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Foreword 

Research has demonstrated that many drivers have gaps in their knowledge and 
understanding of advanced vehicle technology—how it works and what its limitations are. 
These gaps can have important implications for the safe use of these systems. It is 
imperative to increase our understanding of how drivers’ perceptions and expectations of 
new technology form and evolve over time such that knowledge gaps can be exposed and 
addressed.  
This technical report summarizes a multi-session driving simulator study looking at how 
different types of driving experiences can influence drivers’ understanding of Adaptive 
Cruise Control. The report should be of interest to researchers, safety advocates, and the 
automobile industry who are working in the domain of advanced vehicle technology.  
This report is a product of an active cooperative research program between the AAA 
Foundation for Traffic Safety and the SAFER-SIM University Transportation Center. 

C. Y. David Yang, Ph.D.

President and Executive Director  
AAA Foundation for Traffic Safety 

Dawn Marshall 

SAFER-SIM Director 
National Advanced Driving Simulator 
The University of Iowa 
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Executive Summary 

Advanced Driver Assistance Systems (ADAS) support drivers with some driving 
tasks. However, drivers may lack appropriate knowledge about ADAS resulting in 
inadequate mental models, which can translate to drivers misusing ADAS, or mistrusting 
the technologies, especially after encountering edge-case events (situations beyond the 
capability of an ADAS where the system may malfunction or fail). Past research suggests 
that mental models may be improved through exposure to ADAS-related driving situations, 
especially those related to the system capabilities as well as its limitations. The objective of 
this study was to examine the impact of frequency and quality of exposure on drivers’ 
understanding of Adaptive Cruise Control (ACC), their trust, and their workload after 
driving with ACC.  

Sixteen novice ACC users were recruited for this longitudinal driving simulator 
study. Drivers were randomly assigned to one of two groups—the “Regular Exposure” group 
encountering routine edge-case events, and the “Enhanced Exposure” group encountering 
both routine and rare edge-case events. Each participant undertook four different simulator 
sessions, each separated by about a week. Each session comprised a simulator drive 
featuring five edge-case scenarios. The study followed a mixed-subject design, with 
exposure frequency as the within-subject variable, and quality of exposure (defined by two 
groups) as the between-subject variable. Surveys measured drivers’ trust, workload, and 
system knowledge (i.e., mental models).  

The results from the analyses revealed that drivers’ mental models about ACC 
improve with frequency of exposure to ACC and associated edge-case driving situations. 
This was more the case for drivers who experienced rare ACC edge cases. The findings also 
indicate that for those who encountered rare edge cases, workload was higher and trust was 
lower than those who did not. These findings underline the importance of experience and 
familiarity with ADAS for safe operation. While these findings indicate that drivers benefit 
from increased exposure to ACC and edge cases in terms of appropriate use of ADAS, and 
ultimately promise crash reductions and injury prevention, a challenge remains regarding 
how to provide drivers with appropriate exposure in a safe manner. 
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Introduction 

Most, if not all, modern automobiles are equipped with advanced vehicle 
technologies that have the capability to automate some aspects of the driving task. A report 
in 2019 indicated that nearly 93% of all new vehicles had at least one advanced driver 
assistance system (ADAS) feature, such as Automatic Emergency Braking (AEB), Adaptive 
Cruise Control (ACC), or Lane Keeping Assist (LKA), among others (AAA, 2019).  

These technologies are often touted as driver convenience or driver assistance 
features and offer promises of increased driver safety. However, by virtue of their 
capabilities, the driver can relegate some of their traditional driving tasks to the 
automation systems. This results in a change in the drivers’ traditional role: from that of an 
engaged operator responsible for controlling the vehicle, to that of an operator that shares 
monitoring and vehicle control tasks with one or more automated systems. That is, ADAS 
technologies like ACC and LKA require the driver to more closely monitor and control the 
systems, despite the systems’ ability to manage the longitudinal and lateral vehicle control 
tasks.  

Moreover, these vehicle technologies are inherently complex and are not 
immediately transparent and obvious to the everyday users. The technological 
sophistication of automation technologies can influence how drivers understand their 
vehicles (sometimes referred to as drivers’ mental models of vehicle technology). Thus, 
while these systems promise safety and convenience, the complexities of these automation 
systems, the changing role of the driver, and the shared responsibilities between driver and 
vehicle automation may result in a compromising of any promised benefits. Therefore, to 
indeed realize the benefits, it is critical for the operator to understand the technology, its 
impact on their driving task, and their own new role in this modern vehicle ecosystem. 

