
PHILIPPS UNIVERSITY OF MARBURG

DOCTORAL THESIS

Improving the Accuracy of
Refactoring Detection

Author:
Tan Liang
Xi’an of China

Supervisor:
Prof. Christoph Bockisch

Prof. Jianjun Zhao

Programming languages and tools
Mathematics and Computer Science

January 28, 2023

iii

Declaration of Authorship
I, Tan Liang, declare that this thesis titled, “Improving the Accuracy of Refac-
toring Detection” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

v

PHILIPPS UNIVERSITY OF MARBURG

Abstract
Mathematics and Computer Science

Improving the Accuracy of Refactoring Detection

by Tan Liang

vi

With the development of refactoring technology, refactoring detection tech-
nology as its reverse technology has also been greatly progressed and ap-
plied, the technology has important significance and role for code optimisa-
tion, code review and code reliability. Over the past 20 years, the refactor-
ing detection technique has evolved from a theoretical concept to be mature
approaches and tools. However, due to the various complexities that arise
when refactoring code, there are still some problems with these detection
tools at work: selection of tools, detection of nested refactorings, false neg-
atives due to matching algorithms, etc. As the requirements for detection
increase, the pursuit of better detection performance (precision and recall)
and more generalised detection tools has become a major research goal for
my PhD.

The main research components of this paper include:
Firstly, at the beginning of my research I conducted a meta-analysis of

refactoring detection and evaluated the detection performance of four com-
mon refactoring detection tools under the same benchmark, analysed and
compared their strengths and weaknesses, and identified new research ques-
tions and research directions.

Secondly, I identified the study and detection of nested refactorings as a
research blind spot in existing approaches, so I conducted a demonstration of
the feasibility of nesting multiple refactor types with each other; in addition,
I created an approach that can detect nested refactorings based on a single
refactoring data using manually defined refactoring features combined with
a random forest algorithm, thus being able to detect all 35 semantically mean-
ingful nestings of them with 91.4% accuracy.

Then I focused on the features that emerged during the refactoring pro-
cess, mining the refactoring information in the diff to help RefDiff improve
detection performance. During the research I developed Diff Extractor and
Diff Encoder for extracting and encoding diffs, transformed diffs into arrays
for refactoring information mining, and trained two models: 1. Diff Structure
Feature Model, which determines the type of refactoring based on the struc-
tural features of the refactored diffs and can be used as a result checker, which
improves the overall performance of RefDiff by checking for false positives
in the RefDiff detection results. 2. Diff Feature Matching Network, which is
trained based on the correspondence of the removed and added parts of the
refactored diff, has excellent robustness and can solve the problem of missing
matching caused by word frequency matching approach.

Finally, I design an approach that integrates the two models, optimises
Diff Extractor and Diff Encoder based on the characteristics of diff features,
adds flags to diff based on the refactoring property, designs new encoding
approach emphasising token uniqueness, trains better models and builds a
model cross-validation mechanism that allows us to obtain detection results
with high levels of confidence. We have shown that our approach, called
RefDiff-Model, not only improves the precision of RefDiff 2.0 to 100% and
increases the recall to 96.1%, but also continues to support detection tasks in
multiple programming languages.

vii

Keywords:Refactoring Detection, Nested Refactoring, Tools, Model, Ma-
chine Learning.

ix

Acknowledgements
This dissertation was completed under the careful guidance of my supervi-
sor, Prof. Dr. Christoph Bockisch, who has been a great help to me in my
work and life over the past time, for which I would like to express my deep-
est gratitude. Over the past five years, the professor has taught me how I
should go about my research work, and has taught me how to choose a topic,
understand it, and explore new research points so that I can explore new re-
search ideas. The professor’s rigorous, meticulous and factual approach to
research, as well as his dedication to his work and kindness to others, have
left a positive impact on me.

From the design to the end of this project, the professor has helped me
not only in terms of academic but also cultural differences. There are some
differences between my country and Germany in terms of expressions and
ways of thinking, which led to problems in our communication at times. The
professor was very patient in exchanging ideas with me and worked hard to
bridge this difference, making my English expressions more authentic and
playing an important role in the polishing of my papers.

I remember many times the professor revised my papers late at night,
and despite being very busy, he would still email me during his work trip to
tell me what needed to be improved and enhanced in my papers, which left
a deep impression on me. The weekly meetings were indispensable, even
during my home working period, and his continued advancement of my re-
search was a major reason why I was able to complete my PhD on time.

I will soon be completing my PhD and would like to thank Pro. Dr.
Christoph Bockisch for his guidance and help, as well as my other colleagues
for their help.

I would like to thank my family for the support and encouragement I
have received.

Thank you!

xi

Contents

Declaration of Authorship iii

Acknowledgements ix

1 Summary 1
1.1 State of the Art in Detecting Refactoring 2
1.2 Problem Statement . 4

1.2.1 Meta-Analysis and Unified Benchmark Evaluation . . 5
1.2.2 Detection of Nested Refactoring 6
1.2.3 Matching Problem . 7

1.3 Solution Approach and Results 8
1.3.1 Result of Meta-Analysis 8
1.3.2 Detection Approach of Nested Refactoring 10
1.3.3 Solution Approach of Matching Problem 11

1.4 Conclusion . 12
1.5 Future Work . 13
1.6 Chapter Arrangement . 14

2 A Survey of Refactoring Detection Tools 17
2.1 Purpose of Survey . 17
2.2 Refactoring detection tool . 18

2.2.1 RefactoringCrawler . 18
Theory . 18
Discussion . 20
Conclusion . 21

2.2.2 Ref-Finder . 21
Theory . 21
Discussion . 23
Conclusion . 23

2.2.3 RefDiff . 23
Theory . 23
Discussion . 25
Conclusion . 25

2.2.4 RefactoringMiner . 25
Theory . 26
Discussion . 27
Conclusion . 28

2.3 Experimental Comparison of Tools for Detecting Refactorings 29
2.3.1 Experimental results . 30

Accuracy . 30

xii

Performance . 34
2.3.2 Comparing influence of repository structure on RM . . 35

2.4 Threats to Validity . 36
2.4.1 External Validity . 36
2.4.2 Internal Validity . 36
2.4.3 Discussion . 37
2.4.4 Detection of Move Class and Rename Package 38
2.4.5 Distinguishing Move Class and Rename Package 39

2.5 How to choose a refactoring tool 40
2.6 Conclusion . 42

3 Probability Model for Nested Refactoring 45
3.1 Detecting Problems with Nested Refactoring 45

3.1.1 Nested Refactoring . 45
3.1.2 Problem Solution . 45

3.2 Probability modeling based on random forest 48
3.2.1 Theory of Probability Model 48

3.3 Algorithm . 51
3.4 Proof of Concept . 53

3.4.1 Training . 53
3.4.2 Validation for Single Refactorings 54

3.5 Detecting Nested Refactoring 57
3.5.1 Extract Features and Calculation 58
3.5.2 Results and Analysis . 59
3.5.3 Specific Strategy . 59

3.6 Evaluation . 60
3.6.1 Threats to Validity . 60

Internal Validity . 60
External Validity . 61

3.7 Conclusion . 63

4 Diff Extractor and Diff Encoder 65
4.1 The Role of Diff in Refactoring Detection 65
4.2 Analysis of Refactoring Diff . 65

4.2.1 Classification of Refactoring Diff 65
4.2.2 Analysis of Refactoring Diff 68

4.3 Diff Extractor . 69
4.3.1 Basic Algorithm of Diff Extractor 69
4.3.2 Implementation Algorithm of Diff Extractor 69

4.4 Diff Encoder . 70
4.4.1 Related Encoding Approach 70
4.4.2 Jigsaw Hypothesis . 73
4.4.3 Encoding Approach for Diff 73

Code To Array . 73
Encoding Tokens . 74
Array To Image . 78

xiii

5 Training Model Base on Diff 79
5.1 Solution Problem . 79

5.1.1 Code similarity algorithm 79
5.1.2 Analysis . 80

5.2 Diff Structure Feature Model 81
5.2.1 Approach Overview . 81
5.2.2 Training Process . 82
5.2.3 Model Evaluation . 84

5.3 Evaluation . 86
5.3.1 Approach Evaluation . 86

Performance of Result Checker 87
Result Analysis . 88

5.3.2 Threats to Validity . 90
5.3.3 Challenges and limitations 90

5.4 Diff Feature Matching Network 91
5.4.1 Approach Overview . 91
5.4.2 Training Process . 92

Data preparation . 93
Training Process . 93

5.4.3 Model Evaluation . 95
5.4.4 Approach Evaluation . 97

Deployment . 97
Performance of Diff Feature Matching Network 98
Result Analysis . 99

5.4.5 Threats to Validity . 100
5.4.6 Challenges and Limitations 101

6 RefDiff-Model 103
6.1 Problem Analysis . 103

6.1.1 Problems with existing models 103
Problem with Diff Structure Feature Model 103
Problem with Diff Feature Matching Network 104

6.1.2 Problems with Diff Tool 104
Problem with Diff Extractor 104
Problem with Diff Encoder 105

6.2 Approach Overview . 105
6.2.1 Approach Workflow . 105
6.2.2 Core Mechanism . 106

6.3 Optimised Solutions . 107
6.3.1 Optimised Diff Extractor 107
6.3.2 Optimised Diff Encoder 109

Encoding Approach For Diff Features Network Network 109
Encoding Approach For Diff Structure Features Model 110

6.4 Training . 111
6.4.1 Optimised Diff Features Marching Network 111

Model Training . 111
Model Evaluation . 113

xiv

6.4.2 Optimised Diff Structure Features Model 115
Model Training . 115
Model Evaluation . 115
Generalized Applications 117

6.5 Evaluation . 118
6.5.1 Result Analysis . 119
6.5.2 Threats to Validity . 121
6.5.3 Challenges and Limitations 121

6.6 RefDiff-Model with Random Forest Model 121
6.6.1 Implementation . 122
6.6.2 Train Abstract Features 123
6.6.3 Application in Nested Refactoring 125
6.6.4 Model Embedment . 126

Bibliography 129

xv

List of Figures

1.1 An example of refactoring and detection 2
1.2 Nested Refactoring . 6
1.3 Processing Node Information 8

2.1 Boxplot of Execution Time . 35
2.2 Example diff for a Move Class refactoring. 40
2.3 Example diff for a Rename Package refactoring. 40

3.1 Normal Refactoring . 46
3.2 Nested Refactoring . 46
3.3 Diff . 47
3.4 Algorithms Idea . 48
3.5 Manual Extracting . 49
3.6 Extracting by refactoring function 49
3.7 Example of Rename Package 54
3.8 Example of Extract Method . 55
3.9 Traditional Idea of Refactoring Detection 56
3.10 New Idea of Refactoring Detection 56
3.11 Process . 57
3.12 Variable relationship . 61

4.1 Move statement Type . 66
4.2 Rename Type . 66
4.3 Remove Type . 66
4.4 Add Type . 67
4.5 Fixed transformation Type . 67
4.6 Combine Type . 68
4.7 Refactoring objects and Code elements 68
4.8 Prase and Match . 70
4.9 Example of the ExtractIntersection algorithm 71
4.10 Putting the code into an array 74
4.11 Example of ExtractMethod . 74
4.12 Example of encode . 76
4.13 Encoding to arraying . 76
4.14 Example of Move Type . 76
4.15 Example of Rename Type . 77
4.16 Example of C . 77
4.17 Example of JavaScript . 77

5.1 Approach Flow chart . 82

xvi

5.2 Accuracy Chart . 85
5.3 Loss Value Result . 86
5.4 Accuracy distribution . 87
5.5 Distribution of predicted values for test data 89
5.6 Abstract Illustration . 91
5.7 Approach Flow chart . 92
5.8 Structure of Diff feature Matching Network 94
5.9 Train Result . 96
5.10 Testing Example of Comparison 96
5.11 Filter Layer . 99

6.1 Approach Flow chart . 105
6.2 Node information processing concept 106
6.3 Diff Change After Optimization 108
6.4 Example of uniqueness encoding 110
6.5 Optimisation Result . 111
6.6 Matching Network . 113
6.7 Matching Network . 114
6.8 Matching Network . 114
6.9 Accuracy Chart . 116
6.10 Loss Chart . 116
6.11 Diff Convert to Array . 118
6.12 Process of Features Extraction 122
6.13 Model Fusion . 127

xvii

List of Tables

2.1 RefactoringCrawler(1.0.0) . 30
2.2 Ref-Finder(1.0.4) . 30
2.3 RefactoringMiner(1.0.0) . 30
2.4 RefDiff . 31
2.5 Detection Results for Accuracy(supported refactoring types) . 32
2.6 RefactoringMiner(1.0.0) . 33
2.7 RefDiff . 33
2.8 Execution Time Comparison . 35
2.9 Detailed accuracy results for RefactoringMiner and the Move

Class refactoring type. 38
2.10 Detailed accuracy results for RefactoringMiner and the Rename

Package refactoring type. 39

3.1 Count statistics and Probability calculations 52
3.2 Probability distributions . 53
3.3 Example . 53
3.4 Feature summary. 55
3.5 The trained probability model. 56
3.6 Test result of a single refactoring 57
3.7 Test result of a nested refactoring 58
3.8 Framework of Programming Language 62

4.1 Element Operations Table . 69

5.1 Data Distribution . 83
5.2 Training Set and Validation Set 83
5.3 Parameters of Diff Feature Matching Network 84
5.4 Test Result . 88
5.5 Data Distribution . 93
5.6 Parameters of Diff Feature Matching Network 94
5.7 Testing Result . 97
5.8 Test Result . 99
5.9 Comparison in JavaScript . 99
5.10 Comparison in C . 100

6.1 Data Distribution . 112
6.2 Evaluation of experimental results 117
6.3 Test Result . 119
6.4 Comparison in C . 119
6.5 Comparison in JavaScript . 120
6.6 Abstract Feature Assignment 124

xviii

6.7 Feature Arrays Chart . 124
6.8 Feature Arrays Chart . 125
6.9 Nested Refactoring Probability 126

1

Chapter 1

Summary

Refactoring is a disciplined technique for restructuring an existing body of
code, altering its internal structure without changing its external behavior.

Refactoring is usually motivated by noticing a code smell. The tech-
nique of refactoring a software system has been around for a long time al-
ready, however, the term was probably coined in 1989 by Bill Opdyke and
Ralph Johnson. It has gained wide adoption especially in the agile soft-
ware development community, marked by the popular book by Fowler et
al. (Fowler, 1999). Refactoring is intended to improve the design, structure,
and/or implementation of the software (its non-functional attributes), while
preserving its functionality. Potential advantages of refactoring may include
improved code readability and reduced complexity; these can improve the
source code’s maintainability and create a simpler, cleaner, or more expres-
sive internal architecture or object model to improve extensibility. Another
potential goal for refactoring is improved performance; software engineers
face an ongoing challenge to write programs that perform faster or use less
memory (Martin, 2009).

The turnover of teams implies missing or inaccurate knowledge of the
current state of a system and about design decisions made by departing de-
velopers. Further code refactoring activities may require additional effort to
regain this knowledge (Nassif Matthieu, 2017). Refactoring activities gener-
ate architectural modifications that deteriorate the structural architecture of
a software system. Such deterioration affects architectural properties such
as maintainability and comprehensibility which can lead to a complete re-
development of software systems. (Van Gurp Jilles, 2002)

Code refactoring activities should have been recorded in the software
activity logger when using tools and techniques providing data about al-
gorithms and sequences of code execution (Hassan Ahmed E., 2010). Pro-
viding a comprehensible format for the inner-state of software system struc-
ture, data models, and intra-components dependencies is a critical element
to form a high-level understanding and then refined views of what needs to
be modified, and how. (Novais Renato, 2017) However, refactoring activities
are rarely documented.

Refactoring detection is the analysis of refactoring activities that have oc-
curred during the evolution of the software system. This analysis can be
helpful for improving the software engineering process. For example, de-
tected refactorings can help the programmer to understand the program code

2 Chapter 1. Summary

again after being absent for a certain time. Refactorings detected in soft-
ware archives can also be used to identify errors that have occurred during
the software development. Furthermore, the refactoring information pro-
vides new insights how software projects evolve over time. Refactoring de-
tection techniques are very relevant, they are used for empirically studying
(Giuliano Antoniol, 2004; Danilo Silva, 2016; Gabriele Bavota, 2012; Gabriele
Bavota, 2015; Miryung Kim, 2011; Fabio Palomba, 2017; Napol Rachatasum-
rit, 2012; Gustavo Soares, 2013) software evolution, and to support other
software engineering tasks, such as library adaptation (Ittai Balaban, 2005;
Danny Dig, 2006; Johannes Henkel, 2005; Zhenchang Xing, 2007), software
merging (Danny Dig, 2008), code completion (Stephen R. Foster, 2012; Xi Ge,
2012), and code review (Everton L. G. Alves, 2014; Xi Ge, 2014; Xi Ge, 2017).

1.1 State of the Art in Detecting Refactoring

Reverse engineering can be used to detect the application of refactorings
(Serge Demeyer, 2000). Current research focuses on refactoring detection
algorithms that detect a (likely) set of refactorings that developers applied
to the source code (Nikolaos Tsantalis, 2018). Figure 1.1 shows an example,
namely applying and detecting the Move Class refactoring, which we will
consider in more depth in the remainder of this dissertation.

FIGURE 1.1: An example of refactoring and detection

1.1. State of the Art in Detecting Refactoring 3

The history of detection mechanisms for refactorings starts with theoreti-
cal discussions of ways to recognize a limited set of simple refactoring. Today
we have automated tools, which are capable of recognizing several different
and more complex refactorings.

In 2000, Demeyer et al. (Serge Demeyer, 2000) proposed reverse engineer-
ing of reconstructed code and proposed a detection heuristics. Instead of a
refactoring-detection algorithm, a heuristic approach was used to measure
the available versions of each software system and compare the results to
determine the existence and nature of the refactoring. Another relevant de-
velopment is the increasing availability of technologies, which enable the de-
tection of refactorings. For example, Kim et al. (T. Kamiya, 2002) developed
CCfinder, a new clone detection technique that consists of the transformation
of input source text and a token-by-token comparison. Since then, methods
for the detection of refactorings and related technologies have entered a stage
of rapid development.

The first refactoring-detection approaches focused on specific refactorings
that are relatively simple. Van Rysselberghe and Demeyer (F. Van Ryssel-
berghe, 2003)—inspired by palaeontological fossil research—proposed the
“software palaeontology” heuristic in 2003. This method paid special atten-
tion to the evaluation of the “move method” refactoring. Their work con-
sisted of comparing different releases of existing source code and analyzing
differences and reconstructing past evolution processes. In the same year,
Malpohl et al. (Miryung Kim, 2010) proposed the algorithm "Renaming de-
tection" , which is equally applicable to data description languages such as
XML. The detector works with multiple file pairs, also finding renamings
that span several files. It is also part of a suite of intelligent tools for merging
programs exploiting the semantics of programming languages.

After the first concrete approaches to detecting specific refactorings, more
holistic methods have been developed in theory. Antoniol et al. (Giuliano
Antoniol, 2004) and his group presented an approach, based on Vector Space
cosine similarity of class identifiers, to automatically identify Class-level refac-
torings between two subsequent releases. The approach was useful to iden-
tify some replacement, merge and split during the evolution of dnsjava. This
approach uses a calibration threshold to influence the precision and recall
of the detection method. An object-oriented design structure difference al-
gorithm ("UMLDiff") was proposed by Xing and Stroulia (Zhenchang Xing,
2005) in 2005. UMLDiff can detect additions, removals, moves, renamings
of packages, classes, interfaces, fields methods, changes of attributes and
changes of the dependencies among these entities. Based on the UMLDiff al-
gorithm, JDEvAn (Java Design Evolution Analysis) can automatically detect
the design changes between two models corresponding to two versions of a
system. Comparing the software versions at the design level makes it have
a direct impact on the evolutionary development process of the software.
Domain-specific semantics make the comparison results more intuitive than
other structured differentiation algorithms. Early researchers used visuali-
sation approaches to describe code changes that required the subjective in-
volvement of users. With the advent of some excellent algorithms, the design

4 Chapter 1. Summary

of algorithmic automation based on these algorithms have made it possible
to rely less on subjective interpretation than visualisation approaches and can
instead provide the basis for subsequent analysis. The detection approaches
and algorithms proposed by some early researchers laid a solid theoretical
foundation for later refactoring detection tools. Some researchers used the
above algorithms and ideas to develop complete refactoring detection sys-
tems, i.e., tools that automatically detect the application of different types
of refactorings in the code. These systems will be the subject to the study
presented later in this dissertation.

Automatic refactoring detection tools. The earliest detection tool devel-
oped was RefactoringCrawler by Danny Dig et al. (Danny Dig, 2006) in 2006.
This tool is implemented as a plugin for Eclipse and can detect seven types
of refactorings in Java components, focusing on rename and move refactor-
ing. In 2010, the tool Ref-Finder, developed by Kyle Prete and his team, was
proposed (Kyle Prete, 2010). This tool is based on a Program the tool LSdiff
(Logical Structural Diff) released by Kim et al. (M. Kim, 2009) to compute
the delta between two versions of the source code. Prete and his team used
a logic meta-programming approach to identify complex refactorings from
two program versions and claimed that the tool can support the 63 refactor-
ing types. RefactoringMiner was proposed in 2013 by Tsantalis (N. Tsan-
talis, 2013; Nikolaos Tsantalis, 2020) and his research group. It implements a
lightweight version of the UMLDiff algorithm for computing the differences
between object-oriented models independent on the IDE. It can detect ten
kinds of refactorings. In 2017, RefDiff was created by Danilo Silva and Marco
Tulio Valente (Danilo Silva, 2017; Danilo Silva, 2020), an automated approach
that identifies 13 different refactoring types by inspecting two code revisions
in a git repository. The key feature of this tool is the use of a similarity index.

1.2 Problem Statement

Each automated refactoring detection tool, in its own test data, indicates a
good performance, so in order to better understand the detection capabilities
of existing automated refactoring detection tools, they need to be evaluated
using test data from a unified benchmark. Furthermore, the study of existing
refactoring detection principles helped us to identify the research directions
presented in this thesis.

Currently, the best refactoring detection tools are RefactoringMiner (Niko-
laos Tsantalis, 2020) and RefDiff (Danilo Silva, 2020), both of which have
reached version 2.0 after continuous development, and their performance is
excellent. But the comprehensive performance of both tools has some short-
comings. Both tools are designed along similar lines, first parsing the code
to be inspected into an abstract syntax tree of nodes, both of which focus
only on nodes related to diffs. The syntax-tree nodes representing the code
in the diff before and after the change are then matched to form refactoring

1.2. Problem Statement 5

candidates using a matching algorithm. Finally, the candidates are assigned
refactoring types based on the characteristics of each refactoring.

However, their studies have all been on the detection of single refactoring
type, whereas in reality developers often apply multiple refactorings to the
same code element at the same time, but only few refactoring combinations
have received attention, as mentioned in the RefactoringMiner paper.

RefactoringMiner 2.0 is a programming-language-dependent detection
tool with a precision of 99.7 % and a recall of 94.2 %. It achieves this for
two main reasons: 1. it is based entirely on an abstract syntax tree, which
gives access to all syntax information. 2. its matching algorithm consists
of statement matching and syntax-aware replacements. RefactoringMiner
supports most of the well-known refactoring types. Its biggest limitation is
that it can only detect java refactorings.

RefDiff 2.0 is a programming-language-independent detection tool with
better generality. RefDiff has a precision of 96.4 % and a recall of 80.4 %. Al-
though its performance is weaker than RefactoringMiner, it can cover a wide
range of programming languages, which is a significant advantage, and it
still supports the most common refactoring types. This is due to two things:
1. It is based on an abstract syntax tree that focuses on coarse-grained code
structure elements and can be referred to as Code Structure Tree (CST). 2. Its
matching algorithm relies heavily on text similarity of node code, a design
that expresses similarity using the word frequency in the node code. These
two advantages allow RefDiff to support multiple programming languages
under one matching algorithm, as it does not need to take into account syn-
tactic differences between programming languages. On the downside, this
design sacrifices some of the detection performance, because the algorithm
for computing code similarity fails to match the correct refactoring candidate
in some cases. In particular RefDiff’s recall needs to be improved.

RefDiff, as a tool for detecting refactoring in multiple programming lan-
guages, has excellent detection generality, which fits well with the trend to-
wards generality detection tools. Therefore, we have made RefDiff to be the
main object of research in the PhD phase. In summary, we have three goals:

1. Meta-analysing detection tools and testing them in a common bench-
mark;

2. Implementing detection of nested refactoring;

3. Developing an approach and tool to reach higher precision/recall with-
out being language-specific by improving RefDiff.

1.2.1 Meta-Analysis and Unified Benchmark Evaluation

In meta-analysis and evaluation, we did study introducing four detection
refactoring techniques, and comparing the precision, recall, execution time,
verification of some previous researchers’ conclusions, which revealed many
new problems. All in all, we found the following problems: 1. Calibrating
matching thresholds play an important role, but they are considered to be

6 Chapter 1. Summary

unstable factors affecting accuracy in some tools. 2. Each tool has a very high
precision and recall, but in some comparison experiments there was a large
gap between the experimental results and the published values.

In the process of studying refactoring detection approaches, we identified
two research questions:

1. Are approaches, which rely on a calibrated detection threshold (Ref-
Finder, RefactoringCrawler, RefDiff), superior to methods that do not
require such calibration (RefactoringMiner)?

2. Can the experimental results of the authors be repeated by a different
researcher? In the case of Ref-Finder, the results reported by different
authors are contradictory - which ones are the most likely to be repre-
sentative?

The main purpose of this research can be to understand the advantages
and disadvantages of the existing detection approaches, as well as the prin-
ciples, and to find the direction and objectives of the next phase of research.

1.2.2 Detection of Nested Refactoring

Nested refactoring, also known as compound refactoring, is a derivative sub-
ject of refactoring development. After the first refactoring, the refactored pro-
gram elements (such as method, field, or class) are directly refactored for the
second time, and then committed as one code change to Git, such as Extract
Method + Move Method, as shown in Figure 1.2. As far as Martin Fowler’s
seminal work (Fowler, 1999) is concerned, single refactoring is a general refac-
toring.

FIGURE 1.2: Nested Refactoring

Through the research of RefactoringMiner, Ref-Diff and other approaches,
we found that all current refactoring detection approaches basically consist
of two main parts (S. Kusumoto T. Kamiya, 2002): 1. Find refactoring can-
didates; 2. Detect refactoring types. In the second part, the detection tool
sets very strict judgment conditions for each refactoring type. This is the key
reason for the high-precision detection result and why the nested refactoring

1.2. Problem Statement 7

is difficult to detect. Because researchers need to define judgment condi-
tions for all possible nested refactoring types, however, the refactoring cata-
log maintained by Martin Fowler 1 currently lists 91 single refactoring types,
and supporting nesting combinations would lead to a combinatorial explo-
sion, having to define a huge number of judgement conditions.

The emergence of nested refactoring brings two new research questions
to the research of refactoring detection:

• The feasibility study of nesting refactoring. Not all refactoring types
can be nested with each other, regardless of the actual meaning and the
legitimacy of semantics, the study of nested refactoring is a study of the
mutual composability of refactoring types. Not only that, the order of
nesting is also very important, the two refactoring types change in their
nesting order, will affect the results of nesting, there will also be unable
to be nested or illegal nested caused by changing the order. Thereby,
the order of applying two or more refactorings also has to be taken into
account.

• Nested refactoring is an important test of existing refactoring detection
tools. Because the definition and judgment rules given by traditional
detection tools for refactoring types are not applicable when detecting
nested refactorings. Since the performance of nested refactoring is not
simply superimposing these two types of refactoring on each other, but
a new composite structure, researchers need to define new judgement
rules for these nested refactoring types, which is a huge workload.

Summary The main objective of this study was to understand how refac-
torings are nested and to develop an approach to detect nested refactorings
given some of the findings of the nesting process.

1.2.3 Matching Problem

RefDiff’s Similarity expresses the degree of similarity of all codes contained
in two nodes, based on Term Frequency-Inverse Document Frequency (TF-
IDF) (G. Salton, 1986) (TF-IDF) and Jaccard coefficient (F. Chierichetti, 2010),
which, however, in some cases is not suitable as a key condition for match-
ing refactoring candidates, because they are designed for natural language
texts. RefDiff’s 80.4 % recall rate already indicates that word frequency sim-
ilarity as an important condition for determining matches misses about one
fifth of the refactoring candidates. In addition, changes in similarity thresh-
old directly affect detection performance. The threshold is proportional to
precision and inversely proportional to recall. There are two most important
threats to word frequency similarity.

1see: https://refactoring.com/catalog/

https://refactoring.com/catalog/

8 Chapter 1. Summary

FIGURE 1.3: Processing Node Information

• Threat 1: Non-refactoring code changes. Refactoring is usually accom-
panied by non-refactoring code changes, where the node being refac-
tored has code changes other than refactoring. RefDiff defines a simi-
larity threshold of 0.5. However, if a refactored node contains a large
number of non-refactoring code changes, the similarity of node code
can easily be diluted below the threshold, leading to some false nega-
tive results.

• Threat 2: Noise nodes associated with diff. Non-refactoring changes
exist not only in the nodes being refactored, but also in other nodes un-
related to refactoring. These noisy nodes also participate in matching,
and if there are noisy nodes with similar code composition, then it in-
creases the probability of false matches, which is the main reason why
RefDiff will produce false positives.

Summary As shown in Figure 1.3, a node consists of six pieces of abstract
information (the outer ring) and NodeCode (in the center). RefDiff uses the
abstract information in the outer ring to define decision rules for each refac-
toring type and uses the similarity of the node code to determine whether
the node matches, however it is clear that RefDiff’s use of the information
contained in the NodeCode is not sufficient.

Therefore, the core problem to be addressed in this part is: how to more
fully mine the information contained in the nodes for better detection perfor-
mance.

1.3 Solution Approach and Results

1.3.1 Result of Meta-Analysis

This dissertation studies and introduces four existing refactoring-detection
techniques, and compares their precision, recall, execution time. In this way
some previous researchers’ conclusions are verified and new problems are
identified. This study consists of 3 parts:

1.3. Solution Approach and Results 9

• The development history of refactoring detection and the algorithm
structure of the main detection tools are briefly introduced. Through
the study of these methods, we identified two research questions: Is
there a kind of refactoring detection algorithm superior to others? Can
the results of previous studies be reproduced and the expected perfor-
mance of the tools be validated? We designed two sets of detection
experiments for these questions. The experiments were conducted on
four presence refactoring detection tools. Experiment 1: We chose the
four refactoring types as a common benchmark of test data, 170 in total,
to test their detection performance. Experiment 2: We selected the two
best performing detection tools from Experiment 1, using 11 refactoring
types as test data, a total of 350, for a more comprehensive and detailed
evaluation.

• During our experiment, we found two main problems in previous ex-
periments: on the one hand, the most modern tools have only be eval-
uated using very small code changes including only one or a few refac-
toring types; on the other hand, for larger code changes used in stud-
ies, a lot of actual refactorings were missing in the list of the expected
results (i.e., the “gold standard”) . For this reason we deliberately se-
lected a more comprehensive data set, and we also improved the gold
standard for comparison. For RefactoringMiner, the most advanced of
the investigated tools, we compared two ways of operation: either there
are just two versions to be analyzed before and after a series of refac-
torings has been applied; or there are multiple intermediate versions
which only include a subset of the refactorings each. Finally, by ana-
lyzing the experimental results, we found some refactoring types for
which detection needs to be optimized, and provide guidance for our
next phase of research.

