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Executive Summary 

The popularity of motorcycles in the United States has led to an increasing emphasis on 
motorcycle safety. Wyoming had the highest per capita rate of motorcycle fatalities in 2019, 
with a rate 2.24 deaths per 100,000 population. To gain insight into the causes of these high 
fatality rates, two machine learning models - the Random Forest (RF) and Support Vector 
Machine (SVM) classifiers - were developed in this study to investigate the factors influencing 
motorcycle crash injury severity in Wyoming. By using the Scikit-learn package in Python, the 
Random Forest classifier was deemed superior after comparison. This study used data from the 
Wyoming Department of Transportation's (WYDOT) Critical Analysis Reporting Environment 
(CARE) database, spanning 12 years (2008-2019). The fatal and incapacitating injury levels were 
classified as 'fatal injury' (KA), while non-incapacitating, possible and no injury were grouped 
into the category of 'non-fatal injury' (BCO). Thus, crash severity levels were divided into two 
distinct categories: KA and BCO.  

The data were categorized into three levels: crash, person, and vehicle, and classified based on 
parameters, such as environmental conditions, traffic, crash characteristics, and roadway 
features. Python coding language was utilized to craft and execute the machine learning 
algorithms. The datasets were split into training (80 percent) and test (20 percent) sets, and 
then the performance of both RF and SVM models were measured. Both models acquired a 76 
percent correctness rate on the combined dataset; however, RF yielded a 64 percent accuracy 
on vehicle-level data and 58 percent on person-level data, whereas SVM registered 63 percent 
and 58 percent respectively. Consequently, other than the person-level data, the results 
revealed that RF was more precise than SVM, and was employed to identify the feature 
importance in terms of the contributing elements in the three datasets. 

A feature importance analysis of crash data using the RF classifier revealed that the top five 
contributing factors to injury severity prediction were driver actions, vehicle maneuver, manner 
of collision, junction relation, and helmet use. When considering person-level data, injury area 
of the motorcyclist, driver actions, and alcohol and/or drug involvement were key elements in 
determining the outcome of injury severity prediction. With regards to vehicle-level data, 
vehicle maneuver, vehicle damage, and vertical grade of the road had a significant impact on 
crash injury severity prediction. 

The results of the study have revealed the key influential factors that contribute to the 
prediction of motorcycle crash injury severity using a RF classifier. This finding is of utmost 
importance to WYDOT to help strategize effective means of prevention for motorcycle crashes. 
To further refine its insight, other approaches such as neural networks and deep learning 
algorithms will be utilized for the analysis of motorcycle injury severity.  
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1. Introduction 

The rise in popularity of motorcycles as an alternative form of transportation has made 
motorcycle safety an important issue in the United States. According to the NHTSA (2023), 
5,932 motorcyclists were killed in crashes throughout 2021, representing an increase of 6 
percent from 2020 and about 19 percent from 2019. Furthermore, Blincoe et al. (2023) found 
that motorcycle rider fatalities account for around 14 percent of all motor vehicle crash deaths 
in the United States. 

In the United States, motorcycle use is on the rise, with the number of fatal injuries from 
motorcycle crashes growing faster than the rate of registration. Worryingly, middle-aged riders 
were particularly prone to dying in such crashes (NHTSA, 2023). From 2019 to 2020, motorcycle 
fatalities increased by 11 percent, and 27 percent of all fatal crashes involved alcohol. Multiple 
studies have found that alcohol is a big factor in motorcycle injuries (Eustace et al., 2011; Jones 
et al., 2013; Farid and Ksaibati, 2021; Adanu et al., 2022). Moreover, Wyoming was observed to 
have 1.44 fatalities per 100 million vehicle miles traveled (Farid et al., 2022.). In the same year, 
57 percent of motorcyclist fatalities in the state were riders who weren't wearing helmets. 
Interestingly, while mandatory motorcycle training is not required in Wyoming, riders aged 17 
and younger are legally obligated to wear helmets (World Population Review, 2023).  

