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Highlights
Mammalian 53BP1and replication timing
regulatory factor 1 (RIF1) protect DNA
double-strand breaks (DSBs) against
nucleolytic degradation through the re-
cruitment of the REV7-SHLD1-
SHLD2-SHLD3 (shieldin) and CTC1–
STN1–TEN1 (CST) complexes.

Mouse models deficient in downstream
effectors of DSB protection have
enabled the comparative assessment of
defects in V(D)J recombination and
Eleni Kabrani,1,* Tannishtha Saha,1,2 and Michela Di Virgilio 1,3,*

The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated
in V(D)J and class switch recombination (CSR) of mammalian lymphocyte recep-
tors. However, the dissection of the underlying molecular activities is hampered
by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with
53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in anti-
body diversification in view of the recent identification of its downstream effectors
in DSB protection and latest advances in genome architecture.We propose that, in
addition to end protection, 53BP1-mediated end-tethering stabilization is essential
for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our
perspective underscores the importance of evaluating repair of DSBs in relation to
their dynamic architectural contexts.
class switch recombination (CSR).

Regulation of DSB resection is crucial
for CSR but dispensable for V(D)J
recombination.

The DSB protection function of mam-
malian 53BP1 does not explain the
CSR defect severity associated with its
deficiency.

V(D)J recombination andCSR rely on the
dynamic reconfiguration of Tcr/Ig loci
that is contributed by cohesin-mediated
loop extrusion.

We propose that mammalian 53BP1
mediates pre- and post-break functions
related to Tcr/Ig dynamics and DSB
end-tethering, respectively, during the
two recombination reactions.

Significance
The dissection of the key molecular
activities contributed by 53BP1 to
antibody gene diversification exemplifies
the importance of considering the repair
of V(D)J and class switch recombination
DNA double-strand breaks in their archi-
tectural genomic contexts. The investiga-
tion of the close interplay between Tcr/Ig
loci dynamics and the repair of these pro-
grammed breaks can provide a deeper
understanding of the molecular bases of
humoral immune responses.
53BP1 in antibody diversification: placing DNA repair in context
V(D)J recombination and CSR are antigen receptor diversification reactions that are crucial for
adaptive immune responses. V(D)J recombination occurs in developing T and B lymphocytes
and generates highly diverse T and B cell receptor (TCR/BCR) (see Glossary) repertoires,
respectively [1–4]. CSR occurs in mature B cells and produces various antibody [also known
as immunoglobulin (Ig)] classes or isotypes, thus diversifying the effector component of anti-
body responses [3,4]. At the molecular level, V(D)J recombination and CSR both depend on the
formation and repair of programmed DNA DSBs [1–4] (Boxes 1 and 2). Among all DNA repair
factors that have been implicated in these reactions, few have stimulated so much debate and
discussion as 53BP1. Since the first reports of its involvement in CSR [5,6], 53BP1 has both
frustrated and fascinated molecular immunologists for the severity of the CSR defect and the
plurality of immune-related phenotypes described over the years [5–12]. These reports have
collectively depicted a complex, and sometimes contradictory, picture of the molecular bases
of 53BP1’s contribution to antigen receptor gene diversification.

Here, we revisit the different B and T cell phenotypes of 53BP1 in view of the recent dissection of
its downstream effectors in DNA repair and the latest advances in antigen receptor loci configu-
ration dynamics. We provide evidence in support of pre- and post-DSB roles for 53BP1 in both
CSR and V(D)J and argue in favor of a DNA end-tethering stabilization function that is essential for
CSR. In general, we highlight the key role played by the relative kinetics of the DNA metabolic
activities at play during the two reactions, thus providing an integrated perspective for the
mechanistic dissection of antigen receptor diversification.

53BP1: the master regulator of S region break resection
One of the most interesting enigmas in the CSR field arose with the observation, nearly two
decades ago, that ex vivo stimulated B cells from mice deficient for the DSB repair protein
53BP1 (Trp53bp1−/−) displayed near-complete abrogation of CSR and a consequent decrease
in the generation of Ig classes other than IgM [5,6]. The defect severity was at odds with the
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Box 1. The molecular basis of isotype switching

Naive B cells express IgM and IgD antibodies on their surface since the rearranged VDJ exon of the Igh locus is juxtaposed
to the constant (C) μ-δ regions [3,4]. Coexpression of the two isotypes is mediated by alternative splicing of the VDJ-Cμ-Cδ
pre-mRNA transcript [4]. Class switching to IgG, IgE, or IgA occurs after B cell activation via replacement of the donor Cμwith
one of the downstream acceptor C regions (Cγ/Cε/Cα) [3,4]. The C gene, except Cδ, is preceded by a constitutively
expressed (Cμ) or cytokine-inducible (Cx) promoter, an intervening (I) exon, and a 1–12-kb intronic sequence, known as
the switch (S) region [3,4]. S regions are highly repetitive in nature, although they exhibit relatively different core repeat units
of 10–80 bp in length [3,4].