Mental Models 
Drivers’ mental models of systems have been described as a mental representation 

that contains a rich and elaborate structure about a user’s understanding of the how, what, 
and why, of any system (Carroll & Olson, 1987). These mental models help drivers 
understand two very critical aspects of any system: (a) the systems’ capabilities and 
limitations and (b) the current and the possible states/modes of the automation system. 
Incomplete or inaccurate mental models may lead to drivers misunderstanding the scope, 
purpose, operation, capabilities, and limitations of a system. This can lead to 
human factors–related issues including inflated expectations, uncalibrated trust, negative 
adaptation, or simply operational errors, which could result in safety critical consequences. 
Mental models are constantly being updated, with the updating of long-term knowledge 
based on exposure to scenarios. This is especially important in the context of ADAS and 
users’ mental models, since ADAS technology is relatively new resulting in drivers 
generally starting off with no or very limited prior knowledge and hence potentially sparse 
and inaccurate mental models (Beggiato & Krems, 2013; Victor et al., 2018). 

Past research has found that ADAS users may be generally unaware of system 
limitations and capabilities. McDonald et al. (2018) reported low awareness among users of 
ADAS features and found that only about 10% of drivers actively sought more information 
about equipped ADAS features. Jenness et al (2008) found that only about 28% of ADAS 
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users (from a pool of about 370 participants) were aware of their system’s functionalities 
and limitations. Mehlenbacher et al (2002) reported that 40% of their study population’s 
drivers did not read the owner’s manual at all, and the other 60% reported to have only 
read the manual partially.  

With low knowledge and experience with ADAS, drivers may either lack an initial 
mental model (Beggiato & Krems, 2013) or have inaccurate or incomplete mental models. 
These flawed mental models can potentially result in driver errors that can negate any 
safety advantages of ADAS (Stanton & Salmon, 2009; Victor et al, 2018; Gaspar et al., 
2021). Additionally, incomplete mental models may contribute to mode confusion where 
drivers may be unsure about the system state, system responsibility, and whether driver 
interventions are necessary (Endsley, 2017; Wilson et al, 2020).  

The initial formation and development of mental models may be highly dependent 
on the source, accuracy, and accessibility of the information. For example, the informational 
content, the framing, and the design of owners’ manuals have an impact on how drivers 
understand complex ADAS technologies (McDonald et al, 2018; Singer & Jenness, 2020). In 
addition, after an initial mental model has been established by a user, the subsequent 
evolution and strengthening (or weakening) of these mental models can be highly 
influenced by a user’s unawareness of system limitations, or inflated expectations of a 
system. This is more pertinent when one experiences failures or malfunctions of the 
technology, or when experiencing situations (edge cases) where a system reaches the limits 
of its capabilities or is out of its operational design domain (ODD). One could then learn 
from these experiences and improve one’s understanding, or the experiences may negatively 
affect trust, acceptance, and hence use of a system (Beggiato & Krems, 2013).  

Moreover, research has also shown that driver trust is associated with system 
understanding. Incorrect expectations or miscalibrated trust levels in the system may 
result in misuse of the system (Dickie & Boyle, 2009). Lack of knowledge could also result 
in distrust and disuse of systems after encountering edge-case events (Beggiato & Krems, 
2013).  

Other human factors challenges in the context of ADAS include potentially adverse 
effects on driver workload (Hungund et al, 2021; De Winter et al., 2014). Interestingly, 
informing drivers about the functions, limitations, and operations of their system and 
therefore, improving their mental models about the system, can lead to increased workload 
(Khastgir et al, 2019). Thus, methods of improving knowledge without an adverse effect on 
workload are desirable.  

Past studies have suggested that through experience and exposure, one could 
acquire the necessary knowledge to bridge the gaps in drivers’ mental models about their 
systems (Beggiato & Krems, 2013; Carney et al, 2022). For example, a driver may learn 
that an ACC system should not be used in particular weather conditions because they have 
tried to do so and found that the system performed poorly. Other studies have shown that 
participants have some preference towards experimentation and real-world exposure to 
edge-case events, in terms of gaining knowledge and understanding about their systems 
(Jenness et al, 2019). Similarly, another study showed how exposure to on-road situations 
helped drivers to update and improve their mental models and improve their trust and 
acceptance of the system (Novakazi et al, 2020). Despite the potential benefits of real-world 
experience and exposure in improving a driver’s understanding of a system, this approach 
is not without risk. This is especially so, given that system limits or failures often require a 
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quick and decisive response and that drivers’ experiences in specific situations will vary 
widely.  

Objective 
Given the importance of mental models towards safe interaction with ADAS and the 

various human factors challenges regarding ADAS such as miscalibrated trust and the 
effect on workload, it is important to understand how different types of driving experiences 
and exposures affect drivers’ mental models about ADAS. The objective of this study was to 
examine how the frequency and quality of exposure (exposure defined as driving through 
events or situations that have some bearing on the functions of the ACC) affect drivers’ 
mental models about ACC, their trust, workload, and their use of the systems as measured 
by their behaviors around disengaging ACC.  

This research employed an experimental longitudinal driving simulation study to 
expose drivers to ADAS technologies as well as associated edge cases over time. Drivers 
with minimal experience with ACC were recruited and exposed to the technology through 
simulated drives over multiple visits separated by approximately a week. 