In this part of the study, two machine learning models, the RF and SVM classifiers, were 
developed to investigate the factors influencing motorcycle crash injury severity in Wyoming. 
After comparing the performance of both models, the RF classifier was found to be superior, 
using the Scikit-learn package in Python for the analysis. To enable the study, 12 years' of 
statewide motorcycle crash data (2008-2019) derived from the WYDOT's Critical Analysis 
Reporting Environment (CARE) database were obtained. By examining several factors, including 
environmental, roadway, human and vehicular factors, a study by Rezapour et al. (2021) found 
that the two-class model worked best. Consequently, this study combined the fatal and 
incapacitating injury levels into the category of fatal injury (KA), while non-incapacitating, 
possible and no injury were grouped together as non-fatal injury (BCO). Therefore, crash 
severity levels were divided into two, distinct categories: KA and BCO. 

Wyoming had the highest rate of motorcycle fatality per capita in 2019, with an alarming 2.24 
deaths per 100,000 population according to the CARE data. To mitigate this highly 
disproportionate rate of fatalities, a better comprehension of the factors that lead to such high 
fatality must be gained. This study seeks to identify the critical factors associated with crashes, 
vehicles, and individuals, which can be used to develop effective interventions and thereby 
reduce the number of serious injuries and fatalities.  
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1.1. Study goal and methodology 

The goal of this part of the study is to assess the characteristics and contributing factors of 
motorcycle related crashes in Wyoming through the application of machine learning algorithms. 
Twelve years of crash data are used to develop and compare the machine learning models for 
motorcycle crashes, namely RF and SVM classifiers. The data are categorized on the crash, 
person and vehicle level, and organized by selected variables (crash characteristics, traffic, 
environmental conditions and roadway characteristics). The machine learning algorithms are 
developed and implemented in Python programming language. 
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2. Literature Review 

Machine learning has emerged as a powerful tool for improving traffic safety in recent years. 
This is due to the unique advantages that machine learning offers when it comes to analyzing 
large and complex datasets. Machine learning can process vast amounts of data and identify 
patterns and connections that would otherwise be too tedious or complex to identify. This can 
be incredibly useful for analyzing traffic safety, where data spanning weather, traffic conditions, 
road design, and vehicle performance all come into play. 

Machine learning techniques can be utilized to analyze data from numerous sources, such as 
crash reports, vehicle performance tests, and traffic simulations. This analysis can then be used 
to develop more accurate traffic safety models. For example, one way that machine learning 
can be used is to develop models that can accurately predict the likelihood of a crash or 
collision occurring based on certain variables. Through such models, safety engineers can better 
determine preventive measures and safety regulations to mitigate risks.  

On a broader scale, machine learning can also be used to generate insights about global trends 
in transportation safety. By gathering data from thousands of individual driving situations and 
evaluating the relationships between various variables, researchers are able to identify patterns 
and generate predictive models that have the ability to predict a sequence of events. Such 
models can be used to inform policy makers and make effective, data-driven decisions related 
to road safety. 

In recent years, various machine learning models have been utilized in traffic safety studies, 
namely XGBoost, RF, SVM classifiers, Logistic Regression, deep learning models, Naïve Bayes, 
and K-Nearest Neighbors. In this study, RF and SVM classifiers were applied. Random Forest is a 
supervised learning algorithm used for regression and classification tasks (Breiman, 2001; 
Abdel-Aty and Haleem, 2021). It is an ensemble learning method which combines multiple 
decision trees together into an ensemble model. The main idea behind RF is to use many 
individual decision trees to make accurate predictions. It works by randomly selecting a subset 
of predictors for each decision tree in the forest. After selecting the predictors, a decision tree 
is grown. The performance of the model is improved by using a large number of decision trees, 
and each decision tree minimizes variance. Random Forest is both computationally efficient and 
extremely accurate. It is an example of an ensemble learning technique, which works by 
creating multiple decision trees and combining their predictions to better generalize input data. 
It is an effective tool for overcoming the limitations of a single decision tree, which may have 
over fitted a dataset. In addition, RF quickly handles large datasets with categorical and 
continuous variables. Random Forest has become a very popular machine learning algorithm 
due to its accuracy and robustness. It has also been used for a variety of applications such as 
demand forecasting, natural language processing, facial recognition, and image recognition.  
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Random Forest, first developed by Ho in 1995 and revised by Leo Breiman (Breiman, 2001), is a 
widely-used supervised classification algorithm that is valuable for selecting feature important 
variables from a collection of variables (Abdel-Aty and Haleem, 2021), employing bootstrap 
aggregation to reduce the high variance associated with using a single decision tree, and 
minimizing the misclassification error rate (Das et al., 2021). In the implementation of RF, a 
decision tree works well with training datasets in order to separate samples, while multiple 
uncorrelated decision trees are created by sub-setting the training models and making 
predictions via majority voting for classification (Xing et al., 2022). Furthermore, one-third of 
the observations are eschewed from the decision tree during tree-growing procedure, termed 
as out-of-bag (OOB) data points, which are utilized in computing an unbiased prediction error 
and estimating the measures of feature importance (Rezapour et al., 2021). In this study, Gini 
impurity was used for selecting the feature importance, with higher Gini node purity correlating 
to higher feature importance. 

