frac{0.067}{102.0} \times 38=0.025 \mathrm{lb} / \mathrm{in} . \\
& M_{s 2}=\frac{D_{m f 2}}{D_{m f}} \times M_{s}=\frac{102-0 . c 67}{102.0} \times 38=38 \mathrm{lb} / \mathrm{in} .
\end{aligned}
$$

[^8]```
Example 8-6 continued
6. Check Above Stresses Against Elermentory Theory (neglectiing shear-flexible-core behovior)
Maximum face siress, Element \(2 c\), is \(f_{2}=M / S_{2 c}=938 / 0.273=-3,436\) psi. This is only \(56 \%\) of total stress \((-6,133 \mathrm{psi})\) from the above onulysis. Moximum stress in bottom face is \(f_{l}=938 / 0.205=4,576\) which is almost the same as \(f_{p l}\) doove.
```

7. Moximum Core Shear Stress

$$
\begin{aligned}
& Q_{p}=Q \phi_{1} \times L F=\frac{q L}{2} \phi_{1} \times L F=\frac{0.417 \times 100 \times 0.86 \times 1.8}{2}=32.3 \mathrm{lb} \\
& f_{v}=\frac{Q}{A_{v}}=\frac{32.3}{8.618}=3.75 \mathrm{psi}
\end{aligned}
$$

8. Deflection (Unfoctored Load)

$$
\begin{aligned}
& w=\frac{5 g L^{4}}{384 D_{m}}+\frac{q L^{2}}{3} D_{v} \\
&\left(\frac{1_{0}}{T}\right)^{2} \phi_{3} \\
&=\frac{5 \times 0.417 \times 100^{4}}{384 \times 15,370 \times 10^{3}}+\frac{0.417 \times 100^{2}}{8 \times 2012} \quad \frac{0.526}{0.530}{ }^{2} \times 0.96 \\
&=0.0353+0.245=0.280 \mathrm{in}<0.5^{\prime \prime}=L / 200 \mathrm{ok} .
\end{aligned}
$$

Note that shear deflection is about $87 \%$ of the total deflection.

## 9. Evaluofe Stress and Deflection Levels

Sreel Faces: The steel fares, having a minimum yield strength of 36,000 psi and ultimate strength of $58,000 \mathrm{ps}$ : (Example 8-4) are safe by inspection since maximum stress is 6,133 psi in compression and 4,520 psi in tension. Stability of the upper face against wrinkling must be evaluated by test since analytical expressions for buckling of corrugated foces restrained by core are not ovailable (see Section 8.8).

Foam Core: The maximum long-term shear stress in the foom core, which includes a lood foctor of 1.8 , is 3.75 psi . This compares to a minimum long-term strength of 7 psi (Example 8-4). This provides a margin of safety of $7 / 3.75=1.87$ bet ween minimum ultimate short-term strength and factored stress. Equivalent copacity reduction foctor is $1 / 1.87=$ 0.54 which oppears reasonoble.

Deflection: The section rreets deflection criteria.
Note: 1 in $=25.4 \mathrm{~mm} ; 1 \mathrm{psi}=6.9 \mathrm{kPa} ; 1 \mathrm{in}^{4} / \mathrm{in} \mathrm{n}_{0}=16,387 \mathrm{~mm}^{4} / \mathrm{mm}$
thot is only about $56 \%$ of the maximum stress determined by the present more rigorous method. Furthermore, the difference would increase with shorter spans, shallower sections, more shear-flexible cores, or deeper corrugations.

## Comparison of Elementary and Rigorous Theories

In cerrain cases, the elementary and rigorous theories may produce widely differeit estimates of stresses and deflections. The error involved in using the simplified appoach increases with the following:

- Decrease in span.
- Decrease in core shear rigidity relative to bending stiffness of foces about their own neutral oxis.
- Increase in bending stiffness of foces relative to stiffness of the overall transformed section.
- More concentrated distribution of load

Fig. 8-11 provides a quantitative comparison of the results of elementary and rigorous theories, as affected by core shear stiffness and span-depth ratio. The figure shows the critical span-depth ratios where secondary stresses are equal greater than $10 \%$ of primary s tresses for two loading conditions and a simply supported spon. The critical span/depth ratio is a function of the foce-thickness-to-panel-depth ratio and the foce-modulus-to-core modulus ratio. The graphs in the figure indicate the following for $L / d=10$ to 50 , which is a practical range of span/depth ratios for most sandwich constructions:
a The concentrated loading condition (Fig. 8-1 la) results in critical span/ depth ratios that are substantially higher than for uniform loods, and well into or above the proctical ronge of $L / d=10$ to 50 . The secondory stresses are greater than $10 \%$ of the primary stress for most practical designs for concentrated loods.

- For uniform loods (Fig. 8-1 lb) and a shear-rigid core with $E_{f} / G_{c}$ less than obout $100, \mathrm{~L} / \mathrm{d}_{\mathrm{cr}}$ is below the proctical range of $\mathrm{L} / \mathrm{d}$ for most focing thicknesses; secondary face stresses are less than 10\% of the primary stresses in such cases.


Neter 1. If actual walue of $L / d$ is less therr ( $L / d)_{c r}$, use in atwor-flexible core theory is indicated, depending upon actual level of occeptable error.
2. Graphs are for uniform and symmetrical cross sections.

Bumerction of Chert Une: Find span/depth ratio betow which further analysis for shear-flexible cores to required to restrict errors in face strest to $10 \%$ or lesh Sondwich has 0.06 in. FRP foces $\left(E_{f}=2.5 \times 10^{6} \mathrm{pai}\right)$ and a $<$ in. thick, 2.5 pcf polyurethone form core $\left(G_{c}=500 \mathrm{pai}\right)$. Colculote $t / d=0.03, E_{f} / G_{i}=5 \times 10^{3}$. Find $L / d_{e r}=12$ for uniform loods and 270 for concentrated loods. Colculote $\theta_{\mathrm{cr}}=42$ for uniform loods and 954 for concentrated loods (E98. 8.78 and 8.79).

Also calculate decay distonce for concentrated knife adge lood, using Eq. 8.78, with $p=10 \%$ :

$$
(2 x)_{d}=0.816\left[\frac{0.06^{3} \times 2.5 \times 10^{6}}{500 \times 2.0}\right]^{1 / 2} \log \left(\frac{100}{10}\right)=1.4 \mathrm{in}
$$

Therefore, if actual lood width is on the order of 1.4 in. or greater, consider distributing lood over a finise width.

Fig. 8-II CRITICAL SFANDEPTH RATIO BELOW WHICH ELEMENTARY THEORY PRODUCES FACE STRESS ERRORS OF 10\% OR GREATER

The illustrative example shown in Fig. 8-11 indicates that secondary stresses are less than $10 \%$ of primary stresses for uniform loads at span/depth ratios of $!2$ or greater. For concentroted knife-edge loads, however, secondary :tresses are grecter than $10 \%$ of primary stresses for all spans up to $(L / d)$ cr $=270$, which includes the range of proctical spans.

For concentrated loads, the example also shows that seconcary face stresses con be significant even when foces are quite thin, and when the secondary moment is small compared to the maximum monvent. In this case, occording to Eq 8.78, $M_{s \text { max }}=M_{\text {max }} / 0=M_{\text {max }} / 954=0.001 M_{\text {max }}$. Or, the secondary moment is oniy one thousondth of the maximum moment applied to the cross section.

### 8.7 Bending and Shear in Sandwich Plotes

The analysis and design of sundwich plates is in many respects similar to that of solid plates which were cavered in detail in Chapter 6. This section deals principelly with special considerations which arise in sandwich plater where the core is soft, and perhops shear flexible and orthotropic as well.

## Section Properties of Sandwich Plates

As in the case for solid plates, the stiffness of the sondwich plate is greater then that of c norrow beom of column due to restraints of Poisson's deformations, introduced by boundary conditions or shape of the structure. This increase in stiffness can be accounted for by the modified motular ratio, $n_{i}^{\prime}$, as defined eorlier:

$$
\begin{equation*}
n_{i}^{\prime}=\frac{1}{1-v_{i}^{2}}\left(\frac{E_{i}}{E_{v}}\right)=\frac{n_{i}}{1-v_{i}^{2}} \tag{q}
\end{equation*}
$$

The term $n_{i}^{\prime}$ is used in ploce of $n_{i}$, in relotionships for section properties, such as are giren in Table 8-la. For relationstips given in Table 8-lb, c that are derived for sandwiches with equal foces $\left(E_{1}=E_{2}=E=E_{r}\right)_{2}$ it is implicit that $n_{1}=1$.

Substituting, $n_{i}^{\prime}$, for the implied, $n_{i}$, in appropriate stiffness relationships results in the following:

$$
\begin{equation*}
D_{m}=n_{i}^{\prime} E!=\frac{E!}{1-v^{2}} \tag{Eq. 8.79}
\end{equation*}
$$

This equation is identical in form to Eq. 6.2a given in Chapter 6 for saiid plates.

The increase in p!ate bending stiffness over that of a beam is a result of the restraint of warpage or anticlastic curvature transverse to the span direction. For example, in solid plates, subjected to cylindrical bending on a simple span, this restraint is developed by internal shears and moments near the unsupported edges of the plate. In the case of sandwich plates, the internal shears are carried by the core which is, relatively, very much less shear rigid than in a solid plate - significant shear deformation is expected. Hence, a sandwich plate must be significantly wider than a solid plate in r.ider for the full restraint of anticlastic curvature to develop. Hence, the use of $n_{i}$ in place of $n_{i}$ is accurate only for very wide sandwich plotes.

In light of the dbove and the fact that $v^{2}$ is usually a small term, the effect of Poisson's ratio may safely be neglected in most practical designs. In such instances the formulas of Table 8-1, may be used without replacing, $n_{i}$ with $n_{i}{ }^{-}$ Of course, if in a particular design, neglecting the effects of Poisson's ratio leads to on unconservative result, the use of $n_{i}^{\prime}$ in place of $n_{i}$ is indicated.

If one or both faces of a sondwich panel are corrugated, the local bending tronsverse to the corrugation direction normally relieves the effects of transverse moments required to restrain anticlastic curvature. $I n$ this case, ihere is no justification for the use of $n^{\prime}$ unless the faces are very thick. If corrugated foces are thick, special study is required.

## tsotropic Sondwich Plates

An "isotropic" sandwich plate is construsted from layers of isotropic or planar isotropic materials, and properties are iscitrcpic only in the plone of the plote.

Simply Supported Rectonguler Sandwich Plotes: When an isctrop:c sandwich plate is simply supported, bending moments, torsional moments, shears, and also bending deflections are the some as those which occur in a simply supported solid isotropic plate hoving a uniform thickness. The principal difference in behavior between a simply supported isotropic sandwich plate and its solid isotropic homogeneous plate counterpart is shear deflection. While the onalyses for shear deflection of sandwich plates is considerably more complex, the concept is similar to that discussed earlier for sandwich beams. That is, the total deflection is ussumed to be the sum of the bending deflection (with infinite shear rigidity assumed) and the shear deflection (with infinite bending rigidity assumed).

Fig. 8-12 gives non-dimensional coefficients for shear and bending deflections, and shear and bending stress resultants for simply supported isotropic rectangular sundwich plates under uniform lateral load. As expected from the above discussion, the maximum bending stress resultant ( $M_{x}$ ), and the bending defiection are the same as those shown in Fig. 6-10, and the shear stress resultants are the same as those given in Fig. 6-11; they are given there only for completeness of the present figure.

Rectanguker Sandwich Plotes with Clomped Edges: In the case of uniformly loaded rectangular sandwich plates hoving clamped edges, the bending deflection and the shear and bending stress resultants are not the some as for on equivalent isotropic plate. Rather, these values depend upon the plate shear-flexibility porariveter, $\bar{\sigma}$, where

$$
\begin{equation*}
\sigma=\frac{b^{2} D_{v}}{\pi^{2} D_{m}} \tag{Eq. 8.80}
\end{equation*}
$$

This plate shear flexibility parameter is similar in many respects to the shear flexibility parameter for beams, discussed earlier, and defined by Eq. 8.49. Dimensionless coefficients for three limiting values of $\overline{0}$ are given in Toble 8-5.


Fig 2-12 DEFLECTIONG, SHEARS AND MOMENTS N UNFORMLY LOADED ISOTROPIC SANDWICH PLLATE HAVING SIMPLY SUPPORTED EDCES (WDAPTED FROM 8.5)

Table 8-5
Coefficients for Moximum Deflection and Mornent for Clamped Square Sandwich Plate Under Uniform Lood (8.5)

| $\sigma$ | $w \frac{D_{m}^{*}}{q a^{4}}$ | $\frac{M *}{q a^{2}}$ |
| :---: | :---: | :---: |
| $\infty$ | 0.00126 | 0.0513 |
| 4 | 0.00325 | 0.0410 |
| 0 | $\infty$ | 0.0347 |

* Maximum bending stress resultant occurs at middle of each edge. Maximum deflection is at center of ihe plate.

Circular Sandwich Plates: Circular sandwich plates which ore symmetrically loaded and simply supported behave in the some man.ier as circular horrogeneous isotropic plates, except that the shear deflection, $w_{v}$, must be odded to the bending deflection $w_{m}$. The equations for maximum shear deflection and bending deflection at the center of a plate of diumeter $a$, and subjected to a uniform load, $q$, are given below (8.5):

| total deflection | $w$ | $=w_{m}+w_{v}$ |
| :--- | :--- | :--- |
|  | Eq. 3.26 |  |
| for simply-supported edge | $w_{m}=\frac{5+v}{1024(1+v)} \frac{q 0^{4}}{D_{m}}$ | Eq. 8.81 |
| for clamped edges | $w_{m}=\frac{9 q a^{4}}{1024 D_{m}}$ | Eq. 8.82 |
| for either edge conditon | $w_{v}=\frac{9 a^{2}}{64 D_{v}}$ | Eq. 8.83 |

The equations for the moment component of deflection given chove are identical to those for homogeneous plates.

Approximate Methoos: Relatio.rchips derived for co.wentional, homogeneous, uniform plates can be modified to give approximate moments and deflections for isotropic sandwich, plates. The following procedure has been proposed to odapt
converitional plate formulas, for homogeneous solid sections in which shear rigidity is assumed infinite, to the case of layered sandwich construction where core shear rigidity has a finite value (8.1):

1. Colcuiate "effective properties" of the sandwich plate for use in conventional formulas for homogeneous isotropic clates, as follows:

General:

$$
\begin{align*}
& t_{e}=3.46\left[\frac{\left(1-v^{2}\right) D_{m}}{\pi}\right]^{1 / 2}  \tag{Eq. 8.84}\\
& E_{e}=\frac{\pi}{t_{e}} \tag{Eq. 8.85}
\end{align*}
$$

For thin equal foces and soft but shear-rigid core:

$$
\begin{align*}
& t_{e}=1.73 d \\
& E_{e}=\frac{1.16 t_{f} E_{f}}{d} \tag{Eq. 8.87}
\end{align*}
$$

$$
\text { Eq. } 8.86
$$

Thus, on isotropic sondwich plate having a bending stiffness $D_{m}$, and an in-plane stiffness $\bar{A}$, is identical in stiffiess to a homogeneous isotropic plate hoving a thickness $t_{e}$, and a modulus of elasticity, $E_{e}$.
2. Calculate $w_{e}$, the maximum bending deflection of the equivalent homogeneous plate simply supported at its edges, with loads applied normal to the plate, using appropriate formulas for an homogeneous isotropic plate hoving the geometry of the actual plate, and having thickness ${ }_{t}$, and elastic modulus, $\mathrm{E}_{e}$.
3. Colculate actual approximate upper-bound maximum deflection of the sandwich plate, to account for the finite shear rigidity of the core:

$$
w_{u}=w_{e}\left(1+20 \frac{D_{m}}{D_{v} b^{2}} \simeq w_{e}\left(1+\frac{2}{\theta}\right)\right.
$$

Since $w_{u}$ is an upper-bound value, the actual maximum deflection, $w$, will lie betwhen $w_{u}$ and $w_{e}$. Thus, $w$ is an estimated value.
4. Calculate the bending and shear stress resultants using equations for the homogeneaus isotropic plate having the geometry of the octual plate. For
plate solutions bosed on small deflection theory, which is usually the only case of interest for practical sandwich structures, stress resultants, (not stress), depend anly on plate geametry, load, and boundary conditions, and are independent of thickness. Many handbooks (e.g. 8.15) give solutions for plates in terms of stress rather than stress resultants. In such cases, and for small deflections only, stresses can be converted to stress resultants by setting $t=!$, and multipling the resulting bending stress by 6 and the shear stress by $3 / 3$.

The stress resultants determined by the above procedures do not account for the extro foce-bending effects associated with shear-flexible cores, such as was determined for beams in the shear-flexible core analysis described in Section 8.6. This is discussed further below:

Shear-Flexible Cores: The effects of shear-flexible cores, discussed in Section 8.6 for beams, also occur in plates. There are no practical rigorous solutions available for the ana!ysis plates having shear-flexible cores. The following approach for wetermining the approximate maximum stress due to primary and secondary bending effects, may prove useful in some cases.
a) Consider a free-body strip of the plate as a beam.
b) Determine the ratio of maximum bending stress (primary plus secondary) to primary bending stress, using methods given in Section 8.6.
c) Determine the primary bending stress in the actual sondwich plate by the methods discussed in this Section.
d) Estimate the maximum stress in tise plate by multiplying the primary stress in the plate determined in Step cabove by the ratio obtained in Step b above.

Since the plate is being modeled as a beam, Fig. 8-11 may also be used to estir.ate when secondary bending effects are significant by estimating approximate critical span-depth ratios.

The accuracy of the above approach depends on load distribution, geormetry, and cross-sectional proportions and materials pryperties and the like. Depending on the specific design problerr, more accurate analysis and tests may be required.

## Orthotropic Sandwich Plates

The faces or the core of a sandwich structure may be orthotropic. Numerical solutions for orthotropic sandwich plates ore very limited, main!y because of the complexity of the analysis problem. Equations for deflections and bending stress resultants for uniformly loaded rectangular plates having either simply-supported or clamped edges, with principal directions of orthotropic faces and cores aligned with edges are given in (8.1) but they are complex and cumbersome to use. Furthernore, expressions for shear stress are not provided in this reference.

The following equations may be used to determine maximum deflections and stress resultants for the case of a uniformly loaded, simply supported rectangular sandwich plate having thin but dissimilar isotropic faces and an orthotropic core with the principal axes of the core aligned with the edges (8.2).

$$
\begin{aligned}
& \begin{array}{l}
\text { deflection } w=K_{1}\left(\frac{1}{E_{1} t_{1}}+\frac{1}{E_{2}^{t}}\right) \frac{q b^{4}}{d^{2}} \\
\begin{array}{l}
\text { foce stress } \sigma_{y 1}=K_{2} \frac{q b^{2}}{d t_{1}} ; \\
\sigma_{y 2}=\frac{K_{2} q b}{d t_{2}}
\end{array} \\
\begin{array}{l}
\text { Eq. } 8.89 \\
\begin{array}{l}
\text { core shear } \\
\text { stress }
\end{array} \tau_{x}=K_{3 x} 4 \frac{b}{d} ;
\end{array} \quad \tau_{y}=K_{3 y} q \frac{b}{d}
\end{array} \quad \text { Eq. 8.91a, b }
\end{aligned}
$$

Values of coefficients $\mathrm{K}_{1}$ to $\mathrm{K}_{3}$ are plotted in Fig. 8-13 to 8-15. These coefficients vary with aspect ratio of the plate, with the degree of orthotropicity of the core, as defined by $R=G_{c y} / G_{c x}$, and also with $\overline{0}$. The values of $G_{c y} / G_{c x}$ range from 0.4 to 2.5 , which is typical of many available honeycomb cores.

More generally, a reasonable approximation of maximum stresses and deflections may be obtained, provided the plate elemenis are not strongly orthotropic, by analyzing the orthotropic plate as an isotropic sandwich plate having the following properties (8.5):


Fig. 2-13 COEFFICIENTS FOR MAXIMMM DEFLECTION N SANDWICH PLATES WITH ISOTROPIC FACES AND ORTHOTROPIC CORE (8.2)

## Coofficiont K2 tor use in Eq 8.90



Fig. 8-14 COEFFICIENTS FOR MAXIMMM STRESS AT THE CENIROD OF EACH FACE W SANDWICH PLATE HAVING ISOTROPIC FACES AND ORTHOTROPIC CORE (8.2)


Fig. 8-15 COEFFICIENTS FOR CORE SHEAR STRESS IN SANDWICH PLATES WITH ISOTROPIC FACES AND ORTHOTROPIC CORE (8.2)

$$
\begin{array}{lll}
\text { for } \frac{a}{b}=1: D_{m}=\frac{1}{2}\left(D_{m x}+D_{m y}\right), D_{v}=\frac{1}{2}\left(D_{v x}+D_{v y}\right) & \text { Eq. 8.92a, } b \\
\text { for } \frac{a}{b} \geq 3: D_{m}=D_{m y}, & D_{v}=D_{v y} & \text { Eq. 8.93a, } b
\end{array}
$$

The occuracy of this approximation diminishes if $D_{m y}$ is significantly less than $\mathrm{D}_{\mathrm{mx}}$, but this is usually neither a common nor on efficient condition in practical structures.

## Stresses Caused by Locollized Loods

When concentrated loads are applied normal to a sandwich panel, localized bending stresses are produced in the foce(s) of the panel, and shear and tension or comprersion stresses are developd in the core. These effects are usually maximum ot or near the point of load application, and can cause significant stresses, as discussed in Section 8.3.

Relationships !or stresses developed under two simple cases of localized loods are given in Figs. 8-16 and 8-17. Fig. 9-16 is for the cose of 0 loral circular load applied to the foce in regions awoy from the edges of a wide sandwich bearn or sondwich plate. Fig. $8-17$ is for a line lood applied neor the edge of a ponel. in both cases the face and core stresses resulting from overall bending and shear shouid be superimposed on these local stresses to obtain the totul stresses in the component.

Cwerall, effects of localized loads such os local stresses due to peeling ot the foce-core interface, and the usual very low strength of sandwich cores, combine to render most analyses as highly approximate. liests of the effects of localized loods are frequently a necessary part on any detailed evaluation.

## E8 Stability of Sandwich Elements in Compression

Both general instability of sandwich colurnss, struts and compression panels, and local instability of compression foces of sondwich structures are important limit states, and are considered in this Section.


Stresses in loaded foce:

Extrerse fiber, bending
Sheor
Stress in Core:
Compression (or Tession) nermal to plane
$\sigma_{f}=k_{i} q(r / i)^{2}$
$\tau_{i}=k_{2} q / t$
Eq. 8.94
Eq. 8.95
$o_{c}=k_{3} 9$
Eq 8.96

Fig. 8-16 MAXIWUM STRESSES DUE TO CONCENTRATED LOAD APPLIED TO SANDWICH FACE (8.9)


Stresses in looded face:

| E:itreme fiber, bending | $\sigma_{f}=k_{4} R \mathrm{R} / \mathrm{t}^{2}$ | Eq. 8.97 |
| :---: | :---: | :---: |
| Sheor | $\mathrm{T}_{\mathrm{f}}=k_{5} \mathrm{R} / \mathrm{t}$ | Eq. 8.98 |
| Streas in Core: |  |  |
| Compression (or Tension) nor mal tc plone | $\sigma_{c}=k_{6} R / \delta$ | Eq. 8.99 |

Fig. 8-17 MAXIMUM STRESSES DUE TO CONCENTRATED UNE LOAD APPLIED TO SANDWICH FACC NEAR PANEL EDGE (8.9)

## Buckiling of Columns and Struts

During the process of buckling, a simple pin-ended column loaded in compression deflects laterally in bending. The cur vature that develops during this deflection produces both on eccentricity of the load relative to the axis of the column, and a shear component transverse to the column oxis. In most conventional compression members the distortions due to shear s!ress are small enough to be neglected. In sandwich construction, however, shear deformations may reduce buckling capocity significantly from ioads calculated from classical Euler theory. The following equation gives the buckling lood for sondwich compression members that experience significant shear deformations in oddition to bending deformation during the buckling process (8.5):

$$
\begin{equation*}
\frac{1}{P_{c r}}=\frac{1}{P_{e}}+\frac{1}{P_{v}} \tag{Eq. 8.100}
\end{equation*}
$$

It can be shown that the critical buckling load associoted with shear deformation only, is the some as the shear sriffness of the column (8.5); thus:

$$
\begin{equation*}
P_{v}=D_{v} \tag{Eq. 8.101}
\end{equation*}
$$

Thus, Eq. 8.100 can be written
 conditions (See Table 6-4)

These simple relationships yield resulis which are identical to more complicated exact solutions for the general case where the buckling mnde is either symnretrical or anti-symmetrical about column mid-lenglii. Such buckling modes occur in axially-looded columns which have both enjs pinned, both ends clamped, or both ends clamped with one end free to translate. The equation also results in values which are only slightly unconservative for several practical sandwich constructions in which one end is pinned and the other end is :lamped, with both ends held against translution (8.5). More rigorous methods are available for such cases where the buckling mode is neither symmetrical nor anti-symmetrical dbout mid-length (8.5).

Calculations for determining the critical buckling load of a simple pin-ended column are given in Example 8-7 at the end of this Section. For the column examined, shear deformations reduce the Euler buckling load by $27 \%$.

For materials which display elastic-plastic behovicr, the secant modulus of rigidity should be used in the determination of $D_{v}$, as well as $D_{m}$. In the case of plastics, the time-dependent viscoelastic modulus should be used in place of the elastic modulus, provided that stresses are held below the viscoelostic limit (Chopter 3).

Effects of hitial Eccentricities: When significant initial eccentricities are built into a sandwich column which has either a weak core or a weak athesive bond, the colurnn may fail by rupture of the core at $n$ load which is lower than the critical buckling load given by Eq. 8.100. For an axia!ly loaded column that is clamped at each end and held against translation, the critical load $P_{\text {crv }}$ governed by the shear strength $\tau_{U}$, of either the core or the adtesive, whichever is lower, is as follows (8.5):

$$
\begin{array}{ll}
P_{c i v}=\frac{T_{u} A_{v} L}{4 w_{0}} & \text { if } k L \leq \pi \\
P_{c r v}=\frac{\tau_{u} A_{V} L}{4 w_{0}} \sin \frac{k L}{2} ; & \text { if } k L>\pi \tag{Eq. 8.105}
\end{array}
$$

$$
\begin{align*}
& \text { where }=\left[\frac{P D_{v}}{\left(D_{v}-P\right) D_{m}}\right]^{1 / 2}  \tag{Eq. 8.106}\\
& w_{0}=\begin{array}{l}
\text { initial eccentricity or lateral displacement of } \\
\end{array} \\
& \text { column centerline }
\end{align*}
$$

The critical load is determined by trial and erios to test for the equality, $P=P_{c r v}{ }^{\circ}$

When plastics are used as the core of a sandwich panel, appropriate values of time-dependent strength as well as modulus should be used in the evaluation of the effects of initial eccentricities.

## Buckling of Plates Under In-Plane Compression

Conceptually, isotropic sandwich plates or panels with isotropic faces and cores buckle under in-plane compression in a monner similar to isotropic hornogeneous plates (Section 6.9). As in the case of sandwich columns, core shear deformation reduces the buckling strength of sandwich plates from classical solutions that are based on bending stiffness alone.

Buckling resistance of uniaxially compressed, simply supported sandwich plates hoving isotropic foces and on orthotropic core may be determined from Eq. 6.71, together with the buckling coefficients given in Figs. 8-180 and 8-18c. These Figures, together with Figure 8-18b for isotropic cores, show how the buckling resistance varies os the ratio of core shear rigidity in each principal direction, $R=G_{c y} / G_{c x}$, varies from 0.4 to 2.5. This range of $R$ values is typicai of the core choracteristics of honeycomb core materials.

Buckling resistance of uniaxially cumpressed, simply supported, sandwich plates hoving isotropic faces and an isotropic core moy be determined from Eq 6.71 and the buckling coefficients given in Fig-8-18b. The coefficient, D, represents the ratio of shearing to bending stiffness. The figure shows that changes in this ratio can have significant influence on buckling strength. Equations for buckling


Fig. 8-18 BUCKLING COEFFICIENTS FOR EG. 6.71 FOR SIMPLY SUPPORTED ORTHOTROPIC SANDWICH PLATES UNDER UNFORM EDGE C(MMPRESSION (8.10)
resistance of isotropic sandwich plates for some other ioading and support conditions are avilable (8.5 and 8.11).

Equations are also available to determine buckling resistance of sandwich plates having orthotropic elernents for a variety of other loading conditions, support arrangernents, and plate geometries (8.1, 8.2, 8.5, 8.10). Discrete, but somewhat cumbersome, equations are available for rectangular plates having principal orthogonal axes of the faces and core parallel to the plate edges (8.1).

The corrugated core sandwich configuration is a practical but special case of a sandwich plate having an orthotropic core. Analysis for overall instability, and local instability of thin web and foce elements, though somewhat cumbersome, are available (8.1, 8.2, 8.5, 8.10, 8.11).

## Face Wrinkling and Locol Instobility

Face wrinkling may be a critical limit state when compression faces ore thin and flexible and the core has a low shear modulus, and also a low compression modulus normal to the plone of the face. Face wrinkiing is a form of instability associated with short wave length ripples as opposed to the general instability discussed above. Wrinkling may take the form of either symmetrical or antisymmetrical buckling of both faces of compression members, $r$ in the cuse of a sandwich plate or beam in bending, the compression skin moy buckle while the tension skin remains tout (Fig. 8-3).

The following semi-empirical equation gives a conservative lower bound for the face stress at the onset of local face buckling with a :ontinuous core material. This equation is derived from an analysis of a large number of test results on a variety of sandwich members with thin face materials and continuaus cores (8.5, 8.12).

$$
\begin{equation*}
c_{w r}=0.5\left(E_{f} E_{c} G_{c}\right)^{\frac{1}{3}} \tag{Eq. 8.107}
\end{equation*}
$$

The modulus, $E_{c}$, in this case is either the elastic or viscoelastic mooulus of the core for homogeneous cores, or the elastic or viscoelastic modulus normal to the foces for orthotropic cores such os honeycombs or end-grain oalsa.

Theoretical equations are also available that are intended to account for the effects of waviness of the faces on fuce wrinkling strength (8.2, 8.3, 8.5). A knowledge of the magnitude of the initial waviness amplitude is required for use in such equations. However, measured values of initial waviness do not provide suitable predictions of skin wrinkling stresses, and empirical values of initial waviness must be assumed for proper correlation between theoretical results and actual test values. Hence, in general, these equations are of limited practical use in predicting critical wrinkling stress a priori. Furthermore, Eq. 8.107 has been found to provide reasmably good lower-bound predictions of skin wrinkling stresses independent of surface waviness characteristics (8.12). Overall, this suggests that wrinkling stress is best established by Eq. 8.107 and then verified by test as appropriate, and especially when cores are shear flexible and weak.

Exarnpie 8-7 illustrates the calculation for critical wrinkling stress for a plasticbased sandwich column. For the member exarrined, wrinkling stress is obout three times the critical stress for overall buckling. If the panel were significantly shorter than assumed in the example, wrinkling stress might govern (See also Example 8-112.

The effects of biaxial stress on the critical wrinkling stress have been examined, with tive following conclusions (8.5):

$$
\begin{align*}
& \text { If } \frac{\sigma_{y}}{\sigma_{x}}<\left(\frac{G_{c y}}{G_{c x}}\right)^{\frac{1}{3}} \text {, then } \sigma_{x}=\sigma_{c r} \text {, }  \tag{Eq. 8.108}\\
& \text { If } \frac{\sigma_{y}}{\sigma_{x}}>\left(\frac{G_{c y}}{G_{c x}}\right)^{\frac{1}{3}} \text {, then } \sigma_{y}=\sigma_{c r} \text {, } \\
& \text { If } \frac{\sigma_{y}}{\sigma_{x}}=\left(\frac{G_{c y}}{G_{c x}}\right)^{\frac{1}{3}} \text {, then } \sigma_{x}=\sigma_{x c r} \text { and } \sigma_{y}=\sigma_{y c r} . \tag{Eq. 8.110}
\end{align*}
$$

## Example 8-7: Capacity of a Sandwich Column Loaded in Axial Compression *

Determine the short-term ultimate load capacity of a pin-ended sandwich column 10 inches wide and $8^{\prime}-4^{\prime \prime}$ long, and having the cross section shown in Example 8-2. Load is applied at the neutral axis.

## I. Compression Strength (Eq. 8.23a)

Let $P_{U}=$ ultimate load capacity governed by compression strength.
$\sigma_{i}=\frac{n_{i} P}{A}$ or $P_{u}=\frac{A \sigma_{i}}{n_{i}}=\frac{A F_{u c}}{n_{i}}$
From Example 8-2: Face I: $n=1, F_{u c}=21,000 \mathrm{psi}$

$$
\begin{array}{ll}
\text { Face 2: } & n=0.3 / 3, F_{u c}=22.000 \mathrm{psi} \\
\text { Core: } & n=0.00068, F_{u c}=20 \mathrm{psi}
\end{array}
$$

$$
\operatorname{\Sigma n_{i}} A_{i}=A=0.156 \mathrm{in}^{2} / \mathrm{in} .\left(E_{r}=E_{i}\right)
$$

Capacity:

$$
\begin{aligned}
& \text { Face 1: } \quad P_{u}=\frac{0.156 \times 21,000}{T}=3,276 \mathrm{lb} / \mathrm{in} . \text { (governs) } \\
& \text { Face 2: } \quad P_{u}=\frac{0.156 \times 22,000}{0.373}=9,200 \mathrm{lb} / \mathrm{in} . \\
& \text { Core: } \quad P_{11}=\frac{0.156 \times 20}{0.00068}=4,588 \mathrm{lb} / \mathrm{in} .
\end{aligned}
$$

2. General Instability (Eq. 8.102)
$\frac{1}{P_{c r}}=\frac{1}{P_{e}}+\frac{1}{D_{v}}$; and $P_{e}=\frac{k \pi^{2} D_{m}}{L^{2}}$
$k=1$ for pin-ended column (Table 6-4):
$D_{m}=486,000 \mathrm{in} / \mathrm{lb}, D_{v}=1,240 \mathrm{in}$. $/ \mathrm{lb}$ (Example 8-2)
$P_{e}=\frac{\pi^{2} \times 486,000}{100^{2}}=480 \mathrm{lb} / \mathrm{in}$.
$P_{c r}=\frac{1}{\frac{1}{480}+\frac{1}{\sqrt{2} 240}}=346 \mathrm{~B} / \mathrm{in}$.
See Footnote, Example 8-I.

## Example 8-7 contimed

3. Local Wrinkling (Eq. 8.107)
$\sigma_{c r}=0.5 \quad\left(E_{f} E_{c} G_{c}\right)^{\frac{1}{3}}=0.5 \quad\left(1500 \times 500 E_{f}\right)^{\frac{1}{3}}=45.4 E_{f}$
$P_{c r}=\sigma_{c r} \frac{A}{n_{i}}=\frac{45.4 E_{f}^{1 / 3} \times 0.156}{n_{i}}=\frac{7.08 E_{f}^{1 / 3}}{n_{i}}$
Face I: $E_{1}=2.2 \times 10^{6} \mathrm{psi} ; P_{c r}=\frac{7.08}{\left(2.2 \times 10^{6}\right)^{1 / 3}}=921 \mathrm{lb} / \mathrm{in}$.
Face 2: $E_{2}=0.82 \times 10^{6} p s i ; P_{c r}=\frac{7.08\left(0.82 \times 10^{6}\right)^{1 / 3}}{0.373}=1777 \mathrm{lb} / \mathrm{in}$.
4. Conclude

Ultimate load on cotumn is $346 \mathrm{lb} / \mathrm{in}$. as governed by general instability. Total short term ultimate load is $346 \mathrm{lb} / \mathrm{in} . \times 10 \mathrm{in} .=3460 \mathrm{lbs}$. Note that low shear stiffness of core reduced Euler lood of $480 \mathrm{lb} / \mathrm{in}$. to $346 \mathrm{lb} / \mathrm{in}$., a reduction of $\mathbf{2 7 \%}$.

Note: | psi = 0.0069 MPa; I in. = $\mathbf{2 5 . 4} \mathbf{~ m m}$; | lb=0.454 kg

In essence, these equations indicate that the critical wrinkling stress is unoffecied by biaxiality of stress.

When thin faces are supported ! honeycomb cores with large cells, they may wrinkle or dimple in or out of the voids in the cells. The critical foce buckiing stress for such honeycomb cores is (e.5):

$$
\begin{equation*}
\sigma_{c r}=k E\left(\frac{t}{d_{1}}\right)^{2} \tag{Eq. 8.111}
\end{equation*}
$$

where
$d^{\prime} \quad=$ diameter of circle inscribed within hexagon or square of horeycomb cell (Fig. 8.2b)
$k=3$ for hexagonal cells, and for square cells with stress applied parallel to the sides

1. $=2.5$ for square cells with stress cpplied parallel to the diagonal of the square grid

When the sondwich consists of thin faces applied to a corrugated or other discontinuous core, a number of modes of local buckling must be considered. Thut is, either the face or the core may buckle independently or simultanearsly. Furthermore, if the face is attached to the core only locally, as with fasteners or rivets, the elements may buckle between fasteners. Some guidance for determining the local buckling resistance of such sandwich panels with corrugated cores is given in $(8.2,8.11)$.

### 8.9 Optimum Deaign to Minimize Cont ar Weight

The structural arrangement of sondwich construction offers unique opportunities to mix and tailor moteriaks and cross-section proportions to meet structural design criteria. For cost-effective design, economic comparisons between combinations of different materials in a sandwich structure must be made. Such comparisons should be based on sandwich proportions that vory for each combination of materials, and that reflect the minimum combined cast of the cure and facings. Simplified relations which can be used for these economic analyses are presented in this Section. If weight rather thon cost is to be
optimized, unit weight may be substituted directly for unit cost in the ensuing discussion and equations.

The following are the principal simplifications and assumptions used in the derivation of minimum cost relations that are presented subsequently:

- The faces are identical and thin and secondary bending effects due to shear-flexible cores are negligible.
- Tine costs of odhesive, other bonding or fastening processes, and surfoce finishes are not included in the analysis.
- The core is assumed to be "soft," as defined in Sectior. 8.4.
- The unit cost per volume of skins and faces does not vary with thickness.

The validity of the above assumptions may have to be investigated in more detail, once initial proportions are established. Equations in Table 8-Ih give section properties for sandwich sections that meet the criteria described cwove.

## Cost Effective Proportions for Components in Bending

In sandwich components such as wall, roof, or floor members designed to support normal loods in bending, cross-section proportions are usually governed by a required moment of inertia, section modulus, and core area. These sestion properties may be satisfied by infinite combiriations of facing and core thicknesses. However, only one set of proportions provides the required section properties at minimum cost. A procedure for determining the minimum cost of panels that hove the required section properties is developed below. For simplicity, the procedure is developed for a beam strip of unit width (i.e. $\mathbf{b}=1$ ).

Panel Cost: The cost per unit surfoce area, $C_{p}$, of a sandwich ponel meeting the assumptions given earlier, is expressed as follows:

$$
\begin{equation*}
C_{p}=2+C_{f}+c C_{c} \tag{Eq. 8.112}
\end{equation*}
$$

where
$C_{f}=\operatorname{cost}$ per unit volume of tace material
$C_{c}=$ cost per unit rolume of core material

This expression will be used below in the development of relationships for minimum cost panels.

Criterion I - Marnent of mertia Governss In a specific design situation, stiffness requirements may dominate the design problem and govern sondwich proportions. Thus, Criterion I results in a cross section that provides the required moment of inertia, I\%, ot minimum cost. The iesulting section is adequate only if its section modulus, $S$, and shear area, $c$, are also adequate for the sp xific requirements of the application (i.e. $S \geq S^{*}$, and $c \geq c^{*}$ ). Equations sotisfying Criterion I wre developed below.

The total moterial cost per unil surface orea of the panel is obtainert in terms of I* and unit costs of moterials, by combining Eqs. 8.7 c and 8.112 for 0 unit width of section ( $b=1$ ):

$$
\begin{equation*}
C_{p}=\left(2 C_{f}-C_{c}\right) 1+C_{c}\left(\frac{2 f}{f}\right) 1 / 2 \tag{Eq. 8.113}
\end{equation*}
$$

Differentiating this equation with respect to $t$, and setting the result equal to 0 , gives the tace thickness required for minimum panel cost, in terms of 1 " and the unit costs of moterials. Expressions for the core thickness and the total panel cost can then be readily determined. Resulting relationships for situations where I* governs design ( $S=S^{*}$, and $c \equiv c^{*}$ ) are as follows:

$$
\begin{align*}
& t=\left[\frac{c_{c}^{2}}{2\left(2 C_{f}-C_{c}\right)^{2}}\right]^{\frac{1}{3}}  \tag{Eq. 8.114}\\
& c=\left(\frac{4 C_{f}}{C_{c}}-3\right) t  \tag{Eq. 8.115}\\
& s=t d \simeq t(c+2 t)=S_{\min }
\end{align*}
$$

Eq. 8.14c

$$
\begin{equation*}
=\left(\frac{4 C_{f}}{C_{c}}-3\right)\left[\frac{C_{c}^{2}}{2\left(2 C_{f}-C_{c}\right)^{2}}\right]^{\frac{2}{3}} \tag{Eq 8.116}
\end{equation*}
$$

$$
\begin{align*}
\min . C_{p} & =\text { cost of faces }+ \text { cost of core }  \tag{Eq. 8.112}\\
& =2+C_{f}+\left(\frac{4 C_{f}}{-\frac{1}{c}}-3\right)+C_{c}  \tag{Eq. 8.117}\\
& \left.=2.38\left[C_{c}^{2}\left(2 C_{f}-C_{c}\right) 1 *\right]\right]^{1 / 3} \\
& \simeq 2+C_{f}+4+c_{f} \quad\left(\text { if } C_{f} / C_{c}>\frac{3}{4}\right)
\end{align*}
$$

Eq. 8.117 b shows that for a cioss section proportioned for moment of inertia at minimum cost, the foces comprise one-third of the panel cost, and the core somprises two-thirds of the panel cost. This is true for mony practical ponels where the cost per unit velume of the face material is significantly greater than that of the core (i.e. $\mathrm{C}_{\mathrm{f}} / \mathrm{C}_{\mathrm{c}} \gg \frac{3}{4}$ ).

Critterion 2-Section Matulus Coverns: In contrast to the above, situations can arise where strength requirements dominate the design problem, and govern sandwich proportiuns. Thus, Criterion 2 results in a cross section which provides the required section modulus, $S^{*}$, at minimum cost. The resulting section is adequete aily if its moment of inertia, $I$, and shear area, $c$, are also adequate for the specific requirements of the application (i.e. I $\geq I^{*}$, and $c \geq c^{*}$ ). Equations for Criterion 2 are developed below.

The total material cost per unit surface area of the panel is obtained in terms of, S*, and unit costs of materials, by combining Éqs. 8.14 c and 8.112 :

$$
\begin{equation*}
C_{p}=\left(2 C_{f}-C_{c}\right) t+C_{c}\left(\frac{S^{*}}{T}\right) \tag{Eq. 8.118}
\end{equation*}
$$

By reasoning similar to that described above for Criterion 1, the following relotionships can be derived for situations where $\mathbf{S *}^{*}$ governs design ( $1 \geq \mathrm{I}^{*}$, and


$$
\begin{align*}
& t=\left[\frac{C_{c} S^{*}}{2 C_{f}}\right]  \tag{Eq. 8.119}\\
& c=\frac{2 C_{f} t}{C_{c}}=\left[\frac{2 C_{f} S^{*}}{C_{c}}\right]^{1 / 2} \tag{Eq. 8.120}
\end{align*}
$$

$$
\begin{aligned}
1 & =\frac{t d^{2}}{2}=\frac{t(r+t)^{2}}{2} \\
& =\left(1+\frac{C_{c}}{C_{f}}\right)\left[\frac{C_{f} S^{*}}{2 C_{c}}\right]^{1 / 2} \\
\min . C_{p} & =\text { cost of faces }+ \text { cost of core } \\
& =2+C_{f}+\frac{2 C_{f}+C_{c}}{C_{c}} \\
& =2+C_{f}+2+C_{f} \\
& =\left(8 C_{f} C_{c} S^{*}\right)^{1 / 2}
\end{aligned}
$$

Eq. 8.7 c

Eq. 8.122

Eq. 8.123

Eq. 8.122 shows that for a cross section proportioned to obtain minimum cost of materials for a given section modulus, the total noterials cost is divided equally between the faces and the core.

## Criterion 3 - Momsnt of Inertia and Section Modulus Satisfied Sirmultaneously:

In certain coses, a cross section that provides the required moment of inertio, l*, and the required section modulus, $S^{*}$, simultaneously, also provides the minimurr panel cost. In order to be adequate, the cross-section proportioneci in accordance with Criterion 3 must also provide adequate shear aren (i.e. $c \geqslant c$ ). Equations for Criterion 3 are deve! oped below.

Proportions that provide section properties in accordance with Criterion 3, are as derived from Eqs. 8.7c and 8.14c for reasonobly thin foces:

$$
\begin{array}{ll}
c=\frac{2 I^{*}}{S^{*}}-\frac{S^{*}}{S I^{*}} \times \frac{2 I^{*}}{S^{*}} \text { (for thin faces) } & \text { Eq. } 8.124  \tag{Eq. 8.124}\\
t=\frac{S^{*}}{2 l^{*}} & \text { Eq. } 8.125
\end{array}
$$

Thus, substituting Equations 8.124 and 8.125 into 8.112 , results in the following panel cost:

$$
C_{p}=\frac{S^{*}}{2 I^{*}}\left(2 C_{f}-C_{c}\right)+\frac{2 I^{*}}{S^{*}} C_{c}
$$

Eq. 8.126

This equation gives the ponel cost directly from the minimum required section properties. As will be explained later, it may provide the minimum panel cost as wel!, depending on the relutive magnitude of S* and !* and urit costs, and providing $c \neq c *$, for $a$ given design sifuation.

Criterion 4 - Shear Area, $c^{*}$ : in oddition to the requirements for bending section properties, the sross section must also provide sufficient core thickrisss, $\mathrm{c}^{*}$ or greater, to develop :equired shear strength. This serves as a final check on the strength copocity $\boldsymbol{\text { f }}$ the cross-section meeting the other criteria given above.

Graphical Determination of Governing Criteria: A graphical presentation of both required and cost-effective proportions demonstrates, quantitatively, which of the above criteria governs in a given design situation. Fig. 8-19 presents such graphs for a specific set of $\mathrm{I}^{*}, S^{*}$, and $\mathrm{c}^{*}$ requirements, which will be used in a numerical solution in Example 8-8. The following are key elements shown in Fig. 8-19.

- The curves in Fig. 8-19 define section proportions which satisfy the required values of $\mathrm{I}^{*}, \mathrm{~S}^{*}$, and $\mathrm{s}^{*}$. The shaded portions of the curves define the bounds over which proportions are governed by $\mathrm{S}^{*}$ by $\mathrm{I}^{*}$, and by $\mathrm{c}^{*}$, respectively.
- The doshed straight-lines are contours of constant panel urit cost. The minimum-cost cross section occurs of the point of tangency of the cost contour and the I* and S* curves.
- The points of tangency, as obtained by Criteria I, 2 and 3, ure morked on Fig. 8-19. For this specific set of criteria, these happen to points occur on


Fig. 8-19 CRITERIA FOR SELECTING MNAMUM-COST BEAM CROSS SECTION FOR EXAMPLE 8-8
approximately the same contour $\left(C_{p} \simeq 0.027 \$ / i n .{ }^{2}\right)$, but this is not the generul rule.

- Both Criterion 1 and Criterion 2 fail to provide the mirimum panel cost becouse, in each instance, the alternote requirement for section properties is not satisfied. For exomple, for the same depth, the Criterion I thickness (and cost) must be increased to provide the needed $\mathrm{S}^{*}$. The result is similar for I* and Criterion 2.
- Criterion 3, by definition, satisfies both section modulus and moment of inertia requirements. And, it is the only point on the shaded boundary that meets both criterig. Hence, it provides the minimum cost (i.e. tangent to the left-most cost contour). The minimum cost is $C_{p}=0.0274 \mathrm{\$} / \mathrm{in}^{3}{ }^{3}$
- Criterion 4 forms a fourth bound on cross-section proportions, which is the minimum depth required for shear strength. Core depth provided by the above criteria must be greater than $\mathrm{c}^{*}$ in cider to meet the shear strength criterion.

For the specific set of design criteria examined above, Criteria 1, 2, and 3 all produce similar minimum panel costs since they lie on approximately the same $C_{p}$ coritour. However, they produce significantly different minimum cost proportions. In this instance, Criterion 3 prevails, since it satisfies both section modulus and moment of inertia criteria.

Clearly, the minimum cost solution examined above is not subject to generalization. Depending upon shifts in the relative mognitude of $\mathrm{I}^{*}$ and $\mathrm{S}^{*}$ and $\mathrm{c}^{*}$ in a specific design situotion, or a change in slope of the cost contours, as dictated by the relative unit cost of face and core materials, either Criterion I or Criterion 2 could govern in bending. Furthermore, if the core is especially weak, Criterion 4 might prove to govern as a result of shear strength considerations.

Detalled Design Procedure: While the above graphical approach is useful in understanding how the governing criterion is selected, a direct numerical design
procedure is useful in determining optimum designs. The following procedure provides a direct approach to the determination of minimum-cost panels, for a specific application:
a) Determine the required section properties 1* and S*, and the minimum core thickness, $c^{*}$, required for shear strength.
b) Solve for the section modulis furnished by the Criterion I cross section (Eq. 8.116). If $S \geqslant S^{*}$, Criterion I provides the minimum-cost cross section as governed by $\|^{*}$. If $\mathrm{S}<\mathrm{S}^{*}$, the Criterion I cross section is not adequate and is rejected.
c) If from the obove, $S<5^{*}$, solve for the monient of inertia furnished by the Criterion 2 cross section (Eq. 8.121). if $1 \triangleq 1 *$, Criterion 2 provides the minimum-cost cross section as governed by $\mathrm{S*}^{*}$. If $\mathrm{I}<\mathrm{I}^{*}$, the Criterion 2 cross section is not adequate and is rejected.
d) If Steps band c result in rejection of Cr:terion 1 and 2 , Criterion 3 yields the minimum-cost bending cross section.
e) Unce the criterion which produces the minimum-cost bending cross-section is established from Steps b through d above, the core depth provided, $c$, should be compared to, $c^{*}$, in accordance with Criterion 4. If this criterion is satisfied, the foce and core thickness and the panel cost can be obtained by the oppropriate equations for the governing bending criterion given earlier.
f) If Criterion 4 requirements are nct met, the core depth must be increased to provide the required strength. The face thickness can be diminished, while still satisfying 1* $^{*}$ and $\mathrm{S}^{*}$, as core depth is increased (Eq. 8.7a, b and $8.14 a, b, c)$. Alternately, a stronger or stiffer core may be needed to provide a cost-effective design.
g) Finally, the selected section should be checked for other governing criteria such as shear deflection.

Exarnple 8-8 illustrates the procedure for determining cost effective proportions of a sandwich wall panel.

## Direct Determination of Required Morment of Inertia

When designing a conventional beam or column for stiffness, the moment of inertia required to limit beam deflection or provide column stability can be calculated directly for a given beam or column span and load distribution. Usually, this rannot be done for a sandwich beam or column because it is necessary to account for the efferts of core shear deformation.

In Example 8-8 an estimate was mode that care shear deflection would be coout 25\% of bending deflection. Based on this, the required moment of inertia, I\#, was increased from that due to bending alone in the wall panel, to compensate for the increased deflection due to shear. However, for a sandwich beam or column proportioned for minimum cost of panel and face moterials based on Criteria ! or 3, a direct determination of l*, which accounts for core shear effects in addition to bending, can be formulated as foilows:

Bending Pivs Shear Deflection in Bearss: Solving Eqs. 8.27 and 8.115 simultaneously yields the following expression for I" if Criterion I pertains

$$
\begin{equation*}
I *-\frac{K_{V} P L}{m G_{c} w_{a}}(I *)^{2 / 3}=\frac{K_{m} P L^{3}}{E w_{a}} \tag{Eq. 8.127}
\end{equation*}
$$

where
$w_{a}=$ allowable deflection
$m=\left(\frac{4 C_{f}}{C_{c}}-3\right)\left[\frac{C_{c}^{2}}{2\left(2 C_{f}-C_{f}\right)^{2}}\right]^{1 / 3}$
for $K_{v}$ and $K_{m}$, see Tcble 8-3.

```
| Example 8-8k Optimum-Cost Perel Design *
Determine minimum-cost proportions for a sandwich wall panel that spans 8 feet, and has
fiberglass-mat-reinforced polyester faces of equal thickness, and an extruded polystyrene
structural foam core.
I. Design Criteria
```

Wind load
Safety Factor on Strength
(Typical Bosis - see section 3.4)
Deflection limis
2. Moterial Properties (short-term)
$\operatorname{Cost}\left(\$ / i \mathrm{in}^{3}\right)$
Ultimate Tensile Strength (Tension Governs)

Ultimate Shear Strength
Design Strength (FS = 5)
Modulus of Elasticity
Modulus of Rigidity

$$
\begin{aligned}
& q=40 \mathrm{psf}=0.28 \mathrm{psi} \\
& \mathrm{FS}=5
\end{aligned}
$$

$$
w_{c}=L / 150=0.64 \mathrm{in} .
$$

## Face (mat)

$C_{f}=0.08$
$F_{u l t}=10,000 \mathrm{psi}$

| - | $F_{w u}=35 \mathrm{psi}$ |  |
| ---: | :--- | ---: | :--- |
| $F_{f d}$ | $=2,000 \mathrm{psi}$ | $F_{v d}=7 \mathrm{psi}$ |
| $E_{f}$ | $=1 \times 10^{6} \mathrm{psi}$ | $E_{c}=1,500 \mathrm{psi}$ |
|  | - | $G_{c}=1,000 \mathrm{psi}$ |

## 3. Required Propertiez

## Determine Minimum Allowable Stress, F:

```
Tension:
\[
F_{t d}=2000 \mathrm{psi}
\]
Wrinkling of Face:
\[
\begin{aligned}
F_{c r d} & =0.5\left(E_{f} E_{c} G_{c}\right)^{1 / 3} \times \frac{1}{F S} \\
& =c .5\left(1 \times 10^{6} \times 1,500 \times 1,000\right)^{1 / 3} \times \frac{1}{5}=1,144 \mathrm{psi}<2,000 \mathrm{psi}=F_{t d} 8.10
\end{aligned}
\]
Use \(F=1,144\) psi as governed by foce wrinkling.
- See Footnote, Exomple 8-I.
```



Try adding 25\% to moment of inertia required for bending to compensate for shear deflection. Therefore, try $\mathrm{I}^{*}=0.604 \mathrm{in}^{4} / \mathrm{in}$. as first cut.

Required Minimum Core Thickness for Sheor, $\mathrm{C}^{*}$ :

$$
A_{v}=c^{*}=\frac{q L}{2 F_{v d}}=\frac{0.28 \times 96}{2 \times 7}=1.92 \mathrm{in} .
$$

## 4. Determine Appliceble Criterion for Minimum Cost Proportions:

Section Modulus Furnished by Criterion 1:

$$
\begin{align*}
s & =\left(\frac{4 C_{f}}{C_{c}}-3\right)\left[\frac{C_{2}^{2}{ }^{2} *}{2\left(2 C_{f}-C_{c}\right)^{2}}\right]^{2 / 3}  \tag{Eq. 8.116}\\
& =\left(\frac{4 \times 0.08}{0.004}-3\right)\left[\frac{0.004^{2} \times 0.604}{2(2 \times 0.03-0.004)^{2}}\right] 2 / 3 \\
& =0.262<0.282 \mathrm{in}^{3} /{ }^{3} \mathrm{in} .=5^{*} . \text { Criterion } I \text { is invalid. }
\end{align*}
$$

Moment of hertia Fumished by Criterion 2:
$1=\left[\frac{C_{f} \mathrm{Sm}^{3}}{2 \mathrm{C}_{\mathrm{c}}}\right]^{1 / 2}=\left[\frac{0.08}{2 \times 0.0 .282^{3}}\right]^{1 / 2}$
Eq. 8.121
$=0.474<0.604$ in. $^{4} / \mathrm{in}$. $=$ I\%. Criterion 2 is invalid.

Conclude: Since neither Criterion I or 2 satisfies both S* and I*, Criterion 3 governs the bending cross-section.

[^9]If Criterion 3 governs, so!ving Eqs. 8.27 and 8.124 results in the following expression for 1*:

$$
\begin{equation*}
\|^{*}=\frac{P L}{w_{0}}\left[\frac{K_{m} L^{2}}{E}+\frac{K_{v} S^{*}}{2 a}\right] \tag{Eq. 8.129}
\end{equation*}
$$

In application, Eq. 8.127 is used when evaluating Criterion 1, and Eq. 8.129 is used when evaluating Criterion 3.

Cohmm Buckling heluding Effects of Shear iDeflection: Solving Eqs. 8. 102 and 8.1 17a yields the following expression for IH:

$$
\begin{equation*}
\left\|*-\left(\frac{P}{m G_{c} \overline{S F}}\right) \quad\right\| *^{2 / 3}=\frac{L^{2} P}{k \pi^{2} E \overline{S F}} \tag{Eq. 8.130}
\end{equation*}
$$

where
$P=$ design axial lood
$\overline{5 F}=$ safety factor cogainst buckling
for $k$ see Table 6-4.

After determining 1* from Eq. 8.130, it is used in conjunction with Eqs. 8.113 to 8.115 to find optimu:n proportions and minimum cost. Independent checks are then mode to verify whether the compression strength of the moterials is adequate.

## 8. 10 Temperature and Molisture Movements and Otter Vohume Changes

Structural plastics may display significant dimensional or volurne changes when subjicted to moisture and tempernture changes. Plastics may also undergo significant volurne changes such as permanent or tronsient swelling and strinkage in chemical emvironments, permonent shrinkoge on exposure to UV, and aging shrinkage that may develop with time and which is accelerated by elevated temperature. These volume changes and nssociated linear expansions and contractions can couse significant distortions in sondwich ponels that are free to move and significant stresses in panels that ore restrained. While the effects of temperoture are used herein to illustrate these important effects, the principles
developed may be applied in the onalysis for the effects of moisture movements, curing and sging shrinkage, or volurre changes resulting from other environmental exposures.

## Warping and Changes in Length.

When opposing foces of on unrestrained panel undergo different volume changes, a strain differential is imposed across the thickness of the panel. The unrestrained panel warps tu a curvature having a radius:

$$
\begin{equation*}
R=\frac{d}{\varepsilon_{2}-\varepsilon_{1}} \tag{Eq. 8.131}
\end{equation*}
$$

where
$\varepsilon_{1}, \varepsilon_{2}=$ unit dimensional chance or strain occurring on opposite foces.

From a practical standpoint, this change in dimension is usually taken from a reference condition such as that at the completion of manufacture, or at the time of installation. For unit dimensional changes that do not vary over the length of the panel, curvature is constant along the length, and in effect, is analogous to the curvature in a panel which is subjected to equal bending moments at its ends. The deflection normal to the plane of the ponel at its midlength resulting from this curvature is:

$$
\begin{equation*}
w=\frac{\left(\varepsilon_{2}-\varepsilon_{1}\right) L^{2}}{8 d} \tag{Eq. 8.132}
\end{equation*}
$$

The term $\left(\varepsilon_{2}-\varepsilon_{l}\right)$ is the magnitude of the in-plane strain differential caused by differential volume changes of the two faces. In the case of a uniform temperature change which is uniform across the foce:
$\varepsilon_{i}=\alpha_{i} \Delta T_{i}$
where
$\varepsilon_{i}=$ strain due to thermal exfonsion of $\mathbf{i}$ foce
$\sigma_{i}=$ coefficient of thermal expansion of ihe " $i$ " face
$\Delta T_{i}=$ temperature change in the " $i$ " face from reference condifion

In oddition to causing bowing, a strain grodient imposed across the panel results in a change in its overall length. The maynitude of the change is:

$$
\begin{equation*}
\Delta L=\frac{\left(\varepsilon_{1}+\varepsilon_{2}\right) L}{2} \tag{Eq. 8.134}
\end{equation*}
$$

Joint sealants and other details at ponel ends, and hoks ot fasteners, should be designed to accommodate such movements which can be significant in long parels. Example 8-9 illustrates the calculation of deflection and length change for on unbalanced panel subjected to a temperature change that is constant throughout the panel depth.

## Stremee Due to the Reatraint of Warping

Sandwich panels that are continuous for several spans may be supported by primary froming at intermediate points along the ponel length. When different strain grodients ore imposed on opposite faces of such panels, reactions develop to prevent deflection at the supports. These reactions couse moments and shears in the panels. Since shear stresses and deformations may be significant in sandwich structures, they must be included in the calculation of stresses, deformations and reactions for this indeterminant structure.

The derivation of express,ons for moments, shears, and reactions in a sandwich penel that is continuous over two equal spans, and that is subjected to a vemperature gradient, is given in Example 8-10 (8.14). The example shows that maximum support raactions and associated panel shears and moments depend on both the llexural stiffress of the panel and shear rigidity of the core. Furthermore, thermally induced reactions may increase or decrease as ponel spon incroases, and moments generally increase as the span increases. While this example is developed for a temperature differential across the panel, the general approoch is volid for other sources of differential volume changes in the faces, such as moisture grodients.



## Example 8-10 (contirued)

4. Solve for $\mathrm{R}_{\mathrm{b}}$ P by Equating Restoring Deflec rivin to Thermal Deflection at b

$$
\begin{equation*}
w_{b T}=w_{b R} ; R_{b T}=\frac{\left(\alpha_{2} \Delta T_{2}-a_{1} \Delta T_{1}\right) a}{d}\left[\frac{0^{2}}{3 D_{m}}+\frac{1}{D_{v}}\right] \quad \tag{Eq. 8.137}
\end{equation*}
$$

5. End Reactions $R_{a T}$ and $R_{c T}$

$$
\begin{equation*}
R_{a T}+R_{b T}+R_{c T}=0 \text { (upward positive) } \tag{Eq. 8.138}
\end{equation*}
$$

by symmetry $\quad R_{a T}=R_{c T} ; \quad R_{a T}=R_{c T}=-\frac{R_{b T}}{2}$
6. Morment at $b$

$$
\begin{equation*}
M_{b T}=R_{a T^{0}}=\frac{-R_{b T^{a}}}{2} \tag{Eq. 8.139}
\end{equation*}
$$

7. Moment in Span ob, at distance $x$

$$
M_{x}=R_{a} T^{x}
$$

Eq. 8.140
3. Shears of $a, b$ and $c$

$$
V_{a T}=R_{o T} ; V_{c T}=-R_{c T} ; V_{b T}=R_{b T} / 2 \quad \text { Eq. } 8.141 a, b, c
$$

9. Deflection at Midepan of ab


Design of connections between the ponel and its supports should include uplift reactions that result from gradients. In addition, local crushing at compressive reactions must be evaluated. (Sce fection 8.7).

### 8.11 Parel Sibjected to Wind Load and Temperature Grodients

Both plastics materials and sondwich construction are used extensively in insulated structures such as croler, freezer, and other refrigerated buildings, arctic buildings, ISO-type freight containers for multi-modal transport, and truck bodies. Foamed plastics are insed frequently for the cores of such structures, and in some cases, faces are manufactured from fiberglass reinforced plastic, as well.

The concluding example in this Chopter, Example 8-11, presents an analysis of an all-plastic insulating sandwich panel for use in insulated buildings. The example is bosed on design criteria developed for an installation for the Alaskan North Slope at Prudhoe Bay, and an extension of analytical procedures used in their structural evaluation (8.14).

Example 8-11 demonstrates the analysis and evaluation of wind and thermal stresses in a restrained two-span panel subjected to temperature grodient. It also illustrates many of the concepts introduced in this Chapter and elsewhere in this Monual, and the numerous considerations involved in a comprehensive design of a structural sandwich component. The following is a commentary on key elements of the evaluation.

1. Deaign Criterla: Temperature and wind conditions are estimates for the the Pruchoe Bay region. The maximum wind load is assumed to occur either with or without the temperature differential acting.

Lood foctors (LF) are assigned with the purpose of increasing loods or stresses to account for the potential for overloods, and other unknowns related to the loods and the analysis, as is done in structural design with conventional structural materials. See Section 3.2, 4.2 and 4.10.

Example 8-11: Evahuation of Wall Panel for Arctic Exposure *

Determine structural adequacy of an exterior two-span sandwich wall panel for arctic buildings. Design criteria include 30 psf wind load and $-60^{\circ} \mathrm{F}$ outdoor temperature in winter. 1 Use 0.1 in. thick mat-reinforced plastic foces on 4 in . thick, 2.5 pCf PU fucm core ( $t=0.1 \mathrm{in} . d=4.1 \mathrm{in}$.

## 1. Design Criteria

Span: $\quad 2$ @ 10 ft . ( 120 in .)

Temperature: Installation ot $50^{\circ} \mathrm{F}$,
$T_{1}=-60^{\circ} \mathrm{F}$ outside in winter,
$\mathrm{T}_{2}=70^{\circ} \mathrm{F}$ inside.
Wind lead:
$\mathrm{q}=30 \mathrm{psf}$ $=0.21$ psi, inward or outward

Load Factors:
1.7 on wind 1.4 on thermal gradient

Capacity
0.60 for FRP foces;

Reduction
Foctor (CRF):
0.40 for foam core.

Maximum $\quad$ Span $/ 150=120 / 150=0.80 \mathrm{in}$.
Deflection:
2. Materials Properties
$\left.\begin{array}{|ccccc}\text { Element } & \text { Properties } & \text { Units } & \begin{array}{c}\text { Short } \\ \text { Term } \\ \text { Property }\end{array} & \begin{array}{c}\text { Reduction } \\ \text { Foctor for } 10 \mathrm{yr} \\ \text { Duration of Stress }\end{array}\end{array} \begin{array}{c}\text { Long } \\ \text { Troperty }\end{array}\right]$
** Use tensile strength for flexural tension strength (See "Flexural Strength," Section 3.6)

* See ruotnote, Example 8-I.

```
Excmple 8-1I continued
3. Deaign Stremes - Ulimate Strenyth Approoch
Estoblish reduced ultimate design strenc;ths to be compared later to factored itressos due to
ioods.
1a. Multiply typical ultimate strengths in 1. above by Capacity Reduc:tion Factor to obtain reduced ultimate design strength:
Properties Short Term Long Term
\begin{tabular}{llll}
Tensions & \(F_{\text {utr }}\) & \(0.6 \times 11,000=6,600 \mathrm{psi}\) & \(0.6 \times 3670=2,200 \mathrm{psi}\) \\
Compression: & \(F_{\text {ucr }}\) & \(0.6 \times 22,000=13,200 \mathrm{psi}\) & \(0.6 \times 7,340=4,400 \mathrm{psi}\) \\
Sheor: & \(F_{\text {uvr }}\) & \(0.4 \times 25=10.0 \mathrm{psi}\) & \(0.4 \times 8.3=3.3 \mathrm{psi}\)
\end{tabular}
```

Tension strength governs ultimate sti ength of faces.
b. Check strength governed by face wrinkling (Eq. 8.109). Use CRF $=0.6$.

| Wrinkling Stress |  | Short Term | Long Term |
| :---: | :---: | :---: | :---: |
| Ultimate: | $F_{\text {cr }}$ | $0.5\left(0.8 \times 10^{6} \times 2,500 \times 800\right)^{1 / 3}$ | $0.5\left(0.4 \times 10^{6} \times 1,250 \times 400\right)^{1 / 3}$ |
|  |  | 5,850 psi | 2,925 psi |
| Reduced: | $\mathrm{F}_{\mathrm{crr}}$ | $0.6 \times 5,850=3,510 \mathrm{psi}$ | $0.6 \times 2,930=1,760 \mathrm{psi}$ |

Failure by face wrinkling in compression governs design of faces.
c. Summary - Final reduced ultimate design strengths:

|  | $\frac{\text { Short Term }}{(\mathrm{psi})}$ | $\frac{\text { Long Term }}{\text { (psi) }}$ |
| :--- | :---: | :---: |
| Face ultimate strength $F_{\text {utr }}$ (tension) | 6,600 | 2,200 |
| Face wrinkling strength $F_{\text {crr }}$ (compression) | 3,510 | 1,760 |
| Core strength $F_{\text {uvr }}$ (sheor) | 10 | 3.3 |



## Example 8-11 continued

## 5. Stress Analysis for Wind Effects

Use short-term properties for wind. See Example 8-5 for equations.