Method 

Participants 
Sixteen drivers, aged between 21 to 54 years (mean = 29.6; SD = 4.2) were recruited 

for this longitudinal driving simulator study. The participants were pre-screened for the 
study through an online survey, which determined if they had prior experience and 
familiarity using ACC. Based on their responses, only novice users of ACC, i.e. those 
participants that indicated that they have never used ACC or indicated that they were “not 
at all familiar” or “slightly familiar” with ACC, were chosen to participate in the study. 
They were also required to hold a valid United States driver’s license to be eligible for 
participation. The study received prior IRB approval for human subject testing. 

Participants were incentivized to participate and remain in the study via the 
following incentive structure. Each participant was offered up to $100 for completing all 
four study visits. The incentives were offered on an increasing basis with each subsequent 
visit to encourage participants to complete all visits and minimize attrition. Specifically, 
participants were paid $15, $20, $30, and $35 for visits 1, 2, 3, and 4, respectively. 
Following their 4th visit, participants were also automatically enrolled in a raffle for an 
additional $100.  

Equipment and Materials 

Driving Simulator 
The study utilized a Realtime Technologies (RTI) full-cab driving simulator (Figure 

1), which is a fixed-base driving simulator running on RTI’s SimCreator engine. The 
simulator consisted of a 2013 Ford Fusion cab and five screens situated in front of the cab 
giving the driver a 330-degree field of view. The simulator also provided the driver with 
rear views of the simulator environment with the help of two dynamic side-mirrors and a 
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rear-view mirror. A five-speaker surround system simulated external environmental 
sounds and two-speakers simulated in-vehicle noise. 

The SimCreator engine enabled the designing and scripting of edge-case events in 
the virtual world along with the ability to design visual elements on the instrument panel. 
Moreover, audio cues to assist the driver when traversing through the virtual world were 
also scripted. The SimCreator engine also utilized the SimADAS package, which enabled 
the simulator to include ADAS features such as Adaptive Cruise Control, Blind Spot 
Monitoring, Lane Keep Assist, etc. The ACC system that was utilized for this study had 
functionalities and limitations mirroring those of ACC systems found in the real world and 
could maintain the vehicle’s speed and distance from the lead vehicle based on the driver- 
defined settings. The simulator collected vehicle measures and real-time recordings of the 
participants’ eye, foot, and hand movements. A Smart Eye Pro eye-tracker system was also 
utilized, however, data from this component are not considered in the current report.  

 

 
Figure 1: University of Massachusetts Human Performance Laboratory Driving Simulator 

Scales and Surveys 
Participants’ trust in the ACC system was measured after each drive using the trust 

survey by Jian et al (2000) and an overall trust score was derived from the mean of twelve 
items on this survey. Workload was similarly assessed after each drive using the NASA 
Task Load Index (Hart & Staveland, 1988; see Appendix A).  

To measure changes in the participants’ mental models about ACC, the research 
team developed a mental model survey. The survey consisted of 54 items and each item 
included a true or false statement regarding ACC functions, limitations, and operational 
capabilities. The participant rated their agreement with each statement on a ten-point 
scale (ranging from 1 to 10, with higher ratings suggesting higher agreement). An example 
for an item that is a true statement would be, “ACC will accelerate if a slower vehicle ahead 
moves out of the detection zone.” Similarly, an example for an item that is a false statement 
would be, “ACC can steer your vehicle automatically.” The agreement/disagreement rating 
was then followed by a 3-point confidence rating, i.e., low confidence, medium confidence, 
and high confidence, for each response. The complete survey can be found in Appendix A. 
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For each item, a composite score was derived based on the participant's responses on 
both the agreement and confidence scales. To derive the scores, the ten-point agreement 
scale was translated on a scale ranging between −5 and 5 indicating the lowest and highest 
agreement range respectively. Next, the confidence scale was translated to a multiplier 
scale. If a response on the agreement scale was leaning towards the right direction, i.e., 
greater than 0, the response was deemed correct, and the subsequent confidence multiplier 
would be either 1, 2, or 3 (for low, medium, and high confidence ratings, respectively). 
However, if a response on the agreement scale was leaning towards the wrong direction, 
i.e., less than 0, the response was deemed incorrect, and the subsequent confidence 
multiplier would be either 1, 2, or 6 (for low, medium, and high confidence ratings 
respectively). This approach was taken to introduce an additional penalty in the score for a 
high-confidence rating for an incorrect response. Therefore, each item on the mental model 
survey would have a composite score ranging from −30 to 15 based on the scoring described 
above. An overall Mental Model Score was derived from the mean of all composite scores on 
the survey. 

Experimental Design 
The experimental design was a mixed design, with quality of exposure as the 

between-subject variable, and exposure frequency as the within-subject variable. Quality of 
exposure was defined by two conditions (and participant groups)—the Regular Exposure 
group encountering routine edge-case events and non-events, and the Enhanced Exposure 
group encountering routine and rare edge-case events. In this study, edge-case events were 
defined as driving situations where ACC can no longer operate appropriately due to the 
system having reached the limits of its operational design domain. Routine edge-case 
events refer to edge-case events that are more commonly encountered when driving, while 
rare edge-case events refer to those that occur with a lower frequency during driving. The 
non-events encountered by the Regular Exposure group were situations that had no 
consequence to the normal functioning of ACC. Given the lack of real-world crash datasets 
from which one could derive crash types and frequency of occurrence, the categorization of 
the edge-case events was based on the team’s expert opinions, taking into account the 
nature of the events and thus their potential rarity (or commonness) in everyday driving. 