Random Forest is one of the models used to determine which features have an effect on the 
severity of a crash, and was recently utilized in a study conducted in Kentucky with deep 
learning models. This study was successful as the random forest achieved an accuracy of 91 
percent, and revealed that factors such as collision time, crash location, driver age, and helmet 
use correlate with the crash severity (Xing et al., 2022). In assessing the risk factors that 
contribute to crash severity, the random forest classifier has shown an overall accuracy of close 
to 73 percent. Elyassami et al. (2020) found that disregarding traffic signals and stop signs, poor 
visibility, and bad weather conditions were some of the features influencing crash injury 
severity when they assessed the risk factors with a random forest classifier. This model was 
further optimized by Yan and Shen (2022) using a Bayesian optimizer. Islam et al. (2022) also 
used classifier models to predict road crash severity, where the random forest identified the 
type of collision and the cause of the crash as the main factors impacting severity. 

SVM models have been widely employed in crash data analysis, and often outperform neural 
networks and other statistical models (Li et al., 2008). They are a type of supervised machine 
learning algorithm that analyzes and classifies data, capable of both linear and nonlinear 
classifications. By finding a subset of training data points known as SVMs, it is possible to create 
an optimal hyperplane that separates the classes. SVMs are common for data classification due 
to their efficiency and accuracy. They are particularly powerful when there are non-linear 
relationships between the classes or if the small training set size leads to overfitting. This 
decision boundary of an SVM model is drawn in such a way to have the widest possible gap 
between the two classes, i.e. a margin of separation. SVM models can also be used for 
regression. Rather than separating two categories, regression models estimate continuous 
range of values. Commonly, the goal of a regression model is to map the input data to the 
output data in a non-linear fashion. The biggest advantage of using SVM models is that they 
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work well without risk of overfitting when data is nonlinear and are adaptable to different types 
of data. Moreover, the optimal solution can be found relatively quickly. However, SVM models 
are not applicable when the data are too large as it is computationally expensive. SVM was 
originally created by Boser et al. in 1992. It uses points in an N-dimensional space (here, there 
are only two severity levels) (Mokhtarimousavi et al., 2019) to produce an (N-1) dimensional 
hyperplane to separate them. SVM is then utilized to build the ideal hyperplane so that the 
observations can be effectively divided into groups while still maximizing the margin between 
the decision boundaries. 

A study by Li et al. (2012) showed that the SVM model was more effective in predicting crash 
injury severity than an ordered probit model. Similarly, Ahmadi et al. (2020) found that the SVM 
model's performance was slightly better than that of multinomial and mixed multinomial logit 
models for predicting rear-end crashes in California. Mokhtarimousavi et al. (2019) used a 
mixed logit model and an SVM with metaheuristic algorithm enhancements, finding that the 
SVM provided higher predictive accuracy than the traditional statistical model. Yu and Abdel-
Aty (2013) then compared the accuracy of an SVM model with various kernels to that of a 
Bayesian logistic model and found that the SVM with radial-basis kernel performed the best. 
Sharma et al. (2016) also compared the SVM model (using a Gaussian Kernel) to a Multilayer 
Perception (MLP) for crash prediction and observed that the SVM achieved an accuracy of 94 
percent on the test data, while the MLP only achieved an accuracy of 60 percent. Lastly, 
Aghayan et al. (2015) conducted a comparison of several models (namely, SVM, MLP, genetic 
algorithm, combined genetic algorithm, and pattern search) and determined that the MLP 
achieved an accuracy of 86.2 percent, outperforming the SVM model (with an overall accuracy 
of 81.4 percent). Despite its advantages, the SVM model has some drawbacks, the main being 
that it operates as a black box and does not possess a functional form between crashes and 
covariates, and that it requires three parameters be determined before training (Li et al., 2008). 
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3. Methodology 