CSR is initiated by the activation-induced priming of an acceptor S region via the process of GLT and the expression of the B
cell-specific enzymeAID [82]. AID targets the recombining Sμ-Sx regions in amanner dependent onGLT, and its activity results
in the formation of multiple DSBs per S region [83]. Productive CSR events rely on the inter-Sμ-Sx ligation of AID-induced
breaks and deletion of the intervening sequence, which places the new Cx region close to the rearranged VDJ exon. CSR
exhibits an orientation-specific recombination preference known as deletional bias (90:10 deletions over inversions), which sets
CSR apart from the repair of ubiquitous DSBs (50:50 deletions to inversions) [7]. Ligation of CSR DSBs occurs predominantly
by NHEJ and yields mainly blunt or 1–4-bp MH-bearing CSR junctions [4,21,84–86]. In the absence of a functional NHEJ
pathway, and to a lesser extent in NHEJ-proficient cells, CSR is mediated by the A-EJ pathway [4,85–87]. A-EJ skews repair
toward increased use and length of MHs and operates with reduced efficiency and slower kinetics [4]. Finally, breaks within the
same S region can also be internally rejoined in a process known as intra-S-recombination, which leads to internal S region
deletions but does not result in productive class-switching events [4].
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much milder phenotype exhibited by the known, at the time, upstream components of the DSB
signaling cascade, including the DSB repair kinase ATM [13–16]. Even more puzzling was the
observation of a concomitant increase in the frequency of S region (Box 1) intra-recombination
events [17]; the postulated DNA end-joining activity of 53BP1 could not explain the CSR versus
intra-S-recombination antithetic phenotypes. The field was left wondering about these conflicting
observations for a few years, until the turning point discovery of 53BP1’s ability to inhibit the
resection of breaks in the S regions [18–20]. This DSB end protection function places 53BP1
upstreamof the resolution step of DSB repair, thus providing an ad hoc explanation for the apparently
conflicting end-joining phenotypes associated with its deficiency. Since the repeated core sequences
differ between the donor and various acceptor S regions [3,4], resection of breaks in the absence of
53BP1 would interfere with inter-S repair (CSR) while promoting microhomology (MH)-mediated
end joining of proximal DSBs (intra-S recombination) (Box 1). The increased resection also explained
the MH-skewed profile of residual CSR junctions [21] and suggested the intervention of the alterna-
tive end-joining (A-EJ) pathway (Box 1).
Box 2. The molecular basis of V(D)J recombination

V(D)J recombination is a lineage- and developmental stage-specific reaction that occurs in the bonemarrow for B lymphocytes
and in the thymus for T cells. The process assembles the variable portion of the BCR and TCR from the different variable (V),
diversity (D), and joining (J) gene segments in the corresponding antigen receptor loci [81,88,89] (see Figure 1 in main text). The
expression of a functional, non-autoreactive BCR or TCR is essential for the completion of lymphocyte maturation [1,2]. Thus,
defects during V(D)J recombination result in a developmental block of B and T cells, which in human patients manifests in the
form of severe combined immunodeficiency (SCID) syndrome [90]. SCID patients lack mature B and T lymphocytes in the pe-
riphery because of mutations in factors required for V(D)J recombination [90].