• At the end of the article we discuss how to choose a refactoring tool,
based on the reader’s own needs, to detect the type of refactoring and
the performance of the detection tool. Throughout the research, we
found that RefactoringMiner is the most stable detection tool with higher
precision and recall, covering the most common types of refactoring
and various methods of connecting repositories. While our completed
benchmark largely confirmed the previous results, in particular con-
firming that RefactoringMiner generally outperforms its competitors,
we also identified a weak spot of RefactoringMiner that was not noted
before: Refactorings of the type Move Class and Rename Package are fre-
quently classified falsely. We also discussed the reasons for this wrong
classification and outline a possible fix, which potentially boosts the
overall precision and recall of RefactoringMiner to over 95%. RefDiff
is the tool that spends the least amount of execution time. Although
being defective for individual refactoring types, RefDiff maintains high
precision and recall. But for the outdated tools RefactoringCawler and
Ref-Finder, there is a big gap between with the two new tools, whether

10 Chapter 1. Summary

in precision, recall, and execution time, or in the coverage of common
refactoring types.

1.3.2 Detection Approach of Nested Refactoring

In the first part of the study of the state-of-the-art, we found some problems
that cannot be solved by the existing detection tools. This part of the research
is mainly for the detection of nested refactoring. This phase is composed of
three parts:

• Through research and analysis, we first clarified the reasons for the for-
mation of nested refactoring. With the development of refactoring tech-
nology, the phenomenon of mutual nesting and compounding between
refactoring types has appeared. This phenomenon is mainly due to two
reasons: 1. Users frequently do not commit their changes to the ver-
sion control system immediately after each refactoring. Instead, they
perform multiple refactorings sometimes to the same part of the code
before they commit, so that a nested refactoring occurs. The code after
nesting refactoring cannot be detected by existing refactoring detection
tools. 2. The composability between refactoring types is also an impor-
tant reason for the nesting phenomenon. First of all, not all refactoring
types can be nested with each other, and the nesting order between two
refactoring types will also affect the results of nesting, so this is also the
problem studied in this article.

• According to the analysis and research of the first part, the second part
of my study investigates the possibility of nesting between refactoring
types. In this part, based on ten common refactoring types, we con-
ducted pairwise nesting experiments on them, and reached two impor-
tant conclusions: 1. The two nested refactoring types need to conform
to the syntax logic of the programming language, and some refactoring
types have no connection points for nesting at all. 2. Nesting needs to
have practical meaning. Some refactoring types can be nested, but it is
not positive for improving the code structure. On the basis of these the-
ories, we have also created some examples of nested refactorings and
studied methods to detect them based on these examples.

• In this part, we have studied why the existing refactoring detection ap-
proaches cannot detect nested refactorings. Based on the research re-
sults, we have created a detection mechanism that can detect nested
refactorings.

The existing traditional refactoring detection approaches will firstly find
the refactoring candidates, and then compare them with the candidates
one by one according to the established refactoring type rules, and fi-
nally determine the refactoring type. The refactoring type rules are for-
mal definitions. To detect nested refactorings, you continue to need to
define each nested refactoring type. However, with currently 91 java
refactoring types described by Fowler, the number of types of nesting

1.3. Solution Approach and Results 11

refactorings is very large. Thus traditional detection methods of defin-
ing detection rules are not suitable for nested refactoring detection. We
found that the diff of nested refactorings has some similarities with the
two diffs of the corresponding single refactorings. Due to the nesting,
the content of some diffs will be hidden, but the nested diff contains
enough features to point to the two nested refactoring types. Therefore,
we used statistical probability to detect nested refactorings based on
features of single refactorings. We calculate the probability relation-
ship between each feature and each refactoring type, and recognize
diffs which show a very high probability for two refactoring types as
applications of nested refactorings.

We have trained our approach for 10 common single refactoring types, re-
sulting in the ability to detect all 35 semantically meaningful nestings of them
with a precision of 91.4%, while RefactoringMiner only provides detection
rules for three nested refactorings and other tools none at all. The precision
of our approach for detecting single refactorings is at the same level as that
of existing tools.

1.3.3 Solution Approach of Matching Problem

Our research in the second phase showed us that probabilistic, feature-based
approaches are suitable for refactoring detection. Therefore, we continued to
follow this direction by developing an approach based on machine learning
algorithms for refactoring detection. Our main contributions at this stage are
as follows:

• To demonstrate that machine learning can be applied to the diff be-
tween source code files, we analyzed and studied all existing refactor-
ing types in the java programming language and invented an approach
to encode the code text according to the characteristics of the program-
ming language. The encoding uses numerical abstraction to represent
the diff and lays the groundwork for mining the refactoring informa-
tion contained in the diff using machine learning algorithms.

• Based on the encoded diff data and the structural features contained in
the refactoring diff, we trained the Diff structure feature model to check
the results reported by RefDiff 2.0 to improve its detection result preci-
sion to 99.7% and recall to 82.8% without changing the RefDiff thresh-
old. When the candidate detection threshold is lowered, our result
checker helps RefDiff to increase recall to 95.2% also at the small cost
of a 0.2 percentage point loss, resulting in precision of 99.5%. RefDiff’s
algorithm is designed to work with a wide range of programming lan-
guages and our result checker is not syntax dependent, so our checker
can also be used with other programming languages supported by RefD-
iff by replacing the feature model in the checker trained by diff and key-
word assignment for other programming languages. Thus, the checker
can support new languages or support more new types of refactorings
by providing enough samples to train the diff feature model.

12 Chapter 1. Summary

• The Diff structural feature model boosts the performance of RefDiff at
the cost of significant checking time, as lowering the threshold gener-
ates a large number of false positive candidates that need to be checked
by the checker one by one. Based on the principle that the added and
removed parts of a refactored diff are almost identical, we trained a diff
feature matching network for RefDiff 2.0 that solves the match missing
problem caused by the word frequency similarity matching algorithm
without changing the RefDiff design architecture. The matching net-
work improves the overall detection performance of RefDiff to 98.6%
precision and 93.2% recall, and works with all programming languages
supported by RefDiff. The Diff Feature Matching Network is a neural
network that features text relationships, text structure and the order of
text expression to match the similarity of two pieces of text with high
robustness. The network is suitable for texts with strict structural and
syntactic rules, such as programming languages, and can be used to
mine the structural features contained in the text, with far-reaching im-
plications for the wider implementation of reconstruction detection in
programming languages.

• Combining the role of the previous models, we have created an optimi-
sation solution (RefDiff-Model) that uses deep learning algorithms for
deep data mining of node codes. This solution is a good solution to the
problem of missed matches and mismatches due to similarity thresh-
olds, as well as the problem of single model dependencies. The solution
is a RefDiff-based parsing matching algorithm that obtains the abstract
information contained in the node and then combines it with the struc-
tural and corresponding information contained in the node’s diff code.
The solution uses this information to determine the refactoring type
of the candidate, which can effectively circumvent the drawbacks of
a single model, and the cross-validation mechanism guarantees 100%
precision with a recall of 96.1%. The algorithm is not dependent on the
syntax of a particular programming language and also benefits from
the extensive generalisation of RefDiff. Not only this, but we have also
incorporated the Random Forest algorithm, which gives the RefDiff-
Model the ability to discover and detect nested refactorings.

1.4 Conclusion

During the PhD period, my research can be divided into three phases, and
the research results of each phase have met the requirements of my initial
plan. In detail, the results are as follows:

1. First, we have done a review study of the refactoring detection ap-
proaches that have emerged, including meta-analyses and uniform bench-
mark evaluation. The meta-analysis focuses on each of the four auto-
mated refactoring detection tools, analysing their technical routes and
algorithmic ideas, summarising their strengths and weaknesses, and

1.5. Future Work 13

comparing their algorithmic designs. In addition to this, we compare
their detection performance using test data from three open source projects
as a unified benchmark. In addition, this comparison is independent in
that it has not been performed by the authors of the tools and thus of-
fers the first comprehensive and objective comparison. In this way, the
evaluation also revealed some problems which have not been discussed
before, in particular the fact that some refactorings cannot be distin-
guished well by the tools and that sequential refactorings of the same
code element, so-called nested refactorings, are not well supported.

2. Second, nested refactorings have been researched in depth. On one
hand, the compatibility and composability of refactoring types have
been studied and summarized. On the other hand, we have contributed
a mechanism for detecting nested refactoring. This mechanism uses
statistical probabilities of features occurring in the code changes when
applying the different refactoring types. A probability model is learned
by using the random forests algorithm. Nested refactorings are recog-
nized by this approach by applying the probability model to a code
change, when a high probability is found for multiple refactorings.

3. Finally, the use of deep learning algorithms to support refactoring de-
tection is the most important contribution of this dissertation. Firstly,
we have implemented the extraction and encoding of refactoring diffs.
secondly, we have trained two models based on the structural features
and correspondences of the refactoring diffs and implemented the ap-
plication of the models. Finally, we have optimise the extraction and
encoding approaches, trained better models, optimised model deploy-
ment, and established a mechanism for model cross-correction, which
helps the RefDiff tool to achieve better detection performance. As the
refactoring data continues to accumulate, we believe this approach will
also become more and more mature.

1.5 Future Work

In terms of my vision for refactoring detection technology, my ideal refac-
toring detection technology would be intelligent, just like identifying objects
in pictures, where users can use powerful models in code control systems
to quickly identify refactorings in code. Although we have now completed
some of the theoretical demonstrations in my vision and have implemented
the ability to use models for matching and detection, there are still some gaps
in performance from the ideal. In the future, we will further optimise the de-
tection algorithm and model in three ways:

• We plan to optimise the training data to get a model that performs bet-
ter and supports more refactoring types. The dataset used currently
contains a relatively limited amount and variety of data, for example
there is a severe shortage of nested refactoring data. The optimisation
solution is to implement a refactoring diff generator to produce training

14 Chapter 1. Summary

data, which is based on the refactoring tools in modern IDEs. The user
only needs to manually select the refactoring type, and the generator
can output the corresponding refactoring diff, which can be used jointly
by multiple people in a team to produce better datasets in batches in a
short time.

• We will designe specialised neural networks to extract structured lan-
guage features in order to eliminate some of the drawbacks of feature
networks designed on the basis of images. The parameters of existing
established neural networks are designed based on extracting image
features, and the parameter settings of the convolutional kernel are not
very suitable for the encoded diff feature array. For example, a con-
volutional kernel of size 1*1 is dimensionally degrading in images, but
in diff data it can speed up the training process with a slight impact
on model performance. So a neural network specifically designed for
structured languages can balance model performance and training effi-
ciency, and we believe that with more experimentation a better adapted
neural network architecture can be designed.

• We will further optimise the encoding approach by using symbols as
encoding objects. In designing the encoding approach, we have only
encoded words because they are more feature representative, but also
symbols, as an important part of the syntax of a programming lan-
guage, can have the potential to be used as structural features. For
example, declaring packages, classes, methods and statements all use
different combinations of symbols, which can be encoded as comple-
mentary features to the structural features of keywords.

1.6 Chapter Arrangement

The following chapters present our papers presenting the different contribu-
tions of this dissertation in detail. They are organized as follows.

Chapter 2: Tan Liang, Christoph Bockisch. “A Survey of Refactoring Detec-
tion Tools”. In the processing of: 6th Collaborative Workshop on Evolution
and Maintenance of Long-Living Systems ((EMLS)), Stuttgart, Germany,
2019.

My Contributions: This paper presents a meta-analysis of four refac-
toring detection tools and completes the testing and analysis of the re-
sults under the same benchmark. My contributions included, literature
compilation, summary of each tool’s methodology, collection and cali-
bration of data for the same benchmark, completion of the entire test,
and analysis of the test data.

Chapter 3: Tan Liang, Christoph Bockisch. “Using refactoring features to
solve the problem of nested refactoring”.

1.6. Chapter Arrangement 15

My Contributions: The main contribution of this paper is to use the
features of refactoring to train a probability model describing the re-
lationship between refactoring features and refactoring types as a way
to achieve the detection of nested refactoring types. My main contri-
bution is to analyse the difference between the features contained in
a large number of single refactorings and nested refactorings, to con-
struct a probability model of refactoring features and refactoring types
by drawing on the random forest algorithm, and to complete the eval-
uation of the model by generating some data manually in the absence
of data.

Chapter 4: Tan Liang, Christoph Bockisch. “Checking Refactoring Detec-
tion Results Using Code Changes Encoding for Improved Accuracy”.
In the processing of: 22nd IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM), Cyprus, October 3-4, 2022.

My Contributions: The main contribution of this paper is the ap-
proach for extracting the diffs from the detection results and encod-
ing them as image data for machine learning processing, as well as
the training of the machine learning algorithm. My contributions are:
analysing the reasons for the low recall of RefDiff, proposing an ap-
proach to solve the problem using diff structural features, analysing
the performance of diff for all refactoring types, implementing a diff
extractor, summarising the encoding rules, completing the data collec-
tion, training the result checker and making an evaluation.

Chapter 5: Tan Liang, Christoph Bockisch. “Diff Feature Matching Net-
work in Refactoring Detection”. In the processing of: 29th Asia-Pacific
Software Engineering Conference (APSEC), Japan, December 6-9, 2022.
(Best Paper Award)

My Contributions: The main contribution of this paper is an approach
for encoding the differences between nodes in a syntax tree as image
data for neural network matching, thus enabling a complement to the
word frequency similarity approach. My contributions are the discov-
ery of flaws in the RefDiff matching algorithm, the creation of an ap-
proach to match using the corresponding features in the removed and
added parts of the diff, the implementation of a diff encoder, the col-
lection and processing of a large amount of data, the training of a diff
feature matching network drawing on image matching networks, the
design of a suitable model deployment structure, and the completion
of a final evaluation.

Chapter 6: Tan Liang, Christoph Bockisch. “RefDiff-Model: Model-based
Optimization Solution for Refactoring Detection”.

16 Chapter 1. Summary

My Contributions: The main contribution of this paper is adding flags
to diff based on refactoring properties and devising new encoding ap-
proach that emphasise the uniqueness of tokens, training a better model
and establishing a mechanism for model cross-validation. My main
contributions are the identification of flaws in the application of exist-
ing models, the analysis of these flaws and deficiencies, the design of an
optimised diff extractor for them, and also the tailoring of specific en-
coding optimisations to the characteristics of each model, as well as the
proposal and implementation of a model cross-validation mechanism
to maintain high confidence levels using the models, the collection and
processing of data, and the training of new models, finally complete the
evaluation.

17

Chapter 2

A Survey of Refactoring Detection
Tools

2.1 Purpose of Survey

Through 20 years of technology development, the detection refactoring tech-
niques have evolved from the original reverse engineering concept to an ac-
tual theory and detection algorithm. Nevertheless, we have identified four
tools, which we call complete refactoring detection tools, by which we mean that
the tools are automated and recognize several different non-trivial refactor-
ings. In this chapter, we mainly explain and compare these four tools in de-
tail, especially focusing on the core algorithms and design ideas, and provide
readers with a quick guide to refactoring detection techniques. We analyze
the current refactoring detection technologies to assess the results reported
by the original authors.

To make the technologies more comparable, we apply the tools to com-
mon benchmarks as far as possible. In this context a benchmark consists
of two versions of a code base—i.e., before and after refactorings have been
applied—and a "gold standard"—i.e., a list of the refactorings that have been
applied and are expected to be in the results of the tools. To reach a common
benchmark, we have used the individual benchmarks used by the authors
of the investigated tools so far, and we organized the code bases in such a
way that all tools can use them as input. For technical reasons, this was not
possible for all code bases, but we could set up two software projects with
170 known refactorings, which could be use for all the tools. We also revised
the gold standards applied by the tool authors so fare and found that they
missed out a large number of actual refactorings. As a consequence, past
studies that used this benchmark have lead to a wrong and much too high
recall metric.

Lastly, for one tool that uses the commit history on a Git repository to
search for refacotrings, we compared two different commit styles: multiple
small commits with only few refactorings applied versus one large commit
with many refactorings. We found out that the tool does not perform bet-
ter with small commits. When developers are interested in the refactor-
ings applied, e.g., between two versions of the software, analyzing small
commits might even be disadvantageous: Elements like methods, classes or
fields might be refactored multiple times and, thus, be listed repeatedly. This

18 Chapter 2. A Survey of Refactoring Detection Tools

makes their inspection by developers more tedious and several refactorings
will be inspected which are actually obsolete.

Based on the results of our study we present several new insights about
the performance of refactoring detection tools. We also outline an idea for fu-
ture work, in which the reported results are improved by combining several
tools.

The rest of this chapter is structured as follows. Section 2.2 outlines the
history of refactoring detection technologies, and focuses on the algorithm
ideas of the main technologies. Section 2.3 designs and uses experiments to
compare and discuss the performance of the four detecting tools. Section
2.4 evaluates the experiments. Section 2.5 discusses criteria for choosing a
refactoring detection tool, and our conclusion is presented in Section 2.6.

2.2 Refactoring detection tool

This section introduces four refactoring detection tools. Based on the research
in the previous section, they combined the two algorithms of code match-
ing and judging refactoring types to develop practical tools, and they all an-
nounced that they have achieved good accuracy. This section will analyze
their approach principles, advantages and disadvantages in detail, analyze
and discuss each tool.

2.2.1 RefactoringCrawler

Danny Dig successfully pioneered interactive program transformations in
the field of refactoring. He released the world’s first open-source refactor-
ing tool. RefactoringCrawler algorithm core idea (Danny Dig, 2006): 1. Fast
syntactic analysis to detect refactoring candidates; 2. Precise semantic analy-
sis that finds the actual refactorings.

Theory

Syntactic Analysis In order to identify possible refactoring candidates, the
algorithm first determines pairs of similar methods, classes and packages.
The whole process requires three steps.
Computing Shingles for Method. The Shingles algorithm (Broder, 1997)
takes a series of tokens (method body/comment, not including name/signature)
as input and computes a multiple set called Shingles. In order to achieve the
setting of the number of shingles in proportion to the length of the method
body/note, two parameters were defined: W (the length of the sliding win-
dow), and S (the maximum size of the resulting multiset). Given a sequence
of tokens, the sliding window is used to find all subsequences of W, the shin-
gle for each subsequence is computed and the minimum shingles are used as
the result of multiple sets. The tool uses Rabin’s hash function (Rabin, 1981)
to calculate shingles. The parameter S acts as an upper bound on the space
required to represent shingles: a larger value of S means more expensive,
while a smaller S means harder to identify strings.

2.2. Refactoring detection tool 19

Computing Shingles for Classes and Packages. The shingles for methods
are used to compute shingles for classes and packages. The shingles for a
class are the minimum Sclass values of the union of shingles of the methods
in that class. Similarly, the shingles for a package are the minimum Spackage
values of the union of the shingles of the classes in that package (Danny Dig,
2006). In this way, duplicate calculations can be avoided under the premise
of algorithm efficiency.
Finding Candidates. Using the shingles to find refactoring candidates (a
pair of similar entities from the two versions of the component). Let M1 and
M2 be the multisets of shingles for two methods, classes, or packages. Let
|M1 ∩M2| be the cardinality of the intersection of M1 and M2. The algorithm
normalizes the similarity between 0 and 1 in order to compare the similarity
of different pairs. The average similarity from M1 to M2 and from M2 to M1
is used to solve the case when M1 is similar to M2 but M2 is not similar to
M1:

(|M1 ∩M2|/|M1|+ |M1 ∩M2|/|M2|)/2 (2.1)

The similarity value is passed above the user-specified threshold value to
the semantic analysis.

Semantic Analysis The algorithm is applied to each detection strategy un-
til it reaches a fixed point, and all the strategies share the same log of detected
refactoring (rlog). This sharing is crucial for the successful detection of mul-
tiple refactoring types in the same entity. The order of detecting refactoring
types to achieve standardization of shared logs is determined through the
following steps:

• Change Method Signature

• Move Method

• Push Down Method

• Pull Up Method

• Rename Method

• Rename Class

• Rename Package

Shared Log. The strategy compares whether entities in one graph corre-
spond to entities in another graph that have been detected for refactoring, in
particular rename type. References. The strategies calculate the possibility
of refactoring based on references between source code entities in each of the
two versions of the component. The reference for each node/entity (method,
class, package) is defined separately and µ(n′, n) is written for multiplicity
from node n′ to node n.
Similarity of References. For a given refactoring log, the algorithm uses

20 Chapter 2. A Survey of Refactoring Detection Tools

metrics to determine the similarity of references to entities in two versions of
the component. First the directional similarity between the two nodes that
are refactored is defined. Then the overall similarity between the two nodes
n1, n2 is taken as the average of the direct similarities from n1 to n2 and from
n2 to n1. When n1 is similar to n2 but n2 is not similar to n1, the average of
orientation similarity helps to calculate the fairness level.
Detection Strategies. The steps of this strategy are: First perform a quick
syntactic analysis to determine if the pair is related to refactoring, then per-
form a semantic analysis to determine the likelihood of refactoring. Seman-
tic analysis comparison references the similarity to the user-specified thresh-
old τ. The strategy for detecting the similarity of renamed refactoring types
is similar (RenamePackage, RenameClass, and RenameMethod). The detection
strategy between PullUpMethod and PushDownMethod is exactly the opposite.
When performing the second syntax check on MoveMethod, it is required that
the parent of the two methods is different, otherwise it is easily misjudged
as RenameMethod. ChangeMethodSignature finds methods with the same fully
qualified name but different signature.

Discussion

During the development of RefactoringCrawler(RC), some challenges were
encountered:

• The size of the code to be analyzed.

• The noise introduced by preserving backward compatibility in the com-
ponents.

• Multiple refactorings happening to the same entity or related entities.

Strengths

• RC has higher precision and recall than the method of detection refac-
toring in the same period.

• Despite a lot of noise and renamed noise, RC was able to detect refac-
toring. Thus, it demonstrates robust detection capabilities.

• RC is designed to run inexpensive Syntactic detection first, then Se-
mantic detection for refactoring candidates, thus reducing the cost of
detecting, improving the scalability.

Limitations

• Poor support for interfaces and fields. In addition to declaring names,
RC cannot detect refactorings that occur on fields or interface methods
because they do not contain any method bodies.

• Experimental verification is required. Because RC is based on the cali-
bration threshold, setting the threshold value too high will increase the
accuracy but will miss some refactorings. If the threshold is too low,

2.2. Refactoring detection tool 21

it will detect too many false positives and reduce the accuracy rate.
Therefore, the threshold value determination requires a large amount
of experimental verification.

Conclusion

The combination of syntactic analysis and semantic analysis effectively avoids
their respective drawbacks, meanwhile creating a detecting refactoring tool
RC with higher precision and recall. RC can be used on any two versions
of the system and automatically detects applications containing 7 refactoring
types. The key element refactoring log (rlog) helps in the automatic migra-
tion of component-based applications. rlog can not only improve the way
the current configuration management system handles renaming, but refac-
toring logs can also help developers understand how object-oriented systems
evolve from one version to another.

2.2.2 Ref-Finder

Miryung Kim is an associate professor in the Department of Computer Sci-
ence at the University of California, Los Angeles. Her research focuses on
software engineering, specifically on software evolution.

Theory

Logic-based Representation and Refactoring Rules

• Predicate definition. In order to analyze internal content of method
bodies, control-structures and variable definitions, based on algorithm
LSdiff (M. Kim, 2009) the author adds 6 new predicates (conditional,
cast, trycatch, throws, variable definition, and methodbody). The au-
thor uses a logical query-based program investigation tool JQuery (D.
Janzen, 2003) to extract the logic facts from the old version and the new
version respectively. JQuery uses the Eclipse JDT Parser to analyze the
Java program structure, and first uses the set-difference to calculate the
face-base variation. Then use author’s previously proposed tool (M.
Kim, 2007) that can automatically infer structural changes to infer the
method-header level refactoring is used. Subsequently, the spurious
code in/decrease caused by code renaming is removed. The next step is
to use four input parameters (M. Kim, 2009) to define the output rules.
Finally, post-processing uses the SET-COVER algorithm (E. Balas, 1976)
to avoid overlapping matches in previous processing. Throughout the
process, comparison thresholds are used to determine whether similar
facts are generated. If the similarity between the two candidate meth-
ods is higher than the threshold σ, Ref-Finder will generate similar bod-
ies.

22 Chapter 2. A Survey of Refactoring Detection Tools

• Coding refactoring types as template logic rules. Based on the type of
refactoring proposed by Fowler’s catalog (Fowler, 1999), the author de-
fines a refactoring type that is suitable for setting logic rules (including
63 types), and the remaining 9 refactoring types cannot logically define
rules for some special reason. Take “Extra Method” as an example, tem-
plate logic rule:

addedmethod(toMethodFullName, toMethodShortName, toClassFullName)

∧a f termethod(f romMethodFullName, f romMethodShortName,

f romClassFullName)∧ similarbody(toMethodFullName, toMethodBody,

f romMethodFullName, f romMethodBody)∧ a f tercalls(f romMethodFullName,

toMethodFullName)→ extractmethod(f romMethodFullName,

toMethodFullName, toMethodBody, toClassFull − Name)

Refactoring Identification via Logic Queries

• Topological sort (K. Prete, 2010a). These ordering relations are formu-
lated according to the template logic rules. Topological sorting algo-
rithms (T. H. Cormen, 2001) are used to determine the type of refactor-
ing that needs to be inferred first.

• Finding concrete refactoring instances. A concrete refactoring instance
is found by converting the premise of each rule to the logical query and
by using the Tyruba logic programming engine (Volder, 1998) to invoke
the logical fact database query.

Detection steps The Ref-Finder inspection process has six steps:

Preparation→ Extract V1→ Extract V2→ ComputeDi f f erences→
Per f ormLSDi f f → OutputResult

The above steps can be divided into three parts, first extracting the detectable
facts in the two versions (including the derivation part), then computing the
difference of the factbase (all the changed codes), and finally converting the
atomic changes into LSDiff changes and finding refactorings (this part is the
most time consuming).

2.2. Refactoring detection tool 23

Discussion

Strengths: Compared to other refactoring detection tools, Ref-Finder (RF)
can support 63 refactoring types from the Fowler’ refactoring type catalog,
while other tools can only detect a few to a dozen different types. Irrespective
of Ref-Finder’s detection efficiency, RF has the most comprehensive coverage
for the index of refactoring type coverage. Moreover, the author confirmed
that the overall accuracy of the RF recognition refactoring is 79% and the
recall is 95% through some experiments and data.
Limitations

• The effectiveness of LSDiff to extract facts will directly affect the recog-
nition of Ref-Finder on various types of refactoring.

• The complex refactoring consists of a set of atomic refactorings, so the
error recognition of the atomic refactoring will directly lead to misjudg-
ment or missed judgment of the complex refactoring.

• The refactoring definitions mentioned by Fowler may have been misin-
terpreted in the algorithm.

Conclusion

Ref-Finder adds some new predicates to LSDiff’s recognition function, and
uses logical meta-programming methods to identify complex refactoring types
from two program versions. Before it can be renamed, simple refactoring
types such as move and basic extraction are promoted to new tools that can
cover 63 types of refactorings. Moreover, different types of refactorings are
expressed as logic rule templates and then are used by the logic program-
ming engine to infer concrete refactoring instances. After the experiment
was verified, the higher precision and recall were achieved.

2.2.3 RefDiff

Marco Tulio Valente focuses on Software Engineering, specifically in the ar-
eas of Software Architecture, Software Maintenance and Evolution, and Soft-
ware Repository Mining.

Theory

RefDiff (Danilo Silva, 2017) uses a heuristic approach based on static anal-
ysis and code similarity to detect refactoring between two revisions of the
system. The detection algorithm is divided into two main phases: Source
Code Analysis and Relationship Analysis. During the first phase, the sys-
tem source code is parsed, and high-level source code entity models (types,
methods, and fields) are constructed. Each piece of source code entity model
is divided into two parts (pre-change and post-change), which are the union
of corresponding types, methods and fields. Secondly, during Relationship
Analysis, the key is to analyze the relationship between pre-change and post-
change.

24 Chapter 2. A Survey of Refactoring Detection Tools

Matching Relationship The key to the matching relationship is that a unique
corresponding item with the same qualified name in pre-change code can be
found in post-change code. The final step in finding the actual relationship is
to select a non-conflicting relationship with a higher similarity index from the
list of potential relationships. Examples of matching relationships are Same
Type, Move Type, Rename Type, and Pull Up Method.

No-Matching Relationship The pre-change code can find the source code
of multiple corresponding codes in post-change code (Non-single correspon-
dence). Examples of matching relationships are Extract Method, Inline Method
and Extract Supertype.

Computing Similarity Calculating code entity similarity is the key to using
this algorithm to find relationships.The first step is to represent all source
code as a multiple set of tokens. Later, the author used the Weighted Jaccard
coefficient (F. Chierichetti, 2010):

J(X, Y) =
n

∑
i=1

min(Xi, Yi)/
n

∑
i=1

max(Xi, Yi) (2.2)

to define the code entity similarity. Let n be the set of all possible tokens, and
Xi,Yi be the weight function of a token for an entity code.

• Weight of a token for a code entity. Since each different code element
is a token, fewer occurrences of tokens are a better indicator of the sim-
ilarity between computational methods than more tokens. The authors
use a well-known variant of information retrieval technology TF-IDF
(G. Salton, 1986), which reflects the importance of terms to documents
in a collection of documents. In the context of a code entity, the author
defines a token as a term and defines the body of a method (or class)
as a document. The author obtains the weight function of the token for
the code instance through

t f − id ft = t ft × id ftandid ft = loga(1 + N/d ft) (2.3)

From the formula, idft and idf are inversely proportional, explains how
with increasing frequency of tokens in the code entity set, the code ele-
ments become less important.

• Similarity of fields. The similarity detection for types and methods
can be directly calculated by the similarity function described above.
However, the similarity calculation for fields without bodies is not ap-
plicable. Thus, the author defines the concept of a field virtual body,
directly using the fields corresponding to each other, before and after
the change, to verify the similarity.

• Similarity for non-matching relationships. When the source code of
two entities has an inclusion relationship, such as Extract Supertype, Ex-
tract Method, and inline Method, the author defines a specific version of

2.2. Refactoring detection tool 25

the similarity function:

J(X, Y) =
n

∑
i=1

min(Xi, Yi)/
n

∑
i=1

Xi (2.4)

The basic principle is that when the multiset of pre-change token is included
in the multiset of post-change token, they get the maximum similarity, but
the inclusion relationship cannot be reversed.

Calibration of similarity thresholds The RefDiff algorithm relies on thresh-
olds to find relationships between entities. The author defines a threshold λ
to determine possible potential relationships between entities. The threshold
may affect the algorithm’s recall and precision. For this reason, the decision
of the threshold needs to take both precision and recall, to ensure that the pre-
cision is high and the recall is relatively low, and vice versa. So the choice of
threshold must ensure that precision and recall simultaneously reach a rela-
tively high level. After a lot of experimental research, the author determined
the calibration threshold corresponding to each refactoring type.

Discussion

Strengths:

• The author compares RefDiff with several other detection methods through
experiments, and uses ReFDiff detection refactoring to obtain higher
precision and recall. The average value of the final precision reached
85.7%, and the recall reached 94.1%.