For this study, crash data ranging from 2008 – 2019 on crash, vehicle and person levels were 
taken from the WYDOTCARE database. This subset included a range of environmental, roadway, 
human and vehicle factors. Crash severity levels in the database were classified into Fatal (K), 
Incapacitating (A), Non-Incapacitating (B), Possible (C) and No Injury (O). However, for the 
purpose of this study, the two categories of 'Fatal and Incapacitating' and 'Non-Incapacitating, 
Possible and No Injury' were consolidated to form binary categories of 'Fatal Injury' (KA) and 
'Non-Fatal Injury' (BCO). Three sets of data were prepared and used in this study. The crash 
data comprised of 21 explanative variables, while personal and vehicle data both covered six 
explanative variables. 

A total of 3,127 motorcycle-related crashes were extracted during the pre-processing phase, 
with 2,050 of the records being non-fatal and 1,077 being fatal. The categorical data types were 
then converted to binary variables (1 and 0) using the one-hot encoding method in Python, to 
indicate the presence or absence of a certain class. Since the data were found to be 
imbalanced, with 2,050 non-fatal and 1,077 fatal records, the Synthetic Minority Oversampling 
Technique (SMOTE) was utilized to balance the dataset. Once SMOTE was applied, an equal 
number of fatal and non-fatal crash records were generated. Finally, the data were randomly 
split into training and testing datasets, with 80 percent of the data used as the training 
datasets, and 20 percent of the data used to validate the model. 

In the analysis, RF and SVM machine models were applied to the crash data. The models were 
implemented in Python using Scikit-learn, which is a popular package for machine learning. The 
performance of machine learning algorithms is evaluated using multiple metrics, including 
classification accuracy, precision, recall, f-measure, and area under the receiver operating 
characteristics curve. The factored confusion matrix models these metrics with four sections, 
true-positives (TP), true-negatives (TN), false-positives (FP), and false-negatives (FN), with the 
following definitions: 

• TP indicates that, when the crash severity was fatal, the model predicted fatal. 
• TN indicates that, when the crash severity was non-fatal, the model predicted non-fatal. 
• FP indicates that, when the crash severity was fatal, the model predicted non-fatal. 
• FN indicates that, when the crash severity was non-fatal, the model predicted fatal. 

The Area under the Curve (AUC) is a metric used to assess the accuracy of machine learning 
classifiers. The receiver operating characteristics (ROC) curve, represented as an AUC value, is 
constructed by plotting the true positive rate on the y-axis and the false positive rate on the x-
axis (Huang and Ling, 2005). According to McDowell (2006), AUC values between 0.5 and 0.7 
indicate low accuracy, ones ranging from 0.7 to 0.9 represent moderate accuracy, and values 
higher than 0.9 signify high accuracy. 
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4. Results  

The dataset used in this study was split in such a way that 80 percent of data were being 
designated for training, and 20 percent for testing. The test data consisted of 820 observations. 
The injury severity was considered binary, with fatal labeled as 1 and non-fatal labeled as 0. 
Sixteen, six, and six independent variables or features pertaining to the crash, person, and 
vehicle levels respectively, were included in the analysis to construct models in order to 
prognosticate motorcycle crash injury severity. Multiple models were developed, with RF and 
SVM machine models both chosen based on the accuracy of their models. In evaluating these 
models, confusion matrices and ROC-AUC were both utilized.  

Table 1 displays the metrics used to compare the two models: recall/ sensitivity, precision, and 
F1-score. A model can have a higher recall and lower precision, or vice versa. The F1-score, or F-
measure, is the measure used to ensure the precision and recall are balanced, and a higher F1-
score is an indicator of a model that is balanced with both high recall and precision values. The 
SVM model achieved a total accuracy of 73 percent, with an F1-score of 72 percent and 73 
percent for fatal and non-fatal, respectively. Its precision was 74 percent and 72 percent, and 
its recall/ sensitivity was 71 percent and 74 percent for fatal and non-fatal severity levels. The 
RF classifier, on the other hand, achieved a better overall accuracy than SVM, with 76 percent 
overall accuracy and an F1-score of 77 percent and 74 percent for fatal and non-fatal 
respectively. It achieved precision values of 78 percent and 74 percent, and recall/ sensitivity 
values of 81 percent and 71 percent for fatal and non-fatal severity levels respectively for the 
crash level.  