V(D)J recombination requires the expression of RAG 1 and 2, which form the RAG protein complex [81,88,89]. RAG intro-
duces DSBs between the recombination signal sequences (RSSs) and the flanking V/D/J gene segment [81,88,89]. RSSs
are non-coding DNA sequences that comprise conserved heptamer (7 bp) and nonamer (9 bp) sequences separated by
a less conserved spacer of either 12 or 23 bp (12-RSS or 23-RSS) [81,88,89]. RAG synapses and introduces breaks only
in RSS pairs comprising a 12-RSS and a 23-RSS, known as the 12/23 rule [81,88,89]. The presence of the RSS sites
together with chromatin marked by active transcription or activating histone modifications recruits RAG to antigen receptor
loci (encoding Igh, Igκ, and Igλ in B cells and TCRα, TCRβ, TCRγ, and TCRδ in T cells), thus leading to the formation of the RC
[91,92]. RAG-mediated cleavage generates two DSB ends flanking the RSSs (signal ends) and two ends flanking the coding
sequences (coding ends) [81,88,89]. RAG’s presence per se generates a stable synaptic environment (post-cleavage
complex), which channels the broken ends to the NHEJ pathway [93,94]. Whereas signal ends are blunt and can be directly
joined, coding ends are covalently sealed hairpins that must be opened and processed to allow ligation. Finally, convergent
orientation of the aligned RSS sites inside the RC will lead to a deletional recombination event, whereas divergent orientation
generates an inversional outcome [68,69,81,88,89].
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Glossary
3D DNA fluorescence in situ
hybridization (3D FISH): fluorescence
microscopy-based technique that uses
reconstructed 3D images to determine
the spatial arrangements of specific loci
of interest in the nucleus.
Abelson-transformed pro-B cell
lines: cell lines generated via
immortalization of primary pro-B cells
with the Abelson murine leukemia virus
(A-MuLV).
Alternative end joining (A-EJ): DSB
repair pathway mediated by a different
set of factors than NHEJ, ligating DNA
ends after short-range resection that
uncovers up to 20 bp of nucleotides.
Antibody/Ig classes: also known as
isotypes; the different types of Igs (IgM,
IgD, IgG, IgE, and IgA), which are defined
by the constant region of the heavy chain
that they contain. The isotypes possess
different effector functions.
CH12:mouse B cell lymphoma line that
undergoes CSR to IgA after stimulation
with a cytokine cocktail.
Chromosome conformation capture
(3C/4C/Hi-C): a set of techniques that
analyze the spatial organization of the
chromatin in the nucleus by quantifying
the interactions between loci that are
distal in the linear genome but close in
3D genome folding.
Cohesin: chromosome-associated
multisubunit protein originally
characterized for its role in sister
chromatid cohesion and later found to
mediate DNA looping.
CTC1–STN1–TEN1 (CST): protein
complex recently found to act as a
downstream effector of DSB end
protection.
DN3-cell stage: T cell developmental
stage characterized by V(D)J
recombination-mediated rearrangement
of the TCRβ chain.
DNA double-strand breaks (DSBs):
DNA lesions generated when the
sugar-phosphate backbone is severed
on both strands of the DNA double helix.
Excision repair cross-
complementation group 6 like 2
(ERCC6L2): recently identified as a
pro-NHEJ protein factor.
Germline transcription (GLT):
non-coding transcription of I-Sx-Cx
regions in the Igh locus resulting in the
exposure of single-stranded stretches of
DNA that are targeted by AID for DSB
generation.
ImmatureB cells:B cell developmental
stage that precedes exit from the bone
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In the past few years, the molecular composition, and to some extent regulation, of the 53BP1
end protection apparatus has been defined. 53BP1 associates with DSB-containing chromatin,
and following ATM-mediated phosphorylation recruits replication timing regulatory factor 1
(RIF1) [22–26] and the REV7-SHLD1-SHLD2-SHLD3 (shieldin) [27–35] and CTC1–STN1–
TEN1 (CST) [36,37] protein complexes to the break sites, where they counteract DNA end
resection. The analysis of CH12 cell lines and mouse models deficient in these downstream
DNA end protection factors (Rev7f/fMb1Cre/+, Shld1−/−, and Shld2−/−) recently enabled further re-
finement of the original nonhomologous end joining (NHEJ) (Box 1)-versus-A-EJ hypothesis
behind the CSR phenotypes of 53BP1-deficient B cells. SHLD1 deletion in NHEJ-deficient
(Xlf−/−Shld1−/− or Shld1−/−CD21-creTgXrcc4f/f) mouse splenic B cells further reduces the CSR
levels compared with the single mutant counterparts [38]. These data imply that hyper-resection
renders the broken ends incompatible with repair by either NHEJ or A-EJ, thus providing a plausible
explanation for the severity of CSR loss in the double-deficient mutants. Overall, these studies
consolidated 53BP1-dependent regulation of S region processing as a key determinant of
successful CSR (Figure 1, Key figure).