• Experimental results: RefDiff is not the fastest to perform the detection
refactoring, but has a relatively high precision and recall per unit time.

Limitations: Like the RefactoringCrawler, RF also needs a lot of experimen-
tation to determine a threshold, which is only a relative value, and can not
detect high precision and recall for all code.

Conclusion

RefDiff uses a heuristic approach based on static analysis and code similarity
to detect 13 common types of refactoring. RefDiff leverages existing tech-
nology and introduces some novel ideas, such as TF-IDF weighting. In the
author’s comparative experiment, precision and recall of RefDiff are also su-
perior to all other detection tools, reaching a very high level.

2.2.4 RefactoringMiner

Nikolaos Tsantalis researches software maintenance, empirical software en-
gineering, refactoring recommendation systems, and software quality assur-
ance. Within the context of his research, he has developed some tools, such as

26 Chapter 2. A Survey of Refactoring Detection Tools

the RefactoringMiner, JDeodorant and Design Pattern Detection tool, which
have been researched and used by researchers and developers in related
fields. Moreover, RefactoringCrawler creator Danny Dig also joined the de-
velopment and research of RefactoringMiner.

Theory

Notation The author adopted the notation of Biegel et al. (Benjamin Biegel,
2011) and extended the definition on the basis of the original to indicate that
the author used the Eclipse JDT Abstract Syntax Tree (AST) parser to ex-
tract the information from each version. This approach has also proven to
be a good approach in many applications (PeterWeissgerber, 2006) that re-
quire syntactical analysis. In the extraction process, in order to avoid storing
AST information into memory, first each statement/ expression is simplified,
redundant blanks and multi-line characters are removed and the string is
expressed in print format. Second, the AST Visitor is used to extract vari-
able identifiers, method invocations, class instantiations, variable declara-
tions, types, literals, and operators appearing in each statement/ expression
and they are stored in the print format of the corresponding statement node.

Statement matching Statement matching between two pieces of code snip-
pets is a core feature in the tool. The biggest feature of the algorithm is that
it does not need to define the similarity threshold. The author is inspired
by Fluri et al (Beat Fluri, 2007) to develop a matching algorithm that does
not require the use of similarity measures. The algorithm uses a bottom-up
statement matching method, starting with the basic leaf statement, stepwise
matching, and finally to the compound statement. In order to reduce the
possibility of mismatching, the author adopts a conservative method, first
strict and then loose. The conditions for matching from the first round of
matching are successively relaxed, and the matching condition of the previ-
ous round is excluded from the matching by the next round. The authors
describe these rounds of matches as "safer" matches, in which way the next
round will detect fewer combinations of statements. Take the matching leaf
statement as an example. In the first round, it matches statements with the
same string representation and nesting depth. In the second round, the state-
ments with the same string representation are matched, removing the condi-
tion regarding the nesting depth. In the last round, it matches the statement
that becomes the same after replacing the different AST nodes between the
two statements.

In the first two rounds, the author uses a state matching algorithm with
Function matchNodes, Function findBestMatch. The former can determine all
possible pairs of nodes in the two pieces of code and store them. The latter
according to special logic sorts the stored node pairs and selects the high-
est ranked node pair. In the final round, the author used another algorithm
that judges Syntax-aware replacements of AST nodes, which takes two state-
ments as input and performs the replacement of the AST node until the state-
ment is identical in text. this does not need to define a similarity threshold,

2.2. Refactoring detection tool 27

compared to existing methods that rely on text similarity, and the replace-
ments found can also help infer that other editing operations occur in the
refactoring code. Meanwhile Function compatibleForReplacement can check
the expression used to invoke the method, in the special case of considering
the replacement of two method invocations.

In the input state in all rounds, the author introduces two kinds of prepro-
cessing techniques, Abstraction and Argumentation, to handle the specific
changes that occur in the code when Extract, Inline, and Move Method are
refactored.(Abstraction (Nikolaos Tsantalis, 2018): Some refactoring opera-
tions usually introduce or eliminate return statements when extract or inline
methods, respectively. Argumentization: Some refactoring operations may
replace expressions with arguments and vice versa.)

Refactoring detection The author divides the refactoring detection into two
phases. During the first phase, the author uses an algorithm to match code
elements from top to bottom, starting from the class, and then to methods
and fields. Matching principle: Two code elements have the same signature,
so they are relatively inexpensive. During the second phase, the algorithm
matches the remaining code elements that are deleted or added from bottom
to top, starting with the method, and then to the class, looking for code el-
ements with signature changes or participation in the refactoring operation.
Code inside the bodies needs to be checked, so the relative cost will be ex-
pensive. Examination order of refactoring types. The detection order is an
important factor affecting the accuracy of the algorithm. The order of refac-
toring types: Change Method Signature, Extract Method, Inline Method, Change
Class Signature, Move Method, Move Field, Extract Method and Move Method,
Extract Supertype, and Change Package. The author sorts the refactoring types
according to the location of the change (Danny Dig, 2014) and some experi-
mental conclusions (Jim Buckley, 2005) (Stas Negara, 2013). The local refac-
toring is more frequently used than the global refactoring, and the refactoring
possibility is higher. So the detection order starts with the local refactoring
type (method/class) and then global refactoring (classes/packages).

Best match selection Since the same piece of code cannot support multi-
ple refactoring operations at the same time. When multiple matches occur,
choosing the best match is the key reason to ensure accuracy. The algorithm
sorts based on 4 criteria:

• Method pairs with more matching statements are ranked higher.

• Method pairs which have more of the same statements.

• Method pairs with text-like statements.

• Method pairs with text-like names.

Discussion

Strengths

28 Chapter 2. A Survey of Refactoring Detection Tools

• The author proposes the first refactoring detection algorithm that does
not require a code similarity threshold.

• The RefactoringMiner (RM) tool operates on version control submis-
sion and provides an externally used API. It takes the commits in the
git repository as input for efficient and scalable refactoring detection.

• RM only analyzes additions, deletions and changes in files between the
two revisions. The reduction in the number of combinations of code
elements makes RM not only more efficient, but also reduces the occur-
rence of false matches.

• Researchers can use RM to reduce the noise generated by refactoring
(Costa, 2017) (Steven Davies, 2014), such as file/directory renaming,
which significantly improves the accuracy of other tools.

Limitations

• RM only analyzes the files added, deleted and changed between two re-
visions. However, a missing context (ie, the unchanged file) may cause
RM to report an incorrect refactoring types.

• RM is currently unable to detect nested refactoring operations.

• RM currently only supports 15 detection refactoring types.

• Although the authors did their best to reduce bias by combining the
input of the two detection tools and manual verification, but still cannot
generate justice.

• An algorithm that judges Syntax-aware replacements of AST nodes,
which cannot handle possible changes in the parameter list, since the
algorithm can only perform one-to-one AST node replacement.

Conclusion

During detecting refactoring, the author used novel techniques such as ab-
straction and argumentation to handle changes in code statements. Mean-
while the author claims that RM is by far the most accurate, complete and
representative refactoring tool, with 98% precision and 87% recall and with
very low computational cost. RM guides the new direction for the ability to
submit operations:

• Researchers can create refactored data sets with high precision from the
entire commit history of the project and study various software evolu-
tion phenomena at a fine-grained level.

• Bug-inducing analysis techniques can use the commit level to gain refac-
toring information to improve accuracy.

• The refactoring operation can be automatically recorded at the time of
submission.

2.3. Experimental Comparison of Tools for Detecting Refactorings 29

• The submission of visualization difference covers information of the
refactoring in order to help code review and evolutionary understand-
ing.

2.3 Experimental Comparison of Tools for Detect-
ing Refactorings

To verify the issues mentioned in Chapter 1 we apply the four tools RM
(“RefactoringMiner”), RF (“Ref-Finder”), RD (“RefDiff”) and RC (“Refactor-
ingCrawler”) to the code base of several projects with a version history where
the used refactorings are well-known (called the gold-standard). Thus, the
effectiveness of the detection tool can be determined by a comparison of pre-
cision, recall and execution time.

All tools need as input a version of the code base before the refactoring
was applied and a version after refactoring. The refactoring detection tools
investigated in this study expect this input in different ways: either as two
Eclipse projects in the local file system (RC, RF) or as a version history in a
GIT repository (RM, RD).

As the code base used in our experiments, we take a set of GitHub open
source repositories for which a gold standard of applied refactorings is pub-
lished in "Why We Refactor? Confessions of GitHub Contributors" (Danilo
Silva, 2016). The sample consists of a number of repositories, including lots
of well-known projects (“Projects”). This code base can immediately be used
by the GIT-based tools. In addition, we use the projects EclipseUI, Struts and
JHotDraw for which the two necessary versions (in form of an Eclipse Java
project each) and a gold standard are published by the authors of Refactor-
ingCrawler. These code bases can immediately be used by the file system-
based tools.

To make all code bases usable for all tools, we needed to create a GIT
repository for the code based where only Eclipse projects were available and
vice versa. To start with, we created a new repository and submitted the
corresponding versions of the three projects EclipseUI, Struts and JHotDraw.
In the case of EclipseUI we were not able to create a repository readable by
RM and RD, for reasons we do not currently understand, therefore we can
only use Struts and JHotDraw in the further experiments; we leave EclipseUI
for future works.

In principle, we could also have created projects in the file system for the
code bases from GIT. However, all projects for which a gold standard was
available are written in Java 6 or up, which is not supported by RC and RF.
Therefore, we did not perform this conversion.

As a consequence, we have not two sets of code bases that can be pro-
cessed by different groups of refactoring detection tools, leading to two dif-
ferent experiments. First we compare all tools based on their results when
applied to Struts and JHotDraw, second we compare RM and RD based on
the code bases from GitHub. For all projetcs used in our experiment the gold

30 Chapter 2. A Survey of Refactoring Detection Tools

TABLE 2.1: RefactoringCrawler(1.0.0)

Type True positive False positive False negative Precision Recall

Rename Method 25 0 18 1.000 0.581
Rename Class 1 0 1 1.000 0.500
Move Method 20 2 13 0.909 0.606
Pull Up Method 1 0 0 1.000 1.000

Total 47 2 32 0.977 0.672

TABLE 2.2: Ref-Finder(1.0.4)

Type True positive False positive False negative Precision Recall

Rename Method 29 69 14 0.296 0.674
Extract Method 56 66 35 0.459 0.615
Move Method 6 0 29 1.000 0.171
Pull Up Method 0 0 1 0.000 0.000

Total 91 135 79 0.439 0.365

standard contains for each refactoring that is know to be applies its refactor-
ing type and the location.

2.3.1 Experimental results

Accuracy

To determine the performance of each tool, we determine their precision
and recall. The precision calculation is the ratio of all "correctly retrieved
items(TP)" to all "actually retrieved (TP+FP)", which means that the retrieved
result is accurate, precision = TP / (TP+ FP). Recall calculates the ratio of all
"properly retrieved items(TP)" to all "item(TP+FN)" that should be retrieved,
representing whether the retrieved result retrieves all items, recall=TP/(TP+FN).
Therefore, the higher the precision and recall, the higher the performance of
the detection tool. Since precision and recall are inversely proportional in
reality, high precision and recall are the goal of all researchers. In contrast
to other publications, we present for each tool the precision and recall per
refactoring type instead of per project the tool is applied to.

TABLE 2.3: RefactoringMiner(1.0.0)

Type True positive False positive False negative Precision Recall

Rename Method 38 4 5 0.905 0.884
Extract Method 69 5 22 0.932 0.758
Move Method 16 0 19 1.000 0.457
Pull Up Method 1 0 0 1.000 1.000

Total 124 9 46 0.959 0.775

2.3. Experimental Comparison of Tools for Detecting Refactorings 31

TABLE 2.4: RefDiff

Type True positive False positive False negative Precision Recall

Rename Method 35 2 8 0.946 0.814
Extract Method 62 69 29 0.473 0.681
Move Method 15 0 20 1.000 0.429
Pull Up Method 1 1 0 0.500 1.000

Total 113 72 57 0.730 0.731

First Group (RC, RF, RM and RD) Because the types of refactoring sup-
ported by these four tools are not exactly the same, so we only report re-
sults regarding refactoring types supported by all tools. Only for Refactor-
ingCrawler we report results on a different set of refactorings, as we would
have too few data for a meaningful analysis otherwise. We discuss this fur-
ther in the threats to validity.

The comparison of RC, RF, RM and RD is shown in tables 2.1–2.4. During
the experiment, we found that the Expected Result (i.e., from our gold stan-
dard) corresponding to these sample projects is not complete, and it is not
completely correct and many TruePositives are missing. In order to ensure
the reliability of the experiment, we review the data’s TruePositive and get a
more comprehensive Expected Result, which is used as the standard answer.
From the experimental data, we can see that RC has a higher precision and
recall than RF.

The four refactoring types detected by RC reached a very high level in
precision, but the recall is very unstable in all types. RF can detect 63 refactor-
ing types, but the precision and recall shown in this experiment is very low.
During the experiment, it was found that when JHotDraw, Struts was de-
tected, RF detected 358, 378 refactorings respectively. But the data presented
here is limited to the detection of the commonly supported refactoring types.

The comparison between RC and RF is quite different from some previous
studies. RC has higher precision and recall in the four refactoring types, but
the experimental results of RF need to be carefully considered and studied.
For RC, as the earliest detecting refactoring tool, although the experimental
data results are good, the number of experimental samples is too small. In
Danilo Silva and Marco Tulio’s experiments (Danilo Silva, 2017), the RC recall
and precision was 58.2% was 35.6%, which is comparatively low. Detection
can only cover 7 kinds of Refactoring types, so our results can not be directly
representative of RF. Soares and Murphy-Hill (G. Soares, 2013) found that
the precision of the RF was 35%, recall was 24%, while False Positives were
65%, which confirms this experiment to some extent. A recent study (Péter
Hegedűs, 2017) also showed that the overall average accuracy of RF is only
27%, which is too low for inspection tools that can cover 63 refactoring types.

In contrast, the newer tools RM and RD perform better in this experiment,
especially RM provides already provides good results.

32 Chapter 2. A Survey of Refactoring Detection Tools

TABLE 2.5: Detection Results for Accuracy(supported refactor-
ing types)

Type True positive False positive False negative Precision Recall F1 score

RefactoringCrawler 47 2 32 0.959 0.595 0.734
Ref-Finder 91 135 79 0.403 0.535 0.460
RefactoringMiner 124 9 46 0.932 0.729 0.818
RefDiff 113 72 57 0.611 0.665 0.637

Comparison under common benchmark To compare the four most com-
plete refactoring detection tools discussed above, we created a common bench-
mark1 to which we applied all tools. In this way, their ability to detect refac-
torings is determined using the same code bases, change sets, and expected
results. The benchmark combines code bases and corresponding changes
used in previous studies to evaluate refactoring detection tools. We im-
proved it to be applicable to all tools by making it accommodate for the dif-
ferent forms of input required by the different tools: either by means of a Git
repository or by means of two Eclipse projects reflecting the code before and
after the change.

In Table 2.5, we show the results for this combined benchmark and for
all tools, but limited to only the refactoring types commonly detected by all
four tools (which is only four types). This confirms the previous results from
the literature, namely that RefactoringMiner performs best among the avail-
able tools. While RefactoringCrawler has a slightly higher precision (96%
rather than 93%) than RefactoringMiner, the latter has a higher recall (73%
compared to 60%). The F1-score computes a combined measure for precision
and recall, and (as can be seen in the table) RefactoringMiner has the highest
ranking in the F1-score.

As said before, this comparison of all tools only considered the common
subset of refactoring types. Because RefactoringMiner produced the best
results in this comparison (which is consistent with the literature), we fur-
ther focused on this tool and also determined the precision and recall for
all refactoring types supported by RefactoringMiner (using the same bench-
mark applications as before). In this more detailed benchmark—results are
shown in Table 2.6—the results remain very good, but diverge slightly from
the benchmark presented above, which was limited to only four refactoring
types. Considering all code bases in the benchmark and all supported refac-
torings, RefactoringMiner has a total precision of 94% and a total recall of
75% (Table 2.6), which is in line with the results reported by the original au-
thors.

Although still high, the precision in our detailed benchmark is lower than
in the limited benchmark, while the recall is higher. Taking a closer look, we
identified that RefactoringMiner has problems with the two refactoring types
Move Class and Rename Package, as shown in Table 2.6. For these refactoring
types, the recall drops to 34% for Move Class, respectively to 11% for Rename
Package. This is inconsistent with the results previously presented in the

1The benchmark can be accessed online:
https://bitbucket.org/tanliang11/struts/src
https://bitbucket.org/bockisch/jhotdraw/src and https://umrplt.bitbucket.io/

https://bitbucket.org/tanliang11/struts/src
https://bitbucket.org/bockisch/jhotdraw/src
https://umrplt.bitbucket.io/

2.3. Experimental Comparison of Tools for Detecting Refactorings 33

TABLE 2.6: RefactoringMiner(1.0.0)

Type True positive False positive False negative Precision Recall

Extract Method 28 1 1 0.966 0.960
Inline Method 26 2 0 0.929 1.000
Pull Up Method 19 0 0 1.000 1.000
Push Down
Method

10 1 0 0.833 1.000

Move Method 44 4 4 0.820 0.886
Move Class 21 0 44 0.600 0.403
Extract Superclass 9 0 0 1.000 1.000
Extract Interface 5 0 0 1.000 1.000
Move Attribute 85 8 0 0.934 1.000
Rename Package 5 0 39 0.600 0.172
Push Down At-
tribute

10 0 0 1.000 1.000

Total 262 16 88 0.880 0.856

TABLE 2.7: RefDiff

Type True positive False positive False negative Precision Recall

Extract Method 29 2 0 0.935 1.000
Inline Method 27 0 0 1.000 1.000
Pull up Method 19 0 0 1.000 1.000
Push Down
Method

2 1 8 0.500 0.667

Move Method 45 38 4 0.620 0.800
Move Class 60 5 5 0.943 0.900
Extract Superclass 3 0 6 0.600 0.500
Extract Interface 5 0 0 1.000 1.000
Move Attribute 13 4 27 0.765 0.325
Rename Package
Push Down At-
tribute

10 0 0 1.000 1.000

Total 213 50 50 0.836 0.819

literature. The reason is that the benchmarks previously used were less com-
plete and even missed out several actually applied refactorings in the set of
expected results.

Second Group (RefactoringMiner and RefDiff) In the previous experi-
ment we compared all four tools, however with a smaller number of code
bases. For RefactoringMiner and RefDiff we can use a larger code base with
more known refactorings to get more reliable estimated of their precision and
recall.

The comparison of RM and RD is shown in Table 2.6 and Table 2.7. As
the latest refactoring tools, RM and RD have reached a very high level of
precision and recall, reaching almost 100% in many types of detecting. But
in terms of overall stability, RM is more advantageous than RF. Except for
MoveClass, other types of detection have reached a relatively high level. The

34 Chapter 2. A Survey of Refactoring Detection Tools

precision and recall of RD in MoveMethod, PushDownMethod and ExtractSu-
perclass are not high, which is inconsistent with the experimental results of
RD developers, but we can in total confirm the precision and recall of RD for
these refactoring types.

The comparison between RM and RD is consistent with previous research
results, although both RM and RD reports said that they are better than the
other tool. However, the experimental results show that both RM and RD
are capable refactoring detection tools with their own advantages and disad-
vantages. RM as a typical representative without calibration threshold can
cover more refactoring types, with a overall average precision (88%) and re-
call (85.6%) are higher than RD. RD is the most advanced detection tool for
calibration thresholds. RefDiff can achieve higher recall in refactoring types
with respect to code similarity, but RD cannot handle token changes caused
by refactoring itself and overlap refactoring. Both RM and RD use API as a
detection tool for connecting external code repositories. Moreover, both RD
and RM source code use Gradle as a project management tool. All in all,
RM and RD are very good, and they can complement each other in many as-
pects. At the application level, using RM and RD to jointly detect can greatly
improve the precision and recall. At the design and code level, method inte-
gration may result in more efficient detection tools, as we will discuss further
in Section 2.5.

Comparing the results of RM and RD in the first and the second group
of experiments, we can see that RM has a similar average precision in both
cases and a slightly better precision in the first experiment group. The perfor-
mance of RD in the second group is better than in the first. The larger number
of false positives in RD mainly comes from a large number of false positive
ExtractMethod being detected. A large part of them are derived falsely de-
tected method extractions from one to a different class. Therefore, we expect
that the number of false positives could be significantly lowered if the re-
ported results for the extract method refactoring are limited to cases were the
extracted method is placed in the same class.

Performance

In terms of execution time, the machine is equipped with Intel® Core(TM)
i7− 6700CPU@3.40GHz, 16GB memory, Windows 7, and Java 1.8.0, Eclipse
x4.

RefactoringCrawler, Ref-Finder, RefactoringMiner and RefDiff As shown
in Table 2.8, RD is the most outstanding tool in terms of execution time, fol-
lowed by RM, which is not only time-consuming, but also has excellent de-
tection results. In contrast, the new tools have also completely surpassed the
old tools in terms of execution time.

RefactoringMiner and RefDiff In general, as shown in the Boxplot of Exe-
cution in Figure 2.1, the execution time of the two tools is not much different

2.3. Experimental Comparison of Tools for Detecting Refactorings 35

TABLE 2.8: Execution Time Comparison

JHotDraw5.2—JHotDraw5.3 Struts1.1—Struts1.2.4
Code Files 160—195 460—469

RefactoringCrawler 0.5 minutes 5.0 minutes
Ref-Finder 14.0 minutes 20.0 minutes
RefactoringMiner 12.0 seconds 159.0 seconds
RefDiff 9.0 seconds 61.0 seconds

FIGURE 2.1: Boxplot of Execution Time

during the experiment, but from the data point of view, in the case of elim-
inating the outliers, the time difference of RD is smaller, the average time is
relatively shorter, and RD is slightly better than RM in the samples of this
experiment.

2.3.2 Comparing influence of repository structure on RM

During the experiment, the RM has the detection function (detectBetween-
Commits or detectBetweenTags) that detects two specified commits. The
working principle is: According to the relationship between the two versions
on the branch tag tree, the relationship lines connecting the two versions are
determined. There are multiple commits on the line, and the multiple com-
mits are divided into a series of related parent and child commit pairs(child
commit of each pair is the parent commit of the next pair). Step-by-step de-
tection of refactorings that occur between each commit pairs. At the same
time, we also compared another approach, create a new repository, upload

36 Chapter 2. A Survey of Refactoring Detection Tools

the required two version commit numbers, and directly use the functions
in the First Group for detection. The two approaches are analyzed as fol-
lows: 1. Since RM needs to implement statement matching through hierarchy
(Package → Class → Method). If the package or class changes in previous
commits (rename or move), then skip the intermediate commit, directly de-
tect the commits of two versions will get a lot of mismatched results, and
also miss the package and class level refactoring. 2. Direct comparisons will
also increase the FalseNegative of some method level refactorings that occur
at the relevant position. The recall becomes very low, and the correspond-
ing TurePositive and FalsePositive will also decrease, which will also affect
the overall precision (but the refactoring quantity is needed). 3. However,
in the step-by-step detection process, the normalization of the matching pro-
cess can greatly reduce the appearance of FalsePositive, and also reduces the
overlap and repetition caused by multiple commits, thereby improving the
overall accuracy. Both of these detection methods have advantages and un-
avoidable disadvantages, and require more extensive experiments and data
to quantify the impact of their respective strengths and weaknesses on the
results.

2.4 Threats to Validity

2.4.1 External Validity

In the comparative experiment of RM and RD, we used an average of 5 repos-
itories for each refactoring type, and the samples of RM and RD are the same.
When an experimental sample cannot be detected simultaneously by RM and
RD, we have also set up the corresponding plan to use the alternative sam-
ple to guarantee the experiment. For experimental samples of RC, RF, RM
and RD, we use two versions of two projects, each: Struts and JHotDraw.
While the number of projects is low, the number of individual refactorings
to be detected of 170 is sufficiently high. Nevertheless, we cannot tell if the
coding and commit style of Structs and JHotDraw have an influence on the
investigated tools’ performance; a wider spread of projects would be needed.

Since we are not affiliated with any investigative tool developer, we don’t
need specific experimental results, ex expect to have no researcher bias. In
order to avoid prejudice problems, we carefully compare the expectation re-
construction and the reality refactoring from quantity, position and type, and
guarantee the objectivity of the research results. Therefore, the threat of re-
searcher bias does not apply.

2.4.2 Internal Validity

In the RC and RF test, because these two tools are based IDE plug-ins, such
as to record the time of execution, calculate precision and recall, some of the
results was manually and confirmed repeatedly as to ensure the validity of
the experiment. We still cannot guarantee that the list of expected results is

2.4. Threats to Validity 37

complete. If we miss any, the number of false negatives and thus the recall
would be too low.

2.4.3 Discussion

1. Are calibration threshold detection methods (RF, RC, RD) superior to
methods that do not require such calibration (RM)?

The calibration similarity threshold is a key indicator for detecting refac-
toring similarity. For the low threshold, the number of candidate pairs
matched is large, the false positives increase, and the detection exe-
cution time becomes longer, but giving more opportunities for candi-
dates also means lowering the precision in order to improve the recall.
For high thresholds, the number of matched candidate pairs is small,
meaning that only almost identical candidate pairs are considered. Al-
though the running time is shorter, some TP refactoring options will be
missed, which means that precision is guaranteed and the recall is re-
duced. So many researchers are working on how to choose a universal
threshold that can take both precision and recall. As a developer of RM,
through the threshold problem of UMLdiff: the derived threshold may
have been over-fitting to the characteristics of the item being inspected,
and therefore cannot be sufficiently general. Calibrating the threshold
is a very tedious process as different software and architectures have
different precision and recall at the same threshold. To ensure accu-
racy, constant calibration thresholds are needed to cope with new code
repositories.

In order to avoid such problems, RM uses novel techniques such as
abstraction and argumentation to deal with code statement changes,
avoiding the complicated calibration process while achieving matching
similarity effects, and achieving very high precision and recall. How-
ever, the Section 3.1 experimental data shows that the difference be-
tween the two methods for processing similarity matching is not very
obvious. The operation of the RD experiment uses the default threshold
and does not require repeated calibration after the default threshold is
obtained. So in practice, we need more research and experimentation
to verify.

2. Can the experimental results of the authors be repeated under realistic
conditions? In the case of RF, the results reported by different authors
are contradictory - which ones are the most likely to be representative?

Precision and recall are important factors to determine the performance
of the four inspection tools. The authors of the four tools in this article
have released the following metrics: RM (Precision: 98% and recall:
87%), RD (Precision: 100% and recall: 88%), RC (Precision: 85% and re-
call: 85%), RF (Precision: 79% and recall: 95%). Through experiments,
it can be found that RM, RD and RC are very close to the previously de-
clared data, but combined with some previous experiments, only RM

38 Chapter 2. A Survey of Refactoring Detection Tools

TABLE 2.9: Detailed accuracy results for RefactoringMiner and
the Move Class refactoring type.

Number commit Expect Result True positive False positive False negative Precision Recall

1102923 eclipse-themes 72f61ec 3 3 0 0 1.000 1.000
1107905 elasticsearch f77804d 4 0 0 4 N/A 0.000
1116663 buck 1c7c03d 10 7 2 3 0.778 0.700
1118645 okhttp c753d2e 29 0 0 29 N/A 0.000
1130125 WordPress-Android 9dc3cbd 3 3 0 0 1.000 1.000
1132674 orientdb f50f234 12 4 1 8 0.800 0.333
1134151 gradle 36ccb0f 7 7 0 0 1.000 1.000
1139721 liferay-plugins 78b5475 5 5 0 0 1.000 1.000
1140071 docx4j e29924b 184 184 0 0 1.000 1.000
1147092 neo4j 4beba7b 6 6 0 0 1.000 1.000
1147835 jersey ee5aa50 8 8 0 0 1.000 1.000
1150594 hazelcast f1e26fa 13 13 0 0 1.000 1.000
1152530 hydra 7fea4c9 7 4 0 3 1.000 0.571
1159198 jedis 6c3dde4 26 26 0 0 1.000 1.000

Total 317 270 3 47 0.989 0.852

and RD achieve high stability and accuracy. That is, in the face of differ-
ent experiments and objects, always maintain high efficiency. RC and
RF represent two extremes in this experiment. Combined with some
related experiments and data, it can be found that RC and RF have de-
tection functions. However, the precision and recall rate published by
the inventors is higher than reality, so it is necessary to improve the
backward algorithms and ideas.

2.4.4 Detection of Move Class and Rename Package

After discovering this behavior of RefactoringMiner, we wanted to under-
stand it further and conducted a more comprehensive and in-depth test for
the refactorings Move Class and Rename Package respectively. Again, we used
the original benchmarks with our extended set of expected results. Since we
specifically focused on the two refactorings, we only considered samples that
contain at least two instances of the refactoring we are investigating. The test
results are shown in the Tables 2.9 and 2.10. The "Number" column in the
table refers to the test samples in the code base to make the experiment re-
peatable and the results traceable. A benchmark sample consists of two ver-
sions of a code base, where the second version is based on the first one but
with the refactorings applied. In the tables, we refer to the two versions by
giving the Git commit number, thus, the base and commit form the two ver-
sions. We also provide the expected number of Move Class or Rename Package
refactorings to be found, as well as the true and false positives and the false
negatives in the results of RefactoringMiner. Lastly, we present the precision
and recall calculated from these figures.

The data in Table 2.9, presenting the results for Move Class, show that of
four data points the results are significantly different from the results of the
other items in terms of recall. The excellent results in precision, cannot cover
the instability of recall. The number of undetected Move Class refactorings
in these four abnormal data points, with a recall of less than 60%, is 44, ac-
counting for 14% of the total number of refactorings. (Note that the original
authors reported 100% precision and 96.24% recall for Move Class .) In two

2.4. Threats to Validity 39

TABLE 2.10: Detailed accuracy results for RefactoringMiner
and the Rename Package refactoring type.

Number commit Expect Result True positive False positive False negative Precision Recall

1101310 sonarqube abbf325 2 1 0 1 1.000 0.500
1101296 sonarqube 4a2247c 2 0 0 2 N/A 0.000
1123966 spring-data-neo4j 071588a 27 2 0 25 1.000 0.074
1125333 facebook-android-sdke 813a0b 8 0 0 8 N/A 0.000
1134096 hibernate-orm 44a02e5 3 2 0 1 1.000 0.667
1136729 reactor 669b96c 2 0 0 2 N/A 0.000
1140316 aws-sdk-java 14593c6 3 0 0 3 N/A 0.000
1142116 infinispan 8f446b6 7 2 0 5 1.000 0.286
1157300 android c976598 35 1 0 34 1.000 0.029

Total 89 8 0 81 1.000 0.090

out of the 14 commits, RefactoringMiner did not report any results for Move
Class, which means that we cannot compute the individual precision for these
cases.

This is similar for the results for Rename Package, found in Table 2.10. In
four out of nine cases, no results were reported at all and we could not com-
pute the precision. For the remaining commits, the precision was at 100%. In
terms of recall, from the total 9 samples, RefactoringMiner has a recall below
50% in 7 cases and even could not find any true positives in 4 cases. The
number of false negatives is in total at 91%. In the original evaluation of the
RefactoringMiner authors, a precision of 85% and a recall of 100% had been
reported for Rename Package.