For the person level, the accuracy of the RF and SVM Classifiers was the same at 58 percent, 
however the performance of SVM was more uniform than that of RF. In the vehicle level, the RF 
achieved a slightly higher accuracy of 64 percent, while the SVM produced 63 percent. The SVM 
F1-score was 61 percent and 65 percent for fatal and non-fatal respectively, with precision 
metric of 65 percent and 61 percent, and recall (or sensitivity) of 57 percent and 68 percent. 
The RF F1-score was 62 percent for both fatal and non-fatal, with precision of 65 percent and 
62 percent, and recall of 59 percent and 68 percent respectively. Precision metric measures the 
exactness of the model's results, while recall (or sensitivity) looks at the ratio of all positively-
labelled examples to the total truly positive, respectively. 

The ROC-AUC is another metric often used for assessing the performance of machine learning 
classifiers. The ROC is the probability, and AUC is a measure of separability. The ROC-AUC 
metric gauges the performance of the models, with a higher ROC-AUC indicating a better 
capability for the model to distinguish between the classes in question (in this instance, fatal 
and non-fatal). Both algorithms appear to perform well for the given dataset, however the RF 
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Classifier achieved a slightly higher AUC score than the SVM Classifier, except for the person-
level data. 

Table 1. Random Forest and SVM Classifier Performance Measures. 
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5. Discussion 

Due to the fact that the RF classifier performed better overall on the analyzed dataset, it was to 
assess the importance of crash contributing factors. A value is assigned to each feature to 
establish its importance in predicting crash severity. The feature importance was assessed 
separately on the crash, person and vehicle levels. 

5.1. Crash level feature importance 

Figure 1 shows the feature importance plot for crash-level data. A mean decrease in Gini score 
revealed that driver actions had the greatest effect on crash severity. Such actions as running 
off the road, failing to keep in the right lane, erratic or aggressive driving, other improper 
actions, avoiding moving vehicles, and failing to yield the right of way all had a direct influence 
on the level of motorcycle crash severity.  

Vehicle maneuvers are the second biggest factor contribution to crash severity. A large number 
of crashes occur when the rider is negotiating a curve. Additionally, the type of impact (angle 
same direction, front-to-side, rear-end, front-to-rear angle front-to-side opposing direction) is 
another factor that affects injury severity. Location is also influential, with crashes happening at 
non-junction intersections often leading to greater severity of rider injuries. Wearing a helmet 
is of vital importance as well, as those involved in crashes without one tend to result in more 
severe consequences. Weekday and weekends, lighting conditions, seasonal variations, and the 
presence of wild animals could also affect crash severity prediction. Finally, road conditions, 
weather, drug/alcohol suspicions, and speeding appear to be the least significant factors. 

5.2. Person level feature importance 

Figure 2 shows the feature importance of the RF Classifier on the person level data. The results 
indicate that driver injury area is the leading factor in predicting the severity of motorcycle 
crash injury, with particular attention to the upper extremities (arms, hands, shoulders), 
followed by head, lower extremities (legs, feet, etc.), and thorax (chest/back). Driver age was 
found to be the second most influential factor in this prediction, with young riders having a 
greater impact than middle and older-age riders. The least impactful factors were drugs 
involved and helmet use. 
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Figure 1. Diagram. Random Forest relative feature importance for crash level data. 

 

Figure 2. Diagram. Random Forest relative feature importance for person level data. 
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5.3. Vehicle level feature importance 

Figure 3 shows the feature importance ranking of the RF Classifier for the vehicle-level data. 
Negotiating curves, travelling in a straight line and making right turns have been identified as 
major contributory factors to crash injury severity when it comes to motorcycle maneuver. 
Additionally, vehicle damage, particularly when disabling or functional, is a prominent predictor 
of crash injury severity. Moreover, the vertical grade of the roadway has been found to have an 
influence on the crash severity outcome. The manner of collision and the horizontal alignment 
of the roadway are found to be the least influential in terms of crash injury prediction. 