Reactions:

$$
\begin{align*}
R_{b L}= & q a\left[\frac{50^{2}}{\sqrt{2 D_{m}}}+\frac{1}{D_{v}}\right]+\left[\frac{a^{2}}{3 D_{m}}+\frac{1}{D_{v}}\right]  \tag{Eq. 8.30}\\
= & 0.21 \times 120\left[\frac{5 \times 120^{2}}{12 \times 0.74 \times 10^{6}}+\frac{1}{3360}\right] \\
& +\left[\frac{120^{2}}{3 \times 0.74 \times 10^{6}}+\frac{1}{3360}\right]=31.2 \mathrm{lb} / \mathrm{in} . \\
R_{\mathrm{oL}}= & \frac{-R_{b L}+20 q}{2}=\frac{-31.2+2 \times 120 \times 0.21}{2}=9.6 \mathrm{in.}-1 \mathrm{lb} / \mathrm{in.}
\end{align*}
$$

Moment, $M^{\prime}$, at center reaction at b: due to wind load, W , acting on full span aa:

$$
M_{b L}=\frac{W(2 a)^{2}}{8}=\frac{0.21 \times 240^{2}}{8}=1,512 \mathrm{in} .-\mathrm{lb} / \mathrm{in} .
$$

Mornent at $b$ due to reaction $R_{b L}$ :

$$
M_{b L}^{n}=\frac{R_{b L}(2 \mathrm{o})}{4}=-\frac{31.2 \times 240}{4}=-1,872 \mathrm{in},-\mathrm{lb} / \mathrm{in} .
$$

Net Moment at b:

$$
M_{b L}=M_{b L}^{\prime}+M_{b L}^{\prime \prime}=1512-1872=-360 \mathrm{in} .-10 / \mathrm{in} .
$$

Note: A check shows that moments al midspan of span a are less than $M_{b L}$.

```
Example 8-11 continued
Bending Stresses: Distribute moments between faces and transformed section in accordance
with Table 8-4. M' is distributed as for a bearn under uniform lood; M"'is distributed as for
beam under concentroted central load.
\mp@subsup{\sigma}{bLp}{}}={\frac{\mp@subsup{M}{BL}{\prime}\mp@subsup{|}{3}{}}{S}+\frac{\mp@subsup{M}{BL}{\prime\prime}\mp@subsup{|}{1}{}}{S
\mp@subsup{\sigma}{\textrm{bLf}}{}=\frac{\mp@subsup{M}{\textrm{bL}}{\prime}(1-\mp@subsup{\phi}{3)}{}}{2\mp@subsup{S}{fi}{}}+\frac{\mp@subsup{M}{\textrm{bL}}{\prime\prime}}{2\mp@subsup{S}{\textrm{fi}}{}}
 = }\frac{1512\times0.0001}{2\times0.0017}-\frac{1872\times0.0017}{2\times0.0017}=-892 ps
 (secondary face-
 bending stress)
\mp@subsup{\sigma}{bL}{}}=\mp@subsup{f}{bLP}{}+\mp@subsup{f}{DLf}{}=-871-892=-1,763 ps
```

Note: Secondary stresses ore approximately equal to the primary stresses.

Shear Stress @ b:

$$
\tau_{L}=\frac{R_{b_{L}} d_{2}}{2 d}=\frac{31.2 \times 1}{2 \times 4.1}=3.8 \mathrm{psi}
$$

6. Stress Analysis for Thermal Effects (Refer to Example 8-10 for equations):

Parel was flot when fastened on thilding of $\mathrm{T}=+50^{\circ} \mathrm{F}$ which is taken ns reference temperature.

$$
\begin{aligned}
& \varepsilon_{1}=a_{1} \Delta T_{1}=15 \times 10^{-6}[-60-(+50)]=-1.55 \times 10^{-3} \mathrm{in} / \mathrm{in} . \\
& \varepsilon_{2}=a_{2} \Delta T_{2}=15 \times 10^{6}[+70-(+50)]=+0.30 \times 10^{-3} \mathrm{in} / \mathrm{in}
\end{aligned}
$$

$$
\varepsilon_{2}-\varepsilon_{1}=+03 \times 10^{-3}-\left(-1.65 \times 10^{-3}\right)=+1.95 \times 10^{-3} \mathrm{in} . / \mathrm{in}
$$

## Example 8-11 continued <br> Shorf-Term Thermal Effects <br> Reactions: <br> $R_{b T}=\frac{\left(\alpha_{2} \Delta T_{2}-\alpha_{1} \Delta T_{1}\right) a}{\left[d \frac{a^{2}}{3 U_{m}}+\frac{1}{D_{v}}\right]}$ <br> Moments: <br> Total Moment: $\quad M_{b T}=R_{a T^{a}}=-4.2 \times 120=-504 \mathrm{in} \cdot-\mathrm{lb} / \mathrm{in}$. <br> Primary Moment: $\quad M_{b T p}=M_{b T} \phi_{1}=M_{b T} \times I=-504 \mathrm{in} .-\mathrm{lb} / \mathrm{in}$. <br> Secondary Moment: $\quad M_{b T f}=M\left(1-\phi_{1}\right)=-504(1-0.9983)=0.857 \mathrm{in} .-\mathrm{lb} / \mathrm{in}$. <br> Bending Stresses: <br> $\begin{array}{llr}\sigma_{b T p}= & \frac{M_{b T p}}{S}=-\frac{504}{0.41}=-1,229 \mathrm{psi} & \begin{array}{r}\text { (primary stress on } \\ \text { transformed section) }\end{array} \\ \sigma_{b T f}=\frac{M_{b T f}}{S_{f}}=\frac{0.857}{0.0032} & =-260 \mathrm{psi} & \begin{array}{r}\text { (secondary face- } \\ \text { bending stress) }\end{array} \\ \sigma_{b T}=\sigma_{b T p}+\sigma_{b T f}=-1229-260 & =-1,489 \mathrm{psi} & \end{array}$

Note: Secondary stresses are only about 20\% of primary stresses for this cose.

Shear Stress@b:

$$
T_{T}=\frac{R_{b T} \delta_{3}}{2 d}=\frac{+8.4 \times 0.9999}{2 \times 4.1}=+1.02 \mathrm{psi}
$$



* $B=$ Ultimate sirength controlled by buck!ing of compression face
$R=$ Ultimate strength controlled by rupture of foce or core

[^10]A load factor of 1.7 is assigned to wind load, os is frequently used in building desig. . This factor accounts for inaccurocies ir, determining pressure distributions, uncertainties of gust magnitude, wind velocities which may exceed the design value, and inaccurocies in malysis. Most builaing codes allow a reduction in wind load when combined with other loods to an equivalent lood factor of 1.33 . This reduction is not taken here because, unlike most conventional building structures, wind is the principal loaring on the panel.

A lower lood foctor of 1.4 is assigned to temperature effects, as is conventionally used in building design. This load factor reflects the probability that the design temperature is near the minimum value, and that significantly lower temperatures are improbable. As is the case of wind load, some building codes allow a reduction in temperature siress when combired with other lood effects. This reduction is not taken here because temperature stress is also a primary loading for a panel in the orctic environment.

Copocity reduction factors (CRF) are assigned to account for mode and consequences of failure under the imposed loods, the possiblity of low strength material being present of a point of maximum stress, and similar uncertainties. A CRF of 0.6 (equivalent to a parlial factor of safety of $1 / 0.6=1.7$ ) is assignes to the FRP foces, since they are to be made by a reasonably wel: controlled process with good reproductibility and under adequate levels of quality control. A CRF of 0.4 (equivalent to a partial factor of safety of $1 / 0.4=2.5$ ) is assigned to the shear strength of the form, recognizing that this moterial is to be foomed in place and that orientation in cell structure and variotions in density may produce significant varicrions in strength from the assumed ultimate values. A higher value of CRF of 0.6 is assigned to face wrinkling strength recognizing that modulus varies less then strerigth, and the chance of the face and core having lowest modulus volues of the same point in the structure is remote.
2. Materiads Properties: The short-term strength and elastic or viscoelastic moduli are reduced to occount for long durations of stress and strain which muy occur during the winter when the temperature differential is impused for lang periods. The reduction factors of 2 m modulus and 3 on strength are established
in conalderotion of $\mathbf{R}$ values shown in Toble 2-2 and discussed in Chapter 3, stress rupture dota as is shown in Figure $1-20$ for fiberglass reinforced plastics, and HDB dato on thermoplastics, as in Table 3-3. In the present state of the art in characterization of structural plastics behovior, these are judgment factors, since long-term effects on proferties or specific formulations of polyurethone foam are essentially unknown. However, if the materials had been characterized as described in Tables 3-8 and 3-9, the level of confidence in this evaluation would be greatly improved. Furthermore, knowledge of sirain limits would then be avoilabie to provide a rotional design approoch that would be more censistent with the criteria, based on time-dependent properties of plastics developed in Chopter 3.
3. Design Strengths: In some other ports of this Monual, a working stress approach has been used for simplicity of presentation. An ultimote strength design approach is used for this exarmple because it represents the more advanced state of the art in practical design.

The reduced ultimate design strength in tension governs itrength design ot $6,600 \mathrm{psi}$, short-term, and $\mathbf{2 , 2 0 0} \mathrm{psi}$, long-ferm. This is crmpared later in the anaiysis to the maximum extreme fiber stresses in the faces.

As noted in Chapters 2 and 3, the flexural strength of unreinforced and reinforced plastics, obtained in standard tests, is usually greater than either the strength under uniaxial tension or compression. If "first damage" theory is occepted, first domage should occur at a strain which is independent of flexural tension or in-plane tension stress mode. Furthermore, flexural strength varies with thickness of the material and span-to-depth ratio (as does wood), whereos tensile strensth is less sensitive to thickness. There are enough uncertainties obout the variations in flexurol strength with test sample geometry, to render the use of floxural strength obtained via standard test methods of questionable value. Thus, the lower value of tension or enmpression strength is used in this example as an indication of flexural strength as well. Of course, if full-scale prototype tests were conducted, this rationale could be modified to reflect the actual results. Possibly on approach, where the interaction between the higher
flexural strength and the lower uniaxial strength are accountea for, is applicable. Such an approach is taken later in the analysis for the evaluation of combined short-term and long-term strength. Such interaction approaches need verification by test to provide a sound basis for such a rule.

The reduced ultimate foce wrinkling compressive stress of 3,510 psi short-term and 1,760 psi long-term is lower thon the reduced ultirnate design strength in tension. However, the face-wrinkling strength is compared, later in the analysis, to the average compression stress in the face, not to the combined compression and bending stress that governs in strength evaluation. The compression stress resultant is. used, because as discussed in Chapter 6, the buckling of a plate depends mostly on the in-flane compression stress, and is independent of the magnitude of flexural stress.
4. Section Properties: Determination of section properties includes the calculation of moment of inertia and section modulus of the foces, in addition to the overall stiffness and strength properties of the transformed section, in anticipation of the possibly significant effects of shear flexible cores as discussed in Section 8.6. The shear flexibility coefficient, $\theta$, and values of, $\phi$ are needed for this analysis.
5. Stress Analysis for Wind Loods: Maximum wind loads act only for brief periods, and hence, the analysis for wind considers only short-term behavior. The analysis for stresses and moments derived in Example 8-5, that accounts for the effects of shear deformation in the core is used to determine stress resultants and reactions.
6. Stress Analysis for Thermal Loads: Thermal loads near mas imum are expected to be applied for long periods during winter. In this case, the effects of both the initial short-term thermal load, and the long-ferm (assumed indefinite) thermal loading must be considered.

The bending stresses arising from the temperature differential (1,489 psi) are somewhat higher than those due to wind load (1,248 psı). This demonstrates that
thermal stress is a significont limit state for sandwich panels used in insulated buildings.
7. Evahation of Stremes: The table given in this part of the example summorizes the various looding conditions considered in the unalysis, and the load fuctor criteria set for the project. The stresses shown are the unfactored stresses resulting from design loods. The strengths shown are the reduced ultimate design strengths which were established in Step 3 of the colculations.

The combined effects of short-term wind and long-term thermal loads present a special problem in evaluation since the ultimate strength varies with lood duration. An interaction opproach is introduced herein. Interaction relationships are frequently used in conventional structural design in coses where different stress modes are governed by different strength criterio. In effect, if the following condition is met, the structure is assumed to meet the design criterias

$$
\frac{\text { maximum wind stress }}{\text { reduced shart-ferm strength }}+\frac{\text { maximum thermal stress }}{\text { reduced long-1erm strength }} \leq 1
$$

$$
\begin{equation*}
\frac{\sigma_{S} L F_{1}}{F_{u S}}+\frac{\sigma_{L} \times L F_{2}}{F_{u L}} \leq 1 \tag{Eq. 8.143}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{F}_{\mathbf{U S}}=\text { short-term ultimate strength } \\
& \mathbf{F}_{\mathbf{U L}}=\text { long-term ultimate strength. }
\end{aligned}
$$

In this example, the above criterion is met. The highest combined stress (wind phes lons-ierm thermal load, results in an interaction factor of 0.93, which is $7 \%$ below the sofe value as predicted by this criterion.

In view of previous discussions (Retention of Short-Term Properties ofter Sustained Loadings, Section 2.8, and Examples 3-8 and 3-9, Section 3.4), the use of a limiting stroin approach would permit on evaluation of behavior strength behovior under loods of mixed duration that reflects better the behovior of plastics. Implementation of this appronch awaits the characterizatiun of key structural properties for both face and core materials along the lines proposed in Toble: 3-8 and 3-9.

## REFERENCES

8.1 ANC-23 Bulletin, Sandwich Construction for Aircraft, Part 11 , Materials Properties and Design Criteria, U. S. Depts. of the Air Force, Navy, and Commerce, 2nd Edition, 1955.
8.2 Structural Sondwich Composites, MIL-HDBK-23A, U. S. Dept. Defense, Washington, D. C. 20025, 30 December 1968.
8.3 Allen, H. G., Analysis and Design of Structural Sondwich Panels, Pergomon Press, Oxford.
8.4 Hartsock, J. A., Design of Foam-Filled Structures, Technomic Publishing Co., Inc., Stamford, CT 0690I, June $\overline{368}$.
8.5 Plantema, F. J., Sandwich Construction, John Wiley C. Sons Inc., New York, 1966.
8.6 Londrock, A. H., Polyurethone Foams. Technology, Properties and Applications, Plastics Technical Evaluation Center, Picatinny Arsenal, Dover, NJ 07801 , January 1969.
8.7 Schwartz, R. T. and Rosato, D. V., "Structural Sondwich Construction," Composife Engineering Laminates, A. G. H. Dietz, Ed., The M I. T. Press, Massachusetts Institute of Technology, Combridge, MA, 1969.
8.8 Rshanizyn, A. R., Theory of Composite Structural Bars, Stroyis dat, U.S.S.R., 1948.
8.9 Recommendations for Design and Stress Analysis of Plastic Structures, Central Research Institute of Building Structures (ZNIISK), Moscow, 1969.
8.10 Colurnn Research Committee of Japan, Handbook of Structural Stability, Corona, Tokyo, 1971.
8.11 Engineering Sciences Datn Unit Ltd., Sandwich Panels, Aeronoutical Series, Structures Sub-Series, Volume 3, London.
8. 12 Hoff, N. Ja, "The Strength of Laminates and Sandwich Strictural Elements," Chapter 1, Engineering Laminates, A. G. H. Dietz, Ed., John Wiley \& Sons Inc., New York, NY, 1949.
8.13 Sonjwich Panel Construction with Styrofoam Brand Plastic Foom, Dow Chemical U.S.A., Midland, Michigon, 1979.
8.14 Heger, F. J., "Thermal Grodient Deflections and Stresses in Structural Sondwich Insulating Panels," P, oceedings of ASCE Cold Regions Speciality Conference, Anchorage, Alaska, Moy 1978.
B. 15 Roark, R. J., Tormulas for Stress and Strain, 4th Edifion, McGraw-Hill Book Co., New Tork, NY, 1965.
ASCE Structural Plastics Design Marual
CHAPTER 9 - THN RWGS AND SHELIS
By Frank Jo Heger
TABLE VFCONTENTS
Poge
Notations ..... 9-i
9.1 Introduction ..... 9-1
9.2 Analy sis and Design of Thin Rings ..... $9-3$
9.3 Shell Geornetry ..... 9-12
9.4 Stress Anolysis of Shells ..... 9-17
9.5 Menbbrone Analysis of Shells ..... 9-23
9.6 Edge Bending Analysis of Shells ..... 9-41
9.7 Special Edge Conditions - Cylindrical Vessels with Flot Bottoms and Knuckles ..... 9-61
9.8 Concentrated Lood Effects ..... $9-79$
9.9 Thermal Stresses ..... 9-81
9.10 Stability Analysis ..... $8-84$
S.ll Sandwich Shells ..... 9.116
9.12 Design Examples - Vessels ..... 9.119
9.13 Design Examples - Roofs and Skylights ..... 9-136
9.14 Analysis and Design of Buried Pipe ..... $9-146$
References ..... 9-172

## NOTATIONS - Chupter 9

(See Table 9-9 for notations used in equations for aralysis and design of buriod plpe in Section 9.14)

| a | governing dimension in shell geometry, dimension of hypar edge <br> along $x$ |
| :--- | :--- |
| $\bar{a}^{\text {cross sectional area of unit width cros: section }}$ |  |


| $\mathrm{D}_{\mathrm{r}}$ | flexural stiffness in rodial direction |
| :---: | :---: |
| $D_{x}, D_{\phi}, D_{0}$ | flexural stiffness in $x, \phi$, and $\theta$ directions |
| $\mathrm{D}^{\prime} \mathrm{O}$ | twisting stiffness in $\mathrm{x}-0$ plane |
| E | elastic modulus |
| $E_{b}$ | elastic modulus of bottom plate in radial direction |
| $E_{7}, E_{3}$ | tangent and secarit moduli of elasticity |
| $E_{v}$ | viscoelastic (time-dependent) modulus (Chapters 2 and 3) |
| $E_{v v}, E_{s v}$ | viscoelastic (time-dependent) tangent and secant moduli |
| $E_{0}$ | long term viscoelastic modulus in circumferential direction |
| $E_{x}, E_{0}, E_{\phi}$ | elastic modulus in $x, 0$ (circumferential), and d(meridional) directions |
| $F$ | line load per unit length in parallel plate test of pipe |
| $F_{b}, F_{c}$ | reaction forces at b and $c$ |
| G | sthear modulus |
| $\mathrm{G}_{\mathrm{c}}$ | modulus of shearing rigidity of core of sandwich section |
| h | height of fluid |
| $\mathrm{H}_{\text {d }}$ | horizontal edge load on spherical cap |
| i | section moment of inertio per unit width |
| $i_{0} i_{8}, i_{x}$ | section moment of inertia per unit width in circumfe:ential, meridional, and $x$ directions |
| $i_{f}$ | section moment of inertio per unit width of sandwich shell hoving symmetrical transformed section bused on facings modulus of elasticity, $\mathrm{E}_{\mathrm{f}}$ |
| I, $\mathrm{I}_{0}$ | moment of 'inertio of section, moment of inertia in circumferential direction |
| $k_{0}, k_{n}, k_{3}$ | reduction (knockdown) fnctors for tuckling coefficient |
| $k_{p}$ | correction foctor for effect of internal pressure $\alpha_{1}$ buckling coefficients |
| $K_{\text {ic }}$ | correction factor for curvature |


| $L$ | lengit of cylindrical shell |
| :---: | :---: |
| $L$ | edge length that "lifts up" at bottom plate |
| $L_{s}$ | length of uniform thickness shell between circumferential stiffeners |
| $\overline{\text { LF }}$ | load factor |
| ${ }^{2}{ }_{b}$ | wovelength of buckle |
| M | bending moment per unit width (stress resultant) |
| $M_{0}, M_{\phi}$ | bending rroment per unit width in circumferential and meridional directions |
| $M_{\delta_{k}}$ | bending moment at edge of spherical cap |
| Mb | bending moment at point b |
| $M_{0}$ | bending moment ot circumferential edge of cylindrical shell |
| $M_{r i}, M_{y}$ | bending moment in $x$ and $y$ directions |
| $M^{10} M_{0 \phi}$ | twisting moments per unit width on $\phi \theta$ and $\theta \phi$ sections |
| $n_{t}, n_{b}$ | coefficients |
| N | axial force per unit width (stress resultant) |
| $\mathrm{N}_{s c}$ | critical buckling axial force in slant direction of cone |
| $\mathrm{N}_{s}^{\prime} \mathrm{Oc}^{\prime}, \mathrm{Ne}_{\text {Oc }}$ | pseudo-critical buckling shear force and circumferential force in a cone |
| $N_{x}, N_{y}$ | oxial force per unit width in $x$ and $y$ directions |
| $N_{x y}$ | shear force per unit width in xy plane |
| $N_{0}, N_{d}, N_{r}$ | axial forces per unit width in $0, \phi$, and $r$ directions |
| $\mathrm{N}_{40}, N_{0 \phi}$ | shear forces per unit width in $\$ 0$ plane |
| $N_{x c}, N_{\text {dc }}, N_{d c}$ | critical buckling axial force in $x, 0$ (circumferential), and \$(meridional) directions |
| $N_{x}, N_{x c}$ | axial and critical buckling axial forces per unit width in $x$ direction coused by overall bending of cylindrical shell (as a tubular beam) |
| $\mathrm{N}_{\text {Oxc }}$ | critical buckling shear force in Or. plane |


| $N_{1}, N_{2}$ | axial stress resultants in principal directions 1 and 2 |
| :---: | :---: |
| $N_{1 c}, N_{2 c}$ | buckling axial stress resultants in directions with principal redii of curvatures, $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ |
| P | pressure |
| $\mathrm{P}_{\text {e }}$ | uniform weight load on unit area |
| $P_{3}$ | uniform load on unit area of horizontal projection |
| $P_{b}, P_{\text {t }}$ | pressure in the bottom and in the top regions |
| $P_{x}, P_{y}, P_{z}$ | pressure in directions $x, y$, and $z$ |
| $\mathrm{P}_{0}, \mathrm{P}_{1}$ | pressure at a designated point, o or 1. |
| $\mathrm{P}_{\mathbf{w}}$ | pressure due to wind lood |
| $\mathrm{P}_{\text {cr }}$ | critical buckling pressure |
| $\mathrm{P}_{\mathrm{L}}$ | line load per unit length on edge perimeter |
| P | total load |
| $P_{c}$ | concentrated lood that locally buckles spherical shell |
| $\mathrm{P}_{\text {cr }}$ | overall total concentric load applied on upper and lower edges that buckles a cone |
| $P^{\boldsymbol{\phi}}$ | total symmetrical load on shell of revolution above opening angle $\phi$ |
| $\overline{P S}_{0}$ | sthort-term pipe stiffness |
| 9 | uniformly distributed lateral or internal pressure |
| $a_{b}, q_{0}$ | pressure at tank bottom, top |
| $a_{f}, q_{r}, q_{j}$ | fluid pressure, radial and tangential pressures |
| 0 | transverse shear force per (mit width (stress resultant), concentrated lood |
| $Q_{b}$ | transverse shear force at point b |
| $Q_{0}$ | radial sheor force per unit width on edge of shell |
| $Q_{x}, Q_{y}$ | radial sthear force per unit width on section perpendicular to $x$ and $y$ axis |
| $Q_{0,} Q_{\delta}$ | rodial shear force per unit width on sections perpendicular to circumferential and meridional directions |
| $\bar{Q}_{s p}, \bar{Q}_{s n}$ | first moment of the area above (or below) centroidal plane i-1 obout axis in $1-1$; above plane $n-n$ about axis in 1-1. |

9-iv

| R | mean radius |
| :---: | :---: |
| $\mathrm{R}_{\mathrm{c}}$ | radius of cylinde: |
| $R_{1}, R_{2}$ | radius of top and bottom edges of cone; also principal rodii of doubly curved shell in directions I and 2 |
| $R_{e}, R_{e 0}, R_{\text {es }}$ | equivalent cylinder radius for buckling of cone under various types of load |
| $R_{k}$ | knuckle radius |
| $R_{0}$ | radius of bottom plate, radius at edge of spherical portion of torispherical head |
| $R_{0}^{\prime}$ | required radius of annulor base ring |
| $\mathrm{R}_{5}$ | radius of sphere |
| 3 | slunt distance from apex of cone |
| ${ }^{5} 0$ | slant distance from apex to opening of cone |
| $s, s^{\prime}, s_{x}$ | section modulus per unit width in circumferential and longitudinal directions |
| S | section modulus |
| t | thickness of shell or pipe wall |
| $t_{b}$ | thickness of bottom plate |
| ${ }^{\prime}{ }_{c}$ | thickness of sandwich core |
| ${ }^{\dagger}{ }_{e}$ | effective thickness of ribbed or sandwich shell |
| $t_{f}$ | thickness of sandwich facing |
| ${ }_{1},{ }^{+}{ }_{2}$ | thickness of layers 1 and 2; time 1 and 2 |
| $\mathrm{T}_{1}, \mathrm{~T}_{2}$ | temperatures on inside and outside of sheli; temperature ot time 1 or 2 |
| ${ }^{T} \mathrm{Cr}$ | overall total torque applied at upper edge that buckles a cone |
| $V_{0}$ | transverse shear force per unit width (stress resultant) in a ring or curved beam |
| w | radial deflection |
| $w_{0}$ | rodial deflection at edge |
| $w_{b}$ | radial deflection at $b$, bottom plate |
| $\mathbf{w b m}_{\text {b }}$ | radial deflection at $b$ due to membrane action |


| W | total load per unit width |
| :---: | :---: |
| 0 | angle; coefficient of thermal expansion |
| $a_{1}, a_{2}$ | helix angle at layers 1 and 2 |
| $\beta$ | cylindrical shell constant; bedding angle |
| $\Delta$ | deviation from spherical radius |
| $\Delta_{r}$ | radial deviation from theoretical radius of shell |
| $n$ | plasticity reduction factor for non-linear stress strain behavior |
| $\gamma$ | density |
| $\boldsymbol{\lambda}$ | spherical shell constant; constant |
| $\lambda_{s}$ | shell stiffening foctor |
| $v$ | Poisson's ratio |
| $v_{x}, v_{0}$ | Poisson's ratio for stress in x and $\mathbf{0}$ directions |
| $\phi$ | meridional angle |
| $\delta_{0}$ | meridional opening angle |
| $\phi_{k}$ | meridional anyle from apex to edge |
| $\downarrow$ | angle between direction of pressure and $z$ axis; angle from edge of spherical shell |
| $\sigma$ | normal stress |
| $\sigma_{b}$ | bending stress, elastic beam theory |
| $\sigma_{\text {ic }}$ | maximum bending stress on inside of curved ring |
| $\sigma_{\phi}, \sigma_{0}, \sigma_{r}$ | norinal stress in meridional ( $(0)$, circumferential, ( 0 ), and radial (r), directions |
| $\sigma_{f}$ | stress in filament |
| $\sigma_{x}, \sigma_{y}$ | stress in $x$ and $y$ directions |
| $\sigma_{v}$ | ultimate strength of moterial |
| $\sigma_{f u}$ | ultimate strength in direction of filament |
| $\sigma_{x c}, \sigma_{0 c}, \sigma_{d c}$ | critical buckling stress in $x, 0$ and $\phi$ directions |

$d(\beta x), \alpha(\beta x)$ $\tau(\beta x), \psi(\beta x)$
$x_{1}, x_{2}, x_{3}$
shear stress
critical buckling shear stress in cone
shear stress in xy plane
critical buckling shear stress in $x y$ plane
snear stress on cross section normal to 0 direction
circumferenial angle irom origin to location of stress resultonts
rotation at point $b$, bottom edge
rotation ct b due to $a$ unit moment $a t b$
rotation at $b$ due to membrane effects
angle beiween hypar $x$ and $y$ axes with skew coordinates
radius from axis of concentrated load or mornent : 2 point of stress resultant
radius of zone of significant beriding moment coused ty concentrated lood or moment
radius of zone of significant thrust caused by concentrated load or moment
shell functions for long cylindrical shells
shell functions for short cylindrical shells

## CHAPTER 9 - THN RINGS AND SHELLS

## F.l. Heger

### 9.1 INTRODUCTION

Plastics and reinforced plastics may be molded to form curved ring and shell elements with ease. For applications such as pipe, liquid containers, pressure vessels, roof structures, and other structural components, shell configurations often provide an effective means of minimizing the quantity of material required for both enclosure and load transfer. in such applications, plastics may provide economical solutions to the problem of structural enclosure.

In addition to their easy adaptability to molding, plastics hove many desirable properties, both structural and non-structural, which contribute to their effective use in curved components. See Chapters 1 to 4 for descriptions of those structural and non-strustural characteristics that should be considered when choosing moterials for ring and sheli structures. The high unit moterials cost of most plastics and reinforced plastics requires efficient design and demands economical fobrication techniques. Their use can cften be justified by design for minimum weight of material in a form susceptible to economical fobrication. Ring and shell structures offer a meons foi attaining this efficiency. This is particularly the case in applications such as fluid storoge vessels, pressure pipe, air ducts and buried pipe where the excellent corrosion resistance of plastics further enhances their cost effective performance as shell structures.

Methods and design aids are provided in this Chapter for analysis and dezign of pipes and other rings, shells of many configurations, curved panels and curved membrones that behove structurally as thin rings or shells, as defined later in this chapter. Design methods and design concepts which lead most directly to optimum structural design for plastics shell structures are emphosized.

Structural properties of plastics, along with their fabrication techniques, differ markedly from traditional structural materials; thus, as in the previous Chapters on plates, beams and axially stressed members, and sandwich structures, some new methods and new concepts that may be unfamiliar to engineers used to
working with wood, metals, or reinforced concrete are required for effective design with the plustics and reinforced plastics family of structural materials. As discussed in Chapters 2, 3 and 4, plastics are frequently not ductile; hence, ruch greater accuracy of stress analysis is essential with these materials compared to most steel or reinforced concrete shell structures. Discontinuity stresses near edge supports are usually very important conside;ations in plastic shells. Also, the generally lower ratio of stiffness to stringth with plastics, compored to metals, requires accurate consideration of stability in plastics shells subject to cempression. Large size plastic shells often require stiffening by the use of ribs or sandwich construction in order to attain needed buckling resistance with reasonoble qunntities of plostics.

Plastics based composites are often used when plastics shell structures are of subatential size, or are subject to high loads. For nrany plastic composite shell components hoving conventional shapes, the stress and buckling analyses presented in this Chapter will provide sufficient arcurocy for final design. In such analyses, materials properties are approximated by their average isotropic or orthotropic materiols constants. These are usually based an test results for the entire lominate. as described in Section 3.5.

Advanced compositea, comprised of layers of oriented fibers in a resin matrix are often used in aeroapoce and other transportation vehicle applications to reduce weight. Such taminates may be designed to optimize stiffiness or strength as explained briefly in Secition 4.9. Components fabricated from such loyered materials are non-homogencous anisotropic sheils and require special refined theories for accurate anolysis (9.1). These are not treated in this Chapter. Reaults in the form of simplified equations are not available, and lock of spoce prechudes presentation in sufficient catail to meet the objectives of this Design Manval. Howower, the analyses described in this Chapter may be useful for developing the ureliminory design of the these types of components. More cocurate computer aided analyses can then be performed using approoches and progrome whch oe thow descr'bed in Seciion 4.9.

### 9.2 ANAL_YSIS AND DESIGN OF THIN RINGS

Rings may be circular or other continuous curyed shapes. They may be narrow or wide, but their essential charocteristic that distinguishes them from cylindrical shells is their two-dimensional behovior under lood. A ring is essentially a plane frame. When tronsverse diaphragms or ribs are provided ot one or more points along the longitudinal axis of a wide ring, applied loads are transferred in threedimensions and the structure is termed a cylindrical shell. A ring differs from a shell in the same way that a beam differs from a plate.

Pipe are often analyzed as very wide rings, although restraints at joints and connection points may cause three-dimensional transfer of applied load in the vicinity of these points. This behovior produces "discontinuity" longitudinal bending stresses near the comnections. These are determined by the cylindrical shell edge bending analyses described in Section 9.7.

Curved two-dimensional members that do not form a closed ring are often termed arches or curved bearns, depending on the edge support conditions. Arches are treated extensively in reference texts on indeterminate stress analysis (9.2). They are not included in the scope of this Chapter.

## Rings Under Direct Stress

Rings provide great structural efficiency in resisting those distributed loods whase funicular !ine (Section 4.4 and Fig, 4-1) coincides with the ring centroid. An example is uniform internal or external pressure on a circular pipe (Fig. 9la). Without longtitudinal discontinuities, the applied uniform pressure couses only circumferential thrust (hoop) forces in the pipe ring as follows:

| $N_{0}=p R$ | Eq. 9.1 |
| :--- | :--- |
| $\sigma_{0}=\frac{p R}{\sigma_{0}}$ | Eq. 9.2 |

For a ring of uniform thickness:

$$
\begin{equation*}
\sigma_{0}=\frac{R R}{T} \tag{Eq. 9.3}
\end{equation*}
$$

Rodial deflection is:

$$
\begin{equation*}
w=\frac{N_{0} R}{E_{0} a_{0}} \tag{Eq. 9.4}
\end{equation*}
$$

For a wide ring of uniform thickness:

$$
\begin{equation*}
w=\frac{N_{0} R}{E_{0}^{\dagger}}=\frac{\sigma_{0} R}{E_{0}} \tag{Eq. 9.5}
\end{equation*}
$$

## Rings Under Bending

Any other load distribution on a circular ring produces bending, axial and shear stress resultants. Conventional relationships between these stress resultants for straight members are modified by the curvature or rings. Equations relating bending, axial and shear stress resultants in curved members are given below. Sign convention is shown in Fig. 9-1. For rings subject to common lood distributions, these stress resultants may be determiied :using the moment, thrust and shear coefficients for particular points in a loaded ring structure given with the following equations:

$$
\begin{align*}
& M_{0}=M_{0_{0}}-\int_{0}^{\theta} v_{0} R d \theta=c_{M} W R \\
& N_{0}=N_{0_{0}}-\int_{0}^{\theta}\left(v_{0}+q_{t} r\right) d \theta=c_{N} w  \tag{Eq. 9.66}\\
& v_{0}=v_{0_{0}}+\int_{0}^{0}\left(N_{\theta}-q_{r} R\right) d \theta=c_{V} w
\end{align*}
$$

The coefficients $c_{M}, c_{N}$ and $c_{V}$ are determined for any part:cular load and support arrangements by on indeterminaie structural anaysis of the ring as a plone frame. For many comnion looding and suppoit arrangements, they may be found in handbooks such as (9.3). These are applicable only for thin rings as defined later in this Section.

Six common loading and support arrangements for circular rings are shown in Fig. 9-1. The constar: nircumferential thrust for the uniform pressure case (a) is given by Eq. 9.1. Plots of the moment, shear and thrust csefficients in Eqs. 9.6 are given in Fig. 9-2 for looding cases (b), (c), (d) and (e) of Fig. 9-1, and in Fig. 9-3 for case ( $\mathbf{f}$ ) of Fig, 9-1, using several different values of the bedding angle, $B$ (9.4). The sigr: convention used is shown in toth Figures.

(a). Uniform Pressure

(c). Two Concentrated Loods of Ends of Diameter

(e). Uniformly Distributed Lood and Support

(b). Fluid Weight $O_{n}$ Concentroted Support

(d). Uniform Lood on Concentrated Support

$$
P_{t}=P_{0} \cos n_{t} a_{i} n_{t}=\frac{1}{(2 \pi-B)}
$$


(f). Trigonometric Voriation of Lear and Support Preseure See Fig. 9-3 for $P_{0}$ and $P_{1}$.

Fig. 9-1 SIX COMMON LOADMNG AND SUFPORT ARRANGEMENTS FOR CIRCULAR RMGS


Fig. :-2 COEFFICIENTS FOR MOMENTS, THRUSTS ATD SHEARS FOR A THIN RING SUBJECT TO VARIOUS LOAD DISTRIBUTIONS


$$
P_{0}=W / C_{0} R
$$

$p_{1}=W / C_{1} R$

| $B$ | $C_{0}$ | $C_{1}$ |
| :---: | :---: | :---: |
| $\pi / 4$ | 1.57 | 0.49 |
| $\pi / 2$ | 1.70 | 0.94 |
| $2 / 3 \pi$ | 1.71 | 1.20 |
| 8 | 1.57 | 1.57 |



Looding Case $f$,
Fig. $9-1, \quad n_{b}=\pi / \beta$

Fig. 9-3 COEFFICIENTS FOR MOMENTS, THRUSTS, AND SHEARS, FOR THIN RING SUBJECT TO TRIGONOMETRIC DISTRIBUTION OF LOADING AND SUPPORT PRRESSUPES (9A)

The moment, shear and circumferential thrust stress resultants produce normal (bending and axial), transverse and interlaminar shear and radial stresses on the ring cross section as shown in Fig. 9-4. In a curved bar subject to bending, stresses will be higher on the inside edge and lower on the outside edge than stresses determined using zonventional elastic bending theory, os derived from on ossumption of tinear strain variation across the section. This increase in maxirnum stress because of curvature may be neglected for rings of moderate to low curvature, say with $R \geqslant 5 t$ to $12 t$, depending on the uciviacy desired. The moment, thrust, and shear values obtained witt, the coefficients given in Figs. 92 and 9-3 are all obtained from "thin ring" analyses that neglect the non-linear variation of stress on a curved cross-section.

An estimate of the maximum bending stress on the inside of a curved member may be obtained by multiplying stresses or the inside surface determined using conventional elastic beam theory, $\sigma_{b}$, by a correction facior fur curvature, $\mathrm{K}_{\mathrm{ic}}$, as follows:

$$
\begin{equation*}
\sigma_{i c}=K_{i c} \sigma_{b} \tag{Eq. 9.7}
\end{equation*}
$$

Sse Fig. 9-4 (c) for a graphic presentation of these notations and stresses. Fc: rectangular sections, the correction factor, $\mathrm{K}_{\mathrm{ic}}$, is calculated using Eq. 9.8 (9.5):

$$
\begin{equation*}
K_{i c}=1 . c+\frac{i}{6}\left[\frac{1}{(R-.5 f)}+\frac{\overline{1}}{R}\right] \tag{Eq. 9.8}
\end{equation*}
$$

For other shape cross sections, suci) as $\mathbf{I}$, hollow rectangulor, circular or elliptical, reasonably accurate correction factors are given by (9.5):

$$
\begin{equation*}
k_{i c}=1.0+B\left(\frac{1}{b c^{2}}\right)\left[\frac{1}{(R-c)}+\frac{1}{R}\right] \tag{Eq. 9.9}
\end{equation*}
$$

B is 0.5 for 1 or hollow rectangular sections and 1.05 for circular or elliptical cross sections. Jee Fig. 9-4 (c) for the other symbols.

A pipe bend is an example of a curved member with a hollow cirrular cross section. These ore actually toroidal (donut shaped) shells. Sur.n shells are :reated in Section 9.5.

(c.) Bending sfress, including effect of curvature

$0_{n}=\begin{aligned} & \text { Section area on sarice side plane } n \\ & \text { as } q_{r} \text { acts }\end{aligned}$

$a_{0}=$ full section orea
(d.) Section $X-X$

Fig. 9-4 NORMAL, SHEAR AND RADIAL STRESSES ON RING CROSS SECTION
Eq. 9.8 shows that for rectangular sections, maximum bending stresses determined using conventional beam theory are about $7.0 \%$ too low at $R / t=5$, and $3.4 \%$ too low of $R / t=10$. In the following discussion, rings are termed "thin rings" when the increased maximum stresses resulting from the geometry of the curvature are considered negligible for design.

For thin rings, the maximum stresses at a given cross section are:

$$
\begin{array}{ll}
\text { maximum circumferential normal stress: } & \sigma_{\theta}=\frac{N_{\theta}}{c_{\theta}} \pm \frac{M_{0}}{s_{\theta}} \\
\text { maximum shear stress (with } q_{t}=0 \text { ): } & \tau_{\theta}=c_{s} \frac{v_{\theta}}{o_{0}} \\
\text { maximum radial normal stress (with } \left.q_{r}=0\right): & \sigma_{r}=c_{r} \frac{M_{\theta}}{a_{E} R}
\end{array}
$$

The coefficients, $c_{s}$ and $c_{r}$, depend on the shape of cross section. For maximum shear stress, $c_{s}$ is obtain by applying Eq. 5.30 at the neutral plane, giving $c_{s}=$ $\left(\bar{Q}_{s \mid} a_{q}\right) /\left(b_{n} I_{0}\right)$. It may be shown that when $q_{r}=0, \sigma_{r}$ has the same variation as ${ }^{1}{ }_{0}$ giving $c_{r}=c_{s}$. In this case:

For a rectangular section: $c_{s}=c_{r}=1.5$.
For an I section with a thin wec ar:d $a_{0}=$ area of web: $c_{s}=c_{\mathbf{r}}=1.0$
When $q_{r} \neq 0$, the radial stress produced by $q_{r}, \sigma_{r q}=q_{r} b / b_{n}\left(1-a_{0 n} / a_{0}\right)$ must be added to the radial stress produced by the bending imoment, us given by Eq. 9.12 (except determine $c_{r}$ using $\bar{Q}_{s, 1}$ for the plane $n$ of maximum combined radial stress, rather than for the neutral plane). See Fig. 9-4(d) for $b_{n}, u_{n}$ and $a_{\theta}$ for several section shapes. The same reasoning applies to shear stress when $\mathrm{q}_{\boldsymbol{t}} \neq 0$. The part of the $N_{0}$ thrusts that are not associated with $q_{r}$ do ot produce radial norma! stresses, since they result from a change in shear stress resultant with angular position (see Eq. 9.6b), and their radial components equilibrate shear stress variations with angular position.

Radial stresses produce distortion of the cross section of thin tubular curved beams. This reduces both the strength and the stiffness of the tubular sectior.. See (9.3) for correction factors that account for this distortion in curved members whose curvature is not excessively sharp (thin rings).

When rings are subject to significant bending moments, bending deflections are usually much greater than deflections resulting from axial or sheur stress resultants. These lafter deflections are generally neglected in practical calculotions and maximum bending deflections are determined from:

$$
\begin{equation*}
w=\frac{c_{w} P R^{3}}{E_{0} l_{0}} \tag{Eq. 9.13}
\end{equation*}
$$

For a ring of unit width, subject to a lood, W, per unit width:

$$
\begin{equation*}
w=\frac{c_{w} w R^{3}}{E_{0} i_{0}} \tag{Eq. 9.130}
\end{equation*}
$$

For long tubes (wide rings), restraint of deformation transverse to the ring stiffens the ring somewhat, as explained in Chapter 6. Thus, $\mathrm{E}_{\mathrm{G}} \mathrm{i}_{\mathrm{Q}}$ should be reploced witi $D_{0}$, where $D_{0}$ is given in Table 6-1, and:

$$
w \quad=\quad c_{w} \frac{w R^{3}}{D_{0}}
$$

Values for the coefficient $c_{w}$ for various common loading cases are given in hondbsoks such as (9.3). Values of $c_{w}$ for vertical and horizontal diametral changes are given below for the load cases shown in Fig. 9-1:

## Coefficients for Deflection of Rings for Looding Coses in Fig, 9-1

| Lood Case <br> Fig. $9-1$ | Change in Diameier |  |
| :--- | :---: | :---: |
|  | Vertical <br> $c_{w}$ | Horizontol <br> $c_{w}$ |
| b | -0.074 | 0.068 |
| c | -0.149 | 0.137 |
| d | -0.116 | 0.110 |
| e | -0.083 | 0.083 |
| f |  | $\pi / 4, \pi / 2,2 \pi / 3, \pi$ |

## Buckling

When rings are subject to significant axial compression under uniform or nonuniform loads, their structural capacity may be limited by their resistance to buckling. The maximum circumferential conipressive force (ring thrust), as limited by buck!ing, is usually taken as the buckling resistance of a circular ring subject to uniform external pressure. This is:

$$
\begin{equation*}
N_{0 c}=\frac{3 E_{\theta} i_{\theta}}{R^{2}} \tag{Eq. 9.14}
\end{equation*}
$$

The critical external pressure that buckles the ring is:

$$
\begin{equation*}
p_{c r}=\frac{3 E_{Q} i_{0}}{R^{3}} \tag{Eq. 9.15}
\end{equation*}
$$

For a long tube of uniform wall thickness:

$$
\begin{equation*}
p_{c r}=\frac{E_{0} t^{3}}{4\left(1-v_{0} v_{x}\right) R^{3}} \tag{Eq. 9.16}
\end{equation*}
$$

The critical circumferential stress that buckles the ring or tube is:

$$
\begin{equation*}
\sigma_{0}=\frac{E_{0} t^{2}}{4\left(1-v_{0} v_{x}\right) R^{2}} \tag{Eq. 9.17}
\end{equation*}
$$

The buckled configuration of the ring is shown in Fig. 9-5.


Fig. 9-5 BUCKLED CONFIGURATIUN OF RING SUBVECT TO UNIFORM EXTERNAL PRESSURE

Example 9-1 illustrates the use of the equations for rings subject to uniform pressure to determine the required wall thickness of a plastic pressure pipe. The maximum external pressure that ccuses buckling is also calculated. Example 9-2 illustrates the use of the equations and coefficients for non-uniform load to obtain an approximate evaluation of the stresses and deflections expected in a parallel plate test of a plastic pipe.

Buried plastic pipe behaves as thin flexitle rings that are both loaded and restrained by their embedment soil. These require special design approaches that rely on soil-structure interastion for control of pipe deflection. A brief explanation of the principal considerations for analysis and design of buried plastic pipe systems is presented in Section 9.14 of the er.d of this Chapter.

Curved components that support loads by three dimensional systems of internal stress resultants are termed shells. These are treated in the sections that follows.

### 9.3 SHELL GEOMETRY

Typical configurations ior plastics shells were discussed in Chapter 4, Section 4.4. These generally may be classified as "cylindrical" (i.e., shells with a finite radius of curvature in only one principal direction, such as cylinders), "doubly curved with positive Gaussian curvature" (i.e., shells having radii of curvature with the same sign in each of the two principal directions, such as domes), and "doubly curved with negative Gaussion curvature" (i.e., shells having radii of curvatue with opposite signs in the two principal directions such os saddle shells). See Figs. 4-1 to $\mathbf{4 - 3}$ for illustrations of the above types of shells.

Shapes and equations for surface geometry of cylindrical shells and doubly curved shells of positive Gaussion curvature are given in Fig. 9-6. Doubly curved shapes include the sphere, its generalized cuunterpart - the ellipsoid, cones with either elliptic or circular sections, and the elliptic paraboloid. The surfaces shown in Fig. $9-6$ ( $a$ ), (b), (c) with $a=c$, (d) with $a=b$ and ( $f$ ) with $a=b$ are surfaces of revolution, formed by revolving a straight or curved line about an axis. The surfaces shown in these figues are also translational surfaces, formed by tronslating a straight or curved line along another straight or curved line. The surface shown in (e) is another translational surface, formed by translatinone parabola over another parabola. This surface is useful for covering areas with rectangular plons, using arches supporting each edge, as explained in more detail in Section 9.6. It is also useful for approximating portions of other surfaces covering rectangular plans such as a spherical surfoce.

Excmple 9-1: Determine the minimum wall thickness for a 12 in. diameter PVC water main (AWWA C900). Pipe is buried with shallow cover in an area where surfoce traffic is not onticipated. Internal pressure is 130 psi, including a 30 psi occasional surge. Also calculate adequacy against buckling with full vacuum applied briefly inside the line.*
I. Pipe Properties of Temperature of $73^{\circ} \mathrm{F}$ (Ref. AWWA C900)

Ostside Diameter: $2 R_{0}=13.2 \mathrm{in} ; R_{0}=6.6 \mathrm{in}$.
Modulus of Elasticity: $E=400,000$ psi (short term)
Poissons Rotio: $v=0.38$
Hydrostatic Design Basis: $\mathrm{HDB}=4,000$ psi
2. Determine pipe wall thickness providing safety foctor of 2.5. Assume that the pipe is a thin ring and that load effects due to burial are negligible.
$t=\frac{\mathrm{pR}}{\sigma_{0}}=\frac{\mathrm{p}\left(\frac{2 R_{0}-t}{2}\right)}{\frac{H D B}{5 F}}=\frac{130\left(\frac{13.2-t}{2}\right)}{\frac{4000}{2.5}}=0.515 \mathrm{in}$.

Use AWWA C900 Class 100 PVC pipe with minimurn $t=0.528 \mathrm{in}$.
3. Determine buckling resistance
$R=\frac{13.20-0.528}{2}=6.336 \mathrm{in}$.
$P_{c r}=\frac{E_{0} t^{3}}{4\left(i-v^{2}\right) R^{3}}=\frac{400.000 \times 0.528^{3}}{4\left(1-0.38^{2}\right) 6.336^{3}}=67.6 \mathrm{psi}$
Factor of safety against buck!ing under briei vacuum in line
$\overline{S F}=\frac{67.6}{14.7}=4.6$

Note: 1 psi $=0.0069 \mathrm{MPa}, \mathrm{I} \mathrm{in} .=25.9 \mathrm{~mm},{ }^{\circ} \mathrm{C}=\left(^{\circ} \mathrm{F}-32\right) 5 / 9$

- Design loads, design criteria (such, as safety factors, load factors and capacity reduction factors, efc.), and materials properties used in design examples ure for illustrative purposes only. The user of this Manual is cautioned to develop his own loads, criteria and materials properties based on the requirements und conditions of his specific design project.

Example 2-2: Determine the force per lineal inch required to achieve the 5\% deflection requirement in the parallel plate loading test for stiffness of plastic pipe (ASTM D2412). (For arrangement, see Fig. 9-1c). Analyze 12 in . diameter PVC pipe (AWWA C900). Determine pipe stiffness and maximum bending stress in the pipe wall at $5 \%$ deflection.*

1. Pipe properties (See Example 9-1)
2. Deflection - 5\% of mean diameter: $: y=0.05(2 \times 6.336)=0.63 \% \mathrm{in}$.
3. Find load to develop 5\% deflection. Use short term viscoelastic modulus since test lasts a few minutes. Use Eq. 9.13b because ASTM D2412 requires a nroderately wide ring (i.e., 6 in . length on 12 in . diameter and 0.515 in . wall). Neglect effects of increase in span of ring caused by increase in diameter, since such effects are small at $5 \%$ deflection.
$W=\frac{D_{0} w}{c_{w} R^{3}}=\frac{E_{0} i_{0} w}{\left(1-v^{2}\right) c_{w} R^{3}}$
(Eq. 9.13b, rearranged)
$i_{0}=\frac{t^{3}}{\sqrt{2}}=\frac{0.528^{3}}{12}=0.0123 \mathrm{in}^{3} / \mathrm{in}$.
$c_{w}=0.149$ (see table following Eq. $9.13 b$ for case $c$, Fig. 9-1.)
$W=\frac{400,000 \times 0.0123 \times 0.634}{\left(1-0.38^{2}\right) 0.149 \times 6.336^{3}}=96.2 \mathrm{lb} / \mathrm{in}$.
4. Short-term pipe stiffness, PS $_{0}$, is $W / w(W / w=F / \Delta y$, the latter being ASTM D2412 notation).
$P S_{0}=\frac{W}{W}=\frac{96.2}{0.634}=152 \mathrm{psi}$
Note that the D2412 calculation is based on the mean inside diameter or radius, rather than the mean radius of the wall as in Eq. 9.17.
5. Maximum short-term bending stress at $5 \%$ deflection
$M_{0}=c_{M} W R ; c_{M}=0.32$ maximum at crown and invert (Fig. 9-2)
$M_{0}=0.32 \times 96.2 \times 6.336=195.0$ in-lb/in.; $N_{0}=U$ at crown and invert, by symmetry
$\sigma_{0}=\frac{N_{0}}{a_{0}} \pm \frac{M_{0}}{S_{0}}$ (Eq. 9.10)
$s_{0}=\frac{i_{0}}{\frac{i}{2}}=\frac{0.0123}{\frac{0.528}{2}}=0.0466 \mathrm{in}^{3} / \mathrm{in}$.
$\sigma_{Q}= \pm \frac{195.0}{0.0466}= \pm 4185 \mathrm{psi}$; Maximum bending stress at $5 \%$ deflection is $\pm 4185 \mathrm{psi}$

Note: 1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{in}^{3} / \mathrm{in} .=64 j \mathrm{~mm}^{3} / \mathrm{mm}, 1 \mathrm{in.}_{.}^{4} / \mathrm{in} .=16,38 ; \mathrm{mm}^{4} / \mathrm{mm}, 1 \mathrm{~b} / \mathrm{in} .=$ $175 \mathrm{~N} / \mathrm{m}, 1 \mathrm{in} .-\mathrm{lb} / \mathrm{in} .=4.45 \mathrm{Nm} / \mathrm{m}, \mathrm{I} \mathrm{psi}=0.0069 \mathrm{MPa}$.

* See footnote, Example 9-1, Page 9-13.


Fig. 9-6 GEOMETRY OF CYLINDRICAL SHELLS AND SHELLS OF POSITIVE GAUSSIAN CURVATIRE

Shapes and equations of geometry for doubly curved shells of negative Goussian curvature are given in Fig. 9-7. The most common such surface is the hy'rerbolic parabnloid shown in (a) and (b), and designated by shortened terminology as a "h;'par." If reference axes $x$ and $y$ intersect at an angle $\omega$ less than $90^{\circ}$, as shown in ( $h$ ), the resulting surface is termed a "skew hypar." The case of $\omega=$ $90^{\circ}$ is then termed a "right hypar." If the two edges in the $x-y$ plane, $a$ and $b$, are equal, the hypars are termed "equilateral."


Fig. 9-7 GEOMETRY OF SHELLS OF NEGATIVE GAUSSIAN CURVATURE

Hypars are tronslational surfaces, formed by translating a straight line over two generator straight lines, as shown in Fig. 9-7. When the $x$ and $y$ axes are rotated into the directions of principal curvature, the hypar surfaces has the form of a siddle, as shown in (c). A surface of revolution having negative curvature is formed when a parabola is rotated about a central axis, as shown in (d), to form a hyperboloic of one sheet.

A torus, or donut-shaped surface, shown in Fig. 9-8a, is a doubly curved surface having positive curvature over the portion outside the radius, $b$, and negative curvature over the portion inside b. This shape is widely used for pipe bends, and portions of it are used for fillets at the base of cylindrical vessels with cylinder axis oriented vertically, and for junctions between cylindrical walls and spherical heads of pressure vessels. The latter type is shown in sketch b in the Figuie.

As stated earlier for rings, the shells treated in this Chapter are all classed as "thin". This requires that the smallest radius be greater than about 10 times the shell thickness (9.3). Sich limits are imposed so that the underlying assumpticns of the stress-strain relationships in the bending and membrene theories used for the equitions presented in this Chapter will be? volid.

### 9.4 STRESS A ALLYSIS OF SHELLS

Very often, simple closed form elastic formulas for stresses and deformations provide analyses of sufficient accuracy for commonly occuring shell components, suct. as cylindrical tanks, spherical roofs and hypar roof components subject to axisymmetric loads. Other somewhat more complex cases involving closed form solutions of differential equations hove been solved in non-dimensional form and results presented in tables of shell coefficients (9.6). Still nore complex shell geometries, edge restraints or loadings, which cannot be represented by mathematical functions having closed form solutions, can be analyzed using finite element computer anclyses. The general approach to such problems was discussed in Chapter 4, Section 4.9. Some of the available programs were referenced in that Section.


$$
\frac{\left.b \pm\left(R_{k}^{2}-z^{2}\right)^{1 / 2}\right]^{2}}{\frac{x^{2}}{2}} \frac{y^{2}}{\left.b \pm\left(R_{k}^{2}-z^{2}\right)^{1 / 2}\right]^{2}}=1
$$

(a) Torus


Fig. 9-8 GEOWETRY OF TORUS, A SHELL WITH BOTH POSITIVE AND NEGATIVE GAUSSIAN CURVATURE

## Accurate Analyais for General Shells

An accurate anolysis of a shell hoving almust ony shape, subject to almost any condition of edge restraint, and cumprised of almost any type of elastic or
viscoelastic material is within the present state-of-the ari in finite element analysis. However, the analysis may become extremely complex and expensive when nom-linear analysis is required for those special types of shells whose:

- detormations result in signifiant changes in geometry,
- elastic properties change with stress level, and/or duration of load,
- restraint conditions change with stress level and duration of load, requiring non-linear analysis.

The analysis may also become complex when mater!als properties are "generally anisotropic" and/or layered, requiring consideration of ion-symmetric elasticity.

When non-linear analyses are required for shells that are sensitive to changes in local geometry (such as analyses for buckling), curved finite elernents may be required, further adding to the complexity of the solution.

## General - Shell Bending Analysis

Consider first the general case where stress resultants are to be determined in a singly or dpubly curved thin shell subject to an applied load. Eight unknown stress resultants exist at o point on the sheil (Fig. 9-9) while only six equilibrium equations are available. Consequently, the general problem of shell malysis is indeterminate and can be solved accurately only by inclusion of deformation compatability relations in addition to equilibrium equations. While it is not difficult to set up the differential equtions of equilibrium and deformation for general bending shell behavior, solutions of the equations often either are not available or are too complex for practical application.

## Simplifications in Analysis

Shell anolysis can be simplified greatly for many toubly curved shell structures that are subject to loads distributed over their surfaces without abrupt disconi invities, because in such shells, bending, twisting and radial shear stress resultants are reiatively unimportarit compared to axial and tangential shear stress
resultants. If bending, twisting, and radial she ar stress resultants are assumed to be zero, only three unknown stress resultants exist at any point on a shell surfoce. These stresses are termed the "membrane stresses" because the ascumption of zero bending means that the shell is acting as a pure mernbrane, subjected only to tension, compression, and in-plane (tangential) shear stresses.


Fig. 2-9 INTERNAL STRESS RESURTANTS AT A POINT IN A SHELL

The memb:ane stress problem is statically determinate within the shell because three equations of equilibrium are available for every point in the surface; however, for o complete membrane solution, edge support forces and deformations must be provided whicl, exactly meet the membrane solution requirements. Practically, these support requirements may not be sotisfied; in such cases, bending stresses will exist in the vicinity of supports. Fortunately, these edge bending effects usually domp out rapidly, so that approximate bending solutions for the portions of the shell near the edge supports often are sufficient for determining the significant shell bending stresses.

The approoch usually taken in the simplified shell analysis is as follows:

- Assume membrane solution is valid, and calculate membrane stresses at appropriate points in the shell. Details of this analysis are presented in Section 9.6.
- Determine edge :zactions and deformations required in the membrone analysis.
- If the actual shell boundary conditions cannot provide the thrust and inplane shear reactions, nor the edge displacements and rotations required for compatibility witi) membrane stress conditions (the usual case), apply odditional edge forces that, when added to the merribrane reactions, result in support reactions, deflections and rotations compatible with the ortual boundory conditions of shell. These additional edge forces produce significont bending and irr-plone stross resultonts in the edge regions of the shell, and the onalysis to determine these stress resultants and the associated edge deformations is termed the "edge bending analysis" or "discontinuity stress analysis". Details of this analysis are presented in Section 9.7.
- The final stresses in the edge region are determined by superimposing the membranc stresses and the edge bending stresses.

The simplified shell onalyse;; presented in the remainder of this chapter cover the following common shell types: cylindrical shells, shells of revolution, and translational shells.

Cylindrical shells have been treated more extensively in the literature thon ony other type. Because they have only single curvature, membrone solutions are easy to obtain tor many types of loading.

Full cylindrical shells (Fig. 9-66) under disuributed lood, such as pressure vessels and tonks, have edge bending disturbances only in the vicinity of circumferemial edges. Generally, these circumferential edge disturbances produce longitudinal bending moments which domp out rather rapidly in a longitudinal direction info the shell. This is particularly true for long s'ells. Elsewhere in the shell, only the stress resultants obtained in the membrane onalysis are significant; however, some stiffness is required throughout the shell for stability. This will be discussed in detail in Section 9.10

Partial cylinders, such as barrel vault roofs (Fig. 4-3), usually have significant transverse bending effects which result from longitudinal edge disturbonces. For Jong shells, transverse bending moments extend over the entire width of the shell. Tronsverse bending moments ore a critical design consideration in such partial cylindrical shells..

Shells of revolution of many types (Fig. 9-6), in addition to cylindrical shells, have also been treated extensively in the literature. For continuous loading on
all but very tlat shells, only the membrane stress resultants are significant over a major portion of the shell and bending moments usually moy be ignored except in the vicinity of edges; again some bending stiffness must be provided throughout the entire shell for stability.

Translational shells, such as the hyperbolic paraboloid (hypar) (Figs. 4-2 \& 9-7) also support cistributed loads primarily by membrane stresses, when edge supports provide reactions and control deformations as required by the assumption of the membrane theory. Although, because of their simplicity, mernbrane solutions ore usually employed, at least for prelimirary design of hypar sheils, their results have been found to be inaccurate for some commonly used shell and edge support configurations. When edge supports do not control deformation as required by the membrane theory, bending occu: $:$ in the shell and in-plane stress resultants may differ considerably from these obtained with the membrane theory. This is discussed in Section 9.6.

Equations for determining mernbrane stresses ond edge bending effects in the above common shell types are given in Sections 9.5 and 9.6, respectively, together with references for more comprehensive solutions. Stresses resulting from thermal gradients and restraints of therrial changes at edges are treated in Section 9.9.

Normally, the thin shells treated in this Chapter hove a constont thickness, $t$, hoving uniform elastic properties in all Jirections iisotropic). The basic solutions given later art for this case. In some; structures, however, thickness may not be uniform, ribs may be present, the shell cross section may be layered or moterials may be orthotropic. Since the membrane stress resultants are statically determirate, these variations do not significantly affect the membrane solutions given in the next Section. They will have a profound effect on the edge bending solutions, as is discussed fur ther in Section 9.6, as well as on any mathematical or numerical solutions that include berding. Vorious approximations for including the effect of directional variations in stiffness and effects of ribs or sandwich construction are included in many of the presentations in the Sections that follow.

### 9.5 MEMBRANE ANALYSIS OF SHELLS

Membrane action of strell structures relies on the system of statically determinate "in-plane" or membrone" stress resultants that arise to resist a continuously distributed load on a smoothly curved shell. These in-plane stress resultants are sufficient to satisfy static requirements for support of the continuous distributed load because of the curved geometry of the shell. Membrane stress resultants are obtained by statically determinate stress analyses, involving only the geometry of the shell and the applied loods, and the equations of equilibrium. Membrane oction provides an inherently efficient stress path because no bending or transverse (radial) shear is required by statics to support the applied load.

## Shells of revolution.

Membrane equations of equilibrium for continuous distributed looding ore given in (9.7) for two practical shell types of widespread interest:

- shells of revolution with symmetrical lood distribution with respect to their axis of revolution (i.e. termed axisymmetric looding),
- shells of revolution with anti-symmetrical lood distribution with respect to their axis of revolution.

Analyses of the former type do not require solution of differential equations; the latter solutions involve differential equations.

Membrane stress resultants in symmetrically loaded shells of revolution (Fig. 9-i0) may be determined using the following two equations (9.7):

$$
\begin{align*}
& N_{\phi}=\frac{P_{\phi}}{2 \pi R_{2} \sin ^{2} \phi}  \tag{Eq 9.18}\\
& N_{\phi}+\frac{N_{0}}{R_{2}}=-P_{z} \tag{Eq. 9.19}
\end{align*}
$$

$P_{d}$ is the total symmetrical load on the shell above the opening angle d, directed along the axis of revolution as shown in Figs. 9-6 and 9-10. Eq. 9.18 has a singularity at $=0$, and thus the above method cannot be uned in the ricinity of the apex of shells of revolution. See (9.7) for the basic differential equations of the membrane theory.


Fig. 2-10 MEMBRANE STRESS RESULTANTS N SYMMETRICAL SHELL OF REVOLUTION WITH SYMMETRICAL LOADMG
$P_{z}$ is the radial unit lood, normal to the surface (pressure), at a point whose coordinotes are $\$$, $Q$

The use of these equations to determine the membrane stress resultants in a paraboloidal sheil is illustrated in Example 9-3.

Note that for a cylindrical sthell, $R_{1}=\infty, \phi=90$ degrees, and $N_{\phi}=N_{x}$ in Table 9-1 for all locations on the shell.

Equations for the three membrane stress resultants, $N_{\phi}, N_{0}$ and $N_{\alpha 0}$, are presented for several common types of distributed lood of proctical design interest in the following tables:

Example 9-3: Determine the membrane stress resultants at the support ring of the circular paraboloid of revolution show, in the sketch, subject to 1 psi internal pressure. Obtain geometry from Fig. 9-6, Case (f), for $a=b=50 \mathrm{in}$. and $c=30 \mathrm{in}$. *


1. Fig. 9-6: Equation of surfoce:

$$
z=\frac{c x^{2}}{a^{2}}+\frac{c y^{2}}{a^{2}}
$$

2. Since any horizontal section through the surface is a circle, stress resultonts are the same at all points around any horizontal circumference. Thus, consider the $x-z$ vertical plane as representing all vertical plones.
3. Radii of curvature: At support ring where $x=50 \mathrm{in}$.

$R_{1}=\frac{\left[1+(1.2)^{2}\right]^{3 / 2}}{0.0240}=158.8 \mathrm{in}$.
4. $\quad N_{d}$ stress resultant: Eq. 9.18: $N_{d}=\frac{P_{d}}{2 \pi R_{2} \sin ^{2} \phi}$

At the support ring: $P_{\phi}=P_{2} \pi^{2} a^{2}$, where $P_{\text {d }}$ is the component of the total pressure load below the supporf ring afong the oxis of rotation and $P_{z}$ is the pressure normal (perpendicular) to the surface at any point.
$N_{\phi}=\frac{P_{z} a^{2}}{2 R_{2} \sin ^{2} \phi}=\frac{1 \times 50^{2}}{2 \times 65.1 \times(0.768)^{2}}=32.55 \mathrm{lbs} / \mathrm{in}$.
5. $N_{0}$ stress resultant: Eq. 9.19: $\frac{N_{d}}{N_{0}}+\frac{N_{0}}{R_{2}}=-P_{2} ; P_{z}=1.0 \mathrm{psi}$

At the suppert ring: $\frac{32.55}{158.8}+\frac{N_{0}}{65.1}=1.0 ; N_{0}=65.1(1.0-0.206)=51.7 \mathrm{lbs} / \mathrm{in}$.

Note: 1 in. $=25.4 \mathrm{~mm}$, ibf/in. $=175 \mathrm{~N} / \mathrm{m}, \mathrm{I}$ psi $=0.0059 \mathrm{MPO}$.
See footnote, Example 9-1, Poge 9-13.

| Cylindrical Shells | - | Table 9-1 |
| :--- | :--- | :--- |
| Spherical Shells | - | Table 9-2 |
| Conical Shells | - | Table 9-3 |
| Toroidal Shells | - | Table 9-4 |

See (9.8) and (9.9) for extensive tables of equations for membrane stress resultonts in other shells of revolution, including pointed domes (toroid shel's where ring axis bisects cross section), spherical shells with unsymmetrical boundaries, paraboloids, cycloids and ellipsoids of revolution, and conical shells with support at vertex. See (9.7), (9.8), (9.9), (9.10), (9-11) and (9.12) for derivations of the equations given in Tables 9-1, 9-2, 9-3 and 9-4, for other results of membrane shell analyses, and for more detailed explanations of methods of analysis and differential equations for more complex cases of membrane stresses in shells.