When investigating the results further, we found that false negatives for
Move Class were often falsely classified as Rename Package and vice versa.
Therefore, we believe that RefactoringMiner easily confuses these two refac-
torings.

2.4.5 Distinguishing Move Class and Rename Package

To understand this, let us start by looking at the definition of the two types
of refactoring.

Move Class: Move a class to another package. The class’s simple name
is not changed, but the file is moved to a different path and the package
statement is changed. The contents of the class are unchanged.

Rename Package: Rename a package. All Java-files contained in the path of
the original package are moved to the path corresponding to the new pack-
age name. The simple class names stay the same, i.e., the contents of the
package does not change, except for the package statement which now uses
the changed package name.

The descriptions of the two refactoring types are very similar, namely
files are moved to a different path, package statements change and classes
stay otherwise the same. An essential difference is that in one case only one
Java-file is moved and the rest of the classes in a package stay untouched,
and in the other case, all Java-files and resources are moved to a new path.
Apparently, RefactoringMiner has difficulties recognizing this difference.

We examined the inner workings of the RefactoringMiner to further un-
derstand this. It simply analyzes the difference between two code versions

40 Chapter 2. A Survey of Refactoring Detection Tools

using the diff-feature of Git. Thus, it does not need to perform a comprehen-
sive matching screening for all the code of the two project versions.

Figures 2.2 and 2.3 show the diff output for two samples in our bench-
mark in the side-by-side view of Bitbucket. The refactoring in Figure 2.2 is
reported as Move Class by RefactoringMiner and actually really shows a Move
Class. The refactoring in Figure 2.3 is also reported to be Move Class, however,
this time actually a Rename Package refactoring had been performed. We can
see that the diff only shows the changed file names and package statements.
In both cases, the structure of the diff is identical and it is impossible to judge
which of the refactorings has been applied by using only this data.

FIGURE 2.2: Example diff for a Move Class refactoring.

FIGURE 2.3: Example diff for a Rename Package refactoring.

This is not surprising if we recall the definition of the two refactorings,
which both include the step of moving a Java-file and changing its package
statement while leaving the file otherwise untouched. The difference lies
within the context in which the moved file appears: For Move Class, the class
is moved to a package (and thus, the Java-file is moved to a path), which
already existed before. Except for this one class, the contents of the original
package is left unchanged, and the package will not disappear after the refac-
toring. For Rename Package, the target package (and this path) did not exist
before and the old package disappears.

However, this required context information is not visible in the diff, which
is focused on showing differences in file contents. Whether a directory was
newly created or disappeared in a commit, is not reflected. Likewise, un-
changed contents are not reported, i.e., it cannot be seen if a directory con-
tains other files than the ones that changed.

2.5 How to choose a refactoring tool

There are three aspects to consider when choosing a suitable detecting tool:

1. Choose the connection method. (Choose an API repositories database
or a two-version comparison based on the IDE plugin)

2. Consider the type of refactoring. Determine whether the detection tool
covers the refactoring type that needs to be detected.

3. Choose tools with high precision and recall and, if the test items are
large, consider the execution time.

2.5. How to choose a refactoring tool 41

The way to use API to connect repository is more suitable for refactor-
ing detection. Github’s presence allows APIs to be used in conjunction with
repositories, allowing for quick downloads and detection, effectively reduc-
ing operating costs. IDE-based plug-ins are the easiest to understand when
there is no code management platform, but importing the detected items
into the IDE requires a lot of time (especially for large projects). However,
a study (Michele Tufano, 2017) showed that with two fully constructed soft-
ware system versions as input detection refactoring, only 38% of software
system change histories can be successfully compiled. This is a serious limi-
tation on the detection of refactoring history, and it also poses a threat to the
effectiveness of related experiments. (In the Section 3 experiment, related ex-
periments were also performed to download the commit code and its parent
commit in Github as input to the system version. However, Ref-Finder and
RefactoringCrawler cannot detect its reconstruction due to the destruction of
external dependencies.) Therefore, the API (RM, RD) method is more advan-
tageous when selecting the access method, but the specific selection needs to
be based on the actual situation of the detected object.

Tools that support multiple types of refactoring should be prioritized. The
detection tool needs to cover all refactoring types that are detected, but this
condition is not always met, so it is necessary to choose a tool that can cover a
relatively large number of refactoring types. In order to pursue the practical-
ity of this feature, the detected refactoring should be a type that developers
or researchers often use, and often appear in various example code. Among
them, GitHub as an open source code base and version control system, many
developers put the program on the cloud, making it a hotbed of refactor-
ing function applications. January 4th, 2017 study on "What are the most
common refactoring operations performed by GitHub developers?" (“Data”)
shows that Rename is the most popular refactoring type(77%) in the approx-
imately 1.1 million JAVA project commits, followed by Move Class/Method
(13%), then Extract (9%), and the remaining 1% is the sum of many other
refactoring types. The specific 12 types of refactoring are sorted as follows:
Rename variable, Rename method, Rename class, Move method, Move class, Ex-
tract method, Inline method, Extract class, Extract interface, Extract superclass,
Pull up method, Push down method. It can be seen that the four detection tools
correspond to: RM has 10 types of intersections, RD has 9 types of intersec-
tions, RC has 5 types of intersections, and RF has 9 types of intersections (K.
Prete, 2010b). In summary, the refactoring types of the experiment are de-
termined as the intersection type of each tool and statistical results. Because
the detection of refactoring type selection needs to correspond to the actual
application situation, if these common refactoring types cannot be effectively
detected, the utility of such a tool will be greatly reduced. In contrast, RM,
RD and RF have more advantages in this regard.

Detection accuracy and execution time are the primary criteria for select-
ing detection tools. In question 2, it has been explained that RM and RD have
high precision and recall in the four detection tools, and are also more com-
petitive in common refactoring type detection coverage. Moreover, these two
tools are the link mode of the API outreach repositories database, especially

42 Chapter 2. A Survey of Refactoring Detection Tools

in the RM, the interface can also be used to link the versions of the two soft-
ware systems. In summary, RM is the best of the current detection refactoring
tools, and RD is also very competitive.

2.6 Conclusion

This dissertation is an overview of the refactoring detection method. Accord-
ing to the time axis, the development process of the detection refactoring
technology from theory to application is introduced. From the emergence
of the concept of refactoring, to the introduction of the theory of reverse en-
gineering detection refactoring, to the emergence of various detection refac-
toring theories, to the emergence of various detection refactoring tools, the
article briefly introduces the development history of detection refactoring
theory. From concept to theory to tool development, detection refactoring
became mature in 20 years and proposed some problems that readers may
be concerned about. For these problems, the experiments are designed to
meticulously test and compare the four detection refactoring tools. The ex-
perimental results illustrate the stability and difference of the detection per-
formance of the tools. Through detailed analysis, we found many problems
in the original author’s papers, and also confirmed the special phenomena
mentioned in some recent research results. The whole experiment evaluates
the detection and testing tools from the aspects of refactoring type, preci-
sion, recall, execution time. Through the experimental results between the
first group and the second group, the preset questions are answered, and
the threshold question, credibility and selection tool method are discussed,
our views and opinions are attached and the corresponding suggestions are
given for the reader to select the detection tool.

Analysis and solution of experimental problems Since the experimental
sample is a complex code commit, the detection of individual samples can
cause the result to be abnormal due to some factors, thereby affecting the
entire type of precision and recall. This situation is caused by:

1. There is a deficiency in this type of algorithm, and no more comprehen-
sive and complicated cases are considered;

2. The sample code may be abnormal and cannot correspond to TurePosi-
tion;

3. There is no weighted average so that the number of refactoring has a
large impact on the final reconstruction results.

In order to avoid this situation, the second test can be performed. For exam-
ple, in the case of MoveClass, RM detection is used first, and then the RD test
is used to ensure the accuracy of the result. However, for the case where RM
detects the occurrence of RenamePackage, it indicates that the matching algo-
rithm of the tool has a problem in the screening, which is not a case. A large

2.6. Conclusion 43

number of such refactorings are not detected, so it is necessary to continue to
improve the related algorithms.

For the two refactorings Move Class and Rename Package, we measured
values for precision and recall which significantly diverge from all other sup-
ported refactorings, as well as from the evaluations presented in the literature
so far.

Therefore, we further investigated the approach of RefactoringMiner for
these two cases and found that the implementation approach of using only
the diff of two code versions on Git hinders the proper detection of Move
Class and Rename Package. The reason is that the difference of these two refac-
torings lies within the content which did not change, and this is not shown
in the diff. For this reason, RefactoringMiner frequently confuses these two
refactorings. We, thus, conclude that analyzing the diff provided by a ver-
sion control system such as Git is powerful for detecting refactorings that do
not depend on the context in which they appear.

If the refactorings Move Class and Rename Package would be disregarded,
RefactoringMiner would even have a precision and recall of 94% and 98%, re-
spectively, in the evaluation shown in this chapter. Since the information re-
quired to distinguish between Move Class and Rename Package (namely which
directories have been created or deleted during a commit) could be easily ob-
tained, we conclude that RefactoringMiner—with a simple extension—could
in principle reach this high level of accuracy.

Future expectations The development of detection refactoring technology
is a new starting. Now the detection theory is more perfect, the detection
technology is more diverse, and the detection method is simpler. However,
in some aspects, further improvement is needed. The detection content can-
not be only for Java. The detection refactoring type needs to continue to
increase (From 2013.12.10 Fowler has released 91 refactoring types (“Cata-
log of Refactorings”)), and the matching algorithm needs to continue to im-
prove. The detection algorithm needs to be more comprehensive and the op-
eration method needs to be more convenient. Through long-term research, it
is found that the use of detection tools needs to be more simplified. It is our
initial idea to greatly reduce the time for setting up the detection environ-
ment. It is a trend to realize online detection in the future. That is to say, no
matter who is, whether there is a programming basis, the online function can
be used freely, and the online function can realize detection of various access
methods such as system version, code fragment, and submitting database
in the code management platform. It avoids the need for Eclipse environ-
ment construction, code sorting, interface setting, commit replacement and
other work, greatly reducing the impact of human operation on the test re-
sults, but also increases the scope of application, reducing the requirements
on machinery and equipment, reaching an ideal detection environment.

45

Chapter 3

Probability Model for Nested
Refactoring

3.1 Detecting Problems with Nested Refactoring

In this chapter, we will introduce the nesting mechanism of nested refactor-
ing and how it differs from a single refactoring type, and then outline my
research on nested refactoring.

3.1.1 Nested Refactoring

As shown in the Figure 1.2, Refactoring1 can be Extract Method, and Refac-
toring2 can be Move Method. First extract a method (Method’), and then the
extracted method is moved to another class (Class”), and then the changes
are submitted to the version control system. It was supposed to submit two
single refactorings, but here is a submission that nests the two refactoring
types. The class diagram change process of this process is shown in Figure
3.1 and Figure 3.2.

In Figure 3.1, it is possible to clearly determine which refactoring type is
used, but in Figure 3.2 we cannot directly determine the type of refactoring
used, so we use traditional tools can occur omissions or misjudgments when
detecting nested refactorings. As shown in the Figure 3.3, the diff only shows
the added parts and removed parts of the code, different from the normal
refactoring diff, it can be found that the nested diff does not fully reflect the
code change process, which is also the key reason why it is difficult to be
detected. Comparing the two diffs, we can find that although some of the
conditions for judging the refactoring types are hidden during the nesting
process, some characteristics of the two refactoring types are still retained in
the diff. These retained characteristics are an important basis for us to detect
nested refactoring.

3.1.2 Problem Solution

Nested refactoring is discovered with the application of refactoring. Research
on detecting nested refactoring is necessary, because in the process of re-
search, not only how to detect nested refactorings, but also the compatibility
of refactoring types with each other needs to be studied. On the one hand,

46 Chapter 3. Probability Model for Nested Refactoring

FIGURE 3.1: Normal Refactoring

FIGURE 3.2: Nested Refactoring

3.1. Detecting Problems with Nested Refactoring 47

FIGURE 3.3: Diff

this research fills the technical gap that refactoring detection approaches can-
not efficiently detect nested refactorings, on the other hand, the research is
an important part of refactoring data mining.

In this chapter, we focus on 10 different common 1 refactoring types (the
data sample only contains 10 refactoring types), with 35 nested refactoring
types (it is a combination of the ten refactoring types included in the sample
set). The goal of our work presented in this chapter is to provide a refactor-
ing detection mechanism that is also able to handle nested refactorings with-
out the need to provide a specification for each combination separately. Our
algorithm uses the idea of a statistical probability theory to solve the refac-
toring detection problem, that is, the statistical quantity of various features
contained in each refactoring type sample, and calculate the corresponding
probability relationship between them, so as to achieve the purpose of de-
tecting refactoring. Thereby, the algorithm is applied to a code change and
the classification corresponds to the refactoring detected in the change. We
use an algorithm that assigns probabilities to possible classifications and that
allows us to inspect them. If multiple refactorings have a high probability, we
assume that each of them has been applied in a nested refactoring. This ap-
proach works well for nested refactorings with sequences of two refactorings.
However, the approach of existing refactoring detection tools does not scale
and therefore cannot successfully find all refactorings when nested refactor-
ings happened (T. Kamiya, 2002; Emerson Murphy-Hill Max S Danny Dig,
2014).

1See a survey about most refactoring types: https://medium.com/@aserg.ufmg/what-
are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d

48 Chapter 3. Probability Model for Nested Refactoring

3.2 Probability modeling based on random forest

FIGURE 3.4: Algorithms Idea

3.2.1 Theory of Probability Model

Our approach is to use features to calculate condition probability and proba-
bility distributions, build probability model (Marco Tulio Valente, 2017; Feller,
1968; Emerson Murphy-Hill Max S Danny Dig, 2014; Friedman J. Olshen R.
Breiman, 1984; Breiman, 1996; Breiman, 2001; J. Brant W. Opdyke M. Fowler,
1999; Quinlan, 1989; Quinlan, 1993), and then use probability model to detect
decomposition. The functional relationship between the variables is obtained
through mathematical statistics.

A probability model is a mathematical representation of a random phe-
nomenon. It is defined by its sample space, events within the sample space,
and probabilities associated with each event. The sample space for a proba-
bility model is the set of all possible outcomes.

As shown in Figure 3.4, x is the trained sample, y is the predicted refactor-
ing type, φ(x) is the feature extraction function, and the return of φ(x) is the
defined features[φ1(x), φ2(x),...,φn(x)], f (φ(x), y) is the function to compute
the conditional probability of the feature φ(x) and the predicted refactoring
type y. Our approach is to extract the features φ(x) from the sample x and
calculate the conditional probability of each y when each feature φ(x) ap-
pears, the probability distribution of each refactoring type corresponding to
each feature is the probability model, then we use the model to predict the
expected refactoring type.

We can consider the whole process of refactoring detection as a probabil-
ity problem to be determined by probability model. Before describing our
approach in more detail, we need to describe a few terms:

Sample : A commit that comes from a version-control system, in our case
Github, and the commit contains the commit number and the diff be-
tween the code version before and after the refactoring.

3.2. Probability modeling based on random forest 49

Feature : A trivially observable characteristic in the code change, such as a
change in the package declaration or the removal of a method. Accord-
ing to the training sample set, we have defined 18 features.

FIGURE 3.5: Manual Extracting

FIGURE 3.6: Extracting by refactoring function

The main reference for our feature selection is package, class, file and path
changes. Features should be easy to distinguish, however in a diff statement
changes are the most variable and indistinguishable part, therefore, we do
not distinguish changes at the statement level. As an example, consider Fig-
ure 3.5 and Figure 3.6, which both show an Extract Method, but they look very
differently. Extract Method refactoring lets you take a code fragment that can
be grouped, move it into a separated method. Figure 3.5 shows the extracted
code by refactoring function of IDE, so we can see that the statement lines
have moved to a new location, which is described by removing and adding
in git; Figure 3.6 is manual refactoring, directly write a new method top of
the statement lines that needs to be extracted, so that there will be no changes
to the statement lines, so the structure of the diff only differs at the statement-
level. Therefore, when not considering lines only containing statements, the
similarity of the two diffs is increased. A downside of this choice is that some
refactorings cannot be detected, which only impose changes at the statement
level, such as Consolidate Conditional Expression.

We extract features from three aspects of diff: object feature, scope feature
and complement features, each feature is an objective description of the content
in the diff, the following is the description and naming of these features. We
have also provided short names for these features, which will be used in the
tables in this article.
1. Package-Level

• Package Name Changed (Pkgchg): The package name is changed in the diff.
The new package name is in added part, the old name is in removed
part.

50 Chapter 3. Probability Model for Nested Refactoring

2. Class-Level

• New Class (Clsnew): A class is inserted and the class is newly created.
We find that in the diff the class only exists in the "after version" within
added part.

• Add Class (Clsadd): A class is added. But this class is not a newly created
class. In contrast to New Class, we find that the class is moved in the
diff, which appears within added part and removed part.

• Remove Class (Clsrem): A class is removed. we find that the class is
moved in the diff, which appears within added part and removed part.

• New Interface (Ifcnew): An interface is inserted and the interface is newly
created, same as New Class.

3. Method-Level

• New Method (Mthnew): A method is inserted and the method is newly
created, same as New Class.

• Delete Method (Mthdel): A method is deleted. Unlike remove, we find
that the method only displays within removed part in the diff, means
that the method is completely deleted instead of being moved, so we
call this feature Delete Method.

• Add Method (Mthadd): A method is added. Same as Add Class.

• Remove Method (Mthrem): A method is removed. Same as Remove Class.

• Add Attribute (Attadd): An attribute(field) is added. Same as Add Class.

• Remove Attribute (Attrem): An attribute(field) is removed. Same as Re-
move Class.

4. Package-scope

• Same Package (Pkgsame): Refactoring affects in the same package. This
feature is determined according to the scope of refactored influence.
When the refactored influence only in the one package, Same Package
is confirmed.

• Different Package (Pkgdiff): Refactoring affects in different packages. The
refactored influence is in two or more packages, Different Package is
confirmed.

5. Class-scope

• Same Class (Clssame): Refactoring affects in the same class. Same as Same
Package.

3.3. Algorithm 51

• Different Class (Clsdiff): Refactoring affects in different classes. Same as
Different Package.

6. File-feature

• Add File (Fileadd): Within the diff, a file is added.

• Remove File (Filerem): Within the diff, a file is removed.

7. Path-feature

• Path Changed (Pathchg): The path of the file where the refactoring is lo-
cated has changed.

3.3 Algorithm

Our approach consists of two algorithms, the first is to train the feature prob-
ability model, and the second is to detect refactoring type.

1. Collecting all features φ(x) from sample x according to defined fea-
tures(section 3.2). Sample x contains element information of packages,
classes, methods, scope, file and path in diff.

2. Calculate the conditional probability of each feature and complete the
probability model. f (φ(x), y) represents the probability that the refac-
toring type is y when the feature φ(x) appears. As shown in Table
3.1, in the training samples, the count N features φ(x) are extracted,
from each refactoring type sample set, the count of extracted features is
C1, C2, C3..., Cn. According to Algorithm 1, the probability distribution
f (φ(x), y) of feature φ(x) and each refactoring type can be calculated.

Algorithm 1 Training Probability Model
Input: Diff of 200 refactoring entities
Output: Model of refactoring detection
> @filename (package+class), line, type
> @filename (package+class), line, type
< @filename (package+class), line, type
< @filename (package+class), line, type
foreach x ∈ TrainSet
φ(x)← x.(Package, Class, Method, Scope, File, Path)
Figure out f (φ(x), y)
For int i=1, i <= n, i ++
do f (φ(x), y)← Countφ(x)/Countsumφ(x)
model = Set[f (φ(x)y)]
Return model

52 Chapter 3. Probability Model for Nested Refactoring

TABLE 3.1: Count statistics and Probability calculations

ya yb yc yz Total
φ(x) C1 C2 C3 Cn N

f (φ(x), y) C1/N C2/N C3/N Cn/N 1

3. Use the features contained in the detected data to calculate the average
probability of each refactoring type, the maximum probability in the
refactoring type is the expected type. As shown in Algorithm 2.(Where
n is the count of features extracted there)

Expected Refactoring Type =

Max{Probabilityy|y ∈ Re f actoringTypes}

Probabilityy =
1
n

n

∑
n=1

f (φ(x), y)

Algorithm 2 Detection Refactoring
Input: FeatureSet
Output: Expected Refactoring Type
foreach φ(x) ∈ FeatureSet //FeatureSet represents a feature set was ex-
tracted from a refactoring where need to be detected.
void DetectingRefactoring (φ(x))
model = ProbilityDistributions Set[f (φ(x)y)] //Table 3.2
For inti = 1, i < n(numberFeature), i++

Probability y = 1
n ∑n

1 f (φ(x), y) //Table 3.3
Result = Max Probabilityy
End
NumberFeature represents the count of extracted features from a diff. In algo-
rithm 2, as shown in Table 3.3, the maximum probability value is the expected
refactoring type corresponding to these features.

For example, in a diff that contains only a single refactoring type, three
features are extracted, and the three features are φ1(x), φ2(x), and φ3(x).
Then the refactoring types here are shown in Table 3.3. Then the refactoring
types corresponding to these three features are:

• Probability ya: 1
3(f 1a + f 2a + f 3a)

• Probability yb: 1
3(f 1b + f 2b + f 3b)

......

• Probability yz: 1
3(f 1z + f 2z + f 3z).

The total probability of each refactoring type is 100%. Comparing the prob-
ability values in the result, we can get the most likely refactoring type corre-
sponding to the three extracted features.

3.4. Proof of Concept 53

TABLE 3.2: Probability distributions

ya yb yz
φ1(x) f1a(φ1(x), ya) f1b(φ1(x), yb) f1z(φ1(x), yz)
φ2(x) f2a(φ2(x), ya) f2b(φ2(x), yb) f2z(φ2(x), yz)

......
φn(x) fna(φn(x), ya) fnb(φn(x), yb) fnz(φtn(x), yz)

TABLE 3.3: Example

ya yb yz
φ1(x) f1a(φ1(x), ya) f1b(φ1(x), yb) f1z(φ1(x), yz)
φ2(x) f2a(φ2(x), ya) f2b(φ2(x), yb) f2z(φ2(x), yz)
φ3(x) f3a(φ3(x), ya) f3b(φ3(x), yb) f3z(φ3(x), yz)

Result 1
3 ∑3

1 f n(φn(x), ya)
1
3 ∑3

1 f n(φn(x), yb) 1
3 ∑3

1 f n(φn(x), yz)

3.4 Proof of Concept

This section records the whole process of how we train the model and how
we test the model, and we summarize the algorithms we use in the process
of training and testing. Firstly, we introduce the whole training process in
detail, including feature extraction and training model; secondly, we use the
model to verify; finally, we evaluate and summarize the whole experiment.

3.4.1 Training

For training and validation in our approach, we use the data set used by Silva
et al. (Danilo Silva, 2017) and published on their homepage 2. This contains
539 samples, and only 10 refactoring types are covered in the data set. For
the training, we randomly select 200 commits samples making sure that the
training samples cover all 10 refactoring types with 20 samples each. In the
following we sometimes abbreviate the refactoring names by building their
acronyms to make our tables fit. The refactorings we support in this study
are the following:

• Extract Method (EM)

• Inline Method (IM)

• Pull-up Method (PuM)

• Push-down Method (PdM)

• Move Method (MM)

• Move Attribute (Move Field, MA)

2See: https://aserg-ufmg.github.io/why-we-refactor

https://aserg-ufmg.github.io/why-we-refactor

54 Chapter 3. Probability Model for Nested Refactoring

• Move Class (MC)

• Extract Super Class (ESC)

• Extract Interface (EI)

• Rename Package (RP)

We analyze these training samples one by one to determine the refactor-
ing features according to Section 3.2. For illustration, consider Figure 3.7
showing the diff of a sample classified as Rename Package as an example.
This contains the following features: 1. The path of the file is changed; 2. The
package name is changed; 3. The class does not change.

FIGURE 3.7: Example of Rename Package

The sample in Figure 3.8, classified as Extract Method, contains the fea-
tures: 1. Refactoring takes place in the same package; 2. In the same class; 3.
Adds a new method; 4. Removes some statement; 5. The added content is
consistent with the removed statement. (Since this training does not consider
statement-level features, only the first three features are retained here.)

The Table 3.4 shows the distribution of extracted features in 200 samples,
that is, the number of features contained in each refactoring type sample set is
counted. Using the Algorithm 1, we calculate the corresponding conditional
probability between each refactoring type and each feature one by one, and
get the probability model (Table 3.5). For example, when the feature Package
Name Changed appears, 74.1% is Rename Package, 25.9% is Move Class, and
other refactoring types do not include this feature. Subsequent verification
and experiments are based on this model.

3.4.2 Validation for Single Refactorings

After training, the model can be used to determine the most likely refactoring
type for a commit. Some of the existing refactoring detection approaches
use Similarity to judge the refactoring type (Figure 3.9). The new algorithm
idea is to use the occurrence Probability of the feature to judge the refactoring
type(Figure 3.10).

The steps to use the approach are as follows, as shown in Figure 3.11:

3.4. Proof of Concept 55

FIGURE 3.8: Example of Extract Method

TABLE 3.4: Feature summary.

EM IM PuM PdM MM MA MC ESC EI RP Total
Pkgsame 20 20 20 20 9 13 7 20 20 0 149
Pkgdiff 0 0 0 0 11 7 6 0 0 0 24
Ifcnew 0 0 0 0 0 0 0 0 20 0 20
Clssame 20 20 1 0 1 1 7 0 0 20 70
Clsdiff 0 0 19 20 19 19 13 0 0 0 90
Pkgchg 0 0 0 0 0 0 7 0 0 20 27
Clsnew 0 0 0 0 0 0 0 20 0 0 20
Clsadd 0 0 0 0 0 0 20 0 0 0 20
Clsrem 0 0 0 0 0 0 20 0 0 0 20
Mthnew 20 0 0 0 0 0 0 0 0 0 20
Mthdel 0 20 0 0 0 0 0 0 0 0 20
Mthadd 0 0 20 0 20 0 0 0 0 0 40
Mthrem 0 0 0 20 20 0 0 0 0 0 40
Attadd 0 0 0 0 0 20 0 0 0 0 20
Attrem 0 0 0 0 0 20 0 0 0 0 20
Fileadd 0 0 0 0 0 0 3 20 20 0 43
Filerem 0 0 0 0 0 0 20 0 0 0 20
Pathchg 0 0 0 0 0 0 7 0 0 20 27

56 Chapter 3. Probability Model for Nested Refactoring

TABLE 3.5: The trained probability model.

EM IM PuM PdM MM MA MC ESC EI RP
Pkgsame 13.4% 13.4% 13.4% 13.4% 6.0% 8.7% 4.7% 13.4% 13.4% 0.0%
Pkgdiff 0.0% 0.0% 0.0% 0.0% 45.8% 29.2% 25% 0.0% 0.0% 0.0%
Ifcnew 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0%
Clssame 28.6% 28.6% 1.4% 0.0% 1.4% 1.4% 10.0% 0.0% 0.0% 28.6%
Clsdiff 0.0% 0.0% 21.1% 22.2% 21.1% 21.1% 14.4% 0.0% 0.0% 0.0%
Pkgchg 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 25.9% 0.0% 0.0% 74.1%
Clsnew 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0%
Clsadd 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
Clsrem 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
Mthnew 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Mthdel 0.0% 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Mthadd 0.0% 0.0% 50.0% 0.0% 50.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Mthrem 0.0% 0.0% 0.0% 50.0% 50.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Attadd 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
Attrem 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0% 0.0%
Fileadd 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 7.0% 46.5% 46.5% 0.0%
Filerem 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 0.0% 0.0% 0.0%
Pathchg 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 25.9% 0.0% 0.0% 74.1%

FIGURE 3.9: Traditional Idea of Refactoring Detection

FIGURE 3.10: New Idea of Refactoring Detection

3.5. Detecting Nested Refactoring 57

1. Extract all the defined features in the diff.

2. In the trained probability model, find and extract the same features as
the first step.

3. Calculate the average probability of each refactoring type and deter-
mine the maximum value.

For example, according to the above steps, we have extracted the following
features from a sample with an unknown refactoring: 1. Same package, 2.
Same class, 3. New a method. Find the corresponding features in the trained
model(cf. 3.5), Table 3.6 shows the probabilities according to the three ex-
tracted features as well as the average probability of each refactoring type.
The highest average probability is 47.3% for the Extract Method refactoring,
which is thus reported by our approach when looking for a single refactoring.

FIGURE 3.11: Process

For validation, we use this approach on 100 samples (the test samples are
also derived from 539 sample sets, which are randomly selected and avoid
all samples used for training) containing a single refactoring and compared
the result of our approach with the previous classification of the samples. In
this validation, our model achieved a precision of 98%. This proves that the
model we selected for training is effective.

TABLE 3.6: Test result of a single refactoring

EM IM PuM PdM MM MA MC ESC EI RP
Pkgsame 13.4% 13.4% 13.4% 13.4% 6.0% 8.7% 4.7% 13.4% 13.4% 0.0%
Clssame 28.6% 28.6% 1.4% 0.0% 1.4% 1.4% 10.0% 0.0% 0.0% 28.6%
Mthnew 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Result 47.3% 14.0% 4.9% 4.5% 2.5% 3.4% 4.9% 4.5% 4.5% 9.5%

3.5 Detecting Nested Refactoring

In the previous section, we have shown that our approach performs at the
same level as existing approaches for samples with single refactorings. Now

58 Chapter 3. Probability Model for Nested Refactoring

we will discuss the performance of our approach for detecting nested refac-
torings. Since samples in existing benchmarks do not contain nested refac-
torings, we need to create some new samples ourselves. For this purpose, we
create samples with nested refactorings of two single refactorings from the
10 refactoring types we trained on.

Not all of refactoring types can be combined in a nesting relationship,
because they are not performed on the same kind of program element: For
example, Extract Method inserts a method on which the refactoring Push-
down Method cannot be applied. Thus we first did an experimental study
and found that a subset of 22 most common refactorings for their ability to
be nested and already identified 217 possible combinations with two refac-
torings. The results of this research also show that it is a difficult task to make
judgment rules for each nesting possibility. To create these samples, first, we
explored the possibility of intermixing these ten refactoring types, and com-
bined them. In order to fully verify the effect of our detection approach on
nested refactorings, we set two principles for building a nested refactoring
sample: 1. It is technically possible; 2. It complies with the refactoring logic.
Besides this, our main purpose is to explore the role of new algorithm ideas
in nested refactoring. Following these principles, 35 nested refactoring types
can be found with our 10 supported single refactorings. The 10 supported
refactoring types are selected because our training set only contains 10 refac-
toring types, and the trained model also only contains the feature probabili-
ties of these 10 refactoring types. If more refactoring types are trained in the
training set, our approach can also support more refactoring types.

3.5.1 Extract Features and Calculation

We apply our approach to all 35 samples as discussed above. For each,
we first need to extract the features. For example, in an ExtractMethod +
MoveMethod sample, we can extract the features: Different package, Differ-
ent class, New method. When applying our model (cf. 3.5) to detect these fea-
tures, we get the result shown in Table 3.7. From the table, we can find that
there are several refactorings with comparatively high probability. There-
fore, we can conclude that not one single refactoring was applied, but mul-
tiple refactorings are applied at once. The two refactorings with the highest
probability are ExtractMethod(33.3%) and Move Method (22.3%), thus our
approach reports finding a nested refactoring comprised of these two refac-
torings, which are in fact the refactorings we nested in the sample.