 

Figure 3. Diagram. Random Forest relative feature importance for vehicle level data. 
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6. Comparison of Machine Learning and Statistical Models 

This section compares the crash contributing factors found in the predictive models of machine 
learning and statistical models used to analyze motorcycle crash injury severity in Wyoming. 
The statistical models utilized for this research included multinomial logit and Bayesian 
regression models, conducted in the preceding stage of the study. Additionally, the analysis was 
done on crash, person, and vehicle levels, allowing for the comparison between the machine 
learning models based on the same categorization.  

6.1. Crash level analyses comparison 

The results of the RF classifier on the crash level are provided in Table 2. Based on the feature 
impact analysis of the RF classifier, it was found that when the roadway surface condition is dry, 
the probability of predicting motorcycle fatal/incapacitating injury severity is higher compared 
to other conditions such as wet, ice, dirt, gravel, etc. The multinomial logit (MNL) for the rural 
single model showed that most roadways conditions, excluding ice or frost, decrease the odds 
of fatal injury. Cloudy or overcast fog and severe wind were identified as increasing the odds of 
fatal injury for rural single crashes. The RF classifier showed a higher probability for predicting 
fatal/incapacitating injury severity when the weather condition is clear when compared to the 
other included conditions. Regarding vehicle maneuver, straight ahead movement increased 
the probability of predicting fatal/incapacitating injury severity higher than other vehicle 
maneuvers. Excluding entering a traffic lane, making a U-turn, negotiating a curve, and 
overtaking or passing, most of the vehicle maneuvers were found to lower the odds of fatal 
injury for the MNL model.  

When alcohol, an animal or speeding is involved, the odds of fatal injury for a rural or urban 
single-vehicle MNL model increased significantly. In contrast, the RF model found that the 
probability of fatal/incapacitating injury decreased when compared to a situation where no 
alcohol is involved in the crash. No helmet use was found to increase the odds of fatal injury for 
rural and urban single and multi-vehicle of the MNL model. Moreover, the RF model revealed 
that not wearing a helmet increased the probability of predicting fatal/incapacitating injury by 
more than 45 percent, when compared to helmet use. 

Intersections, private roads, and through roadways at junction relations were found to increase 
the odds of fatal injury; however, the odds decreased for business entrances, driveways, and 
ramps. The RF model revealed that when the junction relation is non-junction, the probability 
of predicting fatal/incapacitating injuries becomes higher in comparison to other junction 
relations. Alcohol and speeding were found to raise the odds of fatal injury for rural and urban 
multi-vehicle MNL model, whereas the RF model showed that the probability of 
fatal/incapacitating injuries decreased when no alcohol was present. The MNL model revealed 
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that no helmet use decreased the odds of fatal injury, whereas the RF model demonstrated 
that no helmet use increased the probability of predicting fatal/incapacitating injuries. In 
addition, no improper driver action was found to significantly increase the probability of 
predicting fatal/incapacitating injury when compared to other driver actions. Finally, for the 
urban single MNL model, the driver actions such as disregarding other road markings, evading 
law enforcement, improper passing, and speeding were found to drastically increase the odds 
of fatal injury. 

The MNL model found that all types of multi-vehicle collisions, with the exception of rear-to-
front backing, can increase the likelihood of severe crash outcomes for motorcycles. 
Conversely, the RF model demonstrated that the lack of collisions involving two vehicles 
improves the predictability of fatal/incapacitating injury when compared to the other forms of 
collisions. 
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Table 2. Random Forest Feature Impact Analysis on Crash Level. 
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Table 2 Continued 
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Table 2 Continued 

 