## Translational shells.

Another class of shells of proctical design interest are translational shells. The surface geometry of these shells is formed by translating a straight or curved generator along a set of perpendicular or skewed straight or curved generatrices. Cylindrical shells belong to this class, as well as to shells of revolution. The hyperbolic paraboloid (shortened to "hypar" hereafter) is a well known translotional shell, formed by translaring a straight generatrix along another set of straight generatrices, as shown in Fig. 9-7(a) and (b). Another translational shell of interest is the elliptic paraboloid, formed by translating a parabolic generatrix along a set of perpendicular parabolic generatrices, as shown in Fig. 9-6(e).

Equations for membrane stress resultants in right angle hypar shells subject to dead load, snow load, fluid load and wind lood are given in (9.8). For all the above loodings except snow lood, both axial and shear stress resultants arise throughout the shell. Since edge members often connot be arronged to support significent axial membrane stress resultants with adequate strength and stiffness, a system of equal and opposite edge forces must be applied to eliminate the required membrane reactions. These edge forces cause additional in-plane axial and bending stress resultants which are difficult to evaluate by simple closed form analyses, as discussed in the next Section.

Table 9-1
Membrane Stress Resultants in Closed Circular Cylindrical Shells (Source 9.8)


| Arrangement | Equation of Lood Variation | $\mathrm{N}_{x}$ | $\mathrm{N}_{0}$ | $\mathrm{N}_{\times 0}$ |
| :---: | :---: | :---: | :---: | :---: |
| T. | $p_{z}=p$ <br> (Uniform pressure on vertical ar horizontal cylinder) | $=\frac{\mathrm{pR}}{2}$ | -pR | 0 |
| 2. | $P_{x}=P_{e}$ <br> (Weight lood on vertical cylinder) | $-P^{x}$ | 0 | a |
| 3. | $P_{z}=-Y x$ <br> (Fluid lood on verticol cylinder) | 0 | $Y \times R$ | 0 |
|  | $P_{z}=P_{w} \cos \theta$ <br> (Wind lood on verticol cylinder) | $P_{w} \frac{x^{2}}{2 R} \cos 0$ | - $\mathrm{P}_{\mathbf{w}}$ Rcose | $-P_{w} \times \sin 0$ |
|  | $\begin{aligned} & P_{y}=-P_{e} \cos \theta \\ & P_{z}=P_{e} \sin 0 \end{aligned}$ <br> (Weight lood on horizontal cylinder) | $-P_{e} \frac{x}{R}(L-x) \sin \theta$ | $-p_{e}$ Rsin $\theta$ | $-D_{e}(L-2 x) \cos 0$ |
|  | $P_{z}=Y(h-R \sin \theta$ <br> (Fluid lood on horizontol cylinder) (external ca ahown, - for internal) | $\begin{aligned} & r \frac{x}{2}(L-x) \sin \theta \\ &-\frac{r R^{2}}{2}\left(h-\frac{\sin \theta}{2}\right) \\ & h \geqslant R \end{aligned}$ |  | YR ( $\left.\frac{1}{2}-x\right) \operatorname{cose}$ |
|  | $P_{z}=P_{w} \cos \theta$ <br> (Wind lood on horizontal cylinder) | $P_{w} \frac{(L-x)^{2}}{2 R} \cos \theta$ | $-D_{w} R \operatorname{cose}$ | $\rightarrow{ }_{w}\left(\frac{1}{2}-x\right) \sin \theta$ |

Toble 9-2
Meinbrane Stress Remultants in Spherical Shells (Source 9.8)


Table 9-2 (contrd)

| $\cdots$ | Lexumim | $\cdots$ | $\gamma$ | No |
| :---: | :---: | :---: | :---: | :---: |
| 両 |  |  |  | - |
|  | Parn-nem |  |  | $\bigcirc$ |
|  |  |  <br>  |  | - |
|  | $\xrightarrow{\text { Pronmmem }}$ |  |  | $\stackrel{\text { a }}{\text { an }}$ <br> $\stackrel{\text { Nas }}{\text { N }}$ |
|  |  | ( | $(\stackrel{f m}{f} \mathrm{fm})$ |  |

Table 9-3
Membrane Stress Resultants in Canical Shells (Source 9.8)


| Arremenent | Leodiny | $\mathrm{N}_{1}$ | N | $\mathrm{N}_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1. | $\begin{aligned} & D_{1}=D_{4} \operatorname{lin} \psi \\ & D_{2}=P_{4} \cos \theta \end{aligned}$ <br> (Modill Leed) |  | $\rightarrow_{0} \cdot \frac{\cos ^{2} t}{\cos }$ <br> nompote coment $\rightarrow_{0} \cdot \frac{\operatorname{cox}^{2}}{5}$ | 0 0 |
| 2. | $\begin{aligned} & P_{\pi}=\theta_{1} \text { and } \cos \alpha \\ & n_{x}=\theta_{1} \cos ^{2} d \end{aligned}$ <br> (SMem Leal) | $\begin{aligned} & \rightarrow \frac{6^{2}-3^{2}}{2} \\ & \rightarrow \frac{1}{2}+n_{0}=01 \end{aligned}$ | $\rightarrow_{1} \cdot \operatorname{sen}^{3}+$ | 0 |
| 1. |  Cradel Leed | $-r \cos +\frac{8}{3} \cos$ | -710 ctates cman <br> mander cumelt <br>  | 0 |
| 4 | (incer ine | $-\frac{g}{5}\left[\begin{array}{ll} \sin \frac{1}{4} & n^{3}+8^{2} Q \\ -3 n+n & 0 \end{array}\right.$ | (an 10011 <br> - <br> da momi <br>  | 0 <br> 0 |
|  | B <br> Find ines) |  | 0 Tathersit - atan | 0 |
|  | $\theta_{i}=0$ <br>  |  | - Pisch <br> 1000 emen <br> -a 0 ctat | 0 |
| 7. | $\operatorname{con} \ln$ <br> Arial ined PL |  | arape late |  |
|  | (Winctill |  | Thw exw ond <br> meve trimi $\rightarrow \operatorname{cosentan}$ |  |

Table 9-4
Mombrane Stress Rewultants in Symmetrical Toroid Shell Whose Ring Axis Does Not Intersect the Cross Section (Source 9.9)



For loads thot are uniformly distributed over the xy plane and directed alang th: $z$ axis of hypar shells, such as nnow loads (Fig. 9-11), the $N_{x}$ and $N_{y}$ direct stress resultants are zero throughout the shell; the only stress resultants are the inplane shear forces, $\mathrm{N}_{\mathrm{xy}}$. Along the edges, these can be resisted by edge struts having adequate axial strength and stiffness, and thus edge bending effects can be minimized. Because of the simplicity of the membrane analysis and the fairly low rise of many proctical hypar shells, the solution for snow lood is often used to obtain mn approximate analysis for dead load and other loads which have the some approximate direction and distribution.

The following equation gives the applied load intensity on a unit surface area of the hypar (refer to Fig. 9-11):

$$
\begin{equation*}
p_{z}=-p_{s} \cos \psi \tag{Eq. 9.20}
\end{equation*}
$$

In this equation, $p_{\mathbf{z}}$ is the component of the applied lood intensity in the direction of the $\mathbf{z}$ axis (Fig. 9-11).

For the case of loads uniformly distributed over the xy plane, $\psi=0$ and $p_{z}=-p_{s}$. The membrane stress resultants in rectangular and skew hypar shells subject to such loods are (9.13):

$$
\begin{align*}
& N_{x}=N_{y}=0  \tag{Eq. 9.21}\\
& N_{x y}=p_{s} \frac{a b \sin \omega}{2 C} \tag{Eq. 9.22}
\end{align*}
$$

When $\omega=90^{\circ}$, the hypar is a right hypar (Fig. 9-1 Ia).

The above system of in-plane shear stress resultants produces the following maximum direct stress resultants (principal stress resultants) in the two diagonal directions (Fig. 9-1 Id):

$$
\begin{align*}
& N_{1}=N_{x y} \cot \frac{\omega}{z} \\
& N_{z}=-N_{x y} \tan \frac{\omega}{z}
\end{align*}
$$

$$
\text { Eq. } 9.23 \mathrm{a}
$$



Fig. 9-11 HYPAR SHELL COORDWATE SYSTEMS AND STRESS RESULTANTS

The above principal stress results are oriented in the following directions:
$N_{1}$ at $\omega / 2$ with $\times$ axis.
$N_{2}$ at $\left(\omega / 2+90^{\circ}\right)$ with $\times$ axis.
The shear stress resultants in these directions are zero.

If $N_{x}$ and $N_{y}$ are set equal to 0 in Fig. $9-11$ (b), or (d), these sketclies illustrcte how the diagonal principal stress resultants, $N_{1}$ or $N_{2}$ are equilibrated by the components in diagonal directions I or 2 of the two shear stress resultants, $N_{x y}$, acting along the $x$ and $y$ edges, respectively.

The error in using the above equations for dead load, where $p_{z}=-p_{e}$, or for other toads, can be estimated to some extent by noting the magnitude and variation of cos (Fig. 9-11) throughout a particular shell. More complicated analyses should be used for shells wih large rise, or for shells whose $z$ axis is not vertical.

Membrane stress resultants in elliptical paraboloid shells (Fig. 9-6(e)) are given in (9.14). These can sometimes also be used to approximate the stress resultants in similar shells formed by translatior of circular arcs instead of parabolas. Generally, fabrication of components with curved surfaces having constant radii is considerobly simpler than fabrication of curved surfoces with variable radii. In this case, a parabola which is passed through two sets of symmetrical points on the circular arc will provide a oood approximation (Fig. 9-6(e)).

## Tension Membranes

Tension membranes are used in structures such as 'ents and air supported enclosures and components. Air supported structures include single membranes, enclosing an entire pressurized space, and closed cell double membrane, pressurized components that can be used for covering non-pressurized spaces. Fabrics used for such membranes are often composites of flexible plastic coating and inorganic or organic fiber. Three common t)pes are Fluroplastic (PTFE) coated glass fiber, Polyvinyl Chloride (PVC) coated Nylon or Polyester fiber, and Nooprere coated Nyion or Polyester fiber. The first type can be formulated to be non-combustible, a particularly important consideration for covering large spoces used for public assembly (see Section 10.5). See (9.15) for a "state-of-the- $-{ }^{14}{ }^{\text {" }}$ report on the application and design of air supported tension membrane structures.

As the name implies, tension membranes are capable of resisting applied load only when they are stressed in tension. When they are not given sufficient initiol
tension, large ctionges in shape may result from fluctuating loads, such as wind load, producing unsatisfactory behavior like "flapping", flutter and excessive movement. In vie: of this, most tension structures are pretensioned prior to application of service luads, either by tensioning against external anchorage, and internal struts, or by intrinal air pressure. Once the tension structure has sufficient initial tension, it can resist applied distributed loads which produce tension, compression, and/or in-plane shear, so long as the principal compression resulting from the applied joads remains below the initial tension, and the combined initial tension and applied principal tension remain below the safe tensile strength limit.

Tensior membranes differ from rigid shells because they cannot resist bending and transverse shear, and they must have sufficient initial tension to counteract membrane compression due to applied loads. Uswally, the initial tension forces and the applied loads produce large deformations of tension structures and the chonges in structure geometry must be occounted for in occurate design analyses. This requires non-linear arialysis methods that are complex and outside the scope of this Manual. However, if the final geametry of a tension structure, after application of initial tension and applied loads, can be estimated with sufficient accuracy or determined experimentally, the structure may be analyzed using the membrane analysis methods previously presented in this Section. Even when final shmpes can only be roughly estimated, linear membrane analysis may be very usieful for preliminary design purposes.

Tension structures require adequate anchorage to develop tension edge forces provided to develop initial tension in the membrane and edge reactions coused by applied loads. Anchorage strengih frequently is developed by providing sufficient weight in foundations, or by anchoring into the ground with earth anchors having adequate pullout strength.

When initial or final stresses are larger than the safe strength of the skin fabrics, tension membranes can be reinforced with cables of nylon, aramid, fiberglass or steel. Such reinforcement may also be required if significant concentrated loods must be supported.

## Netting Anolysis

Netting analysis is a method that is sometimes used to design filament wound lominates for pressure vessels and pipe subject to one predominant uniform loading, such as internal pressure. This louding produces a particular set of membrane principal stress resultants in the shell. Netting analysis provides a means for determining the filament orientation that results in the same stresses in all filaments, as well as equations for determining the filament stress at this orientation for this set of membrane stress zesultants. In netting analysis, it is reasoned that if all filaments are arranged to be at the same stress under the design lood, their inherent strength can be fully developed (with suitable safety factors), and the design will thus be optimized with respect to strength-toweight ratio.

In netting analysis, anly the continuous filaments are assumed to have load carrying capability and in designs based upon this analysis, all fibers are arranged to be uniformly steessed in tension (or compression). One of the following four types of layered filament wound composites are usually used:
(1) An angle ply (helix wound) balanced laminate of thickness $t$ consisting of two sets of equal strength monolayers, oriented at $\pm a$ with the longitudinal axis (Fig. 9-12a). a is termed the winding angle of the helix.
(2) A binary angle ply (helix wound) balanced laminate consisting of two sets of equal strength monolayers oriented at $\pm \alpha \mid$, and two sets oriented at $\pm \alpha_{2}$ with the longitudinal axis (Fig. 9-12b). The double sets of layers have total thicknesses of ${ }^{1} 1$, and $t_{2}$, respectively, for each double set. This is considered the general case of a binary oriented laminate.
(3) A three-ply laminate comprised of two equal sets of mumolayers at $\pm \alpha$, with a total thickness ${ }_{1}$ (for both sets together), and une set of monolayers of thickness $\mathrm{t}_{2}$ at $90^{\circ}$ (circumferential) (Fig. 9-12c). This is a special condition of Case 2 with $\alpha_{2}=90^{\circ}$.
(4) A cross ply balanced laminate consisting of one set of monolayers (with thickness $t$ ) oriented in the $x$-direction and one set (with thickness $t_{2}$ ) oriented in the $y$-direction (Fig. 9-12d). This is a special condition of Case 3 with $a_{1}=0$.

The equations of netting analysis are based on the resolution of stresses on a filament of cross section bt, oriented at an angle, $\alpha$, with the $x$-axis and
subjected to principal stresses $\sigma_{x}$ and $\sigma_{y}$ in the $x$ and $y$ directions, as shown in Figure $9-12 \mathrm{a}$. When $\sigma_{x}$ and $\sigma_{y}$ are principal stresses, the shear stresses on planes perpendicular to the $x$ and $y$ axes are zero. For equilibrium of applied and resisting forces:

$$
\begin{aligned}
& \sigma_{x}+b_{x}=\sigma_{f}+b \cos a, \text { where } t \text { is the equivalent thickness of the } \\
& \text { monolayer }
\end{aligned}{b_{x}=\frac{b}{\cos \alpha}}^{\text {m }}
$$



Filament Group with Effective Area bt
(a). Single Pair of Filament Layers ot $\pm a$

(c) Binary Lominate with One Pair of Filoment layers at $\pm a_{1}$ and One in $y$-direction


Fig. 9-12 ORIENTATION OF FILAMENTS AND MEMBRANE STRESSES FOR NETTING ANALYSIS

Thus: $\quad \sigma_{x}=\sigma_{f} \cos ^{2} \alpha$
Similiarly: $\sigma_{y}=\sigma_{f} \sin ^{2} \alpha$

The above relations lead to the equations given in Table 9-5 for the laminate described in Case 1 above. These indicate the required angle of wind, $\alpha$, as a function of the rotic of principal menibrane stress resultants, $N_{x}$ and $N_{y}$. Most commonly, these relations are used for designing filament wound laminates for cylindrical vessels or pipe subject to internal pressure, or to combinations of internal pressure and various axi-syrmetric longtudinal stresses. The equation for filament orientation shows that the so-called optimum wind angle of $\alpha=$ $54.7^{\circ}$ only applies to a cylindrical component, such as a closed cylinder with internal pressure, where $N_{y}=2 N_{x}$.

In a more general case, two winding angles or directions of filaments ure used. Filament layers hoving on equivalent thickness of $t_{1}$, are applied at a helix angle $\pm \alpha_{1}$, and layers having on equivalent thickness of $t_{2}$ are applied at a helix angle $\pm \alpha_{2}$, as shown in Figure 9-12(b). The equations for determiring the relations between layer thickness and required helix angles and the strength of layers for this more general anse of a binary laminate are given in Table 9-5, Case 2.

In typical practical laminates, one "pair" of filaments is applied at approximately $\pm 90^{\circ}$ (the hoop direction), while the other pair is applied at $\pm \alpha$ (Case 3 in the Table), or in the longitudinal direction $\left(\alpha=c^{0}\right)$ (Case 4 in the Table).

Thus, the equations given in Tabie $9-5$ may be used to determine the arrangements and strength of filaments in filament wound vessels and pipe subject to principal membrane stress resultants $N_{x}$ and $N_{y}$. Example 9-4 illustrotes the application of these equations to design of a filament wound pressure pipe subject to both longitudinal and circurriferential stresses.

In filarnent wound vessels with closed ends or heads, the same helix wraps used to form the cylinder are also wrapped over a doubly curved mold of proper shape to form end closures which resist internal pressure using the full strength provided by the helix wrap. Usually, polar openings are provided at the apex of the head shell os access ports and as openings needed to remove an internal collapsible or disposable mandrel used in winding the vessels.

Table 9-5
Requirements for Filament Orientation and
Strength Bosed on Netting Analysis

| Type of Laminate | Filarnert Orientation in Terms of thelix Angle, $a$, and Equivalent Thickness of Filaments $i_{1}$ and $t_{2}$ for Mambrane Stress Ratio, $\mathrm{N}_{y} / \mathrm{N}_{x}$ | Required Strengit, $\sigma_{f}$, in Direction of Filamment |
| :---: | :---: | :---: |
| Cose 1-lominate of thickness: with two equal sets of filaments ot he! ix angle $\pm a$ (Fig. 9-12(a)). | $\frac{N_{y}}{N_{x}}=\tan ^{?} \alpha$ | $\begin{gathered} \sigma_{f}=\frac{N_{x}}{1 \cos ^{2} a} \\ \text { also } \sigma_{f}=\frac{N_{y}}{1 \sin ^{2} a} \end{gathered}$ |
| Case 2 - general binery tominate with a set of filaments at $\pm a_{1}$ (thickness $t_{1}$ ) and a set of filomenta at $\pm \alpha_{2}$ (mickness $t_{2}$ ). Strengths of filoments in sets 1 and 2 are all of (Fig. 9-12(b)). | $\frac{N_{y}}{N_{x}}=\frac{t_{1} \sin ^{2} a_{1}+t_{2} \sin ^{2} a_{2}}{t_{1} \cos ^{2} a_{1}+t_{2} \cos ^{2} a_{2}}$ | $\begin{array}{r} \sigma_{f}=\frac{N_{x}}{t_{1} \cos ^{2} a_{1}+t_{2} \cos ^{2} a_{2}} \\ \text { also } \sigma_{f}=\frac{N_{1}}{t_{1} \sin ^{2} a_{1}+t_{2} \sin ^{2} a_{2}} \end{array}$ |
| Case 3-Iominde with $t_{1}$ filornents at hellix angle $\pm a$ and $\mathrm{t}_{2}$ filoments at $90^{\circ}$ is. in direction of $y$ (hoop) (Fig. 9-12 (c)). | $\frac{N_{y}}{N_{x}}=\frac{t_{1}+t_{2}}{t_{1} \cos ^{2} a}-1$ | $\begin{aligned} \sigma_{1} & =\frac{N_{x}}{{ }_{1} \cos ^{2} a} \\ \text { avo } \sigma_{f} & =\frac{N_{y}}{{ }_{1} \sin ^{2} a+t_{2}} \end{aligned}$ |
| Case 4 - laminate with $t$ : filerments in direction $\times$ (longitudinol) and $t_{2}$ flloments in direction $y$ (hoop) (Fig. 9-12(d)). | $N_{\sim}^{N}=\frac{t_{2}}{t_{1}}$ | $\begin{aligned} \sigma_{f} & =\frac{N_{x}}{T_{1}} \\ \text { also } \sigma_{i} & =\frac{N_{y}}{T_{2}} \end{aligned}$ |

Example 9-4: Determine the required laminate thickness and angle of wind for helical filaments that should be used in a filament wound pressure pipe with 10 -in. inside radius constructed with one half of the filaments at $90^{\circ}$ (hoop) and the other half at a helix angle $\pm a$. Assume an internal pressure of 100 psi and assume that the joints and bends are supported so that maximum longitudinal tension will not be greater than 0.3 times the circumferentiai tension. Assume that the basic tensile strength in short-time tests of the laminate in the direction of filaments (uniaxial strength) is 60,000 psi. Use a capacity reduction factor of 0.3 for long term and cyclic stress, service exposure effects, and manufacturing variability, and use a load factor of 2.0.*

1. Uniaxial strength: $\sigma_{f u}=0.3 \times 60,000=18,000 \mathrm{psi}$
2. Table 9-5, Case 3: Let $\dagger_{1}=t_{2}=0.5 t$, where $t=$ total thickness of laminate
$\frac{N_{y}}{N_{x}}=\frac{1}{0.2}=\frac{\left(t_{1}+t_{2}\right)}{t_{1} \cos ^{2} \alpha}-1 ;$
$\frac{1}{.3}=\frac{0.5(t+t)}{0.5 t \cos ^{2} \alpha}-1 ; \cos ^{2} \alpha=\frac{2}{4.33}=0.461 ; \cos \alpha=0.679 ; \alpha=47.2^{\circ}$
3. Stress Resultants:

Eq. 9.1: $\quad N_{y}=N_{0}:=p R=100 \times 2.0 \times 10=2,000 \mathrm{lb} / \mathrm{in}$.
Table 9-5, Case 3: $\quad \sigma_{f}=\frac{N_{y}}{t_{1} \sin ^{2} \alpha+t_{2}} ; 18,000=\frac{2,000}{\left(0.5+\sin ^{2} 47.2+0.5 t\right.} ;$
$t=\frac{2,900}{9,000\left(\sin ^{2} 47.2+1\right)}=0.144 \mathrm{in} . ;$ hoop thickness $=0.144 / 2=0.072 \mathrm{in}$.
Helix ( $\alpha= \pm 47.2^{0}$ with longitudinal axis) thickness also $=0.072 \mathrm{in}$.
Use 0.036 in . at $+47.2^{\circ}$ and 0.036 in. at $-47.2^{\circ}$.

Note: $1 \mathrm{in} .=25.4 \mathrm{~mm}, \mathrm{I} \mathrm{lbf} / \mathrm{in} .=175 \mathrm{~N} / \mathrm{m}, \mathrm{I} \mathrm{psi}=0.0069 \mathrm{MPa}$.

* See footnote, Example 9-1, Page 9-13.

Netting analysis is also used to determine an optimized shape for the avaloid end closure, or head shell. This requires consideration of the helix winding pottern as well as the size and type of polar opening needed at the apex. A low angle helix wind is usually used for the cylinder to provide an efficient wind angle for the ovaloid head. The shape of the ovalcid head has been developed using both analog equipınent that applies pressure to a net of continuous fibers and theoretical analyses (9.16). Such onalyses are beyond the scope of this Design Manual.

While netting analusis often is extrememly useful for proportioning the effective thickness or quantity of fiber to be placed at specific orientations in filoment wound components, in some cases final design requires consideration of the effects of bending caused by discontinuities ot supports and heads. This usually involves determination of elastic stiffness properties for laminated orthotropic plates and shells (Section 6.7), and a bending analysis of the orthotropic layered filament wound shell (Sections 4.9 and 9.6), using appropriate stiffness constants for this analysis.

### 9.6 EDGE BENDING ANALYSIS OF SHELLS

Efficient structural action associated with shell behovior demands adequate support at the edges of the shell. If possible, edge structure should be strong enough to piovide the reactions required to support the membrane stress state. In addition, it should be stiff enough to minimize deformations in excess of those required by the membrane solution. Nevertheless, even if edge members have sufficient strength to support membrane stresses, in genera!, their deformation will not meet the requirements of pure membrane beha:!or. Corsequently, bending stresses almost always must be expected in the vicinity of shell edges.

Whether or noi the edge bending moments are significant for the design of the shell depends on the relative strength and stiffness of the edge supports provided. In -nost practical shell structure3, these moments are significant near the edges, but they usually die out rapidly in a direction away from the edge. Consequently, analysis of bending effects in shells is usually limited to the edge
region or other points of discontinuity, such as locations where different shells intersect, where abrupt changes in load disfribution occur, or where penetrations and concentrated loads occur. This is not the case in certain hypar shells where support defc:mations result in large differences between the .nembrane stress solution and stresses obtained by numerical analyses that account for bending and support deformotion (9.32) (9.33). This is also evident in model tests (9.34).

Practical, and usually approximate, methods for determining shell stress resultants in the above regions of discontinuity are presented in this Section. Solutions that cre included here are limited tis widely applicable approximations for commonly occurring discontinuity problems in symmetrically looded shell edge regions. These occur in pressure vessels and many other shells of practical interest. The axisymmetric solutions are also widely used as rough approximations for mony non-axisymmetric conditions. Although edge bending stresses are often considered as secondary effects and neglected in ductile metal shells, these stresses may produce crocking or other distress in the generally nonductik plastics materials; thus, they almost always require careful consideration in design with these muterials.

## Lang Cylinder

Under axisymmetric edge loads, structural behnvior of the edge region of a shell of revolution is analogous to a beam on on elastic foundation. This is illustrated in Fig. 9-13 which shows that axisymmetric edae radial shears and monrants on the end of a cylinder produce similar effects to the behavior caused by a concentrated lood and moment on the end of a beam on an elastic foundation. In the edge region of a cylinder, the stiffness of the hoop direction provides continuous elastic support (i.e. "an elustic foundation") for longitudinal strips that resist the applied edge loads. These edge loads cause radial shear, $\Theta_{x}$, ard bendiny moment, $M_{x}$, stress resultants in the longitudinal direction, and direct sfress resultants, $N_{0}$, in the circumferential direction. These are onalogous to the longitudinal strears and moments and the fandation direct pressures which arise in a beam on an elastic foundation.

The above analogy proves useful in understanding the edge bending behavior of more complex structures such as orthotropic, ribbed or sondwich shells. The
deformations and stress resultants that arise in the edge region when the axisymmetric edge forces shown in Fig. 9-13 are applied depend on the ratio of circumferential axial stiffness to longitudinal flexural stiffness, as defined by a shell constant, $\beta$.


Section 1-1: Arulogans "Bear.-Un-Elastic Foundotion"
Fig. 9-13 ELASTICALLY SUPPORTED BEAM ANALOGY FOR SHELL EDCE BENDING

In order to define $B$, it is useful to modify slightly the notation previously used in Section 6.2 to define plate stiffness, to give the circumferential axicl and longitudinal flexural stiffnesses, respectively, os:

$$
\begin{align*}
& \bar{A}_{0}=E_{0} a_{0}  \tag{Eq. 9.26}\\
& \nu_{x}=\frac{E_{x} i_{x}}{\left(1-v_{x} v_{0}\right)} \tag{Eq. 9.27}
\end{align*}
$$

For uniform thickness shells, these become:

$$
\begin{align*}
A_{9} & =E_{0} \dagger \\
=\quad D_{x} & =\frac{E_{x} t^{3}}{12\left(1-v_{x} v_{0}\right)} \tag{Eq. 9.29}
\end{align*}
$$

$$
\text { Eq. } 9.28
$$

The shell constant, $B$, defines the relationship of the above directional stiffnesses as follows:

$$
B=\left[\frac{\pi_{0}}{4 D_{x} R^{2}}\right]^{1 / 4}
$$

For a shell of constant thickness:

$$
\beta=\left[\frac{3\left(1-v_{x} v_{0}\right) E_{0}}{R^{2} 1^{2} E_{x}}\right]^{1 / 4}
$$

If the material is isotropic, $E_{0}$ and $E_{x}$ are equal and may be dropped from Eq. 9.30b. Also, $v_{x}=v_{0}=v$.

The following equations give the radial deflection, slope, longitudinal moment and shear, and circumferential thrust caused by the axisymmetric edge forces shown in Fig. 9-13, as a function of the distance, $x$, from the edge of the shell:

$$
\begin{align*}
& w=-\frac{1}{2 \beta^{3} D_{x}}\left[B M_{0} \psi(\beta x)+Q_{0} \theta(\beta x)\right]  \tag{Eq. 9.31}\\
& \frac{d w}{d x}=\frac{1}{2 \beta^{2} D_{x}}\left[2 \beta M_{0} 0(B x)+Q_{c} \phi(\beta x)\right]  \tag{Eq. 9.32}\\
& M_{x}=-\frac{1}{\beta}\left[\beta M_{0} \phi(\beta x)+Q_{0} \tau(\beta x)\right]  \tag{Eq. 9.33}\\
& Q_{x}=2 B M_{c} \tau(\beta x)-Q_{0} \psi(\beta x)  \tag{Eq. 9.34}\\
& N_{0}=-\frac{\bar{A}_{0} w}{R} \\
& M_{0}=\nu_{0} M_{x}
\end{align*}
$$

Eq. 9.350

In these equations, deflection, $w$, is positive when inward, the edge forces $Q_{0}$ and $M_{0}$ are positive when directed as shown in Fig. 9-13, and the dimension, $x$, is positive as shown in the same Figure. The functions of $B x$ in the brackets are shell functions that are defined as:

$$
\begin{align*}
& \phi(\beta x)=e^{-\beta x}(\cos \beta x+\sin \beta x) \\
& \psi(\beta x)=e^{-\beta x}(\cos \beta x-\sin \beta x) \\
& O(\beta x)=e^{-\beta x} \cos \beta x \\
& \tau(\beta x)=e^{-\beta x} \sin \beta x
\end{align*}
$$

Eq. 9.36c

Eq. 9.36d

These functions are plotted in Fig. 9-14 for the range of $\beta \times$ of proctical interest. See (9.7) for more precise function values for $\beta x$, varying in 0.1 intervals from 0 to 7.0.

Eqs. 9.31 to 9.34 apply to shells that have sufficient length to make the effects of edge discontinuities at each end essentially independent. This will be the case when the shell length, $L>3 / \beta$.

For ribbed shells, the axial stiffness per unit width, $\mathbb{A}_{0}$, and the flexural stiffness per unit width, $D_{x}$, needed in Eqs. 9.30 to 9.35 may be obtained by "smearing out" (i.e. averaging over rib spacing) the respective circumferential axial and longitudinal flexural stiffnesses. The "smeared out" circumferential axial stiffness is the circumferential rib axial stiffness divided by the longitudinal spacing of these ribs. The "smeared out" longitudinal flexural stiffness is the longitudinal rib flexural stiffness divided by the circumferential spacing of these ribs.

For sandwich shells, the axial stiffness per unit width, $\bar{A}_{0}$, and the flexural stiffness per unit width, $D_{x}$, needed in Eqs. 9.30 to 9.35 , may be obtained from the Eqs. 8.5 and 8.12 for stiffiness of sandwich sections given in Table 8-1.

As is evident by inspecting Eqs. 9.31 to 9.34 for effects of a unit edge moment and smar, the varistion with ( $\beta x$ ) of deflection, $w$, slope, $d w / d x$, moment, $M_{x}$, and shear, $Q_{x}$, is the sorne as the variation in the appropriate functions that are plotted in Fig. 9.14. These plots illustrate how the effects of edge disturbances damp out within a distance of about $x=3 / 8$.

The maximum rioment caused by on edge shear, $Q_{0}$ is:

$$
\begin{equation*}
\max . M_{x}=\frac{0.323 Q_{0}}{\bar{B}} \tag{Eq. 9.37}
\end{equation*}
$$

$$
\begin{equation*}
\text { This occurs at: } x=\frac{0.8}{\beta} \tag{Eq. 9.38}
\end{equation*}
$$

The above equations are used in Example 9-5 to show that the following edge bending effects occur in o "hinged edge" cylinder subject to uniform internal pressure, q, (Fig. 9-15a):


Fig. 9-14 SHELL FUNCTIONS FOR EDGE BENDING IN LONG CYLINDERS

| Edge Shear: | $Q_{0}=\frac{-q}{2 \beta}$ | Eq. 9.39 |
| :--- | :--- | :--- |
| Maximum Moment: | $M_{x}=\frac{-0.162 \mathrm{~g}}{\beta^{2}}$ | Eq. 9.40 |

The maximum shear and moment in a cylinder with rotationally fixed edges subject to internal pressure occur at the edge and are (Fig. 9-15b):

| Edge Sheor: | $Q_{0}=\frac{-q}{\beta}$ | Eq. 9.41 |
| :--- | :--- | :--- |
| Edge Moment: | $M_{0}=\frac{q}{2 \beta^{2}}$ | Eq. 9.42 |

The maximurn shear and momerit due to a radially directed concentrated line lood per unit of circumference, P, around a long cylinder are (Fiy. 9-15c):

Example 9-5: Determine the maximum axi-symmetric radial shear and moment stress resultants in a long cylindrical shell with a "thinged" edge (i.e., free to rotate but radial deflection prevented) subject to uniform internal pressure, $q$ (Fig. 9-15a).

1. Radial shear at the hinged edge:
1.1 Because edge, $x=0$, is "hinged", $M_{0}=0$ and the final radial deflection, $w=0$.
1.2 Consider that the final radial edge deflection is obtained by superimposing the radial deflection in a "free" edged tube produced by the internal pressure (membrane deflection) and the radial deflection at $x=0$ produced by the axi-symmetric radial edge force, $Q_{0}$.
1.3 Edge deflection produced by $q$ : Eqi. 9.5 and 9.1: $w=\frac{N_{0} R}{E_{0} t}=\frac{q R^{2}}{E_{0}{ }^{t}}$
1.4 Edge deflection produced by $Q_{3}$ :

Eq. 9.31 with $M_{0}=0, x=0,(R x)=0: w=\frac{-1}{2 \beta^{3} D_{x}} \quad\left[Q_{0} 0(\beta x)\right]$
Fig. 9-14: 0 ( $8 x)=1.0$ at $(B x)=0$;
1.5 Equate edge deflections in 1.3 and 1.4:
$\frac{q R^{2}}{E_{0}{ }^{\dagger}}=-\frac{Q_{0}}{2 \beta^{3} D_{x}} ; Q_{0}=-\frac{2 \beta^{3} D_{x} q R^{2}}{E_{0}^{\dagger}}$
Eq. 9.28: $E_{0} \dagger=\bar{A}_{0}$ and Eq. $9.30 \mathrm{a}: \frac{2 D_{0} \cdot R^{2}}{\bar{A}_{0}}=\frac{1}{2 \beta^{4}} ; Q_{0}=-\frac{q}{2 B}$
Muximum moment:
2. Muximum moment:
2.1 Only the edge load pioduces longitudinal moment, $M_{x}$.
2.2 $M_{x}$ is obtained using Eq. 9.33 with $M_{0}=0$ for a hinged edge. Thus:
$M_{x}=\frac{Q_{0} \tau(B x)}{\beta}=-\frac{q \tau(B x)}{2 B^{2}}$
2.2 Moment varies with the shell function $\tau(\beta x)$, as shown in Fig. 9-14. The maximum moment occurs of a point where $\beta x=0.8$ and $\tau(\beta x)=0.32$

Thus: $\max M_{x}=-\frac{q \times 0.32}{2 \beta^{2}}=-\frac{0.16 q}{\beta^{2}}$ at $x=\frac{0.8}{\beta}$

$$
\begin{align*}
& Q_{a}=\frac{-P}{2}  \tag{Eq. 9.43}\\
& M_{a}=\frac{P}{4 \beta} \tag{Eq. 9.44}
\end{align*}
$$

where $Q_{a}$ and $M_{a}$ are the shear and bending stress resultants at the point of load application.

Discontinuity bending stresses that arise when a pressure pipe wall is thickened at a joint are calculated in Example 9-6. The pressure pipe designed in Example 9-1 and an idealized joint configuration are used in this simplifiea example.


Nore: Above zave of edge restraint, wis membrane defiection.

Fig. 9-15 AXI-SYMMETRIC MDISCONTINUITY" CONDITIONS IN LONG CYLINDERS

## Short Cylinder

Edge-bending effects on the circumferential edges of a cylindrical shell which cannot be considered "long" are also treated in (9.7). For the special case of equal edge shears, $Q_{0}$ and edge moments, $M_{0}$ on each end of the "short" cylinder (Fig 9-16a), the radial deflections and slopes at the edge are given by the following equations (9.7):

$$
\begin{align*}
& w_{0}=-\frac{1}{2 B^{3} D_{x}}\left(B M_{0} X_{2}+Q_{0} X_{1}\right)  \tag{Eq. 9.45}\\
& \left(\frac{d w}{d x}\right)_{0}=-\frac{1}{2 \beta^{2} D_{x}}\left(2 B M_{0} X_{3}+Q_{0} X_{2}\right) \tag{Eq. 9.46}
\end{align*}
$$

Example 9-6: Estimate the maximum longitudinal discontinuity stress that results from the use of a thickened wall at a bell joint for the pressure pipe designed in Example 9-1. Use the following idealized edge thickening and ossume that a "tinged" edge condition occurs at the bell end of the pipe. See Example 9-1 for material properties."


1. Shell parameter, $\beta$ :

Eq. 9.30b: $\beta=\left[\frac{3\left(1-v_{x}{ }^{\prime}{ }_{0}\right) E_{\theta}}{R^{2} t^{2} E_{x}}\right]^{i / 4}$ $E_{0}=E_{x}=E=400,000 p s i ; v_{x}=v_{0}=0.38$ $\beta=\left[\frac{3\left(1-0.38^{2}\right)}{(6.336)^{2} \times(0.528)^{2}}\right]^{1 / 4}=0.692 ; B^{2}=0.479$
2. Membrane deflection: Eqs. $9.5 \& 9.1: w=\frac{q R^{2}}{E t}=\frac{-130 \times 6.336^{2}}{E \times 0.528} ; E w=-9,884$
3. Unknown edge load, $Q_{0}$, octs on edge of pipe shell and on ring:
3.1 Deflection of shell edge due to $Q_{o},\left(M_{0}=0\right.$ because of hinge assumption):

Eq. 9.31: $\quad w_{0}=-\frac{Q_{0}}{2 B^{3} D_{x}} ;$
Eq. 9.29: $D_{x}=\frac{E t^{3}}{12\left(1-v^{2}\right)}=\frac{0.528^{3} E}{12\left(1-.38^{2}\right)}=-0.0143 E$
$E w_{0}=-\frac{Q_{Q}}{2 \times(0.692)^{3} \times 0.0143}=-105.5 Q_{0}$

### 3.2 Deflection of extra ring reinforcement:

Eqs. 9.4 \& 9.1: $w_{0}=\frac{Q_{0} R^{2}}{E A_{0}} ; E w_{0}=\frac{Q_{0} \times(6.336)^{2}}{2.0}=20.1 Q_{0}$
4. Equote deflection ot edge of pipe (membrane, $q$, plus bending, $Q_{0}$ ) to deflection of ring reinforcement to obtain $Q_{0}$.
$-9884-105.2 Q_{0}-20.1 Q_{0}=0 ; Q_{0}=-\frac{9884}{(105.5+20.1)}=-78.7 \mathrm{lbs}$ in.
Check: $Q_{0}$ must be less than $Q_{0}$ for "hinged" edge as given by Eq. 9.39

$$
\text { Hinged edge } Q_{0}=-\frac{q}{2 B}=-\frac{130}{2 \times 0.692}=-93.9 \mathrm{lbs} / \mathrm{in} . \quad \text { o.k. }
$$

* See footnote, Example 9-1, Page 9-13.


## Example 9-6 (contimued)

5. With a hinged end, maximum moment occurs at $(\beta x)=0.8$ and is given by Eq. 9.33 with $(B x)=0.32$.
$x=\frac{0.8}{0.692}=1.16 \mathrm{in}$. from edge; $M_{x}=\frac{-18.9 \times 0.32}{0.692}=36.5 \mathrm{in} .-\mathrm{lbs} / \mathrm{in}$.
$3_{x}=\frac{1 \times 1^{2}}{6}=\frac{1 \times .528^{2}}{6}=0.0465 \mathrm{in}^{3} / \mathrm{in}$.; $c_{x}=\frac{M_{x}}{s_{x}}=\frac{36.5}{0.0465}=786 \mathrm{psi}$
6. Comment on accurocy of assumptions.

The ascumption of a hinged end and ring area concentrated at the edge probably is not very accurate, since the point of maximum discontinuity moment is only 1.16 in. from the edge. A second assumption than the edge rotation is "fixed" by the ring could be made and the resulting maximum moment calculated. These two cases would probably brocket the octual discontinuity bending condition. An upper limit of the moment for the fixed rotation assumption, applicabie if the ccnfining ring had infinite radial stif fness, is obtained with Eq. 9.42:
max. limit of $M_{x 0}=\frac{q}{2 \beta^{2}}=\frac{130}{2 \times(0.692)^{2}}=135.7 \mathrm{in} .-\mathrm{lbs} / \mathrm{in}$.
max. stress $\sigma_{x_{0}}=\frac{135.7}{0.0465}=2,919 \mathrm{psi}$
Because the above solution does not account for the radial and rotational flexibility of the edge ring, the actual maximum longitudinal stress is probably quite a bit lower than the above value.

Note: 1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{in}^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{in}^{3} / \mathrm{in} .=645 \mathrm{~mm}^{33} / \mathrm{mm}, 1 \mathrm{lbf} / \mathrm{in} .=175 \mathrm{~N} / \mathrm{m}$, $1 \mathrm{psi}=0.0069 \mathrm{MPa}, \mid \mathrm{in} .-\mathrm{lbf} / \mathrm{in} .=4.45 \mathrm{~N}-\mathrm{m} / \mathrm{m}$.
where the terms $X_{1,2,3}$ are functions of ( $B L$ ) as fallows:

$$
\begin{aligned}
& x_{1}=\frac{\cosh (\beta L)+\cos (\beta L)}{\sinh (\beta L)+\sin (\beta L)} \\
& x_{2}=\frac{\sinh (\beta L)-\sin (\beta L)}{\sinh (\beta L)+\sin (\beta L)} \\
& x_{3}=\frac{\cosh (\beta L)-\cos (\beta L)}{\sinh (\beta L)+\sin (\beta L)}
\end{aligned}
$$


(a.) Axi-symmetric Fdge sheors and moments

(b.) Built in edges with internal pressure

Fig. 9-16 AXI-SYMMETRIC EDGE EFFECTS IN SHORT CYLINDERS

The functions $X_{1}, M_{2}$ and $X_{3}$ are plotted in Fig. $9-17$ for the proctical range of BL. It is evident that they approach 1.0 when BL $>$ about 3.0 , indicating that in such cases, the shell behaves as a "long shell".

Eqs. 9.45 and 9.46 are similar to Eqs. 9.31 and 9.32 with $x=0$, modified by the shell functions $X_{1}, X_{2}$, or $X_{3}$.

For a short cylindrical shell with built-in edges subject to uniformly distributed lood, q, (Fig. 9-16b):

$$
\begin{equation*}
M_{0}=\frac{q X_{2}}{2 \beta^{2}} \tag{Eq. 9.48}
\end{equation*}
$$

The general solutions for the constants of integration for deformations of short cylindrical shells are given in (9.7), enatiing more complete solutions for such
prohlems than can be obtained with the limited equations for edge deformation given above. Also, see (9.9) for extensive tables of coefficients for a variety of edge tending soluticns for both long and short cylindrical shells.


Fig. 9-17 SHELL TUNCTIONS FOR LONGITUDINAL BENDING IN SHORT CYLINDERS

## Other Shells of Revolution

Edge-bending effects in mony other shells of revolution such as spherical and conical shells are determined approximately by considering their edge region to behove as a tongent cylinder. This is known as the "Geckler" approximation and it has been found to give sufficient accuracy for practical design of most shells of revolution. Exceptions are excessively shaltow shells, say spherical or conical shells whose rise is less than $1 / 12$ th to $1 / 15$ th their span, and shells whose $R / \uparrow$ is less than about 50.

Equations are given in Table 9-6 for evaluating edge bending in spherical shells. These equations are derived from Eqs. 9.31 to 9.35 by taking the sphere radius equivalent to the tangent cylinder radius and the meridional direction in the sphere equivalent to the longitudinal direction of the cylinder. Since it is
convenient to consider distance from the edge of the sphere in terms of the angular displacement (See Sketch in Table 9-6), R $\psi$ is equivalent to $x$ in the "tangent cylinder" and a neiv shell constant $\lambda$ is defined ns:

$$
\begin{array}{lll}
A=R B & =\left[\frac{\bar{A}_{0} R^{2}}{4 D_{\phi}}\right]^{1 / 4} & \text { Eq. } 9.49 \\
A_{0}=E_{0} a_{0} & \text { (circumferential direction) } & \text { Eq. } 9.50 \\
D_{\phi}=E_{\phi} i_{\phi} & \text { (meridional direction) } & \text { Eq. } 9.51
\end{array}
$$

Equations are given in the Toble for determining the significant edge bending effects in a spherical shell subject to horizontai edge loads, $H_{d K}$ onci edge moments, $M_{d K}$. Usually, $H_{d K}$ and $M_{\phi K}$ are determined from the edge forces rearired in the membrane condition and the equations of deformational compatibility at the edge. This is illustrated in Example $9-7$ for $G$ simple dome with an edge ring having negligible rotational restraint at the edge. Once $H_{\phi / K}$ and $M_{\$ K}$ ore determined, the rernaining equations in the Table may be used to determine the moments and thrusts in the edge region due to the edge loads. These are added to the thrusts determined in a membrane analysis os illustrated in Example 9-7.

Similar relations have been developed for other shells of revolution by considering the edge region as a tangent cylinder. In (9.9) extensive tables of formulas and coefficients are presented for determining edge bending effects in cylindrical, spherical and conical shells with a variety of edge conditions.

## Torispherical and Ellipsoidal Pressure Vessel Heads

Torispherical shells of revolution are widely used as heads for cylindrical pressure vessels because they provide a smooth transition between the cylinder and the head, while providing a relatively low rise closure. The torispherical shape is comprised of a spherical surface from the crown or apex jointed with a torroidal knuckle shell that is tangent with the spherical surface near the edge with the cylinder at the edge. This geometry is shown in Fig. 9-8(b) in Section 9.3. Ellipsoidal surfaces also can provide a similar smooth transition with the cylinder and have been widely used as pressure vessel heads. Gencral ellifsoid geometry is shown in Fig. 9-6(c) in Section 9.3.

Thble 9-6
Edge Deformations, Moments and Thrusts Due to Edge Forces on Spherical Shells


Example 9-7: Determine the stress resultants at the edge and at the apex of the spherical shell shown in the sketch *:
$h_{w}=60$ in.; $\gamma=64 \mathrm{lbs} / \mathrm{ft} .^{3}=0.0370 \mathrm{lbs} / \mathrm{in} .^{3}$
h


1 = $0.5 \mathrm{in} . \mathrm{i}_{\text {i }}$ transparent glass reinforced polycarbonate shell

Ring: Aluminum shape with $A=1.5 \mathrm{in}^{2}$ and $E=10 \times 10^{6} \mathrm{psi} ; A_{0}=E A=15 \times 10^{6} \mathrm{lbs}$.

Shell: $E=800,000$ psi; for long term load', use 0.8 E ; thus, long term $\mathrm{E}=640,000 \mathrm{psi} ; v=0.3$
I. Geometry:
$\left.\sin \phi_{k}=\frac{50}{100}=0.5 ; \phi_{k}=30^{\circ} ; h_{s}=10011-\cos \phi_{k}\right)=13.4 \mathrm{in} . ; h=R+60=160 \mathrm{in}$.
2. Membrane Stress resultants at edge:
2.1 Membrane stress resultants - Table. 9-2

First Fluid Load Case: $\left.N_{\phi}=-\gamma R\left\{\begin{array}{c}2 \\ \frac{n}{2}-\frac{R}{3}\left[1+\frac{\cos ^{2} \phi}{2+\cos \phi}\right]\end{array}\right]\right\}$
$N_{\alpha}=-0.037 \times 100\left\{\frac{160}{2}-\frac{100}{3}\left[1+\frac{\cos ^{2} 30}{n+\cos 30)}\right]\right\}=-123 \mathrm{los} / \mathrm{irc} \sigma_{\delta}=-\frac{123}{.5}=-246 \mathrm{psi}$
$N_{0}=-\gamma R\left\{\frac{h}{2}-R \cos \phi+\frac{R}{3}\left[1+\frac{\cos ^{2} \phi}{(1+\cos \phi)}\right]\right\}$
$N_{0}=-0.037 \times 100\left\{\frac{160}{2}-100 \cos 30+\frac{100}{3}\left[1+\frac{\cos ^{2} 30}{(1+\cos 30)}\right]\right\}=-148.5 \mathrm{lbs} / \mathrm{in} ;$
$\sigma_{0}=-\frac{148.5}{0.5}=-297 \mathrm{psi}$
2.2 Membrane edge displacement of shell.

Edge radial displacement: From Eq. 9.35a
$\Delta r_{m}=\frac{N_{0} r_{0}}{E t} ; E \Delta r_{m}=\frac{-148.5 \times 50}{0.5}=-14,850 \mathrm{lbs} / \mathrm{in}$; inward
2.3 Radial displacement of ring due to mernbrane reactions:
$H_{m}=N_{d k} \cos \phi_{k} ; A_{0}=15 \times 10^{6} \mathrm{lbs}$
Eqs. 9.4 and 5.1: $\Delta r=\frac{H_{m} r_{0}^{2}}{A_{0}}$


See footnote, Example 9-1, Page 9-13.

## Example 9-7 (coritinued)

$E_{\text {shell }} \Delta_{r}=\frac{.64 \times 10^{6} \times 1 \mathrm{z} .3(\cos 30) \times 50^{2}}{15 \times 10^{6}}=11,362 \mathrm{lbs} / \mathrm{in}$.
3. Apply horizontal edge reaction, $\mathrm{H}_{\text {dk }}$, to impose equal deflections on shell and ring.


Edge bending analysis, using equations in Table 9-6.
3.1 Shell constants: $\lambda=\left[\frac{3\left(1-v^{2}\right) R^{2}}{t^{2}}\right]^{1 / 4}=\left[\frac{3\left(1-0.3^{2}\right) 100^{2}}{0.5^{2}}\right]^{1 / 4}=18.2 ; \psi_{k}=30^{0}$
3.2 Edge radial displocement of shell for $H_{d k}$ : Table 9-6:
$E \Delta r=\frac{2 \lambda R \sin ^{2} \phi_{k} H_{d k}}{f}=\frac{2 \times 18.2 \times 100 \times H_{\phi k} \sin ^{2} 30}{0.5}=1820 H_{\phi k}$
3.3 Edge radial displacement of base ring for $\mathrm{H}_{\phi_{k}}$ :

Eq9. 9.4 and 9.1: $\Delta r=\frac{H_{d k}{ }_{0}{ }^{2}}{A_{0}}=\frac{H_{d k} \times 50^{2}}{15 \times 10^{6}}$
$E_{\text {shell }} \Delta r=\frac{.64 \times 10^{6} \times 2500 \mathrm{H}_{d \mathrm{k}}}{15 \times 10^{6}}=107 \mathrm{H}_{\text {dk }}$
3.4 Determine $H_{\text {afk }}$ by equating shell (membrane + bending) radial edge deflection to ring radic! deflection:
$-14,85 \mathrm{U}+1820 \mathrm{H}_{\text {dk }}=11,362-107 \mathrm{H}_{\text {dk }}$
$H_{\Delta k}=\frac{11,362+14,850}{1820+107}=13.6 \mathrm{lbs} / \mathrm{in}$
4. Determine maximum bending moment and flexural sfress caused by $\mathrm{H}_{\text {dk }}$; Table 9-6: $\max M_{\delta}=\frac{0.322 R \sin \& H_{d}}{\lambda}=\frac{0.322 \times 100(\sin 30) \times 13.6}{18.2}=12.0 \mathrm{in} .-1 \mathrm{lbs} / \mathrm{in}$.
$v_{\phi}=\frac{1 \times 0.5^{2}}{6}=0.0417 \mathrm{in}^{3} ; \max \sigma_{\phi}=\frac{12.0}{0.0417}=288 \mathrm{psi}$
$\lambda \phi=0.8 \psi=\frac{0.9}{18.2}=0.044$ modions $\times \frac{18 U}{\pi}=2.52$ deg; $R \psi=.044 \times 100=4.4$ inches from edge $\operatorname{Max} M_{0}=\quad U M_{\phi}=0.3 \times 12.0=3.6 \mathrm{in}-\mathrm{lbs} / \mathrm{in}$. at the some location as for max. $M_{\phi}$

## Example 9-7 (rontinued)

5. Maximum combined stress @ d $=30-2.5=27.5^{\circ} ; \phi_{K}=30^{\circ}$
$N_{\phi}$ : membrane stress: @ $\phi=30^{\circ}$ is close enough $=-123 \mathrm{lbs} / \mathrm{in}$. edge bending - Table 9-6: @ $\phi=27.5^{\circ}, \psi=2.5^{\circ}$
$N_{d}=\sqrt{2}(\sin 30) \times 13.6 \frac{\cot 27.5 \sin \left(.8-\frac{\pi}{4}\right)}{e^{0.8}}=0.1 \mathrm{lbs} / \mathrm{in}$. negligible $\max \sigma_{c}=\frac{-123}{0.5} \pm 288=-534 \mathrm{psi}$, or +43 psi
$N_{0}$ : membrane stress $\oint=30^{\circ}$ is close enough $=-148.5 \mathrm{lbs} / \mathrm{in}$. edge bending - Table 9-6:

$$
\begin{aligned}
& N_{0}=-2 \times 18.2 \sin 30^{\circ} \times 13.6 \frac{\sin \left(0.8-\frac{\pi}{2}\right.}{e^{0.8}}=77.5 \mathrm{lbs} / \mathrm{in} . \\
& \sigma_{0}=\frac{-148.5+17.5}{.5} \pm \frac{3.6}{0.0417}=-56 \mathrm{psi} \text { or }-228 \mathrm{psi}
\end{aligned}
$$

6. Compute $N_{0}$ at support, $\phi=30^{\circ}$, and check radial displacement of shell against radin! displacement of ring.
Toble $9-6$, for $\lambda \psi=0$, for edge bending:

$$
\begin{aligned}
& N_{0}=-2 \times 18.2 \sin 30 \times 13.6 \frac{\sin (-\pi / 2)}{e^{0}}=+247.5 \mathrm{lbs} / \mathrm{in} \\
& \text { Net } N_{0}=-148.5+247.5=99 . \mathrm{lbs} / \mathrm{in} \\
& \text { shell: } \quad \Delta r=\frac{99 \times 50}{640,000 \times 0.5}=0.0155 \mathrm{in} . \\
& \text { ring: } \\
& \qquad H=H_{m}-H_{d k}=(123 \cos 30-13.6)=92.9 \mathrm{lbs} / \mathrm{in} \\
& \qquad \Delta r=\frac{92.9 \times 50^{2}}{10,000,000 \times 1.5}=0.0155 \mathrm{in} . \quad \text { o.k. }
\end{aligned}
$$

ring thrust, $T_{0}=H t_{0}=92.9 \times 50=4,645 \mathrm{lbs}$, tension; $\sigma_{0}=4645 / 1.5=3,097 \mathrm{psi}$
7. Membrane stress resultants at apex; Table 9-2:
$N_{\delta}=-0.037 \times 100\left\{\frac{160}{2}-\frac{100}{3}\left[1+\frac{\cos ^{2} 0}{(1+\cos 0)}\right]\right\}=-111 \mathrm{lbs} / \mathrm{in}<\mathrm{N}_{\delta}$ at edge
$N_{0}=-0.037 \times 100\left\{\frac{160}{2}-100 \cos 0+\frac{100}{3}\left[1+\frac{\cos 0}{(1+\cos 0)}\right]\right\}=-111 \mathrm{lbs} / \mathrm{in}$.
Check: Because of symmetry, arex stress resultants must be the same as for the uniform pressure case:
$N_{d}=N_{0}=-p R / 2=-0.037 \times 60 \times 100 / 2=-111 \mathrm{lbs} /$ in. oak.
Note: $1 \mathrm{in} .=25.4 \mathrm{~mm}, 1 \mathrm{in} .^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{in}^{3}=16387 \mathrm{~mm}^{3}, 1 \mathrm{lbf}=4.45 \mathrm{~N}, \mathrm{l} \mathrm{lbf} / \mathrm{in} .=175$ $\mathrm{N} / \mathrm{m}, \mathrm{l} \mathrm{lb} / \mathrm{in.}^{3}=271000 \mathrm{~N} / \mathrm{m}^{3}, 1 \mathrm{lbi} / \mathrm{ft}^{3}=157 \mathrm{~N} / \mathrm{m}^{3}, 1 \mathrm{psi}=0.0069 \mathrm{MPa}, 1 \mathrm{in}-1 \mathrm{lb} / \mathrm{in} .=$ $4.45 \mathrm{~N}-\mathrm{m} / \mathrm{m}$.

Practical elastic shell analysis solutions for bending and membrane stress resultants in torispherical and ellipsoidal heads did not become available until they could be obtained with finite difference or finite element computer anolysis in the late 1960\%s. The results of extensive parametric studies that provide elastic and mernbrane stress resultants for torispherical and ellipsoidal heads with various angles $\phi_{0}$, ratios of cylinder diameter to thickness $R_{c} / t$, and ratios of sphere radius to ihickness, $R_{s} / t$ are presented in a paper, "Elastic Stresses in Pressure Vessel Heads" by Kisus (reprinted from Welding Research Council Bulletin 129, 1968 in Vol 2. of (9.17)). The plots are too extensive to repeat here, but are very useful for the analysis of torispherical and ellipsoidal heods that can be designed based on isotropic elastic shell analysis. When such approximations are not appropriate, computer onalyses for specific cases moy be performed using a finite difference or finite element program such as one of those discussed in Section 4.9. See also (9.35) for design formulas for maximum stress in the foroispherical head shell in a pressure vessel.

## Tarks and Silos

In (9.36) extensive tables of coxfficients for determining edge bending effects in cylindrical tanks and silos witi- either uniform or topered walls ar? presented. A method of determining evge effacis in flat bottom tonks and pressure vessels having a toroidal knuckle shal: at ine base is presented in Section 9.7 which follows. "Lift-up" of the botiom euge is also considered.

## Borrel Stells

When cylindrical shells, such as barrel vaults (Fig. 4-3), have longitudinal edges, edge bending effects often extend throughout the entire shell, porticularly if the opening angle of a transverse cross section is less than about 120 degrees. These fransvers. bending effects frpm disturbonces ail longitudinal edges have been extensively treated in the literature, but their exact determination involves solutions of diffsrential equations. Becouse these solutions cannot be formulated in cuncise explicit equations, they are not presented here. Practically, stress resultants in cylindrical barrel shells are determined using tables of shell coefficients, based on solution of the differential equations for edge loodings, and presented in (9.6), or they are determined with computer analyses. Also, an opproximntion known as the "beam-arch" analogy (9.18) is sometimes useful.

See (9.12) for a concise explanation of the differential equations for edge disturbances in cylindrical barrel shells, as well as an excellent discussion of several different approximations used in solving the differential equations, and a detailed consideration of the approximations involved in using the "beam-arch" onalogy.

Hypars

Edge-bending stress resultants arise in hypar shells whenever edge support deformations differ from those required by the mernbrane theory. Behovior is much more complex to define mathematically than in the case of axi-s\%mmetric deformations of shells of revolution. Solutions for edge bending stress resultants ore given in Table 9-7 for several cases of idealized edge support conditions which are discussed in (9.11). In most actual hypar structures, the edge members will not provide the idealized restroints used in the solutions given in the Table. Very often this will result in larger bending efferte, particularly in hypars with low values of $\lambda$, but simplified solutions are not available for quantitative estimates of the amplified bending stress resultants. Cases where stress resultants differ markedly throughout the shell from the stress resultants obtaired with the membrane theury are discussed in ( 9.32 )(9.33)(9.34).

Hypar shellis comprised of one or more layers of corrugated sheet hove also been developed and anolyzed (9.37). When a single corrugated sheet is used, substantial bending moments arise in the direction of the corrugotions, but some of the benefits of in-plane shear resistance, typical of smooth hypar shells are also derived in the corrugated hypar (9.37).

If, in the designer's judgement, bending siresses may be significont in particular hypor shell structures, these stresses may be determined using finite element computer analyses. These are available in several general structural analysis programs as described in Seciion 4.9. See also (9.32). Progrom improvements and simplifications undoubtedly will contirive to eccur, making such approaches even more proctical and cost effective in tic future.

Table 9-7
Maximum Moments and Forces of Edges of Hypar Shells (9.11)


## Edge and Discontinuity Reinforcerrent

It should already be evident from the obove discussions of edge-bending stress resultonts in several of the common types of shells that structural members of adequate strength and stiffness should be provided along edges and around openings in singly and doubly curved shells to develop the inherent strength and structural efficiency of these shells.

In cases where edge members cannot be provided, the hells must be designed to resist substantial bending and transverse shear stress resiltants. Edge regions moy hove to be designed as curved bearns or arches, with greatly increased requirements for strength and stiffness compared 13 membrane shells. Bending effects may penetrate significant distances into the shell from the edges which will i:crease with increasing radii of curvature (i.e., with increasing flatness).

Also to be ovoided in efficient application of thin shell structures are shorp discontinuities in lood or shell stiffness. For example, ancentrated loads cause localized bending. These effects are covered later in Section 9.8. Increases in thickness at joints in pressure pipe often cause significont bending stress as illustrated in Example 9-6. Restraints at flanges and connections between pipe and pressure vessels cause similar effects.

## Summary

Many failures of plastic shell structures have occurred because so called secondary bending stresses at edges or other discontinuities were not taken into account in the design. Becouse most reinforced plastic moterials behave elostically up to failure instead of yielding in a dictile manner like anetals, it is essential thot designs, for plastic shells be based on accurate, or conservatively opproximate, determinations of both membrane and "discontinuity bending" stress resultants. The methods given in this Section and the previous Section will enable the designer to determine these stress resultants with sufficient ar:curacy for many common shell iypes. In more complex cases, computer anolyses or prototype test prograns may be required to achieve the necessary accurate determination of moximum stresses.

Examples given in Ser:ions 9.12 and 9.13 illustrate the application of the abovedescribed analyses to some shell problems representative of octisal structural design proctice.

### 9.7 SPECIAL EDGE CONDITIONS - CYLINDRICAL VESSELS WITH FLAT BOTTOMS AND KNUCKLES

Two problems that are of frequent concern to tank and pressure vessel designers are determinotion of edge bending effects at the base of vessels with flat, uniforinly supported bottom plotes, and determination of bending and hoop stresses in toroidal knuckle fillets located at the junction of walls with bottoms or covers. These conditions are shown in Fig. 9-18 for a cylindrical fluid storage vessel having a vertical axis and a flot, unyielding base support such os a concrete slab.

Sketch "d" in the Figure shows the first case, a 90 degree junction between the wall and a flat base. Sketch "b" shows a typical condition where the base limits membrane rodial deflection at the bottom of the wall and also partially restrains wall rotation at this point. This rotational restraint produces an edge moment thot, in turn, causes a short length, $L_{e}$, at the edge of the base to "lift off" its foundotion, as shown in Sketch "b".

Sketch "c" in the Figure shows the second case, a knuckle junction between wall and base in a cylindrical tank with fluid contents, but no overpressure to cause uplift tension on the cylinder wall. In this case, the knuckle partially restrains the membrone radial deflection and rotation at the bottom of the wall. This produces radial bending, and both radial and circumferential axial stress resultants in the knuckle. Agoin, the flat base limits radial deflection of the inside of the knuckle and also partially restrains rotation at this point, resulting in the type of base edge defarmation and "lift off" shown in Sketch "b".

Sketch "d" shows another bottom knuckle and base "lift off" condition that occurs in closed tanks with internal gas pressure and without external tholddown" connections to the base slab. In this case, the overpressure causes uplift forces on the wall, and the edge of the base lifts off until the total downword force due to pressure on the 'knuckle and base edge equals the total upward force on the upper end of the knuckle due to pressure on the closed cover. This type of behavior usually produces large radial bending stresses and circumferential direct compression stresses which rapidly increase wish increases in internal pressure, a very undesirable type of structural behavior. The rapid non-linear increase in edge bending occurs because of the incrense in "lift off" length as internal pressure increases. In view of this, cylindrical vessels with closed tops, flat bottoms, and internal pressure should normally be designed with "hold-down" conmections directly to a substantial base structure. The thin flat bottom plate should not be used to develop the "hold-down" resistance of the bottom pressure.

## Vertical Cylinder Base with Flat Bottom:

This base joint condition is shown in Fig. 9-18, "a" and "b", for an open top cylindrical tank with internal fluid pressure. A portion of bottom plate, $\mathrm{L}_{\mathrm{e}}$, lifts off the base due to edje rotation. This length is determined from the laws of static equilibrium and the inside boundary requirement that in regions beyond the "lift off" length, the bottom plate must be flat (i.e.: without curvature). A state of zero moment and zero shear must exist whenever the curvature and the change in the curvature of a structural member are zero (9.20).


Fig. 9-18 BASE JOWT BEHAVIOR IN VERTICAL CYLINDER

If the lifted off length in the edge region is small compared to the radius of the bottom plate (the usual case), the bottom plate may be assumed to bethove as a series of rectangular strips whose lengths extend in a radial direction. In this case, referring again to Fig. 9-18(b), the following relationships between the
lifted off length, $L_{e}$, the base rotation, $O_{b}$, and the edge moment are derived in Excimple 9-8:

$$
\begin{align*}
& M_{b}=\frac{q_{b} L_{e}^{2}}{4} ; L_{e}=2\left(\frac{M_{b}}{q_{b}}\right)^{0.5}  \tag{Eq. 9.52}\\
& 0_{b}=\frac{M_{b} 1.5}{3 D_{r}\left(q_{b}\right)^{0.5}} \tag{Eq. 9.53}
\end{align*}
$$

The rodial deflection of the flat bottom plate due to a radial base reaction per unit of circumferential length, $Q_{b}$, is:

$$
\begin{equation*}
w_{b}=\frac{Q_{b} R_{o}(1-v)}{E_{b} t_{b}} \tag{Eq. 9.54}
\end{equation*}
$$

The deflection and rotation of the cylindrical sheli wall were discusssed in the previous Section. The membrane deflection and rotation ot the bottom edge of the cylinder are obtained os follows:

$$
\begin{align*}
& N_{0}=q_{b} R_{c}  \tag{Eq. 9.55}\\
& w_{b m}=\frac{N_{0} R_{c}}{A_{0}}=\frac{q_{0} R_{c}^{2}}{A_{0}} \tag{Eq. 9.56}
\end{align*}
$$

For hydrostatic pressure varying from 0 at the top of the tank to $q_{b}=\gamma h$ at the bottom, on a tank of uniform wall thickness:

$$
\begin{equation*}
q_{b m}=\frac{w_{b m}}{h}=\frac{r R_{c}^{2}}{A_{u}} \tag{Eq. 9.57}
\end{equation*}
$$

The deflection and rotation of the bottom edge of the cylinder due to rodial shear $Q_{b}$ and moment $M_{b}$ are given by Eqs. 9.31 and 9.32, with $\beta x=0$.

The moment, $M_{b}$, and shsar, $\mathrm{O}_{b}$, at the wall bottom are determined by equating the membrone and $Q_{b}$ and $M_{b}$ edge looding deflections and rotations of the cylindrical wall bottom to the $Q_{b}$ evige deflection and the $M_{b}$ edge rotation of the bottom plate. This requires solution of two simultaneous equations for compotible deflections and rotations at the jurcition of base ard wall:

```
w
```

$$
\theta_{b} \text { wall cylinder }=Q_{b} \text { bottom plate edge region }
$$

In most practical vessels, the radial deflection at the junction of shell with bottom plate is very small and moy be taken as zero. This occurs because the deflection, $w_{b}$, given by Eq. 9.54 is usually too small to hove a significant effect on edge bending in the adjocent cylinder. Also friction between the loaded bottom plate and the base support provides a further reduction of radial deflection at the edge. If $w_{b}$ is assumed equal to zerc, the effect of restraint at the base of a vessel of uniform wall thickness containing a fluid with a unit weight of $\gamma$ may be determined using the following approximate equation:

$$
\begin{equation*}
\frac{\gamma R_{c}^{2}(B h-1)}{A_{b}}-\frac{M_{b}}{2 B D_{x}}=\frac{M_{b}^{1.5}}{3 D_{r}(\gamma h)^{0.5}} \tag{Eq. 9.58}
\end{equation*}
$$

This equation is derived in the third and fourth Sections in Example 8-8. It is most readily solved by a trial solution procedure. It can also be used as a reasonable approximation for vessels with non-uniform wall thickness if the cylinder wall in the base region is approximately uniform over a height of at least $3 / \beta$ above the base, and if the bottom plate thiakness is reasonably uniform sver a distance, $L_{e}$, (Eq. 9.52) in from the base junction.