Exposure frequency was defined by the number or visits (sessions) made by the 
participants for the study. Participants in both groups were required to drive through a 
total of four counterbalanced drives during four separate visits (one drive per visit). A gap 
of at least five days was maintained between each of the visits. Each drive featured five 
scenarios based on the participants’ group assignments. For the Regular Exposure group, 
participants encountered four different drives each containing five scenarios—three 
featuring routine edge-case events (shown in blue in Figure 2 and Table 1) and two non-
events (shown in grey in Figure 2 and Table 1). The drives for the Enhanced Exposure 
group contained five scenarios as well—three featuring routine edge-case events (shown in 
blue in Figure 2 and Table 2) and two rare edge-case events (shown in yellow in Figure 2 
and Table 2). These conditions have been visualized in Figure 2, where each visit involves 
one drive with five scenarios each. As a result of this design, the Enhanced Exposure group 
encountered two more edge-case events per drive compared to the Regular Exposure group 
due to the inclusion of the two additional rare edge-case events. The color-coded scenarios 
represent the type of events encountered (routine edge-case, rare edge-case, or non-events). 
The order of scenarios within each drive was fixed ensuring that every participant 
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encountered the scenarios at the same instance within the drive. The order of the drives 
received by each participant was counterbalanced across and within each group. For 
descriptions of scenarios within each drive, please refer to Table 1 and Table 2. 

 
Figure 2. Typical representation of scenario order in each drive for each group for each visit 
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Table 1. Description of Drives and Scenarios for the Regular Exposure group (blue = routine 
edge-cases; gray = non-events). 

Drive 
No. 

Scenario 
No. Description 

1 

1 Traffic cones—the driver encounters traffic cones that are placed near the 
shoulder, slightly encroaching into the right lane 

2 Bridge—the driver encounters a bridge 

3 Slow-moving traffic—the driver reaches a line of slow-moving vehicles on the 
highway 

4 Car on the right shoulder—the driver encounters a car parked on the right 
shoulder 

5 Merging lane—the driver encounters a merging of lanes 

2 

1 Lack of lane markings—the driver reaches a roadway section where the lane 
markings are deteriorated causing surrounding vehicles to drive erratically 

2 Exit—the driver is instructed to take the exit approaching on their right 

3 Police car—the driver encounters a police car parked on the right shoulder 

4 Pedestrians on sidewalk—the driver encounters pedestrians walking on the 
sidewalk on their right 

5 Group of bicyclists—the driver encounters a group of bicyclists in the right 
lane 

3 

1 Roundabout—the driver encounters a roundabout in nighttime conditions 

2 Poor visibility due to fog—the driver encounters bad visibility conditions due 
to fog 

3 Lead vehicle with no taillights—the driver encounters a lead vehicle whose 
taillights are not visible, i.e. not switched on 

4 Digital billboards—the driver reaches a roadway section with several 
brightly lit digital billboards 

5 Construction zone on opposite side—the driver encounters a construction 
zone on the opposite side of the roadway 

4 

1 
Pedestrian crossing—the driver approaches an intersection with the traffic 
lights (lit green) and a pedestrian approaches the edge of the crosswalk in 
the driver’s travel path 

2 Billboards—the driver reaches a roadway section with several billboards 
placed close to each other 

3 Heavy traffic near exit—the driver encounters slow-moving traffic near an 
exit 

4 Shopping area—the driver encounters a shopping area on their right side 
with stores and several parked vehicles 

5 Motorcyclist in travel lane—the driver encounters a motorcyclist that cuts 
into their travel lane 
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Table 2. Description of Drives and Scenarios for the Enhanced Exposure group (blue rows = 
routine edge-cases; yellow = rare events). 

Drive 
No. 

Scenario 
No. Description 

1 

1 Traffic cones—the driver encounters traffic cones that are placed near the 
shoulder, slightly encroaching into the right lane 

2 Straddling lead vehicle—the driver encounters a lead vehicle that is 
straddling the lane lines 

3 Slow-moving traffic—the driver reaches a line of slow-moving vehicles on the 
highway  

4 Swerving lead vehicle—the driver encounters a lead vehicle that is swerving 
in and out of their travel lane 

5 Merging lane—the driver encounters a merging of lanes 

2 

1 Lack of lane markings—the driver reaches a roadway section where the lane 
markings are deteriorated causing surrounding vehicles to drive erratically 