6.2. Vehicle level analyses comparison 

Based on the feature impact analysis of the RF classifier, provided in Table 3, it was found that a 
straight horizontal alignment increases the probability of predicting fatal/incapacitating injuries 
in comparison to curving left and/or right. Furthermore, MNL model showed that curving left 
and/or right increases the odds of fatal injury. Additionally, when the vertical grade has a level 
grade, it increases the probability of fatal/incapacitating injury. In contrast, the MNL models 
showed that when the vertical grade is crest or sag, the odds of fatal injury are higher; on the 
other hand, downhill and uphill decrease the odds of fatal injury. Moreover, the vehicle damage 
that is disabling, functional, or minor all profoundly influence the prediction of 
fatal/incapacitating crashes compared to having no vehicle damage, which is consistent with 
the MNL model. 
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Vehicles that are older than 10 years increase the chances of predicting fatal or incapacitating 
injury when compared to those that are five years old or less, or between six to 10 years old. 
The MNL model also indicated that when vehicle age is greater than 10 years, the odds of fatal 
injury rise. Collisions that involve any part of the vehicle body pose a higher likelihood of 
fatal/incapacitating injury when compared to incidents without collision. The model further 
discovered that most vehicle body parts (left front area, left side, right front area, etc.) increase 
the odds of fatal injury. According to findings, when the vehicle maneuver is straight, the 
probability of fatal/incapacitating injury is higher compared to other maneuvers, with the 
exception of overtaking/passing, parked, and slowing. 

6.3.  Person level analyses comparison 

The MNL model suggested that, on the person level, the odds of a fatal injury increased when 
the driver involved was middle-aged. Conversely, the RF model results, given in Table 4, 
revealed that, when a crash involved an elderly rider, the probability of fatal or incapacitating 
injury was 3.7 percent and 31.5 percent higher than for middle-aged and young drivers, 
respectively. With regards to gender, the random forest model revealed that, when a male 
driver was involved in a crash, the probability of fatal or incapacitating injury was higher than 
for female drivers. The MNL model, meanwhile, found that male drivers increased the odds of 
fatal injury whilst female drivers decreased them. Finally, when a crash involved a driver not 
wearing a helmet, the random forest model showed an increased probability of fatal or 
incapacitating injury.  

The MNL model showed that wearing a helmet significantly reduces the odds of fatal injury. 
Interestingly, the MNL model also showed that when alcohol or drugs are involved in a crash, 
the odds of fatal injury increase. In contrast, the random forest model found that when alcohol 
or drugs are involved in a crash, the probability of a fatal or incapacitating injury decreases. 
Furthermore, when compared to other injury areas, the MNL model showed that having no 
injury increases the odds of fatal injury. All other injury areas were found to increase the odds 
of fatal injury. 
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Table 3. Random Forest Feature Impact Analysis on Vehicle Level. 
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Table 4. Random Forest Feature Impact Analysis on Person Level. 
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7. Conclusions 

This part of the study employed machine learning methods, RF and SVM classifiers, to 
investigate the contributing factors to motorcycle injury severity. Data were sourced from 
WYDOT’s CARE database, and comprised of motorcycle crash data spanning from 2008 to 2019. 
The injury severity levels recorded in the CARE database were divided into two categories (KA 
and BCO) based on previous research findings in the area. Subsequently, the datasets were split 
into training (80 percent) and test (20 percent) subsets, and both RF and SVM classifier 
accuracy was evaluated. Both achieved a 76 percent accuracy on the overall dataset; however, 
RF reached 64 percent accuracy for the vehicle-level data and 58 percent for the person-level 
data whereas SVM recorded 63 percent and 58 percent, respectively. As a result, apart from 
person-level data, the results indicated that RF was more accurate than the SVM, and was 
employed to identify the feature importance regarding the contributing factors in the three 
datasets. 

Using the RF classier, a feature importance analysis of crash data showed that driver actions, 
vehicle maneuver, manner of collision, junction relation, and helmet use were the top five 
contributing factors to the prediction of crash injury severity. For person-level data, injury area 
of the motorcyclist, driver actions, and involvement of alcohol and/or drugs were key factors in 
determining the outcome of injury severity prediction. For vehicle-level data, vehicle maneuver, 
vehicle damage, and vertical grade of the road were the features that influenced the prediction 
of crash injury severity.  

Results of the study have revealed the most influential factors that are contributing to the 
prediction of motorcycle crash injury severity using the RF classifier. This result will be 
invaluable to WYDOT, as it will help them to develop a proactive solution to motorcycle 
crashes. As next steps, other approaches such as neural networks and deep learning algorithms 
will be employed to analyze motorcycle injury severity.  
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