53BP1 deficiency in CSR: a plethora of phenotypes
Despite the considerable class switching defect, B cells lacking RIF1 and SHLD1/2 do not exhibit
the near-complete abrogation of CSR seen in 53BP1 knockout cells [23,35,38]. Accordingly, a
53BP1 mutant bearing alanine substitutions at 28 phosphorylation motifs (28A), which is unable
to recruit the downstream end protection machinery (Box 3), increases CSR twofold over the
empty vector levels in Trp53bp1−/− splenocytes reconstituted with 53BP1-expressing retroviral
constructs [19,39,40]. Furthermore, inhibition of DSB end resection by either downregulation of
the key end-processing factor CtIP or inhibition of ATM kinase activity only minimally rescues
the CSR defect in Trp53bp1−/− B cells [18,20]. These observations led to the conclusion that
the involvement of 53BP1 in CSR extends beyond its ability to regulate DNA end processing.

One of the first reports hinting at additional functions showed that residual CSR/Igh junctions from
Trp53bp1−/− B lymphocytes display a 50:50 instead of a 90:10 ratio of deletional versus
inversional repair events, which suggests that 53BP1 is required to enforce the CSR deletional
bias (Box 1) [7]. Several pieces of evidence indicate a lack of correlation between deletional joining
and DSB end processing. Specifically, inhibition of ATM kinase activity in Trp53bp1−/− B cells
rescues the enhanced resection phenotype of S region breaks to a considerable extent without
exerting any effect on the loss of the deletional bias [7]. Conversely, ablation of DSB protection
factors differentially affects deletional joining, with Rif1f/fCd19Cre/+ and Shld1−/− B cells exhibiting
a considerably milder and a severe phenotype, respectively, compared with Trp53bp1−/−

[7,38,41]. Finally, B cells lacking the recently described DSB repair factor excision repair
cross-complementation group 6 like 2 (ERCC6L2) display loss of orientation-specific joining
but proficient DSB end protection [41]. Collectively, these observations uncouple orientational
joining from the regulation of DSB end resection, suggesting the existence of an independent
molecular mechanism regulating the deletional bias during CSR.

The loss of 53BP1 has been suggested to impact the Igh locus chromatin structure. Initial
chromosome conformation capture (3C) experiments showed that, in naive B cells, the 3′
locus superenhancer [3′ regulatory region (3′RR)] establishes contacts with regions at the 5′ of
the Eμ enhancer [42,43] (Figure 1). On activation, specific acceptor S regions are recruited into
the 5′Eμ-3′RR loop base in a cytokine-dependent manner [43]. This locus configuration has
been proposed to facilitate both germline transcription (GLT) and synapsis of the
recombining S regions, and as a consequence activation-induced deaminase (AID) targeting
and DSB formation [8,9], all of which are indispensable steps for CSR (Box 1). Regarding
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Key figure

53BP1’s potential roles during antigen receptor locus diversification
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marrow, when cells have
completed the V(D)J recombination of
both heavy and light Ig chains and
express a functional BCR.
Microhomology (MH): sequence in a
junction that shares the longest stretch
of uninterrupted homology with both of
the DNA ends being ligated.
Naive B cells: also known as resting B
cells; quiescent mature B cells that have
not been exposed to an antigen.
Nonhomologous end joining (NHEJ):
DSB repair pathway that ligates DNA
ends after minimal processing, thus
resulting in either direct (blunt) joins or
junctions carrying up to 4 bp of MHs.
Replication timing regulatory factor
1 (RIF1): phospho-53BP1 interactor
that acts as the upstream component of
the 53BP1-mediated DSB end
protection pathway.
Resection: nucleolytic degradation of
the 5′ strands of DSBs to generate 3′
single-stranded DNA stretches.
Shieldin: protein complex that acts as
the downstream effector in DSB end
protection.
Synapsis: juxtaposition of donor and
acceptor S regions brought forward by
transcription-dependent Igh locus
dynamics after B cell activation.
T and B cell receptor (TCR/BCR):
receptor complex expressed on the
surface of T (TCR) and B (BCR) cells to
mediate antigen recognition.
V(D)J sequencing (VDJ-seq): next-
generation sequencing-based technique
to analyze B and T cell V(D)J repertoires.
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Box 3. The molecular determinants of 53BP1’s activities in antibody diversification