TABLE 3.7: Test result of a nested refactoring

EM IM PuM PdM MM MA MC ESC EI RP
Pkgdiff 0.0% 0.0% 0.0% 0.0% 45.8% 29.2% 25.0% 0.0% 0.0% 0.0%
Clsdiff 0.0% 0.0% 21.1% 22.2% 21.1% 21.1% 14.4% 0.0% 0.0% 0.0%
Mthnew 100.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Result 33.3% 0.0% 7.0% 7.4% 22.3% 16.8% 13.1% 0.0% 0.0% 0.0%

3.5. Detecting Nested Refactoring 59

3.5.2 Results and Analysis

In 26 cases of 35, our approach could find the two correct nested refactoring
types. From the remaining 9 cases, we could correctly identify one of the two
nested refactorings and only in two cases we could identity none.

We found that in the cases, where we only detect one correct refactoring
type, the reason for most errors is the similarity of Move Class and Rename
Package. Especially in Move Class when the class that needs to be moved
is a single class (When there is only one class in a java file), Move Class and
Rename Package contain almost identical features. At the same time the spe-
cific weight of the Rename Package corresponding to the Rename Package in
the training model is higher than the specific weight of the Move Class.

In the two cases where our approach could not identify any refactor-
ing correctly, we found that there is not only a confusion between Move
Class and Rename Package, but also the misjudgment of Pull-up Method
and Move Method, Push-down Method and Move Method. We found that
Pull-up Method, Push-down Method and Move Method are very similar in
with regard to our extracted features. What is more, Pull-up Method and
Push-down Method have only three features while Move Method has many
features, (e.g., in the scope category, there is a probability for Move Method
for four features: Different Package, Same Package, Different Class and Same
Class.) Therefore, distinguishing these refactorings is difficult and Pull-up
Method and Push-down Method are easily shadowed by Move Method.

3.5.3 Specific Strategy

For the cases, where our approach did not detect all nested refactorings cor-
rectly, we analyzed our model and prediction process, looking for a way to
further improve our results. Comparing the features of Rename Package and
Move Class throughout all experimental data, we found that the extracted
features correspond to Move Class for a main class as well as Rename Pack-
age. A difference is that the features are only extracted for one class file when
Move Class occurs and for multiple classes when Rename Package occurs, as
a package commonly contains multiple classes.

Therefore, we add a step of disambiguation between Move Class and Re-
name Package. When the obtained result shows Move Class and Rename
Package, we check how often the features "package name changed" and "path
changed" are detected for a sample. If there is only one, we have a high prob-
ability that the refactoring actually is Move Class; if these features appear
multiple times, we have a high probability that it is a Rename Package.

After statistics, among the 200 training samples, multiple identical pack-
age names and path changes occurred in 20 Rename Package samples, but
no one feature was found in the Move Class samples. We repeated our eval-
uation for nested refactorings with this new calculation. With the improved
calculation, we could detect 32 of the 35 nested refactoring correctly and for
the remaining three samples, we correctly detected one of the two refactor-
ings. Thus, for detected nested refactorings, our precision is at 91.4%.

60 Chapter 3. Probability Model for Nested Refactoring

3.6 Evaluation

Goal. Conceptually, this approach is based on statistical probability theory,
using the probability relationship between features and refactoring types to
build a probability model, and then using the model to judge and predict
single refactoring types and nested refactoring types. Using the refactored
diff information, extract the features, and then calculate the possible refac-
toring type probability according to the model. Our algorithm idea has been
verified in the previous section.

Question. In terms of the experimental process, we have defined 18 method-
level and above features based on the characteristics of the refactoring types
in the training set. According to the detection results, we can find that these
features can be used to judge and predict the 10 refactoring types being
trained. If statement-level refactoring types need to be trained and tested,
then more detailed features can be defined to support the model, provided
that a sufficient amount of statement-level refactoring sample is required.

Metric. According to the detection results, when the approach detects these
10 refactoring types, the precision of single refactoring is 98%, and the preci-
sion of nested refactoring is 91.4%. The good precision is due to high-quality
data. We have manually confirmed every refactoring involved in training,
only after confirming that the refactoring type noted in each sample is con-
sistent with the refactoring type used in the code can be used to train the
probability model. If there is a problem with the training data, it will directly
affect the result. Therefore, unlike existing refactoring detection tools, our
approach requires high data quality. Better data means better models and
better prediction results.

3.6.1 Threats to Validity

Internal Validity

The dependent variable is the prediction (refactoring type), as shown in Fig-
ure 3.12. We predict the refactoring types based on refactoring features that
are directly determinable from diff of a commit. We have described objec-
tively how to extract the features. Since the sample data used to verify the
detection mechanism we provide is based on 10 refactoring types, the fea-
tures defined in this article only work for the 10 types that are trained. In or-
der for the mechanism to be applicable to more refactoring types, so the work
of calibrating features is open, so feature extraction cannot be performed au-
tomatically, therefore, tester bias is a potential threat. But by practicing the
training steps and being familiar with our definition of the features, the im-
pact of this bias becomes very limited. In addition, for randomization and
random selection, we have chosen a "gold standard" data set used already
in other similar studies as a sample pool for training and validation. In this
way we have avoided a researcher bias in the selection of the samples.

3.6. Evaluation 61

Sample pretreatment. In the process of training and testing, all the samples
we use are committed to include refactoring. These samples belong to the
"gold standard", so there is no mention of distinguishing between refactoring
and non-refactoring. Because our approach specializes in the part of refac-
toring detection. But when we need to detect a sample with unknown infor-
mation, we can use the first part of the RefactoringMiner function (finding
refactoring candidates) to complete the screening of the sample. This func-
tion can traverse the detected submissions and output the information that
refactoring occurred. From the recall of RefactoringMiner, you can find that
this function performs well. Before using our approach for detecting, this
function can be used to distinguish between refactoring and non-refactoring,
and output the refactored sample to be tested, and then we will perform fea-
ture extraction on it.

For multiple refactorings. In our research process, we use a single refac-
toring sample, that is, only one refactoring occurs in a sample. Therefore,
the problem of how to distinguish between multiple refactoring and nested
refactoring may arise. Their concepts and essence are different. Multiple
refactoring is actually a sample that contains two or more refactorings. Their
refactoring types can be the same or different, but their refactoring objects
are absolutely different. When a sample that contains several refactorings
needs to be detected, we will treat it as a series of single refactorings, and
the feature extraction one by one can well judge the refactoring type. Spe-
cific method: According to the function of finding refactoring candidates of
RefactoringMiner, output a candidates list, which contains all refactored ob-
jects. When we extract the features of the first refactored object, shield the
relevant features of other refactored objects, and so on. Multiple refactoring
is different from nested refactoring, each refactoring is not directly related to
each other, so it is easy to distinguish them.

FIGURE 3.12: Variable relationship

External Validity

Repeatability: If the experiment is carried out again by a different person
on the same data, then the result is the same. To ensure this, we have an

62 Chapter 3. Probability Model for Nested Refactoring

TABLE 3.8: Framework of Programming Language

Java Package Class Method
C Head file Structure Function

Python Module Class Function

algorithmic description for identifying the features. This description is un-
ambiguous for three reasons: First, all descriptions are based on facts in diff
images and do not require additional thinking and evaluation; second, the
refactoring features are filtered according to the code structure and charac-
teristics of Java, which is easy to identify; third, the diff on Github contains
all the feature information, and the change has a color mark, which is very
convenient for locating the feature position.

In order to avoid overfitting, we define refactoring features only down
to the method-level and omit changes at the statement-level. By omitting
the details of the statement-level, we applied abstraction, which introduces
some uncertainty and which in turn reduces overfitting. Furthermore, there
is randomness in the sources of the samples in the data set:

1. Project. The sample pool of the 539 commits we used was selected from
748 repositories (Danilo Silva, 2016), many well-known projects, such
as JetBrains/intellij-community, apache/cassandra, Elastic/elasticsearch,
etc.

2. Contained refactoring. Our training samples cover all refactoring types
included in the sample pool.

3. 35 nested refactoring samples. When creating these samples, the pro-
cess of nested refactoring is random, such as moving a class or method,
without designing, but randomly selecting the object being moved and
the location of the move.

These attributes are full of randomness, and the selection of samples is
also randomly chosen. Such as selection bias and situational factors cannot
pose a threat to validity. Instead, we performed multiple calibrations on fea-
ture extraction and statistical methods throughout the process to ensure the
balance of experimental results.

The external generalizability has been considered at the beginning of the
design of the algorithm. While the concrete realization of our approach can-
not be universally applicable for all programming languages, the approach
itself is language-independent. Since we trained our model using samples
using Java code it is only applicable to Java projects. We believe, neverthe-
less, that our approach can be transferred to other programming languages,
which will required the definitions of the features specific to the syntax and
structural characteristics of the other programming languages and training a
new model.

3.7. Conclusion 63

3.7 Conclusion

This article introduces an approach that can effectively detect nested refac-
torings, increasing the flexibility and scalability of detection. We have also
verified that our approach is feasible and reliable, in the research process of
refactoring detection technology, based on the different algorithm ideas, our
approach can be used as an aid and supplement to other existing tools, and
has made contributions to the development of refactoring detection technol-
ogy.

Our purpose is to contribute a mechanism that can detect nested refactor-
ing types. The feature definition part of this approach is open, because train-
ing and testing only cover 10 refactoring types in this article. This provides
users with more options to train models that only detect specific refactoring
types. Statement-level features also can be defined to support statement-
level refactoring types. We can also collect the change features of the sub-
or superclasses, and capture some keywords (including "abstract", "imple-
mentation" and "inheritance") as features, this would solving the two false
negative results in our evaluation.

In the future work, we will encounter more complex refactoring data min-
ing work, in order to detect more layers (three or more refactoring types are
nested) nested refactorings, we need to extract and define more features to
improve the ability to recognize different refactoring types. The training and
test refactoring types we choose are usually used in some IDEs, but the num-
ber of established refactoring types is ever increasing. Therefore, in design,
we also consider supporting more refactoring types, using a variety of dif-
ferent refactoring types to train, defining new features, and combining the
defined features, we can get a new probability model that supports more
refactoring types, thereby supporting the detection of multiple refactoring
types.

65

Chapter 4

Diff Extractor and Diff Encoder

4.1 The Role of Diff in Refactoring Detection

In computing, the utility diff is a tool for comparing code data, used to cal-
culate and display differences between the text contents of files. Unlike the
concept of edit distance, which is used for other purposes, diff is line-oriented
rather than character-oriented, as it attempts to determine the smallest set of
deletions and insertions to create a file from another file. The utility displays
changes in one of several standard formats so that they can be more easily
parsed, changed and patched by either a human or a computer. Typically,
diff is used to display changes between two versions of the same file.

In the context of refactoring, which only changes the internal structure of
code and not its external presentation, diff is certainly the most intuitive way
to identify the impact of refactoring on code. When refactoring detection,
code containing diffs is considered the main object of study, as these diffs
contain essentially all refactoring information, making them the most critical
data in refactoring detection studies.

4.2 Analysis of Refactoring Diff

4.2.1 Classification of Refactoring Diff

We have analysed the diffs of each Java refactoring type and we have found
that at the practical level of refactoring, the diffs of each refactoring type
can be divided into six categories based on objective changes in the code,
which are Move, Rename, Remove and substitute, Add and substitute,
Fixed transformation, Combine and reorganize.

• Move. The act of refactoring is achieved by moving code. The code
that is moved can be a statement, field, method or class. Move is usu-
ally represented in the diff such that the removed part is the same as the
added part. Refactorings in this category: Collapse Hierarchy, Extract
Class, Extract Method, Extract Superclass, Move Field, Move Method,
Move Statements into Function, Move Statements to Callers, Pull Up
Constructor Body, Pull Up Field, Pull Up Method, Push Down Field,
Push Down Method, Slide Statements, Extract Variable. Take Move
Method as an example, as shown in the Figure 4.1 with the diff shown
at the right-hand side.

66 Chapter 4. Diff Extractor and Diff Encoder

FIGURE 4.1: Move statement Type

FIGURE 4.2: Rename Type

• Rename. Such refactorings involve changing the name of a code el-
ement to achieve the purpose of the refactoring. Names that can be
changed include the class name, method name, package name and field
name. Rename is usually represented in a diff such that one line with
the removed part is immediately followed by a line with the added
part, whereby there is one difference between these two lines. Refac-
torings in this category: Rename Method, Rename Function, Change
Signature, Rename Field, Rename Variable, Split Variable. Take Rename
Method as an example, as shown in the Figure 4.2.

• Remove and substitute. Some refactorings are achieved by removing
and replacing statements or elements of statements in the code. Refac-
torings in this category: Remove Parameter, Remove Dead Code, Re-
move Setting Method, Remove Subclass, Inline Method, Inline Vari-
able, Remove Middle Man, Preserve Whole Object, Change Reference
to Value. Take Remove Setting Method as an example, as shown in the
Figure 4.3.

• Add and substitute. Adding and replacing some new statements or
elements of statements is done by some refactoring. Refactorings in
this category: Add Parameter, Introduce Assertion, Introduce Parame-
ter Object, Change Value to Reference, Encapsulate Variable. Take In-
troduce Assertion as an example, as shown in the Figure 4.4.

FIGURE 4.3: Remove Type

4.2. Analysis of Refactoring Diff 67

FIGURE 4.4: Add Type

FIGURE 4.5: Fixed transformation Type

• Fixed transformation. In order to improve the structure of the code,
specific redundant code structures are streamlined and reshaped by
means of fixed optimisations. Refactorings in this category: Decom-
pose Conditional, Encapsulate Collection, Encapsulate Record, Hide
Delegate, Remove Flag Argument, Replace Conditional with Polymor-
phism, Replace Constructor with Factory Function, Replace Derived
Variable with Query, Replace Error Code with Exception, Replace Ex-
ception with Precheck, Replace Command with Function, Replace Func-
tion with Command, Replace Magic Literal, Replace Nested Condi-
tional with Guard Clauses, Replace Parameter with Query, Replace Query
with Parameter, Replace Subclass with Delegate, Replace Temp with
Query, Replace Type Code with Subclasses, Replace Inline Code with
Function Call, Replace Loop with Pipeline, Replace Primitive with Ob-
ject, Replace Type Code with State/Strategy, Introduce Special Case,
Replace Control Flag with Break. Take Replace Control Flag with Break as
an example, as shown in the Figure 4.5.

• Combine and reorganize. This improves the readability, systematicity
and other performance of code by combining and reorganising code.
Refactorings in this category: Split Phase, Split Loop, Return Modi-
fied Value, Combine Functions into Transform, Combine Functions into
Class, Extract Subclass, Consolidate Conditional Expression, Parame-
terize Function, Separate Query from Modifier, Substitute Algorithm.
Take Combine Functions into Class as an example, as shown in the Figure
4.6.

68 Chapter 4. Diff Extractor and Diff Encoder

FIGURE 4.6: Combine Type

FIGURE 4.7: Refactoring objects and Code elements

4.2.2 Analysis of Refactoring Diff

An analytical study of each type of refactoring shows that refactoring is aimed
at optimising the structure of a program while following the syntax of the
programming language. These operations do not change the actual func-
tion of the program, do not change values parameters and constants, and
do not change branching conditions, and are acts of purely structural im-
provement. The Java sample code in Fig. 4.7 shows simple Java code that
contains 11 different program elements, of which 10 elements that can be
refactored; we call these “refactored objects”. Only 7 cannot be refactored.
, and 1 2 3 4 5 6 8 9 10 11 can be refactored.(1 Package name, 2
Class name, 3 Field name, 4 Constant, 5 Method name, 6 Parameter,
7 String, 8 Field, 9 Statement, 10 Method, 11 Class) The relationship

between refactored objects and refactoring operations is shown in Table 4.1.
As can be seen, refactoring can be understood as the process of fine-tuning

components in the code, which is more concisely and intuitively represented
in diff.

4.3. Diff Extractor 69

TABLE 4.1: Element Operations Table

Move 8 9 10 11
Rename 1 2 3 5
Remove and substitute 6 8 9 10 11
Add and substitute 6 8 9 10 11
Fixed transformation 4 6 8 9 10 11
Combine and reorganize 6 8 9 10 11

4.3 Diff Extractor

4.3.1 Basic Algorithm of Diff Extractor

To analyse the diff, we chose to use RefDiff’s parsing and matching algorithm
as the base algorithm, which chooses to represent changes in a structured
way to reflect the syntax of the code being analysed. But since RefDiff strives
for analyzing code written in a variety of languages, the syntax tree can only
contain nodes representing code elements that exisit in all supported lan-
guages. This largest common denominator are classes and methods. The full
code of the program element for which a tree node stands is stored as a text
property, called the node code. The data structure used by RefDiff is called
Code Structure Tree (CST).

The flowchart shown in Fig. 4.8 illustrates the workflow followed by
RefDiff. Firstly, the source code before and after the change is parsed. The Be-
fore Node Set and the After Node Set contain the nodes of the CST created
for these code versions respectively. Secondly, the CST nodes only contained
in the Before Node Set are collected in the set Remove as they represent the
code that has been removed during the code change. Likewise, the set Add
contains the nodes that only appear in the After Node Set. Finally, RefDiff
determines for each pair of nodes in Remove and Add whether they match.
Two nodes match if they have the same identifier, the same child nodes, a
similarity above the threshold, the same usage or inheritance relationships.

Nodes that match are expected to have participated in a refactoring, where
the refactoring was applied to the node from Remove (or its corresponding
code element) resulting in the node from Add. To determine the type of
refactoring applied, RefDiff further inspects node pairs according to some
rules based on information present in the nodes, including the node type,
namespace, local name, location, parent node, parameters, etc.

4.3.2 Implementation Algorithm of Diff Extractor

This section describes the implementation the diff extractor and how the ex-
traction of diffs works, summarized by Algorithm 3. The input to the ex-
tractor consists of BeforeNode and AfterNode, which are derived from the
refactoring candidate node pairs corresponding to each of the RefDiff de-
tection results. The output of the extractor is the diff text contained in the

70 Chapter 4. Diff Extractor and Diff Encoder

FIGURE 4.8: Prase and Match

BeforeNode and AfterNode code. First, we extracted all the codes in both
the BeforeNode and AfterNode nodes and output them as NodeCode in a
combination of the BeforeNodeCode + AfterNodeCode order. We then used
an ExtractIntersection function to extract the intersection code of NodeCode
and FullDiff (FullDiff is the set of all differences between the old and new
versions detected by RefDiff, obtained by Python 1), and the return value of
this intersection code is the diff code contained in the two nodes BeforeNode
and AfterNode, as shown in the example in Fig. 4.9.

4.4 Diff Encoder

How the diff is input to the deep learning model as data is the most im-
portant step. Encoding the diff is the fastest way to implement it, and the
encoding approach needs to highlight the behaviour of the refactoring. This
section begins by presenting some relevant research on encoding codes and
our approach to encoding tailored to refactoring diff.

4.4.1 Related Encoding Approach

Related research on code or text encoding includes Code2Vec, CodeBERT,
bag-of-words model (BOW), word vector model (WordEmbedding), etc.

Code2Vec (Uri Alon, 2019) is the transformation of code fragments into
fixed-length, continuously distributed vectors that can be used to predict the
semantic information of code fragments. By studying this code embedding,

1subprocess.check_output([’git’, ’diff’, ’-U0’, commit_a, commit_b],
cwd=repository_path)

4.4. Diff Encoder 71

Algorithm 3 Diff Extractor
Input BeforeNode, AfterNode
Output resultDiff // Diff of detection result
Begin Body
1. resultDiff← ∅;
2. NodeCode← ∅;
3. NodeCode.add (BeforeNode.code);
4. NodeCode.add (AfterNode.code);
5. resultDiff = ExtractIntersection (NodeCode, FullDiff)
6. return resultDiff;
End Body
Function ExtractIntersection (NodeCode, FullDiff)
nodeDiff← ∅;
foreach Linenc ∈ NodeCode {
Linediff ∈ FullDiff {
if Linenc = Linediff then

nodeDi f f .add(Linenc)
end
} }
return nodeDiff
End Function

FIGURE 4.9: Example of the ExtractIntersection algorithm

72 Chapter 4. Diff Extractor and Diff Encoder

researchers hope to apply it to various tasks in programming languages, such
as generating corresponding semantic labels for code fragments. The diffi-
culty with this approach is that it requires the integration of many expres-
sions and statements in a method body to produce a single label that repre-
sents its semantic information. But Code2Vec is not suitable for coding refac-
toring diffs. Firstly, the range of refactored code elements is very large, from
the top-level package to the bottom-level statements in java, and it is difficult
to give correct predictions for semantic information with too many or too
few diff code fragments. Secondly, even if the prediction of a diff code frag-
ment is correct, there is no way to prove what type of refactoring occurred in
the diff, since the external representation of refactoring is constant. Thirdly,
refactoring features are our most important requirement, and the main ex-
pression of refactoring features is the internal structure change of the code
being refactored. Converting diff code fragments into vectors undoubtedly
makes the representation of refactoring features complex and abstract.

CodeBERT (Zhangyin Feng, 2020) handles both natural languages (NL)
and programming languages (PL), capturing the semantic connections be-
tween natural and programming languages and outputting generic repre-
sentations that can broadly support both NL-PL comprehension tasks (e.g.
natural language code search) and generative tasks (e.g. code document gen-
eration). The CodeBERT model is built on a multi-layer Transformer and the
output of CodeBERT includes: 1. a contextual vector representation of each
token (for both natural language and code) 2. an aggregated sequence repre-
sentation. CodeBERT also does is not suitable to encode refactoring diffs, as
its emphasis is on establishing the link between NL and PL through seman-
tic and contextual correspondences. As with Code2Vec, the vectorisation of
diffs is not a suitable way to highlight the features of refactoring diffs, be-
cause our result checker needs to predict the corresponding refactoring type
based on the structural feature of the refactoring diff, rather than having to
understand the code semantics.

Models and methods for dealing with natural language such as the bag-
of-words model (BOW) (Zisserman, 2003; G. Csurka, 2004), word vector
model (WordEmbedding) (Tomas, 2013; Jurafsky Daniel, 2000) etc. are not
suitable for direct use in coding diff codes. Keywords in programming lan-
guages are used in a very different way to words in natural languages. For
example, using the bag-of-words model for encoding, a computer will use
the number of occurrences of a word (noun or verb) as the dimension of the
word. However, keywords in programming languages (int, for, etc.) occur
more frequently and are syntactically necessary but not practically meaning-
ful for our purpose.

In summary, the diff encoder needs to be designed to rely on the features
of the refactoring diff, and how to highlight the changing features of the diff
structure resulting from the act of refactoring is the most important consid-
eration for the encoder.

4.4. Diff Encoder 73

4.4.2 Jigsaw Hypothesis

To encode a diff, we first need to consider the many characteristics of the
programming language:

• The programming language contains limited keywords. For exam-
ple, there are 32 keywords in C language (for, int, etc.) and above 50
keywords are in Java. Although the programmers can freely choose
variable names, function names, etc., these names are only used to
distinguish symbols from the computer’s point of view, and they do
not contain language information, so these myriad variable names and
function names can be expressed in a simplified way, this characteristics
provides a very ideal premise for encoding, and these limited keywords
can also be important features in expressing structural change.

• The programming language is hierarchically structured. Examples of
the hieararchical structure of Java are: "package → class → method →
statement", or the data declaration structure: "DataType Identi f ier".
The overall structure is clear and fixed, so that the features of the struc-
tural changes after refactorings are fixed, and there is not a single refac-
toring type accompanied by multiple structural changes with different
manifestations.

• The programming language is stable. Programming languages have
strict syntactic rules. The syntax of a programming language is un-
ambiguous and cannot be changed by programmers. So the structure
of the code for different refactoring diffs is also stable, which lays the
foundation for training the diff feature model.

Combining the characteristics of programming languages and refactor-
ing diffs, based on the definition that a refactoring only changes the internal
structure and not the external presentation, we propose a hypothesis to de-
scribe the changes to the structure of code by the act of refactoring. “Jigsaw
Hypothesis”: code can be thought of as a complete jigsaw puzzle, and refac-
toring a piece of code is the process of moving, replacing, adding, deleting,
transforming and reorganising pieces of a jigsaw or the whole jigsaw, but the
content expressed by the jigsaw remains the same regardless of the changes.

4.4.3 Encoding Approach for Diff

Code To Array

After a long period of research into refactoring diffs, and inspired by the
hypothesis of jigsaw puzzles, the process of refactoring diff removing and
adding is like extracting pieces from a complete jigsaw puzzle, restructuring
them and putting them back together again. The content of the removed
and added pieces of the jigsaw in this set hardly changes, only the posi-
tional structure of the pieces changes, and even if some pieces unrelated to
the refactoring are added, it still does not affect the feature expression of the
refactoring-related pieces in the set.

74 Chapter 4. Diff Extractor and Diff Encoder

FIGURE 4.10: Putting the code into an array

FIGURE 4.11: Example of ExtractMethod

To highlight the impact of refactoring on the structure of the code, we
minimise the pieces of the jigsaw by treating each word in the code as a jig-
saw piece and putting the jigsaw into an array to obtain a two-dimensional
array of words, as shown in Fig. 4.10, which holds the complete structure
of the code. The words in the array cannot directly be used for training our
model, because user-defined identifier names are always project specific and
their number is unlimited, This would lead to an encoding explosion (e.g.
one-hot).

Encoding Tokens

In our research experience, when we have used the bare eye to look for refac-
torings, what matters most is not the exact content and semantics of the refac-
tored diff code, but whether there is a correspondence between the removed
part of the diff and the added part, or the changes that each refactoring type
causes to the location and structure of the code, therefore, it is no restriction
to abstract away exact identifier names. As shown in the ExtractMethod ex-
ample in Fig. 4.11, the refactored part of the code is in the box, the internal
sequence of the parts of the code being refactored remains almost unchanged,
the relative position of the words contained in each line of code remains the
same, and the words in each line of code remain almost the same. In fact,
these are the features of a refactoring, and it is the focus of the diff encoder to
encode these features in a way that highlights the changes in the structure of
the code.

4.4. Diff Encoder 75

Identifier names can vary in length, but machine learning algorithms ex-
pect inputs of a fixed size. We have already argued above that the exact
names of identifiers are not relevant for our approach, which is why we can
replace identifiers with values of a fixed length. What is relevant, however,
is that identical identifiers are represented by the same values. We have ob-
served that programmers rarely change the format of lines (e.g., by adding or
removing line breaks) when they are moved during a refactoring. Therefore,
single lines are essentially unchanged or just variable names change within
the lines during refactoring. So a line of a diff can be seen as a feature, and
whatever changes are made to the structure by refactoring, the line feature
remains, which is very beneficial for matching networks based on feature
overlap.

So we chose a very simple encoding approach that meets these require-
ments: an array containing the length of each word, as shown in Fig. 4.12.
Each column in the array corresponds to a line in the diff, and as can be
seen the first and fourth columns, representing an unchanged moved line
in of code, are identical. The second and fifth columns, representing a line
which is moved and altered slightly, are almost identical. The third column
of the array is the method declaration line, containing some keywords that
highlight structural changes in the code, indicating the structural changes
contained in the diff of the refactoring. Since the array cannot have empty
values, we fill the spaces with “0”. It is clear from the added and removed
parts that there is a correspondence, i.e. the same combination of numbers, or
a sorting of numbers, which can be used as features for training. This encod-
ing approach comes from long experience of using the bare eye to determine
the type of refactoring. We pay more attention to whether there is a corre-
spondence between the part removed by the diff and the part added, and
whether there are syntactic keywords to modify the structural changes in the
code, rather than the semantics and functionality of the code. The refactoring
diff is encoded in such that it preserves the features of structural changes in
the code, and that some of the non-refactoring code changes included in the
diff cannot change the presence of these features. The vast majority of refac-
toring types possess special structural features, which is the main reason why
one can discover and define refactorings.

Since the number of lines of code and the number of elements in each line
vary, we use the code line containing the most words (n) and the number
of lines contained in the diff (k) as the array edge lengths, i.e. each diff is
encoded into a k*n array, as shown in Figure 4.13, move type and rename
type separately, as shown below in figure 4.14 and figure 4.15.

To demonstrate the feasibility of this encoding approach, we applied it to
the RefDiff-supported programming languages C and JavaScript. For exam-
ple, Fig. 4.16 shows the code and encoding array of Move Function in the C
context, and the Fig. 4.17 shows the Inline Function array in JavaScript. Very
distinctive features can also be found in these arrays, which proves that the
encoding approach is also applicable to other programming languages.

When refactoring packages, classes or methods in Java, we can notice
some unique features because the code that modifies the structure starts with

76 Chapter 4. Diff Extractor and Diff Encoder

FIGURE 4.12: Example of encode

FIGURE 4.13: Encoding to arraying

FIGURE 4.14: Example of Move Type

4.4. Diff Encoder 77

FIGURE 4.15: Example of Rename Type

FIGURE 4.16: Example of C

FIGURE 4.17: Example of JavaScript

78 Chapter 4. Diff Extractor and Diff Encoder

keywords (package, class, private, public etc.) that keywords are the most
intuitive expression of the diff structure. During the encoding process, the
keywords of the syntactic structure are given special values to distinguish
them from user-defined identifiers or literals. For example, "package" is used
as a keyword for declaring package files would be encoded as a "7" accord-
ing to the word length, which would be the same as as "private" or "finally".
Also, e.g., variable, method names or values could have the same length and
would therefore appear identical in our encoding. To avoid at confusion of
keywords with each other or with user-defined names and values, we map
all 58 keywords of the Java grammar to unique values. As keywords vary be-
tween programming languages, the user can change the assignment to suit
the needs of different refactoring detection.

Array To Image

Finally, we convert these arrays into grey-scale images as data for training
machine learning algorithms. As diff arrays are not uniform in size, some
are small (e.g. RenameMethod) and some are large (e.g. MoveClass), directly
resizing the entire array to the size of the largest array in the training array
would take up a lot of memory, slow training, and even cause errors. So
we first choose to convert the arrays into grey-scale images and then unify
the size of these grey-scale images, which can ensure a stable and efficient
training process.

79

Chapter 5

Training Model Base on Diff

This chapter introduces two deep learning models based on diff training, Diff
Structure Feature Model and Diff Feature Matching Network. The design
intent, deployment, training process and comprehensive evaluation of the
models are presented here.

5.1 Solution Problem

5.1.1 Code similarity algorithm

CST (code structure tree) of RefDiff is a tree structure similar to an abstract
syntax tree (AST), where the data structure focuses only on the coarse-grained
code elements in the code area. Coarse-grained means that only large node
types in programming languages are parsed, e.g. classes and methods in
java; files, classes and functions in javascript. Building a CST for multiple
programming languages requires finding the "greatest common denomina-
tor" of each programming language’s syntax structure, and one matching
algorithm based on this "greatest common denominator" is a prerequisite to
support application of multiple programming languages. The source code is
parsed to obtain all the structural nodes contained in the code, each contain-
ing information such as node name, parent node, relationship, location, node
code, etc.