2 Exit—the driver is instructed to take the exit approaching on their right 

3 Non-standard-shaped lead vehicle—the driver encounters a non-standard-
shaped lead vehicle, i.e., a cement truck 

4 Sharp curve—the driver reaches a sharp curved section of an undivided 
highway 

5 Group of bicyclists—the driver encounters a group of bicyclists in the right 
lane 

3 

1 Roundabout—the driver encounters a roundabout in nighttime conditions 

2 Poor visibility due to fog—the driver encounters bad visibility conditions due 
to fog 

3 Lead vehicle with no taillights—the driver encounters a lead vehicle whose 
taillights are not visible, i.e. not switched on 

4 Bad weather—the driver encounters a lead vehicle in bad visibility 
conditions due to fog 

5 
Oncoming vehicle—the driver encounters a construction zone on the opposite 
side of the roadway and a vehicle moves into their travel lane from the 
opposite direction to pass the construction zone 

4 

1 
Pedestrian crossing—the driver approaches an intersection with the traffic 
lights (lit green) and a pedestrian approaches the edge of the crosswalk in 
the driver’s travel path 

2 
Stopped truck and lead vehicle—the driver encounters a lead vehicle in their 
(right) lane that suddenly changes to the left lane to pass a stopped truck 
with hazard lights 

3 Heavy traffic near exit—the driver encounters slow-moving traffic near an 
exit 

4 Sharp curve—the driver encounters a sharp curve on a divided highway 

5 Motorcyclist in travel lane—the driver encounters a motorcyclist that cuts 
into their travel lane 
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Procedure 
During the participants’ first visit, they provided their informed consent and were 

given a document that provided an overview of ACC, summarizing the functions and 
operations of ACC in a succinct manner. Next, they filled out a demographics questionnaire 
that collected basic information about age, gender, licensure, as well as driving frequency, 
followed by a pre-drive Simulator Sickness Questionnaire (SSQ). Calibration of the eye-
tracker was conducted followed by a short practice drive where drivers could familiarize 
themselves with the controls of the simulator, the virtual environment, as well the controls 
for the ACC system. The practice drive lasted for up to five minutes. Following the practice 
drive, the participants drove through the main drive, which was the counterbalanced drive 
according to their group assignment (see Tables 1 and 2). Following the drive, the post-
drive SSQ, the mental model survey, the NASA TLX, and the trust survey were 
administered. The participants were compensated for each visit. The experimental 
procedure remained similar for each subsequent visit, except for the demographics survey, 
which was administered only during the first visit. 

Data Analysis 
The overall trust score was derived from the mean of twelve items on the survey 

(Jian et al., 2000). Workload was analyzed according to each of the six sub-scales of the 
NASA-TLX. An overall Mental Model Score was derived from the mean of all composite 
scores on the survey, based on the combination of accuracy and confidence (see above). 

Participants’ use of the ACC system was measured by the proportion of events for 
which they disengaged ACC, and by the quality of their handling of the vehicle after 
disengaging ACC. For the former, the proportion of disengagements for types of events 
(routine, rare, and non-event) was recorded. With respect to quality of vehicle handling, the 
drivers’ speed variability (i.e., standard deviation of velocity, SD-V), lane keeping 
variability (i.e., standard deviation of lane offset, SD-LO), and their maximum resultant 
acceleration (MaxRA) were derived for each disengagement event from the point of 
disengagement until the end of the predefined event window (Du et al, 2020). 

Linear regression models were used to statistically analyze the associations between 
the independent variables and dependent variables. Separate models examined 
participants’ trust, workload, Mental Model Score, SD-V, SD-LO, and MaxRA, and 
interaction effects were considered between the independent variables in the models. The 
significance level was set to 0.05. 

Results 

Mental Model Scores 
There was a main effect of exposure frequency (𝛽𝛽 = 1.55, p = 0.02, η2 = 0.19), and a 

main effect of quality of exposure (𝛽𝛽 = 2.25, p < 0.001, η2 = 0.29) on mental model scores 
(Figure 3). Drivers’ scores increased significantly over exposure, and the Enhanced 
Exposure group had significantly higher scores (mean = 8.1, SD = 2.1) as compared to the 
Regular Exposure group (mean = 5.8, SD = 1.8). No significant interaction effects were 
found. 
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Figure 3. Mental Model Scores across multiple exposures for the Regular Exposure and 

Enhanced Exposure groups 

Trust 
There was no main effect of exposure frequency on trust; however, there was a main 

effect of quality of exposure (𝛽𝛽 = −1.09, p < 0.001, η2 = 0.17) on trust, with the Enhanced 
Exposure group having significantly lower trust. Specifically, as compared to the Regular 
Exposure group (mean = 4.7, SD = 1.2), participants of the Enhanced Exposure group 
(mean = 3.6, SD = 1.3) rated themselves as having lower trust in the system (Figure 4). 
There was no significant interaction between quality of exposure and exposure frequency on 
participants’ trust. 