53BP1 is a large protein (1972 and 1969 amino acids in human and mouse, respectively) comprising various domains and
motifs that support its activities in DSB repair [95–97]. The C-terminal portion is crucial for 53BP1 binding to chromatin.
Specifically, 53BP1 displays constitutive chromatin association, which is mediated by the interaction between the Tudor
domain and dimethylated Lys20 of histone H4 (H4K20me2) [95,96]. Following DSB formation, 53BP1 is actively recruited
to the chromatin surrounding the break site via the additional binding of its ubiquitylation-dependent recruitment (UDR)
motif to ubiquitylated Lys15 of histone H2A (H2AK15ub) [95,96]. The latter histone modification is the result of the DSB-
induced ATM-γH2AX-MDC1-RNF8-RNF168 cascade that activates the cellular response to DNA damage [95,96].
53BP1’s N-terminal half comprises a long, intrinsically disordered region containing several SQ/TQ motifs [95,96]. ATM-
mediated phosphorylation of a subset of these motifs is essential for 53BP1 DSB end protection, as it initiates the recruit-
ment of RIF1-shieldin-CST to the DSBs [95,96]. Several studies have shown that all of the above domains and motifs are
crucial for 53BP1’s role in CSR [95,96]. By contrast, besides the requirement for the Tudor domain, little information is
available regarding the molecular determinants of 53BP1’s contribution to V(D)J recombination [12].

An additional 53BP1 motif has recently drawn attention in reference to a potential separation-of-function activity. 53BP1
forms dimers and oligomers via an oligomerization domain (OD) (amino acids 1231–1270) and the dynein light chain
domain (LC8) (amino acids 1142–1181) [95,96]. Deletion of the OD has long been shown to abrogate CSR, and the defect
has been attributed to the postulated dependency of DSB end protection on 53BP1 oligomerization [19]. However, a
recent study from our group showed that Trp53bp1−/− B cells reconstituted with a 53BP1 OD core-deletion mutant
protected S region DSBs to a considerable extent, although they still displayed near-complete abrogation of CSR [39]. This
observation raised the attractive hypothesis that 53BP1 oligomerization might mediate an additional, yet-to-be-defined
function in CSR other than DSB end protection [39]. The same activity was discussed as being potentially responsible
for a 53BP1 short-versus-long-range recombination phenotype of the Tcrd locus because of the cooperative nature of
protein oligomerization (see discussion in [10]). Whether 53BP1 oligomerization contributes DNA end protection-indepen-
dent functions to CSR and V(D)J recombination represents an interesting area of investigation, which will require a
comprehensive set of analyses under conditions of physiological expression in B and T cells.
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53BP1, a study reported that its absence impairs the 5′Eμ-3′RR enhancer interaction but does not
affect the post-activation recruitment of the acceptor S region to the loop base [9]. A different study
using circular chromosome conformation capture (4C) described that 53BP1 deficiency in mouse
B cells increased the chromatin interaction of Sμ with the primed acceptor S region [8]. This last
study also showed that, while wild-type (wt) B cells preferentially introduced DSBs first in
the donor Sμ and only subsequently in the acceptor S region, Trp53bp1−/− cells lost this break-
order bias [8]. Collectively, these reports led to the hypothesis that 53BP1 exerts a pre-DSB role
in CSR that is intimately linked to the Igh architecture and dynamics. However, defects in locus
reorganization should impact GLT and DSB formation, both of which appear to be unaffected in
53BP1-deficient cells [5,6,9]. In this regard, the different experimental conditions and sometimes
conflicting interpretations complicated the inference of a clear and unifiedmechanistic explanation.
Furthermore, the studies did not provide a temporally resolved picture of the described pheno-
types, leaving the contribution of 53BP1 to Igh locus dynamics an open question.
Figure 1. (A) Schematic representation of the germline mouse Igh locus indicating the genomic regions affected by V(D)J
recombination- and class switch recombination (CSR)-mediated rearrangements (not to scale). (B) 3D configuration of the
Igh variable (left) and constant (right) genomic regions. For the variable regions (left), the scheme depicts the locus
configuration after successful DH-JH rearrangement. The recombination-activating gene (RAG) complex is recruited to the
recombination center (RC) and starts to scan the chromatin for the respective VH genes. The scheme shows one chromatin
loop for simplicity. For the constant regions (right), the association of the 5′Eμ and 3′ regulatory region (RR) enhancers marks
the base of the chromatin loop as seen in resting B cells. (C,D) Graphical representation of the pre-break (C) and post-break
(D) involvement of 53BP1 in V(D)J recombination (left) and CSR (right). (C) In 53BP1-deficient progenitor B cells (left), locus
contraction and access of the distal VH genes to the RC and RAG are disrupted. In activated mature B cells (right), the
mechanism ensuring 5′Eμ–3′RR enhancer interaction and/or Sμ–Sx juxtaposition is altered by 53BP1 ablation. (D) 53BP1’s
redundant contribution to the tethering of RAG-generated ends in the RC is unmasked by XLF deficiency (left). In the
absence of 53BP1, S region breaks are subject to extensive resection and their tethering is not stabilized long enough for
productive repair to occur. Unrepaired double-strand breaks (DSBs) diffuse away and might engage in both deletional and
inversional joining events (right). Abbreviations: Cen, centromere; CSRC, CSR center; Tel, telomere.
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Interplay between Igh locus dynamics and DSB repair during CSR
The high-resolution assessment of the interaction profiles of Igh elements in relation to their tran-
scriptional status and recruitment of the cohesin complex has recently provided a mechanistic
explanation for the previously reported Igh locus dynamics [42,43] and laid the basis for
the cohesin-dependent loop extrusion model [44]. Specifically, the model proposes that both
the 5′Eμ-3′RR loop in resting B cells and locus reorganization after activation are the result of
dynamic interplay between opposing forces influencing the extrusion of Igh chromatin: cohesin
activity and transcription-dependent impediments [44]. These forces drive the juxtaposition of
enhancers and recombining regions to create the CSR center (CSRC) (Figure 1). The model
implies that the same transcription-linked mechanisms that are important to establish the locus
architecture are also responsible for key structural features promoting productive CSR events,
namely: (i) synapsis of the donor Sμ and activated acceptor Sx region in the CSRC; (ii) the forma-
tion of DSBs in the recombining Sμ–Sx pair; and (iii) alignment of the broken DNA ends for
deletional joining [44].