The values used in the matching algorithm to express the similarity of
node codes are based on the Term Frequency-Inverse Document Frequency
(TF-IDF) and the Jaccard coefficient. TF-IDF (G. Salton, 1986) is a common
weighting technique used in information retrieval and data mining that re-
flects the importance of a word to the documents in a document collection.
Jaccard index (F. Chierichetti, 2010), also known as Jaccard similarity coeffi-
cient, is used to compare similarities and differences between finite sample
sets and is often used to compare text similarity. In fact, RefDiff uses a vari-
ation of TF-IDF, where each word and symbol in a node code is first treated
as a token, then the weight of each token is derived by IDF, and finally the
Jaccard coefficient is used to describe the similarity between two node codes.
In the context of a code element, all tokens are treated as terms and the code
element is treated as a document. Let E be the set of all node codes and nt be
the number of tokens contained in E. The inverse document frequency (idf)
is defined as:

80 Chapter 5. Training Model Base on Diff

id f (t) = log(1 +
|E|
nt

)

Once the weight of each token is obtained, the similarity between the two
node codes nc1 and nc2 is calculated. U is the set of all tokens. mi be the
multiplicity function that represents the multiplicity of the set of tokens for
code element nci. The following equation defines the similarity between nc1
and nc2:

sim(nc1, nc2) =
Σt∈U min(m1(t), m2(t))× id f (t)
Σt∈U max(m1(t), m2(t))× id f (t)

The basic principle of this formula is that similarity is maximal (1.0) when
the multiset of tokens representing nc1 and nc2 contains the same tokens with
the same cardinality. Conversely, if the multiset contains no common tokens,
the similarity is 0. A token with a higher idf will have a higher weight. In
addition RefDiff has designed Extract similarity and Inline similarity based on
the characteristics of the refactoring type, i.e. only the similarity of the ex-
tracted or inlined part of the code is calculated, mainly for the benefit of the
ExtractMethod and InlineMethod refactoring types. For other refactoring types
such as Move Type and Rename Type etc., the full node code is used as the
matching text.

5.1.2 Analysis

In some cases similarity based on word-frequency theory is not suitable as a
key condition for matching refactoring candidates, and RefDiff’s 80.4% recall
already shows that word-frequency similarity misses about a fifth of refactor-
ing candidates. After our long-term study of refactoring, we found that, in
theory, RefDiff would undoubtedly perform very well if the old and new ver-
sions of the code were refactored "by the book", but in practice, the old and
new versions of diff are very complex, and there are many factors that affect
similarity. Below we focus on the two most significant challenges.

Challenge 1: Non-refactored code changes Refactoring is often accompa-
nied by non-refactoring code changes, where the node being refactored has
code changes other than those caused by the refactoring.

To compensate this, RefDiff defines a threshold value of 0.5 for similarity.
Node pairs with a lower similarity are not further considered. Lowering this
threshold further would, however, lead to also including node pairs that do
not actually correspond to a refactoring, which would impact the precision.
For example, in ExtractMethod, the extracted code is put into a new method,
but the new method also has a large number of non-refactored code changes
added to it, so that the similarity can easily be diluted below the threshold,
resulting in some false negatives. So word frequency similarity as an impor-
tant condition for matching is not sufficient in some cases.

5.2. Diff Structure Feature Model 81

Challenge 2: Noise nodes associated with diff Non-refactored changes ex-
ist not only in the node being refactored, but also in other nodes that are not
related to the refactoring, and these nodes become noise for refactoring can-
didates to match. For example, if any changes are made to a node’s code,
that node will be put into Remove or Add to participate in the match, even
when the changes are not related to a refactoring. Since similarity matching
is computed for all possible pairs of nodes in Remove and Add, this noise
node’s code may coincidentally be similar to another node’s code, increasing
the probability of a false positive match, which is the main reason why 3.6
percentage points of RefDiff’s detection results are false positives.

Based on the challenges encountered in RefDiff’s matching algorithm, two
different models were designed to address the challenges using the features
contained in diff.

5.2 Diff Structure Feature Model

5.2.1 Approach Overview

The Diff Structure Feature Model (Tan Liang, 2022a) is based on the phe-
nomenon that the refactoring diff structure is different for different refac-
toring types and that this diff structure does not change with the presence
of non-refactored code. Based on this phenomenon, we collected ten refac-
toring types of refactoring diffs as training data and trained a diff structure
feature model with checking function.

An overview of our solution approach is presented in Fig. 5.1. The first
part is just the regular use of RefDiff: the code change to be analyzed is used
as input by RefDiff, which produces a detection result. Our approach is to
further processes each reported result, for which we extract the Before Node
and After Node, and feed them to our result checker, which performs three
steps. The Diff Extractor determines the textual differences between the Be-
fore Node and the After Node, which is then encoded into a two-dimensional
array which correspond to a grey-scale image by the Diff Encoder. The image
is fed into the refactoring Diff Structure Feature Model, which finally produces
a Prediction Result, i.e., a prediction of the applied refactoring type. Finally,
we compare the refactoring type provided by RefDiff’s Detection Result with
the one predicted by our Diff Feature Model, and only if they are the same
they will be output as the final result.

The purpose of this approach is to identify false positives reported by
RefDiff and, thus, increase the precision. But it can also help to increase
the recall, when our result checker is combined with lowering the similarity
threshold used for candidate selection by RefDiff. Lowering this threshold
leads to an increase in the number of considered candidates. The additional
candidates are either true positives, which are the ones we actually want to
add, as well as false positives as an undesired collateral effect. Thus, the re-
call is increased and at the same time the precision is reduced. Nevertheless,
if we apply our result checker to the now larger set of results reported by

82 Chapter 5. Training Model Base on Diff

FIGURE 5.1: Approach Flow chart

RefDiff, we can reduce the number of false positives and thereby improve
the precision again.

The result checker uses a deep learning model to learn which features in
code changes are characteristic for different refactorings. Thereby, we make
two assumptions: the refactoring features are not changed by the presence of
additional non-refactoring code changes. And the refactoring features are
different for each refactoring type. This assumption holds for code diffs,
with the exception of PullUpMethod, PushDownMethod and MoveMethod,
which have the same diff features, as the the textual diff does not allow to dis-
tinguish between the parent, child and unrelated other classes as the target
for the move.

5.2.2 Training Process

We use Java refactoring examples as training and test data for our diff feature
model, mainly because the richest data on refactoring examples is available
for Java and because other refactoring detection tools are also optimised for
Java. Thus, it will allow us to perform a fair comparison in the end.

Data preparation. We have three sources from which we collect sam-
ples for our data set, needed for the training and validation of our machine-
learned diff feature model. First, we selected a large number of code changes
(in terms of Git commits) from open source projects. Next, we added the data
set used by the RefDiff 2.0 authors 1. And finally we added code refactorings
(provided as documented commits in a Git repository) from the Tsantalis
team2.

To ensure the correctness of this data set, we analysed all samples with
the original RefDiff 2.0, manually validated the results and only kept the
confirmed true positives. In addition, we manually inspected all samples that
were rejected by RefDiff 2.0 because of a similarity score below the threshold,
again manually determined which of them are true refactorings and added
them to our data set.

We split this full data pool into a set of Training Data and Test Data, i.e.
for testing the result checker. The number of samples for each refactoring

1https://github.com/aserg-ufmg/RefDiff/blob/master/RefDiff-evaluation/data/java-
evaluation/evaluation-data-public.xlsx

2https://aserg-ufmg.github.io/why-we-refactor/#/allCommits

5.2. Diff Structure Feature Model 83

TABLE 5.1: Data Distribution

Refactoring Type Data Pool Training Data Test Data
Extract Interface 330 306 24
Extract Method 850 355 495

Extract Superclass 369 319 50
Inline Method 422 310 112

Move Class 1100 381 719
Move Method 519 314 205

Pull Up Method 361 330 31
Push Down Method 380 342 38

Rename Class 395 308 87
Rename Method 550 360 190

Total 5276 3325 1951

TABLE 5.2: Training Set and Validation Set

Refactoring Type Training Validation Total
Extract Interface 276 30 306
Extract Method 320 35 355

Extract Superclass 288 31 319
Inline Method 279 31 310

Move Class 343 38 381
Move Method 283 31 314
Rename Class 278 30 308

Rename Method 324 36 360
Total 2391 262 2653

type is not balanced, especially the number of ExtractMethod and MoveClass
samples far exceed that of other refactoring types. Thus, to avoid overfitting
on those refactoring types, we made sure that we used a comparable number
of samples (between 300 and 400) for each reafactoring type in our training
data set. The result is summarized in Table 5.1. The data pool contains a
total of 5276 refactoring including 10 different types of refactorings: Extract
Interface, Extract Method, Extract Superclass, Inline Method, Move Class, Move
Method, Pull Up Method, Push Down Method. Rename Class and Rename Method.

Training process. For the training, we input the node codes of the sam-
ples in the Training Data into the diff extractor. Next, we input these diff data
into the diff encoder to convert them into grey-scale images of the uniform
size 50*50*1 and applied supervised deep learning to them. All our samples
in the data pool contain a label of the correct refactoring type they contain,
which is used as the ground truth during training and later during the eval-
uation.

The training data is randomly divided into training and validation sets in
a ratio of 9:1 to apply a 10-fold cross validation approach during training, as
shown in Table 5.2.

During the training phase, we recognized that for the diffs for Pull Up

84 Chapter 5. Training Model Base on Diff

TABLE 5.3: Parameters of Diff Feature Matching Network

Layer Name Layer Type Input Size Filter Shape Stride
Conv C 224*224*1 3*3*3*32 2
Conv DW 112*112*32 3*3*32 1
Conv C 112*112*32 1*1*32*64 1
Conv DW 112*112*64 3*3*64 2
Conv C 56*56*64 1*1*64*128 1
Conv DW 56*56*128 3*3*128 1
Conv C 56*56*128 1*1*128*128 1
Conv DW 56*56*128 3*3*128 2
Conv C 28*28*128 1*1*128*256 1
Conv DW 28*28*256 3*3*256 1
Conv C 28*28*256 1*1*256*256 1
Conv DW 28*28*256 3*3*256 2
Conv C 14*14*256 1*1*256*512 1

5*(Conv DW 14*14*512 3*3*512 1
+Conv) C 14*14*512 1*1*512*512 1
Conv DW 14*14*512 3*3*512 2
Conv C 7*7*512 1*1*512*1024 1
Conv DW 7*7*1024 3*3*1024 2
Conv C 7*7*1024 1*1*1024*1024 1
Pool Avg 7*7*1024 7*7 1
FC - 1*1*1024 1024*1000 1

Softmax - 1*1*1000 Classifier 1

Method/Push Down Method and Move Method are exactly the same in our
encoding, the only difference being the position the method is moved to.
Therefore, we excluded Pull Up Method and Push Down Method from our
training and instead rely on the original RefDiff to distinguish between the
three. That means, our result checker will accept results reported as Pull Up
Method or Push Down Method if they are recognized as Move Method by
our model.

As the diffs are represented as grey-scale images, the image data only is
single-channel, other than typical image data which is three-channel. There-
fore, we apply a deep separable convolution that does not require fusion of
inter-channel information, mobileNetV1 (Andrew G. Howard, 2017) as the
training algorithm, the body architecture shows as on Table 5.3.

5.2.3 Model Evaluation

The training results are shown in Fig. 5.2 and Fig. 5.3. The classification
accuracy of the mobileNetV1 algorithm converges to 1 for both the training
and validation sets in 100 training batches. The loss function (cross-entropy,
which measures the similarity between predicted and actual values) curves

5.2. Diff Structure Feature Model 85

FIGURE 5.2: Accuracy Chart

of the model in the validation and training sets are decreasing and approach-
ing 0, indicating that the model is converging. This is shown in Fig. 5.3. The
loss function allows us to assess the fitness of the model in terms of the over-
all training process. At the start of training, both the training set error and the
validation set error are within the underfitting range, and the error decreases
with increasing training time and model complexity. After the 20th training
batch, the error values begin to stabilise and then make small adjustments to
reach a critical point of best fit at approximately 70 batches, before levelling
out. The training set error and validation set error continue to remain stable
after the best-fit point, indicating that the model is not over-fitted.

To demonstrate that the training results were non-coincidental, we trained
the training data 10 times, extracting different data as the training and valida-
tion sets each time. For these 10 models, as shown on in Fig. 5.4,we collected
the accuracy and error values for their final training and validation sets, with
a training set median accuracy of 0.969, validation set median accuracy of
0.948, training set median loss value of 0.035, and validation set median loss
value of 0.186. This indicates the reliability of our approach and the resulting
models.

To demonstrate the stability of the model, we designed a controlled ex-
periment using a real ExtractMethod example. The example has a similar-
ity of 0.339, which is below the threshold determined by RefDiff because it
contains some non-refactored code. We then made experiments where we
either excluded some of the non-refactoring code changes or added further
changes as additional noise. We made sure that the code lines involved in the
refactoring remained unchanged We applied our model to all these different
variants of the sample, which recognized the correct refactoring in all cases.
For the original sample, our model predicted Extract Method with a score of
0.959 (i.e., high confidence), which increased to 1.0 (absolute certainty) as the
non-refactoring code changes were reduced. When adding noise, our model

86 Chapter 5. Training Model Base on Diff

FIGURE 5.3: Loss Value Result

still could make the correct prediction, until the number of lines with non-
refactoring code changes increased well beyond the number of changes due
to the refactoring. These experiments show that the model is linearly stable
and has better robustness than RefDiff’s algorithm.

The performance of the model has demonstrated that the diff features of
each refactoring type are captured by the model and that these features are
highly identifiable. This also proves that our idea of using diff to distin-
guish between refactoring types is feasible, and confirms that the checker’s
encoding approach of the diff encoder effectively expresses the refactoring
diff features.

5.3 Evaluation

The core problem addressed in this section is the use of the result checker to
fully optimise false positive and false negative results caused by the thresh-
old problem of RefDiff 2.0. The content of this section is a comprehensive
evaluation of the result checker, including its performance, threats to valid-
ity, and limitations,. It is possible to again verify the utility of refactoring diff
in practical applications, as well as the effectiveness of our diff encoder and
diff feature models.

5.3.1 Approach Evaluation

The core problem addressed in this section is the use of the result checker to
fully optimise false positive and false negative results caused by the thresh-
old problem of RefDiff 2.0. The content of this section is a comprehensive
evaluation of the result checker, including its performance, threats to valid-
ity, and limitations,. It is possible to again verify the utility of refactoring diff

5.3. Evaluation 87

FIGURE 5.4: Accuracy distribution

in practical applications, as well as the effectiveness of our diff encoder and
diff feature models.

Performance of Result Checker

For our evaluation we used four different configurations as test subjects: (1)
RefDiff 2.0, original threshold, no result checker, (2) RefDiff 2.0, threshold 0.2,
no result checker, (3) RefDiff 2.0, original threshold, with result checker, and
(4) RefDiff 2.0, threshold 0.2, with result checker. We did not reduce the sim-
ilarity threshold further then 0.2, because while collecting the data pool for
the ground truth discussed in the previous section, we found that the major-
ity of true refactoring candidates had a similarity greater than 0.2. Reducing
the threshold further would put additional stress on the result checker, even-
tually leading to a decreased precision. As we were already satisfied with
the recall achieved in the evaluation presented here, we did not attempt to
reduce the threshold further.

As test data, we used the 1951 refactoring instances from our data pool
that were not used in the training (cf. Section 5.2.2), which also comprise
ten different refactoring types. The test results are shown in Table 5.4. We
also used these test data to test RefactoringMiner 2.0 with results of 99.6%
for precision and 96.9% for recall as our reference.

88 Chapter 5. Training Model Base on Diff

TABLE 5.4: Test Result

RefDiff 2.0 RefDiff 2.0 (0.2) RefDiff 2.0 with Checker RefDiff 2.0 with Checker (0.2)

Refactoring Type # Precision Recall Precision Recall Precision Recall Precision Recall
Extract Interface 24 0.875 0.875 0.875 0.875 1.000 0.875 1.000 0.875
Extract Method 495 0.965 0.707 0.906 0.960 1.000 0.703 0.996 0.951
Extract SuperClass 50 1.000 0.743 1.000 0.743 1.000 0.743 1.000 0.743
Inline Method 112 0.954 0.741 0.850 0.964 1.000 0.741 1.000 0.946
Move Class 719 1.000 0.974 0.999 1.000 1.000 0.974 1.000 0.996
Move Method 205 0.874 0.810 0.715 0.941 0.988 0.785 0.989 0.902
Pull Up Method 31 0.963 0.839 0.833 0.968 1.000 0.839 1.000 0.968
Push Down Method 38 0.973 0.947 0.860 0.974 1.000 0.947 1.000 0.974
Rename Class 87 0.951 0.897 0.933 0.966 0.974 0.862 0.976 0.920
Rename Method 190 0.964 0.700 0.360 0.953 0.992 0.679 0.983 0.921
Total 1951 0.967 0.835 0.794 0.966 0.997 0.828 0.995 0.952

Result Analysis

From the tests it can be seen that the result checker improves the precision
of RefDiff 2.0 by 3.0 percentage points, reaching almost 100%, while recall
dropped by 0.7 percentage points when the similarity threshold is not changed.
The main reason for this is that when RefDiff outputs a false positive refac-
toring result, the final result will only output that false positive if the checker
outputs the same false positive, but the probability of this happening is ex-
tremely low, so the number of cases where the final output is a false-positive
result is significantly reduced. The recall in this benchmark drops slightly, be-
cause the checker incorrectly predicts the few true-positive results of refactor-
ing types ExtractMethod, MoveMethod, RenameClass and RenameMethod. Thus
this prediction does not match the RefDiff results, causing them not to be
output in the final results.

When the similarity threshold for RefDiff 2.0 was reduced to 0.2, the preci-
sion decreased significantly and the recall increased significantly, indicating
that the lowered threshold matched more true refactorings, but also led to
more false-positive results. The only two recalls that did not change after
lowering the threshold were ExtractInterface and ExtractSupClass, mainly be-
cause RefDiff defines the decision conditions for them differently, not using
the similarity threshold, so a change in the threshold would not affect their
detection results. The table shows that many true refactorings in the four
refactoring types ExtractMethod, InlineMethod, MoveMethod and RenameMethod,
were missed due to the similarity threshold, and lowering the threshold al-
lowed some refactorings with a code similarity of 0.2–0.5 to be matched suc-
cessfully, which is the main reason for the increased recall. However, low-
ering the recall means that a large number of false positives are matched,
especially for the RenameMethod, as the similarity threshold is the only con-
dition for the RenameMethod to be matched, and a lowered threshold leads
to a sharp increase in the number of false positives matched. Since the other
refactoring types are subject to other conditions on matching, such as the sig-
nature and child conditions for MoveClass, and the use relationship between
nodes for ExtractMethod, the lowering of the threshold allows for a small in-
crease in the number of false positives of other refactoring types. In the case
of a large number of false positives, the effect of the checker on the precision
is highlighted, as the checker intervenes to filter out a large number of false
positives, and although a few true positives are incorrectly predicted in the

5.3. Evaluation 89

FIGURE 5.5: Distribution of predicted values for test data

process, the checker improves the precision of RefDiff 2.0 (threshold = 0.2) by
20.1 percentage points, while the recall was only reduced by 1.4 percentage
points. Overall, the result checker (threshold = 0.2) improved recall by 11.7
percentage points and precision by 2.8 percentage points compared to the
original RefDiff 2.0 This is very close to the detection performance of Refac-
toringMiner 2.0, but still retains the applicability of to multiple programming
languages.

The benchmarks have demonstrated that the result checker improves the
detection performance of RefDiff, and the diff feature model is applicable to
data outside of the training and validation sets, indicating that the model
fits well and has excellent generalisation capabilities. In addition to this, the
checker also provides a score for the predicted refactoring type for each refac-
toring diff, which can be interpreted as the probability that the prediction is
correct. Fig. 5.5 shows the distribution of the predicted probability of the
refactoring diff reported by the checker (threshold = 0.2) for the different
refactoring types. The figure shows that in most cases the predicted prob-
ability is very close to 100%. It can be assumed that the lower the predicted
probability is, the more likely the checker is to detect the refactoring type
incorrectly. To confirm this assumption, we collected 32 predictions of our
result checker with a probability below 0.5, and we manually confirmed that
18 of these predictions were incorrect. This also confirms the results of the
controlled experiments for model evaluation (Section 5.2.2). Although the
false predictions of the checker cannot directly affect the final result, the user
can decide whether to intervene manually to consult the diff code directly
based on the probability.

Running time. We trained the model using a computer with a 2.3 GHz

90 Chapter 5. Training Model Base on Diff

Intel Core i5 processor and 8 GB of 2133 MHz LPDDR3 memory. It took a
total of 136 minutes to train the diff feature model. The average prediction
time for each diff was 26 ms.

5.3.2 Threats to Validity

There are at least three threats to validity for the result checker in this chapter.
Firstly, the result checker’s diff extractor may extract non-diff code as a

diff. In the diff extractor, we use the ExtractIntersection function to extract
the parts of the node code that are common to FullDiff, but if there are non-
diff codes in the node code that are the same as those in FullDiff, then these
non-diff codes will be extracted as diffs. We tested the checker’s prediction
results when this happens, and the results show that the non-diff code has
very limited impact, because the diff code containing the refactoring features
will be extracted anyway, and these diff codes are the main basis for predict-
ing the refactoring type.

Secondly, the result checker’s diff encoder may confuse RenameMethod
and MoveMethod when encoding them. Our diff encoder is designed based
on the assumption that the elements associated with the refactoring features
in the diff are invariant using the length of each word to encode them. But
when the method is renamed to another name of the same length, the en-
coded RenameMethod corresponds to the same two-dimensional array as
some MoveMethod arrays. This has not happened in either training or test-
ing in this chapter, and even if it had, the checker error result would not be
output because of inconsistency with the RefDiff detection result.

Thirdly, the performance of the checker when confronted with a few refac-
toring types whose refactoring diffs do not conform to the characteristic that
the contents of the removed and added parts remain unchanged. Examples
include Introduce Assertion, Remove Setting Method: here the diffs of mul-
tiple refactoring candidates can vary a lot but they contain very specific key-
words such as (assert and set), which can be used as basis for the diff feature
model to identify them.

5.3.3 Challenges and limitations

The result checker has two limitations in training and testing. Firstly, the
result checker does not support checks for nested refactorings at this time,
i.e., multiple refactorings applied to the same program element, such Extract
and Move Method or Move and Rename Class. The challenge here is that some
nested refactoring diffs may not have representative features, i.e. the mani-
festation of the diff may be confused with some single refactoring types. Such
effects need to be studied in more depth.

Secondly, manually applied refactorings and refactorings applied by IDE
tools sometimes differ. For example, in ExtractMethod, manual refactoring
inserts the method code directly on top of the extracted code, which will
not show the removed and added parts of the extracted code in the diff and
will easily cause false predictions. However, from the training and test data,

5.4. Diff Feature Matching Network 91

FIGURE 5.6: Abstract Illustration

this is rarely the case, and with the widespread use of refactoring tools, the
refactoring diff will become more standardised.

5.4 Diff Feature Matching Network

5.4.1 Approach Overview

Diff Feature Matching Network (Tan Liang, 2022b) is designed based on the
phenomenon that the removed and added parts of a refactoring diff are al-
most identical.

Similarity theory based on word frequency cannot cover all the cases that
may be encountered in refactoring detection. In the example in shown in Fig.
5.6, the two grids represent the entire code of BeforeNode and AfterNode.
The red boxes represent the remove part of the diff and the green boxes rep-
resent the the add part. Refactoring in this context refers specifically to the
type of refactoring achieved by changing the structure of the code, which can
be called structural refactoring. The refactorings move code around without
or with only minimal changes or apply small changes to code in place. In
such cases, the red and green sections would be very similar and word fre-
quency analysis is good at detecting matches. But when faced with noisy
nodes, with addition or removal of code that does not belong to the refactor-
ing, the red and green parts would contain also the code of the non-related
changes, impacting the word frequencies such that the two sections would
not be recognized as matching.

To improve this, we replace this text-similarity-based matching algorithm
with a diff feature matching network to determine whether the two nodes
match, i.e., participate in the same refactoring, which is less vulnerable to
noise mixed with refactoring code changes. The flowchart in Fig. 5.7 shows
an overview of our whole approach.

Firstly, we extract the nodes in Remove and Add (BeforeNode and Af-
terNode) and match them in turn. Secondly, using our Diff Extractor, the

92 Chapter 5. Training Model Base on Diff

FIGURE 5.7: Approach Flow chart

diffs present in the nodes are extracted, and Diff Encoder extracts the re-
quired features from both the before and after nodes, including word fre-
quencies, code structure, code order, syntactic constraints and other charac-
teristics. Next, the two arrays are converted into images that are used as
input for our Feature Network—inspired by the image matching algorithm
MatchNet (Xufeng Han, 2015)—to extract their feature sets, seeing that the
two feature networks form a twin-tower structure with shared parameters.
Finally, their feature sets are paired and input into Metric Network, which
computes the feature matching rate of the two feature sets and outputs the
matching result. This design almost completely bypasses the problem of de-
fects when judging node matching by word frequency similarity, and the
focus on diff also avoids false negatives to a certain extent.

5.4.2 Training Process

This section documents the preparation of training data for the diff feature
matching network, the process of building the matching network and net-
work structure.

We used java refactoring data as the training data for the diff feature
matching network, as refactoring is more widely used and developed in java
compared to other programming languages, and open source datasets exist
to be used. Our training data was primarily sourced from an open source
dataset containing 538 commits3, as well as some data collected by our team,
for a total of 2272 refactoring instances. The training data consists of eight
refactoring types Extract Method, Inline Method, Move Class, Move Method, Pull
Up Method, Push Down Method, Rename Class and Rename Method. These refac-
toring types were chosen because RefDiff detects them using similarity as
a matching condition. We keep the number of each refactoring type to the
same order of magnitude when collecting data to prevent model distortion

3https://aserg-ufmg.github.io/why-we-refactor/#/allCommits

5.4. Diff Feature Matching Network 93

TABLE 5.5: Data Distribution

Refactoring Type Data Pool Training Data Validation Data
Extract Method 379 303 76
Inline Method 374 299 75

Move Class 391 313 78
Move Method 383 306 77
Rename Class 375 300 75

Rename Method 370 296 74
Total 2272 1817 455

caused by data imbalance and to ensure that the trained model is suitable for
matching multiple refactoring types.

Data preparation

For each refactoring instance in the training data, we used RefDiff 2.0 to run
it, and then after a second manual check, we obtained the BeforeNode and
AfterNode corresponding to each true refactoring match, and then extracted
their node codes. Among these true refactorings we identified samples that
RefDiff 2.0 missed to detect because the similarity did not exceeding the
threshold. For these samples, we extracted the node codes manually. Then,
after processing by diff extractor and diff encoder, two greyscale maps of size
64*64*1 representing the refactoring diffs were obtained, which are placed in
two separate folders but with the same filename. Next, we create the match-
ing dataset by pairing the images with the same filename as one training data
item with the label Match. For creating the mismatched dataset, we pair im-
ages in the two folders with different filename at random as training data
item with the label Non-Match. The Non-Match dataset contains the same
amount of data as the Match dataset. As shown in Table 5.5, the data in the
Match dataset contains a total of 2272 data, with 1817 items for training and
455 for validation in a ratio of 8:2 between the training and validation sets.
Non-Match has the same amount of training and validation data as Match.

Training Process

The training of diff feature matching network follows the MatchNet network
framework, which consists of a sampling layer, a feature extraction network,
a metric network and a cross-entropy loss function. The structure of the diff
feature matching network is shown in Fig. 5.8, and the parameters of the diff
matching network are listed in Table 5.6. In the data preparation phase, we
have completed the sampling layer.

First, the feature extraction network was constructed, which is based on
the classical convolutional neural network AlexNet (Krizhevsky Alex, 2015),
but with some changes to it by adding a preprocess layer and bottleneck
layer. The former to normalise the data and the latter is used to control the

94 Chapter 5. Training Model Base on Diff

FIGURE 5.8: Structure of Diff feature Matching Network

TABLE 5.6: Parameters of Diff Feature Matching Network

Layer Name Layer Type Output Dimension Size Stride
Conv0 C 64*64*24 3*3 1
Pool0 Max 32*32*24 3*3 2
Conv1 C 32*32*64 3*3 1
Pool1 Max 16*16*64 3*3 2
Conv2 C 16*16*96 3*3 1
Conv3 C 16*16*96 3*3 1
Conv4 C 16*16*64 3*3 1
Pool2 Max 8*8*64 3*3 2

Bottleneck FC B - -
FC1 FC F - -
FC2 FC F - -
FC3 FC 2 - -

5.4. Diff Feature Matching Network 95

dimensionality of the feature vector input from the feature extraction net-
work to the full connect layer to avoid overfitting. In the training phase,
the feature network acts as a two-stage pipeline, sharing parameters, and
the outputs of the two towers are concatenated together as the input to the
metric network. It is worth mentioning that, unlike images, in order to ac-
commodate matching the full range of single to multi-line codes, we chose to
use a convolutional kernel of size 3*3, which allows for better extraction of
array features. Secondly, in the Metric network, three full connect layers with
ReLU nonlinearity and a Softmax function are set up for feature comparison,
and the output is obtained as two values of the probability [0,1] that the two
images are similar, both positive and summing to 1, which can be interpreted
as the probability of a match and the probability of a non-match. Finally, a
cross-entropy loss function with a learning rate of 0.0001 is set to evaluate the
performance of the diff feature matching network. In the training process, for
each batch size, 50% of the data with Match labels and 50% of the data with
Non-Match labels were used.

5.4.3 Model Evaluation

The training results are shown in Fig. 5.9. A total of 20 epochs of training
were performed, and the final training and validation sets of the model ac-
curacy were 0.990 and 0.917, and their loss values were 0.056 and 0.320. The
accuracy and loss curves of the training set in the figure indicate that the
model converges well, and the loss value of the validation set stays flat after
the 11th epoch with a small oscillation and does not keep getting larger as
the training set converges, indicating that the model is not overfitted.

To better evaluate the performance of the diff feature matching model,
we designed a controlled experiment on a true ExtractMethod refactoring in-
stance, as shown in Fig. 5.10. This example was judged by RefDiff to be
non-refactored. Since the similarity of the two nodes in this example was
only 0.339, which is less than the threshold of 0.5, the two nodes were not
matched as refactoring candidates, thus resulting in a false negative detec-
tion result.

The red part is the removed part of diff and the green part is the added
part of diff. The code content in the boxes is the refactored part, and the code
outside the boxes is the non-refactored code change. In this example, we
compare the matching performance of the diff feature matching network and
word frequency similarity of RefDiff. Firstly, the refactoring part is kept con-
stant during the comparison. We tested the performance of the two matching
approaches by adding some noisy code to the added part and reducing some
non-refactored code from the added part. Adding noisy code means adding
1-20 lines of code that are unrelated to the refactoring to the original code.
Reducing the non-refactored code means reducing some non-refactored code
change lines from the original added part code.