In order to determine stress resultants in the cylinder coused by base restraint, the edge shear, $Q_{b}$, must also be calculated as follows:

$$
\begin{equation*}
Q_{b}=-\frac{(\gamma h)}{2 B}-B M_{b} \tag{Eq. 9.59}
\end{equation*}
$$

This equation is also derived in Example 9-8.

The longitudinal bending moment at any point in the cylindrical shell may readily be determined using Eq. 9.33 with $Q_{0}=-Q_{b}$ and $M_{0}=M_{b}$, together witi) the shell functions plotted in Fig. 9-14. The maximum moment will either be at the base ( $M_{b}$ ) or at the foint above the base where $Q_{x}$ (Eq. 9.34) is zero.

The maximum circumferential bending moment is:

$$
\begin{equation*}
M_{0}=\quad v_{0} M_{x} \tag{Eq. 9.60}
\end{equation*}
$$

Exampla 9-8: Determine the base moment that results from restraint of membrane disslacements in a cylindrical pressure vessel with a vertical axis and flat bottom. Accuunt for lifting of the bottom away from a flat foundation that supports downward load only (i.e., give the derivations of Eqs. 9.52, 9.53, 9.58 and 9.59).

1. End slope (rotation) of bottom plate:

1.1 Assume that the edge of the flat bottom behoves as a series of flat strips of unit width (circumferentially) subject to an end moment, $M_{b}$, as shown in the sketch.
1.2 Boundary Conditions:

$$
\begin{aligned}
& \text { at } b: y=0, M=M_{b} \\
& \text { at } c: y=0 ; \text { slope, } \frac{d y}{d x}=0 ; M=0
\end{aligned}
$$

1.3 Equations of Statics:

$$
\begin{aligned}
& \Sigma M_{b}=0 ; M_{b}=\frac{q_{b} L_{e}^{2}}{2}-F_{c} L_{e} ; F_{c}=\frac{q_{b} L_{e}}{2}-\frac{M_{b}}{L_{e}} \\
& \Sigma F_{y}=0 ; F_{b}=q_{b} L_{e}-F_{c}=\frac{q_{b} L_{e}}{2}+\frac{M_{b}}{L_{e}}
\end{aligned}
$$

### 1.4 Equations of Beam Theory:

$M_{x}=D_{r} \frac{d^{2} y}{d x^{2}}=F_{c} x-\frac{q_{b} x^{2}}{2}=\left(\frac{q_{b} L_{e}}{2}-\frac{M_{b}}{L_{e}}\right) x-\frac{q_{b} x^{2}}{2}$
$D_{r} \frac{d y}{d x}=\left(\frac{q_{b} L_{e}}{2}-\frac{M_{b}}{L_{e}} \frac{x^{2}}{2}-\frac{a_{b} x^{3}}{6}+C_{1}\right.$
at $x=0, \frac{d y}{d x}=0$; thus: $C_{1}=0$
$D_{r} y=\left(\frac{c_{b} L_{e}}{2}-\frac{H_{b}}{L_{e}} \frac{x^{3}}{6}-\frac{q_{b} x^{4}}{24}+C_{2}\right.$
of $x=0, y=0$; thus: $C_{2}=0$
af $x=0, y=0 ;$ thus: $C_{2}=0$
at $x=L_{e}, y=0 ;$ thus: $0=\left(\frac{q_{b} L_{e}}{2}-\frac{M_{b}}{L_{e}}\right) \frac{L_{e}^{3}}{6}-\frac{q_{b} L_{e}^{4}}{24} ; \frac{M_{b}}{b}=\frac{q_{b} L_{e}^{2}}{24}$

## Example 9-8 (continued)

### 1.5 Solution for Edge Moment and Rotation:

$M_{b}=\frac{q_{b} L_{e}{ }^{2}}{4}$; This is Eq. 9.52; solving for $L_{e}=2 \sqrt{\frac{M_{b}}{q_{b}}}$ at $x=L_{e}, D_{r} \frac{d y}{d x}=D_{r} D_{b}$
$D_{r} O_{b}=\left(\frac{q_{b} L_{e}}{2}-\frac{M_{b}}{L_{e}}\right) \frac{L_{e}{ }^{2}}{2}-\frac{a_{b} L_{e}^{3}}{6}=\frac{q_{b} L_{e}^{3}}{12}-\frac{M_{b} L_{e}}{2}$;
Substitute $M_{b}=\frac{q_{b} L_{e}}{4} ; D_{r} q_{b}=\frac{M_{b} L_{e}}{3}-\frac{M_{b} L_{e}}{2}=-\frac{M_{b} L_{e}}{6}$
Substitute $L_{e}=2 \sqrt{\frac{M_{b}^{-}}{q_{b}}} ; D_{r} o_{b}=-\frac{M_{b} 1.5}{3\left(q_{b}\right)^{0.5}}$; This is Eq. 9.53
2. Edge Deflection of bottom plate:

For a disk under radial load:
$w_{b}=\frac{Q_{b} R_{o}(1-v)}{E_{b} t_{b}}=\begin{aligned} & \text { negligible compared } \\ & \text { most practical cases }\end{aligned}$ to edge deflection of cylinder for $w_{b}$ will be assumed $=0$ to simplify the following derivation.
3. Bottcm slope (rotation) of cylinderical shell due to fluid pressure and base moment for zero radial deflection:
3.1


If, us in step 2, the radial deflection of the bottom plate is assumed $=0$, the edge forces on the cylinder, $Q_{b}$ and $M_{b}$, are related to each other by equating their rdlial deflection at $b$ (Eq. 9.31) to the radial deflection produced by the applied pressure, $q_{b}$, on the free shell (Eq. 9.35 with $\mathrm{N}_{0}=$ membrane hoop stress resultant $a+b)$.

Using Eq. 9.31 at $B x=0, \psi(B x)=0(B x)=1.0$ and Eq. 9.35:
$w=-\frac{M_{b}}{2 \beta^{2} D_{x}}-\frac{Q_{b}}{2 \beta^{3} D_{x}}-\frac{N_{0} R_{c}}{\pi_{0}}=0 ; Q_{b}=-\frac{2 N_{c} R_{c} \beta^{3} D_{x}}{A_{0}}-\beta M_{b}$
For the case of fluid pressure: $N_{0}=(\gamma h) R_{c}$
$Q_{b}=-\frac{2 \beta^{3} D_{x} R_{c}^{2}(\gamma h)}{\bar{A}_{0}}-B M_{b}$; and from Eq. 9.30a: $\frac{4 D_{x} R_{c}^{2}}{\bar{A}_{0}}=\frac{1}{\beta^{4}}$

## Exomples 9-8 (continued)

$Q_{b}=-\frac{(\gamma h)}{2 B}-B M_{b}$; This is Eq. 9.59
3.2 Slope at base due to $M_{b}$ and $Q_{b}$ :

Eq. 9.32 at $x=0, M_{o}=M_{b} ; Q_{o}=Q_{b} ; \theta(\beta x)=\phi(\beta x)=1.0$
$\theta_{b}=\frac{M_{b}}{\beta D_{x}}+\frac{Q_{b}}{2 \beta^{2} D_{x}}=\frac{M_{b}}{B D_{x}}-\frac{2 N_{0} R_{c} \beta^{3} D_{x}}{2 A_{0} \beta^{2} D_{x}}-\frac{M_{b}}{2 \beta D_{x}}$
$\theta_{b}=\frac{M_{b}}{2 \beta D_{x}}-\frac{N_{0} R_{c} \beta}{A_{0}}$
3.3 Slope at base due to membrane stresses.

If $\mathrm{N}_{0}$ results from fluid pressure on a tank of uniform wall thickness in the vicinity of the base, membrane stresses cause a base rotation of
$\theta_{b m}=\frac{w_{b m}}{h}=-\frac{N_{0} R_{c}}{A_{0} h}=-\frac{y R_{c}{ }^{2}}{A_{0}}$
If the vessel wall thickness is tapered to maintain a constant stress due to fluid pressure that vories with depth, $Q_{b m}=0$. As shown below, $\theta_{\mathrm{bm}}$ is usually small compared to the slope caused by $G_{b}$ and $M_{1}$, and is often not in气fuded, particularly in vessels having tapering wall thickhess in the region above the base.
3.4 Slope at trase of cylinder with zero radial deflection:

For fluid pressure: $N_{0}=\gamma R_{c} h$ at base
Thes, summing 3.2 and 3.3 for fluid pressure on a cylinder with zero radial deflection at the base:
$Q_{b}=\frac{M_{b}}{2 B D_{x}}-\frac{\beta\left(\gamma h R_{c}\right) R_{c}}{A_{0}}+\frac{\gamma R_{c}{ }^{2}}{A_{0}}$
$\sigma_{b}=\frac{M_{b}}{2 \beta D_{x}}-\frac{\gamma R_{c}^{2}(\beta h-1)}{A_{0}}$
4. Equate $Q_{h}$ due to $M_{b}$ at edge of bottom plate, to $O_{b}$ due to $M_{b}, Q_{b}$ and membrone stresses of edge of cylinder
$-a_{b}$ cylinder $=-a_{b}$ bottom plate; and $q_{b}=h$
$\frac{\gamma R_{c}^{2}(\beta h-1)}{Z_{0}}-\frac{M_{b}}{2 \beta D_{x}}=\frac{M_{b}^{1.5}}{3(\gamma h)^{0.5}}$ : This is Eq. 9.58
If the wall thickness of the cylinder tapers over the length $\beta$ h above the base, 1 may be dropped from the term ( $B \mathrm{~h}-\mathrm{I}$ ).

Example 9-9 illustrates the design of a cylindrical fluid storage vessel with vertical axis and a flat bottom. The edge bending effects in this vessel are determined using the equations presented above.

## Base Joint with Kruckle

This base condition is shown in Fig. 9-18(c) for an open rop cylindrical tank with internal fluid pressure. The knuckle geametry and the internal pressure and edge forces applied on the knuckie shell are shown in Fig. 9-19. A 90 degree knuckle is c quarter segment of a toroidnl (donut) shell. Geometry of such shells is described in Section 9.3.


Fig. 9-19 GEOMETRY OF KNUCKLE AND PRESSURES AND EDGE FORCES APPLIED ONKNUCKLE

Membrane stress resultants for toroidal shells are given in Table 9-4. For a complete solution, however, bending effects must also be determined. These generally are significant throughout the entire knuckle.

Relatively simple approximations of the type described in Section 9.6 for determining edge effects in long cylinders, and spherical or conical domes are not applicable to a toroidal knuckle. The sharp curvature of meridional strips and the highly variable stiffness of circumferential strips rroduce complexities that make the "beam-on-elastic-foundation" analogy too complex for proctical application to the toroidal shell segments normolly used for tonk and pressure vessel knuckles.

Example 9-9: Determine the required shell and bottom thickness of a cylindrical chemical storage tank with a vertical axis and a flat bottom as shown in the Figure.*

The vessel will be an open tof tank and may be filled to the top by a fluid hoving a maximum specific gravity of 1.4 and a maximum temperature of $120^{\circ} \mathrm{F}$. The tank and its contents are supported by uniformily distributed bearing over the flat bottom shell. The tank is to be used in an interior location, and fixed in position by guides at the top stiffening ring that prevents overturning due to any accidental lateral effects.

Use a shell laminate comprised of 0.10 in . chopped strand polyester resin spray-up on the inside (liquid seal) and for the balance of the required thickness a circumferentid filament winding tape with polyester resin. In addition, assunce that 0.02 in . thick mat reinforced surfacing layers are used on the inside and outside surfaces of the shell. Use a chopped strand polyester resin laminate with 0.02 in. thick interior mat reinforced surfacing layer for the bottom. Assurne that the minimum practical thicknesses of the shell and bottom laminates both are 0.20 in . Assume the following strength and stiffness characteristics for the above materials.

Stiffness is characterized with the standard test (short-time) elastic moduli of the filmment winding, spray-up liquid seal, and surfacing mat layers in tension for the circurnferential direction and in flexure for the determination of longitudinal (vertical) ana bottom shell discontinuity effects.

Assume the following values for these moduli:

1. Cylinder Shell (Orthotropic)

Circumferential elastic modulus in tension

Longitudinal elastic modulus in flexure

Poisson's Ratio

$$
E_{0}=\frac{\left(6.0 t_{f w}+0.8 t_{c s}\right) 10^{6}}{\left(t_{f w}+t_{c s}\right)}
$$

where $t_{f w}$ is the thickness of the filament winding and $t$ is the thickness of the chopped strond spray-up and mat layers.

$$
\begin{aligned}
& E_{x}=0.8 \times 10^{6} \mathrm{psi} \\
& v_{0}=0.38
\end{aligned}
$$

## Example 9-9 (continued)

2. Flat Bottom Shell (Isotropia)

Elastic modulus in flexure
for any direction

$$
E_{r}=E_{0}=1.0 \times 10^{6} \mathrm{psi}
$$

Poisson's Ratio

$$
v=0.3
$$

Strength under long-term load or repeated load is characterized by limiting the maximum circumferential tension strain to 0.001 and the maximum longitudinal and bottom shell flexural strain to 0.0015 , based on the above short time moduli.

1. Membrane stress resultant at bottom

Eч. 9.1: $N_{0}=p R=\gamma h \mathrm{~F}=1.4 \times 62.4 \times 26.75 \times \frac{4}{12}=779 \mathrm{lbs} / \mathrm{in}$.
2. Trial design of laminate at bottom:
$t_{c s}=0.10+0.02 \times 2=0.14 \mathrm{in}$. and $t_{r y} t_{f w}=0.10 ;$
$E_{0}=\frac{(6.0 \times 0.10+0.8 \times 0.14) \times 10^{6}}{0.14+0.10}=3.0 \times 10^{6}$
allow $\sigma_{0}=e_{\text {allow }} E_{0}=0.001 \times 3.0 \times 10^{6}=3,000 \mathrm{psi}$
req'd $t=\frac{779}{3000}=0.26 \mathrm{in}$.
Increase $t_{f w}$ 10 0.12 in.; $E_{0}=3.2 \times 10^{6}$; allow $0=3,200$ psi, oliow $N_{0}=832 \mathrm{lbs} / \mathrm{in}$. ; $t=0.26$ in. o.k.
3. Reduce wall thickness higher up the wall to min $t_{f w}=0.06$ in., with $E_{0}=2.3 \times: 0^{6}$ allow $N_{0}=0.20 \times .001 \times 2.3 \times 10^{6}=460 \mathrm{lbs} / \mathrm{in}$.
reduced $h=460 \times 26.75=15.8 \mathrm{ft}$ from top
reduce thickness to 0.20 in . by reducing filament winding to 0.06 in . at I 5 ft below the top.
4. Investigate vertical bending at base and design bottom thickness. Trial bottorn thickness is 0.20 in.
4.1 Shell constont, B:

Eq. 9.30b: $B=\left[\frac{3\left(1-v_{x} v_{0}\right) E_{0}}{R^{2}+^{2} E_{x}}\right]^{1 / 4}$

## Exanyple 9-9 (confinued)

$E_{0}=3.2 \times 10^{6} \mathrm{psi} ; \mathrm{E}_{\mathrm{x}}=0.8 \times 10^{6} \mathrm{psi} ; v_{0}=0.38 ;$
Eq. 6.4d: $v_{x}=v_{0} \frac{E_{x}}{E_{0}}=0.38 \times \frac{0.8}{3.2}=0.10$
$\beta=\left[\frac{3(1-0.38 \times 0.10) \times 3.2}{48^{2} \times 0.26^{2} \times 0.8}\right]^{1 / 4}=0.522$
4.2 Obtain base moment by solving Eq. 9.58
$\frac{\gamma R_{c}^{2}(8 h-1)}{A_{0}}-\frac{M_{b}}{2 B D_{x}}=\frac{M_{b}^{1.5}}{3 D_{r}(\gamma h)^{0.5}}$
$\bar{A}_{9}=3.2 \times 10^{6} \times 0.26=0.83 \times 10^{6} ; D_{x}=\frac{0.8 \times 10^{6} \times 0.26^{3}}{12(1-0.38 \times 0.10)}=1,218 ;$
$n_{r}=\frac{1.0 \times 10^{6} \times 0.20^{3}}{12\left(1-0.3^{2}\right)}=733$
$y=1.4 \times 62.4 / 1728=0.051 \mathrm{lbs} / \mathrm{in}^{3} ; r_{0}=26.75 \times 12=321 \mathrm{in} . ; \gamma h=16.2 \mathrm{psi}$
$\frac{0.051 \times 48^{2}(0.522 \times 321-1)}{830,000}-\frac{M_{b}}{2 \times 0.522 \times 1,218}=\frac{M_{b}^{1.5}}{3 \times 733 \times(16.2)^{0.5}}$
$0.0233-0.00079 M_{b}=.000113 M_{b}^{1.5} ; 23.3-0.79 M_{b}=0.113 M_{b}^{1.5}$
Cut and Try Solution

| Trial $M_{b}$ | $23.3-0.79 M_{b}$ | $0.113 M_{b}^{1.5}$ |
| :---: | :---: | :---: |
| 15 | 11.45 | 6.56 |
| 20 | 7.50 | 10.11 |
| 18 | 9.08 | 8.63 |
| 18.3 | 8.84 | 8.85 |

$M_{b}=18.3$ in.-lbs/in. at junction of wall base.
4.3 Obtain base shear in cylinder from Eq. 9.59.
$Q_{b}=-\frac{(\gamma h)}{2}-8 M_{b}=-\frac{16.2}{2 \times 0.522}-0.522 \times 18.3$
$Q_{b}=-15.52-9.55=-25.07 \mathrm{Ibs} / \mathrm{in}$.

## Exomple 9-9 (continued)

4.4 Calculate maximum cylinder wall moment above the base:

Eq. 9.34: $Q_{x}=2 \times 0.522 \times 18.3 \tau(\beta x)-(-25.1) \Psi(\beta x)=0$ at location of mox. wall moment
$19.1 \tau(\beta x)=-25.1 \psi(\beta x) ; \tau(B x)=-1.31 \psi(\beta x)$
Fig. 2-14: $(\beta x)=1.3$
Eq. 9.33: $M_{x}=\frac{1}{0.522}[0.522 \times 18.3 \phi(1.3)-25.1 \tau(13)]$
Fig. 9-14: $M_{x}=18.3 \times 0.34-48.1 \times 0.26=6.22-12.50=-6.28$ in-lbs $/ \mathrm{in}$.
4.5 Caiculate stresses:

Wall: $\quad s=\frac{0.26^{2}}{6}=0.0113 \mathrm{in}^{3} / \mathrm{in} ;$ Floor: $s=\frac{0.20^{2}}{6}=0.00667 \mathrm{in}^{3} / \mathrm{in}$.
Wall at base: $\quad \sigma_{x}=\frac{18.3}{0.0173}=1,519 \mathrm{psi}$
Wall at $B x=1.3 ; x=\frac{1.3}{.522}=2.5$ in.: $\sigma_{x}=\frac{6.28}{0.0113}=556 \mathrm{psi}$
Wall allowable $\sigma_{x} \quad 0.8 \times 10^{6} \times 0.1015=1,200 \mathrm{psi}<1619 \mathrm{psi}$
Floor at base: $\sigma_{r}=\frac{25.1}{0.20} \pm \frac{18.3}{0.006 E T}=126 \pm 2,744=2870$ psi max. at joint b.
Floor allowable $\sigma_{r}=1.0 \times 10^{6} \times 0.0015=1,500 \mathrm{psi}<2870$ psi
4.6 Calculate lift off length, $L_{e}$

Eq. 9.52: $18.3=\frac{16.2 L_{e}{ }^{2}}{4} ; L_{e}=\sqrt{4.52}=2.13 \mathrm{in}$.
5. Conclusion: Increase wall and floor thicknesses very locolly at corner infersection.
6. Recommendation: Investigate the use of a knuckle joint to facilitate a more practicul detail at this location. See Example 9-10.

Note: 1 in. $=25.4 \mathrm{~mm},\left|\mathrm{in}^{3} / \mathrm{in} .=645 \mathrm{~mm}^{3} / \mathrm{mm}, 1 \mathrm{ft}=0.3048 \mathrm{~m},\right| \mathrm{lbf} / \mathrm{in} .=175 \mathrm{~N} / \mathrm{m}$, $1 \mathrm{psi}=0.0069 \mathrm{MPo}, 1 \mathrm{lbf} / \mathrm{in}^{3}=0.27 \mathrm{MN} / \mathrm{m}^{3}, 1 \mathrm{in} .-\mathrm{lbf} / \mathrm{in} .=4.45 \mathrm{~N}-\mathrm{m} / \mathrm{m}, \circ \mathrm{C}=0.55$ ( ${ }^{\mathrm{P} F-32 \text { ). }}$

Fortunately, the direct determination of stress resultants in axisymmetric shells using computer analysis based on finite element or finite difterence, has become practical and relatively inexpensive. Programs such as BOSOR, and portions of NASTRAN, have been specifically develaped to provide efficient analysis and simple input for axisymmetric shells of arbitrary shape. These solutions are easier to implement than an approximate analysis using curved meridional strips restrained by circumferential strips of varying stiffness. The computer programs ANSYS and MARC both have additional capabilities for modeling contact surfaces with interface elements that can transinit compressiun only. An iterative solution is used to determine which elements finally have a gap status and which elements are in contact.

When the simpler computer programs are used to analyze bottom supported vartical tonks, "lift off" of the bottom plate under 'pplied forces (Fig. 9-18) is not directly considered. However, "lift-off" behavior in vessels subject to rotation at the junction may be analyzed using a two step procedure similiar to the approach suggested earlier in this Section for analyzing the iunction of a cylindrical wall with a flat base (Fig. 9-18a). As was done in developing Eq. 9.58, in the first step, the vessel is assumed to have a hinged connection at the junctic, $n$ of knuckle and flat base (Fig. 9-20a). Computer analyses of this structure for the applied loads (Fig. 9-20a) and for a "unit" moment applied along edge $b$ (Fig. 9-20b) provide the edge rotation and stress resultants in the knuckle and cylinder for ithese loading conditions. The net rotation at $b$ is that due to the applizd lood on a hinged joint less $M_{b}$ times the rotation due to a unit restraining moment. In the second step, the riet rotation (Fig. 9-20c), of the shell is equated to the edge rotation of the flat bottom plate, as given by Eq. 9.53, as follows:

$$
\begin{equation*}
a_{b m}-M_{b} Q_{b b}=\frac{M_{b}^{1.5}}{3 D_{r}\left(q_{b}\right)^{0.5}} \tag{Eq. 9.61}
\end{equation*}
$$

This equation is easily solved for $M_{b}$. A trial procedure usually provides the most practical solution. The final stress resultants in the shell are those obtained from the computer analysis for the applied loads on the "hinged base" shell plus $M_{b}$ times those obtained from the computer analysis for the unit base moment at the "hinged base" shell.

Example 9-10 illustrates the investigation of edge bending effects in a base joint with a knuckle for the same vertical cylindrical fluid storage vessel that was designed in Exomple 9-9. It is worth noting that the introduction of the knuckle has not diminished the stresses at the most highly stressed point at the intersection of knuckle and bottom. This is because of the additional bending introduced by the weight of fluid over the knuckle. The knuckle does provide a more practical detail for connecting the base to the wall and does tend to reduce the discontinuity stresses in the lower part of the cylinder wall, compared to the sharply intersecting case.


Fig. 9-20 STRUCTURE INDEALIZA.TION AND LOAD CASES FOR BASE JOINT WITH KNUCKLE

Although the knuckle base arrangement shown in Fig. 9-18(d) involving uplift of the entire knuckle and edge region of the bottom plate without external 'holddown" connections should not be used in practicai design, it may be necessary to analyze such o condition for various reasons. This case may be solved by a direct computer anclysis of the assembly oi axisymmetric cylinder, knuckle and that portion of the bottom plate that lifts off the base. The idealized shell structure is shown in Fi.j. 9-21. The extent of onnular bottom plate to be included in the structure is only the area below the weight of structure, contents and internal pressure that just balances the upward force on the top of the cylinder (See Fig. 9-21). As shown in the Figure, the boundary conditions at the point where the lifted off edge region contacts the base are zero deflection, rotation, moment and shear. These must exist because the bottom plate remains flat and in contact with the rigid base beyond this point.

Example 9-10: Modify the brise detail of the tank designed in Example 9-9, by introducing a knucikle as shown in the sketch. Assume that the knuckle laminate has the same properties as the bottom laminate of the tank in Example 9-9.*

(a)

(D)

1. Analyze the shell structure with the hinged support shown in sketch (b) for two loading conditions: (1) internal fluid pressure, and (2) unit moment applied at the hinge. This is accomplished using a computerized "finite difference" analysis for axi-symmetric loadings on axi-symmetric sheil of revolution. Program name is BOSOR.
2. BOSOR results provide $q_{m}$ and $q_{b b} a^{s}$ follows:

Fivid Pressure looding; $Q_{b m}=4.64 \times 10^{-2}$ rad
Unit mement at b: $Q_{b b}=8.98 \times 10^{-4} \mathrm{rad}$
3. Solve for $M_{b}$ using Eq. 9.61. Modify $D_{R}$ from Example 9-9 for $t_{b}=0.3 " . D_{R}=$ $\left(.3^{3} / .2^{3}\right) 733=2474$
$4.64 \times 10^{-2}-8.98 \times 10^{-4} M_{b}=\frac{M_{b}^{1.5}}{3 \times 2474 \sqrt{16.2}} ; M_{b}=41.64 \mathrm{in} / \mathrm{lbs}$
4. The final stresses in the shell are calculated from the superposition of the results of the fluid pressure looding case plus $M_{b}$ times the results of the unit moment loading case.
5. Investigate maximum stresses from plots of stress resultants:
5.1 At knuckle region, point b:
$\max W_{x}=41.64$ in-lb/in.; $\max N_{x}=42.88 \mathrm{lb} / \mathrm{in}$. tension
$s_{x}=t^{2} / 6=0.3^{2} / 6=0.015 \mathrm{in}^{3} / \mathrm{in} ; a=t=0.3 \mathrm{in}^{2} / \mathrm{in}$.

See footriote, Example 9-1, Page 9-13.

## Excmple 9-10 (continued)

Allowable bending stress $=.0015 \times\left(1 \times 10^{6}\right)=1500 \mathrm{psi}$
Allowable tensile stress $=.001 \times\left(1 \times 10^{6}\right)=1000 \mathrm{psi}$
Interaction relation for combined bending and tension stress in $\times$ direction:



Tension Side

$$
\text { Tensile }+N_{0}
$$

5.2 At knuckle region, point c: $N_{0 \text { max }}=221.7 \mathrm{lb} / \mathrm{in}$.; $M_{0}=4.65 \mathrm{in}-\mathrm{lb} / \mathrm{in}$. Interuction relation for combined bending and tension in 0 direction:
4.65
$\frac{0.65}{0.015}+\frac{\frac{221.7}{0.3}}{1000}$
$\frac{1500}{1500}+\frac{0.3}{1000}=0.95<1.0$ o.k.
5.3 At topered wall region, point c: $\max M_{x}=12.95 \mathrm{in}$. $\mathrm{Hb} / \mathrm{in}$.; $\max N_{x}=0.38 \mathrm{lb} / \mathrm{in}$. (neglect); $s_{x}=0.3^{2} / 6=0.615 \mathrm{in}^{3} / \mathrm{in}$.; Allowable bending stress $=0.0015 \times\left(0.8 \times 10^{6}\right)=1200 \mathrm{psi}$
$\sigma_{x}=12.95 / 0.015=86 j$ psi $<1200 \mathrm{psi}$ o.k.
5.4 At tapered wall region, point d:
$\max N_{D}=876.1 \mathrm{lb} / \mathrm{in}$. tension; $M_{0}=2.18 \mathrm{in} .-\mathrm{lb} / \mathrm{in}$.
Use averoge thickness, $t=0.28 ; a=t=0.28$ in. $^{2}$
Allowable bending stress: $\quad 0.0015\left(3.4 \times 10^{6}\right)=5100 \mathrm{psi}$
Allowable tensile stress $=0.0010\left(3.1 \times 10^{6}\right)=3400 \mathrm{psi}$

## Example $9-10$ (continued)

Interaction relation for combined bending and tension in $\theta$ direction:
$\frac{\frac{2.18}{0.13}}{5700}+\frac{\frac{876.1}{38}}{3400}=0.92<1.0$ o.k.
5.5 At uniform wall region, po th e: $\max M_{x}=3.68$ in- $\mathrm{lb} / \mathrm{in} ; N_{\lambda}=0$
$s_{x}=.26^{2} / 6=0.011 \mathrm{in}^{3} / \mathrm{in}$.
Allowable bending stress $=0.0015\left(0.8 \times 10^{6}\right)=1200 \mathrm{psi}$
$\sigma_{x}=\frac{3.68}{0.01 T}=335<1200 \quad$ o.k.
5.6 At uniform wall region, point f: $\max N_{0}=821.2 \mathrm{lbs} / \mathrm{in} ; M_{\theta}=1.04 \mathrm{in}-\mathrm{lts} / \mathrm{in}$.
$s_{x}=.26^{2} / 6=0.011 \mathrm{in}^{3} / \mathrm{in} . ; \quad a=t=0.26 \mathrm{in}^{2} / \mathrm{in}$.
Allowable bending stress $=0.0015\left(3.2 \times 10^{6}\right)=4800 \mathrm{psi}$
Allowable tensile stress $=0.0010\left(3.2 \times 10^{6}\right)=3200 \mathrm{psi}$
Interaction relation for combined bending and tension in $\theta$ direction:
$\frac{\frac{1.04}{0.011}}{4800}+\frac{\frac{821.2}{0.26}}{3200}=1.01=1.0 \quad$ o.k.
6. Calculate lift-off length, $L_{e}$ :

Eq. 9.52: $41.64=\frac{16.4}{4} L_{e}{ }^{2} ; L_{e}=\sqrt{10.28}=3.21 \mathrm{in}$.
7. Comments:
7.1 Knuckle substantially increases the theoretical peak bending stress at the junction with base as compared with the flat bose in Example 9-9. However, knuckle material is overstressed in only a very small region at the junction with the base.
7.2 Peak overstress could be decreased by using a material with a higher stiffness and allowable strength in both directions for the knuckle and the edge of the bottom (such os mat - woven roving), by increasing thickness at junction with bottom, and/or by reducing knuckle radius to the smallest practical size for good quality construction.
7.3 Some theoretical overstress maybe tolerable at the local region at the juction with the base.
7.4 The use of a knuckle, compared to a $90^{\circ}$ corner, is desirable from a fabrication viewpoint.

Note: 1 in. $=25.4 \mathrm{~mm},\left|\mathrm{in}^{2} / \mathrm{in} .=25.4 \mathrm{~mm}^{2} / \mathrm{mm},\left|\mathrm{in}^{3} / \mathrm{in} .=645 \mathrm{~mm}^{3} / \mathrm{mm},\right| \mathrm{lbf} / \mathrm{in} .=\right.$ $175 \mathrm{~N} / \mathrm{m}, 1 \mathrm{psi}=0.0069 \mathrm{MPa}, 1 \mathrm{in} .-\mathrm{lbf}=0.113 \mathrm{~N}-\mathrm{m}, 1 \mathrm{in} .-\mathrm{lbf} / \mathrm{in} .=4.45 \mathrm{~N}-\mathrm{m} / \mathrm{m}$.


Fig. 9-21 BASE UPLIFT IN CLOSED PRESSURIZED VESSEL WITHOUT WALL HOLD-DOWN TO RIGID BASE

### 9.8 CONCENTRATED LOAD EFFECTS

As stated previously, when concentrated loods, or moments, are applied to thin shells, significant bending and axial thrust stress resultants arise in tocal regions surrounding the points of force application. The paper, "Local Stresses in Spherical and Cylindrical Shells due to External Loadings" by K. Wictiman, A. Hopper and J. Mershon (repriated from Welding Research Council Bulletin 107, 1968 in Vol. 2 of (9.17)), provides an exhaustive summary of the available hand calculation methods for analyzing concentrated load effects, including extensive charts and design aids. The material is too extensive to be included here. Instead, equations for approximating moment and thrust stress resultants due to a concentrated radial load and a concentrated moment load on a spherical shel! are presented in this Section. These moy be used to determine if a more complete anolysis is warranted.

Two common types of concentrated applied forces, radial load and bending moment, are shown in Fig. 9.22, a and b, respectively. Significant effects from the concentrated forces extend over a radius, :


Eq. 9.62

Eq. 9.63

Fig. 9-22 CONCENTRATED RADIAL LOAD AND MOMENT ON SPH HERICAL SHELLL

Equations for approximate maximum stress resultants produced by these concentrated radial forces or moments on a spherical shell with approximately equal moment of inertia per unit width, $i$, and area per unit width, $\bar{a}$, in each direction are given in Table 9-8, Part 1. These simplified equations are based on more comprehensive relations given in (9.19).

The above relations are considerably simplified for an isotropic uniform thickness shell. Significant effects e:tend over a radius, :

$$
\begin{array}{lll}
\text { For moment: } & \rho_{m}=1.1 \sqrt{R t} & \text { Eq. } 9.64 \\
\text { For thrust: } & \rho_{T}=2.2 \sqrt{R t} & \text { Eq. } 9.65
\end{array}
$$

Table 9-8
Approximate Stress Resultants in Spherical Shells Subject to Concentrated Radial Loads and Mornents *


- Adapted from (9.1 3). See charts in 9.19 for greater accurocy.
** These approximations are of varying accuracy. See (9.19) for chorts that give more cceurote approximations.

Equations for approximate moximum stress resultant produced by these forces or moments an an isotropic uniform wall spherical shell are given in Table 9-8, Fart 2.

### 9.9 THERMAL STRESSES

Uniforin temperature chonge does not produce stresses in shells with free edges. However, if edges are connected to elements which do not undergo the same thermal change ns the shell, edge restaints arise and generally cause edge bending, thrust ixid shear stress resultants. These riay be determined by establishing equationis © © deformational compatibility as explained in Section 9.6.

Temperature change in the form of a thermal gradient across the thickness of a shell often produces significant stresses which should be taken into account in the design of shell components. Points at sufficient distance from the edge of a shell are completely restained from curling to conform with the free relative deformations caused by thermal gradients. Bending moments arise that produce the strains needed to accommodate the effects of thermal gradients. The bending moment due to a uniform thermal gradient with temperature $T_{1}$ on the outside and $\mathrm{T}_{2}$ on the inside of an isotropic shell is (9.7):

$$
\begin{equation*}
M_{0}=M_{x}\left(o M_{\phi}\right)=\frac{E \alpha\left(T_{1}-T_{2}\right) t^{2}}{12(T-v)} \tag{Eq. 9.66}
\end{equation*}
$$

The stress in the shell is:

$$
\begin{equation*}
\sigma_{0}=\sigma_{x}\left(o r \sigma_{\phi}\right)=\frac{E\left(T_{1}-T_{2}\right)}{2(T-V)^{2}} \tag{Eq. 9.67}
\end{equation*}
$$

If the edges of the shell ore free, the maximum circumferential stress in the vicinity of the edge is increased (9.7):

$$
\begin{equation*}
\sigma_{0}=\frac{E \alpha\left(T_{1}-T_{2}\right)}{2(T-v)}\left[\left(1-v+\sqrt{\frac{\left(1-v^{2}\right)}{3}}\right]\right. \tag{Eq. 9.68}
\end{equation*}
$$

The coefficient of expansion, $\alpha$, of many plastics materials is relatively high and this increases the magnitude of the possible stress state in a plastic shell resulting from t'lermal gradients or overall thormal change. However, the effects of o high coefficient of expansion are offset, to some extent, by the low modulus of elosticity, $E$, of man'y plastics.

If the shell is a symmetrical sandwich shell subject to a uniform temperature gradient across its overall thickness, $\left(t_{c}+2 t_{f}\right)$, the fully restrained bending moment calsed by the thermal gradient is:

$$
\begin{equation*}
M_{\theta}=M_{x}\left(\text { or } M_{\phi}\right)=\frac{E \alpha_{f}\left(T_{1}-T_{2}\right) i}{\left(t_{c}+2 t_{f}\right)} \tag{Eq. 9.69}
\end{equation*}
$$

if $\dagger_{f} \ll \dagger_{c}$ :

$$
\begin{array}{lll}
M_{0}= & \left.\frac{E \alpha_{f}\left(T_{i}-T_{2}\right) t_{f}\left(t_{f}+t_{c}\right)}{2} \text { (or } M_{\phi}\right) & \text { Eq. } 9.70 \\
\sigma_{0}= & \sigma_{x}\left(\text { or } \sigma_{\phi}\right) & \frac{E \sigma_{f}\left(T_{1}-T_{2}\right)}{2} \tag{Eq. 9.71}
\end{array}
$$

Eq. 9.71 is essentially the same as Eq. 9.67 for uniform thickness shells. However, because of the good thermal insulation provided by plastic core sandwich constructions, ( $T_{1}-T_{2}$ ) may be much larger than in thin shells of uniform thickness. Because of this, stresses caused by thermal gradierits may be much more significant in sandwich shells then in thin shells of single thickness. Thermal stresses are calculated in sandwich cylinders having a variety of facing materials in Example 9-1I.

If thermal gradients are not uniform, or if walls are non-uniform or ribbed, evaluation of the effects of thermal change usually is much more complex, requiring the application of finite element computer analysis techn:ques for both heat transfer and siress analyses.

Example 9-11: Estimate the thermal stress in regions away from the ends for a $100^{\circ} \mathrm{F}$ temperature gradient across the walls of sandwich cylinders having the thin facing materials and properties shown below.*

Eq. 9.71: $\sigma_{0}=\sigma_{x}=\frac{E \alpha\left(T_{1}-T_{2}\right)}{2}$

| Material | $\begin{aligned} & \mathrm{E} \\ & \mathrm{p}, \mathrm{Si} \end{aligned}$ | $\stackrel{\alpha}{\mathrm{in} . / \mathrm{in} .} \rho^{\circ} \mathrm{F}$ | $\sigma_{0}=\sigma_{\text {pst }}$ for $\left(T_{1}-T_{2}\right)=100^{\circ} \mathrm{F}$ |
| :---: | :---: | :---: | :---: |
| Steel | $30 \times 10^{6}$ | $6 \times 10^{-6}$ | $\pm 9,000$ |
| Aluminum | $10 \times 10^{6}$ | $12 \times 10^{-6}$ | $\pm 6,000$ |
| FRP - $50 \%$ glass | $2 \times 10^{6}$ | $12 \times 10^{-6}$ | $\pm 1,200$ |
| [RPP - 30\% glass | $1 \times 10^{6}$ | $18 \times 10^{-6}$ | $\pm 900$ |
| PVC | $0.5 \times 10^{6}$ | $35 \times 10^{-6}$ | $\pm 875$ |
| Polycarbonate | $0.4 \times 10^{6}$ | $35 \times 10^{-6}$ | $\pm 700$ |
| HDPE | $0.15 \times 10^{6}$ | $70 \times 10^{-6}$ | $\pm 525$ |

Note: $1^{\circ} \mathrm{F}=0.55^{\circ} \mathrm{C}, 1 \mathrm{psi}=0.0069 \mathrm{MPa}, 1 \mathrm{in} . / \mathrm{in} . /^{\circ} \mathrm{F}=1.82 \mathrm{~mm} / \mathrm{mm}{ }^{\circ} \mathrm{C}$

* See footnote, Example 9.1, Page 9-13.


### 9.10 STABILITY AN.ALYSIS

Stability analysis is porticularly important for the design of plastic shell structures. The high strength-to-stiffness ratio of most plostics and the economic need to minimize thickness of these moterials both result in designs often governed by stability rather than strength considerations. Methods of stability anulysis for shell structures, particularly with ritbed or sandwich construction, are not widely treated in the literature. However, approximate methods based on buckling analyses for certain basic structure and load arrangements, have been proposed (9.9, 9.21, 5.22) as sufficiently accurate for practical design of the strell configurations described in Section 9.3. These approximaie methods for stability onalysis of uniform thickress, sandwich, or ribbed sthells are summorized in this Section.

## Material Stiffness

This stiffness or modulus of elasticity of the shell material must be known or estimated to evaluate the stability of a shell structure. For many plastics materials, this property is dependent on the duration of load and/or the service temperature. The concept of the time-temperature dependent viscoelastic modulus, $E_{v}$, was introduced in Chopter 2 as a practical way to account for the reduction in stiffness (often termed creep) that occurs under long time stress and with increasing temperature. The viscoelastic modulus is defined in Chapter 2 as the initial slope (or practically, the slope at a low stress) of the isochronous stress-strain curve at a particular time duration of stress, $t_{\boldsymbol{j}}$ and temperature $\mathrm{T}_{1}$. The isochronous stress-strain curve is a plot of stress vs. time-dependent strain for several test somples of different-stress magnitudes, with each stress level held constant for a time, $t_{1}$, and temperature $T_{1}$. The initial elastic modulus for short term load, $E$, and the viscoelastic modulus, $E_{v}$, for several stress durations, ${ }_{\dagger},{ }^{\dagger}{ }_{2}$, are illustrated in the stress-strain plots shown in Fig. 9-23.

Modulus of elasticity may also depend on the mognitude of the short or long term stress. In this case, the short term and/or long term stress-strain curves are not linear at the stress level of interest. When an isochronous stress-strain curve is not linear, its slope at any particular stress level is termed the viscoelastic tangent modulus, $E_{f v}$, for this stress, and the slope of a line joining the origin with the curve at that stress level is termed the viscoelastic secant modulus, $E_{s v}$. These moduli are also illustrated in Fig. 9-23.


Fig. 9-23 EL.ASTKC MODULI FOR USE IN BUCKLING EGUATHONS

The buckling equations given in this section are written in terms of the initial elastic modulus, $E$, for short term. loading, and for stresses within the range where stress is E times strain. For a particular maximum duration of long term load, and maximum service temperature, $E_{V}$ for that duration of stress and temperature should be used in ploce of $E$ in the equat:ons given in this Section. When stress is outside the linear elastic or linear visccelastic range, the tangent modulus, $\mathrm{E}_{\mathrm{t}, \mathrm{\prime}}$, and the secant modulus, $\mathrm{E}_{s v}$, may be used to estimate a plasticity correction factor, $n$. This correction factor may be opplied to reduce the critical buckling stress obtained using $E,\left(E_{v}\right.$ in the case of long term stress).

Methods for estimating $n$, based largely on experiments and theory for thin metal shells, are given in this Section for various types of shell buckling behavior. These reauire verification for application to plastic materials, porticularly if buckling stresses exceed the "viscoelastic limit" as defired in Chapters 2 and 3.

## Idealized Shell Buckling Behavior

Approximate stability analyses for many shells may be based on consideration of three basic types of structural action of a cylinder:

- Longitudinally loaded cylinder - longitudinal stress is compressive. (Figs. 9-24, 9-28).
- Rcodially loaded cylinder - circumferential stress is compressive. (Fig. 9-29).
- Torsionally loaded cylinder - diagonal stress is compressive. (Fig. 9-30).


## Cylindrical Shells

Longitudinalty loaded tong cylinder. In Fig. 9-24(a), a long cylinder under longitudinal lood is divided into longitudinal strips of unit width around the entire circumference, and circumferential hoops of unit width along the entire length. Each longitudinal strip behoves as a slender end-loaded bar with continuous elastic support from the circumferential hoons (Fig. 9-24(b)). Cylinder buckling
resistance is a function of both the longitudinal bending rigidity, $D_{x}$, and the circumferential hoop rigidity, $\bar{A}_{0} / R$.


Fig. 9-24 BUCKLING OF LONGITUDINALLY COMPRESSED CYLINDER

The longitudinal axial force per unit of circumferential length which buckies the cylinder is (9.23):

$$
\begin{equation*}
N_{x c}=\frac{2 \sqrt{3} c \sqrt{D_{x} \bar{A}_{0}}}{R} \tag{Eq. 9.72}
\end{equation*}
$$

This equation is valid only for a "long" cylinder which buckles into one and a half, or more, longitudinal waves. For buckle patterns with fewer waves, it represents a lower limit of buckling resistance. Other limitations are discussed below. Euckling of short cylinders is discussed tater in this Section.

The half-wave length of each longitudinal buckle is (9.23):

$$
\begin{equation*}
\ell_{b}=\pi\left[\frac{D_{x} R^{2}}{A_{0}}\right]^{1 / 4} \tag{Eq. 9.73}
\end{equation*}
$$

For isotropic, uniform thickness shells, Eq. 9.72 reduces to the more familiar cylindrical shell buckling equation:

$$
\begin{equation*}
\sigma_{x c}=\frac{N_{x c}}{t}=\frac{C E t}{R} \tag{Eq. 9.74}
\end{equation*}
$$

The half-wave length of each longitudinal buckle is:

$$
\begin{equation*}
\ell_{b}=1.72 \sqrt{R t} \tag{Eq. 9.75}
\end{equation*}
$$

In order for Eq. 9.72 to be applicable to orthotropic, or ribhed cylindrical shells, the following criteria for relative longitudinal, circumferential and shearing stiffnesses must be met (9.9):

$$
\begin{gather*}
\frac{\bar{A}_{x} D_{0}}{\bar{A}_{0} D_{x}} \geq 1.0  \tag{Eq. 9.76}\\
\frac{D_{x}^{\prime} 0}{D_{x}}+v_{0}  \tag{Eq. 9.77}\\
\frac{\bar{A}_{0}\left(1-v_{x} v_{0}\right)}{2 A_{x}^{\prime} 0} \geq 1.0
\end{gather*}
$$

The above stiffness parameters are defined in Table 6-1 of Chapter 6, with $\times$ and 0 replacing directions 1 and 2.

In most proctical designs for orthatropic or ribbed shells, the above criteria are, or should be, ret. See (9.9) for soiutions when these criteria are not satisfied.

For orthotiopic, ribbed or sandwich shells that meet the above criteria, Eq. 9.74, may be used in lieu of Eq. 9.72, if $\mathrm{mf}^{\prime \prime}$ is replaced by ${ }^{\dagger_{e}}$, an effective thickness given by Eqs. 9.82 or 9.83 betow. Thus:

$$
\begin{equation*}
\sigma_{x c}=\frac{C E_{x} t_{e}}{R} \tag{Eq. 9.78}
\end{equation*}
$$

The term $C$ in the above equations is a shell buckling coefficient that is determined as follows:

$$
\begin{equation*}
C=k_{0} k_{n} k_{s} \tag{Eq. 9.79}
\end{equation*}
$$

where: $k_{0}=$ buckling coefficient from classical linear mathematical derivations for cylindrical shell buckling, given by:
$k_{0}=\frac{1}{3\left(1-v^{2}\right)} \approx 0.6$, when $v=0.3$
$k_{n}=$ "knockdown factor" (less than 1.0) for reduction of buckling stress in thin cylinders due to imperfections (see loter discussion). $k_{n}$ may be estimated for cylindrical shells of uniform thickness from the following semi-empirical relation, based on many tests on thin isotropic metal and plastic cylinders (9.24):
$k_{n}=1.0-0.91\left(1-\frac{1}{e^{0.06 \sqrt{R / t}}}\right)+1.5\left({ }_{[ }^{R}\right)^{2}\left(\frac{t}{R}\right)$
e, the Naperion Bose, equals 2.7183
Thee experimental data that provide the basis for Eq. 9.81 cover a range of $R / t$ from 100 to 4,000 and $R / L$ from 0.2 to 33 for unstiffened, uniform wall thickness cylinders. The terms containing $R / L$ are not significant for smal!er values than $R / L=0.2$. See also (9.26) for discussion of $\boldsymbol{k}_{\mathrm{n}}$.

Eq. 9.81 is plotted in Fig. $9-25$ for cases where the term involving R/L is not significant.

The following alternate equntion for $k_{n}$ is recommended in (9.39), based on a study of available test data on fabricated steel and aluminum cylinders subject to axial load.
$k_{n}=1.53-0.477 \log \frac{R}{f} \leq 0.21$


Fig. 9-25 KNOCKDOWN FACTOR FOR LONGITUDINALLY COMPRESSED OR BENT CYLINDERS (Source 9.9)

This equation is also plotted in Fig. 9-25 for R/t between 600 and 1000. Obvious!'y, it gives more conservative results than Eq. 9.81 because it is based on tests of components with larger imperfections, presumably more representative of actual metal shells. The cut off at $k_{n}=0.21$, representing $R / t=600$, is suggested in (9.39) because of the absence of test data for lower $R / t$ values. However, note that test data from small scale tests reviewed in (9.39) suggests a cut off of max. $\mathbf{k}_{n}=0.57$, as well as on increase in the constant 1.53 to 1.60 in Eq. 9.81a. If the latter coefficient is used in Eq. 9.81a in ploce of 1.53, the $k_{n}$ values obtained with Eq. 9.81a agree quite weli with Eq. 9.81 up to the cut off point.

The accuracy of either Eq. 9.8: or 9.81a for use with plastics shell components will depend primarily on the accuracy of fabrication. Tests of full scale components should be undertaken as a basis for confirming or modifying these relotions.

A further modification of Eqs. 9.81 and 9.81a for $k_{n}$ to include the increased buckling strength that can be provided by circumferential stiffening ribs is presented later in this Secrion.

Applicability of the above knockdown factor to ribbed or sandwich cylinders by substitution of $\mathbf{t}_{\mathbf{e}}$ for $\mathbf{t}$ requires verification by tests.
$k_{s}=$ reduction factor (less than 1.0 ) for shear deflection. This is usually only significant for sandwich shells, and is given in Fig. 9-
26.


Fig. 9-26 REDUCTION FACTOR FOR SHEAR DEFORMATION IN BUCKLING OF LONGITUDINALLY COMPRESSED LONG SANDWICH CYLINDER WITH ISOTROPIC FACINGS AND SHEAR FLEXIBLE CORE (Source 9.9)

Discussion of knockdown foctor $k_{n}$ : The buckling anolysis used for bars and plates is based on an assumption of elostic behavior and a deformed position of differential elements in the compressed component only slightly different than the initial theoretical geometry. When this type of onalysis is applied to shells, the equations for critical buckling stress or stress resultant given above are obtained with $C=k_{0^{\circ}}$ in real shells, however, prebuckling rotations usually are not negligibly small, and they have to be taken into account in determining buckling resistonce. This requires a non-linear analysis, os well as consideration of initial deviations of the shell geometry from the assumed perfect cylindrical shape. Initial deviations result from imperfections such as waviness and "flat spots" in the octual shell geometry. Further deviotions occur when the shell deforms under land. These prebuckling changes in the shells geometry usually reduce its buckling resistance to only about $1 / 4$ to $1 / 8$ of the resistance abtained in a linear elastic small deflection analysis. However, because a direc nonlinear analysis is usuall; too complex and unwieldly for practical design, a
"knackdown foctor", $k_{n}$, given by Eq. 9.81 or 9.81 , is usually applied to the results of linear theory, producing the buckling coefficient given by Eq. 9.19.

For a long cylinder under longitudinal compression, the buckling resistance developed in the classical linear analysis depends on the axiai stiffness of the circumferential or ring strips. In a thin shell, these ring strips have a very low bending stiffness relative to their axial stiffness. Deviations from a periect ring and from perfectly straight longitudinal strips cause small unsymmetrical lateral forces which produce circumferential bending deformations. When a typical "imperfect" longitudinally loaded cylinder buckles, a diamond-shaped buckle pattein arises rather than the axi-symmetric wave pattern shown in Fig. 9-24(o). The size and shape of the diamond-shoped pattern is a function of both the circumferential axial and bending stiffness, as well as the longitudinal bending stiffness.

When circumferential stiffeners are provided at a spacing, $L_{s}$, that is greater thon the half wave length of longitudinal buckling, $\ell_{b}$, (see Fig. 9.24), the preceeding buckling theory indicates that the critical buckling load is the buckling capacity of the shell between stiffeners. Theoretically, this strength is not offected by the length of the shell between stiffeners when $L_{s}>l_{b}$. However, tests reported in (3.39) show that the longitudinal buckling strength of such circumferentially ribbed shells is increased significantly over the strength of a sirnilar shell without the stiffeners. The increased strength may be taken into account by modifying the knockdown coefficient, $k_{n}$, given previously by Eq. 9.81 or 9.81 a. If a shell stiffening factor,

$$
\begin{equation*}
\lambda_{s}=\frac{L_{s}}{\sqrt{R_{t}}} \tag{Eq. 9.82}
\end{equation*}
$$

is defined, then the following knockdown factor for buckling of the shell between ribs, suggested i. (9.39) for use with fabricated steel cylinders, is probably also applicable to plastic shells fabricated to the some level of accuracy;

$$
k_{n}=\left(3.13-0.82 \log \frac{R}{f}\right) \lambda_{s}^{-0.6} \leq 0.87 \lambda_{s}^{-0.6}
$$

Obviously, $k_{n}$, need not be less than the value given by Eq. 9.8la.

The bending stiffness of the circumferential stiffeners do not appear in the above equation. This stiffness must be at least equivalent to the bending stiffness of an unstiffened shell of uniform thickness that has the increased buckling strength given by Eq. 9.81b together with Eqs. 9.74 and 9.79. For the usual case of ribs that act corrpositely with the sheil, a length of shell equal to $.76 \cdot \sqrt{R} t$ on each side of the rib, but not greater than $0.5 L_{s}$, may be considered as u part of the rib.

The above qualitative disc'ussion indicates that the knockdown factor, $k_{n}$, should be a function of the ratio of circumferential bending stiffness to circumferential axial stiffness. For an isotropic shell of uniform thickness, this ratio is $t^{2} / 12$. For a planar isoiropic sandwich shell with thir equal faces, this retio is $\left(\dagger_{c}+t_{f}\right)^{2} / 4$. Also, the effective thickness of the above sandwich shell which produces the same critical buckling stress with Eqs. 9.72 and 9.76 is:

$$
t_{e}=\sqrt{3}\left(t_{c}+t_{f}\right)
$$

Eq. 9.83
With the above value of $t_{e}, t_{e}{ }^{2} / 12=\left(t_{c}+t_{f}\right)^{2} / 4$. Thus, $R / t_{e}$ may be used in place of R/t in Eqs. 9.81 and 9.81 l for determining $k_{n}$ for sandwich shells, although as stated above, this should be verified by tests.

The equations for longitudinal buckling stress resultant and knockdown factors presented above cover the cases of unstiffened isotropic or orthotropic shells (Eqs. 9.74 or 9.72 with 9.79 and 9.81 or 9.81 a), circumferentially stiffened shells thot buckle in the uniform thickness region between stiffeners (Eqs. 9.74 or 9.72 with 9.79 and 9.81 , 9.81 a or 9.8 lb ), ard sandwich shells (Eqs. 9.78 and 9.32 , or 9.72, with Eq. 9.81 as lower bound (or $k_{n}$.) Consideration of the longitudina: buckling stress resultont for cylindrical shells that have both longitudinal and circumferential stiffeners also is of interest This case also covers the sub-cose of the longitudinal buckling strength of zylindrical shells that have only circumferential ribs, but whose buckled shape includes bending of the ribs (termed "general instability" as compared to "local buckling" of the sinell between ribs.) This stiffened shell case moy also be evaluated using the buckling theory presented above by defining on effective thickness:

$$
\begin{equation*}
t_{e}=\frac{2 \sqrt{3}}{\bar{A}_{x}} \sqrt{D_{x} \bar{A}_{b}} \tag{Eq. 9.84}
\end{equation*}
$$

Eq. 9.84 may be applied to ribbed shells that meet the criteria given by Eqs. 9.76 and 9.77 (9.21) by using the knockdown factors given by Eqs. 9.81 or 9.81 a based
 the minimum required in Eq. 9.76, the knockdown coefficient given by Eq. 9.81 becomes increasingly more conservative. Eq. 9.84 , together with Eq. 9.78 may be used to determine the resistance to general instability of a longitudinally compressed cylinder with circumferential ribs only, but if the ribs are clasely sponced, the $k_{n}$ coefficients given by Eq. 9.81 will be very conservative. Tests of cylinders that failed with buckles that include the ribs have shown that the high circumferential bending stiffness of the rib compared to the longitudinal bending stiffness of the shell increases the buckling coefficient, $\mathrm{k}_{\mathrm{n}}$ (9.39).

Creep and non-linear behavior. For shells subject to long term stress and/or elevated temperatures, the viscoelastic modulus siould be used in the stiffness terms of the above equations. If isochronous stress-strain relations are not linear, $k_{n}$ should be multiplied by the following plasticity correction factor (isotropic materials) (9.9):

$$
\begin{equation*}
n=\frac{\sqrt{E_{t} E_{s}}}{E} \text {, or } \frac{\sqrt{E_{t v} E_{s v}}}{F_{v}} \tag{Eq. 9.85}
\end{equation*}
$$

$E_{f}$ is the tangent modulus of the plastic at an ultimate stress equal to the design stress times a suitable lood factor. $E_{s}$ is the secant modulus at that ultimate stress and $E$ : $\}$ the initial modulus. These moduli ore obtained from a stressstrain curve for the material, taken at least up to the required ultimate stress. (Fig. 9-23).

When stress is long term, an isochronous stress-strain curve for the material loaded under the design time duration (or extrapolated to that duration) should be used to obtain the viscoelastic moduli, $E_{f v}, E_{s v}$, and $E_{v}$. (Fig. 9-23)

Pressurized longitudinally foaded cylinder. If a cylindrical shell is pressurized internally, resulting in circumferential tension, the knockdown factor is increased. The effect of the circumferential tension is to stabilize the longitudinal strips which ore subject to compression, thereby increasing the longitudinal buckling stress. An estinate of the increased buckling strength of a pressurized
shell may be obtained using a correction factor to the buckling coefficient given by Eq. 9.79 as follows (9.9):

$$
C=\left(k_{0} k_{n}+k_{p}\right) k_{s}
$$

The correction coefficient fur effects of internal pressure, $k_{p}$, is given in Fig. 9-27.


Fig. 9-27 CORRECTION FACTOR FOR PRESSURIZED LONGITUDINALLY COMPRESSED CYLINDER (Source 9.9)

If, conversely a cylindrica! shell is subject to circumferential compression, the knockdown factor is decreased, and thus, the longitudinal buckling stress is decreased. The effect of combiner radial and longitudinal compressive stresses may be evaluated using the interaction equation given later in this Section.

See (9.24) and (9.9) for summaries of man;' studies of longitudinal buckling stress. Included are various suggested provisions for reductions due to imperfections, plasticity, creep and shear deformation effects.

Langltudinally looded short cylinder Length of shell does not appear in Eqs. 9.72 or 9.74. For long shells, length does not affect the longitudinal buckling stress. However, very short longitudinally loaded cylindrical shells may have a larger buckling capocity than given by Eqs. 9.72 or 9.74 . Such shells bucikle into only one half-wave length, as shown in Fig. 9.24(c). See Eq. 9.73 or 9.75 for the theoretical half-wave length of buckle. For short shells, the critical longitudinal
stress resultant that produces buckling may be determined using Eq. 6.72 in Chapter 6 for buckling of wide plates. This equation is essentially Euler's formula for a long slender column.

In short shells, the axial strips derive their principal resistance to bucklir.g from their longitudinal bending stiffness. This is in contrast to long shells whose buckling resistance is enhanced by elastic support from the circumferential stiffness of the shell. Obviously, in a short shell, the rotational stiffness of the ends of the cylinder, as well as its length, greatly affecis the buckling strength.

The effect of shell length for intermediate length shells where the length of the shell, or the spacing of circumferential stiffeners, $L_{s}$, is more than the half wave length of buckle, $\boldsymbol{l}_{b}$, is included in Eq. 9.8 Ib for knockdown coefficient. This provides a transition range where the combined resistance to buckiing as an Euler strip with elastic support from the hoop stiffeners of the shell is taken into occount.

Whenever Eq. 6.72, with the appropriote end $r \in s t r a i n t$ coefficient, gives a higher buckling stress thon Eqs. 9.72 or 9.74 , together with Eqs. 9.79 and 9.81 or 9.8 lb , the shell is a "short shell" and the higher critical stress represents the buckling strength.

Example 9-12 illustrates application of the above buckling equations and the procedure described for estimating knockdown coefficierts to the calculation of the longitudinal buckling stress resultant for on orthotropic cylindrical shell. The shell stiffness is orthotropic because the circumferential elastic modulus differs from the longitudinal elastic modulus, and also because circumferential ribs are provided, without longitudinal ribs.

Cylinder Under Longitudinal Bending. The preceding equations may also be used to determine the longitudinal buckling stress resultant in a cylindrical shell which is subject to overall bending, as shown in Fig. 9-28. In this case, longitudinal stress resultants vary within the shell, and the buckling stress at the most highly compressed point can be determined using Eqs. 9.72 or 9.74 with a slightly modified value of the buckling coefficient. Instead of the knockdown coefficient given by Eq. 9.81, o higher $k_{n}$, given by the upper curve in Fig. 9-25, may be used.

1 Example 9-12: Determine the longitudinal stress resultant, $N_{x c}$, that will buckle a filament wound, circumferentially ribbed, FRP tube with materials properties and dimensions shown in the sketch.*


$$
\begin{aligned}
& E_{0}=3 \times 10^{6} \\
& E_{x}=0.8 \times 10^{6} \mathrm{psi} \\
& v_{x}=0.11 \\
& v_{0}=0.41 \\
& 1=0.3 \mathrm{in} . \\
& \text { Ribs: } A_{0}=0.3 \mathrm{in} 2 / \mathrm{rib}
\end{aligned}
$$

1. Longitudinal and circumferential stiffnesses per unit width
1.1 For buckling between ribs

Eq. 6.5a: $A_{0}=\frac{E_{\theta}{ }^{\dagger}}{\left(T-v_{0} v_{x}\right)}=\frac{3 \times 10^{6} \times 0.3}{(1-0.41 \times 0.1 \Pi}=0.94 \times 10^{6} \mathrm{lbs} / \mathrm{in}$.
Eq. 6.60: $D_{x}=\frac{E_{x} i_{x}}{\left(1-v_{0} v_{x}\right)}=\frac{0.8 \times 10^{6} \times 0.3^{3}}{\sqrt{2}(1-.41 \times .11)}=1.89 \times 10^{3} \mathrm{lbs}-\mathrm{in}$.
Eq. 6.5b: $A_{x}=\frac{0.8 \times 10^{6} \times 0.3}{(1-0.1 T \times 0.4 T)}=0.25 \times 10^{6} \mathrm{lbs} / \mathrm{in}$.
Eq. $9.82 \quad \lambda_{s}=\frac{L_{s}}{\sqrt{R_{t}}}=\frac{10}{\sqrt{48 \times 0.3}}=2.64$
1.2 For buckling including ribs - smear out to get average stiffness per unit width
$A_{0}=-\frac{E_{0} \rho_{0}}{\left(1-\nu_{0} \nu_{x}\right.}=3 \times 10^{6} \times \frac{(0.3 \times 12+0.3 \times 2)}{12(1-0.41 \times 0.11)}=1.10 \times 10^{6} \mathrm{lbs} / \mathrm{in}$
$D_{x}=1.89 \times 10^{3} \mathrm{ibs}-\mathrm{in}$
1.3 Check stiffness ratios:

Eq. 9.76: $\frac{\mathbb{A}_{x} D_{0}}{\mathbb{A}_{0} D_{x}} \geq 1.0$
Between ribs: $A_{x}=\frac{0.8}{3.0} \mathbb{A}_{0} ; D_{0}=\frac{3.0}{0.8} D_{x}$, and thus $\frac{\pi_{x} D_{0}}{\pi_{0} D_{x}}=1.0$
Including ribs: $D_{0}$ increases more than $\bar{A}_{0}$ increases while $D_{x}$ and $A_{x}$ do not change, and thus inequality is satisfied.

- See footnote, Example 9-1, Page 9-13.


## Example 9-12 (continused)

2. Check half wave length of buckle between ribs to determine whether shell can buckle between ribs.
Eq. 9.73: $\quad i_{b}=\pi\left[\frac{D_{x} R^{2}}{A_{0}}\right]^{1 / 4}=\pi\left[\frac{1.89 \times 10^{3} \times 48^{2}}{0.94 \times 10^{6}}\right]^{1 / 4}=4.6 \mathrm{in}$.

## Conclusion: Shell con buckle between ribs.

3. Check buckling strength between ribs:

Eq. 9.72: $N_{x c}=\frac{2 \sqrt{3} C \sqrt{D_{x} \bar{A}_{0}}}{R}$
Eq. 9.79: $C=k_{0} k_{n} k_{s} ; k_{0}=0.6, k_{s}=1.0$
Eq. 9.84: $t_{e}=\frac{2 \sqrt{3}}{A_{x}} \sqrt{D_{x} A_{0}}=\frac{2 \sqrt{3 \times 1.89 \times 10^{3} \times 0.94 \times 10^{6}}}{0.25 \times 10^{6}}=0.584 \mathrm{in}$.
$\frac{R}{t_{0}}=\frac{48}{0.584}=82 ;$ Fig. 9-25: $k_{n}=0.6$

$$
N_{x c}=\frac{2 \sqrt{3} \times 0.6 \times 0.6 \sqrt{1.89 \times 10^{3} \times 0.94 \times 10^{6}}}{48}=1095 \mathrm{lbs} / \mathrm{in}
$$

4. Check for potential incressed lungitudinal buckling strength due to effect of rib spacing:
Eq. 9.8lb: $k_{n}=\left(3.13-0.82 \operatorname{iog} \frac{R}{\dagger}\right) \quad \lambda_{s}^{-0.6} \leq 0.8 \lambda_{s}^{-0.6}$

$$
k_{n}=(3.13-0.82 \log 80) 2.64^{-0.6}=0.88
$$

or max. $k_{n}=0.8 \times 2.64^{-0.6}=0.45<0.60$ from step 3
No increase expected frcin circumferential iibs; however, they probably make this shell considerably less "imperfection sensi:ive" thon, a comparable shell without the ribs. Talerances for deviations from the design geometry con probably be somewhot greater becouse of the stiffening effect of the ribs.
5. Check whether Eq. 6.72 with $k=1.0$ (Euler's formula) gives a higher $N_{x c}$ :

$$
N_{x c}=\frac{k \pi^{2} D_{x}}{c^{2}}=\frac{1.0 \pi^{2} \times 1.89 \times 10^{3}}{(10)^{2}}=186 \mathrm{hs} / \mathrm{in} \quad 1095 \mathrm{lbs} / \mathrm{in}
$$

This result was expected since $\ell_{b}$ (in step 2 ) $\ll a$, the clear rib spacing.
6. Conclusion: longitudinal buckling strength is governed by sections between circumferential ribs, maxirnum $N_{x c}=1095$ Ibs/in., and longitudinal buckling siress is;
$\sigma_{x c}=\frac{1095}{0.3}=3650 \mathrm{psi}$.
Note: 1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{in}^{2}=645 \mathrm{~mm}{ }^{2}, 1 \mathrm{lbf}-\mathrm{in} .=0.113 \mathrm{~N}-\mathrm{m}, 1 \mathrm{lbf} / \mathrm{in} .=175 \mathrm{~N} / \mathrm{m}$, $1 \mathrm{psi}=0.0069 \mathrm{MPa}$


Fig. 9-28 BUCKLING OF LONGITUDINALLY BENT LONG CYLINDER

Rodially looded cylinder. In Fig. 9-29, a cylinder loaded by radial pressure is shown divided into circumferentia! hoops along its entire length. For very long cylinders in the regions away from the ends of the cylinder, these hoops behave like slender radially loaded rings. These rings derive little support from the end diaphragms which are too far away. The shell brjckling resistance is the same as the buckling resistance of the strips acting as rings, given in Section 9.2. For cylinders of moderate length, shell buckling resistance is increased over tire ring buckling capacity because of the resistance to ovalling developed from tonyential (membrane) shear stiffness. Very short cylindrical shells under radial pressure or circumferential stress be', ave the same as long, narrow plates with supported edges parallel to the direction of stress, developing still greater buckling resistance than "moderate length" cylinders.