The cohesin-dependent loop extrusion model provides a framework for the formulation of non-
mutually exclusive hypotheses to explain the mechanisms underlying the severe CSR defect
and plurality of phenotypes associated with 53BP1 deficiency. In one scenario (the pre-break
role hypothesis), 53BP1 contributes to the dynamics of the Igh locus architecture, although to
an extent that would impact the S region synapsis for deletional joining without dramatically
affecting locus reorganization (Figure 1), since GLT is not impaired in Trp53bp1−/− cells [5,6,9].
An alternative scenario, which we consider more attractive, takes into account the interplay
between Igh locus dynamics and S region DSB formation, processing, and repair: the post-
break role hypothesis. According to this hypothesis, although synapsis of recombining S regions
is likely to favor productive repair of CSR breaks by promoting their local proximity, it is not suffi-
cient for the actual repair to occur; presumably, an additional tethering activity is required, which is
likely to stabilize DSB end proximity long enough to complete end joining. Based on this frame-
work, we propose that 53BP1 has a major impact on stabilizing Sμ-Sx DSB end-tethering.
Accordingly, 53BP1 might control the delicate interplay of CSRC’s competing activities from a
dual perspective, since, in its absence, not only are DSB ends susceptible to resection but their
juxtaposition would not be stabilized for NHEJ-mediated Sμ-Sx repair to occur. MH-mediated
pairing of minimally resected ends is likely to be responsible for the few productive CSR events
but when resection extends over the capability to engage repair by A-EJ, DSBs diffuse away
from theCSRC, although this scenario remains conjectural (Figure 1). Nevertheless, this hypothesis
implies that stabilization of end tethering is a prerequisite for successful CSR and it justifies the
more severe CSR defect of 53BP1-deficient cells. In addition, it is also tempting to consider the
possibility that end-tethering stabilization might impart deletional joining bias, thus providing a
mechanistic basis for the latter phenomenon and confirming its independence from DNA end
protection. Mechanistically, the inability to stabilize DSB end tethering long enough to complete
Sμ-Sx deletional repair might eventually result in diffusion of DSBs within the CSRC, thus also
enabling inversional joining events. Whether defects in deletional bias reflect an active mechanism
in end-tethering stabilization or an indirect consequence of impaired Igh locus dynamics and/or
DSB repair remains to be addressed, but certainly represents a fruitful area for future investigation.

53BP1 in V(D)J recombination: another unresolved riddle
Many of the studies on the factors contributing to the repair of recombination-activating gene (RAG)
1 and 2 DSBs (Box 2) have been performed in V(D)J recombination assays using extrachromo-
somal plasmids or integrated retroviral constructs as substrates, initially in non-lymphoid cells,
and later inAbelson-transformed pro-B cell lines (hereafter called v-abl pro-B cells). In addition
to the analysis of V(D)J recombination at the endogenous loci, these assays highlighted the crucial
6 Trends in Immunology, Month 2023, Vol. xx, No. xx
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role played by core NHEJ factors (KU70, KU80, LIG4, XRCC4) in ligating broken DNA ends
[45–54]. At the same time, this approach revealed the contribution, often with overlapping
functions, of multiple DSB repair factors (XLF, PAXX, DNA-PKcs, ATM) to a key event occurring
after RAG cleavage and before ligation; namely, the stabilization of DNA end tethering in the recom-
bination center (RC) [55–59].