As shown in Table 5.7, there are ten matching cases, and the matching
values are the performance of the two approaches in each case. The results

96 Chapter 5. Training Model Base on Diff

FIGURE 5.9: Train Result

FIGURE 5.10: Testing Example of Comparison

5.4. Diff Feature Matching Network 97

TABLE 5.7: Testing Result

Test Situation Word-frequency Similarity Diff Matching Network
Original -10 0.631804 0.999999
Original -5 0.460249 0.999997
Original -3 0.431828 0.999789
Original -1 0.370762 0.999824

Original 0.338710 0.999668
Noise +1 0.312438 0.999869
Noise +3 0.274755 0.998295
Noise +5 0.218686 0.973053

Noise +10 0.188181 0.826769
Noise +20 0.148184 0.998854

in the table show that the matching performance of the diff feature match-
ing network is excellent and stable. Each value represents the matching
probability of removed part and added part, and neither the reduction of
non-refactored code changes nor the addition of code noise affects its match-
ing performance, indicating that the diff feature matching network has good
robustness. For word frequency similarity, it can be found that the non-
refactored code change has a huge impact on the similarity, and the simi-
larity can only exceed the threshold of 0.5 when reducing 5 to 10 lines of
non-refactored code, while the similarity in the face of noisy code will keep
decreasing with the increase of noise, indicating that the word frequency
similarity is only suitable for matching with pure refactoring behaviour or
accompanied only by a small amount of non-refactored code changes, which
also validates our analysis of the RefDiff similarity problem.

In terms of runtime, word frequency similarity is more advantageous, due
to the low computational load of 0.38 ms on average, compared to 220ms-
240ms per match for the diff feature matching network in the python envi-
ronment.

5.4.4 Approach Evaluation

The core research problem of this section is to solve the problem of false pos-
itives and false negatives due to word frequency similarity by using diff fea-
ture matching networks.

Deployment

In the Java environment, we tried to deploy a matching network in RefD-
iff instead of the word frequency similarity matching algorithm, but pre-
processing the matching data required multiple data transformations, and
loading the model and computing the results by using the deeplearning4J li-
brary took a significant amount of time in total, averaging around 5s-7s per
match, which made that approach infeasible for matching a large number of
nodes.

98 Chapter 5. Training Model Base on Diff

In order to better allocate computational power and maintain the original
design architecture of RefDiff as much as possible, we decided to lower the
RefDiff word frequency similarity threshold to 0.1, the aim is to obtain as
many refactoring candidates as possible and then triage these candidates.
This is shown in Fig. 5.11.

Step 1: We classify the candidates into those with a similarity of λ ∈
(0.1, 0.5] and a similarity of λ ∈ (0.5, 1.0].

Step 2: Those candidates with λ ∈ (0.5, 1.0] are the ones that the unmod-
ified RefDiff would recognize. As we know that these results are already
reliably, we do not have to apply our approach for candidate detection. The
remaining candidates would have been eliminated by RefDiff, but we know
that a lot of false negatives are among them, therefore we apply our ap-
proach to identify additional candidates among them. The main purpose
of the triage process is to allow the diff feature matching network to focus its
computational power on finding as many true refactorings as possible among
the candidates with similarity below the threshold.

Since our approach currently is rather slow, we designed the additional
Diff Token Filter to filter to reduce the number of candidates to which our
network is applied. This filter computes the word frequency similarity, using
the same TF-IDF algorithm as the original RefDiff matching algorithm, but
only on the diffs. This means, it only focuses on the diff part of the node code,
from which we remove all symbols and only keep the more representative
words as tokens. Applying this filter to the candidates with a similarity of
λ ∈ (0.1, 0.5] allows us to detect additional refactorings that RefDiff would
have missed. Take ExtractMethod from the model evaluation in the previous
section as an example (Fig. 5.10). The node similarity is 0.339, while the
similarity calculated for the extracted diff word tokens is 0.632. We also apply
the Diff Token Filter to the candidates with a similarity of λ ∈ (0.5, 1.0]. By
doing so, we can filter out some false positive candidates before letting the
regular RefDiff algorithm detect contained refactorings.

This suggests that for true refactorings the Diff Token Filter is more in-
structive than the original similarity. Therefore, for λ ∈ (0.1, 0.5], the diff
threshold is set to 0.2, which serves as a filter and also tries not to miss true
refactoring candidates.

Step 3: Considering the time consumed in calling the matching network
in the java environment, we decided to complete the matching of candidate
data by the matching network in the python environment. The candidate re-
sults that pass through the matching network will be merged with the results
reported from RefDiff into the final detection result.

Performance of Diff Feature Matching Network

In our evaluation, firstly, in the context of java, we used three different config-
urations as test subjects. (1) RefactoringMiner 2.0, (2) RefDiff 2.0, (3) RefDiff
2.0, plug-ins the diff feature matching network with Diff Token Filter (ab-
breviation: RefDiff 2.0 with Diff-MatchNet). This test is concerned with the
performance of the diff feature matching network in solving the threshold

5.4. Diff Feature Matching Network 99

FIGURE 5.11: Filter Layer

problem, so the target refactoring focuses only on the eight types of struc-
tured refactoring that use word frequency similarity as a matching condition.
The test data were obtained from RefDiff 2.0 4 and they contained a total of
3154 refactorings. The results are shown in Table 5.8, where we focus on the
improvement of the diff feature matching network over RefDiff for the same
benchmark.

In addition, we also tested the performance of the diff feature matching
network against JavaScript and C, test data also from RefDiff 2.0, and the
results are shown in Table 5.9 and Table 5.10.

TABLE 5.8: Test Result

RefDiff 2.0 RefactoringMiner 2.0 RefDiff 2.0 with Diff-MatchNet

Refactoring Type # Precision Recall Precision Recall Precision Recall
Extract/Extract Method and Move Method 1037 0.962 0.663 1.000 0.911 0.982 0.895
Inline Method 122 0.957 0.721 0.991 0.926 0.973 0.885
Move Class 1100 0.999 0.970 1.000 0.991 1.000 0.987
Move Method 319 0.871 0.803 0.993 0.909 0.961 0.928
Pull Up Method 91 0.974 0.824 1.000 0.967 1.000 0.945
Push Down Method 40 0.950 0.950 1.000 0.950 1.000 0.950
Move and Rename/Rename Class 95 0.922 0.874 1.000 0.884 0.967 0.937
Rename Method 350 0.946 0.694 0.977 0.860 0.975 0.880
Total 3154 0.964 0.805 0.996 0.935 0.986 0.932

TABLE 5.9: Comparison in JavaScript

Refactoring Type # Precision # Recall
Extract Function 10 1.000 10 0.900
Inline Function 10 0.900 5 0.800
Move and Rename File 10 1.000 3 1.000
Move and Rename Function 10 1.000 7 1.000
Move Class 2 1.000 0 N/A
Move File 10 1.000 10 1.000
Move Function 10 0.900 10 1.000
Rename File 10 1.000 10 1.000
Rename Class 5 1.000 0 N/A
Rename Function 10 0.900 10 1.000
Total 87 0.967 65 0.969

Result Analysis

For the Java test, it can be seen from the test that the diff feature match-
ing network improved the recall of RefDiff by 12.7 percentage points, which

4https://github.com/aserg-ufmg/RefDiff

100 Chapter 5. Training Model Base on Diff

TABLE 5.10: Comparison in C

Refactoring Type # Precision # Recall
Change Signature 10 1.000 10 1.000
Extract Function 10 1.000 10 0.800
Inline Function 10 0.900 10 1.000
Move and Rename File 0 N/A 10 1.000
Move and Rename Function 10 0.900 10 1.000
Move File 10 1.000 10 1.000
Move Function 10 0.900 10 0.900
Rename File 10 1.000 10 1.000
Rename Function 10 0.900 10 1.000
Total 80 0.952 90 0.967

has caught up with the performance of RefactoringMiner. In terms of pre-
cision, the matching network with Diff Token Filter helped RefDiff improve
by 2.2 percentage points, demonstrating that focusing on diff is able to filter
out some false positives. In detail, the match network’s improvement in re-
call for ExtractMethod, InlineMethod, MoveMethod and RenameMethod is
huge, even approaching or surpassing the performance of RefactoringMiner
in some types.

For the JavaScript and C tests, RefDiff’s results were 91% precision and
88% recall for JavaScript and 88% precision and 91% recall for C. For the
same test data, the diff feature matching network boosted both precision and
recall for JavaScript and C by 5 to 7 percentage points. We reache a precision
of 96.7% and recall of 96.9% in JavaScript test, a precision of 95.2% and s re-
call of 96.7% in for C. The test results show that the positive impact of the
matching network is significant, reflecting the fact that the diff matching net-
work is equally valid for other programming languages as the text matching
network.

Theoretically, all refactorings are matched except for false negatives caused
by setting thresholds and mis-matches by the diff matching network, but our
test data shows that there are a number of controversial ’refactorings’ where
the content of the refactorings has been changed, for reasons such as chang-
ing judgement conditions, changing parameters, changing the way of func-
tion calling, etc. For example, in the case of RenameMethod, the method name
was renamed and the contents of the method were changed, completely los-
ing the correspondence between the remove and add parts of the refactoring
diff. This has led to some of the "false negative" results.

Running time. We trained the model using a computer with a 2.3 GHz
Intel Core i5 processor and 8 GB of 2133 MHz LPDDR3 memory. it took a
total of 33 minutes to train the diff feature matching network. The average
total time consumed by candidates to pass through the filters and feature
nets is 240ms to 260ms.

5.4.5 Threats to Validity

There are two validity threats to the diff feature matching network in this
chapter.

5.4. Diff Feature Matching Network 101

Threat 1, the diff extractor may extract non-diff codes as diffs. In the diff
extractor, we use the ExtractIntersection function to extract the parts of the
node code that are common to FullDiff, but if there are non-diff codes in
the node code that are identical to some lines in FullDiff, then these non-diff
codes will be extracted and treated as diffs, although this is a small proba-
bility. This situation does not affect the work of the matching network, as
the remove and add parts of the refactoring diff are unaffected and will be
matched as long as they contain enough of the same features, with the non-
diff code having as little impact as the non-refactored code changes.

Threat 2, there is a threat to the data used for evaluation. There is subjec-
tivity in the true/false positives of java refactoring data that directly affects
detection performance. Different verifiers may have different interpretations
of these refactoring types. We therefore chose RefactoringMiner 2.0 as a con-
trol tool, where comparisons under the same benchmark can reduce the im-
pact on tool performance due to small amounts of data. The data size for
testing JavaScript and C is so small that the test results are not informative.
Testing other languages than java, our main aim was to demonstrate that the
diff matching network is applicable to other programming languages and
that matching networks in other languages can also solve the problems posed
by thresholds.

5.4.6 Challenges and Limitations

Limitation 1: Some refactoring types cannot be detected as they either only
remove or only add code. Examples include Introduce Assertion, Remove Set-
ting Method. In these cases the approach does not work, because naturally
there is no correspondence between the remove and add parts of the diff, as
one of the parts is empty. However, these particular refactoring types are
only rarely used, and it would be possible to detect them in the future using
keyword features.

Limitation 2: When matching a diff with only a few short lines of code,
the mismatch rate of the matching network increases. Because feature ex-
traction networks have a minimum convolution kernel of 3*3, the features
contained in very short lines of code, where with the features are convoluted
and pooled many times, may be diluted, resulting in a failure to match at the
full connect layer. We are studying the use of smaller convolution kernels to
deal with this problem.

103

Chapter 6

RefDiff-Model

In the course of my research, we have identified a number of potential pitfalls
that could affect detection performance when processing data using the diff
extractor and diff encoder, and have attempted to fuse the two models from
the previous chapter, as well as attempting to merge all of my work findings,
in the hope of arriving at a better integrated solution that can both guarantee
detection performance and break through existing limitations.

6.1 Problem Analysis

Both approaches in previous chapter that rely too heavily on the performance
of a single model when deployed and used, which makes it so that incorrect
model predictions will directly affect the final detection results. We have
determined that the erroneous results are caused by flaws in the extraction
and encoding approaches, and in some cases may be the result of extraction
to the wrong diff or confusion in the encoding.

6.1.1 Problems with existing models

Problem with Diff Structure Feature Model

Diff Structure Feature Model is designed based on the fact that each type of
refactoring diff has a special structure. The special structure of refactoring
types is also an important dependency for the manual identification and clas-
sification of refactorings. The encoding of diff and the special encoding of
programming language keywords are trained to achieve model recognition
of different refactoring types. The model is trained on the diff of the refac-
toring candidate (diffs of BeforeNode + diffs of AfterNode), and the corre-
sponding refactoring type is the training label. The model is equivalent to
adding a filtering layer to RefDiff for filtering out detection results that differ
from the structure of the corresponding refactoring type, directly increasing
the precision of the tool. According to this mechanism, developers use a re-
duced threshold to obtain more detection results, and then use the structure
feature model to filter out false positives among them, achieving the goal
of improving RefDiff’s detection performance. In addition, depending on
the assignment of different programming language keywords, structure fea-
ture models can be trained to predict different programming languages, thus
maintaining the core advantage of RefDiff’s wide generality.

104 Chapter 6. RefDiff-Model

However, crudely lowering the threshold produces a large number of
false positive results, and using the model to calibrate them one by one con-
sumes a significant amount of time. Also, over-reliance on a single model
will inevitably lead to incorrect predictions, which is why this result checker
also leads to a small decrease in recall when boosting the precision of RefD-
iff. Thus, as with Diff Feature Matching Network, the deployment of structure
feature models, and the move away from single dependencies, needs further
optimisation.

Problem with Diff Feature Matching Network

Diff Feature Matching Network was designed based on the fact that the re-
moved and added parts of each refactoring diff are almost identical. This
design applies to most types of refactoring, i.e. refactorings that are imple-
mented as moving and replacing code, where the code that is moved in the
diff is the removed and added part. The refactoring does not change the
external representation of the code, only the internal structure, so the refac-
tored part of the code will show a very obvious correspondence between
the removed and added parts of the diff, which makes the matching net-
work almost ignore the threat of non-refactored code changes, almost solv-
ing the problem of low recall due to threshold. The diff feature matching
network was created with reference to the image matching algorithm Match-
Net (Xufeng Han, 2015). The sampling layer processes diffs of BeforeNode
(removed part) and diffs of AfterNode (added part), the feature network ex-
tracts the features contained in the removed and added parts, and then the
metric network compares these features to produce a match.

Moreover, the matching network is trained on pure diff code text, which
does not rely on any syntax, and each match is an independent feature ex-
traction, and the expression of these features does not differ due to different
syntax, so a matching network trained on one programming language can
be widely generalised to other programming languages. However, the main
function of this matching network is to determine whether there is a corre-
sponding feature in the diff, but this condition is not a sufficient condition for
determining the refactoring, and it is still possible to match a false positive
result, so other conditions are needed to collaborate to further determine the
refactoring.

6.1.2 Problems with Diff Tool

Problem with Diff Extractor

Threat to Diff Extractor: The original extractor was implemented using the
intersection of NodeCode and FullDiff (the set of all diffs for both versions of
the code), but this algorithm of extracting the intersection is likely to extract
non-diff codes as diffs. As the extraction algorithm compares NodeCode and
FullDiff line by line, if there are non-diff codes in NodeCode that are the same
as some lines of FullDiff, then these non-diff codes will also be extracted as a
diff, affecting the training accuracy.

6.2. Approach Overview 105

FIGURE 6.1: Approach Flow chart

Problem with Diff Encoder

Threat to Diff Encoder: The original encoder uses the length of each word
as its abstract expression, converting the diff to an array based on a "Jigsaw
Hypothesis", but the character lengths can cause confusion in some cases.
The main impact of this obfuscation manifests itself in the prediction of non-
refactored code changes as matches, and in some occasional cases, unrelated
code can be matched because the characters are the same length.

6.2 Approach Overview

To overcome these shortcomings, we propose RefDiff-Model (Tan Liang,
2023) that combines information from RefDiff’s code representation and the
two deep learning approaches, forming a mechanism for mutual corrobora-
tion of the prediction results. In this way, we combine the advantages of the
two approaches mentioned above, design an approach that can escape the
limitations of generality imposed by the different syntax of programming
languages, and use the mined information from the diff code to give RefDiff
a higher level precision and recall.

6.2.1 Approach Workflow

This section describes the process of implementing the RefDiff-Model, how
to make more efficient use of the information contained in the CST nodes,
how to mine the NodeCode for refactoring-related information and how to
merge them to obtain better detection results. The flow chart of the optimi-
sation is shown in the Figure 6.1.

First, we input the code to be detected into RefDiff 2.0. In order to ob-
tain as many true positives as possible, we set the similarity threshold to 0.1,
based on the available data, setting a lower threshold would hardly obtain a
true refactoring, but would instead detect more false positives and increase
the detection burden.

In the next step, we triage the detection results by threshold range as fol-
lows: 1 threshold ∈ [0.1, 0.5], 2 threshold ∈ (0.5, 1.0], 3 threshold = null.
The main purpose of this triage is to perform different processing in the core

106 Chapter 6. RefDiff-Model

FIGURE 6.2: Node information processing concept

module according to the threshold range. The main reason for the triage
process is that the time cost of multiple calls to the Diff feature matching
network is higher than computing word frequency similarity. Therefore, it
is more feasible to use word frequency similarity for primary screening of
candidates.

This Core step is the most important part of this optimisation solution,
where the NodeCode of the detection results is pre-processed and then passed
through the models to obtain more information to help with the detection
refactoring. The detection results of all streams need to be extracted from
their NodeCode using Diff Extractor, then encoded by Diff Encoder and fi-
nally input into the models according to the data processing requirements of
each stream. For 1 , our main aim is to find all the true refactorings with
a similarity within the first range and that are missed by RefDiff. Since this
range will match a large number of false positive candidates, so we set up a
diff-only filter (described in detail in Section 5.3) for filtering out these can-
didates before inputting them into the model for prediction. For 2 , the pre-
cision of 96.4% for RefDiff has proven that the vast majority of candidates
in this range are correct and so are directly input into the model for predic-
tion. For 3 , the threshold is not used as a matching condition for judging
refactoring, so the encoded diff is input directly into the diff structure feature
model to predict its corresponding refactoring type.

Finally, we combine all the predictions obtained in the core module with
the defined judgements made by RefDiff based on the node abstraction in-
formation, and then unify them as the final result. Our idea is shown in
Figure 6.2, and our approach is more sufficient than RefDiff when using the
information contained in NodeCode (Figure 1.3).

6.2.2 Core Mechanism

The combined results are a mechanism for cross-corroboration. The final re-
sult is processed under different conditions. For 1 and 2 , the merge in-
formation consists of node abstraction information (RTa), judgement infor-
mation of the matching network (Match (M) or Non-Match (nM)) and judge-
ment information of the diff structure (RTs). When {RTa = RTs ∧ M}, this
means that the candidate’s structure features and abstract information point

6.3. Optimised Solutions 107

to the same refactoring type, and that there is a matching correspondence be-
tween the removed and added parts of the candidate’s diff. So we consider
this to be a correct refactoring detection with a very high confidence level.
Whereas when {RTa = RTs ∧ nM} or {RTa 6= RTs ∧ M}, this means that
the matching correspondence of the candidate’s diff and the candidate’s diff
structure features do not simultaneously support the refactoring type conclu-
sions derived from the abstract information. There may be model prediction
errors, so the candidate is referred to manual intervention for identification
due to insufficient confidence level. When {RTa 6= RTs ∧ nM}, the result is
considered to be a false positive with very low confidence level. For 3 , the
merge information consists of node abstraction information (RTa) and judge-
ment information (RTs) for the diff structure. When {RTa = RTs} is true and
{RTa 6= RTs} is false.

This design of the optimisation solution not only finds as many true refac-
torings that are missed matches as possible, but also avoids the output of
false positive results by way of mutual corroboration between information,
largely avoiding the reliance on a single model for refactoring detection and
fully achieving the goal of an overall improvement in the performance of
RefDiff detection.

6.3 Optimised Solutions

6.3.1 Optimised Diff Extractor

The original Diff Extractor took the FullDiff of a changed file that contains
the node in question and reduced this to the code lines that are contained in
the NodeCode by means of a line-by-line comparison. In practice, the state
of each line of NodeCode (added, removed, unchanged) is unknown, so the
developer removes the flags from FullDiff that indicate the state of the code
(the "+" and "-" at the beginning of each line). Such processing, while not
missing any line of diff code in the NodeCode being extracted, may result
in the non-diff code in the NodeCode being extracted as a diff because the
non-diff code in the NodeCode is the same as the diff code of other nodes in
FullDiff, which may affect the accuracy of the model.

The aim of our optimisation is to reduce the occurrence of false extractions
and optimise extraction accuracy as much as possible. The optimised diff ex-
traction algorithm is shown in Algorithm 4. In Figure 4.8, the removed code
only exists in the beforeNode, and the added code only exists in the afterN-
ode. So, we add a "-" flag to each line of code contained in the beforeNode
and add "+" flag to the code in the afterNode, then we use the ExtractInter-
action algorithm to obtain a more accurate diff, and the presence of the "+"
and "-" further prevents incorrect extraction. (ExtractInteraction is a function
for outputting lines that intersect in two texts, based on regular expressions.)
This also allows the removed and added parts of the diff to be distinguished
explicitly, making it easier for the user to view the diff when manual inter-
vention is required, as shown in the ExtractMethod example Figure 6.3.

108 Chapter 6. RefDiff-Model

Algorithm 4 Refactoring Candidate Diff Extractor
Input BeforeNode, AfterNode, FullDiff(V1, V2)
Output nc-diff // Diff of NodeCode
Begin Body
1. nc-diff← ∅;
2. beforeNodeCode← addFlag(BeforeNode.NodeCode);
3. afterNodeCode← addFlag(AfterNode.NodeCode);
4. nodeCode← beforeNodeCode + afterNodeCode;
5. nc-diff.add (ExtractIntersection (nodeCode, FullDiff(V1, V2));
6. return nc-diff;
End Body
Function addFlag(code)
codeWithFlag← ∅;
if code ∈ Be f oreNode then

codeWithFlag ("-", code);
end
if code ∈ A f terNode then

codeWithFlag ("+", code);
end
return codeWithFlag;
End Function
Function ExtractIntersection (nodeCode, FullDiff(V1, V2))
nc-diff← ∅;
foreach Linenc ∈ nodeCode {
Linediff ∈ FullDiff {
if Linenc = Linediff then

nc− di f f .add(Linenc)
end
} }
return nc-diff;
End Function

FIGURE 6.3: Diff Change After Optimization

6.3. Optimised Solutions 109

6.3.2 Optimised Diff Encoder

Diff Encoder is the transformation of a diff into array data that can be trained
by deep learning algorithms. Although such an encoding approach can be
used for model training, there are still some problems, such as encoding con-
fusion. In most cases the character lengths are sufficient to abstractly rep-
resent the relative positions of words in the array, but there are still cases
where different words have the same character length, leading to encoding
confusion, which affects the prediction accuracy of the model. Therefore, we
have designed suitable optimisation approaches for the specificities of Diff
Structure Feature Model and Diff Feature Matching Model, respectively.

Encoding Approach For Diff Features Network Network

For the encoding optimization approach applied to the diff feature matching
network, we chose to highlight the abstract expression of the uniqueness of
each word. As shown in the algorithm 5 First, the symbols and duplicate
tokens contained in the diff are removed; then each non-duplicate token is
assigned a unique value (the number of each word in the tokenList is used
here); finally, the code for the removed and added parts of the diff is trans-
formed into array_Remove and array_Add according to the flags ("-" and
"+").

Algorithm 5 Optimise Approach of Diff Encoder
Input diff with "+" and "-"
Output array_Remove and array_Add
Begin Body
1. tokenList← ∅;
2. diff← diff.removeSymbol
3. tokenList← diff.removeDuplicates;
4. diffa← diff.startwith("-");
5. diffb← diff.startwith("+");
6. arrayA← diffa.convert(assign(tokenList));
7. arrayB← diffb.convert(assign(tokenList));
8. return array_Remove, array_Add
End Body

This is illustrated in Figure 6.4, which shows the encoding of the diff in
Figure 6.3, whereby the lines in the diff are represented as columns in the ar-
ray. The left-hand side shows the original encoding approach and the right-
hand side shows the optimised representation. It can be seen that each word
has a unique abstract expression except for "0", and the whole diff contains a
total of 17 non-duplicated words, ensuring the uniqueness of the abstract ex-
pression for each word is significant in eliminating encoding confusion. As
marked in green and yellow in the figure, the optimised encoding approach
allows for the uniqueness of each word to be expressed. This approach en-
sures that the same tokens, such as variable or method names, in the code are
also mapped to the same number. In the old approach, in contrast, different

110 Chapter 6. RefDiff-Model

FIGURE 6.4: Example of uniqueness encoding

names were mapped to the same number already if they has the same length,
which would lead to wrongly detecting similarity in some cases. Such clashes
even become more likely the more different names are used in the analysed
program.

Encoding Approach For Diff Structure Features Model

For the diff structured feature model, we chose to continue using character
length as an abstract expression of the token, but we chose to add flags to
each word after encoding it. Instead of encoding the diff as a grey-scale im-
age, we used a two-dimensional array of uniform size. This allows more
features to be retained, such as whether the value is negative or positive, in
the array and avoids feature loss when resizing grey-scale image data.

Figure 6.5, the array after the example (Figure 6.3) encoding, the left side
is the original encoding result and the right side is the optimised result. The
enhancement of the flags to the structural features is more significant if the
keywords are specially assigned. The reason for not using the unique encod-
ing is that the structure feature model is trained on diffs of different refactor-
ing types, and the structure features of each type need to be identified and
extracted. The unique assignment approach in fact weakens the functionality
of keywords as structure features, especially in some short diffs. For exam-
ple, RenameMethod, if encoded according to unique values, would contain
some of the same abstract assignments in each training data, and the model
could then increase the weight of these same assignments, thus affecting ac-
curacy, we have demonstrated with training results in the next section.

6.4. Training 111

FIGURE 6.5: Optimisation Result

6.4 Training

Following the optimisation approach described in the previous section, we
divided the 6048 refactoring samples into two datasets, a training set and a
test set. Since each refactoring type has a different amount of sample data,
in particular ExtractMethod and MoveClass, are much more numerous than
the other refactoring types. To ensure that the amount of data for each refac-
toring type was of the same order of magnitude, we limited the amount of
training data to between 400 and 500 so that the model would not have a
biased amount of data, the distribution of which is shown in Table 6.1. From
the 4459 refactoring instances used for training, we extracted their diffs us-
ing the optimised Diff Extractor, and then trained the diff structure feature
model and the diff feature matching network respectively using different en-
coding approaches. Among the 10 refactoring types, the diffs of MoveMethod,
PullUpMethod and PushDownMethod are identical, but the difference is the
relationship between the class of the method being moved. Therefore, we
decided to keep only MoveMethod as training data during the training of
the model to ensure a balance in the number of different refactoring types.
In the final evaluation, when testing PullUpMethod and PushDownMethod,
the condition RTa = RTs was considered to hold as long as the prediction of
the model was MoveMethod.

6.4.1 Optimised Diff Features Marching Network

Model Training

Data Preparation. First, we extracted each refactoring diff by using the op-
timised Diff Extractor, and then placed the removed and added parts of the

112 Chapter 6. RefDiff-Model

TABLE 6.1: Data Distribution

Refactoring Type Data Pool Training Data Test Data
Extract Interface 440 416 24
Extract Method 1037 488 549

Extract Superclass 459 409 50
Inline Method 491 420 71

Move Class 1051 500 551
Move Method 528 463 65

Pull Up Method 432 401 31
Push Down Method 460 422 38

Rename Class 518 454 64
Rename Method 632 486 146

Total 6048 4459 1589

diff, in two different folders, with the same file name. We then paired these
files with the same filename and used them as the dataset labelled Match. We
then randomly paired these files, ensuring that each pair has a different file
name, to form a dataset labelled Non-Match. Non-Match and Match contain
the same amount of data. We then encoded the data using an optimised Diff
Encoder and divide the data set in a ratio of 8:2 between the training and
validation sets, with Non-Match having the same amount of training and
validation data as Match. Finally, the training preprocessing was completed.

The diff feature matching network consists of a sampling layer, a feature
extraction network, a metric network and a cross-entropy loss function. The
structure of the diff feature matching network is shown in Figure 6.6.

During the data preparation phase, we have completed work on the sam-
pling layers. First, the feature extraction network was constructed, which
is based on the classical convolutional neural network AlexNet (Krizhevsky
Alex, 2015), but with some changes to it by adding a preprocessing layer and
a bottleneck layer. The former was used to normalise the data and the latter
was used to control the dimensionality of the feature vectors fed from the fea-
ture extraction network to the fully connected layer in order to avoid over-
fitting. During the training phase, the feature network acts as a two-stage
pipeline, sharing parameters, with the outputs of the two towers connected
together as the input to the metric network. In the Metric network, three fully
connected layers with ReLU nonlinearity and a Softmax function were set for
feature comparison, and the output was obtained as two values of the prob-
ability ∈ [0, 1] that the two encoded arrays are similar, i.e., the probability of
a match. Finally, a cross-entropy loss function with a learning rate of 0.0001
was set to evaluate the performance of the diff feature matching network,
which was trained for a total of 20 epochs. With the same training and vali-
dation data, we trained a matching network following the original encoding
approach as a comparison to show the effect of the optimisation approach on
the performance of the matching network.

6.4. Training 113

FIGURE 6.6: Matching Network

Model Evaluation

Figure 6.7 and Figure 6.8 show the impact of the encoding approach on the
diff feature matching network before and after optimisation.

As can be seen in the Figures, the accuracy of the training set is 0.9926
(new) and 0.9906 (old), and the accuracy of the validation set is 0.9374 (new)
and 0.8637 (old), an improvement of 7.37 percentage points over the original
approach. The loss values for the training set were 0.0525 (new) and 0.0532
(old) and the loss values for the validation set were 0.2672 (new) and 0.3986
(old), with the loss values for the optimised coding method being lower than
the original approach by 0.1314. The model converges faster and is smoother
when the optimised encoding approach is applied, especially in the valida-
tion set, with higher accuracy and lower loss values. Furthermore, the model
is not overfitted. Altogether this demonstrates the positive impact of the op-
timised encoding approach on the model.

To prove that this was not a coincidence, we built different training and
validation sets randomly to train the model a total of ten times. The training
results showed that the accuracy and loss values for the training set of the
optimised and old approach were very close and always converged. The for-
mer continues to converge faster and more smoothly. For the validation set,
the average accuracy of the optimised approach is 6.988 percentage points
higher and the average loss value is 0.1363 lower than the old approach. The
average time spent per training is 27 minutes.

114 Chapter 6. RefDiff-Model

FIGURE 6.7: Matching Network

FIGURE 6.8: Matching Network

6.4. Training 115

In order to show the effect of the optimised approach on the stability of
the model, a control experiment was designed, where the experimental test
consisted of RefDiff’s word frequency similarity and the matching network
of the encoding method before and after optimisation. The subject of the con-
trol experiment was an ExtractMethod instance, which was judged as a false
negative by RefDiff because the similarity threshold was 0.338710, which was
less than the threshold of 0.5 normally used by RefDiff. The diff of this refac-
toring instance contained a large number of non-refactored code changes,
so it led to a false negative, this was used to verify the stability of the old
and new feature matching network. We used increasing noise (additional
non-refactored code) to verify this, and as the noise increased, the similarity
based on word frequency was decreasing. By adding 20 lines of noise, the
similarity had dropped to 0.139861, while both matching networks consis-
tently maintained a matching probability close to 1, demonstrating that the
matching networks possess stronger robustness.