The circumfrentiol buckling stress and external pressure for a lorg cylindrical shell (Fig. 9-29c) is given by Eqs. 9.14 to 9.17 in Section 9.2.

The circumferential buckling stess resultant for a moderate length cylinder (Figs. 9-29a, d) is (9.21):

$$
\begin{equation*}
N_{0 c}=\sigma_{0 c} a_{0}=\frac{5.5 k_{n}\left(A_{x}\right)^{1 / 4}\left(D_{0}\right)^{3 / 4}}{L \sqrt{R}} \tag{Eq. 9.86}
\end{equation*}
$$


(a.) External Pressure on cylindical shell

(c.) Buckled shape of ring, fube, or long shell

(e.) Short shell

(b.) Portion of circumferential strip

(d.) Buckled shape of moderate length cylindrical shell

(f.) Buckied shope of shor 4 cylindrical shell

Fig. 9-29 BUCKLING OF RADIALLY COMPRESSED CYLINDER

In terms of the external pressure tinat buckles the shell, this becomes:

$$
P_{c r}=\frac{5.5 k_{n}\left(\bar{A}_{x}\right)^{1 / 4}\left(D_{0}\right)^{3 / 4}}{L R \cdot \sqrt{R}}
$$

The circumferential buckling stress for on isotropic, uniform thickness, moderate length cylinder is (9.21):

$$
\begin{equation*}
\sigma_{\sigma_{c}}=\frac{0.855 k_{n} E \uparrow}{\left(1-v^{2}\right)^{3 / 4} L \sqrt{R / t}} \tag{Eq. 9.87}
\end{equation*}
$$

In terms of the external pressure that buckles the shell, this becomes:

$$
\begin{equation*}
P_{c r}=\frac{0.855 k_{n} E t^{2}}{\left(1-v^{2}\right)^{3 / 4} L R \sqrt{R / \uparrow}} \tag{Eq. 9.87}
\end{equation*}
$$

The coefficient, $k_{n}$, is a knockdown coefficient for effect of imperfections on buckling of moderute length cylindrical shells under radial pressure. These shells derive their buckling resistance from the combined action of circumferential
bending stiffness and in-plane shear and axial cylindrical membrane stiffnesses that restrain "ovalling" of the ring during buckling. This behavior is not "imperfection sensitive", consequently the knockdown coefficient required to obtain ogreement with test results is much larger than in the case of a longitudinally looded cylinder. A constant knockdown coefficient, $k_{n}=0.9$, is suggested (9.3) for use in Eqs. 9.86 and 9.87.

For shells subject to long term stress and/or elevated remperatures, the viscoelastic modulus should be used in place of $E$ in the above equations. If stress-strain relations are mot linear, $k_{n}$ should be multiplied by the following approximate plasticity correction factor (isotropic materials) (9.9):

$$
\begin{equation*}
n=\frac{E_{s}}{E}\left[\frac{1}{4}+\frac{3}{4} E_{t} E_{s}\right] \tag{Eq. 9.88}
\end{equation*}
$$

For sandwich shells with "shear soft" cores, a suitable reduction factor for shear deformation should be applied to the flexural stiffness, $\mathrm{D}_{0}$, in Eq. 9.82. See Fig. 9-26.

The buckling stress resultant for an isotropic uniform thickness cylinder of short length (Fig. 9-29e, f) is given by Eq. 6.71 (Chapter 6) for a longitudinally loaded "long" plate, with coefficients obtained from Table 6-3 for various zonditions of restraint along the eclges. In this case, the long direction of the piate is the circumference of the "short" cylinder. The width, $b$, of the plate is the length, L, of the "short" cylinder. No general "knockdown factor" for imperfections is required in the case of short shells.

For an orthotropic "short" cylinder, use Eqs. 6.92, or 6.94, depending on rotational restraint of edges.

For $c$ sandwich short cylinder, use Eq. 6.71 i., Chopter 6 and the buckling coefficients giren in Fig. 8-18 in Chapter 8.

In order to determine whether a particular radially loaded cylindrical shell behaves as a long, moderate length, or short cylinder, the buckling stress resultant, $N_{O_{c}}$, stress $\sigma_{O_{c}}$, or pressure, $p_{c r}$, may be calculated for each type.

The highest calculated buckling stress resultant determines the buckling strength and the mode of buckling (i.e: length, classification).

Example 9-13 illustrates annlication of the above equations to determine the external pressure that will , woduce buckling of the cylindrical tube sketched in Example $9-12$ when heavy rib supports or end diaphragms are spaced of 20 ft longitudinally.

Torsionally loaded cylinder. In Fig. 9-30, a cylinder is shown loaded in torsion, producing a state of pure shear in the $x$ and $\theta$ directions, and diagonal compression and tension at a 45 -degree helix angle. Here, the shell buckles into inclined circumferential waves that spiral along the cylinder. Again, cases involving a long cylinder, a moderate length cylinder and a short cylinder are considered.

The shear buckling stress for an isotropic, uniform thickness, long cylinder or tube loaded in torsion is (9.26):

$$
\begin{equation*}
\tau_{\times 0 c}=\frac{0.27 k_{n} E}{\left(1-v^{2}\right)^{3 / 4}}\left[\frac{1}{R}\right]^{3 / 2} \tag{Eq. 9.89}
\end{equation*}
$$

The shear buckling stress resultant for a ribbed or sandwich long cylinder or tube loaced in torsion is (9.27):

$$
\begin{equation*}
N_{x \theta c}=\frac{1.75\left(\bar{A}_{x}\right)^{1 / 4}\left(D_{\theta}\right)^{3 / 4}}{R^{3 / 2}} \tag{Eq. 9.90}
\end{equation*}
$$

The shear buckling stress for an isotropic uniform thickness moderate length cylinder loaded in torsion is (9.26):

$$
\begin{equation*}
\tau_{x 0 c}=\frac{0.70 k_{n} E}{\left(1-v^{2}\right)^{5 / 8}}\left[\frac{1}{F}\right]^{5 / 4}\left[\frac{R}{L}\right]^{1 / 2} \tag{Eq. 9.91}
\end{equation*}
$$



Fig. 9-30 BUCKLING סF TORSIONALLY LOADED CYLINDER

Example 9-13: Determine the external pressure that will produce radial buckling of the cylindrical ribbed tutular section shown in Example 9-12 if diaphragms or very stiff ribs are provided at a long:1'sdinal spacing of 20 ft .*
I. Longitudinal and circumferential stiffness properties per unit length for use in Eq. 9.86a: See Exomple 9-12 for material properties.
$A_{x}=\frac{E_{x}^{\dagger}}{T-U_{x} U_{0}}=\frac{0.8 \times 10^{6} \times 0.3}{(1-0.1 T \times 0.4 \Pi)}=0.25 \times 10^{6} \mathrm{lbs} / \mathrm{in}$
$D_{0}$ is obtained by determining the averaged (smeared out) properties of a 12 inch length. A portion of shell having a lengt'o of 0.75 VRt on each side acts with the rib. Thus, rib width $=2+2 \times .76 \sqrt{48 \times 0.3}=7.77 \mathrm{in} .<12 \mathrm{in}$.

$i_{0}=1 / 12=0 . \cos \sin 2 \mathrm{in} .4 / \mathrm{in}$.
$D_{0}=\frac{E_{0} i_{0}}{\Gamma-v_{x} v_{0}}=\frac{3 \times 10^{6} \times 0.00542}{\Pi-0.4 T \times 0 . \pi T}=1.70 \times 10^{4} \mathrm{lbs}-\mathrm{in}$
2. Buckling pressure, based on general buckling of the 20 ft . long ribbed shell:

Eq. 9.86a: $F_{c r}=\frac{5.5 k_{n}\left(A_{x}\right)^{1 / 4}\left(D_{0}\right)^{3 / 4}}{L R \sqrt{R}} ;$ Take $k_{n}=0.9$.
$P_{c r}=\frac{5.5 \times 0.9 \times\left(25 \times 10^{4}\right)^{1 / 4}\left(1.70 \times 10^{4}\right)^{3 / 4}}{240 \times 48 \sqrt{48}}=2.06 \mathrm{psi}$
Also check Eq. 9.15 for long tube buckling:
$P_{c r}=\frac{3 D_{Q}}{R^{3}}=\frac{3 \times 1.70 \times 10^{4}}{48^{3}}=0.46 \mathrm{psi}<2.06 \mathrm{psi}$; use $\mathrm{P}_{\mathrm{cr}}=2.06 \mathrm{psi}$
3. Check bocal buckling of shell between ribs; consider as intermediate length shell, $L=10$ in.:
$D_{0}=\frac{E_{0} t^{3} / 12}{1-v_{0} v_{x}}=\frac{3.0 \times 10^{6} \times 0.3^{3} / 12}{(1-0.41 \times 0.11)}=0.71 \times 10^{4} \mathrm{psi} ; A_{x}$ same as above.
$\mathrm{p}_{\mathrm{cr}}=\frac{5.5 \times 0.9 \times\left(25 \times 10^{4}\right)^{1 / 4}\left(0.71 \times 10^{4}\right)^{3 / 4}}{10 \times 48 \sqrt{48}}=25.7 \mathrm{psi}>2.06 \mathrm{psi}$
Thus, radial buckling between local ribs does not govern. No need to check using short shell equations since general buckling of 20 ft long shell governs.

Note: $\mid$ in. $=25.4 \mathrm{~mm},\left|\mathrm{in}^{4} / \mathrm{in} .=16387 \mathrm{~mm}^{4} / \mathrm{mm},|\mathrm{ft}=0.305 \mathrm{~m}| \mathrm{lbf}-,\mathrm{in} .=0.113 \mathrm{Nm}\right.$, $|\mathrm{lbf} / \mathrm{in} .=175 \mathrm{~N} / \mathrm{m}| \mathrm{psi}=,0.0069 \mathrm{MPa}$.

* See footnote, Example 9-1, poge 9-13.

The shear buckling stress resultant for a ribbed or sandwich modergte length cylinder loaded in torsion is (9.27):

$$
\begin{equation*}
N_{x \in C}=\frac{3.46\left(A_{x}\right)^{3 / 8}\left(D_{0}\right)^{5 / 8}}{L^{1 / 2} R^{3 / 4}} \tag{Eq. 9.92}
\end{equation*}
$$

Long and moderate length cylinders stressed in shear are not as se.asitive to reductions in buckling strength from geometrical imperfections as longitudinally compressed cylinders. Also, they do not experience as much if a drop in post buckling strength as a longitudinally compressed cylinder. This is because shear induced by torsion represents compression in one diagonal direction accompanied by tension in the orthogonal diagonal direction. Nevertheless, experiments show some reduction from the buckling strength determined using linear elastic analysis (9.9). In the absence of spezific experimental data for a particular design, a knockdown coefficient, $k_{n}=0.8$, is suggested, based on test data given in the literature (9.9).

The effect of creep may be taken into account by using the viscoelastic modulus, $E_{v}$, for a particular durcition of load and maximum temperature design criteria in place of $E$ in Eqs. 9.89 and 9.91 above, and in the stiffness terms, $\bar{A}_{x}$ and $D_{0}$, in the other equations. Also for sandwich shells, the effect of core shear deformation may be significant. An appropriate reduction coefficient, $k_{s}$, may be applied to the flexural stiffness, $D_{0}$ in Eqs. 9.90 and 9.92 .

The shenr buckling stress, or stress resultunt, for a short cylinder loaded in torsion is obtained using plate shea: buckling equations given in Chapter 6. Use Eqs. 6.84 for isotropic short shells and 6.102 for orthotropic (including ribbed) short shells. For a complete cylinder of length $L$ and radius $R, b=L$ and $a=$ $2 \pi R$ in the plate buckling equations.

The highest value of the shear buckling stress, as determined by the appropriate equations given above for long, moderate ar.d short length shells is the proper calculated buckling strength. The length associated with this stress establishes the proper length classification.

The above equations for shear buckling of cylinders loader in uniform shear resulting from torsion provide a lower bound for the shear buckling strength of
cylindrical shells subject to conditions of varying shear. One common case occurs when a cylindrical shell behaves as a t.sbular beam, resulting in conditions of a maximum membrane shear stress resultant at locations at the end of the beam span and at the neutral axis of the beam on the sides of the cylinder. Elsewhere in the cylinder, shear is lower, and thus, the torsional looding case provides a conservative "lower bound" shear buckling estimate. See Example 915 in Section 9.12 for an illustration of the use of the above equations to estinute the shear buckling strength of a horizontal cylindrical vessel on saddie supports.

## Combination of :._ongitudinal and Circumferential Comprewion and Shear Stress.

 The following interaction equation provides a conservative means to account for the effect of combinations of longitudinal and circumferential compression and shear stresses on the buckling of a cylindrical she!!:$$
\begin{equation*}
\frac{i_{x}}{N_{x c}}+\frac{N_{x}^{\prime}}{N_{x c^{\prime}}}+\frac{N_{0}}{N_{D c}}+\left(\frac{N_{x \theta}}{N_{x \theta c}}\right)^{2} \leq 1.0 \tag{Eq. 9.93}
\end{equation*}
$$

The terms with c subscripts in the denominators are the critical buckling stress resultants without the presence of other types of stress. The terms in the numerator are the calculated simultaneously applied ultimate stress resultants of eact type. The unprimed $N_{x}$ terr. is the uniform longitudinal stress resultant, and the primed $N_{x}$ term is the non-uniform (bending) longitudinal stress resultant at a critical point of a cylindrical shell.

The preceding equation is similar to Eqs. 6.87 and 6.82 for plate buckling under combined stresses. See (9.24) for a summary of inore extensive analyses of combined stress cases.

Other Solutions for Buckling of Cylindrical Shells. See (9.24) for equations applicable to isotropic uniform wall, ribbed or sandwich cylindrical shells under axial and radial compression and shear that differ somewhat from some of the preceding equations. Plasticity reduction factors are also suggested for each type of buckling.

## Conical Shells.

Like the cylinder, the surface of a circular cone is formed by revolving a straight line about a longitudinal axis. In the case of the cone, the generating line is inclined to the axis of revolution, while in a cylinder it is parallel to it. Thus, like the cylinder, a cone has an intinite radius of curvoture in one principal direction, but in the other direction, its radius of curvature varies with distance from the apex. Because of its similarity to a cylinder, buckling relations for conical shells may be determined using an equivalent cylinder. The equivalent cylinder radii are shown in Fig. 9-31 for the three basic types of buckling behavior. The following transformation relations are suggested (9.9):

(a.)

(b.)

(d)

(c.)

Fig. 9-31 EGUNALENT CYLINDER RADH FOR BUCKLING OF CONICAL SHELLS

Longitudinally compressed cone (Fig y-310): Determine $\mathrm{N}_{\mathrm{sc}}$ (or $\sigma_{\mathrm{sc}}$ ) at the small end of the cone using Eqs. 9.72 or 9.73 for a longitudinal!y compressed cylinder, and the following equivalent cylinder radius, $R_{e}$ (9.9):

$$
\begin{align*}
& R_{e}=\frac{R_{I}}{\cos \alpha}  \tag{Eq. 9.94}\\
& P_{c r}=2 \pi R_{2} N_{s c} \cos ^{2} \alpha \tag{Eq. 9.95}
\end{align*}
$$

The same equivalent cylinder approach may be used to analyze the buckling of cylinders under non-uniform lorgitudinal compression caused by an applied bending moment (9.9).

Cone under torsion (Fig. 9-3lb): Determine a pseudo-shear buckling stress
 for a cylinder loaded in torsion, and the following equivalent cylinder radius, $R_{e}$, (9.9):

$$
R_{e}=R_{1} \cos \alpha\left[1+\left(\frac{1+R_{2} / R_{1}}{2}\right)^{1 / 2}-\left(\frac{1+R_{2} / R_{1}}{2}\right)^{-1 / 2}\right] \text { Eq. } 9.96
$$

Determine the actual critical shear stress resultants at the small end as:

$$
\begin{equation*}
N_{s \theta c}=\binom{R_{i}^{2}}{R_{e}} N_{s O c} \tag{Eq. 9.97}
\end{equation*}
$$

For a constant thickness cone:

$$
\begin{equation*}
\tau_{s \theta c}=\frac{N_{s \theta c}}{\dagger} \tag{Eq. 9.98}
\end{equation*}
$$

Also: $\quad T_{c r}=2 \pi R_{1}{ }^{2} N_{s O c}$
Cone under external pressure (Fig. 9-3/c): For a cone subject to external pressure on the sides only (no loads on top and bottom ends), determine a pseudo
 9.86, or 9.87, for circurferential buckling of a =ylinder, and the following equivalent cylinder radius, $R_{e}$, of mid-length of the cone, (9.9):

$$
\begin{equation*}
R_{e}=\frac{\left(R_{1}+R_{2}\right)}{2 \cos \alpha} \tag{Eq. 9.100}
\end{equation*}
$$

Determine the actual critical circumferential stress resultant at the large end:

$$
\begin{align*}
N_{0 c} & =N_{O_{c}} \frac{R_{2}}{R_{e} \cos \alpha}  \tag{Eq. 9.101}\\
\text { Also: } p_{c r} & =\frac{N_{O_{c}} \cos \alpha}{R_{2}}=\frac{N_{\theta_{c}}^{\prime}}{R_{e}} \tag{Eq. 9.102}
\end{align*}
$$

For a constant thickness cone:

$$
\begin{equation*}
\sigma_{0_{c}}=\frac{N_{0_{c}}}{T} \tag{Eq. 9.103}
\end{equation*}
$$

Cone under distributed dead loading (Fig. 9-31d): First investigate buckling, due to circumferential stress resultants. Determine $N^{\prime}{ }_{0 c}\left(\right.$ or $\sigma_{0}^{\prime}{ }_{c}$ ) ot the large end of the cone using Eqs. 9.86, or 9.87 for circumferential buckling of a cylinder, and the following equivalent cylinder radius, $\mathrm{R}_{\mathrm{e} 0}$, at mid-length of the cone:

$$
\begin{equation*}
R_{e 0}=\frac{\left(R_{1}+R_{2}\right)}{2 \cos a} \tag{Eq. 9.104}
\end{equation*}
$$

Determine the actual critical circumferential stress resultant at the large end:

$$
\begin{equation*}
N_{O c}=N_{O_{c}^{\prime}} \frac{R_{2}}{R_{e O \cos \alpha}} \tag{Eq. 9.105}
\end{equation*}
$$

For a constant thickness cone:

$$
\begin{equation*}
\sigma_{O_{c}}=\frac{N_{O_{c}}}{T} \tag{Eq. 9.103}
\end{equation*}
$$

Also investigate buckling due to longitudinal stress resultants. Determine $N_{\text {sc }}$ (or $\sigma_{s c}$ ) at the large end of the cone using Eqs. 9.72 and 9.74 for a longitudinally compressed cylinder, and the following equivalent radius, $R_{\text {es }}$ :

$$
\begin{equation*}
R_{e s}=\frac{R_{2}}{\cos \alpha} \tag{Eq. 9.106}
\end{equation*}
$$

Compare the cbove critical stress resultants for circumferential and igitudinal buckling with the appropriate circumferential and longitudinal membrone stress resultonts at the large end of the cone.

The same approach, using the equivalent radii given in Eqs. 9.104 and 9.106, may be used for conical shells subject to other types of disiribured lood such as snow load or fluid load.

See Table 9-3 for membrane stress resultants in conical shells under various distributed loodings.

## Spherical Shells.

The theoretical buckling stress resultant in a sphere under uniform external pressure is exactly the same as the longitudinal buckling stress resultant in a longitudinally compressed cylinder. The meridional direction of the sphere is analogous to the longitudinal direction of the cylinder, while the circumferential direction is analogous to the cylinder hoops. Thus, for a spherical sheil (9.21):

$$
\begin{align*}
& N_{d c}=\frac{2 \sqrt{3} c \sqrt{D_{\phi} \bar{A}_{\theta}}}{R}  \tag{Eq. 9.107}\\
& P_{c r}=\frac{4 \sqrt{3} c \sqrt{D_{\phi} \bar{A}_{\theta}}}{R^{2}}
\end{align*}
$$

For an isotropic, uniform thickness, shell:

$$
\begin{align*}
& \sigma_{d c}=\frac{C E t}{R}  \tag{Eq. 9.108}\\
& P_{c r}=\frac{2 C E t^{2}}{R^{2}}
\end{align*}
$$

Eq. 9.1080

The term, C , is a shell buckling coefficient that is determined as follows:

$$
c=k_{0} k_{n} k_{s}
$$

Eq. 9.79

The coefficients $k_{0}, k_{n}$, and $k_{s}$ were described previously under cylindrical shells. The buckling coefficient from the classical linear buckling onalysis, $k_{0}$, is the same as the coefficient giver, for longitudinally compressed cylindrical shells given by Eq. 9.74. The knocknown coefficient, $k_{n}$, is estimated from one of the methods given below. The reduction factor for shear deformation is not
significant, except in certain sandwich shells with "shear soft" cores, and is taken as I.G for other spherical shells.

In one approach (9.9), the knockdown coefficient is:

$$
\begin{align*}
& h_{n}=0.14+\frac{3.2}{\lambda^{2}} \quad \text { for } \lambda>2.0 \\
& \text { where } \lambda=2\left[12\left(1-v^{2}\right)\right]^{1 / 4}\left(\frac{R}{t}\right)^{1 / 2} \sin \frac{\phi_{k}}{2}  \tag{Eq. 9.110}\\
& \phi_{k}=\text { half the included angle of the sinell (see Table 9-3) }
\end{align*}
$$

$$
\text { Eq. } 9.109
$$

The above value of $k_{n}$ gives a conservative lower bound for buckling pressure, based on data for shallow spherical caps and may also be used for deeper shells (9.9).

Another semi-empirical equation for $k_{n}$ is (9.28):

$$
k_{n}=0.25\left(1-0.175 \frac{\left(d_{k}-20^{\circ}\right)}{20^{\circ}}\right)\left(1-\frac{0.67 R / t)}{400^{\circ}} \text { Eq. } 9.111\right.
$$

$$
\text { for } 20^{\circ} \leq \phi_{k} \leq 60^{\circ} \text { and } 400 \leq \frac{R}{f}<2000
$$

As a rough approximation, $k_{n}$ may be taken as 0.10 to 0.20 when $R / t>400$.

In Example 9-14, the shell that was inklyzed for imembrume and edge bending stress resultants in Example 9 -7 is clrecked for stability using the obove equations for buckling and knockdown coefficient. See also Example 9-17 in Section 9.13 for on illestration of the use of the above equations for determining the required thickness of a tronsparent plastic dorne shell.

Example 9-14: Deterinine the factor of safety against buckling for the spherical shell that was onalyzed in Example 9-7. $t=0.5 \mathrm{in} ., \mathrm{R}=100 \mathrm{in.} \mathrm{E}=640,,000 \mathrm{psi}, \sigma_{k}=30^{\circ}$.*


Eq. $9.108 \quad d c=\frac{C E t ;}{R} ; C=k_{0} k_{n} k_{s} ; k_{0}=0.6$ and $k_{s}=1.0 ;$ try several methods for $k_{n}:$
Eq. 9.109: $\quad k_{n}=0.14+\frac{3.2}{\lambda^{2}}$
Eq. 9.11\%. $\sigma=2\left[12\left(1-0.3^{2}\right)\right]^{1 / 4}\left(\frac{100}{.5}\right)^{1 / 2} \sin \frac{30}{2}=13.3$

$$
k_{n}=0.14+\frac{3.2}{(13.3)^{2}}=0.158
$$

Alternate:
Eq. 9.111: $k_{n}=0.25\left[1-0.175 \frac{(30-20)}{20}\right]\left[1-\frac{0.07 \times 10010.5}{400}\right]=0.22$
Use average $k_{n}=(0.16+0.22) \times 0.5=0.19$
$\sigma_{d c}=\frac{0.6 \times 0.19 \times 640,000 \times 0.5}{100}=365 \mathrm{psi}$
$S F=\frac{365}{246}=1.48$ near edge, and $\frac{365}{222}=1.64$ near apex

Note: $\operatorname{lin}_{\mathrm{N} / \mathrm{m}_{3}}=25.4 \mathrm{~mm}, 1 \mathrm{psi}=0.0069 \mathrm{MPa}, 1 \mathrm{lbf} / \mathrm{ft}^{3}=157 \mathrm{~N} / \mathrm{m}^{3}$, i $\mathrm{lbf} / \mathrm{in} .^{3}=271000$ * See footnote, Example 9-1, Poge 9-13.

In onother approach, Eq. 9.108 is used with the following value of $k_{0} k_{n}$ covering the effects of using uniformly distributed ribs or sandivich construction, as well os imperfections and plasticity (9.19):

$$
\begin{align*}
k_{o} k_{n}= & -0.54 \frac{\Delta}{\bar{a}}-0.145\left[9.9\left(\frac{\Delta}{\bar{a}}\right)^{2}+37 \frac{i}{\frac{a}{3}}\right]^{1 / 2} \\
& +\left\{1.09\left(\frac{\Delta}{\bar{a}}\right)^{2}-0.03 \frac{\Delta}{\bar{a}}\left[9.9\left(\frac{\Delta}{\bar{a}}\right)^{2}\right.\right. \\
& \left.\left.+37 \frac{i}{\frac{a}{a}}\right]^{1 / 2}+4.31 \frac{i}{\bar{a}}\right\}^{1 / 2} \tag{Eq. 9.112}
\end{align*}
$$

$\Delta$ is the iun deviation from the theoretical curvature, including defleclion.

If $\Delta=0$ (:ro imperfections):

$$
\begin{equation*}
k_{o} k_{n}=1.21 \frac{(i a)^{1 / 2}}{\bar{a}^{2}} \tag{Eq. 9.113}
\end{equation*}
$$

but $k_{0} k_{r_{1}}$ should not be taken greater than one half the value given by Eq. 9.113 for any practical shell.

In shells subject to long term stress, $E$ should be replaced by $E_{V}$ for the particular duration of stress and maximum surface temperature for that duration. If isochronous stress-strain relations are not linear, a plasticity reduction factor, $n$, should be applied to $E$ or $E_{v}$, as described previously for cylindrical shells.

In the case of a sondwich shell with a "shear soft" core, the reduction factor, $\mathrm{k}_{\mathbf{s}}$, given in Fig. 9.26 for cylindrical shells may be used for spherical shells together with one of the above estimates for knockdown coefficient, $k_{n}$.

Buckle wove length is:

$$
\begin{equation*}
l_{b}=3.72 \sqrt{R}\left(\frac{i}{\bar{a}}\right)^{1 / 4} \tag{Eq. 9.114}
\end{equation*}
$$

For a shell of uniform thickness:

$$
\begin{equation*}
l_{b}=2 \sqrt{R t} \tag{Eq. 9.115}
\end{equation*}
$$

Eq. 9.108 may be used for investigating the buckling of a spherical segment of shell between ribs or supports with restricted wave length, where distance between ribs each way, $d \leq 2 \sqrt{i<1}$, using the following buckling coefficient (9.29):

$$
C=0.00226 \frac{d^{2} t}{R^{3}}+\frac{3.7 t^{3}}{d^{2} R}
$$

Eq. 9.116

An equation for the buckling coefficient for spherical shells with various patterns of radial and circumferential ribs is given in (9.30).

When a spherical shell is subject to significant concentrated loads, the following buckling case moy provide a useful indication of whether the shell has odequate sofety against local buckling from the concentrated loads. The approximate concentrated load, $P_{c}$, at the apex of a isotropic uniform thickness spherical cap that buckles the shell is (9.9):

$$
P_{c}=\frac{\lambda^{2} E t^{3}}{24 R}
$$

where $\lambda$ is given by Eq. 9.110, and may extend over a range from 4 to 18 . This equation is a lower bound relationship for shells with unrestrained edges. When $\lambda$ is less than about 4, "snop through" buckling generaily will not occur (9.9). This conclusion should be checked experimentally for any particular shel': noterial, and loading combination.

## Other Shells of Positive Double Curvature

For a shell hoving radii of principal curvature, $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$, the theoretical buckling stress resultant in the direction with principal curvature $R_{1}$ is the same as the longitudinal buckling stress resultant in a cylinder with a radius of $\mathbf{R}_{\mathbf{2}}$. Thus:

$$
N_{l c}=\frac{2 \sqrt{3} c \sqrt{D_{1} \bar{A}_{2}}}{R_{2}}
$$

$$
N_{2 c}=\frac{2 \sqrt{3} c \sqrt{D_{2} \bar{A}_{1}}}{D_{1}}
$$

$D_{1}$ is the flexural stiffness and $\bar{X}_{1}$ is the axial stiffness in the direction having radius $R_{1}$, while $D_{2}$ and $\bar{A}_{2}$ are the respective flexural and axial stiffnesses in the direction having radius $R_{2}$. The buckling coefficient, $C$, may be estimated using the R/t ratio for the principal direction orthogonal to the direction of critical compression stress, as described previously.

See (9.9) for specific iuckling relations for various doubly curved shapes such as complete e!lipsoidal shells, ellipsoidal and torispherical heats, complete circular toroidal (donut shape) shells, and bowed out toroidal segments. Note that with some of these shapes, internal pressure produces compression in certain parts of the shell, thereby requiring consideration for buckling resistance even though the major stress resultants in the shell are tensile. See Vol. 2 of (9.17) for several discussions of conditions that produce buckling of torispherical and ellipsoidal heads under internal pressure.

## Hypars

A hypar has negative Gaussion curvature. It has radii of principal curvature which are of opposite sign. For the "skew hyfar" shown in Fig. 9-llc, d, approxinnate equations for the radii of principal curvature are (9.31):

| Long diagonal: | $R_{1}=\frac{2 a b}{c} \cos ^{2} \frac{\omega}{2}$ | Eq. 9.11\%a |
| :--- | :--- | :--- |
| Short diagonal: | $R_{2}=\frac{2 a b}{c} \sin ^{2} \frac{\omega}{2}$ | Eq. 9.11\% |

Membrane stresses in hypar shells subject to uniform loteral pressure are given in Section 9.5. In either a right hypar or the more general skew hypar, the diogonal direction which is "arched up" toward the lood is in compression, while the diogonal direction which is "sagged down" is in tensinn. The diagonal which is in compression is analagous to the longitudinal direction in a longitudinally compressed cylinder. The rodius of the opposite tension diagonal is analagous to the rodius of a longitudinally compressed cylinder. Thus, the buckling stress resultont of a skew hypar (Fig. 9-1 lc, d) is (9.31), for compressive principal stress in the,


For an isotropic uniform thinkness hypar, the buckling siress is (9.31):
For compressive principal stress in the

$$
\begin{array}{ll}
\text { Lohg diagonal: } & \sigma_{1 c}=\frac{c}{a b \sin ^{2} \frac{E}{2} \sqrt{3\left(1-v^{2}\right)}} \\
\text { Short diagonal: } & \sigma_{2 c}=\frac{c}{a b \cos ^{2} \frac{E}{2} \sqrt{3\left(1-v^{2}\right)}}
\end{array}
$$

The uniformly distributed pressure which buckles a skew hypar is (9.31):

$$
P_{c r}=\frac{2 c^{2} E t^{2}}{a^{2} b^{2} \sin ^{2} \omega \sqrt{2\left(1-v^{2}\right)}}
$$

Note that in the above equations, $\omega \leq 90^{\circ}$, and $a, b$ and $c$ are the dimensional parameters of the hypar (Fig. 9-1/c).

Eq. 9.12 lc for buckling of a skew hypar was derived by approximating the hypas as a longitudinally loaded cylinder (direction of principal compression is taken as longitudinal) with radius equal to the "averaged" radius of the tension parabolo (Eqs. 9.119, a or b) and longitudinal axis in direction of compression parabola. The "averaged" radius of the tension parabola is obtained by approximating the radius of curvature of this parabola by the second derivative of its geometrical equation (9.31). Reisner (9.38) derived exactly the some equation for an equiisteral right hypar ( $\omega=90^{\circ}, a=b$ ) using classical linear buckling theory.

Unlike the buckling relations for longitudinally loaded cylinders and doubly curved shells of positive Gaussian curvature, the above equations for buckling of hypars do not include a knockdown factor. This is becouse in a hypar under uniform lateral pressure, whenever compression exists in the one principai direction, tension exists in the orthogonal direction, and this greatly reduces the imperfection sensitivity of the thin hypar shell. However, the designer should be cautious in choice of safety factors since research is needed to determine the actual effects of imperfections, edge deformations, and other deviotions from
theoretical conditions in hypar shells. The more flat the shell, the greater the expected reductions from theoretical buckling strength. Corrections should also be introduced for creep and shear deformation in cases where such behavior may be significant.

Use of the above equations for determining the required thickness of a skew hypar shell for adequate buckling strength is illustrated in Example 9-18 in Section 9.13. A high load factor is used in this example because of uncertainties about the accuracy of the knockdown factor and the validity of the membrane theory for predicting diagonal compressive stress resultants in certain hypar shells. It was noted previously in Section 9.4 that significant differences have been found between membrane compression stress resultants and compression stress resultants determined by more accurate analyses that take into account bending introduced by support deformations in certain types of rypar shells (9.32)(9.33). These findings indicate that the actual buckling strength of these types of hypars will be significantly less than indicoted by the above equations that are based on membrane stress resultants in the main part of the shell. Thus, without tests on models that accurately represent shell geametry and edge support sonditions, the above equations provide only an upper bound (unconservative) approximation of the true buckling strength of many hypar shells.

### 9.11 SANDWICH SHELLS

Sandwich construction provides an efficient structural cross section for utilizing plastics in large lightly looded shells, typical of rooi stivatures. The membrane and edge bending stress resultants in such shells may be determined using the concepts and equations given previously in this Chapter. However, the design of sondwish shells is often governed by buckling. Buckling resistance of sandwich shells may be determined using the equations given in the preceding Section. Flexural rigidity, $D_{m}$, and extensional rigidity, $\bar{A}$, are given in Table 8-1 of Section 8.4. The shell buckling zoefficient, $C$, in Eqs. 9.72, 9.78, 9.79; 9.107, 9.118 should include a reduction factor, $k_{s}$, for core shear deformation whenever "shear flexible" cores are used. This term is defined in Section 8.3. For buckling equations that do not include a buckling coefficient, $C$, a reduction factor for core shear deformation, $k_{s}$, should be applied to the flexural rigidity, $D_{m} \cdot k_{s}$ is given in Fig. 9-26.

Because of their relatively greater overall thickness, buckling resistance of sandwich shells is usually less sensitive to imperfections. The knockdown factor, $k_{n}$, to be used in determining the buckling coefficient, $C$, sinould be based on the effecsive thickness, $t_{e}$, of the sandwich. For an isotropic sandwich with thin stiff faces of equal thickness and relatively thick "soft" core; ${ }^{\dagger} \mathbf{e}$ is given by Eas. 9.82. For a more complex sandwich section, ${ }^{\boldsymbol{t}}{ }_{e}$, may be determined using Eq. 9.83 and the methods given in Section 8.4 for calculating $D_{m}$ and $\bar{A}$.

See (9.24) (9.9) for summaries of mare extensive special solutions for buckling of sondwich shells. Summaries of test results are also presented.

## Determining Optimum Proportions When Buckling Governs Design.

The usual design problem with a sandwich shell is to determine the proportions required for adequate strength and stability. In regions away from edges where membrane stresses predominate, sondwich section proportions are largely governed by requirements for buckling resistance.

In the majority of shells where behovior is similar to buckling of a longitudinally loaded cylinder, it is often desiroble to optimize the proportions of the composite sondwich section to obtain the required quontity: $D_{m} \bar{\alpha}=E_{f} \sqrt{i_{f}} \bar{a}_{f}$ for the least cost of the core and face materials. This type of optimization is an extension of the concepts for optimizirys sandwich proportions to obtain a required section modulus or moment of inertia as explained previously in Section 8.9.

For a sandwich with two symmetrical facings that are both thin and stiff relative to the core structure (see Section 8.9 in Chapter 8 for limitations), the face thickness, $\dagger_{f}$, and core thickness, $t_{c}$, that provide the least cost of the composite panel (for given face and core material) for a required $i_{f} \bar{a}_{f}$ are ( 9.21 ).

$$
\begin{align*}
& t_{f}=\sqrt{\frac{c_{c} \sqrt{i_{f} \overline{\bar{a}}_{f}}}{\left(2 c_{f}-c_{z}\right)}}  \tag{Eq. 9.122}\\
& \left.t_{c}=\frac{2 c_{f}}{\bar{c}_{c}}-2\right) t_{f} \tag{Eq. 9.123}
\end{align*}
$$

The minimum combined materials cost for these proportions are:
$\min$. materiols cost/unit area $=\sqrt{C_{c}\left(2 C_{f}-C_{c}\right) \sqrt{i_{f}} \overline{\bar{a}_{f}}}$

In some procticol cases, the opt!mum face thickness, $\mathbf{t}_{\mathbf{f}}$, is thinner than can be fabricated with proper qualiiy assurance, or is thinner than a minimum required for adequate resistance to local effects of handling and usage. Also, sometimes strength requirements, instead of stability, may determine minimum facing thickness. When the preceding conditions apply, a mini:num value for face thiskness, $t_{f}$, is chosen and required proportions are selected as follows:

$$
\begin{align*}
& \bar{a}_{f}=2 t_{f}  \tag{Eq. 9.125}\\
& t_{c}=\frac{\sqrt{i_{f} \bar{a}_{f}}}{f_{f}}-t_{f} \tag{Eq. 9.126}
\end{align*}
$$

The minimum combined materials cost for these proportions is:

$$
\begin{equation*}
\text { min. materials cost/unit area }=2 C_{f} t_{f}+C_{c} t_{c} \tag{Eq. 9.127}
\end{equation*}
$$

In those cases where shell buckling is governed by $E_{f} i_{f}$, rather than by $E_{f} \sqrt{i_{f}} \bar{A}_{f}$, (i.e., long cylinder under radial load), Eqs. 8.114 and 8.115 (Chapter 8) for optimum proportions for the case when cross sectional stiffness, $E_{f} i_{f}$, governs should be used.

Edge bending effects in sandwich shells may be determined using the procedures given in Section 9.6 and stiffness properties determined using proceduras given in Chapter 8. Stress may be evaluated using sectional properties and analysis methods given in Chapter 8

See Example 9-19 ir Section 9.13 for an illustration of how the equations given in this section may be used to proportion sandwich shell cross sections. Also, see Chapter 8 for other considerations in the design of sandwich sections used in shells, such as local buckling of facings away from the core.

### 9.12 DESIGN EXAMPLES - VESSELS

Fluid storage vessels are important applications for structural plastics becouse of the widespread neeci for corrosion resistant contairers for storage of corrosive chemicals that often aggressively attack conventional metals. Designs for several types of cylinarical vessels are presented in this Section and in Section 9.7 to illustrate the application of some of the corcepts and simplified anolysis methods developed earlier in this Chapter.

Examples 9-9 and 9-10 presented in Section 9.7 illustrate the design of an open top, vertically oriented, cylindrical tank with a flat bottom supported on a flat concrete slab. In Example 9-9, the vessel has a sharp intersection of wall base and flat bottom and in Example 9-10 the same cylindricol vessel is provided with a toroidal knuckle transition at the base. Each of the vessels in these examples are fabricated by filament winding continuous glass fibers in a polyester resin matrix to form the cylinder shell, while the bottom and knuckle regions are fobricoted by spray-up of chopped gla.s fiber and polyester resin over a mold.

Example $9-15$ in this Section illustrates the design of a cylindrical vessel with oxis oriented horizontally, supported on two saddles with stiff ribs at the saddles and with hemispherical head shelis. the cylinder is fabricated by spray-up of chopped glass fiber and polyester resin over a mandrel (endless helix) while the head shell is sprayed-up over a nold off mandrel. The ribs at the saddles are formed with alternoting layers of woven roving and mot layed up over a cardboord form.

In Example 9-16, the design of another horizontally oriented tank, a buried petroleum storage tank, is illustrated. Ribs are provided to resist buckling under external pressure. The overoll design considerations that led to the selection of the materials and configuration of this buried petroleum storoge tank are discussed in Section 4.15.

See (9.22) and (9.43) for discussions of design approaches and safety factors and for examples of material properties and design results for glass fiter reinforced tanks and vessels, and vessels reinforced with advanced fibers in aerospoce applications.

Example 9-15: Develop a preliminary design for the saddle supported horizontal cylindrical 10,000 gal capacity chemical storage tank shown in the sketch. Use a chopped strond fiberglass reinforced plastic laminate applied by spray-up over a mar:drel for the cylinder and heads and a mot-woven roving laminate for the ribs that are located at saddles. Laminate properties in any direction are:

| Chopped Strand | Mat-Woven . Roving for Rib at Saddle |
| :---: | :---: |
| $10,000 \mathrm{psi}$ | $18,000 \mathrm{psi}$ |
| $12,000 \mathrm{psi}$ | $24,000 \mathrm{psi}$ |
| $15,000 \mathrm{psi}$ | $18,000 \mathrm{psi}$ |
| $800,000 \mathrm{psi}$ | $1,600,000 \mathrm{psi}$ |
| $300,000 \mathrm{psi}$ | - |
| 0.3 | 0.25 |



The design fluid specific gravity is taken as I.I, including an allowance of 0.06 for the weight of the tank, and the tank should be designed for a potential maximum overpressure of 5 psi. The tank should also be capable of resisting a negative internal pressure (or an external pressure) of 0.21 psi ( 30 psf ) when empty.*

1. Locotion of soddies and load on saddles: The saddles are located to equalize the total shear force on each side of the saddle. This minimizes the shear stress resultant, a design goal since buckling of the tank shell due to in-plane shear is likely to be a design parameter that governs the required shell thickness. Shear forces on each saddle support are equalized when the volume of fluid in the region between the centerline of saddles equals the volume in both the regions beyond the saddles. The 10,000 gallon capacity requires a total volume of $1,337 \mathrm{cu} \mathrm{ft}$. Each hemispherical head has a volume of $2 / 3 \pi \mathrm{r}^{3}=\left(2 \pi \times 4^{3}\right) / 3=134 \mathrm{cu} \mathrm{ft}$. Thus, the required cylinder volume $=1,337-2 \times 134=1,069 \mathrm{cu} \mathbf{f t}$, requiring a length of $1,069 / \pi \times 4^{2}=21.3 \mathrm{ft}$. Ta provide one hgif the volume, the cylinder length between centerlines of saddles should be $1,337 / 2 \pi \times 4^{2}=13.3 \mathrm{ft}$, or $13 \mathrm{ft}-4 \mathrm{in}$. The cylinder should extend (21.3-13.3)/2 or 4.0 ft beyond the centerline of support on each end.

The total load on each support saddle will be:
$Q=W / 2=(1337 \times 1.1 \times 62.4) / 2=45,900 \mathrm{lbs}$
The maximum unit weight of fluid and allowance for tank weight is $1.1 \times 62.4=68.6 \mathrm{lbs} / \mathrm{cu}$ $\mathbf{f t}=0.040 \mathrm{lbs} / \mathrm{cu} \mathrm{in}$.
*
See footnote, Example 9-1, Page 9-13.

[^11]
## Example 2-15 (continued)

Modifying Case 6 in Table 9-1 for moment distribution with overhang insteod of simple beam:
at support $a$ : $N_{x}=-\gamma \sin 0 \frac{L^{2}}{8} \quad \frac{M_{a}}{M_{s}}$
where $\quad M_{s}=$ simple beam moment $=\frac{287}{3} \times 160^{2}=918,400$ in.-lbs
From vertical loads:
at top and bottom: $\quad N_{x}=-0.04 \times( \pm 1.) \times \frac{160^{2}}{8} \times\left(\frac{-937,300}{918,400}\right)=\mp 131 \mathrm{lbs} / \mathrm{in}$.
From fluid pressure on ends: (Case 6, Table 9-1)
$N_{x}=\frac{r R^{2}}{2}\left(\frac{h}{R}-\frac{\sin \theta}{2}\right) ; h=R$

$$
\begin{array}{ll}
\text { at top: } 0=90^{\circ} ; & N_{x}=\frac{0.04 \times 48^{2}}{2} \quad\left(1-\frac{1}{2}\right)=23 \mathrm{lbs} / \mathrm{in} . \\
\text { at sides: } 0=0 & N_{x}=46(1-0)=46 \mathrm{lbs} / \mathrm{in} . \\
\text { at bottom: } 0=-90^{\circ} & N_{x}=46\left(1+\frac{1}{2}\right)=69 \mathrm{lbs} / \mathrm{in} . \\
\text { From } 5 \text { psi overpressure: } & N_{x}=\frac{P R}{2}=\frac{5 \times 48}{2}=120 \mathrm{lbs} / \mathrm{in} .
\end{array}
$$

Combined $N_{x}$ at a and $d$ (or e) (Point $c$ is not critical):

|  | ot a |  | at d |  |
| :---: | :---: | :---: | :---: | :---: |
| top: | $\|3\|+23+120$ | $=+274 \mathrm{lbs} / \mathrm{in}$. | $131 \times \frac{570.7}{937.3}$ | $23+120=+223 \mathrm{lbs} / \mathrm{in}$. |
| sides: | $0+46+120$ | $=+166 \mathrm{lbs} / \mathrm{in}$. |  | $=+166 \mathrm{lbs} / \mathrm{in}$. |
| bottom | $-\|3\|+69$ | $=-62 \mathrm{lbs} / \mathrm{ir}$. | $-80+69$ | = - $11 \mathrm{lbs} / \mathrm{in}$. |

3. Trial wall thickness for strength:
3.1 Capacity reduction factors: Use $\boldsymbol{\phi}=0.25$ for long-term and environmental effects:

$$
\begin{array}{ll}
\text { tension } & \sigma_{x u}=10,000 \times 0.25=2,500 \mathrm{psi} \\
\text { compression } & \sigma_{x u}=15,000 \times 0.25=3,750 \mathrm{psi}
\end{array}
$$

3.2 Load factor: Use 2.0 to cover uncertainties in load and analysis.
3.3 Bottom section: $N_{0}=184+240=424 \mathrm{lbs} / \mathrm{in}$.

$$
\text { reqid } t=\frac{424 \times 2}{2,500}=0.34 \mathrm{in} .
$$

3.4 Side section at d:

$$
\begin{aligned}
& N_{0}=92+240=+332 \mathrm{or}+92 \mathrm{lbs} / \mathrm{in} . \\
& N_{x 0}=+119 \text { or }+119 \mathrm{lbs} / \mathrm{in} . \\
& N_{x}=+166 \text { or }+46 \mathrm{lbs} / \mathrm{in} .
\end{aligned}
$$

## Example 9-15 (continued)

Eq. 6.69 a for principal stress:

$$
N_{p}=\frac{N_{0}+N_{x}}{2} \pm \sqrt{\left(\frac{N_{0}-N_{x}}{2}\right)+N_{x \theta}^{2}}
$$

For maximum tension:

$$
N_{p}=\frac{332+166}{2}+\sqrt{\left(\frac{332-166}{2}\right)^{2}+119^{2}}=394 \mathrm{lbs} / \mathrm{in} .<424 \mathrm{lbs} / \mathrm{in} .
$$

For minimum tension, or maximum compression:

$$
N_{p}=\frac{92+46}{2}-\sqrt{\left(\frac{92-46}{2}\right)^{2}+119^{2}}=-53 \mathrm{lbs} / \mathrm{in} .
$$

Angle of principal compression:
Eq. 6.69b:

$$
\tan 2 \phi=-\frac{2 N_{x \theta}}{\left(N_{\theta}-N_{x}\right)}=-\frac{2 \times 119}{(92-46)}=5.17 ; 2 \phi=79.1^{\circ} ; \phi=39.5^{\circ}
$$

3.5 Top section: ininimum $\quad N_{0}=0$
4. Check cylinder shell wall for buckling:
4.1 Shear, o: diagonal compression, is governing compressive condition in shell. Torsion buckling of cylindrical shell is the closest case and will probably give conservative results.
Eq. 9.91 for intermediate lencth cylinder: $\quad{ }^{T} \times 0 c=\frac{0.70 k_{n} E}{\left(1-v^{2}\right)^{5 / 8}} \frac{t^{\prime}}{R}{ }^{5 / 4}\left(\frac{R}{L}\right)^{1 / 2}$
$k_{n}=0.8$ - see discussion in Section 9.10
$L=144 \mathrm{in}$., the clear distonce between inside edge of saddles.
4.2 Use $\phi=0.7$ for elastic moduli becouse of long terin lood, oggressive environment and manufacturing variations

$$
E=0.7 \times 800,000=560,000
$$

4.3 Try the 0.34 in. thick wall needed for strength:

$$
\tau_{x 0 c}=\frac{0.70 \times 0.8 \times 560,000}{\left(1-.3^{2}\right)^{5 / 8}}\left(\frac{0.34}{48}\right)^{5 / 4}\left(\frac{48}{144}\right)^{1 / 2}=395 \mathrm{psi}
$$

$\mathrm{N}_{\mathrm{xOc}}=395 \times .34=134 \mathrm{lbs} / \mathrm{in}$.
Furnished lood factor $=\frac{134}{53}=2.5 \quad$ o.k.
A check using Eq. 9.89 for "long cylinder" buckling gives a much lower buckling stress, ex ex ex showing that this cylinder behaves as an intermediate length cylinder.
4.4 The highest longitudinal compressive stress resultant in the thin area between saddles (or in overhong) is $11 \mathrm{lbs} / \mathrm{in}$. and it can be shown using Eq. 9.74 that the buckling resistance is much higher.

## Example 9-15 (continued)

4.5 Check circumferential buckling of empty tank to determine sensitivity.

Eq. 9.87a: $p_{c r}=\frac{0.855 k_{n} E t^{2}}{\left(1-v^{2}\right)^{3 / 4} L R \sqrt{R / t}}=\frac{0.855 \times 0.8 \times 560,000 \times 0.34^{2}}{\left(1-.3^{2}\right)^{3 / 4} \times 144 \times 48 \sqrt{48 / 0.34}}=0.58 \mathrm{psi}$
For L.F. $=2.5$ for buckling: limit max. external pressure, o: internal vacuum, to 0.58/2.5 = 0.23 psi (or 33 psf ). Thus, the tank should be adequately vented against a vacuum and should not be unloaded too rap idly.
5. Determine maximum membrane stress resultants in hemispherical head shells:
5.1 Equation of pressure variation:

$$
P_{z}=P_{0}-\gamma r \sin \phi \cos \theta
$$

5.2 Stress resultants for $P_{0}: N_{d}=N_{0}=\frac{P_{0} r}{2}=\frac{\gamma r^{2}}{2}=\frac{.04 \times 48^{2}}{2}=46 \mathrm{lbs} / \mathrm{in}$.

$$
N_{o \phi}=0
$$


5.3 Stress resultants for $\gamma \quad r \sin \phi \cos \theta$ - same as Tabie 9-2, wind loading, Case 8, with $\gamma r=P_{w}\left(\right.$ Case Ba) and $\phi_{0}=0$

$$
\begin{aligned}
& N_{\phi}=-\frac{Y^{2}}{3} \frac{\cos \theta \cos \phi}{\sin ^{3} \phi}\left(2-3 \cos \phi+\cos ^{3} \phi\right) \\
& N_{0}=+\frac{r_{1}^{2}}{3} \frac{\cos \theta}{\sin ^{3} \phi}\left(2 \cos \phi-3 \sin ^{2} \phi-2 \cos ^{4} \phi\right) \\
& N_{0 \phi}=\frac{N_{\phi} \tan \theta}{\cos \phi}=-\frac{x r^{2}}{3} \frac{\sin \theta}{\sin ^{3} \phi}\left(2-3 \cos \phi+\cos ^{3} \phi\right)
\end{aligned}
$$

Some trial calculations show that maximum $N_{\phi}$ is at $\theta=0, \cos \theta=1.0$, and $\phi=-55^{\circ}$.

$$
N_{\phi}=-\frac{0.04 \times 48^{2}}{3} \quad \frac{1.0 \cos (-55)}{\sin ^{3}(-55)} \quad\left(2-3 \cos (-55)+\cos ^{3}(-55)\right)=+15 \mathrm{lbs} / \mathrm{in} .
$$

Moximum compressive $N_{0}$ is at $0=0$ and $\phi=90^{\circ}$ (top)

$$
N_{0}=+\frac{.04 \times 48^{2}}{3} \frac{1.0}{1.0}(0-3 \times 1-0)=-92.2 \mathrm{lbs} / \mathrm{in} .
$$

## Exomple $9-15$ (continued)

Maximum $N_{0 \alpha}$ where $0=90^{\circ}, \sin 0=1.0, \phi= \pm 90^{\circ}, \sin \phi=1, \cos \phi=0$

$$
N_{0 d}=\frac{.04 \times 48^{2}}{3} \frac{1.0}{1.0}(2-0+0)= \pm 61.5 \mathrm{lbs} / \mathrm{in} .
$$

5.4 Stress resultants for 5 psi overpressure:

$$
N_{d}=N_{0}=\frac{p r}{2}=\frac{5 \times 48}{2}=120 \mathrm{lbs} / \mathrm{in} .
$$

5.5 Maximum combined membrane stress resultants in head

Tension:
$N_{0}$ at bottom: $\quad 46+92+120=258 \mathrm{lbs} / \mathrm{in}$.
$N_{\phi} @ 55^{\circ}=46+15+120=181 \mathrm{lbs} / \mathrm{in}$.
Compression: (without overpressure):
$N_{0}$ at tod: $\quad 46-92=-46 \mathrm{lbs} / \mathrm{in}$.
Shear: Determine principal compression at point of moximum shear, without overpressure
$N_{\phi}=N_{0}=46 \mathrm{lbs} / \mathrm{in} ., N_{d 0}=62 \mathrm{lbs} / \mathrm{in}$.
ne.g. $N_{p}=\frac{46+46}{2}-\sqrt{\left(\frac{46-46}{2}\right)^{2}+62^{2}}=-16 \mathrm{lbs} / \mathrm{in}$.
6. Design thickness of heads - same material as cylinder
6.1 Strer:gth: req'd $t=\frac{258 \times 2}{2500}=0.21$ in.
6.2 Buckling: Maximum compression is circumierential at joint with cylinder. Since no rib is provided at this location, the sfructure behaves like a cylindrical shell of intermediate length, with equivalent length equal to the distance between edge of rib ot saddle and effective support point somewhere in the surface of the head where slope is low enough to provide diaphragm action. Estimate effective length,

$$
L=48^{\prime \prime}-\text { half rib width }+\frac{2}{3} r=48-8+\frac{2}{3} \times 48=72 \mathrm{in.}
$$

Eq. 9.87: $N_{D_{c}}=\frac{0.855 k_{n} E t^{2}}{\left(1-v^{2}\right)^{3 / 4} L \sqrt{r / t}}=\frac{0.855 \times 0.8 \times 560,000 \times 0.21^{2}}{\left(1-.3^{2}\right)^{3 / 4} 72 \sqrt{48 / .21}}$
$=16.6 \mathrm{lbs} / \mathrm{in} .<46 \times$ L.F. N.G.

## Example 9-15 (continued)

Try increasing $\dagger$ to 0.34 in., thickness required for cylinder
$N_{0 c}=16.66 \times\left(\frac{.34}{.21}\right)^{2.5}=55.6 \mathrm{lbs} / \mathrm{in}$.
L.F. $=55.6 / 46=1.20$. However, $\mathrm{N}_{0}=-46 \mathrm{lbs} / \mathrm{in}$. occurs in only one small location at the top. It very likely will be reduced by continuity with the cylinder where $N_{0}=$ 0 under fluid load without overpressure (Step 3.5). Thus, a thickness of 0.34 in . will be tentatively adopted for the head shells.
7. Support Ring Rib and Saddles
7.1 General: Stiff rings must be provided at ench saddle support to carty the membrane shear stress resultants that deliver the shell loads to the soddle supports. Without such rings, the shell will be subject to very high circumferential and longitudinal bending stress resultants in the saddle region. Longitudinal direct stress resultants will increase as the shell over the saddles deflects, softening the effective beam action of the cylinder. See (3.40) for a detailed discussion of the behavior of soddle supported horizontal vessels without ring ribs.
If a ring is used, an analysis for the moments, thrusts and shears that result from loading by the shell membrane in-plane shear stress resultants and support on a saddle may be obtained by superimposing the appropriate ring analysis cases given in (9.3). The following superposition of cases provides an aporoximate analvsis for the required ring in this problem.

7.2 Investigation of the equations for moment thrust and shear in the above cases in (9.3) gives the following maximum values:
$\begin{aligned} & \max \\ & \operatorname{nrax} \\ & N\end{aligned}=-0.0 .034 \quad Q R \quad$ Q
$\max M=+0.033 Q R\}$
$\max N=+C .135 Q \quad$ at crown, compression on outside
$\max V=0.10 \quad Q \quad$ at $75^{\circ}$ above the base
$Q \approx 46,000 \mathrm{lbs}$ from step I
at sides:
$M=-0.034 \times 46,000 \times 48=-75,000 \mathrm{in} .-\mathrm{lbs}$
$N=-0.25 \times 46,000 \quad=-11,500 \mathrm{lbs}$
at crown:
$M=0.033 \times 46,000 \times 48=73,000$ in.-lbs
$N=+0.135 \times 46,000=6,200 \mathrm{lbs}$
at $75^{\circ}$ above bottom: $V=0.10 \times 45,000=4,600 \mathrm{lbs}$

## Exomple 9-15 (continued)

7.3 Check to determine if the following trial rib design provides the necessary resistance to the above stress resultonts:


Effective projection of shell wall beyond rib $=0.76 \sqrt{R}+=0.76 \sqrt{48} \times 0.9=5 \mathrm{in}$. Section Properties of Half of Rib - Transformed Section to $E=1,600,000$ (0.6 to . 3 )


$$
\bar{y}=\frac{23.4}{11.2}=2.09
$$

Stop
$=\frac{131.4}{4.21}=31.2$ in. $^{3} ; \quad S_{\text {bot }}=\frac{131.4}{2.39}=55.0 \mathrm{in}^{3}$
A
$=2 \times 11.2=22.4 \mathrm{in}^{2}$
At sides: outside:

$$
\sigma_{i}=\frac{M}{S}-\frac{N}{A}=\frac{75,000}{31.2}-\frac{11,500}{22.4}=1,890 \mathrm{psi}
$$

$$
\text { inside transformed: } \quad \sigma_{c}=-\frac{75,000}{55.0}-\frac{11,500}{22.4}=1,877 \mathrm{psi}
$$

transform $\sigma_{c}$ back to stress in octual material with $E=800,000 \mathrm{psi}$ :

$$
\text { inside actual: } \quad \sigma_{c}=\frac{1877}{2}=939 \mathrm{psi}
$$

## Example 9-15 (continued)

At top: outside: $\quad \sigma_{c}=-\frac{73,000}{31.2}+\frac{6,200}{22.4}=-2,063 \mathrm{psi}$
inside tronsformed: $\sigma_{t}=+\frac{73,000}{55}+\frac{6,200}{22.4}=1,604 \mathrm{psi}$
transform $\sigma_{\dagger}$ back to actual material:
inside:

$$
\sigma_{t}=\frac{1604}{2}=802 \mathrm{psi}
$$

7.4 Check transverse stresses in flanges due to radial forces from curvature

Rodial pressure, $\quad P_{r}=\frac{N_{0}}{R}=\frac{\sigma t}{R}$
Outer flange: $\quad P_{\text {ro }}=\frac{2063 \times 0.5}{48 \times 6}=19.1 \mathrm{psi}$
Inner flange: $\quad P_{r i}=\frac{939 \times 0.6}{48}=11.7 \mathrm{psi}$


Outer flange, transverse bending:

$$
M=\frac{19.1 \times(4-0.6)^{2}}{10} \because 22.1 \mathrm{in} . / 1 \mathrm{bs} / \mathrm{in} .
$$

$$
\sigma_{f}=\frac{22.1}{1 \times 0.5^{2} / 6}=530 \mathrm{psi} \quad \text { o.k. }
$$

Inner flonge, transverse bending:

$$
\begin{aligned}
& M=\frac{11.7 \times(8-0.6)^{2}}{10}=54 \mathrm{in} .-\mathrm{lbs} / \mathrm{in} . \\
& \sigma_{f}=\frac{64}{1 \times 0.6^{2} / 6}=1,068 \mathrm{psi} \quad \text { o.k. }
\end{aligned}
$$



Radial lood an web $=19.1 \times 2=38.2 \mathrm{lbs} / \mathrm{in}$.; low
Note: The maximum web radial force should include the inclined value of 38.2 plus the rodial effect of circumfeiential stress in the web beyond the point of zero stress. This wiil be of the same order as the $38 \mathrm{lbs} / \mathrm{in}$. and thus the web stresses due to radial loads will be about $\mathbf{2 0 0}$ to $\mathbf{3 0 0}$ psi, well below the allowable strength.
7.5 Chock compressive buckling of rib flanges. Use plate buckling equations because under circumferential stress flanges are very "short" shells and behave like plates whose length corresponds to the circumferential length of the rib flange and whose width corresponds to the clear width of the flange.

Eq. 6.71a:

$$
\begin{aligned}
& \sigma_{x c}=\frac{k \pi^{2} \phi E}{12\left(1-v^{2}\right)}\left(\frac{t}{b}\right)^{2} \text { and } k=4.0 \\
& \sigma_{x c}=\frac{4 . \times \pi^{2} \times 0.7 \times 1,600,000}{12\left(1-.25^{2}\right)} \quad\left(\frac{0.5}{3.4}\right)^{2}=85,000 \mathrm{psi} \\
& \sigma_{x c}=\frac{4 . \times \pi^{2} \times .7 \times 800,000}{12\left(1-.3^{2}\right)} \quad\left(\frac{0.6}{7.4}\right)^{2}=13,300 \mathrm{psi}
\end{aligned}
$$

Both flanges have adequate safely cgainst buckling. By inspection, the same is true of the webs.

## Example 9-15 (continued)

7.6 Approximate check of shear in web: $\max V=4,600 \mathrm{lbs}$

$$
\text { approx } \tau=\frac{V}{A_{w}}=\frac{4,600}{3.5 \times 2}=657 \text { psi, low }
$$

8. Summary: The required cylinder shell thickness is governed by tensile strength under the circumfercntial stress resultant at the bottom and buckling resistance under the prirucipal diagonal compressive stress near the supports. The hemispherical head shells are mode the same thickness as the cylinder shell to obtain adequate resistance to buckling under circumferential compressive stress at the top junction with the cylinder. A stiff rib with substantial bending strength is provided at the saddle locations to reduce local bending effects in the adjacent sholls, thereby permitting the use of a shell that is only 0.34 inch thisk. A tubular section is used to obtain large bending strength in the rib without excessive material.

Because of the curvature of the rib, the flanges are subject to tronsverse bending across their width from radial components of the flange forces, and the web is subject to in-plone tensile and compressive stresses in the radial direction. The thin flanges and web of the ring ribs must also be checked for adequate local buckling resistance.
9. Final Comment: Lack of space precludes further examination of secondary bending effects from differences in radial deflection of the rib and membrane shell, local rib stresses due to bearing in the saddle, discontinuity bending stresses at the junction of the head and cylinder, etc.

The preliminary design obtained in this example should be checked by a finite element analysis of the vessel and its support system and/or by the test of a prototype vessel using a fluid with a specific grovity that is greater than l.I. Drilling mud is a possible candidate material.

If a design without a full ring rib at the support channel is desired, the shell will have to be thickened substantially in the vicinity of the saddles and a check of the stresses in the shell using a finite element computer analysis is absolutely essential. See (9.40) for a guide to estimating design requirements near the soddles in such vessels. However, often assumptions are made for design of steel vessels based on static requirements and the premise that the structure will yield at points of high local bending stress. This is not a valid assumption for plastics vesse's.
 $1 \mathrm{in}^{4}=416231 \mathrm{~mm}{ }^{4}, 1 \mathrm{lbf}=4.45 \mathrm{~N}, 1 \mathrm{lbf} / \mathrm{in} \mathrm{n}_{0}=175 \mathrm{~N} / \mathrm{m}, 1 \mathrm{in} .-\mathrm{lbf} / \mathrm{in} .=4.45 \mathrm{~N}-\mathrm{m} / \mathrm{m}_{1}$ I psi $=0.0069 \mathrm{MPO}^{2}$ I $\mathrm{psf}=47.9 \mathrm{Po}, \mid \mathrm{lbf} / \mathrm{in}^{3}=0.27 \mathrm{MN} / \mathrm{m}^{3}, 1 \mathrm{lbf} / \mathrm{ft} .^{3}=157 \mathrm{~N} / \mathrm{m}^{3}$, I in. - lbf $=0.113 \mathrm{Nm}$.

Example 2-16: Develop a preliminary design for a $16,000 \mathrm{gal}$. buried petroleum storage tank of the type described in Section 4.15. Use the same FRP materials as used in Example 9-15.*

1. Shape, orientation, general configuration and general approach to design of tank: This is described in Section 4.15. See Fig. 4-25 for arrangement of tank with horizontal axis.

2. Design criteria: These are described in Section 4.15 and are briefly summarized below:

- Earth cover over top of tank: 3 ft .
- Depth of ground water over top of tank: 3 ft .
- Hold-down straps to resist buoyant uplift on empty tank: 4 (See above sketcl).
- Stored product: Petroleum with maximum specific gravity of 0.7.
- Bedding: well compacted granular naterial
- Air pressire test: 5 psi.

3. Design approach: This is described in Section 4.15. The tank design is first developed to have adequate buckling resistance under external earth and water pressure. Prototype tanks are built to meet the design required for this criterion, and are tested for adequacy to meet other design criteria that are less susceptible to theoretical evaluation by rational meihods of shell analysis. This avoids iive necessity of defining the specific earth and bedding pressure distributions that result when the tank is lanced with 10,000 gals. of fluid, and/or by concentrated wheel pressures, at ground surface over the tank.
4. Effect of restraint by earth on buckling resistance: Preliminary tests are performed on a prototype tonk shell without ribs to determine whether the earth envelope around the tank increases its resistonce to buckling under external pressure. These tests show no significant increase in buckling resistance resulting from earth restraint. This is because the tank is approximately in a state of "neutral buoyancy", with the upward buoyant force of external ground water approximately equal to the submerged weight of the tank and earth cover. Thus, the external earth pressure is nearly zero in the bottom region of the tank, while the water pressure is maximum at this location. Further, the circumferential buckle wave length of a cylindrical shell of intermediaie length (the tank) is short compared to the tank circumference so that to be effective, earth restraint must act over the bottom region of the tank. Since sarth pressure is zero in this regin, no earth restraint is provided. Thus, the tank is designed to resist the external water pressure without restraint of buckling by the earth.

## 5. Design for buckling resistance:

5.1 Ribs are provided to attain required buckling resistance without an excessively thick shell (without ribs, required shell thickness is over I in.). Ribs are formed over cardboard or

[^12]
## Example 9-16 (continued)

foam plastic cores to obtain the thin-wall trapezoidal tubular section shown in the sketch. This shape can be fabricated by wet Iay-up when the tank shell is being manufactured on a mandrel. See sketch of rib section in Step 5.4.
5.2 Shell thickness is determined based on required resistance to local buckling between ribs. Thi trial number and arrangement of ribs strown in the sketch results in a center to center spacing of ribs of 15 in . and an assumed effective length of shell between ribs of 10.5 in .
(a) First the thickness is determined for resistance to maximum circumferential compression. This occurs at the bottom of the tank and is produced by an 11 ft . head of ground water with the tank empty.
$N_{0}=\mathrm{pr}=\frac{11 \times 62.4 \times 48}{144}=228 \mathrm{lbs} / \mathrm{in}$.
(1) Thickness required for strength: Use material properties given in Example 9-15, with $\phi=0.4$ and load factor (L.F.) $=2.5$. In compression, $\sigma_{0}$ $=0.4 \times 15000=6000 \mathrm{psi}$.
$t=\frac{N_{\phi}}{\sigma_{00}}=\frac{228 \times 2.5}{6000}=0.10 \mathrm{in}$.
(2) Thickness required for buckling resistance: Use $\phi=0.8$, giving $E=800,000 \times 0.8=640,000 \mathrm{psi}$, and use L.F. $=2.5$

First try "shait shell" equation, based on plate burkling:
Eq. 6.71: $\quad N_{0 c}=\frac{k \pi^{2} E t^{3}}{12\left(1-v^{2}\right) b^{2}}$
$N_{i c}=228 \times 2.5=570 \mathrm{lbs} / \mathrm{in} . ;$ estimate $k=5$. (Increased above t. because of eage restraint)
$t=\left[\frac{570 \times 12\left(1-.3^{2}\right) \times 10.5^{2}}{5.0 \pi^{2} 640,000}\right]^{1 / 3}=0.28 \mathrm{in}$.