53BP1 was initially considered dispensable for V(D)J recombination, since germline deletion of
53BP1 in mice does not block B and T lymphocyte development [6,60]. In addition, V(D)J recom-
bination assays in v-abl pro-B cells show normal recombination efficiencies in 53BP1-deficient cells
[11,12,38]. However, a thorough assessment of the lymphoid compartments of Trp53bp1−/−mice
showed a decreased proportion of immature B cells in the bone marrow and an increased
percentage of DN3-cell-stage T cells in the thymus, relative to wt mice [10–12,31,38].
Collectively, these results suggest defects in V(D)J recombination. In addition, analysis of gene
usage during Tcrd gene (encoding TCRδ) assembly revealed a reduced ability of Trp53bp1−/−

progenitor T cells compared with wt cells to recombine Vd genes that are distant in the linear
genome from the Dd and Jd segments, thus limiting TCRδ receptor repertoire diversity [10,38].
Finally, despite the fact that mice deficient for the NHEJ factor XLF (Xlf−/−) display mild
lymphocytopenia [61,62], combinatorial deficiency of both proteins results in a severely immuno-
compromised phenotype with complete loss of mature splenic B and T lymphocytes [11,12].
Accordingly, Trp53bp1−/−Xlf−/− v-abl pro-B cells show a dramatic decrease in V(D)J joining events
compared with their wt counterparts, as evidenced from V(D)J assays using integrated retroviral
constructs [11,12,38]. These results suggested that 53BP1 acts redundantly with XLF to support
DNA end tethering during V(D)J recombination [11,12,38], which is likely to provide the optimal time
window for successful repair (Figure 1); this scenario, however, remains speculative. We posit that
the redundancy of factors supporting the stabilization of DSB ends in the RC is likely to safeguard
the development of B and T cell lineages in the case of loss-of-function mutations in a single
contributing component. Furthermore, in agreement with the dependency of lymphocyte develop-
ment on efficient V(D)J recombination, knock-in of prearranged Tcra/Tcrb (encoding TCRα/TCRβ,
T cells) and Igh/Igk (Igh/Igκ, B cells) rescues the lymphocyte developmental defects of 53BP1- and
53BP1-XLF-double-deficient mice, respectively [10,11]. These results prove that the loss ofmature
B and T lymphocytes in the mutant mice is due to the inability of developing lymphocytes to effi-
ciently perform V(D)J recombination.

53BP1 in V(D)J recombination: DSB end protection takes a step back
Under conditions of ATM kinase inhibition, which is thought to destabilize the RC [63],Xlf−/− v-abl pro
B cells accumulate unrepaired signal and coding ends as seen in V(D)J assays using integrated
retroviral constructs [56]. Ablation of 53BP1 in this context results in resection of these DSB ends,
which indicates that 53BP1 can also protect V(D)J DSBs [11,12]. However, the fact that 53BP1-
deficient mice develop mature B and T cells argues against a fundamental role for 53BP1’s DSB
protection function in V(D)J recombination. In support of this conclusion, two recent reports showed
that Shld1−/− or Rev7f/fMb1Cre/+ mice do not exhibit any of the B and T cell developmental defects
seen in Trp53bp1−/− mice [31,38]. Furthermore, combined ablation of SHLD1 and XLF does not
further reduce the recombination frequency of the single knockout v-abl pro B-cells in V(D)J assays
[38]. Finally, SHLD1 deficiency does not recapitulate the Tcrd recombination defects observed in
53BP1-null cells [38]. Collectively, these findings uncouple the DSB end protection function of
53BP1 from its role in DSB end-tethering stabilization and Tcrd long-range recombination.

Revisiting 53BP1’s role in V(D)J recombination: a pre-break role?
Recent advances in the genome architecture field have recently proposed that, similar to CSR,
V(D)J recombination is highly dependent on the dynamic reconfiguration of the respective loci
Trends in Immunology, Month 2023, Vol. xx, No. xx 7

CellPress logo


Outstanding questions
To what extent do Igh configuration-
related phenotypes of 53BP1 deficiency
contribute to the severity of the CSR
defect? How does 53BP1 impact Igh
locus dynamics? 53BP1’s postulated
pre-break role might be explained by its
ability to influence the loop extrusion
process that directs 5′Eμ–3′RR interac-
tion and S region synapsis.