11 

Figure 4. Trust Scores across the two groups 

Workload 
There was no main effect of exposure frequency on any of the task load indices 

(subscales of the NASA-TLX), with two exceptions. There was a main effect of quality of 
exposure on Mental Demand (𝛽𝛽 = 1.59, p < 0.001, η2 = 0.21), with the Enhanced Exposure 
group (mean = 3.5, SD = 1.7) having significantly higher ratings than the Regular Exposure 
group (mean = 1.9, SD = 1.5) (see Figure 5). Similarly, there was a main effect of quality of 
exposure on Effort (𝛽𝛽 = 12.78, p = 0.02, η2 = 0.09), with the Enhanced Exposure group 
(mean = 34.0, SD = 23.0) also having significantly higher ratings than the Regular 
Exposure group (mean = 21.2, SD = 17.7) (see Figure 6). No significant interaction effects 
were found for both Mental Demand and Effort. 
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Figure 5. Mental Demand ratings across the two groups 

 

 
Figure 6. Effort ratings across the two groups 
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ACC Disengagements 
ACC disengagements were recorded for each type of event in the drives: routine 

events, rare events, or non-events. The Regular Exposure group and the Enhanced 
Exposure group were collectively exposed to a total of 320 events. Both groups were exposed 
to 96 routine events, the Regular Exposure group had an additional 64 non-events, and the 
Enhances Exposure group had an additional 64 rare events. The table below shows the 
proportion of disengagements that each group had for the various event types.  

Table 3. Proportion of Disengagement for Both Groups by Event Type 

Group Routine Events Rare Events Non-Events 

Regular Exposure 25.8% NA 3.2% 

Enhanced Exposure 15.6% 20.3% NA 

Disengagement Behaviors 
The disengagement data were reduced to only include those with actual post-

disengagement values. (i.e., those drivers who disengaged). Regression analyses were run to 
examine the associations between SD-V, SD-LO, and MaxRA and exposure frequency 
(session number) and quality (group). No statistically significant associations were found. 
Figures 7–9 describe these disengagement behavior measures across groups and across 
time.  

 

  
Figure 7. Standard deviation of lane offset by exposure quality (left panel) and frequency 

(right panel). 
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Figure 8. Standard deviation of velocity by exposure quality (left panel) and frequency (right 
panel). 

 

Figure 9. Maximum resultant acceleration by exposure quality (left panel) and frequency 
(right panel). 
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Discussion 

Previous research has indicated that mental models (i.e., driver’s knowledge and 
understanding) of system functions and limitations may be improved through repeated 
exposure and exposure to edge-case events (Beggiato & Krems, 2013; Novakazi et al, 2020; 
Carney et al, 2022). As such, this study investigated the effects of different types of 
exposure on drivers’ mental models about ACC in a longitudinal driving simulator study. 
Specifically, the study examined how quality of exposure, characterized by different types of 
events and edge cases, and exposure frequency affected drivers’ mental models of ACC, 
their trust, their workload, and their disengagement behaviors. The study recruited sixteen 
novice ACC users and randomly assigned them to either of two groups—one that 
encountered routine edge-case events only; the other that encountered both routine and 
rare edge-case events. All drivers made four visits and, in each visit, drove through a 
unique counterbalanced drive on the simulator featuring several ACC edge-case events. 

The results from the analyses indicated that both exposure frequency and quality of 
exposure had effects on drivers’ mental models. Participants’ mental models about ACC 
improved with repeated driving exposure to ACC, with scores increasing with each 
subsequent visit. Results also showed that those drivers that encountered both rare and 
routine edge-case events (Enhanced Exposure group) had higher mental model scores than 
those who only encountered routine events (Regular Exposure group). These differences in 
the mental model scores could be due to the inclusion of rare edge-case events for the 
Enhanced Exposure group, which were intended to provide drivers with rich information 
about system limitations. It is also possible that the group differences were due to the 
increased frequency of edge-case events encountered by the Enhanced Exposure group per 
drive (five events) compared to the Regular Exposure group (three events), although the 
inclusion of mundane non-events was intended to counter this to some degree.  

Results also indicated that there was no interaction effect between quality and 
frequency of exposure, suggesting that the rate of mental model improvement between the 
two participants groups over multiple exposures to ACC was comparable. These findings 
are significant since they underline the importance of experience and familiarity with 
ADAS in terms of knowledge improvement. Exposure to both rare and routine edge cases 
(as experienced by the Enhanced Exposure group) may also fast-track mental model 
development in novice ADAS users as opposed to simple exposure to routine edge cases and 
events where the ACC system functions as intended (as experienced by the Regular 
Exposure group). For example, as shown in Figure 3, it took the Regular Exposure group 
until the fourth session to match the level of system understanding exhibited by the 
Enhanced Exposure Group in the first session.  