Also try intermediate length shell equation, with $k_{n}=0.8$
Eq. 9.87: $N_{O_{c}}=\sigma_{0 c}{ }^{\dagger}=\frac{0.855 k_{n} E t^{2.5}}{\left(1-v^{2}\right)^{3 / 4} L \sqrt{Q}}$

$$
t=\left[\frac{570 \times\left(1-0.3^{2}\right)^{3 / 4} \times 10.5 \sqrt{48}}{0.855 \times 0.8 \times 640,00 J}\right]^{1 / 2.5}=0.38 \mathrm{in} .
$$

Use $t=0.28 \mathrm{in}$. as adequate for buckling resistance. Note that the length assumption giving the highest buckling resistance, or the lowest thickness requirement is the correct assumption.
(b) Next, the thickness obtained for circumferential compression is checked for adequacy to resist the maximum longitudinal compression stress resultant. This also occurs at the bottom under an external water pressure head of 11 ft . with the tank empty. If hold down straps are positioned at equal spaces, as shown in the sketch, the tank behaves ar a tubular beam subject to a net upward load equal to the bouyant force of the water reduced by the buoyant weight of the tank and earth

## Exomple 9-16 (continued)

over the tank. If the earth weight is $110 \mathrm{lbs} / \mathrm{cu}$. ft. and only the weight directly over the tank is considered, the following net upward load is obtained:

Upward bouyant water pressure:

$$
W_{w}=\pi 4^{2} \times 62.4=3137 \mathrm{lbs} / \mathrm{ft}
$$

Downward earth:

$$
w_{e}=\left(7 \times 8-\frac{\pi 4^{2}}{2}\right)(110-62.4)=.1469 \mathrm{lbs} / \mathrm{ft} .
$$

Net upward load;
$1668 \mathrm{lbs} / \mathrm{ft}$.
Span between straps: $\quad i=5$ spaces $\times 1.25=6.25 \mathrm{ft}$.
approx. $M=\frac{1668 \times 6.25^{2} \times 12}{16}=48,860$ in.-lbs.
From Toble 5-3, Case 10, for a thin ring: $\quad S=\pi r^{2} t=\pi 48^{2} t=7,238 t \mathrm{in}^{\mathbf{2}}{ }^{3}$ $\sigma_{x}=\frac{M}{S}=-\frac{48,860}{7,238 t}=-\frac{6.75}{t} ; N_{x}=-6.75 \mathrm{lbs} / \mathrm{in} . ;$
Add axial compression from fluid and earth pressure on ends. Use an equivalent fluid weight of $100 \mathrm{lbs} / \mathrm{cu} . \mathrm{ft}$. for water plus submerged lateral earth pressure. Since the pressure on the hemisphere end caps is assumed to act normal to its surface, the resultant passes through the axis of the tank at the junction of cylinder and hernisphere. Thus there is no net moment at the junction of the nemisphere and cylinder due to its pressure variation on the hemisphere and the axial force in the cylinder from pressure on the end shell is produced by the average pressure at the cylinder and hemisphere axis of rotation. Thus:

$$
N_{x}=-\frac{\gamma h_{0} R^{2}}{2 R}=-\frac{\gamma h_{0} R}{2}=-\frac{100 \times 7 \times 12 \times 48}{1728 \times 2}=-1: 7 \mathrm{lbs} / \mathrm{in} .
$$

(1) Check adequacy of strength with $t=0.28 \mathrm{in}$.

$$
\sigma_{x}=\frac{(117+7)}{0.28}=443 \mathrm{psi}<6000 \mathrm{psi}
$$

(2) Check adequacy of resistance to longitudinal buckling.

First, check short shell equation based on wide plate (Euler) buckling relations:
Eq. 6.720: $\sigma_{x c}=\frac{k \pi^{2} E}{12\left(1-v^{2}\right)}\left(\frac{t}{a}\right)^{2} ; k=$ say 2.0 -partial end fixity
$\sigma_{x c}=\frac{2.0 \pi^{2} \times 640,000}{12\left(1-.3^{2}\right)}\left(\frac{0.28}{10.5}\right)^{2}=823 \mathrm{psi}$
Second, check axially looded shell buckling with $R / t=18 / 0.28=171$.
Eq. 9.74: $\quad \sigma_{x c}=\frac{C E t}{R} ; C=k_{0} k_{n} k_{s} ; k_{0}=0.6 \quad \& \quad k_{s}=1.0$
Fig. 9.25 for $R / t=171: k_{n}=0.5$ and $C=0.6 \times 0.5=0.3$
Check for intermediote length case, Eq. 9.81 b :
Eq. $9.81(b): k_{n}=\left(3.13-0.83 \log \frac{R}{t}\right) \lambda_{s}{ }^{-0.6}<0.87 \lambda_{s}{ }^{-0.6}$
Eq. 9.82: $\lambda_{s}=\frac{L_{s}}{\sqrt{R_{t}}}=\frac{10.5}{\sqrt{48 \times 0.28}}=2.86$

## Example 9-16 (continued)

$k_{n}=(3.13-0.83 \log 171) 2.86^{-0.6}=0.68$
or $\max k_{n}=0.8 \times(2.86)^{-0.6}=0.43<0.5$
Continue to use $k_{n}=0.5$ and $C=0.3$
$\sigma_{x c}=\frac{0.3 \times 640,000}{171}=1120 \mathrm{psi}>823 \mathrm{psi}$
Use shell buckling case: Furn. $\overline{\text { L.F. }}=\frac{1120}{443}=2.53>2.5$ o.k.
Conclusion: Adopt a 0.23 inch minimum shell thickness with an effective clear distonce between ribs of 10.5 in . (Ribs are spaced 15 in . center-to center.)
5.3 Determine minimum rib stiffness for odequate resistance to generol instability of the entire tank shell. This is governed by buckling resistance to circumferential compression. (The previous calculations have already shown that the shell has odequate resistance to langitudinal compression, with or without ribs.;
Eq. 9.860: $p_{c r}=\frac{5.5 k_{n}\left(A_{x}\right)^{1 / 4}\left(U_{0}\right)^{3 / 4}}{1 R \sqrt{R}}$ and $k_{n}=0.8$
at bottom: req'd $p_{c r}=\gamma h_{1 \text { rotiom }} \times \overline{L . F .}=\frac{62.4 \times 11 \times 2.5}{144}=11.9 \mathrm{psi}$
effective $L=\left(21.25+2_{i}^{\prime} \sim \times 4 \times 2\right) \times 12 \cdot 319 \mathrm{in} . ; R=48 \mathrm{in}$.
$A_{x}=\frac{E t}{1-v^{2}}=\frac{0.28 E}{1-.3^{2}} ; D_{0}=\frac{E i_{0}}{1-\nu^{2}}=1.1 E_{0}$
$11.9=\frac{5.5 \times 0.8 \times 1.1 \times 640,000(0.28)^{1 / 4}(i)^{3 / 4}}{319 \times 48}$
req'd $i_{0}=0.462 \mathrm{in}^{4} / \mathrm{in}$.
For each rib, req'd $I=0.462 \times 15=6.9 \mathrm{in} .{ }^{4} *$

* Note: this is based on rib promerties transformed to $\$ E=640,000 \mathrm{psi}$
5.4 A rib hoving a thin wall trapezoidal section comprised largely of or. 0.25 in . thick mot woven roving laminate with 0.05 in . layers of filament winding applied to the inner and outer flonges to hold the rib in position during fabrication is provided, as shown in the sketch below.



## Example 9-16 (continued)

The "transformed" section properties based on dE $=640,000$ psi are determined below. The modular ratio is ascumed to be 2.0 for woven roving and 8.0 for filament winding (i.e. $\mathrm{E}^{\prime}$ 's of $1,600,000$ and $6,400,000 \mathrm{psi}$, respective:y). The effective width of the inner flange (tank shell) is assumed to extend $0.76 \sqrt{\mathrm{Rt}}$ beyond the rib, but the maximum width is 15 inches, the center to 'enter spocing of ribs.
$0.76 \sqrt{R t}=0.76 \sqrt{48 \times 0.28}=2.8 \mathrm{in}$., or $0.76 \sqrt{48 \times(0.28+0.3!})=4.0 \mathrm{in}$.
Use an effective flange width of 12 in . as shown in the sketch.
Transformed Area

6. Check design for odequate strength to support the full load of petroleum stored in tank plus the weight of earth and wheel loads above the tank.

This can be done by field tests, assisted by theoretical and experimental determinations of rib bending strength. The required calculations for estimating rib bending strength should include consideration of buckling of both the outer flange and the inner flinge (sheli at rib) in circumferential compression, as well as transverse bending of these tlanges coused by radial components of the curved flange forces. This is illustrated for the ring rib design in Example 9-15, and will not be repeated here. Bending at hold down straps should also be investigated. Case 24 in (9.3) is useful for this analysis.
\%. Determine thickness of head shell, based on buckling resistance to external pressure.
7.1 As shown in Example 9-15, the maximum stress resultant due to internal or external pressure in head shells subject to varying pressure is $N_{0}$ at the bottom. Since a rib is located adjacent to this location and will restrain the shell from buckling, determine the maximum $N_{0}$ some distance away from the bottom, say at $\phi=75^{\circ}$. Thus, using a uniform pressure $p_{p}$, ot the axis of rotation plus Case 8 in Table $9-2$ for the effect of pressure variation ffom $P_{0}$, we get for $\phi=75^{\circ}, \theta=0$ :

$$
\text { max. } \begin{aligned}
N_{0} & =-\frac{P_{0} R}{2}+\frac{\gamma R^{2}}{3} \frac{\cos 0}{\sin ^{3} 75}\left(2 \cos 75-3 \sin ^{2} 75-2 \cos ^{4} 75\right) \\
& =-0.5 \gamma h R-0.85 \gamma R^{2}
\end{aligned}
$$

## Example 9-16 (contimied)

Using $Y=62.4 \mathrm{lbs} / \mathrm{cu} . f \mathrm{ft} .(=0.036 \mathrm{lbs} / \mathrm{cu} . \mathrm{in}$.$) and neglecting any restraint of buckling by$ the soil:

Max. $N_{0}=-\frac{0.036 \times 7 \times 12 \times 48}{2}-0.85 \times 0.036 \times 48 \times 48=-143 \mathrm{lbs} / \mathrm{in}$. (compression)
It is conservative to desigr. thickness for buckling of a spherical shell with $N_{\phi}=N_{0}$ everywhere in the shell (uniform pressure case)
Eq. 9.108: $\sigma_{\alpha c}=\sigma_{\alpha_{c}}=\frac{C E t}{R} ; N_{\theta_{c}}=\sigma_{\theta_{c}} ; t i=\left(\frac{R N_{O_{c}}}{C E}, 1 / 2\right.$
Eq. $9.79 \mathrm{C}=k_{0} k_{n} k_{s}=0.6 k_{n}$
Eqs. $9.109 \& 9.110: k_{n}=0.14+\frac{3.2}{\lambda^{2}} ; \lambda=2\left[12\left(1-v^{2}\right)\right]^{1 / 4}\left(\frac{R_{1}}{f}\right)^{1 / 2} \sin \frac{\phi_{k}}{2}$
$\operatorname{Tryt}=0.28 ; \lambda=2(12 \times .91)^{1 / 4}\left(\frac{48}{0.28}\right)^{1 / 2} \sin \frac{90}{2}=33.6$
$k_{n}=0.14+\frac{3.2}{(33.6)^{2}}=0.143 ; C=0.6 \times 0.143=0.086$
$N_{D_{C}}=143 \times$ L.F. $=143 \times 2.5=357 \mathrm{lbs} / \mathrm{in}$.
req'd $t=\left(\frac{48 \times 357}{0.086 \times 640.000}\right)^{1 / 2}=0.56 \mathrm{in}$.
Conclusion: Provide a 0.56 in. thick hemispherical head for buckling resistance.
Max $\sigma=\frac{143}{0.56}=255 \mathrm{psi}$
Check required thickness at mid-height:
$N_{d}=N_{0}=-\frac{.036 \times 7 \times 12 \times 48}{2}=-72.6 \mathrm{lbs} / \mathrm{in} \times 2.5=181 \mathrm{lb} / \mathrm{in}$

The shell thickness could be tapered from 0.40 in . constant over the top half linearly to 0.56 in. $75^{\circ}$ below the horizontai diameter and constant to the bottom.
8. Note that the tank design developed in this example is intended as a preliminary design, for use in further reinfinement in materials selection, materials properties, prototype testing etc. It is not the final design used for ony porticular commercially produced tank known to the author.

Note: $1 \mathrm{in}=.25.4 \mathrm{~mm}, \mid \mathrm{ft}=0.305 \mathrm{~m}, 1 \mathrm{in.}^{2}=645 \mathrm{~mm}^{2}, 1 \mathrm{in.}^{3}=16,387 \mathrm{~mm}^{3}, 1 \mathrm{in} .{ }^{4} / \mathrm{in} .=16,387$ $\mathrm{mm}^{4} / \mathrm{mm}, 1 \mathrm{in}^{4}=4.16 \times 10^{5} \mathrm{~mm}^{4}, 1 \mathrm{lbf} / \mathrm{in} .=175 \mathrm{~N} / \mathrm{m}, 1 \mathrm{lbf} / \mathrm{ft}=14.6 \mathrm{~N} / \mathrm{m}, 1 \mathrm{psi}=0.0069$ $\mathrm{MPa}_{8} 1 \mathrm{lbf} / \mathrm{cu}$. in. $=2.71 \times 10^{5} \mathrm{~N} / \mathrm{m}^{3}, 1 \mathrm{lbf} / \mathrm{ft}{ }^{3}=157 \mathrm{~N} / \mathrm{m}^{3}, 1 \mathrm{in} . \mathrm{lbf}=0.113 \mathrm{~N}-\mathrm{m}, 1$ galion $=$ 3.785 liters.

### 9.13 DESIGN EXAMPLES - ROOFS AND SKYLIGHTS

Plastic shells have been widely used in building construction for skylight components. Occasionally, they are used os the entire roof structure to obtain special shapes or particular aesthetics. Curved components that provide both roof and wall enclosure have been marketed for housing and small buildings with some success. Sandwich construction has been used for large shell roof or building enclosure components.

Example 9-17 illustrates the design of the transparent acrylic plastic skin panels whose overall design and configuration were discussed in Section 4.15. The required panel thickness is goverened by the buckling resistance requireo for snow and ice load.

In Example 9-18, a skew hypar component is designed as a skylight over a cental assembly area in a church or meeting room. Fiberglass reinforcement is used to enhance the toughness and stiffness of the transparent thermoplastic polycarbonate resin in this fairly large component. Although each unit is about 30 ft long, a width of about 8 ft is achieved by the use of the skew hypar geometry permitting shipment by truck. Also, the hypar configuration provides a doubly curved surface that resists wind and snow loads by both membrane tension and compression, thereby improving briskling resistance under both inward and outward load. However, a high loud factor is used in the analysis fi,r buckling because of the reasons given in Section 9.10.

The development of propartions and a prelimincry investigation of therma! gradient stresses and edge bending stresses in a large spherical dome of sandwich construction is illustrated in Example 9-19. This dome forms the roof over a sewage digester tank and provides desired thermal insulation in addition to its primary function as a structural enclosure. Prefabricated ponels with mat reinforced FRP facings and a polyurethane foam plastic core, arranged in an "orange peel" layout, form the dome. Details for connecting panels developed here are not included due to space limitations.

Lack of space preclides the inclusion of more extensive shell design examples. However, detailed design examples for a large sandwich dome, and a space frame come $\mathbf{n}$ ith skew hypar roof panels, are presented in (9.21). See also (9.41) and (9.42) for , ther shell roof design examples.

Example 9-17: Determine the sheet thickness required for the acrylic domed transparent skin panel, or skylight panel, described in Section 4.15. See Figs. 4-28 and 4-29 for photos of the actual unit. Assume that the acrylic material has an elastic modulus of $400,000 \mathrm{psi}$ and tensile, compressive and flexural strengths in excess of 10,000 psi.*

1. Desigri criteria - see Section 4.15 for complete description:

Inward pressure (snow): 43 psf; Outward pressure (wind): 65 psf
2. Geometry - see Section 4.15 for more complete description.


Rise: 27 in.; Radius of curvature in major region away from base: 60 in .; Hexagonal base inscribed within 12 ft by 10 ft rectangle.
3. Thickness determination based on buckling under inward load. Apply $\phi=0.8$ to $E$ in determining buckling with snow load, and use a load factor of 2.0.
Eq. 9.108a: $p_{c r}=\frac{2 C E t^{2}}{R^{2}} ;$ req'd $p_{c r}=\frac{43}{744} \times 2.0=0.60 \mathrm{psi}$
Eq. $9.79 C=k_{0} k_{n} k_{s} ; k_{0}=0.6 ; k_{s}=1.0 ;$ Eqs. 9.109 and $9.110: k_{n}=0.14 \times \frac{3.2}{\lambda^{2}}$

$$
\lambda=2\left[12\left(1-v^{2}\right)\right]^{1 / 4} \quad\left(\frac{R_{t}}{t}{ }^{1 / 2} \sin \frac{\phi_{k}}{2} \text { and trial } t=0.25 \mathrm{in} .\right.
$$

$$
\cos \phi_{k}=\frac{60-27}{60}=0.550 ; \phi_{k}=56.6^{\circ} ; \sin \frac{\phi_{k}}{2}=0.474
$$

$$
\lambda=2(12 \times .91)^{1 / 4}\left(\frac{60}{0.25}\right)^{1 / 2} \times .474=26.7
$$

$$
k_{n}=0.14+\frac{3.2}{(26.7)^{2}}=0.144 ; C=0.6 \times 0.144=0.087
$$

$$
t=\left[\frac{0.60 \times 60^{2}}{2 \times 0.087 \times 0.8 \times 400,000}\right]^{1 / 2}=0.20 \mathrm{in}
$$

4. Check shell stress under wind load
$p_{w}=\frac{65}{144} \times 2.0=0.90 \mathrm{psi} ; \sigma_{u}=\frac{p R}{2 t}=\frac{0.90 \times 60}{2 \times 0.20}=135 \mathrm{psi} \quad$ o.k.
$p_{s}=\frac{43}{144} \times 2.0=0.60 \mathrm{psi} ; \sigma_{u}=\frac{0.60 \times 60}{2 \times 0.23}=78 \mathrm{psi}$
5. Investigate base connection (see Fig. 4-30)

Wind uplift and snow load produce local bending at the lip around the perimeter of the shell, resulting in the highest level of stress in the structure. The resistance of the shell to edge bending under at least 2.0 times the inward and outward design loads is determined by testing a full-scale phototrype structure mounted on an airtight box to simulate the restraints provided by the connection shown in Fig. 4 30. The prototype is subject to at least 2.5 times the design pressures applied as vacuum (snow) and pressure (wind) loodings.

Note: $1 \mathrm{in} .=25.4 \mathrm{~mm},|\mathrm{ft}=0.305 \mathrm{~m}, 1 \mathrm{psi}=0.0069 \mathrm{MPa}| \mathrm{psf}=,47.9 \mathrm{~Pa}$.

* See footnote, Example 9-1, Page 9-13.

Exomple 2-18: Deiermine the required thickness of a glass reinforced poly:arbonate thermoplastic transparent skew hypar skylight having the geometry shown in the sketch.*

Equation of surface: $z=\frac{c}{c b} x y$


Elevotion 1-3
The design loods are: snow and dead load $=42 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$ downward; wind load $=20 \mathrm{lbs} / \mathrm{sq} \mathrm{ft}$ upword.

Assume an elastic modulus, based on short time tests of 800,000 psi and short time test strengths in tension, compression and flexure above $9,000 \mathrm{psi}$.

1. Fuctors for limit analysis
(a) Use capacity reduction foctors $\phi$ us follows:

|  | Strength | Elastic Moduli <br> (Buckling) |
| :--- | :---: | :---: |
|  | 0.4 | 0.5 |
| Snow load | 0.5 | 0.6 |

The low capocity reduction factors for buckling are used becuase local deviations in sur foce geometry from assurned shape may reduce buckling strength of a thin shell.
(b) Use a load factor of 3.0 for uncertainties about analysis and variations in design loods.
2. Geornetry: see Figs. 9.7 and 9-11; $a=b=12 \sqrt{15^{2}+4.17^{2}}=186.8 \mathrm{in} ; c=8.33 \times 12$ $=100 \mathrm{in} \cdot \mathrm{c} \tan \omega / 2=4.17 / 15=0.278 ; \omega / 2=15.54^{\circ} ; \omega=31.1^{\circ}$

* See footnote, Example 9-1, Page 9-13.


## Example 9-18 (continued)

3. Membrane stress resultants:
(a) Snow load: $p_{s}=42 / 144=0.29 \mathrm{psi}$

Eq. 9.22: $N_{x y}=P_{s} \frac{a b \sin }{2 c}=\frac{0.29 \times 186.8^{2} \sin 31.1}{2 \times 100}=26.3 \mathrm{lbs} / \mathrm{in}$
Eq. 9.23, $\mathrm{a} \& \mathrm{~b}: \quad N_{1}=N_{x y} \cot \omega / 2=26.3 \cot 15.54=94.6 \mathrm{lbs} / \mathrm{in}$.
$N_{2}=-N_{x y}$ tan $\omega / 2=-26.3 \tan 15.54=-7.3 \mathrm{lbs} / \mathrm{in}$.
(b) Wind load: $p_{s} \approx-20 / 144=-0.14 \mathrm{psi}$

Note: $P_{w}$ is assumed equivalent to a uniformly distributed load, $P_{s}$ normal to the plane 1-2, (horizontal flane). This gives a suitable approximate analysis.
$N_{x y}=\frac{-0.14}{0.29} \times 26.3=-12.7 \mathrm{lbs} . \mathrm{in}$.
$N_{1}=\frac{-0.14}{0.29} \times 94.4=-45.5 \mathrm{lbs} / \mathrm{in} . ; N_{2}=\frac{-0.14}{0.29} \times(-7.3)=+3.5 \mathrm{lbs} / \mathrm{in}$.
4. Buckling governs required thickness:

Eq. $9.12 \mathrm{lc}: p_{c r}=\frac{2 c^{2} E t^{2}}{a^{2} b^{2} \sin ^{2} \omega \sqrt{3\left(1-v^{2}\right)}}$
For a lood factor of 3.0 ; req'd $p_{c r}=0.29 \times 3.0=0.87 \mathrm{psi}$
$t=\frac{a b \sin \omega}{c \sqrt{2 E}}\left[3\left(1-v^{22}\right)\right]^{1 / 4}=\frac{186.8^{2} \sin 31.08 \sqrt{0.87}\left[3\left(1-.3^{2}\right)\right]^{1 / 4}}{100 \sqrt{2} \times 0.5 \times 800,000}=0.242 \mathrm{in}$.
Use $\dagger=0.25 \mathrm{in}$.
Fartored Stresses: $\tau_{x y}=\frac{26.3 \times 3.0}{0.25}=316 \mathrm{psi} ; \sigma_{I}=\frac{94.6 \times 3.0}{0.25}=1135 \mathrm{psi}$, (tension)

$$
\sigma_{2}=\frac{-7.4 \times 3.0}{0.25}=-89 \mathrm{psi}, \text { (compression) }
$$

5. Approximate edge bending stress for "hinged" edge with translation prevented by edge member:
Table 9-7: $M=\frac{0.149 p_{s} a^{2}}{\lambda 4 / 3} ; \lambda=\frac{c}{\dagger}=\frac{100}{0.25}=400$
$M=\frac{0.15 \times 0.29 \times 186.8^{2}}{(400)^{1.33}}=0.53 \mathrm{in-1bs} / \mathrm{in} ; \sigma_{b}=\frac{0.53 \times 6}{0.25^{2}}=51$ psi, low

## Example 9-18 (continued)

6. Edge lood and Support Reciction: The edge load is the summation of shears along the edges.

Horizontal edges: Length $=\mathbf{a}=186.8 \mathrm{in}$.
Snow lood: $\quad \max P=-N_{x y}{ }^{a}=-26.3 \times 186.8=-4,913 \mathrm{lbs}$, (compression)
Wind lood: $\quad \max P=12.7 \times 186.8=2372$ lbs, (tension)
Inclined edges: $\quad$ Length $=\sqrt{a^{2}+c^{2}}=\sqrt{186.8^{2}+100^{2}}=211.9 \mathrm{in}$.
Snow load: $\quad \max P=-26.3 \times 211.9=-5573 \mathrm{lbs},($ compression)
Wind load: $\quad \max P=12.7 \times 211.9=2691 \mathrm{lbs}$, (tension)

## Support Reaction at Points 2:

Snow load: $\quad$ Vertical, $P_{v}=-5573 \times \frac{100}{2 \prod .9}=-2630$ lbs at each point 2. $P^{\top} \quad$ Horizontal (direction 2-3), $R_{H}=-5573 \times \frac{186.8}{21.9}=-4913 \mathrm{lbs}$ also $P$ for horizontal edges $=P_{H}$

Thus, tie force, $T_{22}=2 \times 4913 \times \frac{50}{186.8}=2630 \mathrm{lbs}$
Check total load an horizontal projected area $=0.29 \times 15 \times 12 \times 100 \times 2 / 2=5,220 \approx 2 \times R_{v}$ o.k.
Wind load: The above reactions are all multiplied by $-0.14 / 0.29=-0.48$
Note: In this case wind load is assumed to be uniformly distributed normal to the horizontal projection of surface, instead of normal to the surface.

Note: $\begin{aligned} & 1 \mathrm{in.}=25.4 \mathrm{~mm},|\mathrm{ft}=305 \mathrm{~m}, 1 \mathrm{lbf}=4.45 \mathrm{~m},| \mathrm{lbf} / \mathrm{in} .=175 \mathrm{~N} / \mathrm{m}, \mathrm{i} \mathrm{psi}=0.0069 \mathrm{MPa} \text {. } \\ & \mathrm{lpsf}=47.9 \mathrm{Po} .\end{aligned}$


* See footnote, Example 9-I, Page 13.


## Example 9-19 (continued)

1. Geometry of dome:
$r^{2}=(40 \times 12)^{2}+(r-10 \times 12)^{2} ; r=1020 \mathrm{in}-; \sin \phi_{k}=\frac{480}{1020}=0.4706 ; \phi_{k}=28.07^{\circ}$
2. Required $\sqrt{\mathrm{i}_{f} 0_{f}}$ for buckling resistance. Assume dead lood $=2 \mathrm{lbs} / \mathrm{sq} \mathrm{ff}$.
2.1 req'd $p_{c r}=(30+2) / 144 \times 3.0=0.67 \mathrm{psi}$
$2.2 \quad N_{\phi}=N_{0}=\frac{\mathrm{P}_{\mathrm{s}}{ }^{r}}{2}=\frac{0.67 \times 1020}{2}=342 \mathrm{lbs} / \mathrm{in}$.
2.3 Bucking resistance given by Eq. 9.107: $N_{d c}=\frac{2 \sqrt{3} c \sqrt{D_{\phi} \bar{A}_{6}}}{R}$

Eq. 9.79: $C=k_{0} k_{n} k_{s} ; k_{0}=0.6$
Need $R / t_{e}$ to determine $k_{n}$, and $E_{f}{ }_{f} / G_{c} R$ iu determine $k_{s}$ from Fig. 9-26.
For first trial ossume $C=0.12$
From Table 6-1: $\sqrt{D_{d} \bar{A}_{\theta}}=\frac{E_{f} \sqrt{i_{f} a_{f}}}{\left(1-v^{2}\right)}$, when properties in $\phi$ and $\theta$ directions are the sarne.
req $q^{\prime d} \sqrt{i_{f} f_{f}}=\frac{1020 \times 342 \times\left(1-0.3^{2}\right)}{720,000 \times 2 \sqrt{3} \times 0.12}=1.061$
3. Optimum proportions to obtain req'd $\sqrt{i^{i} a_{f}}$ using ...ndwich section with two symmetrical faces that are both thin and stiff relative $t$. the core:
3.1 Eq. 9.122: $t_{f}=\sqrt{\frac{C_{c} \sqrt{i_{f} \sigma_{f}}}{\left(2 C_{f}-C_{c}\right)}}=\sqrt{\frac{0.005 \times 1.061}{(2 \times 0.08-0.005)}}=0.185$ in., facing thickness

Eq. 9.125: $t_{c}=\left(\frac{2 C_{f}}{C_{c}}-2\right) t_{f}=\left(\frac{2 \times 0.08}{0.005}-2\right) 0.185=5.55$ in., core thickness
3.2 Eq. 9.83: ${ }^{t_{e}}=\sqrt{3}\left(\mathbf{t}_{e}+t_{f}\right)=\sqrt{3(0.185+5.55)}=9.93$ in., equivclent thickness
3.3 Check C:
$k_{n}: R / t_{3}=\frac{1020}{9.93}=103$ : First try 1 qs. 9.109 and 9.110 , as the most $c$ aservative:
$\lambda=2\left[12\left(1-0.3^{2}\right)\right]^{1 / 4}(103)^{1 / 2} \sin \frac{28.07}{2} \quad 8.05: k_{n} \cdot 0.14+\frac{3.2}{(8.95)^{2}}=0.18$
Also, try ra. 9.111 with $1 / / 1_{c}$, 400, the lowest $1 / / t$ in the range of applicability:
$k_{n}=0.25\left(1-0.175\left(\frac{28.07}{20}-20\right)\right)\left(1-\frac{0.07 \times 400}{400}\right)-0.210$
Use $k_{n}=0.21$

(- $0.6 \times 0.21 \times 0.95=0.12$; checks initial assumption.

## Example 9-19 (continued)

3.4 Use trial proportions of facings $=0.18 \mathrm{in}$. and core $=6.0 \mathrm{in}$.
4. Local buckling resistance:

Eq. 8.107: $\sigma_{w r}=0.5\left(E_{f} E_{c} G_{c}\right)^{1 / 3}=0.5(720,000 \times 1400 \times 700)^{1 / 3}=4,450 \mathrm{psi}$
5. Membrane stress - snow lood: $\max . \sigma_{\phi}=\sigma_{0}=\frac{0.67 \times 1020}{2 \times 0.18 \times 2}=949$ psi $<4,450$ psi local buck. str. $<9,000$ psi ult. str.
6. Thermal gradient stress:
6.1 Eq. 9.71: $\sigma_{\phi}=\sigma_{0}= \pm \frac{E \alpha_{f}\left(T_{1}-T_{2}\right)}{2}= \pm \frac{900,000^{*} \times 20 \times 10^{-6} \times 100}{2}= \pm 900 \mathrm{psi}$

* Note: Maximum E without $\phi$ is user for upper bounds.
6.2 Multiply by load factor of 1.5 for ultimate strength checks: $\sigma_{\phi}=\sigma_{0}= \pm 900 \times 1.5=$ $\pm 1350 \mathrm{psi}$

7. Combined thermal and load stresses for ultimate strength check in regions away from the edge.
$\max \sigma_{d}=\sigma_{0}=-949-1350=-2300 \mathrm{psi}<i, 450 \mathrm{psi}$ o.k.
8. Estimate edge bending stress:
8.1 If stainless steel ( $E=28,000,000 \mathrm{psi}$ ) base ring is sized to have a final circumferential stress of $10,000 \mathrm{psi}$, the final radial deflection of the base will be:
ultimate $\Delta r=\frac{\sigma_{r} r \times[F}{E_{r}}=\frac{10,000 \times 40 \times 12 \times 3}{28,000,010}=0.514 \mathrm{in}$.
8.2 Approximate membrane deformation of shell at edge due to maximum design loud times load factor of $3.0=0.67 \mathrm{psi}$ :
$\Delta r_{m}=\frac{{ }^{\sigma_{0 m}}{ }^{r}}{E_{0}}$ (Note: this equation neglects Poisson effects).
Table 9-2, Case 3: $N_{0}=-\frac{P_{s} R}{2} \cos 2 \phi_{k}=-\frac{.67 \times 1020}{2} \cos (2 \times 28.07)=-190 \mathrm{lbs} / \mathrm{in}$. $\sigma_{0 m}=\frac{-190}{2 \times 0.18}=-529 \mathrm{psi} ; \Delta r_{\mathrm{m}}=-\frac{529 \times 480}{720,000}=-0.353 \mathrm{in}$.
8.3 Total radial deflection that must be applied by edge bending reaction, Ho ${ }_{k}$, is $0.514+0.353=0.867 \mathrm{in}$.


## Example 9-19 (continued)

8.4 Determine $H_{\boldsymbol{d}_{k}}$ to produce ultimate $\Delta r=0.867 \mathrm{in}$. Use equations in Table 9-6.
$\Delta r=\frac{2 \lambda R \sin ^{2} \phi_{k} H_{\sigma_{k}}}{E_{0} a_{0}} ; H_{\phi_{k}}=\frac{E_{\theta} a_{\theta} \Delta r}{2 \lambda R \sin ^{2} \phi_{k}} ; \lambda=\left[\frac{E_{\theta} a_{\theta} R^{2}}{4 E_{\phi} d_{\phi}}\right]^{1 / 4}=\left(\frac{a_{f} R^{2}}{4 i_{f}}\right)^{1 / 4}$
Table 8-1: $a_{f}=2 \times 0.18=0.36 \mathrm{in}^{2} / \mathrm{in} . ; \mathrm{i}_{\mathrm{f}}=\frac{1 \times 0.18 \times(6.0+0.18)^{2}}{2}=3.44 \mathrm{in}^{4} / \mathrm{in}$. $\lambda=\left(\frac{0.36 \times 1020^{2}}{4 \times 3.44}\right)^{1 / 4}=12.84$
Ultimate $H_{d_{k}}=\frac{720,000 \times 0.36 \times 0.867}{2 \times 12.84 \times 1020 \times \sin ^{2} 28.07}=36.8 \mathrm{lbs} / \mathrm{in}$.
8.5 Maximum meridional mornent and associated meridional thrust:

Table 9-6: max. $M_{\phi}=\frac{0.322 R \sin \delta_{k} H_{\phi_{k}}}{\lambda}=\frac{0.322 \times 1020(\sin 28.07) 35.8}{12.84}=467 \mathrm{in} .-1 \mathrm{lbs} / \mathrm{in}$.
Location is $\psi=\frac{0.8}{\lambda}=\frac{0.8}{12.84}=0.0623$ radians $=0.06 .3 \times \frac{180}{\pi}=3.57^{\circ}$
Distance in from edge $=R \psi=1020 \times 0.0623=63.5 \mathrm{in}$.
Meridional thrust due to ${ }^{H_{1}} \phi_{k}$ at $\psi=3.57^{\circ}$ :
$N_{\phi}=\sqrt{2} \sin \phi_{k} H_{\phi_{k}} \frac{\cot \phi_{k} \sin \left(\lambda \psi-\frac{\pi}{T_{1}}\right)}{e^{\lambda \psi}}=\frac{\sqrt{2}(\sin 28.07) 38.8 \cot 28.07 \sin \left(0.8-\frac{\pi}{4}\right)}{e^{0.0}}=$ negl.
Meridional thrust due to membrane conditions at $\psi=3.57^{\circ}, \phi=28.07-3.57=24.5^{\circ}$ :
$N_{\phi}=\frac{P_{s} R}{2}=-\frac{0.67 \times 1020}{2}=-342 \mathrm{lbs} / \mathrm{in}$.

### 8.6 Maximum meridional facing stress:

Table 8-1: section modulus/isnit lencth. $s=2 \mathrm{i} / \mathrm{j}=2 \times 3.44 / 6.18=1.11 \mathrm{ini}^{3} / \mathrm{in}$.
cheak: $s=1 \times t d=1 \times 0.18 \times 6.18=1.11 \mathrm{in}^{3} / \mathrm{in}$.
$\sigma=\frac{N_{\phi}}{\bar{a}} \pm \frac{M_{\phi}}{s}=\frac{-342}{0.36} \pm \frac{467}{1.7\rceil}=-.950 \pm 421=-1371 \mathrm{psi}$
add stress due to thermal gradient $=-1350$
Total stress (ultimate)
-2721 psi
Upper bound maximum ultimate meridional stress in dorise < $4,450 \mathrm{psi}$, local
wrinkling siress.

## Example 9-19 (continued)

8.7 Maximum circumferential facing stress.

Stress of edge is compatible with $10,000 \times 3=30,000$ psi edge ring stress: Thus,
$\sigma_{0}=30,000 \times \frac{720,000}{28,000,000}=711$ psi
Oneck membrane and bending stress: $1 j_{\theta}=\frac{-P_{s} R \cos ^{2} \phi_{k}}{2}+(-2) \lambda \sin \phi_{k} H_{\phi_{k}} \frac{\sin \left(\lambda \psi-\frac{\pi}{2}\right)}{e^{\lambda \psi}}$
(From 8.2):
(From 8.2):
$N_{0}=-190-2 \times 12.84 \sin 28.07 \times 38.8 \frac{\sin \left(-\frac{\pi}{2}\right)}{e^{0}}=+279 \mathrm{lbs} / \mathrm{in}$.
$\sigma_{0}=\frac{279}{0.36}=+775 \mathrm{psi} \approx+771 \mathrm{psi}$
To get approximate maximum stress, add maximum thermal gradient stress:
Eq. 9.68: $\sigma_{0}=\frac{E a\left(T_{1}-T_{2}\right)}{2(1-v)}\left(1-v+\sqrt{\frac{1-v^{2}}{3}}\right) \times\left[F=900\left[1-0.3+\sqrt{\frac{\left(1-0.3^{2}\right)}{3}}\right] \times 1.5\right.$

$$
= \pm 1,689 \mathrm{psi}
$$

Combined ultimate circumferential tension stress at edge: + 2460 psi < 5,000 psi, tensile strength

Maximum circumferential bending stress occurs at $\lambda \psi=0.8$ and is equal to $\pm \vee M_{d}$ $= \pm 0.3 \times 467= \pm 140 \mathrm{psi}$

This should be added to circumferential direct stresses due to load und thermal gradient that are slightly lower at $\psi=0.8 / \lambda$ than cc. culated above for the edge, $\psi$ $=0$. Thus, maximum ultimote circumferential stress will be less than $\mathbf{- 2 6 0 0} \mathbf{~ p s i}$.

Note: 1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{ft}=0.305 \mathrm{~m}, 1 \mathrm{in} .{ }^{2} / \mathrm{in} .=25.4 \mathrm{~mm}^{2} / \mathrm{mm}, \mathrm{I} \mathrm{in}^{3} / \mathrm{in} .=645$ $\mathrm{mm}^{3} / \mathrm{mm}, 1 \mathrm{in}^{4} / \mathrm{in} .=16387 \mathrm{~mm}^{4} / \mathrm{mm}, 1 \mathrm{lbf} / \mathrm{in} .=175 \mathrm{~N} / \mathrm{m}, 1 \mathrm{psf}=47.9 \mathrm{Po}, 1 \mathrm{psi}=$ $0.0069 \mathrm{MPa}, 1 \mathrm{in}$-lbf/in. $=4.45 \mathrm{~N}-\mathrm{m} / \mathrm{m},{ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right)(0.55), 1 \mathrm{in} . / \mathrm{in} . I^{\circ} \mathrm{F}=1.8$ $\mathrm{mm} / \mathrm{mm} /{ }^{6} \mathrm{C}, 1 \$ / \mathrm{in}^{3}=0.006 \mathrm{c} / \mathrm{mm}^{3}$.

### 9.14 ANALYSIS AND DESIGN OF BUPIED PIPE - (See Table 9.9 for

 Notations used in this Section).Most plastic pipe used in buried pipe systems behave as flexible rings that obtain support for vertical lood transfer from the surrounding soil. Rational structural analysis of such pipe requires un evaluation of soil-structure interaction. Finite element methods have been used to obtain accurate soil-structure interaction onalyses but they are not yet economical for routine design of practical buried pipe systems. Thus, buried plastic pipe are normally designed based on semiempirical relationships for soil-structure interaction response.

The practical approach for design of flexible buried pipe systems is based on simplified theory, tests, field observations and experience (9.44, 9.45). It is basically a method for determining the quality of installa*ion required to permit the use of a given pipe for given soil and surface wheel loading criteria.

Soil load criteria include unit weight of soil and height of cover over the pipe. Surface wheel load criteric include wheel footprint, type of pavement (if any), magnitude and frequency of load, and required impact allowance.

Typically, for nori-pressure applications, buried plastic pipe systems of a particular material are supplied in only one or two structural configurations. INevertheless, these may be suitable for a wide range of cover heights and wheel loading conditions, if they are properly installed to meet the design requirements. For conditions of deep fill or shallow fill with typical truck wheel loods, stiff embedments are required. These are ochieved with anguiar crushed stone, or well-graded gravel and/or coarse sand materials compacted to near or above the top of the pipe.

A well compocted side fill with support material carefully placed under the haunches of the pipe promotes a uniform reactive pressure around the pipe, limiting bending stresses and deflections to acceptable levels (Fig.9-32). Trench width is usually held to the minimum which will still permit proper installation of embedment material. In wide trenches or where trench walls are especially soft, compacted material should extend at least 2.5 diameters each side of the pipe
for small pipe; special study is required for minirnum compacted width for larger pipe.


Fig. 9-32 INSTALLATION DETAILS

The design process is to select a trial pipe-soil system, and then to evaluate the adequacy of the fipe for supporting the design fill height, surface wheel load configuration, and internal pressure. if present. The installation is adequate, if, under design loads:

- Deflection is within a maximum limit based on service requirements
- Strains or stresses are less than limits set for long term load and environmental exposure, or for fatigue due to multiple applications of wheel loading
- Buckling resistance is adequate

Since maxirrium strain can be related approximately to maximum deflection, the pipe will be structurally adequate if its installed deflection is less than a
specified limiting deflection and provided that it possesses sufficient buckling resistance.

A semi-empirical procedure for evaluating the behavior of a buried pipe system having a uniform wall thickness is given in Table 9-9 as adapted from (9.45). The method, as presented, applies only to smooth-wall pipe without ribs or corrugations. The pipe material is assumed to be homogeneous; ihus, for fiberglass reinforced plastics, distribution of circumferential reinforcement throughout the thickness must be reasonably uniform, balanced, and symmetrical (Section 2.5).

The approach may be odapted to evaluate corrugoted-wall pipe, ribbed-wall pipe, or double-wall "truss" pipe, providing the structural properties of the shaped wall system are known. In these kinds of pipe, ring bending produces direct tension or compression on the thin wall elements; thus, limiting stresses and strains should be based on tension or compression properties, rather than on bending properties of the wall material. Local buckling of such thin elements may also prove critical.

Table 9-9, together with subsequent tables and graphs, provides relationships for pipe deflection and pipe strain resulting from soil loads, internal and external pressure, surface wheel loods, and initial installotion effects. These values are then compared to limiting performonce criteria for deflection based on ultimate strain. Also, maximum external pressure is cornpared to an estimated crit:cal buckling pressure. If any criterion is not met, soil properties can he upgraded by a change in moterials or density requirements, or a different pipe system can be tried. Procedures given in Table 9-9 are explained in more detail below.

## Design Criteria

The first step in the design procedure is to set design criteria. These include characteristics of the installation, dimensional, strength, and stiffness properties of the pipe, and properties of the embedment material surrounding the pipe. Key considerations are as follows:

Stiffness Properties: Stiffness properties of the pipe and surrounding soil are required for both deflection and stability calculations. ASTM standards for plastic pipe systems intended for burial fiequently contain requirements for
short-ferm pipe stiffness, PS $_{0}$, measured in occordance with ASTM 2412 (see Example 9-2). Short-term pipe stiffness can also be calculated if the circumferential short-term elastic modislus and pipe dimension are known or specified, as follows:

$$
\begin{equation*}
P S_{0}=\frac{F}{\Delta y}=6.7 \frac{E_{Q} i}{R^{3}} \tag{Eq. 9.154}
\end{equation*}
$$

where the foliowing notations are taken directly from ASTM D2412
$F=$ test load per unit length of pipe at 5\% deflection.
$\Delta y=$ deflection, or change in vertical diarneter at the test lood (i.e. 5\% of vertical diameter)

See Notations for definition of other terms.

Long-term pipe stiffness, usually established at 10 years of load duration ( 50 years in Europe) in the case of buried pipe, can be oblained by substituting extrapolated estimates of the viscoelastic modislus (Eq. 3.1) intu Eq. 9.154. Or, if the creep factor $C F=E_{0} / E_{10}$ (same as $R$ in Table 2-2) is known, the long-term pipe stiffness becomes:

$$
\begin{equation*}
\overline{\mathrm{PS}}_{10}=\frac{\overline{\mathrm{PS}}_{\mathrm{o}}}{\overline{\mathrm{CF}}} \tag{Eq. 9.155}
\end{equation*}
$$

Embedment soil stiffness, E', is the modulus of soil reaction, or stiffness of the soil. Average values for common embedment soils are given in Table 9-10. These volues are empirical, and are buck-calculated from measurements on actual pipe installations.

Material Strength: There are few codes or industry concensus standurds available to provide guidance on strength design of plastic pipe for the looding conditions encountered when buried. For example, methods are not available to determine strength under constant strain (relaxation), combined strains from sustained internal pressure and bending due to ovalling, and various other combinations including cyclic loads, except in some cases for fiberglass reinforced plastic water pipe (9.46). Intil such guidance is available the strength equations (Eq. 9.156 a \& b) in Table 9-11 together with interaction relations given in Table $9-9$ provide a basis for strength design which is consistent for both fiberglass-reinforced-plastic and thermoplastic pipe (9.45). Note that strength is expressed in terms of strain rather than stress in Table 9-11.

Table 9-9

## Design Procedure for Buried Plostic Pipe with Uniform Wall Thickness (Spe End of Table for Notation)

I. Design Crite:-io
a. Pipe Properties

Tabulate pipe dimensions, morlulus, and ultimate strength and pipe stiffness. Determine ultimate strength (in terms of strain) from Table 9-1I or other source. Colculate pipe stiffness if not ovailable in specifications.

Establish capocity reduction foctor for pipe stiffness ( $\sigma^{(\prime)}$ ) and pipe strength ( $\mathbf{6}$. Calculate reduced ultimate strengths:

$$
\varepsilon_{R u}=d \varepsilon_{R}: \varepsilon_{C u}=d \varepsilon_{C} \quad \text { Eq. 9.128a, b }
$$

b. Soil Properties

Select madulus of soil reaction, Table 9-10, and de flection log fuctor. Establish capacity reduction factor, ( $\delta^{\prime}$ ), for modulus af soil reaction.
c. Land Factors

Select rood factors for cach looding condition.
2. Pressures due to applied loads:
o. Earth lood ( $\gamma_{s}=$ soil density)

| $D_{s}=Y_{s} n$ | Eq. 9.129 |
| :---: | :---: |
| $P_{b}=P_{s} C_{w}$ | Eq. 9.130 |
| $c_{w}=1-\frac{h_{w}}{\boldsymbol{h}}$ | E. 9.1300 |
| $P_{w}=P_{w h}(1+\mathbb{F})$ | Eq. 9.131 |
| $T F=P_{w h} /\left(p_{w h}+p_{s}\right)$ | Eu. 9.132 |
| $P_{g}=\gamma_{w} h_{w}$ | Eq. 9.133 |
| $P_{v}$ |  |
| $D_{1}$ |  |
| $P_{\text {rw }}=P_{n} \times \underline{L F}$ | Eq. 9.1340 |
| $D_{\text {riN }}^{\prime}=D_{n} \times\left[F^{\prime}\right.$ | Eq. 9.134 b |

2. Maximum deflection due is earth and surface wheel service loads, and installation:
a. Averoge earth lood deflection

PS from Eq. 9.154 or pipe specification,
$K_{b}{ }^{\text {a from Toble }} 9$-12
$\frac{\Delta s}{2 R}=\left[\frac{K_{b} P_{s}}{0.149 P_{0}+0.061 \mathrm{E}^{\prime}}\right] \times$ DF Eq. 9.135
b. Average surfoce wheel lood deflection
$\frac{\Delta w}{2 R}=\frac{K_{0} P_{w}}{0.149 P_{0}+0.3 K 1 \cap E}$
Eq. 9.136
c. Installation daflection
$\frac{\Delta i}{2 F_{i}}=$ fruin rable $9-13$
d. Maximum estimated deflection
$\frac{\Delta}{2 R}=\frac{\Delta s}{2 R} \cdot \frac{\Delta w}{2 R}+\frac{\Delta i}{2 R}$
4. Sirain components:
a. Ring bending strain from external loods (MF from Table 9-12)


## Toble 9-9 contimued

c. Aing compression strain from external loods

5. Strength Adequacy
Q. Maximum compression strain for all pipes

Eq. 9.141
b. Tension at perforations in non-pressure pipe

$$
R_{b}=\frac{C_{u}}{C_{w u}}\left[\frac{P F}{1-\frac{c y}{c} \frac{c w u}{c u} \times P F}\right]
$$

Eg. 9.142
c. Tersion in presoure pipe. Minimum foctored compression stroin is used non-pressure pipe). Investigate cases with and without whee I lood acting.

F.4. 9.143

FF for preswrized pipe
Redesign if $R_{a, b, c}>1$.
6. Allowable total deflection of pipe as insialled
a. Governed by maximum compression for all pipe
$\frac{\Delta}{2 R^{2}} \max =\frac{1}{R_{0}}\left(\frac{\Delta}{2 R}\right)$
Eq. 9.145
b. Governed by tension at perforations of nen-pressure per forated pipe
$\frac{A}{2 R} \max =\frac{1}{R_{b}}\left(-\frac{A}{2 R}\right)$
Eq. 9.146
c. Deflection before pressurization governed by kension in pressure pipe of ter rerounding

$$
\frac{A}{2 R} \max =\frac{1}{R_{c}}\left(\frac{A_{2}}{R_{R}}\right)
$$

$$
\text { Eq. } 9.147
$$

7. Buckling capocity:
a. Modified AWWA formula $D_{c r}=0.77\left[\left(\frac{\left(1-\frac{A}{2} R^{2}\right.}{\left(1+\frac{A}{2 R}\right)^{2}}\right)^{3}\left(C_{w} B^{\prime}(E)+\left(F S_{10}\right)\right] 1 / 2\right.$
For $0<\frac{h}{2 R_{a}}<5$

$$
B^{\prime}=\left(0.015+0.041 \frac{h}{2 R_{0}}\right)
$$

Eq. 9.149
For $5 \times \frac{h}{2 R_{0}}<80$
$B^{\prime}=\left(0.15+0.014 \frac{h}{i_{0}}\right)$
Eq. 9.150
See Eq. 9.1300 for $C_{w}$
Une A/2R max in Eq. 9.168 if Eq. 9.145 to 9.147 ore uned in derermining maximum definctinas.
Buckling resistance in adequate if

$$
\begin{equation*}
\left.R_{d}=\left(p_{w}+p_{w}+p_{w}+p_{w v}\right)+\varphi_{c r}\right) \leq 1 \tag{Eq. 9.151}
\end{equation*}
$$

b. Duckling under hydrostatic compenent of lood;
$P_{c r}{ }^{\prime}=0.5 C_{d} \mathrm{FS}_{10^{+n}}{ }^{+\infty}$ Eq. 9.152
$C_{a}=2$ to 3 for softer soils, ronging up to 6 for rigid mortor encasernerit
Buekting resistonce under hydrostotic
roods is adequats if

$$
\begin{equation*}
\left.R_{0}=\left(\varphi_{g_{u}}+D_{\omega}\right)+\varphi_{c r}^{\prime}\right) \leq 1 \tag{Eq 9.153}
\end{equation*}
$$

Table 9-10
Average Values of E' for

## Equations 9.135, $9.136 \& 9.148$ (9.44)

| Embedrnent Material per Unified Soit Clossification Systein ASTM D 2487 | Averoge $\mathrm{E}^{\prime}$ for Degree of Compoction of Bedding (lb/in.? 1,3 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Dumped | Less thon $85 \%$ of Maximum Density | 85 to $95 \%$ of Maximum Density | Greater thon 95\% of Maximum Density |
| Crushed Rock | 1,000 | 3,000 | 3,000 | 3,000 |
| Coorse-qrained Soil with Litile or $\mathrm{N}_{\mathrm{o}}$ Fines GW, GP, SW, SP contains less than 5 percent fines | 200 | 1,000 | 2,000 | 3,000 |
| Coorse-groined Soils with Fines GW, GC, SM, SC contains more thon 12 percent fines | 100 | 400 | 1,000 | 2,000 |
| Fine-arained Soiis $(L L<50)^{2}$ Soils with medium to no plosticity CL, ML, ML-CL, with more than 25 percent coorse-groined particies | 50 | 200 | 400 | 1,000 |
| Fine-rroined Soils ( $\mathrm{LL}<50)^{2}$ <br> Solis with medium to no plosticity CL, ML, ML-CL, with less thon 25 percent coarse-grained porticles | 50 | 200 | 400 | 1,000 |
| $\frac{\text { Fino-grained Soils (LL }>50)^{2}}{\text { Sois with medium to tigh }}$ |  |  | to ovailable |  |

Nofess 1. Source ASTM D3839-79
2. LL $x$ Liquid limit.
3. Maximum Density petermined in accordence with AASHTO T-99.
4. $1 \mathrm{mb} / \mathrm{in}^{2}=1 \mathrm{psi}=6.9 \mathrm{xPa}$

## Notations for Table 9-9.



Table 9-il also shows examples of ultimate strengths in terms of strain, calculated using the strength equations, for several specific types of thermoplastic and fiberglass-reinforced plastic moterials that have a demonstrated long term strength capocity (HDE) (See Sections 3.4 and 3.5). These limits should be valid for water exposures and non-aggressive environments for the specific materials given in the table. The ultimate strains are to be reduced by copacity reduction factors, and then compared to shurt-term strains calculated for service loads, and increased by locd factors. It is recognized that the short-term values are expected to change during creep and relaxation of the material.

Toble 9-11
Ultimate Long-Term Strengths (Strains) of
Pressure-Rated Plastic Pipe Materials

| Material | Polyvinylchloride (PVC) | Polyethylene (PE) | Fiberglass Reinforced (RTR) | Fiberglass Reinforced (RPM) |
| :---: | :---: | :---: | :---: | :---: |
| Type or Class | $1120^{(2)}$ | (3) | $200{ }^{(4)}$ | $50^{(4)}$ |
| HDB, psi | 4,000 | 1,450 | 14,10c | 6,700 |
| $E_{0}$, psi | $0.4 \times 10^{6}$ | $0.1 \times 10^{6}$ | $3.0 \times 10^{6}$ | $2.0 \times 10^{6}$ |
| $\overline{C F}=E_{0} / E_{10}$ | 2 | 2 | 1.25 | 1.25 |
| Strength in Creep (Constant Stress) |  |  |  |  |
| $\begin{aligned} & E_{C}=\frac{H D B}{E_{0}}, \% \\ & \text { (Eq. } 9.156 a) \end{aligned}$ | 1.0 | 1.5 | 0.48 | 0.34 |
| Strength in Relaxation (Constant Strain) |  |  |  | . |
| $\begin{aligned} & \varepsilon_{R}=\frac{H D B \times C F}{E_{0}}, \% \\ & (E q .9 .156 b) \end{aligned}$ | 2.0 | 2.9 | 0.59 | 0.42 |

(1) See $R$ in Table 2-2 tor creep factor (CF) est inmates
(2) ASTM DI785
(3) ASTM F714
(4) Appendix of (9.46)
(6) Consult manufacturer for actual values of $H D B, E_{0} \& E_{10}$
(6) $1 \mathrm{psi}=6.9 \mathrm{kPo}$

Other strength criteria are needed to evaluate the effects of cyclic. fatigue, in such coses as a shallowly buried installation subjected to heavy traffic, or a pipe subjected to cyclic internal pressures. For example, limited da:a on pressurerated PVC pipe materials indicate that fatigue effects become important when cyclic strain amplitude exceeds $25 \%$ of the total strain amplitude (3.15). In same reinforced-plastics-based pipe, the long-term HDB is obtained by cyclic pressurization (ASTM D2992, D2|43) and hence fatigue strength is already reflected in the HDB.

Capacity Reduction Factors: Capocity reduction factors are applied to stiffness and strength properties to reflect variations in materials properties from those established in test or by specification.

Capacity reduction factors used in specific designs should account for such factors as aggressive environments, scratches, gouges and other unavoidable damage, cyclic internal pressures, expasure to ultraviolet radiation during storage, difficulties anticipated in installation, and the consequences of failure.

Lood Factors: Load factors ( $\overline{L \bar{F}}$ ) are applied to increase loads or stresses to account for the potential for overloads, ard other unimowns reloted to the loads and the analysis, as is done in structurcl design with conventional structural materials. See Section 3.2,4.2, 4.10 and 8.11. As will be illustrated in Example 9-20, different load factors may be applied to different components of lood. For example, the load foctor applied to vacuum might be lower than that for internal pressure. That is, the maximum pressure due to vacuum is well defined, being that of the atmosplere, while internal pressure in the line may be difficult to predict, particulorly with regard to surges.

In some cases such as in the evaluation of the effects of combined loodings (Eq. 9.143), the use of the design load or a load factor greater than one may produce an unconservative result. Therefore load foitors less thon one should be considered for use in such sifuations.

Loods: Soil pressure on the pipe due to earth weight is determined simply as the weight of the column of earth directly above the pipe, os given by Er. 9.129 in

Tabie 9.9. This load is reduced by the buoyancy resulting from groundwater as indicated in Eq. 9.130. Soil pressure produced by surface wheel loods depends on the depth of burial, and also the impact (rapid load) factor which clso varies with dspth of cover (Eq. 9.131 and 9.132). The soil pressure caused by earth load, H 20 live load, and combined earth and live load are plotted versus depth of earth cover in Fig. 9-33. The reduction factor, $C_{w}$, given by Eq. 9.143a, is applied when a pipe is submerged below ground water level.

Loads due to internal pressure should include the effects oi surges. If frequent surges are anticipated, and these surges are large compared to the normal operating pressure, special study may be required for fatigue effecis. (See above discussion on Material Strength.) Negative pressures accompanying surges in pressure pipe may be significant. Some producers of plastic pipe design their pipe for full vocuum, although refined dynamic analysis might resuit in lower values.

## Deflection

Usjally a design objective is to maintain chonges in vertical and horizontal diameter, resulting from instaliction ond loading, within a specified percentage of pipe diameter. Average deflection due to earth lood is estimated using the semiempirical relationship for soil-structure interaction given by Eq. 9.135 in Table 99. As is usual proctice with other structural materials, deflections are calculated on service, not factored, loods. This should be a primary consideration in setting maximum deflection limits, and establishing acceptance criteria for the project.

Historically, maximum deflection has been frequently limited by specifications, somewhat arbitrarily, to 3 to 7.5 percent of the diameter, depending upon cinaracteristics of a given plastic fipe system. Such deflection limits ore needed to retain fluid tightness at joints, und to pernit cleaning by plug pulling. A specific limiting deflection based on axaimum acceptable strengths should also be established for each plastic pipe system. Furthermore, to meet a maximum strength criterion, a lower deflection limit is required at joints that have thicker walls than at the thinner pipe barrel away from the joints.


Note: 1 psi $=6.9 \mathrm{kPa}$; $\mid$ in. $=25.4 \mathrm{~mm}$

Fig. 9-33 VARIATION IN SOIL PRESSURES WITH INCREASING DEPTH OF COVER

Intial Deflection: The expression inside the biackets of Eq. 9.135 is used to determine the initial pipe deflection due to earth lood, hased on the short-term pipe stiffness, FS $_{0}$, the madulus of subgrade reaction, $E^{\prime}$, and a bedding factor, $K_{b}$, which di=pends on the uniformity of embedment support near the pipe invert (Table 9-12).

Table 9-12
Constants for Deflection and
Ring Bending Equations (9.45)

| Coefficient | Symbol | Haunched <br> \& Field <br> Monitored | Haunched <br> \& Not <br> Monitored | Not <br> Haunched |
| :--- | :---: | :---: | :---: | :---: |
| Be ${ }^{\prime}$ ding Constant <br> for Deflection <br> (Eqs. $9.135 ~ \& ~ 9.136) ~$ | $K_{b}$ | 0.09 | 0.11 | 0.13 |
| Ring Bending | $\overline{M F}$ (Crown) | 0.75 | 0.75 | 0.75 |
| Moment Factors | $\overline{M F}$ (Springline) | 0.75 | 0.75 | 1.0 |
| for (Eq. 9.138) | $\overline{M F}$ (Invert) | 0.75 | 1.0 | 1.5 |

* Omission of haunching not recommended.

The initial short-term pipe deflection, as calculated above, is increased by the deflection lag factor, DF, which reflects a "lag" in the development of maximum or final deflection that is frequently observed in field installations of flexible pipe. This deiayed deflection is attributable to the additional consolidation or densification of the embedment soil around the pipe, which occurs ofter installation. This deflection lag phenomenon is observed with flexible metal pipe as well as plastic pipe, and is usually related more to soils and trench characteristics than to the creep, or time-dependent reduction in the modulus of the plastic pipe material. The magnitude of the deflection increase is a function of soil tyfe and degree of compaction; DF is frequently taken as 1.5 although much higher values have been recorded.

Fiel.. tests demonstrate that deflection lag effects in the soil may develop very soor. ofter installation as a result of construction traffic, or heavy rains, and that the pipe deflection remains stable thereafter. While there is some further small deflection due to creep in the pipe moterial, it is usually sufficiently accurate to ussume that the pipe shape is "frozen" in an oval configuration after the deflection lag has developed, and that the pipe is in a state of constant bending strain (relaxation) thereafter.

Deflections tue to sirface applied wheel loods ore calculated using Eq. 9.136, which is similar io the equction discussed above for earth loads. The coefficient " $n$ " is used to reduce the soil modulus $E$ ' to account for the effects of a reduction in soil support which occurs under the localized wheel load. A tentative value of $\mathrm{n}=\mathrm{C} .5$ is recommended, provided $\mathrm{p}_{\mathrm{w}}>0.25 \mathrm{p}_{\mathrm{s}}$.

Installation Deflection: Measurements made during the installation of flexible plastic pipe systems shows that an allowance should be made for deflections resulting from conditions that might occur during installation and compaction of soil around the pipe. These are in addition to the initial deflections calculated by conventional pipe-soil interaction formulas discussed above. The more flexible the pipe and the less stiff the embedment soil, the greater the expected installation deflection, $\Delta_{i} / 2 R$. Suggested tentative values for $\Delta_{i} / 2 R$ for three embedment conditions are given in Table 9-13. Obviously, if installation is not properly performed, such deflections become unpredictable and large.

Table 9-13
Tentative Installation Deflections for Haunched Pipe (9.45)

| Pipe Stiffness PS(b/in./in.) (4) | Installation Deflection ( $\left.\Delta_{i} / 2 R\right)(\%)$ (1) |  |  |
| :---: | :---: | :---: | :---: |
|  | Embedment Less Than 85\% of Mox. Dry Density (2) or Dumped (3) | Embedment $85 \%$ to $95 \%$ of Max. Dry Density (2) | Embedment Greater Than 95\% of Max. Dry Density(2) |
| Less Thran 40 | $6+$ | 4 | 3 |
| 40 to 100 | 4+ | 3 | 2 |
| Greater Than 100 | $2+$ | 2 | 1 |

Notes: 1. Deflections of unhounched pipe are significantly larger.
2. Maximum dry density determined in accordance with AASHTO T 99.
3. Dumped materials and materials with less than $85 \%$ of maximum dry density are not recommended for embedment. Deflection values are provided for information only.
4. $1 \mathrm{lb} / \mathrm{in} . / \mathrm{in} .=1 \mathrm{psi}=6.9 \mathrm{kPa}$

## Strains in Pipe Wall

Strains in the pipe wall result from bending or ovalization under non-uniform radial loads and from direct circumferential stress resulting from radial pressure distributions.

Ring Bending Strain: Maximum ring bending strains resulting from earth and surface wheel loads, as well as from installation deflections normally occur at the invert. However, under some conditions, strains at other locations may be important depending on strength limits established for environmental exposures inside and outside the pipe. For example, tensile strains of the crown may covern the design of FRP or RPM pipe, since exposure of the crown interior surface to sewer acids may reduce ultimate strength belo'w that experienced in a water environment, as is the case for values given in Table 9-11.

The moment factor, MF, required for Eq. 9.138 a to $c$, accounts for the effects of bedding on bending moments and strains. Tentative values for the moment factor are given in Table 9-12. Strains occurring under service loads are increased by the load factor arpropriate for each loading condition.

Ring Tension and Compression Strains: Factored ring or hoop tension strains resulting from the applied internal pressure, if any, are calculated using Eq. 9.139. And Eqs. 9.140 a to $d$ are used to calculate the initial ring compression strains in the pipe. These strains are assumed to be constant around the full pipe circumference, although in the real structure, particularly in large pipe, these strains may be less at the crown than at the invert.

Both moximum and minimum ring compression strains under earth and vehicle loads are required in this ultimate strength approach. The maximum strain is used in later determination of the maximum compression strain in the wall (Eq. 9.141 ), and the minimum strain is needed for determination of the maximum tension strains in the ring (Eqs. 9.142 \& 9.143).

## Strength Adequocy

Adequacy to resist the combinations of strain components calculated above is evaluated in a manner similar to that given in Eq. 8.130. In this case, an interaction index is proposed that reflects different strengths in creep (fixed stress or load) and relaxation (fixed strain). The interaction equations from which Eqs. 9.141 to 9.143 are derived are expressed in terms of strain, below:

$$
\frac{\varepsilon_{b u}}{\varepsilon_{R u}}+\frac{\varepsilon_{c u}}{\varepsilon_{C u}} \leq 1 \text { and } \quad \frac{\varepsilon_{b u}}{\varepsilon_{R u}}+\frac{\varepsilon_{t u}}{\varepsilon_{C u}} \leq 1
$$

Non-Pressure Pipe: Adequacy of buried non-pressure pipe is usually governed by maximum compression at extreme fibers resulting from combined ring bending and ring compression. This may not be the case for reinforced plastic pipe where the compression strength may be significontly greater than the rension strength, depenting on the materials and construction. If this is the case, adequacy under both maximum combined tension and compression should be evaluated.

Perforated Pipe: When a buried pipe is perforated, st-ess or strain concentrations in a tensile stress field can be significant. Thus, a check of the effects of perforations should be made in accordance with Eq. 9.139. This is in addition to that for maximum combired compression, discussed above. Table 9-14 provides 'stress (strain) concentration factors" to be applied to the maximum tensile stress or strain calculated of the perforation location. If perforations are located at or near inflection points, the effects of strain concentrations can be neglected.

Pressure pipe: Maxilnum strains in pressure pipe are the combined result of hoop stress due to internol or external pressures, bending due to earth and vehicle loods, and any reduction in terding due to "rerounding" of the ovalled buried pipe upon pressurization as discussed below. When a buried pipe is subjected to internal pressure, circumferential (hoop) stresses develop, and deflection due to installation and earth pressure is reduced. The pipe returns to a more circular shape or "rerounds." This rerounding reduces bending strains caused by external loads. The rerounding factor (RF, Eq. 9.144) proposed in (9.45) accounts for the effects of internal pressure on bending strains in a very flexible buried pipe
subjected to external loads and installation deflections. Note that the above check for maximum compression in non-pressure pipe should be made for pressure pipe as well since compression strength may govern design for periods when no pressure is applied.

Table 9-14
Perforotion Factors for Strain Concentrations (9.44)

| Perforation Type | Perforation Factor ( $\overline{\mathrm{PF}})$ |
| :--- | :---: |
| Circular hole, smooth-wall pipe in bending | 2.3 |
| Circular hole, uniform tension (e.g. in one shell ot <br> ABS Composite or in flanges of corrugated tubing; | 3.0 |
| Circumferential slot, rounded ends, assume aspect <br> ratio $=8: 1(e . g . ~ I ~ i n . ~(25 ~ m m) ~ c i r c u m f e r e n t i a l ~ s l o t, ~$ <br> $1 / 8$ in. (3 mm) wide; factor varies with actual <br> aspect ratio |  |

## Allowable Deflections Based on Ultimate Strain

For purposes of writing specifications, or when establishing deflection limit criteria for existing or new produrts, it is useful to calculate the maximum allowable deflection. Eqs. 9.145 and 9.147 , based on strength iimits (in terms of strain) given above, provide a means for calculating the maximum installed deflections of the pipe barrel.