Is stabilization of S region DSB end
tethering a prerequisite for successful
CSR? Is this activity mechanistically
equivalent to that contributed by 53BP1
to the repair of V(D)J DSBs in an XLF-
redundant manner? While the mecha-
nism underpinning 53BP1’s DSB end
tethering might be the same in V(D)J
recombination and CSR, the differential
repair requirements of RAG- versus
AID-mediated breaks could justify the
distinct functional relationship between
53BP1 and XLF in the two reactions.

What are the molecular determinants
(domains and post-translational modifi-
cations) responsible for the postulated
new activities of 53BP1 in antibody
diversification? 53BP1 is extensively
modified at the post-translational
level and the different modifications
and/or combinations thereof are likely
to underpin its distinct functions.

Do Tcra locus contraction and Tcrd
long-range recombination phenotypes
reflect a general pre-DSB role of
53BP1 in the dynamic reconfiguration
of Tcr/Ig loci during V(D)J recombina-
tion in T and B cells? The dissection
of 53BP1’s pre-DSB roles in V(D)J re-
combination requires a comprehensive
assessment of Tcr/Ig loci configuration
as well as antigen receptor reper-
toire diversity in Trp53bp1−/− primary
lymphocytes.

Does orientation-specific joining during
CSR reflect an active mechanism con-
tributed by 53BP1 (and other factors)
or is it an indirect consequence of im-
paired Igh locus dynamics and/or
DSB repair? Even when assuming
that deletional joining of S region
breaks is enforced by an active mech-
anism, the close interplay between
DNA metabolic reactions and Igh
locus dynamics in the CSRC may still
impact joining bias.
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[64–72]. In their linear configuration, the antigen receptor loci extend from 1Mb (Tcrb, encoding
TCRβ) to over 3 Mb (Igk, encoding Igκ) [73]. 3D DNA fluorescence in situ hybridization (3D
FISH) and Hi-C assays revealed that, in recombining cells, these loci transition from an
extended to a reversibly contracted state [64–72,74–80]. It is now well established that
cohesin-dependent loop extrusion represents the dominant mechanism controlling contrac-
tion of the Igh locus [68,69,81].

The short-versus-long-range V(D)J defect observed in the Tcrd locus in the absence of
53BP1 cannot be solely explained by its potential end-tethering activity and suggests a
pre-break role for the protein in this setting. Whereas defects in end tethering can probably
explain the reduced frequency of long-range recombination events, they cannot explain
why short-range joining reactions are unaffected, or even increased [10,38]. In support of
a pre-break hypothesis, 53BP1 has been implicated in the efficient contraction of the
Tcra locus (encoding TCRα), as assessed by 3D DNA FISH experiments in thymocytes
[10] (Figure 1). However, the relationship between the long-range recombination and
locus contraction phenotypes as well as the underlying molecular mechanism remains
an unexplored research area. In addition, a potential involvement of 53BP1 in long-range
V(D)J recombination of Ig loci in B cells, to our knowledge, remains to be assessed.
Thus, unbiased V(D)J sequencing (VDJ-seq) approaches in ex vivo progenitor B and
T cells might pave the way to the unambiguous dissection of 53BP1’s pre-DSB contribution to
V(D)J recombination.

Concluding remarks
Resolution of programmed DSBs is a prerequisite for protective immunity. Here, we focused
on 53BP1, the master regulator of DSB end protection, and discussed its multiple roles
during antigen receptor diversification. Although, 53BP1’s ability to inhibit DSB resection
is a key determinant of CSR, this function per se does not explain the full extent of the
defect caused by its deficiency. In reference to V(D)J, it is now clear that activities other
than DSB protection underlie 53BP1’s roles, although the limited number of studies to
date has prevented the mechanistic dissection of its contribution to the reaction. The pre-
cise nature and molecular determinants of these additional activities remain to be elucidated
(see Outstanding questions; Box 3).

In general, the plurality of phenotypes associatedwith 53BP1 deficiency in CSR and V(D)J recom-
bination exemplifies how the architecture and dynamics of antigen receptor loci are intimately
connected with the DSB repair machinery. Productive repair of both V(D)J and CSR breaks
requires the timely integration of structural and DNA repair components. Accordingly, we empha-
size that there are pitfalls and limitations when considering the repair of these programmed DSBs
independent of their dynamic architectural context since this may lead to oversimplified data
interpretation and conclusions. We envision that future experiments addressing the molecular
interplay between Tcr/Ig loci dynamics and DSB repair kinetics will provide a more in-depth
understanding of antigen receptor diversification reactions (see Outstanding questions) and
ultimately of the molecular bases of humoral immunity.
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