Since accurate mental models about a system are likely to promote safe operations, a 
practical implication that can be drawn from this study is that when introducing ADAS-
equipped vehicles to new users, an effective strategy could include targeted exposure to 
different situations either through direct experience or through training, so that they can 
develop appropriate initial mental models about their systems. Prior driver training studies 
(Pradhan et al, 2005; Pradhan et al, 2011) have used an error-feedback approach (Ivancic & 
Hesketh, 2000) to provide a controlled but enhanced exposure to risk and such approaches 
could form an important pillar in terms of future training or consumer education research 
about ADAS and other advanced vehicle technologies. 
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Results from the analyses for trust and workload indicate that exposing novice 
ADAS users to rare edge cases may have an impact on trust. The Enhanced Exposure group 
exhibited lower trust in the system than the Regular Exposure group. This could suggest 
that trust decreased on encountering rare edge cases—a finding that is in line with past 
literature where encountering edge-case events without prior knowledge about them had an 
adverse impact on trust (Beggiato & Krems, 2013). However, as noted by Novakazi et al 
(2020), trust is a construct that develops over time with repeated exposure and interaction 
with the system. This evolution of trust may manifest different after more experience with 
the system, but this was unfortunately outside the scope of the current study (limited to 
four visits and relatively short driving sessions). The Enhanced Exposure group also 
experienced a higher mental demand and perceived effort than their Regular Exposure 
group counterparts. This is somewhat in line work by Khastgir et al. (2019), which showed 
an increase in workload following an increase in knowledge. The higher mental model 
scores of the Enhanced Exposure group and their higher ratings on certain task load 
indices may suggest such a relationship between knowledge and workload. 

The analyses of the disengagement behavior from this study find some interesting 
outcomes. First, the enhanced exposure group had approximately half the proportion of 
disengagements for routine edge-case events compared to the other group. However, their 
overall engagement rate was comparable when the rare edge-case events are also 
considered. There is insufficient evidence to conclude if the fewer disengagement in routine 
edge-case events is because of an attribution of lower risk or importance to these routine 
events given the same group’s exposure to rare events, or if it is due to other factors. For 
the Regular Exposure group, the low proportion of disengagements relative to routine edge-
case events helps to corroborate the selection and classification of scenarios as does the 
higher proportion of disengagements to rare edge-case events for the Enhanced Exposure 
group. Additionally, the analyses found no differences in driving related behaviors (i.e., 
disengagement quality as measured by kinematic vehicle handling) across groups or across 
exposure frequency. It is possible that these vehicle-handling kinematics were not sensitive 
enough in the current context to differentiate levels of knowledge or expertise with the 
system.  

Study Limitations 
The study had a few limitations to note. First, the study was a longitudinal study 

conducted on a driving simulator; an on-road study over a longer time course would be 
useful in generalizing the results. However, it is worth pointing out that conducting such an 
experiment involving novice ADAS users could present potential safety-related risks in a 
real-world setting, and hence, a driving simulator study may be more appropriate in this 
regard. Additionally, the simulator setting allowed for greater control over the occurrences 
of critical events—outcomes whose prevalence in real-world interactions are much more 
uncertain. Second, the sample size was small due to difficulties in enrolling and scheduling 
participants arising from the pandemic, especially considering the longitudinal design. A 
larger sample size may help in better generalizing these results and to examine which 
components of the drivers’ understanding (i.e. which components of the mental model 
survey) showed the most improvement after subsequent exposures to ACC. It should be 
noted however that the observed outcomes for the two independent variables for the three 
linear regression models were associated with medium to large effect sizes, and therefore 
may compensate for potential negative effects due to the small sample size. Third, the 
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number of visits was limited to four, and it is unknown if any more visits could have 
affected the driver’s mental models, trust, or workload differently. Fourth, it is unknown 
what effect participants’ background characteristics such as age and propensity toward 
technology may have had on their trust in ACC. The current study was not designed to 
collect information about the participants’ previous technology usage. Fifth, it is unknown if 
the differences in the mental model scores between the Enhanced Exposure group and the 
Regular Exposure group were driven due to the inclusion of rare edge-case events in the 
former group’s drives, or due to the former encountering edge-case events at a higher 
frequency per drive than the latter. Future work could address this by having both the 
Enhanced Exposure and Regular Exposure groups encounter the same number of rare or 
routine events per drive, respectively. Lastly, all dependent measures considered for this 
study were self-reported survey measures, which may suffer from issues regarding 
reliability and user bias (Schacter, 1999). 

Conclusion and Implications 
Results from this study have positive implications in terms of ADAS usage and 

exposure and the improvements to one’s mental model as a result. Stronger mental models 
may promote accurate and safer interactions with ADAS and prevent gaps in one’s 
expectations and understanding of the system functions and limitations. This may 
ultimately lead to crash reductions and injury prevention, and improve general on-road 
safety. Importantly, exposure to both rare and routine edge cases may also afford a more 
effective path to mental model development in novice users as opposed to simple routine 
exposure. Approaches that include targeted exposure to different situations either through 
direct experience or through training or education should be considered. 