## Buckiling

The resistance of the pipe ring to buckling under external pressure becomes very important in large-diameter thin-walled plastic pipe, or in pipe with low modulus materials, such as PE. Resistance to buckling is significantly enhanced by the restraint of the embedment soil. The stiffer the embedment, the greater is the buckling resistance, as is shown by Eq. 9.148 in Table 9-9. The calculated factored compression stress should be less than the buckling resistance times the Cupacity reduction factor. Methods for predicting buckling strength are currently under review by industry, and the following approaches may be revised based on new research.

The buckling resistance of pipe under long term earth load reduces with time because of creep. Little is known about the effect of creep on buckling of buried pipe. For the present, it appears conservative to use the leng term timedependent pipe stiffness, $\mathrm{PS}_{10}$ in buckling calculations, Eq. 9.148. $\mathrm{PS}_{10}$ is determined directly from special, non-standard long term parallel plate tests, or from Eq. 9.155.

When the pipe is submergeci in ground water, it is assumed that the pipe remains empty. The factor, $\mathrm{C}_{\boldsymbol{w}}$, accounts for the reduction in buckling resistance that occurs when the confining soil pressure is reduced by the booyancy of the ground water. In this case, the external pressure in Eq. 9.151 is the combined pressure caused by ground water, the weight of saturated earth above the water table, and the buoyant weight of submerged earth below the water table.

Some experiments with polyethylene pipe indicate that buckling is caused solely by the uniform hydrostatic component of pressure from ground water and internal vacuum, if any, rather than the pressure of earth combined with water and vacuum. Buckling resistance on this basis may be less than given by Eq. 9.148. Various investigators suggest that the maximum buckling strength under this approach is in thr, range of 3 to 6 times the buckling resistance of a simple tube subject to hydrostetic pressure without constraint from the soil; the critical buckling load for this case is given by Eq. 9.152.

A reduction in buckling resistance may also occur for shallow buried pipe when the upward force of buoyancy equals, or exceeds, the submerged weight of soil over the pipe. Obviously, in this case, the pipe requires anchor straps to restrain it from "floating" out of the embedment. More research is needed to determine the effects of such "neutral buoyancy" conditions on the buckling resistance of the pipe. A lower limit of such resistance is given by Eq. 9.15 for buckling of rings under external pressure with no restraint from surrounding soil.

Eq. 9.152 may govern over Eq. 9.148 in the case of large hydrostatic pressures. The actual range of material modulus, pipe stiffness, cover depths and embedment stiffness over which each of the two buckling equations is valid remains to be determined.

Other Considerations: The above procedure covers only the structural odequacy of the pipe barre! in the circumferential direction. Joints, connections, and fittings display stiffness, strength, and stiffness-to-strength relationships, which are significantly different from those provided in the barrel. A comprehensive structural evaluation of a plastic pipe system should include behavior evaluation of these parts of the system.

Dymamic surge pressure3, impact loodings, longitudinal membrane and bending stress resultants dive to internal pressure, unbalanced thrust forces resulting from changes in flow direction at bends, changes in flow sross-section area or line termination, and restraint of Poisson's contraction by soil friction may result in significant stress or strains and must be considered in any detailed evaluation of a specific installation. Also, as experience has shown, bending of the whole tubular cross section as a beam can add significantly to ring deflections, as well as to stresses and strains as calculated herein. See (9.44), (9.45) and (9.46) for more complete presentations of design considerations for buried plastic pips.

## Design Example

The application of the above procedure for evaluating the odequacy of a 32 -inch diameter uniform wall polyethylene ( PE ) gravity flow industrial waste line is illustrated in Example 9-20.

```
 Example 9-20 Buried Polyethylene Industrial Waste Line: Determine the adequacy of a
 polyethylene pipe, 32 in . in diameter, IPS (ANSI B36-10) sizing system, with minimum wall
 thickness of 1.882 in . Operating pressure is 45 psi . Burial de pth varies from 4 ft to 15 ft ,
 proposed eribedment is well-groded grovel with less than \(5 \%\) fines, compacted to \(90 \%\) of
 maximum dry density. Groundwater varies from below pipe to 5 ft below grade. Site will be
 trafficked. (See Table 9-9 for procedure and notations.)*
```


## I. Design Criteria:

## a. Pipe Properties

```
Outside diameter: \(2 R_{0}=32.0 \mathrm{in}. ; R_{0}=16.0 \mathrm{in}\).
Wall thickness: \(\dagger=1.882\) in.
Mean diameter: \(2 R=30.1\) in.; \(R=15.1 \mathrm{in}\).
Inside diameter: \(2 R_{i}=28.2 \mathrm{in}\).; \(R_{i}=14.1 \mathrm{in}\).
Short term elastic modulus: \(\mathrm{E}_{\mathrm{o}}=100,000 \mathrm{psi}\)
Creep foctor: assume \(\overline{C F}=2.0\)
Calculate pipe stiffness since governing specification does not contain a pipe stiffness requirement.
Moment of inertio: \(i=1 / 12 t^{3}=1 / 12 \times 1.882^{3}=0.555 \mathrm{in} .^{4} / \mathrm{in}\).
Fipe Stiffness: \(\quad \quad P_{0}=\frac{6.7 E_{0}{ }^{i}}{R^{3}}=\frac{6.7 \times 100,000 \times 0.555}{15.1^{3}}=108 \mathrm{psi}\)
```



```
Copacity Reduction Factors: Pipe strength \(=0.80\)
Pipe stiffness for buckling \(\phi^{\prime \prime}=0.75\)
Ultimate strength (strain basis, Table 9-11): \(\varepsilon_{C u}=d \varepsilon_{C}=0.80 \times 1.5=1.2 \%\)
\[
\varepsilon_{R u}=\delta \varepsilon_{R}=0.80 \times 2.9=2.3 \%
\]
```

b. Soil Properties

Modulus of Soil Reaction (Table 9-10): $E^{\prime}=\mathbf{2 , 0 0 0}$ psi; for well-graded gravel @ 90\% density

Capocity reduction factor for soil modulus in buckling equation: $\phi^{\prime}=\mathbf{0 . 5 0}$
Deflection Lag Factor: DF $=1.5$
\# See foofnote, Example 9-1, Page 9-13.

## Example 9-20 (continued)

## c. Lood Factors ( $\overline{\mathrm{LF}}$ )

Earth, ground water and installation: 1.5
Minimum when earth load increases strength: 0.8
Internal Pressure: 2.0
Vehicle: 1.8 (max. vehicle wheel pressure unlikely to occur with factored internal pressure)
Vacuum: 1.8 (vacuum cannot exceed atmospheric pressure)
2. Loads:
a. Burial Depth
b. Earth:

$$
\begin{aligned}
& p_{s}=\gamma_{s} h \\
& P_{s u}=p_{s} \times[\overline{L F} \\
& P_{s u}^{\prime}=p_{s} \times\left[F^{\prime}\right.
\end{aligned}
$$

c. Buoyant Earth: $C_{w}=1-\frac{h_{w}}{3 h}$

$$
p_{b}=p_{s} C_{w}
$$

$$
P_{b u}=P_{b} \times[F
$$

d. Vehicle:

$$
P_{w h} \text { (Fig. 9-33) }
$$

$$
T F=\frac{P_{w h}}{P_{w h}+P_{s}}
$$

$$
P_{w}=P_{w h}(1+T F)
$$

$$
P_{w u}=P_{w} \times \overline{L F}
$$

$$
P_{w U}^{\prime}=P_{w} \times[F
$$

e. Groundwater:

$$
p_{g}=0.43 h_{w}
$$

$$
P_{g u}=p_{g} \times[F
$$

f. Vocurm:
$P_{v}=$

$$
P_{V U}=P_{v} \times[F
$$

g. Internal

Pressure:

15 ft . cover
$\frac{120 \times 15}{144}=12.5 \mathrm{psi}$
$12.5 \times 1.5=18.8 \mathrm{psi}$
$12.5 \times 0.8=10.0$ psi
$1-\frac{10}{3 \times 15}=0.778$
$12.5 \times 0.778=9.7 \mathrm{psi}$
$9.7 \times 1.5=14.6$
0.8 psi
$\frac{0.8}{0.8+\sqrt{2.5}}=0.06$
$0.8 \times 1.06=0.8 \mathrm{psi}$
$0.8 \times 1.8=1.4 \mathrm{psi}$
$0.8 \times 0.8=0.6 \mathrm{psi}$
$0.43 \times 10=4.3 \mathrm{psi}$
$4.3 \times 1.5=6.5 \mathrm{psi}$
14.7 psi
$14.7 \times 1.8=26.5 \mathrm{psi}$
45 psi
$45 \times 2.0=90 \mathrm{psi}$

4 ft. cover
$\frac{120 \times 4}{144}=3.3 \mathrm{psi}$
$3.3 \times 1.5=5.0 \mathrm{psi}$
$3.3 \times 0.8=2.6 \mathrm{psi}$
$1-0=1$
$3.3 \rho \mathrm{si}$
$3.3 \times 1.5=5.0$
3.3 psi
$\frac{3.3}{3.3+3.3}=0.5$
$3.3(1.5)=5.0 \mathrm{psi}$
$5.0 \times 1.8=9.0 \mathrm{psi}$
$5.0 \times 0.8=4.0 \mathrm{psi}$
$0.43 \times 0=0 \mathrm{psi}$
0
14.7 psi
$14.7 \times 1.8=26.5 \mathrm{psi}$
45 psi
$45 \times 2.0=20 \mathrm{psi}$
Example 9-20 (continued)
3. Maximum Deflection
a). Earth load ( $D F=1.5, K_{b}=0.11$ from Table 9-12)

$$
\frac{\Delta_{s}}{2 R}=\frac{K_{b} P_{s}}{0.149 \overline{P S}_{0}+0.061 E^{\prime}} \times D F=\left(\frac{0.11 \times 12.5}{0.145 \times 108+0.061 \times 2000}\right) \times 1.5=0.0149 \mathrm{in} / \mathrm{in}=1.49 \%
$$

b). Live lood at 15 ft depth is smal! (neglect)
$\frac{\Delta}{\mathbf{2} R}=0$
c). Installation deflection (for PS ${ }_{0}=108 \mathrm{psi}$ )
$\frac{\Delta i}{2 R}=2.0 \%$ (from Toble 9-13)
d). Total deflection
$\frac{\Delta}{2 R}=\frac{\Delta s}{2 R}+\frac{\Delta w}{2 R}+\frac{\Delta i}{2 R}=1.49 \%+0+2.0 \% \approx 3.5 \%$
4. Strain Components
a. Ring Bending - Haunching is sperified, inspection is expected to be nominal. Select $\overline{M F}=1.0$ from Table 9-12.

| $\varepsilon_{\text {bsu }}$ |  | $\frac{\Delta s}{2 R} \times[F$ |  | $1.49 \times 1.5$ |  | 0.60\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\varepsilon_{\text {bwu }}$ | $=2.14\left(\frac{t}{R}\right) \bar{M} \bar{F}:$ | $\frac{\Delta w}{2 R} \times[F$ | $=2.14\left(\frac{1.882}{15.1}\right) \times 1.0 \times$ | $0 \times 1.8$ | $=$ | 0 |
| $\varepsilon_{\text {biu }}$ |  | $\frac{\Delta i}{2 R} \times[F$ |  | $2.0 \times 1.5$ |  | 0.80\% |

$$
\varepsilon_{b u}=\varepsilon_{b s u}+\varepsilon_{b w u}+\varepsilon_{b i u}=
$$

b. Ring tension
$\varepsilon_{\text {tu }}=\frac{P_{f u} R_{i}}{T E_{0}}=\frac{90 \times 14.1}{1.882 \times 100,000}=0.0067 \mathrm{in} . \rho \mathrm{in} .=0.67 \%$
c. Ring compression

$$
\left|\begin{array}{c}
\varepsilon_{c s u} \\
\varepsilon_{c s u}^{\prime} \\
\varepsilon_{c w u} \\
\varepsilon_{c v u}
\end{array}\right|=\begin{aligned}
& R_{o} \\
& E_{0}
\end{aligned}\left|\begin{array}{l}
P_{s u} \\
P_{s u} \\
P_{w u} \\
P_{w u}
\end{array}\right|=\left|\begin{array}{c}
18.0 \\
10.0 \\
0 \\
26.5
\end{array}\right|=\left|\begin{array}{c}
0.16 \% \\
0.085 \% \\
0 \% \\
0.23 \%
\end{array}\right|
$$

## Examph: 9-20 (continured)

5. Strength Adequacy
a. Maximum compression before pressurization
$R_{0}=\frac{\varepsilon_{b u}}{\varepsilon_{R u}}\left[\frac{1}{1-\frac{\varepsilon_{\mathrm{csu}}+\varepsilon_{\mathrm{cwu}}+\varepsilon_{\mathrm{cvu}}}{\varepsilon_{\mathrm{Cu}}}}\right]=\frac{1.4}{2.3}\left[\frac{1}{1-\frac{0.16+0+0.23}{1.2}}\right]=0.90 \leq 1 \quad$ o.k.
b. Maximum tension
$\overline{R F}=\left[1+\frac{2 p_{f} R_{i}}{\left(p_{s}+p_{w}\right) R_{0}}\left(\frac{\Delta}{2 R}\right)\right]^{-1}=\left[1+\frac{2 \times 45 \times 14.1}{(12.5+0) 16.0}(0.035)\right]^{-1}=0.818$
$\bar{R}_{c}=\frac{\varepsilon_{\text {bu }}}{\varepsilon_{R u}}\left[\frac{\overline{R F}}{1-\frac{\varepsilon_{t u}-\varepsilon_{C s u}}{\varepsilon_{C u}}}\right]=\frac{1.4}{2.3}\left[\frac{0.818}{1-\frac{0.67-0.085}{1.2}}\right]=0.97 \leq 1 \quad$ o.k.
Note that rerounding reduces flexural strains by $(1-0.818)=0.18$ or $!8 \%$.
6. Buakling
a. Modified AWWA formulo
$P_{c r}=0.77\left[\left(\frac{\left(1-\frac{\Delta}{2 R} \text { max }\right)}{\left(1+\frac{\Delta}{2 R} \text { max }\right)^{2}}\right)^{3} C_{w} B^{\prime}\left(E^{\prime} d^{\prime}\right)\left(P^{\prime}{ }_{10} \phi^{\prime \prime \prime}\right)\right]^{1 / 2}$
$C_{w}=0.778$ (From Step 2c)
$\frac{h}{2 R_{0}}=\frac{15}{2 \times 16.0 \times \frac{1}{12}}=5.63$
$B^{\prime}=0.150+0.014 \frac{h}{2 R_{0}}=0.150+(0.014 \times 5.63)=0.229$
$p_{c r}=0.77\left[\left(\frac{(1-0.035)}{(1+0.035)^{2}}\right)^{3} \times 0.778 \times 0.229 \times 2000 \times 0.5 \times 54 \times 0.75\right]^{1 / 2}=55.9 \mathrm{psi}$
$\bar{R}_{d}=\left(p_{b v}+P_{g u}+p_{v v}\right) /\left(p_{c r}\right)=(14.6+6.5+26.5) /(55.9)=0.85 \leq \overline{1} \quad$ o.k.
b. Buckling under hydrostatic component of load.
$P_{c r}^{\prime}=0.5 C_{a} \phi^{\prime} \overline{P 5}_{10} \times \phi^{\prime \prime}$
Say $C_{a}=3$ for well compacted gravel
$P_{c r}^{\prime}=0.5 \times 3 \times 0.5 \times 54.0 \times 0.75=30.5 \mathrm{psi}$
$\bar{R}_{e}=\left(p_{g u}+p_{v u}\right) /\left(p_{c r}{ }^{\prime}\right)=(6.5+26.5) /(30.5)=1.09$

## Example 9-20 (continued)

7. Check pipe design at 4 it minimum cover
a. Loads - See Step 2
b. Maximum deflection
$\frac{\Delta \mathrm{s}}{2 \mathrm{R}}=\frac{K_{b} P_{s}}{0.149 \overline{\mathrm{PS}}+0.061 \mathrm{E}^{\prime}} \times \overline{D F}=\frac{0.11 \times 3.3}{0.179 \times 108+0.061 \times 2000} \times 1.5=0.0039 \mathrm{in} . / \mathrm{in} .=0.39 \%$
$\frac{P_{w}}{P_{s}}=\frac{5.0}{3.3}=1.5 \geq 0.25$ (Therefore use $\mathrm{n}=0.5$ )
$\frac{\Delta w}{2 R}=\frac{K_{b} P_{w}}{0.149 \overline{P S}_{0}+0.061 n E^{\prime}}=\frac{0.11 \times 5.0}{0.149 \times 108+0.061 \times 0.5 \times 2000}=0.0071 \mathrm{in} . / \mathrm{in} .=0.71 \%$
$\frac{\Delta i}{2 R}=2.0 \%$
$\frac{\Delta}{2 R}=\frac{\Delta_{s}}{2 R}+\frac{\Delta w}{2 R}+\frac{\Delta i}{2 R}=0.39+0.71+2.0=3.1 \%=0.031 \mathrm{in} . / \mathrm{in}$.
c. Strain components
$\left|\begin{array}{l}\varepsilon_{b s u} \\ \varepsilon_{b w u} \\ \varepsilon_{b i u}\end{array}\right|=2.14\left(\frac{t}{R}\right) \overline{M F} \times\left|\begin{array}{c}\frac{\Delta s}{2 R} \times[F \\ \frac{\Delta w}{2 R} \times[F \\ \frac{\Delta i}{2 R} \times[F\end{array}\right|=2.14\left(\frac{1.882}{15.1}\right) \times 1.0 \times\left|\begin{array}{ll}0.39 \times 1.5 \\ 0.71 \times 1.8 \\ 2.0 & \times 1.5\end{array}\right|=\left\lvert\, \begin{aligned} & 0.16 \% \\ & 0.34 \% \\ & 0.80 \%\end{aligned}\right.$
$\varepsilon_{b u}=\varepsilon_{b s u}+\varepsilon_{b w u}+\varepsilon_{b i u}$
$\left|\begin{array}{l}\varepsilon_{c s u} \\ \varepsilon_{c s u}^{\prime} \\ \varepsilon_{\text {cwu }} \\ \varepsilon_{c w u}^{\prime}\end{array}\right|=\frac{R_{0}}{f E_{0}}\left|\begin{array}{l}P_{\text {su }} \\ P_{s u} \\ P_{\text {wu }} \\ \rho_{\text {vuU }}\end{array}\right|=\frac{16.0 \times 100}{1.882 \times 100,000} \times\left|\begin{array}{l}5.0 \\ 2.6 \\ 9.0 \\ 4.0\end{array}\right|=\left|\begin{array}{l}0.04 \% \\ 0.02 \% \\ 0.08 \% \\ 0.03 \%\end{array}\right|$
$\varepsilon_{\text {fu }} \doteq 0.0067 \mathrm{in} . / \mathrm{in} .=0.67 \%($ Step 4b)
d. Strength odequacy

$$
\begin{aligned}
& \bar{R}_{0}=\frac{\varepsilon_{b u}}{\varepsilon_{R u}}\left[\frac{1}{1-\frac{\varepsilon_{c s u}+\varepsilon_{c w u}+\varepsilon_{c v u}}{\varepsilon_{c u}}}\right]=\frac{1.30}{2.3}\left[\frac{1}{1-\frac{0.34+0.08+0.23}{1.2}}\right]=0.80<; \text { o.k. } \\
& \overline{R F}=\left[1+\frac{2 p_{f} R_{i}}{\left(P_{s}+p_{w}\right) R_{0}}\left(\frac{A}{2 R}\right)\right]^{-1}=\left[1+\frac{2 \times 45 \times 14.1}{(3.3+5.0) 16.0}(0.031)\right]^{-1}=0.77
\end{aligned}
$$

## Example 9-20 (continued)

$$
\bar{R}_{c}=\frac{\varepsilon_{b u}}{\varepsilon_{R u}}\left[\frac{R F}{1-\frac{\varepsilon_{t u^{-} c_{c s u} \varepsilon_{c W u}}^{\varepsilon_{C u}}}{\varepsilon_{U U}}}\right]=\frac{1.30}{2 . j}\left[\frac{0.77}{1-\frac{0.67-0.02-0.03}{1.2}}\right]=0.89
$$

A separate check without wheel load, with $p_{w}=0, \Delta / 2 R=0.024, \varepsilon_{b u}=0.96$, and $\varepsilon_{\text {cwu }}^{\prime}=0$, indicates $\overrightarrow{R F}=0.63$ and $R_{c}=0.78$. Therefore, above condition governs.
e. Buckling

## Modified AWWA formula

$$
\begin{aligned}
& P_{c r}=0.77\left[\left(\frac{\left(1-\frac{\Delta}{2 R} \operatorname{mox}\right)}{\left(1+\frac{\Delta}{2 R} \max \right)^{2}}\right)^{3} C_{w} B^{\prime}\left(E^{\prime} \phi^{\prime}\right)\left(P_{10} \phi^{\prime \prime}\right)\right]^{1 / 2} \\
& C_{w}=1 ; \frac{h}{2 R_{0}}=\frac{4 \times 12}{2 \times 16.0}=1.50 ; B^{\prime}=0.015+0.041 \frac{h}{2 R_{0}}=0.077
\end{aligned}
$$

$p_{c r}=0.77\left[\left(\frac{(1-0.031)}{(1+0.031)^{2}}\right)^{3} \times 1 \times 0.077 \times 2000 \times 0.5 \times 54 \times 0.75\right]^{1 / 2}=37.4 \mathrm{psi}$
$\bar{R}_{d}=\left(p_{b u}+p_{w u}+p_{v u}\right) /\left(p_{c r}\right)=(5.0+9.0+26.5) /(37.4)=1.08$
Buckling becomes critical at shallow burial mainly because B', an indicesor of stiffness of soil confinement, reduces drastically with decreasing depth according to the AWWA formula. (Compare with Step 6a.)

Hydrostatic Buckling (vacuum only, no ground water)
$p_{c r}^{\prime}=30.5 \mathrm{psi}$ (from Step 6b)
$\bar{R}_{e}=P_{\mathbf{V u}} / P_{c r}^{\prime}=26.5 / 30.5=0.87$
8. Summary

| Following is a summary of results: |  | 15 ft Burial |  | 4 ft Burial |
| :--- | :--- | :--- | :--- | :--- |
| Deflection |  | $3.5 \%$ |  | $3.1 \%$ |
| Maximum Compression | $\bar{R}_{\mathrm{a}}$ | 0.90 | 0.80 |  |
| Maximum Tension | $\bar{R}_{c}$ | 0.97 | 0.89 |  |
| AWWA Buckling | $\bar{R}_{d}$ | 0.85 | 1.08 |  |
| Hydrostatic Buckling | $\overline{R_{e}}$ | $i .09$ | 0.87 |  |

The design meets all criteria except for AWWA buckling at shallow burial and hydrostatic buckling at deep burial.

## Example 9-20 (continued) <br> - The following options are available.

a. Accept $8 \%$ and $9 \%$ cverstress in buckling since occuracy of analysis is not high. Note that $8 \%$ overstress exists at shallow burial only when maximum vehicle wheel lond and short-term occasional vacuum due to surge occur simultaneously. The: likelihood of both of these loads acting simultaneously is small, as indicated in the AWWA Standard.
b. Increase compaction requirements of gravel to greater than $95 \%$. This will increase E' by $50 \%$. The increase in E' will result in on increase in buckling resistance such that $\bar{R}_{d}$ and $\bar{R}_{e}<1$ for shallow depths.
c. Change from gravel to crushed stone at $90 \%$ density. This will produce resu!ts similar to (b.).
d. Increase wall thickness of pipe.

Note: 1 in. $=25.4 \mathrm{~mm}, 1 \mathrm{ft}=0.3048 \mathrm{~m}, 1 \mathrm{in} . / \mathrm{in} .=1 \mathrm{~mm} / \mathrm{mm}, \mid \mathrm{in} .^{4} / \mathrm{in} .=16,387 \mathrm{~mm}{ }^{4} / \mathrm{mm}$, $I$ psi $=0.0069 \mathrm{MPa}$.

## REFERENCES - CHAPTER 9

9.1 Widera, G.E.O. and Logan, D.L., "Refined Theories for Nonhomogeneous Anistropic Cylindrical S'hells: Part 1 - Deviation and Part II -Application", Journal of the Engineering Mechanics Division, Papers 15933 and 15934, Vol. 106, No. EM6, American Society of Civil Engineers, New York, December 1980.
2.2 Lentovich, V., Frames \& Arches, New York, McGraw-Hill, 1959
9.3 Roark \& Young, Formulas for Stress and Strain, 5th Edition, New York, McGraw-Hill, 1975. (See also 4th edition, 1965, for certain additional formulas.)
9.4 Olander, H.C., Stress Analysis of Concrete Pipe, U.S. Bureau of Reciamation, Eng. Monograph No. 6.
9.5 Peterson, R.E., Stress Concentratior, Factors, Wiley, New York, 1974.
9.6 ASCE, Manual of Engineering Practice - No. 31, Design of Cylindrical Concrete Shell Roofs, ASCE, 1951.
9.7 Timoshenko, S., anc Woinowsky-Krieger, S., Theory of Plates ur.d Shells, 2nd Ed., New York, McGraw-Hill, 1959.
9.8 Pfluger, A., Elementary Statics of Shells, New York, F.W. Dodge, 1961.
9.9 Baker, E.H., Kovaleviky, L., and Rish, F.L.; Structural Ana!jsis of Shells, New York, McGrow-Hill, 1972.
9.10 Flugge, W., Stresses in Shells, Berlin, Springer-Verlog, 1960.
9.11 Hoas, A.M., Design of Thin Concrete Shells, Vols I \& II, New York, Wiley, 1962.
9.12 Billington, D.P., Thin Shell Concrete Structures, New York, McGraw-Hill, 1965.
9.13 Condelo, F., General Formulae for Membrane Stresses in Hyperbolic Paraboloidical Shells, ACT Journal, 353 (October 1960).
9. 14 Parme, A.L., Hyperbolic Paraboloids and Other Shells of Double Curvature, ASCE Trans., 989 (1958).
9.15 "State-of-the-Art Report on Air Supported Structures", American Society of Civil Engineers, New York, 1979.
9.16 Rosato, D.V. \& Grove, C.S., Jr., Filament Winding, Interscience, 1964.
9.17 Pressure Vessels and Piping: Design und Analysis, Vol. I - Analysis, Vol. II - Compnnents and Structural Dynamics, (A compilation of tecínical papers), American Society of Mechonical Engineers, New York, 1972.
9.18 Lundgren, H., Cylindrical Concrete Shell Roofs, Copenhagen, The Danish Technical Press, 1951.
9.19 Buchert, K.P., Buckling of Shell \& Shell-Like Structures, Columbia, Missouri, K.P. Büchert \& Assoc., 1973.
9.20 Crondall, S.H., \& Dahl, N.C.; An Introduction to the Mechanics of Materials, New York, McGraw-Hill, 1959, p. 370.
9.21 Heger, F.J., "Design of Reinforced Plostic Shell Structures", Chapter 6 in Plastics in Building, edited Ey Skeist, I., New York, Reinhold, 1966.
9.22 Heger, F.J., "Design of FRP Fluid Storage Vessels", Journal of Structural Division, ASCE, Nov. 1970.
9.23 Timoshenko, S.P. and Gere, J.M., Theory of Elastic Stability, 2nd Ed., New York, McGraw-Hill, 1961.
9.24 Column Research Committee of Japan, Handbook of Structural Siability, Tokyo, Corona, 1971.
9.25 Buckling of Thin-Walled Circular Cylinders, NASA SP 8007, 1968.
9.26 Gerard, G. and Becker, H.: Handbook of Structural Stability: III, BuckIing of Curved Plates and Shells, NACA TN 3783, 1957.
9.27 Becker, H., General Instability of Stiffened Cylinders, NACA TN 4237 Washington, 1958.
9.28 Kloppel, K. and Jungbluth, O., "Beitrag Zum Durchschlagproblem dunnwandiger Kugelschalen" Der Stahlbau, vol. 22, p. 121, 1953 (ir. German).
9.29 Structural Stability Research Council, B.G. Johnston, Ed., Guide to Stability Design Criteria for Metal Structures, 3rd Ed., 1976.
9.30 Kloppel, K. and Roos, E. "Beitrag zum Durchsch lagproblem dunnwandiger versteifter und unversteifter Kugelschalen fur Voll-und halbseitage Belastung, Der Stohlbau, vol. 25, p. 49, 1956.
9.31 Heger, F.J., Chambers, R.E., Dietz, A.G.; "On the Use of Plastics and Other Composite Materials for Shell Roof Structures", World Conference on Shell Structures, Son Francisco, 1967.
9.32 Schnobrich, W. C., "Analysis of Hipped Roof Hyperbolic Paraboloid Structures", Journal of Structural Division, Vol. 93, ST7, American Society of Civil Engineers, New York, July 1972.
9.33 Shoabon, A. and Ketchum, M., "Design of Hipped Hypar Shells", Journal of Structural Division, Vol. 102, STII, American Society of Civil Engineers, New York, November 1976.
9.34 White, R., "Reinforced Concrete Hyperbolic Paraboloid Shells", Journal of Structural Division, Vol. I01, ST9, American Society uf Civil Engineers, New York, September 1975.
9.35 Ranjan, G. V. and Steel, C. R., "Analysis of Torispherical Pressure Vessels", Journal of Engineering Mechanics Division, Vol. 102, EM4, Americon Society of Civil Engineers, New York, August 1976.
9.36 Ghali, A., Circular Storage Tanks and Silos, London, Spon, 1979.
9.37 McDermott, J. F., "Single-Layer Corrugated-Steel-Sheet Hypars", Journal of the Structural Division, Vol. 94, ST6, American Society of Civil Engineers, New York, June 1968.
9.38 Reisner, E., "On Some Aspects of the Theory of Thin Elastic Shells", Journal of the Boston Society of Civil Engineers, Vol. 42, No. 2, Boston Society of Civil Engineers, April 1955.
9.39 Miller, C. D., "Buckling of Axially Compressed Cylinders", Journal of the Structural Division, Vol. 103, No. ST3, American Society of Civil Engineers, New York, March 1977.
9.40 Zick, L. P., "Stresses in Large Horizontal Cylindrical Pressure Vessels on Two Saddle Supports", The Welding Journal Research Supplement, September 1951, Reprinted in Vol. 2, Ref. (9.17)
9.41 Heger, F. J., Chambers, R. E., "Design, Analysis and Economics of Fiberglass Reinforced Plastics World's Fair Structures", Proceedings, 21 st Annual Technical and Management Conference, Reinforced Plastic, Division, Society of the Plastics Industry, Inc., New York, 1966.
9.42 Heger, F. J., "Engineering Concepts in the Design of Two FRP Shell Roof Structures", Proceedings, 19th Annual Technical and Management Conference, Reinforced Plastics Division, The Society of the Plastics Industry, Inc., New York, 1964.
9.43 Kulkarni, S. and Zweben, C. (ed.), Composites in Pressure Vessels and Piping, PVP - PB - 021, American Society of Mechanical Engineers, New York, 1977.
9.44 Chambers, R.E., McGrath, T.J. and Heger, F.J., Plastic Pipe for Subsurface Drainage of Tronsportation Facilities, National Cooperative Highway Research Pragram Report 225, Transportation Research Board, National Research Council, Washington, DC, October. 1980.
9.45 Chambers, R.E., McGrath, T.J., "Structural Design of Buried Plostic Pipe", Proceedings, ASCE International Conference on Underground Plastic Pipe, New Orleans, LA, March 1981.
9.46 The American Water Works Associotion, "Standard for Glass Fiber Reinforced Thermosetting Resin Pressure Pipe," (AWWA C950-80), 1280.

## ASCE Structural Plastics Design Manval

## CHAPTER 10 - FIRE SAFETY CONSIDERATIONS <br> By Albert G. H. Dictz

## TABLEOFONTENTS

Poge
10.1 Introduction ..... $10-1$
10.2 Steps Leading to Combustion ..... 10-2
10.3 Modification for Improved Behavior in Fire ..... 10-7
10.4 Tests for Evaluating Materials ..... 10-9
10.5 Design Approaches for Fire Safety ..... 10-23
10.6 Building Codes ..... 10-31
10.7 Summary ..... $10-42$
Appendix $10-A$ - Description of Combustion ..... $10-43$
Appendix 10-B - Effect of Temperature on Mechanical Properties ..... 10-49
Appendix 10-C - Potential Heat of Plastics ..... 10-51
References ..... 10-52

## CIHAPTER IO - FIRE SAFETY CONSIDERATIONS

## A. C. H. Dietz

### 10.1 INTRODUCTION

When plastics are emplayed structurally, their behavior in fire must be considered, as is true of other structural materials. Ease of ignitiori, rate of flame spread, rate of heat release, smoke release, toxicity of products of combustion, and other factors must be taken into account. Plastics are organic materials and, like other organic construction materials, can be destroyed by fire. Some burn readily, others with difficulty, and still others do not support their own combustion. Behavior in fire depends upon the nature and scale of the fire and the surrounding conditions. Fire is a highly complex, variable phenomenon, and the behavior of organic materials, including plastics, in a fire is equally complex and variable.

No atfernpt at on exhoustive treatment is made here. Differences between behavior of plastics in controlled labaratory-scale fires and in large actual fires are set forth. There is some discussion of the products of combustion including smoke and gases. Steps taken to modify the susceptibility of plastics to fire are briefly outlined.

Fire tests of plastics, like fire tests generally, are frequently highly specific and the results are specific to the tests. The results of one type of test may not correlate directly with another. Some tests are intended mainly for screening purposes during research and development; others, such as the large-scale tests, more nearly approximate actual fires. Consequently, such often-used terms as "self-extinguishing" and "flame spread" must be understood in the context of the specific tests with which they are emplayed. Commonly-used tests are summarized in this chapter and their limitations indicated.

The principles of good design for fire safety are as applicable to plastics as to other materials. The specific design must be carefully considered, the properties of the materials taken into account, and engineering judgment applied.

Experience and tests have indicated approaches that may be utilized and applications that have been found satisfactory.

Building codes have incorporated provisions for plastics since about 1955. The model codes contain such provisions. These are summarized as examples, but in any specific instance the local code that hes jurisdiction must be followed.

### 10.2 STEPS LEADNG TO COMBUSTION

## Small-Scale Burning (10.1) *

In small-scale fire tests, as in many laboratory screening tests, several stages are involved. At relatively low temperatures, such as $175-212^{\circ} \mathrm{F}\left(80-100^{\circ} \mathrm{C}\right.$ ), slow oxidation occurs, a feature also characteristic of oging, which is often enhanced as temperatures increase. As the temperoture is raised, the process is accelerated. When the temperature becomes high enough, in the range 390$570^{\circ} \mathrm{F}\left(200-300^{\circ} \mathrm{C}\right)$, the process in the presence of air (oxygen) becomes exothermic, that is, heat is evolved, giving off decomposition products which are often flammable. Thermoplastics soften or melt, whereas thermosets characteristically maintain their shapes. If more heat is added, auto-ignition occurs at approximately $750^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right)$, resulting in combustion. (See Appendix $A$ for more detailed description.)

## Large-Scale Burning (10.2) (10.8) (10.10)

The foregoing description of the successive stages of decomposition and ignition of plastics is for small-scale fires, as in laboratory tests. In real fires, as in a room, the same reactions probably take pioce, but the scale and temperatures involved are much larger and more complex, leading to phenomeno not found in small-scale controlled laboratory burring. The following stages are generally encountered:

[^13]Ignition: A fire can stort in man; ways, not necessarily involving a plastic moterial. The location, temperature, energy output, and duration of an ignition source are important. A burning motch, a lighted cigarette, an electrical short, or any one of mary sources may start a fire slowly or rapidly. At this stage, the decomposition temperature and behavior, ease of ignition, extent of exposure, and extent of involvement of plastics are important.

Build-wp and Spread. This and following stages are strongly influenced by ventilation, fuel load, composition, ovailability, configuration and moisture content of materials. Temperatures of materials rise as the fire continues and contributes heat. Easily-ignited materials catch fire. Fire may begin to spread on flammable surfaces such as finishes. Combustible and toxic gases begin to evolve and smoke is produced; these constitute a hazard to occupants. Early warning, as by smoke and fire detectors, may be crucial.

Flashover. This phenomenon is familiar to firefighters and is the critical point in a fire. At this stage, most or all of the combustible materials reach the ignition temperatures because of radiation, convection, and conduction from the original fire. An entire room and its contents, for example, seem suddenly to burst into flame simultaneously. Ease of ignition, surface flammability, extent of exposure, evolution of combustible gases and extent of involvement of all combustibles, including plastics, are important.

Fully-Developed Fire. All of the combustibles are essentially involved. The total heat contributed by the materials is now important. This is a function of the unit heat of combustion and the quantity of material. Fire gases and smoke production are critical. Occupants may find it impossitle to escape.

Propagation. Whether the fully-developed fire will spread to adjacent areas depends upon the dimensions of the compartment, the fire resistance of the boundaries, and such deterrents as sprinklers. Ii wails, floors, and ceilings are resistont to fire, and if openings con be closed to stop the spread, the fire moy be contained. If not, it may spread to other parts of the structure.

Fig. 10-1 illustrates fire-intensity phases in an energy-time relationship during fires that undergo flashover and those that do not. The latter involve little
energy and may be confined to their points of origin. Flashover fires, on the other hand, involve large amounts of energy and may propagate across incombustible zones if not effectively blockred. Intensity may be high and of short duration, as in fires involving readily-available combustibles and plenty of ventilation, or intensity may be low and of long duration, as in damped fires involving less-readily burned materials, which may smalder for a considerable period.


Fig. 10-1 FIRE WTENSITY PHASES (10.8)

Smake (10.2) (10.3) (10.4) (10.7) (10.10) (10.11) (10.12) (10.13) (10.14) (10.15) (10.16) (10.17)

Smoke is recognized by firefighters as in many ways more dangerous than actual flarre because it (I) obscures vision, moking it impossible to find safe meons of egress and leading to panic, (2) makes help or rescue difficult or impossible, and (3) leads to physiological reactions such as choking and lachrymation. Smoke usually contains toxic gases such as carbon monoxide, often accompanied by noxious gases that may lead to nausea and other debilitating effects, as well as ponic. Smoke particles may carry aerosols such us HCl on their sur faces.

Whether plastics give off light or heavy smoke and toxic or noxious gases depends upon composition ond the conditions under which burning occurs. Some burn witin a fairly clean flame in the presence of plentiful air, but inay give off dense smoke under smoldering conditions. Others are inherently smoke producing. The composition of the smoke depends upon the composition of the plastic and the burning conditions, os is true of other organic materials of construction. In a particular application, therefore, careful consideration should be given to the relative importance of flame and smoke, including design favoring the rapid elimination of smoke by venting, for example, or fending off smoke as in pressurized corridors and stair towers.

Table 10-1 presents flame sprend and smoke evolved from a number of tests on plastics materials performed in the fire tunnel, ASTM E84 (see comments in Section 10.4). These are to be taken as examples that show the range of results brought about by differences in composition, thickness, and configurations of plastic moterials, including high-pressure laminates, molded plastics, reinforced plastics, polymer concrete, and miscellaneous materials when tested by this particular method. Variations and anomalies in smoke and flame-spread values are not unusual for several test runs of the same material in this tunnel test and in other tests.

## Toxic and Noxious Gnses (10.7) (10.10) (10.11) (10.12) (10.13) (10.14) (10.15)

The subject of loxic and noxious gases generated by the decomposition and combustion of plostics is so large, complex, and incompletely understood that no ottempt is made here to treat it exhoustively.

Table 10-1
Burning Characteristics of Selected Plastics
Flomespread Test ASTM E84

|  | Florme Spreed | Smake Dovelcopd |
| :---: | :---: | :---: |
| Hati-Pramue lominates (d) |  |  |
| (1) Unbended Cenerol Purpeen Unbended Fire Pecitront | $\infty_{5}$ | ${\underset{25}{135} 170}^{250}$ |
| Bonded to CA Board Generol Purpees Fire Reaistom | $25-40$ | $\begin{array}{r} 0-25 \\ 5 \end{array}$ |
| (2) Unbended Comeral Purpoee Unberdad Fire Resistent | $\begin{gathered} 115 \\ 45-70 \end{gathered}$ | $\begin{array}{r} 400 \\ 65 \end{array}$ |
| Bonded to CA Board Generol Purpces Fire Remistont | $\begin{aligned} & 70 \\ & 25 \end{aligned}$ | $110-160$ |
| (3) Unbended Genorol Purpoe Unbended Fire Resistont | $\begin{gathered} 320-350 \\ 55 \end{gathered}$ | $\begin{gathered} 200-250 \\ 85-160 \end{gathered}$ |
| Bondrd to CA Boord Genneral Purpoes Fire Resistont | $\begin{gathered} 55-70 \\ 15 \end{gathered}$ | $\begin{aligned} & 35-55 \\ & 10-30 \end{aligned}$ |
| Moldnd Plasties (a) |  |  |
| Open-Grid Parvls Open-Grid Panels | ${ }_{130-160}^{25}$ | $\begin{gathered} 450 \text {-over } 500 \\ \text { over } 800 \end{gathered}$ |
| Trenstuement Parels Trosalucent Pareis | $\begin{aligned} & 10 \\ & 25 \end{aligned}$ |  |
| Glose Fiber Reinforend Plostiga (a) |  |  |
| $\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$ | $\begin{aligned} & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 50 \\ & 70 \\ & 75 \end{aligned}$ | $\begin{gathered} \text { over } 500 \\ \text { 140-200 } \\ 300-400 \\ 200 \\ 250 \\ \text { owe } 500 \\ \text { over } 500 \end{gathered}$ |
| Potyatier Concrefo (b) | 3 | 55 |
| Miscellaneous Moteriols ( $c$ ) |  |  |
| Solid Vinal Tile <br> Viryt Flooring <br> Vinyl Aubettoe Till <br> Aphols 7 Ite <br> Laven Mohogemy <br> White Pire Pomelling <br> Hollew-Care Wood Oowr <br> Whise Virpt Centing Parols | $\begin{gathered} 90 \\ 60 \\ 225 \\ 82 \\ 242 \\ 130 \\ 325-420 \\ 20 \end{gathered}$ |  |
|  |  |  |

Like organic materials generally, plastics and other polymers may generate both toxic and noxious gases, as well as smoke, when exposed to high heat and during burning. The gases that will be generated depend upon the composition of the plastic and the burning conditions. If the plastic contains only carbon, hydrogen ond oxygen, and if it burns under favorable conditions in the presence of plentiful oxygen, the products may be mainly water vopar and carbon diaxide. Under unfavorable conditions, such os deficient oxygen, great quantities of carbon monoxide may be generated. Some rarion monoxide is generated in any fire. Carbon monoxide is by far the most dangerous gas becruse it may be present in large quantities, but has ne odor or other identifyiing features.

Again depending upon composition and burning conditions, plastics comaining such elements as ch:lorine, nitrogen, phosphorous, and others may yenerote hydrogen chloride, corrosive to many moterials and to living tissue, hydrogen cyonide, phosgene, acrolein, aldehydes, and others, as well as release the basic monomers of which the molecular chains were composed. Frequently, small amounts of these gases are so noxious as to be intoleroble before lethal levels are attoined.

It is difficult to ascertain actual levels of gases in real fires; hence, the uncertainty respecting the hazards presented by burning plastics. Considerable research into and meusurernents of gases as well as smoke is consequently being undertaken, in light of the increasing uses of plustics in construction. Similar research is underway to diminish the levels of noxious and toxic goses as well os smoke. (see, also, Section 10.4.) Generally-accepted tests to evaluate toxicity are lacking.

## 1C. 3 MODFICATION FOR IMPROVED BEHAVIOR W FIRE (I0.1) (10.2) (10.3) (10.5) (10.17)

Susceptibility of unfilled, unmodified plastics to fire can be diminished in manufocture by (1) development of plastics whose structures ore inherently resistant to ignition when exposed to heat and oxygen, (2) modification, and (3) incorporotion of additives. Whatever the material, including plastics, the design of a structure to minimize fire donger may be more important than any of these.

The first approach is problematical in many building fires. Polymers resistant to high temperatures are possible and are produced, but it is doubtful that any foreseeable structurally-useful ones can withstand the temperatures and heat found, in fully-developed building fires, although some will propogate flame much less rapidly thon others.

The second and third approaches are actively pursued in the attempt to provide plastics of varying resistance to fire.

Modification of the polymeric structure by incorporating reactive flame retardants and by incorporating additives usually involves one or more of the following opprooches to achieve:

1. Decomposition and combustion products which are non-combustible, or heavy enough to blanket the plastic and prevent or retard interaction with air.
2. Decomposition and combustion reactions thai involve reduced heats of combustion.
3. Reduced ease of ignition, involving increased ignition or decomposition temperature, or increased energy needed for decomposition.
4. Increased amount of solid residue so as to maintain structural integrity and impede access of heat and oxygen. Char formation, similar to the char formed on structural timber, is one of the best ways to achieve this objective. Carbon monoxide and carbon dioxide formation releases large quantities of energy and the products go off as gases, whereas carbon as char releases no energy, protects the substrate, and helps to retain the integrity of the part. Other favorable aspects are impeded access of heat and oxygen, lessened oxygen depletion and reduced toxic gas (carbon monoxide). Decomposition of silicone plastics leaves a residue of silica.
5. Increased specific heat or thermal conductivity to preverit or retard local hot spots.
6. Decreased amount of resin and other combustibles by use of incombustible fillers or reinforcements such as mineral particles and glass fibers.

The chemistry involved in accomplishing these ends is more fully set forth in Appendix A.

Zones of time vs. temperature in which various plastics retain 50 percent of their mechanical and physical properties are shown in Appendix B.

## Weathering (10.18)

Fire retardants frequently lead to decreased resistance to weathering. For example, the translucent glass fiber-reinforced polyester sheets commonly employed in flat or corrugated form for wall and roof covering and in sondwich panels may turn yellow and dorken upon exposure to sunlight if the polyester is one of the chlorinated types. This phensmenon may be accompanied by more rapid erosion of the surface, leading to exposure of fibers, than is true of the more highly weather-resistant types.

Because this type of deterioration is caused by ultroviolet radiation, it can be combated by employing overloys of ultraviolet-screening films. It has been found, for eyample, that applying a thir, film (several mils) of polyvinyl fluoride to the surface of glass fiber-reinforced chlorinated polyester sheet greatly reduces surface breakdown, and such protected sheets ore employed in regions of intense sun'ight.

Surface erosion con frequently be repaired and surfaces restored by the application of liquid acrylic films which harden in place, protecting the fibers from expcsure to the elements and retaining translucence. Opaque paints and other finishes can also be used to protect plastics from weathering. Although surfoce-protecting filins may inherently exhibit higher or lower flame-spread characteristics thon the substrate, depending upon the nature of the film, they frequently ore so thin as to have little or no effect. Upon burning or decomposing, some may evolve noxious or toxic goses.

### 10.4 TESTS FOR EVALUATING MATERIALS

The strictural engineer considering fire-related aspects of materials in his design has access to quantities of fire data, drawn from a variety of tests. In assessing such data, he must have some understanding of the tests and their limitations in order to avoid relying upon data where they are not applicable. In
this section, an attempt is inade to assess the tests most commonly employed for plastics.

Fire testing in general, not only for plastics, is undergoing intensive review. Test methods have evolved with inadequate understanding of the growth of fires, with the consequence that such tests and standards have often necessarily been piecemeal, applicable essentially to limited test conditions, and difficult, if not impossible, to correlate.

Knowledge of fire behavior has recently advanced considerably, and the devising of new test methods based on fire dynamics is proceeding, albeit many such tests are still largely in the development stage.

Laboratory-scale flaminability test methods have evolved over many years. Thei: sponsorship by consensus organizations such as the American Society for Testing and Ma!er'als (ASTM) is formalized ofter an intensive screening process performed by committees of experis.

Many of the approximately 118 ASTM flammability test methods were adopted to cope with specific situations. It is therefore necessary for outhorities concerned with the writing of codes and regulations to select those standards which most closely meet their requirements. In order to do this, the outhorities must have a thorough knowledge of the standards and be aware of the techniques used and the limitations inherent in each. The long and successful application of these standards by code and regulatory bodies demonstrates their usefulness.

New testing procedures involving the calorimetric determination of ignition conditions, rate of heat and smoke release and other parameters at several heat flux levels have been develćped and are being examined by the standards orgonizations. When these procedures have been developed as standards, they will probably replace many of the current laboratory tests in providing quantifiable fire parameters that will more closely relate these tests to the behavior of materials in actual fires,

Large-scale and full-scale tests have been proposed with the objective of providing better understanding of the behovior of moterials and components in
actual fires. Although the performance of these tests can be useful, no standord methods for their performance have been developed. One of the reasons for this is the very large number of variables that are associated with real fires. Another problem is that they can be very expensive to run.

With these observations in mind, the present status of fire testing as it relates to plastics may be reviewed, realizing that the situation is subject to considerable chonge.

The most-commonly used tests are those of the American Society for Testing and Materials (ASTM), although model codes (Section 10.6) often designate their own standards basea upon accepted ASTM tests. There are others such as those of the Underwriters' Loborotories (UL', the National Fire Protection Assc:iation (NFPA), and the Factory Mutual System (FM). Many are similar. Many of these standards are adopted by the American National Standards Institute and become ANSI stondards as well.

As any engineer knows, the results of tests must be interpreted and employed with coution and judgment. They cannot simulate all conditions of use. Tests are run under specified conditions, which are an approximute overage of use conditions. Nowhere is this more the case than with fire tests. Different tests are used for different purposes, und the results may appear to te widely different, dependiny upon test conditions. Some noterials that behave well in a small-scale laboratory bench test, and may appear to be nonburning or selfextinguishing, may burn vigorously in a larger-scale test or in actual use. It is therefore necessurv to understond the test procedures and know their limitofions.
 snuil-sinie "ests "t desivile their materials "non-flammable" or "fireproof" or,
 a comsinteme. $\because$ "e' aternl Trade Commission found it necessary, in the case of collular ;olost:es. is issue a complaint respecting such claims. The Society of the Plastios lmanstr incorporates this coution:
"This numerical flamespread rating is not intended to reflect hazards presented by this or any other material under actual fire conditions." (See ASTM E84 below.)

ASTM adds this caution to its fire tests:


#### Abstract

"This standard should be used solely to measure and describe the properties of the materials, products, or systems in response to heat and flame under controlled laboratory conditions and should not be considered or used for the description, appraisal, or regulation of the fire hazards of materinls, products, or systems under actual fire conditions."


This puts it squarely up to the designer and the building official to interpret the results of fire tests according to their appraisal of the conditions surrounding any particular building design. Nevertheless, ASTM and other tests are the available and accepted tests, and are commonly used as ir.dicators of the comparative behovior of materials such as plastics arrong themselves and with other materials employed by the designer. Codes (Section 10.6) customarily refer to them as requirements for the guidance of building of ricials and designers.

With these general observations in mind, some of the commonly-used ASTM and other tests are reviewed. Some are specifically for plastics, but others are for materials generally. The larger-scale tests reviewed first relate to materials generally, not only to plastics. The smaller-scale bench or laboratory tests, many for polymer testing, are mainly useful as screening tests during research and development.

ASTM EII9, NFPA 25I, UL 253
Fire Tests of Building Construction and Materials

These methods are frequently colled the "Standard Fire Tests" and the performance is usually expressed as "2-h", "1/2-h", etc., $h$ meaning hours of resistance as defined by this test.

The methods are applicable to bearing and non-bearing walls and partitions, columns, girders, bearns, slabs, composite beams a.nd slabs, and other assemblies such as surfuce protection for combustible framing and combustible facings. They apply to all materials and continations, including plastics.

The standard is intended to determine the period of time that a test assemblage (Fig. 10-2) will contain fire or retain its structural integrity, or both, when subjected to a standard fire exposure which may or may not be followed by a stream of water from a standard fire hose. It provides a relative measure of fire performance of comparable ossemblies of materials under these fire conditions.

The standard does not provide information as to performance oi assemblies of sizes other than specified, nor does it evaluate products of combustion. It does not measure flame spread (see ASTM E84), nor effects ut joints or such elements as pipe and electrical receptacles unless specifically provided for (see below).


Fig. 10-2 ASTM EII9, FIRE ENDURANCE TEST (10.19)

Gas burners in the furnoce ore arrariged to raise the temperature in accordance with the time-temperature relation shown in Fig. 10-3. Flames may or inay not impinge directly upon the face of the specimen, which is often horizontal, rather than vertical as shown. The specimen is left exposed for the prescribed period of time, or until failure occurs as defined for that type of specimen, including penetration by flame or gases, unocceptable rise in temperature on the unexposed side, and unocceptoble rise in temperature of protected framing members.


Fig. 10-3 ASTM EII9, TIME-TEMPERATURE CURVE (10.19)

One point not covered by the test is the effect of pipes, conduits, ducts, and other members that pass through a wall or ceiling and may therefore allow fire to penetrate through or around the member. The insulation on electrical cable, for example, may burn and carry fire through an otherwise acceptable wall. Steps are being token to estoblish tests and standards for such feotures.

This is one of the mos: widely-specified tests in building codes. Hourly ratings established by the test are the basis for permitting the use of materials and combinations or excluding them from various occupancies as defir.es in codes. It is probably the one standard fire test that most nearly approximates actual fire conditions.

## ASTM E84, UL 723, NFPA 255

Suriace Burning Characteristics of Building Materials
This test is also extensively referred to in codes. It is often called the "flamesyread" or Steiner "tunnel" test. Its purpose is to determine comparative surface burning charocteristics of materials by measuring the rate of flame spread over their surfaces when exposed to the test fire. Fuel contributed and smoke density are also recorded, although there is no necessary relationship among the three measurements, and fuel contributed is often omitted.

The test chamber or "tunnel" is a horizontal duct approximately $25 \mathrm{ft}(7.62 \mathrm{~m})$ long, lined with insulating fire-resistive material such as refractory fire brick (Fig. $10-4$ ). Test panels ore placed in the ceiling of the duct. Windows provided along one side permit observation of the fire as it spreads along the lower surface of the test material. Tho gas burners deliver flames upward against the test material at the "fire" end of the tunnel. At the other, or "vent," end is placed a photo-electric cell to measure smoke-caused loss in light transmission.


Fig. 10-4 ASTM E84, FLAME-SPREAD TUNNEL TEST (10.19)

The tunnel is first calibrated by lining the top with $23 / 32$-inch ( 18.3 mm ) thick seiect red oak flooring at 6 io 8 percent moisture content. The flame is applied and the time required to reach the end of the test specimen is determined. Temperatures and smoke density, as measured by photo-electric cell readings, ore recorded. Following the red ook trials, the test calibration is repeated with cement-asbestos board. Time to travel the length of the tunnel, and the smoke density in the red oak trials are arbitrarily rated 100 , whereas the cementasbestos is rated zero.

Materials to be evaluated are tested in the same manner. Depending upon the time required for the flame to travel along the tunnel and the relative amount of smoke involved, the moterial may have flame-spread ratings of less or more thon 100, and, similarly, smoke-density ratings of less or more than 100.

This is the test most widely specified in building codes for flame-spread on materials, including interior finish. Materials are, or are not, permitted in various building occupancies, depending upon flame-spread and smoke-density ratings. For example, a flame-spread rating of less than 25 muy allow a material to be used in occupancies closed to intermediate ratings such as 25-50 and 51200. A high flame-spread rating msy rule out a material completely.

Although the test is commonly specified, its validity is challenged on the basis of larger tests such as the corner, corridor, and room tests (see below) and actual experience in fires. Materials with favorable ratings in the tunnel test may burn readily and rapidly in these other tests and in actual use. Results are strongly dependent upon the geometry of the test. The test does not show flashover. It appears to be sensitive to small variations in test conditions, and results may differ from test to test and from laboratory to laboritory. Its results have been used for other purposes than their intended use, whici) is flame spread and not fire endurance. It measures flame spread on the bottom of a horizontal surface, not on vertical surfaces. Thermoplastic materials may me!t and fall and require special support not representative of actual use. The rate of fuel supply has been criticized as too low to reflect actual fire conditions. Smoke is measured on a linear scale (photo-electric) but light obscuration is a log function. A 75X reading, therefore, does not indicate optical density 3 times as much as 25 X , but more nearly 8 to 10 times.

Nevertheless, it is widely used; many test data (e.g., Table 10-1) are available, and are relied upon in design. They must be employed judiciously, recognizirg the limitations of the test.

## Corner Tests and Room Tests (10.12) (10.24) (10.25) (10.26)

Because mony of the standard tests do rot correlate well with the observed behavior of plastics and other organic materials in actual fires, efforts are underway to develop tests that more nearly approximnate such fires.

One such test is the corner test (Fig. 10-5). It consists of a corner where two vertical walls meet and are surmounted by a ceiling, forming a three-way corner. Generally, the surfaces of the walls and ceiling are made of the material to be tested, although, in some instances, either the ceiling or the walls may be a fireresistant material such as concrete or cement-asbestos board.


Fig. 10-5 CORNER TEST (10.12) (10.25)

A given fire source is placed on the floor near the corner and ignited. The behavior of the material in walls and ceilings is observed visually and timed. Thermocouples measure temperatures at selected spots. Critical points, such as the time that sudden rapid propagation of flame occurs (if at all), are carefully noted.

Dimensions of corner test installations vary. The largest are up to $25 \mathrm{ft}(8 \mathrm{~m})$ high with side wails up tc 50 ft ( 16 m ) long. Smaller ones are of the order of 6 to $10 \mathrm{ft}(1.8$ to 3 m ) high, with correspondingly shorter walls. In larger installations, wood cribs or stacks of wood pallets, of weighed !uantities and specified moisture content, are ernployed for fuel. Gas bul, are also being ised by leading laboratories for consistency and cleaner fires. Other types of fuel may also be used. For example, fuel in smaller installations may consist of weighed polyethylene wastebaskets filled with milk cartons of coated paper.

These tests are considered to be closer approximations of actual fire conditions than the smailer laboratory tests or the tunnel test. However, the larger ones, in particular, are obviously expensive and require large amounts of material, no: always easy to obtain with new moterials under development. Investigations of smaller corner tests and methods of scaling them to correspond to the larger tests are therefore underway.

Room tests are one step beyond the corner tests. Rooms of various dimensions, usually with stondard door and window openings, are built with walls and ceilings made of the materials to be tested. Some are essentially corner tests with additional walls to form an enclosure, and operings such as toors for ventilation and observation. Specified quantities of fuel, such as wood cribs, or specified furniture such as chairs, beds, mattresses, draperies, and others, are placed in the room and ignited. As in the corner tests, progress of fire, flashover, and temperatures are carefully noted and timed.

Somewhot similar to room tests are corridor tests. Dimensions approximating those of corridors, and openings commonly found in corridors, are used. Measurements are similar to those made in corner and room tests.

Determinations of quantitative performonce levels from these tests are not so easily made as from some of the small-scale laboratory tests, but are much more likely to provide better judgment of behavior in actual fire conditions.

## ASTM D635- Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position

This small-scale laboratory test is designed to compare the relative rate of burning, extent, and time of burning of self-supporting plastics bars molded to rize or cut from sheets, plates, or ponels, when tested in a horizontal position.

Specimens are $125 \pm 5 \mathrm{~mm}(4.92 \pm .20 \mathrm{in}$.$) long, 12.5 \pm 0.2 \mathrm{~mm}(.492 \pm .01 \mathrm{in}$. wide, and thickness of the moterial normally supplied.

At least ten specimens are employed. Each specimen is clamped at one end with its long axis horizontal and transverse axis at 40 degrees to the horizontal. The tip of a specified bunsen burner flame is placed in contact with the free end of the specimen for 30 seconds. The progress of the flame along the specimen is timed until it goes out or las burtied 100 mm ( 3.94 in .) along the specimen. This is called the burning mark.

If two or more specimens burn to the burning mark, the average hurning rate, in $\mathrm{cm} / \mathrm{min}$, for all specimens that burn to the mark, is reported as the average burning rate (ABR).

If none of ten specimens, ol no more than one of twenty specimens burns to the mork, the average time of burning (ATB) and the average extent of burning ore reported.

Although widely used as an exploratory laborotory test, it is only that. The results are limited to the test conditions. It is only a horizontal test and does not measure the vertical component of burning. On a vertical specimen ignited of the bottom, flame spread may be many times as rapid and extensive.

## ASTM D1929 - Ignitior Properties of Plastics

Self-ignition and flash-ignition temperatures of plastics are determined by this laboratory test.

A $102-\mathrm{mm}(4-\mathrm{in}$.$) diameter tubular furnace 216$ to $254 \mathrm{~mm}(8-1 / 2$ to 10 in .) high surrounds a $76-\mathrm{mm}$ ( $3-\mathrm{in}$.) diameter inner tube of the same length. Granular or stacked $19-\mathrm{mm}$ (3/4-in.) square specimeris are placed in the furnoce, and heated air flows past them. A pilot flame is provided at the top of the farnace.

In the Flash-Ignition Test, the pilot flame is ignited and air at various velocities is passed through the furnoce. The temperature of the air is set to rise at various rates until a lowest temperature is found at which combustible gases evolved from the specimen are ignited by the pilot light.

In the Self-Ignition Test, essentially the same process is employed, but without the pilat flame. Self-ignition occurs when the specimen flames, explates, or glows.

Both tests are repeated with air at constant temperatures.

The minimum temperatures at which flash occurs are reported as Flash Ignition Temperature ard Self-Ignition Temperature.

## ASTM E662, NFPA 258 - Smoke Generuted by Solid Materials

The method uses a chamber in which smoke is generated, and measures the smoke by photometric system. It employs either a radiant energy source for non-flaming pyrolitic decomposition of the test specimen or a six-tube propaneair burner for flaming conditions.

The specimen is 76.2 mm ( 3 in .) square. For non-flaming tests, a central 65.1 mm (2-9/16-in.) square area is exposed to the radiant source. For flaming conditions, flamelets are applied to the lower edge of the vertically-placed specimen. A vertical light beam passes upward through the chamber to a photomultiplier tube above the top. Smoke density is measured by loss in transmission of light, from which the specific optical density is computed. Other parameters such as maximum rate of smoke occumulation, and time to a specific optical density level, may be obtained.

## ASTM EI62 - Surface Flammability of Materials Using a Rodiant Energy Source

Surfoce flammability is measured with an inclined specimen placed in front ef a vertical radiant heat source composed of a ceranic plate heated by a gas flame.

The carefully precondifioned specimen is $152 \times 457 \mathrm{~mm}(6 \times 18 \mathrm{in}$.) and the rodiant source is $305 \times 457 \mathrm{~mm}(12 \times 18 \mathrm{in}$.). Opoque specimens are backed as they would be in proctice. Tronsparent specimens are bocked with highivreflective aluminum fail. The radiant panel is of porous refroctory material capable of operating at temperature up to $816^{\circ} \mathrm{C}\left(1500^{\circ} \mathrm{F}\right)$. A pilot flame at the top of the reecimen is present principally to initiate ignition and to ignite combustible evalving gases.

Rote and extent of burning and liberation of heat ore determined. A flarnespread index is derived from the rate of progress of the flame front and the rate of heat liberotion. Special note is made if flash occurs during tire test.

This is a laborotory test and is intended for research and development only. It is considered by mony proctitioners to be superior to the widely-used ASTM E84 test.

## ASTM D3675.

A comparison test, ASTM D3675-78, has been approved for testing of foamed plastics, specifically. It is almost identical to ASTM EI62.

## ASTM D3014 -Flame, Tirne of Burning, and Loss of Weight of Rigid Cellular Plastics in a Vertical Position

This is a small-scaie screening test for comparing relative extent of burning and loss of weight of rigid cellular plastics when bursing from the bottom in an upright position.

A specimen $254 \times 19 \times 19 \mathrm{~mm}(10 \times 3 / 4 \times 3 / 4 \mathrm{in}$.) is supported in on upright position in a vertical rest chimney. A propane or natural gas burner applies a flame to the bottom of the specimen. A small aluminum pon under the specimen catches any drippings.

The flame is applied for 10 seconds. The height of flame produced and the time to extinction are recorded. After flaming hos stopped, the specimen, holder, and drip pan are weigned, and the weight loss of moterial determined. At least six specimens are tested and the average results determined.

## ASTM 2863-Oxygen Index

Becouse mony of the standard tests only roughly distinguish the relative flammability of plastics and other materials, a test known as the Oxygen Index Flammability Test, also called the Limiting Oxygen Index Test has been devised. In it, a test sample is held upright inside a tube and a precisely-controlled mixture of oxygen and nitrogen is passed upward around the specimen. A pilot flame is touched to the top of the specimen to ignite it. The percentage of oxygen in the oxygen-nitrogen mixture is adjusted uniil it will just mointain the flame. The index is 100 times the ratio of the amount of oxygen to the total oxygen-nitrogen mixture.

Since the percentage of oxygen in normal air is approximately 21, a lower oxygen index generally indicates a material that will burn :eadily, the lower the more
flammable, whereas a higher index indicates that the material will noi burn readily, the higher the index, the less flammable. The test has been found to be considerably more sensitive and reproducible than ASTM D635, for example.

Like all tests, this must be interpreted within its context. It measures relative flammability under controlled conditions. It does not model energy feedback, or measure flame sprend, dripping, ignition temperıature, und heat and smoke production, although it can probably be modified to include some of these. It is an indicator of relative oxygen requirements. The test is of interest primarily as a laboratory technique for the evalution and guidance of the development of new materials.

## FM Constructio. Materials Calorimeter (10.16)

In this test, the heat contributed by a test specimen when exposed to flame is measured. The specimen is a panel (such as a wall or roof) of the whole construction to be tested. It forms the horizontal cover of the liquid fuel-fired furnace with the top of the sample exposed to the open atmosphere. The fuel is ignited and fed at a predetermined rate. Flue temperature is recorded versus time until no further significan sumbistion occurs.

The test is repeated with an incombustible panel. Auxiliary burners in the test chamber are adjusted to produce the same flue temperature-time curve as the test panel. The fuel required to match the performance of the test sample is a measure of the fuel contributed by ihe test sample in the original test.

## NBS Differential Bomb Calorimeter (10.34)

The National Bureau of Standards has developed a bomb calorimeter used to measure potential heat of materials. Representative values obtained on a numter of materials are given in Appendix C.

## Toxicity Tests (10.7)

Tests for, and determination of, incapacit-tion and death commonly involve animals such as mice and rats exposed to gases and smoke evolved by burning
materials. Incapanitation is deemed to have occurred when the animal loses control of his movements, as by falling from a revolving support. Death is determined by cessation of breathing. Whereas incapocitation by these tests may be determined within quite narrow time iimits, death is more difficult to ascertain. Furthermore, anir removed frnm the test before death ma; die hours or days later. The same delayed deaths have been observed in human victims of fires.

The problem of toxicity is highly complex. Currently, there are no widely accepted toxicity tests.

### 10.5 DESIGN APPROACHES FOR FIRE SAFETY (10.5) (10.6) (10.7) (10.8) (10.9) (10.13) (10.14) (10.15) (10.17)

In structural or load-bearing opplications, plastics and combinations employing plastics should be judged on the same basis as any other structural moterials under the some loading and fire conditions. Much can be done to minimize fire hazard by employing the same basic principles of design for fire safety as are applied to any struこture. The objective is to minimize hazard, irrespective of materials utilized.

In structural design the foremast considerations respecting fire are prevention of (i) loss of life, (2) loss of property, and (3) lass of services such as files, office equipment, and others. Good design involves (1) prevention of ignition, (2) controlling oi managing a fire once started, and (3) extinguishing the fire.

Reduction of hazard involves early warning of a fire as by smoke and heat detectors. This is of paramount importance in saving life and bringing in firecontrol equipment. Occupants, once alerted, must be able to leave a structure rapidly by protected paths and exits. Other design features include, for example, containment by thermal barriers and fire-spread breaks, knockou! ponels, venting as by roof vents, minimization of fuel content, avoidance of build-up and cúncentration of heat and smoke, and prompt fire suppression. Automatic supression 5 ,stems such as sprinklers can go far toward stopping a fire in its crucial early stayes. "Active" devices such as sensors and zrinklers mrist be
maintained in working condition; otherwise, false reliance will be placed upon them. These are general considerations not confined to any particular materials.