While the findings indicate that drivers benefit from increased exposure to ACC and 
edge cases, the study also revealed differences in trust and workload between the groups. 
Exposure to rare edge-case events seems to be associated with a lower trust as compared to 
a group without that exposure. It is unclear if this lower trust reflects an appropriate 
calibration of trust, or if it may reflect a negative impact. Future work should consider this 
question. Additionally, it is unclear how trust would be affected in a hybrid “quality of 
exposure” condition (i.e., introducing rare edge-case events after multiple exposures to 
regular edge-case events or vice versa). However, this underlines the need for further 
investigation to understand and, if necessary, mitigate any adverse effects on trust and 
workload. One solution may be presenting the more rare and challenging edge-case events 
to drivers much later in their exposure cycle rather than consistently presenting such 
events from the start, where novice users most likely lack an appropriate initial mental 
model about the system functions and limitations. Another important challenge that may 
need to be addressed is regarding how to provide drivers with appropriate exposure in a 
safe manner. The study provided exposures on a driving simulator in a laboratory setting, 
which present almost no safety-related risks. However, exposure in the real world may not 
be as safe, and future work could explore methods or platforms to provide novice ADAS 
users with safe exposures in the real world to improve their mental models. 
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Appendix A 

Trust Survey (Jian et al., 2000) 
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NASA Task Load Index (Hart & Staveland, 1988) 
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Mental Model Survey Items 
For each statement below, please answer these two questions. (i) On a scale of 1-10, with 1 
being strongly disagree, and 10 being strongly agree, please indicate how much you agree 
with the statement, and (ii) How confident are you about your response? (1–low confidence, 
2–medium confidence, 3–high confidence). 

1. ACC can regulate the vehicle’s distance from any type of lead vehicle 
2. ACC helps a vehicle stay at a selected distance from the vehicle in front by signaling 

the lead vehicle to slow down if the distance between them is too large 
3. When ACC is regulating a vehicle’s distance, there is no limit to how near or how it 

can follow another vehicle 
4. The driver can select at what distance ACC will help their vehicle to follow another 

vehicle 
5. ACC is able to Keep a safe distance from a truck with a pole extending 15 feet out 

from the back of the truck 
6. ACC can operate the vehicle at the selected speed even if there is no vehicle in front 
7. ACC will accelerate if a slower vehicle ahead moves out of the detection zone 
8. ACC will react appropriately when Slower-moving vehicle in lane next to you 

changes lanes in front of you, leaving a very small gap 
9. ACC Will react appropriately when the Car in front of you in your lane suddenly 

brakes hard 
10. The driver can control how fast ACC 'drives' the car 
11. When first activated, the ACC controls the vehicle at the speed the vehicle is 

currently travelling at 
12. ACC works at any speed 
13. The vehicle needs to be driving at 25 mph to turn on ACC 
14. ACC is able to Reduce speed when the speed limit drops from 65 mph to 55 mph 
15. ACC is able to merge one lane to the left when the right lane ends 
16. ACC is able to Change lanes to pass a slower vehicle in your lane 
17. ACC can steer the vehicle automatically 
18. ACC can steer the vehicle, but only to keep the vehicle within the travel lane 
19. ACC can be “turned on” or “turned off” using buttons on the steering wheel 
20. The driver can turn off ACC using brake pedals 
21. The driver cannot turn off ACC by turning the steering wheel 
22. The driver can temporarily deactivate the ACC using the gas pedal 
23. The driver can temporarily deactivate the ACC using a button or lever on the 

steering wheel 
24. The driver can change the speed that the ACC is set to by simply pressing the gas 

pedal 
25. The driver can adjust ACC's desired distance by using the brake pedal 
26. The steering wheel buttons are the only way to control the desired distance setting. 
27. The status of the ACC is shown on the instrument panel 
28. ACC remains activated if a lead vehicle changes lanes 
29. ACC slows down the vehicle when it detects driver inactivity 
30. Some ACC systems may alert a driver if their hands are not on the wheel 
31. ACC requires that the driver has their eyes on the road at all times 
32. While driving with ACC activated, the driver can safely use their smartphone for 

texting 
33. ACC is able to Bring the vehicle to a stop if the driver loses consciousness due to a 



24 

medical emergency 
34. ACC can be ‘turned OFF’ by the driver at any time
35. ACC is designed to allow a driver to drive with their hands off the wheel
36. ACC is capable of operating without any involvement from a human driver
37. ACC is a 'self-driving' feature
38. ACC can help a vehicle react to non-standard shaped vehicles (eg. Tractors, Trailers,

etc.)
39. ACC cannot help a vehicle to react to stationary objects on the road
40. ACC can help a vehicle react to all moving traffic in its lane
41. ACC can help a vehicle react to oncoming traffic
42. ACC does not help a vehicle react to pedestrians and animals
43. ACC reacts to potholes in the same lane
44. ACC cannot stop the vehicle at stop signs or stop lights
45. ACC is able to drive where lane lines are badly faded
46. ACC may not work in poor lighting conditions
47. ACC works on all roadway conditions
48. ACC works when Driving down a steep hill
49. ACC can work on all road types (eg. residential areas, highways, etc.)
50. ACC works when exiting onto a ramp from one freeway to another freeway
51. ACC works when Driving in stop-and-go traffic due to a traffic jam
52. ACC features may differ between manufacturers
53. ACC cannot alert a driver if erratic driving is detected from the vehicle ahead
54. ACC can help drivers navigate automatically
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