In considering fire hazards of plastics, it should be kept in mind that thermoplastics moy soften, distort, melt, drip, and flow, whereas thermosetting plastics generally keep their shapes, although they may soften to some degree and distort. Different plastics, depenJing upon composition, behave differently at different teinperaturcs (see Appendix B).

The softening qualities of thermoplastics are sometimes put to use in fires. Thermoplastic translucer.t sheets in ceiling illumination, for example, may soften and fall at temperatures well below ignition. This may remove them from a ceiling fire, and may expose sprinklers situated above the translucent ceiling, but may fall into and augment a fire below. Frequently, codes permit such sprinkler installations, as with egg-crate diffusers or thin thermoplastics; in other cases, sprinklers must be below the translucent ceiling, and sometimes sprinklers are required boih above and below.

Skylights, such as domed transparent or translucent plastic skylights, are frequently designed to be self-venting by springing open at specified temperatures by means of fusible links. If not, they may burn through, to open venis, or may be broken. Windows, similarly, may burn or be broken. Some tough transparent plastics are not easily shattered; in such cases, it is often recommended that they be installed in openable sash.

## Foams

Because of their excellent thermal insulation properties (Chapier 1), plastics foams are widely used as thermal insulation and in composites such as structural sandwiches (Chapter 8). Their very Ir•ge surfoce areas coupled with resistance to inward heot flow leads to rapid flame spread. Because of their low densities they may contribure relatively little fiel to a fire, if quantities invol red are small, but foams are frequently used in large quantities. Fuel contribution is significant because ihe rate of heat release is high, which can couse temperatures to rise rapidly. Combustion is usualiy complete. Smoke and toxic gas (HCN) emission are very significant in overall fire hazard evaluation (See Section
10.2 - Smoke). Some thermoplastic foams melt and retract from a heat source such as a flame, but falling molten droplets may contribute to a fire. Therma.. setting foams tend to retain their shapes instead of retracting, but some, such o: the phenolics, form a sur face char resisiant to fire.

Plastic foams have been subjected to considerable examination and test under all conditions from small-scale laboratory tests to large corner and room tests. As a consequence, thermal barriers to shield the plastic from fire ore irrongly recommended for use with both thermosetting and thermoplastic foarns and ure required in some States. A common specification requires at least a 15 -minute rating for such barriers, e.g., 26-gauge ( 0.45 mm ) steei, 0.5 -in. ( 13 mm ) gypsum board or $0.75-\mathrm{in}$. ( 19 mm ) fire-retardant plywood, fastened through the foam to a firm substrate to make sure the barrier stays in place for the specified time even if the foom underneath should soften. The same hoids true of mctal lath and plaster. Some States require sprinklers. Local codes should be consulted.

When thermal barriers are employed with some foams, especially thermoplastics such as polystyrene, the foam may, upon being heated through the barrier, contract and retract away from the barrier, leaving an insulating air space. If hot enough, however, the foam may melt, ond if it can rur, out at the bottom of a wall panel, for example, it may ignite and help to spread the fire. If fire can penetrcte an air spoce between foam and cover, it may ignite the foam. Barriers should be designed to prevent melting, running, and ingress of flame. Foamcored sandwich panels may be sealed along the edges for this reason. However, some foams will decompose under such conditions, releasing combustible gases.

A retrocting foam lait horizontally, as neer a ceiling, may be protected from flame or heat above by a layer of loose fill such as vermiculite. If the foom does retract, the fill settles and follows, avoiding an air gap.

All foamed plastics may be employed in cavity maconry walls and under concrete floors where the cover is at least 0.5 in . ( 13 mm ) thick. When used in roofs, depending upon the rating of the roofing, foams over sheet meful roof supforts may need a barrier of incomiustible inaterial. (Codes, Section 10.6). Thermosetting fooms are not prone to melt and drip through seams in the roof, as thermoplastics may.

With sandwich panels, depending upon the composition of facing and foamed plastic core, sprinkiers may or may not be required. If facings are metal, steel must be at least 26 gauge ( 0.45 mm ), and aluminum at least $0.032 \mathrm{in} .(0.8 \mathrm{~mm})$ thick, und sprinklers are usually required.

Care must be exercised to avoid undue hazard with foamed plastics during construction. Board stock should be stored at least $50 \mathrm{ft}(15 \mathrm{~m})$ from a building or important structure. In sprinklered buildings, it may be storeci in piles up to 6 ft ( 1.8 m ) high. Only limited yuantities should be placed in unsprinklereci areas. As installation proceeds. the thermal barriers should follow closely, so as to avoid having large areas exposed.

## Thermosetting Plastics

Because thermosetting plastics, as described in Chapter I, consist of crosslinked or interlinked molecular aggregations, they tend to retain their configurations as temperatures rise to the combustion point, unlike thermoplastics which characteristically soften and may melt and drip. This attribute of thermosetting materials may be favorable or unfavorable in a given situation.

Depending upon molecular structure, tiermosetting materials have varying degrees of resistance to temperoture and flame. Phenolics, for exnmpie, are difficult to burn under ordinary conditions of flame exposure, and properties do not begin to degrade uitil temperatures of $500^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right)$ are reached. They produce surface chars difficult to burn that protect the material underneath. Because phenolics are commonly modified with fillers, their fire behovior depends to some degree upon the nature and omount of filler present, e.g., wood flour, cotton flock, mica, asbestos or glass. Silicones, because of their stable silicon-oxygen linkage, are highly resistant to flaine and elevated terrperatures. ithe amines, urea formaldehyde and melamine formaldehyde, and the polyesters are less so. The burning cha:acteristics of the unsaturated po!yesters widely used in reinforced plastics (see below) can be modified by chemical modification of the monomer constituents, by the addition of organic fire retardants, the addition of inorganic fillers, and the chemical introductior, of organometallic compounds. Epexy resins, similar, can have their flammability reduced by introducing phosphorous and hulogen-containing monomers or additives.

## Reinforced Plastics

The relative resistance of glass-reinforced phenolics, silicone, melamine, and polyester when exposed to different temperatures is shown in Fig. 10-6. At still higher temperatures, the rate of weight loss increases, as shown in Fig. 10-7 ror asbestos-filled silicones. Even at ihe highest temperatures shown, some silicones do not burn, and have been known to resist short-time temperatures as high as $2000^{\circ} \mathrm{F}\left(1100^{\circ} \mathrm{C}\right.$ ) without octually burning through (Appendix B).


Fig. 10-6 PERCENT WEIGHT LOSS OF LAMINATES AF TER VARIOUS BAKING TEMPERATURES (10.17)


Fig. 10-7 WEIGHT LOSS OF SILICONE-ASBESTOS LAMINATES (10.17)

Reinforced plastics panels, whether fire-retardant treated or not, may be expected to burn in tuilding fires, but the thin panels ordinarily employed
frequently burn through quickly, creating openings or vents through which heat can escape. Under these conditions, termperatures may drop quickly, and flames stop propogating. It is therefore recommended that spoce for venting be provided behind such panels to allow the ready escape of heat. This is porticularly true of hung ceiling panels; the space above should be sufficient to prevent the build-up of hect and to allow for the escape of hot gases.

Several examples may illustrote suggested applications:

1. In sprinklered areas, walls and roof bands, up to $30 \mathrm{ft}(9 \mathrm{~m})$ high and of unilimited horizontal length may be constructed of commor:ly-found fireretardant ponels such as those $1 / 16 \mathrm{in}$. $(1.5 \mathrm{~min})$ thick, weighiing $8 \mathrm{oz} / \mathrm{sq}$ ft ( $24 \mathrm{~kg} / \mathrm{m}^{2}$ ) and having a flame spread of 25 or less in the ASTM E84 test.
2. In unsprinklered areos, such bands may be up to 8 ft ( 2.4 m ) high. Successive tiers should be separated far enougit to avoid jumping of fire from one to onother.
3. Similar considerations hold for interior partitions and space dividers.

Epoxies are similar to the polyesters in their general flammability behovior. As indicated in Chopter I, becouse of their higher cost they are normolly employed only where polyesters are inadequate. In addition to glass fiber, reinforcements ore commonly s;nthetic high-strength high-modulus fibers. Flammability character istics of such composites hove not been exiensively investigated.

Furons, like phenolics, hove inherently good resistance to fire, and glass fiberreinforced furans are reported to have superior resistance to flame. They are difficult to process.

## Composites

Composites are frequently relied upon to provide performance not otherwise ottoinable. Glass fiber reinforced polyesters may be faced with a thin acrylic cover, and bocked with foam in turn covered with still another material to obtain a corrbination of surface color and texture, strength, insulating value, and protection agoinsi damage. Fire resistance of combinations may or may not be
superior to that of the constituents alone, and should, therefore, be subjected to flammability tests.

A composite consisting of layers of materials often exhibits better fire endurance (resistance to penetration) thon the sum of the endurances of the loyers exposed to fire seporotely. A foom-cored sandwich panel, for example, is likely to resist fire better than the focings and core separataly. Closely related to this generalization is the observation that the farther an air gap or cavity is from the surface exposed to fire, the more beneficial it is. Foamed plastics in a covity wall, for example, are more useful in retarding heat flow through the wall if protected by a thick effective thermal barrier than if exposed to high heat through a thin thermal batrier which may permit the foam to be destroycd. Plastics foams have low thermal conductivities. Thus when they are used in a layered structure, such as a wall, floor, ceiling or roof, they can be highly effective in retarding heat flow from the exposed to the unexposed side. This slows the rise in temperature on the unexposed side, and may increase the houri;; fire resistonce roting of the entire assembly. However, previous comments respecting flammability of foams should be noted.

Particular compasites, such as polymer-impregnated cancrete and polymer concrete, in which the great mass of the material is heavy mineral particles, can be expected to retard penetration of flame because of the small percentage of polymer compared with the mass and heat capocity of the minerals. However, polymer concrete connot be expected to hove the fire resistonce of all-mineral concrete.

## Area Interruptions

Building Codes (Section 10.6) limit or prohibit the use of materials that exhibit ropid surface flarne spread or evalve large quantities of smske. In general, combustible materials should not be applied continuously over large areas or for long distances. Breoks wicie enough to stop flame spread should be provided af frequent intervals. This is particularly true of ceilings.

## Protective Coatings

Fire-retardant coatings attempt to delay the time to reach ignition temperature and to reduce the spread of flame. They are of three types: heat-resistant, flame re.tardant, and insulative.

Heat-resistant coatings usually can withstand eievated temperatures. Silicones, for example, are effective to $650^{\circ} \mathrm{F}\left(340^{\circ} \mathrm{C}\right)$; zinc or aluminum pigments may raise this to $1000^{\circ} \mathrm{F}\left(5: 10^{\circ} \mathrm{C}\right)$ and ceramic frits to $1400^{\circ} \mathrm{F}\left(760^{\circ} \mathrm{C}\right)$, but may not withstand direct flame. Flame-retardant coatings, such as fluorocarbons and polyimides, retard the spread of flame but do not necessarily protect the substrate.

Insulative coctings, commonly called intumescents, when heated by flame, bubble and swell to form an insulating mass of char. One ingredient in the coating forms a carbonaceous foam, another makes the foam resistant to flame, and a third forms a non-ignitable gas trapped in the foam. Other ingredients decompose and absorb heat, lowering the temperature below the ignition temperature. Such coatings are used not only on plastics but on wood and other combustible materials.

## Considerations with Air Supported Structures (10.35)

Membranes used in air supported structures are either plastic films or flexible composites comprised of plastic coatings on organic or inorganic fiber fabrics. The mosi commonly used fabrics are orgmics: nylon and polyester, both readily combustible. Most commonly, these fabrics are coated with vinyl formulated to limit flame spreod so that the coated fobrics conform with NFPA Standard 701? 1 , a vertical flame test that requires extirction of combustion within 2 seconds. As a protection ayainst leaching out of the retardants, the Standard requires that the test material be artificially aged in a weatherometer.

The vinyl coated fabric is generally considered to have a service life of 7 to 10 years, when it must be recoated. Obvious!y, if limitation of flame spread is a design consideration, the material used in the recoating must continue to provide this protection.

A relatively new and more expensive composite fabric of fluoroplastic (PTFE, Chapter 1) coated fiberglass can achieve a flame spread rating of "incombustible," on the basis of tests that check for flame spread, smoke generation, no fuel contribution and structural integrity. The fiberglass fabric has a high temperatur? resistance; the PTFE cooting melts at temperatures in the range 600-700 ${ }^{\circ}$. Under elevated temperature, the fabric strength is limited by the strength of the PTFE seams which may soften if the temperature rise is sufficient.

Flexible membrane materials do nct provide fire barriers or barriers to prevent temperature build-up on the for side. They would melt or burn in tests for fire resistance. A.lthough many building codes do not require $c$ firi-resistive rating for arches and roof decks located more than $20 \mathrm{ft}(6.1 \mathrm{~m})$ above fluor level if the materials of the roof structures are incombustible, such structures have been vulnerable in fires. However, such code stipulations may permit the use of PTFE-coated fiberglass fabric in cartain applications if fire load and height separation preclude loss of structural integrity of the fabrics fiom elevated temperature.

## Fire Barriers Againat Penetration Around Pipe, etc.

Fire may penetrate on otherwise fire-resistont wall or other barrier by moving along a vable, pipe, conduit or other fixture that passes through a barrier, or in a pipe chose not adequately blocked, for example, at floor levels. Various materials have been developed to close such openings. Some are designed to form a char upon exposure to fire, thus retarding penetrctior. Others, such as those based upon silicones, are resistont to high tamperatures. Such barriers may be annular rings, foomed in ploce (dense foam), or designed to be sprayed, prured, trowelled, or forced as mastics into the openings to be blocked.

### 10.6 BUILDING CODES $(10.9)(10.27)(10.28)(10.29)(10.30)(10.31)$

There are no Federal buiiding codes. However, the Deportment of Howsing and Urban Develonment (HUD) and the Genera: Services Administration (GSA) have their own regulations, as mentioned below. Many States hove buildims codes, but tt ese may not be completely binding unpon municipalities. Consequ'ently, for
any given huilding design, it is necessary to consult the local code ond officials to be certain whot regulations apply.

On the other hand, several organizations write model building codes that may be and frequently are adopted ty municipalities with or without modification. Three of the most widely-employed are those written by Building Officicls and Code Administrators, International (BOCA); International Conference of Building Officials (ICBO); and Southern Building Code Conference, International (SBCC). Their provisions for plastics are similar, and undergo periodic changes as the uses of plastics in zonstruction grow and change. In this discussion, these codes are used to illustrate the types of provisions to te found in building codes, but it must be emphasized again that in any specific instance the local code hoving jurisdiction must be consulted and followed. Furthermore, codes are subject to change, sometimes rapid in an evolving areo such as plastics.

## Coverage (10.9)

The model codes have general provisions respecting fire that must be met by all maierials. They also have specific provisions for plastics.

## General

Fire safety r.easures generally cover:

1. Regulations respecting egress. These are based upon type and physical condition of occupants, and time required to reach a place of safety or to leave the building. Regulations also cover type of building construction, detection systems, self-closing doors, number and location of exits, etc.
2. Protection of structural memioers. This is generally in the form of on incombustible insulating barrier such as concre: , masonry, plaster or gypsum. The required resistance ratings meawred in hours are based upon occuponcy, fire looding, and height and areas of a building.
3. Prevention of the spread of fire and smoke. This is accomplished by subdividing the building into limited areas by means of fire-resistant walls, floor-ceiling assemblages, and fire doors.
4. Restrictions on combustibility. Combustible building materials are not permitted in some accupancies and are limited in area and exposure in others. Flame spiead of interior surfaces of ceilings, walls, and floors is
limited according to results of tests such as ASTM E84 (Section 10.4). S-hoke generation is limited according to the results of either ASTM E84 or ASTM D2843. Snme Federal agencies utilize NFPA 258 or ASTM E162. Some codes hove specified that products of combustion of interior finishes must be no more toxic than burning wood, but these are being discontinued as too unicertain and diff:cult to measure.
5. Fire detection and alarm systems. These are being increasingly required, e.g., smoke detectors in residential living units, hotel rooms, nursing homes, etc., ore required in some jurisdictions. Voice alarm and communication systems and smoke detectors are sometimes required in retail stores, apertment buildings, and office buildings that have floors more than $75 \mathrm{ft}(23 \mathrm{~m})$ abo: e the level of access by fire equipment. Manual fire alarm systems are generally required in schools, hospitais and similor occupancies in buildings more thon three stories high.
6. Fire-suppression systems. Various requirements for fire extinguishing systems and automatic sprinklers depend upon floor area, occupancy, and access by fire departments Several States now require sprinklers in all buildings over five stories high.
7. Size of building unit. Permitted heights and areas vary with types of occupancy, type of construction, and requirements for fire extinguishing systems.

## Plastics

All three codes named above hove swecific sections covering Light-Trensmitting Plastics and Plastic Foams. Other applications are implied in these ard other sections of the codes. Structural applications of plastics, for example, must meet the same general safety requirements as other structural materials.

## Light-Tranemitting Plastic Construction

The 80CA provisions in effect in 1978 are used as o basis in this discussion, with variations, if any, among the other two codes noted. ICBO and SBCC hove adapted essentially the same provisions. It should be emphasized that local codes must be consulted in eoch individual case.

Approved materials ore those :hat meet the strength, durability, sonitary and fire-resistive requirements of the code. Among the tesis cited ore ASTM D635 Standard Method of Test for Flommability of Self-Supporting Plastics, ASTM D374 Method of Testing for Thickness, ASTM D1929 Method of Testing for Ignition Properties of Plastics, ASTM E662, NFPA 258 Smoke Generated by Solid

Materials, and ASTM E84 Method of Test for Surface Burning Charocteristics of Building Materials. Approved plastics, thermoplastic, thermosetting, or reinforced, must have self-ignition temperature $650^{\circ} \mathrm{F}\left(350^{\circ} \mathrm{C}\right)$ or above when tested occording to ASTM D1929, a smoke density rating ne greater than 450 when tested according to the way intended for use by ASTM E84, or a smoke density rating no greater than 75 according to ASTM D2843.

Two combustibility closses are:

- C-1, burning extent $1 \mathrm{in} .(2.54 \mathrm{~cm})$ or less, 0.060 in . ( 1.5 mm ) thick material, or the thickness intended for use, tested in occordance with ASTM D635.
- C-2, burning rate 2.5 in . $(6.35 \mathrm{~cm}$ ) per min. or less, 0.060 in . ( 1.5 nm ) thick material, or the thickness intended for use, tested in accordance with ASTM D635.

Types of opplication are:

- Glazing
- Plastic wall panels
- Roof panels

Skylights
Light-diffusing systeris

Three classes of plastics ore:

- Gluss fiber reinforced (20 percent or more glass fiber by weiaht)
- Thermosetting
- Thermoplastic.

Approval of a plastic material requires suitable technical information and identification by trade formula number, nome, or other acceptable identification.

In oddition to fire-safety requirements, design and installation must meet strength and durability requirements of the code, as well as recognize the properties peculiar to plastics, such as large coefficients of expansion.

## Glazing of Unprotected Openings

In unprotected frame construction and in factory and industrial buildings, such doors, sash, and framed openings os are not reavired to be fire-resistance rated, may be glazed with approved plastics. In other classes of construction, such openings as are not required to be fire-resistance rated may be glazed with approved plastics if:

- The area is not more than 25 percent of the woll face of the story in which it is installed; area of each pane above five stories not more than $16 \mathrm{sq} \mathrm{ft}(1.49 \mathrm{~m} 2)$, not more than $4 \mathrm{ft}(1.22 \mathrm{~m})$ high, a minimum 3-fthigh ( 91 cm ) vertical spandrel between stories, and installed not more than 75 ft ( 23 m ) above ground. (Note: ICBO requires $4 \mathrm{ft}(1.22 \mathrm{~m}$ ) vertical panels, or flume barriers extending 30 in . $(76 \mathrm{~cm}$ ) beyond exterior wall in , lane of floor, and limited to installations not more than 65 ft ( 19.8 m ) above ground.
- Exception: If cach flocr above the first has a 3-ft-wide (91 cmi) horizontal architectural projection (fire canopy), thermoplastic materials may be insralled up to 50 percent uf the wall area of each story in buildings less than $150 \mathrm{ft}(46 \mathrm{~m})$ high. Sizes and dimensions of glazed units are unlimited except to meet structural loading requirements.

If a complete approved automatic fire suppressant system is supplied, the 25 percent area restriction above may be increased 100 percent. ICBO permits a maximum 50 percent increase if sprinklered, and SBCC permits a 50 percent increase of the area permitted under the exception with the use of canopies, and waives the basic area provisions.

## Exterior Panel Walls

Approved plastics may be used as wal! ponels in exterior walls of all buildings not required to have a fire resistance rating, except theaters, dance halls and similar high-hazard and institutional buildings, provided that:

- They do not alter the type-ot-construction classification.
- They are rot installed more than $75 \mathrm{ft}(23 \mathrm{~m})$ above ground, except as noted above under Glazing of Unprotected Openings. (The ICBO liriit is 40 ft ( 12.2 m ).
- Vertical spondel wall separations between stories are:

```
Class C-1, af least \(3 \mathrm{ff}(91 \mathrm{~cm})\)
```

Class C-2, of least 4 ft ( 1.22 m )
If there is a fire conopy (see above, Glazing of Unprotected Openings), no vertical separation is needed except thickness of canopy.

If a complete approved automatic fire suppressont system is provided, maximum areo of exterior wall and maximum square feet of single area may be increased 100 percent, but not more thon 50 percent of total wall area, and is exempt from height limitations.

Combinations of plastir glazing and plastic wall panels are subject to the same limitations as are applicable to the class of plastic for plastic wall paneis alone.

## Roof Panels

Approved plostics may be used in rcof panels of all buildings except theaters, dance halls and similar occupancies, amusement and recreation buildings without stage, and high-hazard and institutional buildings, provided that:

- Roofs are not required to meet the fire resistance requirements.
- Roof panels meet the requirements for roof coverings of the particular occupancy.
- The roof is protected by a complete approved automatic fire suppressant system.
- Roof panels must be separated at least $4 \mathrm{ft}(1.22 \mathrm{~m})$ horizontally.
- If exterior wall openings must be fire-resistance rated, roof panels must be at least $6 \mathrm{ft}(1.83 \mathrm{~m})$ oway from such walls.

Individual Class C-I plastic pane!s are limited to $300 \mathrm{sq} \mathrm{ft}\left(27.9 \mathrm{~m}^{2}\right)$, and io a total of 30 percent of the floor area directly helow the roof. For intividual Class C-2 panels the corresponding limits are $100 \mathrm{sq} \mathrm{ft}\left(9.3 \mathrm{~m}^{2}\right)$ and 25 percent.

Areo limitations are waived for one-story buildings not more than $16 \mathrm{ft}(4.87 \mathrm{~m})$ high, not exceeding $1200 \mathrm{sq} \mathrm{ft}\left(111.3 \mathrm{~m}^{2}\right)$ in area, and at least $11 \mathrm{ft}(3.35 \mathrm{~m})$ from another tuilding. They are also waived for low-haza:d buildings such as swimming pool shelters and greenhouses, provided that the building is not more
then $5,000 \mathrm{sq} \mathrm{ft}\left(465 \mathrm{~m}^{2}\right)$ in area and at least $11 \mathrm{ft}(3.35 \mathrm{~m})$ from a property line or onother building. Approved plastics may be used as roof coverings over terroces and patios of one and two-farnily dwellings.

## Skylight Assemblies

Except in high-hazard buildings, skylight assemblies of approved plastics may be used, provided that:

- They are mounted on curbs at least 4 in . ( 10.2 cm ) above the plane of the roof and of material consistent with requirements for the type of construction.
- Edges of plastic are p:otected by noncombustible material.
- Dome-shaped skylights rise at least 10 percent of maximum span, or not less than $5 \mathrm{ir} .(12.7 \mathrm{~cm})$.
- Maxirmum orea per skylight within curb is not more than $100 \mathrm{sq} \mathbf{f t} \mathbf{( 9 . 3}$ m2).
- Aggregate area of skylights is not more than 33 percent for C-I plastics and 25 percent for C-2 plastics of loor areo directly below.
- Skylights ore separated at leost $4 \mathrm{ft}(1.22 \mathrm{~m})$ horizontally. If exterior wall apenings must be fire resistonce roted, skylights must be ot lecst 6 $\mathrm{ft}(1.83 \mathrm{~m})$ from that wall.

Except in high-hazard and institutional buildings, the aggregnte area of skylights may be increased 100 percent if skylighis are used as fire venting systems, or the building has a complete outcma*ic fire-suppression system. The provisions are waived for one-story buildings at least $30 \mathrm{ft}(9.15 \mathrm{~m})$ from adjacent buildings and the space below the roof is not classed as high hazard or institutional or means of egress, or if the plastic meets the fire-resistance requireinents of the roof.

Combinations of roof panels ond skylights must meet the same requirements as roof panels.

## Lizht-Diffusing Systems

Plastic light-diffusing systems ore prohibited in high-hazard and institutional buildings, and in exit ways miess protected by a fire-suppressant system. They
must comply with interior finish requirements unless they will fall from tieir mountings at temperatures at least $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$ below their ignition temperatures, but remain in place at ambient temperatures of $175^{\circ} \mathrm{F}\left(79^{\circ} \mathrm{C}\right)$ for at least 15 minutes. Diffusers must be supported directly or indirectly by incombustible hangers.

Individual ponels may not exceed $30 \mathrm{sq} \mathrm{ft}\left(2.79 \mathrm{~m}^{2}\right)$ in area, nor $10 \mathrm{ft}(3.05 \mathrm{~m})$ in length.

If the building has a complete fire-suppressant system, sprinklers must be both above and below the diffuser panels, unless specifically approved for only cbove. Diffuser areas are not limited, if protected by an approved fire-suppressant system.

Plostic light-transmitting and light-ciffusing panels installed in electrical light. ing fixtures must conform with interior finish requirements unless they meet the retention and falling requirements described above. In fire exits and corridors, the areo of upproved plastics moterials must not be greater than 30 percent of the total area of the ceiling unless the ocrupancy is protected by an opproved fire-suppressant system.

## Portitions

Partitions incorporating plastics must meet code requiren'ents for partitions in the occupancy class involved.

## Bathroom Accessories

Approved plastics are permitted in shower doors, bathtui) enclosures, and similar accessory units.

## Awnings and Similar Structures

Approved plastics may be used in conformity with provisions of the code.

## Greerhouses

Approved light-transmitting plastics may be used in ploce of plain glass.

## Farm Plastics

The model codes have similar language for foam plastics. A general requirement, except where specifically exempted, is that foam plastics shall have a flame-spread rating of not more than 75 and a smoke developed rating of not more than 450 when tested occording to ASTM E84 (the tunnel test) or the equivalent Underwriters' Laboratories (UL 723) or model code tests, (e.g., ICBO 42-1). However, insurance companies consider E84 an unsuitable and frequently misleading test for foams. A further general requirement, now being eliminsted in most cities, is that the products of combustion shall be no more roxic than those of untreated wood burned under similar conditions. The requirement is hard to enforce because of the difficulty of measuring toxicity under the conditions specificd. Codes typically require thermal barriers, sprinklers, or both in conjunction with foam plastics (see below). Some localities do not permit foom plastics.

Specific Requirements: These requirements, unless otherwise specified, apply to all uses of foam plastics in or on walls, ceilings, attics, roofs, floors, crawl spaces or similar areas.

Foam plastics may be used:
a. Within the cavities of masonry or concrete walls regardless of type of construction.
b. $\quad n_{n}$ rrom side surfaces, such as walls or ceilings, if the fram plastic is protected on the interior side by a thermal barrier having a finish rating of at leasi 15 minutes, e.g., $1 / 2$-inch ( 12.7 mm ) gypsum wallbourd, installed to stay in place of least 15 minutes.
c. Within wall cavities, or as elemenis of walls classified as combustible .ron-fire resistive, ir installed according to (b) above.
d. Within wall cavities, or as elements of walls classified as combustible fire-resistive, provided fire tesis are conducted occording to ASTM EII9, or equivalent Underwriters' Laboratories or model code tests, and the protection from the iriterior is at least equivrilent to (b) above.

In cold-storage rooms and similar installations requiring thick insulation, foam plastics insulation having a flame spread of 75 or less when tested according to ASTM E84 in a thickness of 4 in . ( 10.2 cm ) may be used in thicknesses of up to 10 In. 25.4 cm ) when the room is protected inside by a thermal barrier having a 15minute finish rating (e.g., portland cement plaster) as determined by ASTM EII9 or equivalent Underwriters' Laboŕatories or .nodel code tests. Thermal barriers must stay in place at leost 15 minutes.

Except where codes require noncombustible or fire-resistive construction, foam plastics having a flame-spread rating of 25 or less may be used in thicknesses not greater than 4 in . ( 10.2 cm ) in or an walls if the fnam is covered by not less than $0.032-\mathrm{in}$. $(0.81-\mathrm{mm})$ thick aluminum, or 26 -gauge $(0.45 \mathrm{~mm})$ galvanized steel, and the insulated space is protected by automatic sprinklers.

Codes specify barriers and types of foams used with Class A, B, C and ordinary roofing materials, similarly for farn cores of coors that do not require a fireresistive rating, and foam plastic backerboard for siding.

Foams for applications not meeting the above requirements may be approved on the basis of tests such as ASTM E84, ASTM EII9, corner tests, and tests related to actual end-use items, or upon considerations of quontity, location, and similar pertinent items where tests are not applicable or practical. These must be taken up with the building official. An example might be sandwich roof panels for cold-storoge warehouses in which the foam core not only acts as insulation but as an essential part of the load-bearing alement. In that case, structural and fire requirements for the class of building involved must be met in addition to the fire requirements set forth above.

## Doportmant of Housing and Uriban Development

HUD Minimum Praperty Standards. The Department of Housing and Urbon Development issues standards governing construction of One and Two-Family Dwellings (No. 4900.1) Multi-F amily Housing (No. 4910.1), and Care-Type Housing (Na. 4920.1). These apply to HUD's mumerous housing programs, and should be consulted for any specific design.

The standards, especially as they apply to fire safety, are general and are as applicable to plastics as to any other materials. Fire-resistance ratings are determined by ASTM Ell9, or by judgment based on tests of similar assemblages. HUD has issued Materials Use Bulletins for plastics materials.

Mobile Homes. The Department issues similar standards covering inobile homes. The standards cover all moterials including plastics. Like the Minimum Property Standards, the Mobile Home Standards should be consulted in cases involving the design of such structures.

## Other Federal Agencies

Other Federal agencies issue specifications and standards covering materials, including plastics, utilized in structures under the:r jurisdiction. These are exempt from local codes and should be consulted for designs of such structures.

## Life Safety Code, NEPA No. IOI, National Fire Protection Association (10.31)

This Code for Safety to Life from Fire in Buildings and Structures, issued by the National Fire Protection Association, is widely quoted. It contains provisions for classifications of occupancy and hozards of contents, means of egress, features of fire protection, building service equipment, and nine classes of occupancies. Of particular interest in applications of plastics as interior finish are the following:

Interior Finish ©NFPA 255, ASTM E84, UL. 723)

Class A. Flame spread 0-25, smoke developed 0-450.
Class B. Flame spread 26-75, smoke developed 0-450.
Class C. Flame spread 76-200, smoke developed 0-450.
The Life Safety Code does not have provisions for the use of light-transmirting plastics materials for glazing, skylights and similar uses.

Cellular or foamed plastics may be permitted on the basis of fire tests which reasonably sybstantiate their intended combustibility characteristics, under actual fire conditions. They may be used as trim, if density is not less than 20 pcf $\left(321 \mathrm{~kg} / \mathrm{m}^{3}\right.$ ), and the aggregate wall surfoce covered is not greater than 10 percent. With these restrictions, Class C interior finish materials may be used in
occuponcies where Class $A$ or $B$ is required. Model building codes have similar restrictions.

### 10.7 SUMMARY

Plastics are organic materials and should be handled in much the same manner as other organic materıals, keeping in mind their own distinctive properties.
$*$
Behavior iil u fire depends upon the chernical structure and composition of plastics, as well as the noture of the fire itself. All plastics burn. Behavior in fire is variable, including rate of burning and emission of smoke and noxious or toxic gases. Various chemical and physical means are employed to modify the fire behavior of plastics.

Results of fire tests, by and large, are specific to the conditions of the test, and cannot readily be correlated with other tests. Small-scale tests can provide a great deal of information, provided the data user understands how the test is conducted, and its limitations. Larger-scale tests that more nearly approximate octual fire conditions come closer to depicting behovior, but even these do not necessarily predict how materials will behave under actual fire conditions. The field is undergoing active development.

Design and manner of use of plastics in structures are frequently more significant than their inherent fire properties. Fire hazards can be reduced by good design for rapid evacuation of inhabited structures and by confining fire by suitable enclnsures, fire breaks, thermal barriers, and venting, as well as by judicious selection of materials for a particular application.

Building codes, in addition to general requirements respecting fire, incorporate specific sections respecting plastics. In the model codes, these are related particularly to fooms and to light-transmitting plastics materials and installotions. In ony sperific design, the local code having jurisdiction must be followed.

As is true of any material, plastics must be utilized in such $c$ way as to toke advantage of their favorable properties and to minimize their limitations, including their behovior in fire.

## APPENDIX 10-A - DESCRIPTION OF COMBUSTION (IO.I)

All polymers, natural and synthetic, undergo progressive degradation and, ultimately, destruction including cornbustion, as temperatures are raised progressively to the critical points in a favorable environment, usually normal air. Some burn reacily, others slowly, and still others do not sipport combustion in ordinary atmospheres.

## Steps Leading to Combustion

Several stages are involved. Most polymers and objects made of them are reasonably stable at ordinary temperatures, and exposure for several hours even at $175-212^{\circ} \mathrm{F}\left(80-100^{\circ} \mathrm{C}\right)$ has no appreciable effect, even though slow oxidation resulting in hydroperoxyl groups occurs. The rate of oxidation depends upon composition. Some groups, such as cyanide (CN), and halogens ( Cl , for example), retard the reaction, while others, such as methyl $\left(\mathrm{CH}_{3}\right)$, promote it.

The formation of hydroperoxyl groups is a feature of the slow progressive degradation known as aging, which is often accelerated by elevated temperatures. It con be counteracted by chain transfer agents (antioxidants) such as amines and phenols. A relatively small amount suffices to protect an object ogainst deterioration for months or years.

As the temperature is raised, e.g., to $212^{\circ} \mathrm{F}\left(100^{\circ} \mathrm{C}\right)$, the process is accelerated to form more hydroperoxyl groups by scission of polymer chains, the rate depending upon composition. Degradation olso occurs because of accelerated scission or separation of -C-C-bonds in the polymeric chains. Here again the stabilizers mentioned above serve to reduce this reaction to prevent degradation, and ore effective at processing temperatures such as $355-390^{\circ} \bar{r}\left(180-200^{\circ} \mathrm{C}\right)$.

At still higher temperatures, in the range of $390-570^{\circ} \mathrm{F}\left(200-300^{\circ} \mathrm{C}\right)$, the rate of reoction increases rapidly enough to overcome stabilizers, the chain reaction in the presence of oxygen becomes exothermic and raises the temperature, chemical decomposition of the polymer produces volatile flammable products, and many polymers, especially ther noplastics, soften or may even melt, leading to deformation and possibly to increused surface area accessible to oxygen.

If more hent is added and oxygen is available, open flame autoignition may Jevelop at approximately $750^{\circ} \mathrm{F}\left(400^{\circ} \mathrm{C}\right)$. The steps leading to combustion are complete.

Among the steps that can be taken to lessen flammability are the incorporation of flame-reiardant ingredients that decompose to give off non-combustible gases such as water vap.rr, carbon dioxide, and ammonia, and form inhibitors, such as HBr , against radical chain reactions. Finely-powdered inorganic fillers such as carbon black, alumina, silica, and limestone increase the thermal conductivity and thus reduce local hot spots and at the same time raise the softening temperature. Still other additives such os borates, phosphates, and silicates can form glassy coatings around the polymeric inass, thereby reducing the acsess of oxygen and the escape of volatile flammable gases, increasing the thermal conductivity, and pieventing floming and dripping.

Phosphoric acid salts, preferably, or heavy metals such as zinc ard molybderum in addition to mineral fillers, assist in char formation. Cthers include chrometed zinc chloride and antimany oxides, sometimes combined with tricresyl phosphate.

Among the most effective flame retardants are the halogens, especially chlorine and bromine. These are employed in a variety of ways, e.g., haiogenated piasticizers, additions to the polymer chain, halogenated hardeners os in epoxies, and halogenated blowing agents as in polyurethone foarn.

Phosphorous is another effective flame retardont, as in the promotion of char mentioned above. It is used in various ways, e.g., in plasticizers.

Alumina trihydrate, by giving off water as it dernmposes, absorbs a great deal of energy and trolds down temperatures as the water is released and vaporizes.

Inorgonic fillers, especially those having high thermal conductivities, densities, and specific heats, assist in retarding ignition by absorbing energy and preventing high local temperatures.

## Synergism

Some trelogen ( $\mathrm{Cl}, \mathrm{Br}$ ) compounds useful in fire retardation are listed in Table 102. Because sorne are ordinarily volatile and may be lost at temperatures below the critical ories, e.g., below $570^{\circ}-\left(300^{\circ} \mathrm{C}\right)$, other ingredients are added that combine with the halogens and keep them in place. Among them is antiinony trioxide $\left(\mathrm{Sb}_{2} \mathrm{O}_{3}\right)$ which displays outstondingly this "synergistic" effect. The amount of halogen needed to be effective as a flame retardont can frequently be markedly reduced by the $\mathrm{Sb}_{2} \mathrm{O}_{3}$, thus alleviating property losses that might be coused by high halogen cointent. Zinc salts and bromine compounds act well together. The effectiveness of phosphorous compounds is offen increased by adding bromine compounds. Phosphites, metophosphites and silicates of zinc, titanium and other heavy metals display similar synergismi.

Table 10-2
Representative Hatogenated Flame Retardants
Chlorendic acid
Chlorinated bisphenyl
Chlorinated paraffin
Hexachloro-crclo-pentadiene
Tetrobromo-bis-phenal
Tetro-bromo-phthalic onhvdride
Tribromo-phenol

## Surnmory

To summo-ize, the important components of a system modified by a flamerefordont chemical are:

1. Choin transfer agents to retard free radical chain reactions.
2. Reduction of flammable gases, and keeping flast-points of decomposition goses high.
3. Formation of glassy coatings.
4. Char formation.
5. Reduction of volatility and synergistic retention of important components of flame-proofing systems.
6. Fixing of flame-retordants.

Additional faztors affecting flammability include the following:

1. Glass transition temperature, Tg , below which amorphous and partially crystalline polymers become glassy. Pipes sag and plates warp above this temperature (Table 10-3). Structural components cannot be permitted to reach this temperature.
2. Melting point, Tm, at whirh crystalline polymers abruptly change into mobile liquids, josing all mechonical properties (Table 10-4).
3. Decompositiun temperature range, Id, in the presence of oxygen, with generation of volatile products, many flammable. The rate and extent of decomposition are increased with increasing temperature. This depends strongly upon not only the chemical composition, but the configuration, e.g., chunk, rod, plate, film, fiber, sponge or foam, web, or other shape (Table 10-5).

Specific heats and heat condurtivities ore odditional important aspects (Tables $10-6,1-2$ ).

Finally, the flash ignirion and autaignition ter:peratures at which polymers react with oxygen to start burning are important (Table 10-7). The flash-ignition temperature is the temperature at which a material flashes into enveloping flame in the presence of on igniting flame. The self-igrition temperature is the temperature at which the same effect occurs without on igniting flame (see ASTM D1929, Section 10.4).

Thble 10-3
Glass Transition ( $\mathbf{T}_{\mathbf{g}}$ ) Values for Various Polymers

|  | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ |
| :--- | ---: | ---: |
|  | -184 | -120 |
| Polyethylene | -8 | -22 |
| Polypropylene | -13 | -25 |
| Polybutylene | -112 | -80 |
| Polybutodiene | -4 | -20 |
| Polyvinyl fluoride | 185 | 85 |
| Polyvinyl chtoride | -4 | -20 |
| Polyvinylidene chloride | 203 | 95 |
| Polystyrane | -112 | -80 |
| Poly acetal | 158 | 70 |
| 6-Nyion | 122 | 50 |
| G6-Nylon | 230 | 110 |
| Polyestcr | 302 | 150 |
| Polycarbonate | -175 | -115 |
| Polytetrafluoroethylene | -193 | -125 |
| Silicone |  |  |

Table 10-4
Melting Temperatures ( $\mathrm{T}_{\mathrm{m}}$ ) for Various Crystalline Polymers *

|  | ${ }^{\circ} \mathrm{F}$ |  | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| Low density polyethylene | 230 |  | 110 |
| High density polyethylene | 266 |  | 130 |
| Polypropylene (isotactic) | 347 |  | 175 |
| 6-Nylon | 419 |  | 215 |
| 66-Nylon | 500 | 260 |  |
| Polyester | 500 | 260 |  |
| Polytetrafluoroethylene | 626 | $37 n$ |  |
| Polyarylamides | 716 | 380 |  |

* Amorphous polymers exhibit a softening range of temperatures.

Thble 10-5
Decomposition Ranges ( $T_{d}$ ) Nimges for Various Polymers

|  | ${ }^{\circ} \mathrm{F}$ |  | ${ }^{\circ} \mathrm{C}$ |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| Polyethylene | $645-825$ |  | $340-440$ |
| Polypropylene | $619-750$ | $320-400$ |  |
| Polyvinyl acetote | $420-600$ | $215-315$ |  |
| Polyvinyl chloride | $390-570$ | $200-300$ |  |
| Polyvinyl fluoride | $700-880$ | $370-470$ |  |
| Polytetrafluoroethylene | $930-1020$ | $500-550$ |  |
| Polystyrene | $570-750$ | $300-400$ |  |
| Polymethyl methocryinte | $355-535$ | $190-280$ |  |
| Polyacrylonitrile | $480-570$ | $250-300$ |  |
| Cellulase acetate | $480-590$ | $250-310$ |  |
| Cellilose | $535-715$ | $280-380$ |  |
| 6-Nylon | $570-660$ | $300-350$ |  |
| 66-Nylon | $610-750$ | $320-400$ |  |
| Polyester | $535-610$ | $280-320$ |  |

Table 10-6
Specific Heats for Various Materials

|  | cal/g. ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Polyethylene | 0.55 |
| Polypropylene | 0.46 |
| Polytetrailuorvethylene | 0.25 |
| Polyvinyl chloride | 0.25 |
| Poly-inyl fluoride | 0.30 |
| Polystyrene | 0.32 |
| SBR (Styrene Butadiene Rubber) | 0.45 |
| ABS (Acrylonitrile Butadiene Styrene) | 0.35 |
| Cellulose acetate | 0.40 |
| 6-Nylon | 0.38 |
| 66-Nyion | 0.40 |
| Polyester | 0.30 |
| Phenol formaldehyde | 0.40 |
| Epoxy resins | 0.25 |
| Polyimide | 0.27 |

Table 10.7
Ignition Temperatures of Yarious Polymers

|  | Self lgnition |  | Flash lanition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ | ${ }^{\circ} \mathrm{F}$ | ${ }^{\circ} \mathrm{C}$ |
| Polyethylene | 662 | 350 | 644 | 340 |
| Polypropylene | 1022 | 550 | 968 | 520 |
| Polytetrafluorcethylene | 1076 | 580 | 1040 | 560 |
| Polyvinyl chloride | 842 | 450 | 734 | 390 |
| Polyvinyl fluoride | 896 | 480 | 788 | 420 |
| Polystyrene | 914 | 490 | 652 | 350 |
| SBR (Styrene Butadiene Rubber) | 842 | 450 | 680 | 360 |
| ABS (Acrytonitrile Butadiene Styrene) | 896 | 480 | 734 | 390 |
| Polymethyl methacrylate | 806 | 430 | 572 | 300 |
| PAN (Polyocrytonitrile) | . 040 | 560 | 896 | 480 |
| Celluiose (paper) | 445 | 230 | 410 | 210 |
| Cellulose acetate | 878 | 470 | 644 | 340 |
| 66 Nyton cost | 842 | 450 | 788 | 420 |
| 66 Nylon spun ord drawn | 986 | 530 | 914 | 490 |
| Polyester | 896 | 480 | 824 | 440 |

APPENDIX 10-B - EFFECT OF TEMPERATURE ON MECHANCAL PROPERTIES (10.17) (10.32)

Figure 10-8 and Table 10-8 present information respecting the ability of eight classes of plastics to retain 50 percent of their mechanical properties in various temperature ranges frr various periods of time. Figure 10-8 shows temperaturetime zones, and Table 10-8 lists the plastics that fall in the various zones.


Fig. 10-8. HOW PLASTICS PERFORM ON THE BASIS OF TEMPERATUPE AND TIME (10.17) (10.32)

## Table 10-8

## Plastics Retaining 50\% Mechanical or Physical Properties Tested at Temperatures in Air

Zona 1-Fig. 10-8
Acrylic
Cellulose acetate (CA)
Cellulose acetute-butyrate (CAB)
Cellulase acetate propionate (CAP)
Cellulose nitrate (CN)
Cellulose propionate
Polyallomer
Polyethylene, low-density (LDPE)
Polystyrsme (PS)
Polvvinyl acetate (PVAC)
Polvininyl alcohol (PVAL)
Polyvinyl butyral (PVC)
Polyvinyl chloride (PVC)
Styrene-ocrylonitrile (SAN)
Styrene-butodiene (SBR)
Urea-formoldehyde

## Zone 2

Acetol
Acryionitrile-butadiene-styrene (ABS)
Chlorinated polyether
Ethyl cellulose (EC)
Ethylene vinyl ocetote copolymer (EVA)

## Furan

lonomer
Phemoxy
Polyamides
Polycorbonate (PC)
Polyethylene, high-density (HDPE)
Pulyethylene, cross-linked
Pu!yethylene terephthalate (FETP)
Polypropylene (PP)
Polyvinylidene chloride
Urethane

Zane 3
Polymonochlorotr ifhuoroe thylene (CTFE) Vinylidene fluoride

Zone 4
Alkyd
Fluorinated ethylene propylene (FEP)
Melamine-formaldehyde
Phenol-furfural
Polyphenylene oxide (PPO)
Polysulfone

## Zone 5

Acrylic thermose $\dagger$
Dia'ly 1 phthalote (DAP)
Epoxy
Phenol-formaldehyde
Folyester
Polytetrafluoroe thylene (TFE)

## Zone 6

Parylene
Polysulfone
Polybenzimidazole (PBI)
Polyphenylene
Silicone
Zone 7
Polyomide-imide
Polyimide
Zane 8
Plastics now being developed using intrinsically rigid lineor mocromolecules rather than the usual crystallization and cross-linking.

## APPENDIX IO-C - POTENTIAL HEAT OF PLASTICS (10.34)

Table 10-9 lists potential heat values obtained with the Notional Bureou of Standards Differential Bomb Colorimeter (Section 10.4).

Table 10-9
Potential Hewt of Selecten Building Materials


## REFERENCES - CHAPTER 10

10.1 Mark, Herman F. "Combustion of Polymers and Its Retardation." Proceedings, Notional Symposium on Fire Safety Aspects of Polymeric Moterials. Cornegie Institution, Washington, D.C., 6-8 June 1977.
10.2 Hilledo, Corlos J. Flammability Hondbook for Plostics. 2d ed. Fire and Flammability Series, Tectu nomic Publishing Co., Inc., Westport, C.onn., 1974.
10.3 Hilack, Corlos J., ed. Flammability of Solid Plostics. Vol. 7. Fire and Flammability Series, Tectnomic Publishing Co., Inc., Westpor t, Conn., 1974.
10.4 Hilado, Corlos J., ed. Flammobitity of Cellular Plastics. Val. 8. Fire and Fiornmability Series, Technomic Publishing Co., Inc., Westport, Conic., 1974.
10.5 Fire Safety Aspecits of Polymeric Materials, Vol. 1: iMaterials: State of The Art. Report by National Materials Advisory Board, Pub. NMAB 318T, Noutional Academy of Sciences, Washington, D.C., 1977.
10.6 Fire Safety Aspects of Polymeric Materials, Vol. 2: Test Methods, Specifications, Standards, Glossory. Report by Nationcl Materials Advisory Board, Pub. NMAB 318-1, Notional Acodemy of Sclences, Washington, C.C., 1977.
10.7 Fire Sofety Aspects of Polymeric Materials, Vol. 3: Smoke and Toxicity. Report by National Materials Advisory Board, Pub. NMAB 318-1, National Academy of Sciences, Washington, D.C., 1977.
10.8 Fire Sofety Aspects of Polymeric Materials, Vol. 4: Fire Dynamics and Scenarios. Report by National Materials Advisory Boord, Pub. NMAB 3/8-1, National Academy of Sciences, Woshington, D.C., 1977.
10.9 Fire Safety Aspacts of Polymeric Materials, Vol. 7: Buildings. Report by National Materials Advisory Board, Pub. NMAB 318-1, National Acodemy of Sciences, Woshington, D.C., 1977.
10.10 Building Materials List, 1978. Underwriters' Laboratories, Northbrook, Infois.
10.11 Factory Mutual Guicle, 1978. Factory Mutuar Engineering Corporation, Norwood, Mass.
10.12 Foctory Mutual Building Corner Fire Test Procedure. Fire Test Procedure Fublication A880. Foctory Mutual Engineering Corporation, Norwood, Mass. June 1,772.

1n. 13 Loss Prevention [Jatc, :-57; Rigid Foomed Polyurethare and Polyisoevomuate for Construction. Fuctory Mutual Engineering Corporat: : : Morviond, Mass., Dec. 1978.
10.14 Loss Prevention Data, 1-58; Foamed Polystyrene for Construction. Factory Mutual Engineering Corporation, Norwood, Mass. June, 1978.
10.15 Loss Prevention Data, 1-59; Reinforced Plastic Panels in Construction. Factory Mutual Engineering Corporation, Norwood, Mass. June, 1978.
10.16 Thompson, N. J. and Cousins, E. W. "The FM Construction Materials Calorimeter." Quarterly of the National Fire Protection Association. Vol. 52, No. 3, Jan. 1959.
10.17 Wilson, E. L. "F lammability and High-Temperature Characteristics of Composites." Vol. 3, Flame Retardance of Polymer Materials. Marcus Dekker, Inc., New York, N. Y. 1975.
10.18 Blaga, A. and Yamasaki, R. S. "Outdoor Durability of a Common Type (Tetrochlorophthalic Acid-Based) Fire Retardant Glass Fiber Reinforced Polyester (GRP) Sheet." DBR Paper 757, National Research Council of Conoda, Division of Building Research, Ottawa, Canadc. 1977.
10.19 ASTM 1978 Annual Book of Standords, Parts 18, 35. Ame:ican Society for Testing and Materials, Philadelphia, Pa.
10.20 Stundard Methods of Fire Tests of Building Construction. NFPA 251, National Fire Protection Association, Boston, Mass. 1972.
10.21 Method of Test of Surface Burning Chorocteristics of Building Materials. NFPA 255, National Fire Protection Association, Boston, Mass. 1372.
10.22 Standard Test Method for Measuring the Smoke Generated by Solid Materials. NFPA 258. National Fire Protection Association, Boston, Mass. 1976.
10.23 Underwriters' Laboratories Tests. Underwriters' Loboratories, Inc., Chicago, III.
10.24 "A Fire Study of Rigid Cellular Plastic Materials for Insulated Wal! and Roof/Ceiling Construction, Parts 1, 2, 3." Summaries from Society of Plastics Industry, N. Y. Urethane Safety Group Bulletins U-I00R, U102R. Factory Mutual Research Carporation, Westport, Conn.
10.25 Williamson, R. B. and Baron, F. M. "A Corner Fire Test to Simulate Residential Fires." Flammability of Cellular Plastics. Vol. 8, Fire and Flammability Series. ed. Hilado, Carlos J. Technomic Publishing Compony, Inc., Westport, Conn. 1974.
10.26 Benjamin, I. A. "Development of a Room Fire Test." Special Technical Publication 614, American Society for Testing and Materials, Philadelphia, Pa. 1977.
10.27 Basic Building Code, 1975. Building Officials and Code Administrators Infernational, Inc., Chicogo, Ill.
10.28 Uniform Building Code 1976, and 1978 Supplements. International Conference of Building Officials, Whittier, Cal.
10.29 Standord Building Code 1976, and 1977 Revision. Southern Building Code Congress International, Inc., Birmingham, Ala.
10.30 HND Minimum Property Stondards. 4900.1, One and Two-Family Dwellings; 4910.1 , Multi-Family Housing; 4920.1, Care-Type Housing. U. S. Department of Housing and Urban Development, Washington, D. C. 1973.
10.31 Life Sofety Code. National Fire Protection Association, Boston, Mass. 1976.

IC. 32 Rosuto, D. V.j Fallon, W. K.; Rosato, D. V. Markets for Plastics. Van Nostrand Reinhold Co., New York, N. Y. 1969.
10.33 Nelson, Gordon L. "Plastics Flom,nobility." National Symposium on Fire Sofety Aspects of Polymeric Materials. Carnegie Institution, Washingfon, D. C. 6-8 June 1977.
10.34 MPotential Heat of Materials in Building Fires." NBS Technical News Bulletin, Nov. 1960. National Bureau of Standards, Washington, D. C.
10.35 "State-of-the-Art Report Air Supported Structures." American Society of Civil Engineers, New York, N. Y. 1979.


[^0]:    * Note: In accordance with common usoge, $y$ is also used to denote transverse deflection of the beam, which is not to be confused with the $y$ distonce from the section centroid as used in Eqs. 5.21 \& 5.23 and in Fig. 5-4 a and c.

[^1]:    * See for example Scalzi, J., Podolny, W. and Teng, W., "Design Fundomentals of Cable Roof Structures," published by U. S. Steel Corporation, 1969

[^2]:    Example 6.4: Determine the maximum membrane stress and the midspon deflection for the thin FRP panel of Exomple 6.2 it the panel is assumed to be a membrane and its bending resistonce is neglected.

    From Example 6.2: $a=48.9 \mathrm{in.;} b=32.6 \mathrm{in}. ; t=0.125 \mathrm{in}. ; E=1 \times 10^{6} \mathrm{psi} ;$

    $$
    q=0.35 \mathrm{psi}
    $$

    From Fig. 6-17 for $\mathrm{a} / \mathrm{b}=1.5: \quad \mathrm{k}_{1}=0.282 ; \mathrm{k}_{2}=0.204 ;$ and $k_{3}=0.363$

    From Eq. 6.29: $\quad N_{h y}=0.282 \sqrt[3]{0.35^{2} \times 32.6^{2} \times 1 \times 10^{6} \times 0.125}=71.5 \mathrm{lb} / \mathrm{in}$.

    $$
    o_{c y}=\frac{71.5}{0.5 ;}=5970 \mathrm{si}
    $$

    From Eq. 6.30: $\quad w_{c}=0.363 \times 32.6 \sqrt[3]{\frac{0.35 \times 32.6}{1 \times 10^{6} \times 0.125}}=0.53 \mathrm{in}$.

    Note: $|\mathrm{in} .=\mathbf{2 5 . 4} \mathbf{~ m m} ; ~| ~ p s i=0.0069 \mathrm{MPa} ; \mid \mathrm{ltf} / \mathrm{in} .=0.18 \mathrm{~N} / \mathrm{mm}$

[^3]:    - Values given are bosed on plates having loaded edges simply supporied and are conservative for plates having inoded atges tixed.
    ** A more accurate value of $h$ for plates with one langitudinal support free and the other simply supported with a/b 0.7 is ( 6.11 ):
    $k=0.45 \cdot(\mathrm{~b} / 0)^{2}$.

[^4]:    Example 6.10s Determine the required wall thickness of the FRP duct section shown in the sketch. The duct is to be designed for the combined effect of an: internal pressure of 3 psi and equipment supported on the wall which produces a line lood on each side wall of $300 \mathrm{lbs} / \mathrm{in}$. These loads should be considered "long term". The FRP laminate to be used for the duct wall is alternate layers of mat and woven roving glass reinforcement with polyester resin. The structural properties of the overall laminate ore as follows:
    

    Assume that the effective modulus of elasticity is reduced to $80 \%$ of the above value for long-term load. Assume that the usable ultimate long-term strength is one-fourth the above values, including allowance for tolerances in fabrication, effect of long-term load and environmental degradation. Apply a "load foctor" of ? to the above design loads for "ultimate strength" design, except use a lood factor of 3 for the case of stability due to axial load alone. *

    Solution: The duct wall spans 24 inches as a long plate with edges rotationally fully fixed by the balancing effect of pressure on the adjacent wall (see sketch). Each side wall is subject to the combined effects of bending plus axial compression. The symmetrical application of interna! pressure on the adjacent walls of the square duct results in rotational fixity at the edges of the plate.

    The effect of axial lood without internal pressure must also be considered. In this case, the side walls which support axial lood must be considered as pin ended struts, since there is no effect of balancing pressure on adjacent sides to provide fixity.
    Ultimate Bending Moment: $M_{u}=\frac{2 \mathrm{q}^{2}}{12}=\frac{2 \times 3 \times 24^{2}}{12}=288 \mathrm{in} .-\mathrm{lbs} / \mathrm{in}$.
    Utimate Axial Compression: $P_{U}=2\left(-300+\frac{q b}{2}\right)=2\left(-300+\frac{3 \times 24}{2}\right)=-528 \mathrm{lbs} / \mathrm{in}$.

    | Ultimate Design Stresses: | Flexure: | $\sigma_{u b}=22,000 * 4=5,500 \mathrm{psi}$ |
    | :--- | :--- | :--- |
    |  | Compression: | $\sigma_{v a}=24,000 * 4=6,000 \mathrm{psi}$ |
    |  | Tension: | $\sigma_{v a}=15,000 * 4=3,750 \mathrm{psi}$ |

    Note: $\mid$ psi $=0.0069 \mathrm{MPa} ; 1$ in. $-\mathrm{lbf} / \mathrm{in} .=4.45 \mathrm{~mm}-\mathrm{N} / \mathrm{mm} ; 1 \mathrm{lbf} / \mathrm{in} .=0.18 \mathrm{~N} / \mathrm{mm} ;$ $1 \mathrm{in}_{4}=\mathbf{2 5 . 4} \mathrm{mm}$

    - See footnote, Example 6-1, p. 29.

[^5]:    F See note on Example 7-1, page 7-5.

[^6]:    F See note on Example 7-1, poge 7-5.

[^7]:    ## Example 7-10 (continued)

    Plate 2: Free Edge Stresses:
    
    $\overbrace{}^{4,1000} \quad M=208 \times \frac{30^{2}}{8}=23,400 \mathrm{lbs}$
    $S=\frac{.0299 \times 2 \times(6.95 \times 12)^{2}}{6}=70 \mathrm{in}^{3}$
    $\sigma=\frac{23,400 \times 12}{70}=4000 \mathrm{psi}$

    Plate 3 \& 4: Free Edge Stresses:
    

    Load is twice plate 2 load; thus
    $\sigma=2 \times 4000=8000 \mathrm{psi}$
    7. Correction of Edge Stresses to Equalize Strains of Abutting Edges:

    Typical Computation for Correction Stresses Resulting from Restraint of Adjacent Plates
    
    $\sigma_{c}=-\frac{N}{b h}-\frac{3 N}{B h}=-\frac{4 N}{A}$
    

    $$
    \Rightarrow \begin{aligned}
    & \sigma_{t}=\frac{4 N}{A} \\
    & \sigma_{c}=-\frac{2 N}{A}
    \end{aligned}
    $$

    Stress Distribution Factors:

    $$
    \begin{aligned}
    & k_{12}=\frac{A_{2}}{A_{1}+A_{2}} \\
    & k_{12}=\frac{5.0}{7.73+5.0}=0.74 \\
    & k_{21}=\frac{1.73}{5.0+1.73}=0.26 \\
    & k_{23}=\frac{5.0}{5.0+5.0}=0.50=k_{32}=k_{34}=k_{43}
    \end{aligned}
    $$

[^8]:    5. Maxirnum Stresses in Faces at Midapan:

    Face 1: $\quad \begin{aligned} & \text { Primary } \\ & \text { (tension) }\end{aligned} \quad f_{P_{1}}=\frac{M_{p}}{S_{1}}=\frac{900}{0.205}=+4,390$ psi
    Secondary $\quad f_{s_{1}}=\frac{0.025}{0.192 \times 10^{-3}}= \pm 130 \mathrm{psi} \quad \begin{array}{r}\text { Total }=+4,520 \mathrm{psi} \\ \text { and }+4,260 \mathrm{psi}\end{array}$
    $\begin{array}{ll}\text { Face 2: } \\ \text { (Element 2a) } & \begin{array}{l}\text { Primary } \\ \text { (Compression) }\end{array}\end{array}{ }_{P_{2 a}}=\frac{{ }^{M_{P}}}{{ }^{5} 2 a}=\frac{900}{0.374}=-2,406 \mathrm{psi}$
    $\underset{\text { (tension) }}{\text { Secondary }} \quad f_{s_{20}}=\frac{M_{s 2}}{S_{f 2}}=\frac{38}{0.0134}=+2,836 \mathrm{psi} \quad$ Total $=+430 \mathrm{psi}$

    Face 2:
    (Element 2c)
    $\underset{\text { (compression) }}{\text { Primary }} \quad f_{P_{2 c}}=\frac{{ }^{M_{p}}}{{ }_{2 c}}=\frac{900}{0.273}=-3,297 \mathrm{psi}$
    $\underset{\text { (compression) }}{\text { Secondary }} \quad f_{s_{2 c}}=-f_{s_{2 a}} \quad=-2,836$ psi $\quad$ Total $=\underset{(\text { Moximum })}{-6,133 \mathrm{psi}}$

[^9]:    Example 8-8 continued
    5. Proportians and Cost for Criterion 3
    $c \quad=\frac{2 j^{*}}{S^{*}} \cdot \frac{S^{*}{ }^{2}}{2 T^{*}}=\frac{2 \times 0.604}{0.282}-\frac{0.282^{2}}{2 \times 0.604}$
    Eq. 8.124
    $=4.28-0.066=4.21 \mathrm{in}$.
    Note that the secord term is small for thin faces.

    $$
    \begin{array}{rlr}
    \dagger & =\frac{S^{* 2}}{2 T^{2}}=\frac{0.282^{2}}{2 \times 0.604}=0.066 \mathrm{ir} . & \text { Eq. } 8.125 \\
    C_{p} & =2 \times 0.066 \times 0.08+4.21 \times 0.004 & \text { Eq. } 8.112 \\
    & =0.0106+0.0168=0.0274 \$ / \mathrm{in}^{2}=3.95 \$ / / \mathrm{ft}^{2} &
    \end{array}
    $$

    $$
    \text { Check Criterion } 4 \text { : }
    $$

    From Criterion 3, $\mathrm{c}=4.21 \mathrm{in} .^{2} 1.92 \mathrm{in} .=\mathrm{c}^{*}$. OK

    Check cocuracy of $25 \%$ increase in moment of inertio. Check assumption as to compensation for shear deflection in step 3.

    $$
    \begin{aligned}
    w & =\frac{K_{m} P L^{3}}{D_{m}}+\frac{K_{v} P L}{D_{v}} ; K_{m}=\frac{5}{384}, K_{v}=\frac{1}{8} \text { (Table 8-3) } \\
    & =\frac{5(0.28 \times 96) 96^{3}}{384 \times 1 \times 10^{6} \times 0.604}+\frac{(0.28 \times 96) 96}{8 \times 1,000 \times 4.21} \\
    & =0.512+0.077=0.59 \mathrm{in}<0.64 \mathrm{in} .=w_{o} \text { (within 8.5\%) OK }
    \end{aligned}
    $$

    Refine by second trial with 1" reduced by about 7\%, if desired.

    ## 18. Conclusion

    Minimum cost panel which meets design criteria has 4.21 in. core and 0.066 in. faces. Ponel cost is $\$ 3.95 / \mathrm{sq}$ ft plus cost of bonding odhesive.

[^10]:    Exumple 8-1 I continued
    8. Calculate Deflections (Load Foctor $=1.0$ ) midspan between a \& b

    Maximum de flection is inward due to temperature gradient and wind load.

    $$
    \begin{aligned}
    w= & M\left[\frac{5 a^{2}}{48 D_{m}}+\frac{1}{D_{v}}\right]+\frac{\left(\varepsilon_{2}-\varepsilon_{1}\right) o^{2}}{8 d}+\frac{\left(M_{b L}+M_{b T}\right) o^{2}}{16 D_{m}} \\
    M= & 0.125 q a^{2}=0.125 \times 0.21 \times 120^{2}=378 \mathrm{in} .-\mathrm{lb} / \mathrm{in} . \\
    w= & 378\left[\frac{5 \times 120^{2}}{48 \times 0.74 \times 10^{6}}+\frac{1}{3360}\right] \\
    & +\frac{1.95 \times 10^{-3} \times 120^{2}}{8 \times 4.1}+\frac{(-360-504) 120^{2}}{16 \times 0.74 \times 10^{6}} \\
    = & 0.88+0.86-1.05=0.69 \mathrm{in} .<0.80 \mathrm{in} . \text { Max. OK }
    \end{aligned}
    $$

    Conclude: Ponel meets wind and thermal stress criteria with $7 \%$ margin (i.e. maximum interaction $=0.93$ ). The most severe loading cardition is foce wrinkling under wind luad combined with long-term thermal stress.

[^11]:    - Exomple 9-15 (continued)

    2. Membrane stresses in wall - See Table 9-1.
    (a) Circumferential: $h=R$ for fluid load case in Table 9-1
    $N_{0}=\gamma R^{2}\left(\frac{R}{R}-\sin 0\right)$ with $0=0$ at horizontal diameter
    crown: $\quad 0=90^{\circ} ; N_{0}=0.040 \times 48^{2} \times(1-1)=0$
    side: $\quad \theta=0 ; N_{0}=92.2(1-0)=92.2 \mathrm{lbs} / \mathrm{in}$.
    bottom: $\theta=-90 ; N_{0}=92.2(1+1)=184.4 \mathrm{lbs} / \mathrm{in}$.
    Add for possible 5 psi overpressure (uniform pressure case in Table 9-1):

    $$
    N_{0}=p R=5 \times 48=240 \mathrm{lbs} / \mathrm{in} .
    $$

    (b) Shear - fluid load case in Table 9-1
    $N_{x \theta}=\gamma R\left(\frac{L}{2}-x\right) \cos \theta ; \max N_{x \theta}=\gamma R \frac{L}{2}$ at sides adjecent to support
    If shell is thickened for a width of I ft-6 in. on each side of the saddle centerline to resist local stresses at supports, the critical section for shear will be at $L / 2=80-18$ $=62 \mathrm{in}$.
    $\max N_{x \theta}=0.04 \times 48 \times 62=119 \mathrm{lbs} / \mathrm{in}$.
    (c) Longitudinal Stress

    Adjust the $N_{x}$ stresses given in Table 9-1, fluid load case, for a cylindrical beam with simply sopported span, $L$, to reflect the effect of the overhangs, as follows:
    

    Effect of Vertical Loods:
    $w=1069 \times 68.6 /(21.3 \times 12)$
    $=287 \mathrm{lbs} / \mathrm{in}$.
    $W_{1}=134 \times 68.6$
    $=9,192 \mathrm{lbs}$
    centroid of half sphere $=\frac{3}{8} r$
    $=\frac{3}{8} \times 48=18 \mathrm{in}$.
    $M_{a}=-9192 \times(18+48)+287 \times \frac{48^{2}}{2}=-937,300$ in.-lbs
    $M_{c}=\frac{287 \times 160^{2}}{8}-937,300=\cdot \cdot 18,900$ in.-lbs
    $M_{d}=-937,300-\frac{287 \times 18^{2}}{2}+\frac{45,900 \times 18}{2}=-570,694 \mathrm{ir} .-\mathrm{lbs}$
    $M_{e}=-9192 \times 48-287 \times \frac{30^{2}}{2}=-570,366$ in.-lbs

[^12]:    - See footnote, Example 9-1, Page 9-13.

[^13]:    * Numbers in porentheses refer to the list of references ot the erid of this chopter.