6.4.2 Optimised Diff Structure Features Model

Model Training

The structure feature model supports the detection of eight refactoring types
(in addition to the PullUpMethod and PushDownMethod). These refactoring
diffs are extracted and encoded, and then randomly divided into a training
and validation set in a ratio of 8:2. Based on the single-channel data nature
of the diff array, we therefore chose to use the deeply separable convolution
mobileNetV1, which does not require inter-channel information fusion, as the
trainer for 100 batches. As with the diff feature matching network, we set up
a control group using the original encoding approach.

Model Evaluation

Figure 6.9 and Figure 6.10 show the changes in the accuracy and loss values
of the old and new models before and after optimisation.

As can be seen from the accuracy trends, the optimised approach con-
verges faster, the accuracy of the training set remains smooth after conver-
gence, and the convergence of the loss values of the optimised approach is
also lower and smoother. The performance of the model in the optimised
approach is better than the original approach. Moreover, the curves of the
training and validation sets of the optimisation approach are very stable af-
ter convergence, and the validation set does not suffer from accuracy degra-
dation, indicating that the model is not overfitted. Also to demonstrate the
non-accidental performance of the model, we trained it ten times based on
different training and validation data, and the training results converged in
all cases. Therefore, the advantages of the optimisation were shown in each
case. The training time for the optimised approach is longer (28 hours, about
3 hours for the original approach) because the training input for the opti-
mised approach are 224*224 arrays, whereas the input for the original ap-
proach are 50*50 grey-scale images, the former being more computationally

116 Chapter 6. RefDiff-Model

FIGURE 6.9: Accuracy Chart

FIGURE 6.10: Loss Chart

6.4. Training 117

TABLE 6.2: Evaluation of experimental results

Test Situation Original Approach Optimised Approach
Original 0.996934 0.999958
Noise +3 0.997701 0.999976
Noise +5 0.998075 0.999974

Noise +10 0.918348 0.999977
Noise +15 0.865232 0.999972
Noise +20 0.786634 0.999979
Noise +30 0.758181 0.999967
Noise +50 0.619542 0.999977

intensive. In addition, we have experimented with the approach based on
uniqueness encoding. The encoded diff is trained and although it converges
successfully, the accuracy and loss values of the validation set continued to
oscillate after convergence and the model performance was not stable, so it
justifies the choice of our optimisation solution.

In the same way as the evaluation of the diff feature matching network,
a control experiment was designed for the diff structural feature model to
compare the effect of the optimisation approach on the stability of the model.
The experiment verifies the stability of the models based on the original and
optimised approaches by using the same ExtractMethod instance and adding
noise code to the added part of the diff. The experimental results are shown
in Table 6.2. The model corresponding to the original approach is the one in
which the prediction probability decreases under the influence of more noisy
codes, although all the detection results are correct, the decrease is signifi-
cant. In contrast, the model corresponding to the optimisation approach is
more robust in the face of noisy code, as the prediction results are correct and
the prediction probabilities are all very stable. This robustness is also due to
the enhancement of the structure features by the "-" flags.

Generalized Applications

To demonstrate the general applicability of our research approach to code
data mining, we also collected refactoring data for the programming lan-
guages C and JavaScript, with training data taken from the Ref-Diff database1.
For JavaScript, we trained models supporting eight refactoring types using
1600 refactoring instances. For C, we trained models supporting six refac-
toring types using 1200 refactoring instances. We used these data to train
the corresponding diff structure feature models for C and JavaScript, and the
accuracy trend of the training set is shown in Figure 6.11. Both models con-
verged more slowly to the accuracy curve than the Java model, completing
convergence after 30 batches, mainly due to insufficient training data. So the
model’s parameter weights were calibrated relatively slowly. Since the diff
feature matching network does not require special encoding of keywords, a
matching network trained on java refactored diff data can support matching

1https://github.com/aserg-ufmg/RefDiff

118 Chapter 6. RefDiff-Model

FIGURE 6.11: Diff Convert to Array

work for other programming languages, and we show the matching results
in the next section.

6.5 Evaluation

The research problem addressed in this chapter is to optimise Diff Extractor
and Diff Encoder to jointly apply Diff Structure Feature Model and Diff Fea-
ture Matching Network to implement an detection approach for mining the
diff code about information of refactoring. In this section we will test and
evaluate the entire optimisation solution, including performance, efficiency,
validity threats, and limitations.

In practice, when using our solution to detect some submissions with
threshold ∈ [0.1, 0.5], hundreds of refactoring candidates will be matched,
most of which are false positives, and it is a huge burden to match them
one by one using the diff feature matching network. So we set up a diff-only
word frequency similarity filtering layer before inputting candidate diffs into
the matching network. The major difference between this filtering layer and
RefDiff’s similarity is that it only calculates word-frequency similarity for the
removed and added parts of extracted diff from Diff Extractor, rather than for
all code similarities in the node. And, as with the diff encoder, it removes all
symbols and retains only the more representative words as token. The main
purpose of this filter layer is to filter out most of the false candidates that are
not related to refactoring. We set its threshold to 0.2 for two main reasons: (1)

6.5. Evaluation 119

diff similarity is more reflective of refactoring behaviour than node-all code
similarity, so the diff similarity of true refactorings is usually higher than the
latter. (2) The threat of non-refactored code changes on the diff similarity fil-
tering layer is still present, so 0.2 is a conservative choice to ensure that true
refactoring candidates are not filtered out as much as possible.

The test data were 1589 refactoring instances out of the training set in Sec-
tion 6.4. The approaches tested included RefDiff 2.0, a result checker based
on the diff structural feature model, a single diff feature matching network,
and our comprehensive optimisation solution (RefDiff-Model). The test re-
sults are shown in Table 6.3. In addition, at the same benchmark we also
tested RefactoringMiner 2.0 as a reference benchmark, with 99.6% for preci-
sion and 96.9% for recall. We also tested the performance of the RefDiff and
optimisation solutions compared in C and JavaScript, as shown in Table 6.4
and Table 6.5.

TABLE 6.3: Test Result

RefDiff 2.0 RefDiff 2.0 with Checker (0.1) RefDiff 2.0 with MatchNet RefDiff-Model

Refactoring Type # Precision Recall Precision Recall Precision Recall Precision Recall
Extract Interface 24 0.875 0.875 1.000 0.917 N/A N/A 1.000 0.917
Extract Method 549 0.967 0.696 0.996 0.943 0.971 0.929 1.000 0.947
Extract SuperClass 50 1.000 0.820 1.000 0.840 N/A N/A 1.000 0.920
Inline Method 71 0.983 0.732 0.985 0.915 0.957 0.930 1.000 0.958
Move Class 551 1.000 0.980 1.000 0.978 0.993 0.989 1.000 0.993
Move Method 65 0.845 0.754 0.966 0.877 0.952 0.923 1.000 0.954
Pull Up Method 31 0.964 0.871 1.000 0.968 1.000 0.968 1.000 0.968
Push Down Method 38 0.974 0.974 1.000 0.974 1.000 0.974 1.000 0.974
Rename Class 64 0.935 0.906 0.968 0.938 0.953 0.953 1.000 0.969
Rename Method 146 0.908 0.725 0.992 0.890 0.943 0.904 1.000 0.911
Total 1589 0.965 0.828 0.995 0.945 0.977 0.951 1.000 0.961

TABLE 6.4: Comparison in C

RefDiff 2.0 RefDiff-Model

Refactoring Type # Precision Recall Precision Recall
Extract Function 20 0.889 0.800 1.000 1.000
Inline Function 20 0.773 0.850 1.000 1.000
Move File 20 1.000 1.000 1.000 1.000
Move Function 20 0.810 0.850 1.000 0.950
Rename File 20 1.000 1.000 1.000 1.000
Rename Function 20 0.864 0.950 1.000 0.950
Total 120 0.886 0.908 1.000 0.983

6.5.1 Result Analysis

The most striking performance of the optimised solution in the Java data test
was the achievement of 100% precision, which proved to satisfy the condi-
tion {RTa = RTs ∧Match} and was almost completely certain to be a refac-
toring. Compared to RefDiff, the optimised solution increased precision by
3.5 percentage points and recall by 13.3 percentage points. Meanwhile, 36
candidates were judged to be manually intervening checks during the test
and they were not counted in the results. Although the judgement of manual

120 Chapter 6. RefDiff-Model

TABLE 6.5: Comparison in JavaScript

RefDiff 2.0 RefDiff-Model

Refactoring Type # Precision Recall Precision Recall
Extract Function 20 0.889 0.800 1.000 1.000
Inline Function 20 0.824 0.700 1.000 1.000
Move Class 20 1.000 1.000 1.000 1.000
Move File 20 1.000 1.000 1.000 1.000
Move Function 20 0.952 1.000 1.000 1.000
Rename File 20 0.950 0.950 1.000 1.000
Rename Class 20 0.950 0.950 1.000 0.950
Rename Function 20 0.833 0.750 1.000 0.950
Total 160 0.929 0.894 1.000 0.988

intervention is subjective, it offers the possibility of further improving detec-
tion performance. RenameMethod was the type with the lowest recall, and
some of the results were judged to be manual interventions, mainly due to
the presence of many controversial "refactorings" in the test data, where the
content of the refactorings had been changed. The method names were re-
named and the contents of the methods changed, completely losing the cor-
respondence between the removed and added parts of the refactoring diff,
leading to errors in the diff feature matching network.

Compared to the single model-based result checker and the diff feature
matching network, the optimised solution combines their strengths and weak-
ens their drawbacks when relied upon individually. The result checker based
on the diff structure feature model is a significant improvement in precision.
In the event of a false prediction, the match result of the diff feature matching
network will act as insurance that the result can be imported into the man-
ual intervention, avoiding false negatives as much as possible. Similarly, the
improvement in recall by the diff feature matching network is significant. If
a true refactoring is judged by the matching network to be a mismatch, the
diff structural feature model will also import that result into the manual in-
tervention.

For the C and JavaScript tests, we replaced the diff structure feature model
with the model of the corresponding programming language. The results
show that the detection performance of the optimised solution is remarkable,
as in the java test, with a consistent 100% precision along with a boosted
recall, which also shows that the optimised solution is also effective in the
detection for other programming languages.

Running time We trained the model using a computer with a 2.3 GHz In-
tel Core i5 processor and 8 GB of 2133 MHz LPDDR3 memory. The aver-
age matching time per candidate for the diff feature matching network in
python was 245 ms and the average matching time for the diff structure fea-
ture model was 275 ms.

6.6. RefDiff-Model with Random Forest Model 121

6.5.2 Threats to Validity

For this section the validity threat mainly comes from the data used in the
evaluation, clearly ExtractMethod and MoveClass are far more numerous
than the other types, possibly implying a greater weighting on the overall
performance when the optimised solution detects them. Although there was
less data for the other types tested, the optimised solution detection perfor-
mance still showed a significant improvement, and the training set is in the
same order of magnitude for the various refactoring types when training the
model, and the final model accuracy was converging to 1, showing that the
detection results can be trusted. For the C and javaScript tests, there is less
test data.

6.5.3 Challenges and Limitations

The solution, while incorporating the advantages of RefDiff’s parsing match
and both models, also inherits two limitations.

Limitation 1: RefDiff’s CST only focuses on large code structure nodes, so
Field cannot be parsed out and refactoring types about Field cannot be de-
tected. We are trying to improve the parsing and matching algorithm, and we
have confirmed that we can use Field-related refactoring type diffs as train-
ing labels for both models (MoveField, RenameField, etc.) with high recog-
nition accuracy. In addition, some refactoring types are implemented with
purely added or removed code (Introduce Assertion, Remove Setting Method,
etc.), and there is no correspondence between the added and removed part
of diff, so the Diff Feature Matching Network cannot match them. However,
Diff Structure Feature Model can still work, as their special structure features
are still present and recognizable.

Limitation 2: Diff Structure Feature Model cannot classify nested refactor-
ings such as Extract and Move Method, Rename and Move Class, etc. Since the
structure feature model classifies refactorings according to the specificity of
the structure of each refactoring type, confusion arises between the diff struc-
ture of some nested refactoring types and the structure of a single refactoring
type, e.g. the diff structures of Extract and Move Method and ExtractMethod are
the same, but Rename and Move Class is different from the structure of Move-
Class or RenmeClass. This phenomenon can cause confusion during model
training, which needs to be studied in more depth.

6.6 RefDiff-Model with Random Forest Model

In order to try to solve the problem that RefDiff-Model cannot detect nested
refactorings, we tried to fuse Chapter 3’s random forest probability model
with RefDiff-Model, replacing the rules for manually defining refactoring
types, and finally implementing a function that supports nested refactoring
detection.

122 Chapter 6. RefDiff-Model

6.6.1 Implementation

Artificial abstraction features are simple abstractions of the information con-
tained in a node. Information about a refactoring candidate node includes:
NodeType, Namespace, parentNode, NodeName, Locations, Relationships,
etc. This information allows the refactoring type to be determined based on
a manual definition. But instead of using the traditional way of definition,
we abstract this information into an array, and the label of each array is the
corresponding refactoring type, as shown in the Figure 6.12, using the java
code node as an example.

FIGURE 6.12: Process of Features Extraction

We extract the node type, the package the node is in, the class the node
is in, the node name, the node relationship and the node parent’s relation-
ship directly from the node information of the matched refactoring candidate
nodes BeforeNode and AfterNode.

• Feature f1 is to confirm that the node is a Class node or a Method node,
as only nodes of the same type can match each other, and this feature
identifies the type of class-level or method-level at which refactoring
occurs.

• Feature f2 is the description of the package in which the node is lo-
cated that can be obtained based on Namespace, which can determine
whether the packages in which two nodes are located are the same or
different, and is used to determine whether the refactoring has been
moved or replaced in a package.

• Feature f3 is the parent of the node, in the case of a method node the
description of the class in which it is located, and in the case of a class
node the description of the package in which it is located, which can
be used to determine whether the refactoring has caused the node to
move.

• Feature f4 is the node signature, which is used to determine whether
the signatures of the two matching nodes have changed.

6.6. RefDiff-Model with Random Forest Model 123

• Feature f5 is a description of the node relationships, which can be SUB-
TYPE etc. between class nodes, and USE or be USE between method
nodes.

• Feature f6 is similar to f5 and is the relationship between parentnodes.

These six features can form an array of abstract features (f1, f2, f3, f4, f5, f6),
which can contain almost all the abstract information for determining candi-
date node pairs, and can support the detection of at least ten method-level
refactoring types (as Ref-Diff supports ten refactoring types: Move Method,
Extract Method, Inline Method, Rename Method, Move Class, etc.).

This design can significantly reduce the amount of work required by re-
searchers to define each refactoring. When dealing with refactorings in other
programming languages, the detection of other languages can be done by
simply replacing the abstract array model of the corresponding program-
ming language. Since the data structures of all nodes are similar regardless
of the programming language being processed, the representation of the ab-
stract features of the refactoring candidate nodes is the same, despite the dif-
ferent declarative languages of the nodes obtained from the different parses.

6.6.2 Train Abstract Features

According to the approach in section 5, each refactoring abstract feature array
consists of six abstract feature value (the feature arrays correspond to the
Table 6.6), each labelled with the corresponding refactoring type. This list
of assignments shows the values assigned to each abstract feature, with the
following details:

• NodeType. When the candidate is method-level, it is assigned a value
of 1.0; when it is class-level, it is assigned a value of 1.5, or 1.7 if the
class node type declaration is different.

• Namespace. 2.0 if namespace is the same, 2.5 if different.

• ParentNode. 3.0 if ParentNode is the same, 3.5 if different.

• NodeName. 4.0 if NodeName is the same, 4.5 if different.

• Node Relationship. 5.0 if there is no relationship between nodes. 5.3 if
BeforeNode uses AfterNode, 5.7 if the opposite is true. 5.5 if BeforeN-
ode is a subclass of AfterNode.

• ParentNode Relationship. 6.0 if there is no relationship between Par-
entNodes. 6.3 if BeforeNode’s parentNode is a child of AfterNode’s
parentNode, and 6.7 if the opposite is true.

For example, if one were to interpret an array of abstract features in light
of java structural properties, RenameMethod [1.0, 2.0, 3.0, 4.5, 5.0, 6.0], this
array implies that this refactoring candidate node pair is composed of two
method nodes, both nodes are in the same package, both nodes are in the

124 Chapter 6. RefDiff-Model

TABLE 6.6: Abstract Feature Assignment

Refactoring Type Abstract Feature Assignment
NodeType Method-level(1.0) Class-level(1.5(S), 1.7(D))

Namespace Same(2.0) Different(2.5)
ParentNode Same(3.0) Different(3.5)
NodeName Same(4.0) Different(4.5)

Node Relationship USE(5.3) Be USE(5.7) SUBTYPE(5.5)
ParentNode Relationship SUBTYPE(6.3) Be SUBTYPE(6.7)

TABLE 6.7: Feature Arrays Chart

Refactoring Type Abstract Feature Arrays
Extract Interface [1.7, 2.0(2.5), 3.0(3.5), 4.0, 5.5, 6.0]
Extract Method [1.0, 2.0, 3.0, 4.5, 5.3, 6.0]

Extract Superclass [1.5, 2.0(2.5), 3.0(3.5), 4.0, 5.5, 6.0]
Inline Method [1.0, 2.0, 3.0, 4.5, 5.7, 6.0]

Move Class [1.5, 2.5, 2.5, 4.0, 5.0, 6.0]
Move Method [1.0, 2.0(2.5), 3.5, 4.0, 5.0, 6.0]

Pull Up Method [1.0, 2.0(2.5), 3.5, 4.0, 5.0, 6.3]
Push Down Method [1.0, 2.0(2.5), 3.5, 4.0, 5.0, 6.7]

Rename Class [1.5, 2.0, 3.0, 4.5, 5.0, 6.0]
Rename Method [1.0, 2.0, 3.0, 4.5, 5.0, 6.0]

same class, both nodes have different node names, both nodes are not re-
lated, and both nodes’ parents are not specifically related. The feature arrays
corresponding to the other refactoring candidates are shown in Table6.7. In
the table, the values in brackets indicate that the array of abstract features we
have collected in the training set is not fixed. MoveMethod, for example, the
method can be moved to other packages, or to different classes of the same
package.

We randomly divided the 4459 training data into two parts according to
80% of the training group (3567) and 20% of the validation group (892). The
results were then trained and validated using four machine learning algo-
rithms, KNN, decision tree, random forest and SVM, as shown in Table 6.8.

Model evaluation. The training results for the abstract feature arrays using
the four machine learning algorithms all achieved 100% accuracy, indicat-
ing that the abstract feature arrays corresponding to the different refactoring
types are well differentiated and the trained models are very good at recog-
nising these verification sets.

The results show that it is feasible to train and classify refactoring types
using machine learning algorithms, and we recorded the probability when
each refactoring type was predicted under random forest model, Extract-
Method (51.0%), InlineMethod (51.0%), PullUpMethod (59.8%), PushDown-
Method (59.8%), RenameMethod (51.0%), MoveMethod (100.0% or 67.3%),

6.6. RefDiff-Model with Random Forest Model 125

TABLE 6.8: Feature Arrays Chart

Refactoring Type KNN Decision Tree Random Forest SVM
Extract Interface 83 83 83 83
Extract Method 98 98 98 98

Extract Superclass 82 82 82 82
Inline Method 84 84 84 84

Move Class 100 100 100 100
Move Method 93 93 93 93

Pull Up Method 80 80 80 80
Push Down Method 84 84 84 84

Rename Class 91 91 91 91
Rename Method 97 97 97 97

Accuracy 100% 100% 100% 100%

MoveClass (85.7%), RenameClass (69.3%), ExtractSuperclass (69.3%), Extract-
Interface (64.3% or 61.5%). Since fixed features correspond to fixed prediction
probabilities, we can therefore distinguish between single refactorings and
nested refactorings, based on this phenomenon.

Move Method and Extract Interface have two results, because these two
refactoring types are in actual operation, may be moved and extracted to
other packages or still in the original package, resulting in differences in fea-
ture extraction, however, this does not affect the correct result of the proba-
bilistic model.

In addition, we chose the six abstract information of the candidates mainly
because they are sufficient to support the training of ten refactoring types,
although other information of the candidates can be used to increase the di-
mensionality of the abstract features. For example, there is information such
as SimpleName and Parameter in the candidate abstract information, and if
they are added to the feature array, they can support the classification Chan-
geSignature refactoring.

6.6.3 Application in Nested Refactoring

In the test data in the previous section, we found that there are four nested
refactoring types:

• Extract and Move Method

• Inline and Move Method

• Rename and Move Method

• Rename and Move Class

We used a random forest model trained on the single refactoring data to
detect the feature arrays of nested refactorings and could find that using the
model to compute the prediction probabilities obtained from nested refactor-
ings was different from the single refactoring prediction probabilities. The

126 Chapter 6. RefDiff-Model

TABLE 6.9: Nested Refactoring Probability

Java Refactoring Type Features Probability

Extract and Move Method [1.0, 2.0, 3.5, 4.5, 5.3, 6.0] EM(33.3.0%),MM(66.6%)
[1.0, 2.5, 3.5, 4.5, 5.3, 6.0] EM(39.9%),MM(34.0%)

Inline and Move Method [1.0, 2.0, 3.5, 4.5, 5.7, 6.0] IM(33.3%),MM(66.6%)
[1.0, 2.5, 3.5, 4.5, 5.7, 6.0] IM(39.9%),MM(34.0%)

Rename and Move Method [1.0, 2.0, 3.5, 4.5, 5.0, 6.0] RM(33.3%),MM(66.6%)
[1.0, 2.5, 3.5, 4.5, 5.0, 6.0] RM(39.9%),MM(34.0%)

Rename and Move Class [1.5, 2.5, 3.0, 4.5, 5.0, 6.0] RC(50.0%),MC(35.7%)

features of both refactoring types that make up the nested refactoring are
mapped in the prediction probabilities, and only random forest model from
the four machine learning algorithms in the previous section can accomplish
this, while the other three algorithms cannot detect nested refactoring with-
out a corresponding training label.

The random forest model was used to predict the four nested refactoring
types contained in the data pool, and the results are shown in Table 6.9, the
top two positions of each prediction ranking are the types that make up the
nested refactorings.

6.6.4 Model Embedment

The most significant job of the embedding model is to replace the manually
defined rules with a random forest model, allowing the processing of ab-
stract information to support the detection of nested refactorings. As shown
in Figure 6.13, the embedded model is not only a replacement, but also re-
quires confirmation of Diff Model that support for nested refactoring diff.
It has been illustrated in the figure that the Diff Feature Matching Network
is supportive of nested refactoring because the code content before and af-
ter nesting is the same as single refactorings, despite the change in structure
when nesting, so the matching network supports matching of nested diffs.

For the Diff Structure Feature Model, the training labels are all single
refactorings, and due to the lack of training data, it is not possible to use the
nested refactor types as training labels for the time being. However, we have
tried to detect nested refactoring data using a model trained on single refac-
toring data, and the results show that the model will almost always select
the labels containing ’strong features’ as the predicted result of nested refac-
toring. For example, ’package’ and ’class’ are both keywords and structural
features, but in the training data ’package’ only appears in the MoveClass,
while ’class’ will appear in both MoveClass and RenameClass. So when we
detected ’Rename and Move Class’, the prediction of Diff Structure Feature
Model always is MoveClass.

Based on this phenomenon, we propose a hypothesis, {RTs ∈ RTRM ∧
Matching}, that is, if the Random Forest Model determines nested refactor-
ing based on the abstract information of the nodes, the prediction of Diff
Structure Feature Model is one of the component types of the nested refac-
torings, and the Diff Feature Matching Network also outputs a match, then

6.6. RefDiff-Model with Random Forest Model 127

FIGURE 6.13: Model Fusion

the nested refactoring detection holds. Based on this hypothesis, we tested
134 instances of nested restructuring, of which 129 were determined to be
nested refactorings and 5 were judged to be manual interventions.

129

Bibliography

Andrew G. Howard, Menglong Zhu etc (Apr. 2017). “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications”. In: URL:
arXiv:1704.04861.

Beat Fluri, Michael Würsch etc (Nov. 2007). “ChangeDistilling: Tree Differ-
encing for Fine-Grained Source Code Change Extraction”. In: IEEE Trans-
actions on Software Engineering 33, 11, pp. 725–743. URL: https://doi.
org/10.1109/TSE.2007.70731.

Benjamin Biegel, Quinten David Soetens etc (2011). “Comparison of Similar-
ity Metrics for Refactoring Detection”. In: In Proceedingsof the 8th Working
Conference on Mining Software Repositories (MSR ’11). ACM,New York, NY,
USA, pp. 53–62. URL: https://doi.org/10.1145/1985441.1985452.

Breiman, Leo (Aug. 1996). “Machine Learning”. In: 24(2), 123–140. URL: doi:
10.1023/A:1018054314350.

— (2001). “Random forests”. In: Machine Learning 45(1), 5–321.
Broder, Andrei (1997). “On the resemblance and containment of documents”.

In: SEQUENCES’97:Proceedings of Compression and Complexity of Sequences,
pp. 21–29.

Costa, Shane McIntosh etc Daniel Alencar da (2017). “A Framework for Eval-
uating the Results of the SZZApproach for Identifying Bug Introducing
Changes”. In: IEEE Transactions on SoftwareEngineering 43, 7, pp. 641–657.
URL: https://doi.org/10.1109/TSE.2016.2616306.

D. Janzen, K. D. Volder (2003). “Navigating and querying code without get-
ting lost”. In: InAOSD, pp. 178–187.

Danilo Silva, Joao Paulo da Silva etc (2020). “RefDiff 2.0: A Multi-language
Refactoring Detection Tool”. In: IEEE Transactions on Software Engineering.

Danilo Silva, Marco Tulio Valente (2017). “RefDiff: Detecting Refactorings in
Ver-sion Histories”. In: In Proceedings of the 14th International Conference
on MiningSoftware Repositories (MSR ’17). IEEE Press, Piscataway, NJ, USA,
pp. 269–279. URL: https://doi.org/10.1109/MSR.2017.14.

Danilo Silva, Nikolaos Tsantalis etc (2016). “Why We Refactor?Confessions
of GitHub Contributors”. In: In Proceedings of the 24th ACM SIGSOFT-
International Symposium on Foundations of Software Engineering (FSE ’16).
ACM,New York, NY, USA, 858––870. URL: https://doi.org/10.1145/
2950290.2950305.

Danny Dig, Can Comertoglu etc (2006). “AutomatedDetection of Refactor-
ings in Evolving Components”. In: In Proceedings of the 20th Euro-pean Con-
ference on Object-Oriented Programming (ECOOP ’06), Springer- Verlag,Berlin,
Heidelberg, pp. 404–428. URL: https://doi.org/10.1007/11785477_24.

arXiv:1704.04861
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1145/1985441.1985452
doi:10.1023/A: 1018054314350
doi:10.1023/A: 1018054314350
https://doi.org/10.1109/TSE.2016.2616306
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1007/11785477_24

130 Bibliography

Danny Dig, Kashif Manzoor etc (May 2008). “Effective Software Merging in
the Presence of Object-Oriented Refactorings”. In: IEEE Transactions on
Software Engineering 34, 3, 321–335. URL: doi.org/10.1109/TSE.2008.29.

Danny Dig, William G. Griswold etc (2014). “The Future of Refactoring(Dagstuhl
Seminar 14211)”. In: Dagstuhl Reports 4, 5, pp. 40–67. URL: https://doi.
org/10.4230/DagRep.4.5.40.

E. Balas, M. Padberg (1976). “Set Partitioning: A Survey”. In: SIAM Review
18, pp. 710–760.

Emerson Murphy-Hill Max S Danny Dig, William G. Griswold (2014). “The
Future of Refactoring”. In: The Future of Refactoring, Dagstuhl Reports 4, 5,
40–67.

Everton L. G. Alves, Myoungkyu Song etc (2014). “RefDistiller: A Refac-
toring Aware Code Review Tool for Inspecting Manual Refactoring Ed-
its”. In: In Pro-ceedings of the 22nd ACM SIGSOFT International Symposium
on Foundationsof Software Engineering (FSE ’14). ACM, New York, NY, USA,
751––754. URL: https://doi.org/10.1145/2635868.2661674.

F. Chierichetti, R. Kumar etc (2010). “Finding the jaccard median”. In: In 21st
Symposium on Discrete Algorithms (SODA), pp. 293–311.

F. Van Rysselberghe, S. Demeyer (2003). “Reconstruction of successful soft-
ware evo-lution using clone detection”. In: In IWPSE ’03: Proceedings of
the 6th InternationalWorkshop on Principles of Software Evolution. Washing-
ton, DC, USA: IEEE Com-puter Society, p. 126.

Fabio Palomba, Andy Zaidman etc (2017). “An Exploratory Study on the Re-
lationship Between Changes and Refactoring”. In: In Proceedings of the 25th
International Conference on Program Comprehension (ICPC ’17). IEEE Press,
Piscataway, NJ, USA, 176–185. URL: doi.org/10.1109/ICPC.

Feller, William (1968). “An Introduction to Probability Theory and Its Appli-
cations”. In: (Vol 1), 3rd Ed, Wiley, ISBN 0-471-25708-7.

Fowler, Martin (1999). “Refactoring: Improving the Design of Existing Code”.
In: Addison-Wesley, Boston, MA, USA.

Friedman J. Olshen R. Breiman, L. Stone (Jan. 1984). “Classification and Re-
gression Trees”. In:

G. Csurka, C. Dance etc (2004). “Visual categorization with bags of keypoints”.
In: Proc. of ECCV International Workshop on Statistical Learning in Computer
Vision.

G. Salton, M. J. McGill (1986). “Introduction to modern information retrieval”.
In: McGraw-Hill, pp. 293–311.

G. Soares, R. Gheyi etc (Apr. 2013). “Comparing approachesto analyze refac-
toring activity on software repositories”. In: Journal of Systems and Soft-
ware, 86, 1006–1022.

Gabriele Bavota, Andrea De Lucia etc (2015). “An Experimental Investigation
on the Innate Relationship Between Quality and Refactoring”. In: Journal
of Systems and Software, 1–14. URL: doi.org/10.1016/j.jss.2015.05.024.

Gabriele Bavota, Bernardino De Carluccio etc (2012). “When Does a Refactor-
ing Induce Bugs? An Empirical Study”. In: In Proceedings of the IEEE 12th
International Working Conference on Source Code Analysis and Manipulation
(SCAM ’12), 104–113. URL: doi.org/10.1109/SCAM.2012.20.

doi.org/10.1109/TSE.2008.29
https://doi.org/10.4230/DagRep.4.5.40
https://doi.org/10.4230/DagRep.4.5.40
https://doi.org/10.1145/2635868.2661674
doi.org/10.1109/ICPC
doi.org/10.1016/j.jss.2015.05.024
doi.org/10.1109/SCAM.2012.20

Bibliography 131

Giuliano Antoniol, Massimiliano Di Penta etc (2004). “An Automatic Ap-
proach to identify Class Evolution Discontinuities”. In: In 7th International
Workshopon Principles of Software Evolution, 31––40. URL: https://doi.
org/10.1109/IWPSE.2004.1334766.

Gustavo Soares, Rohit Gheyi etc (Apr. 2013). “Comparing Approaches to An-
alyze Refactoring Activity on Software Repositories”. In: Journal of Sys-
tems and Software, 1006–1022. URL: doi.org/10.1016/j.jss.2012.10.040.

Hassan Ahmed E., Xie Tao (Nov. 2010). “Software intelligence: the future of
mining software engineering data”. In: In Proceedings of the FSE/SDP Work-
shop on Future of Software Engineering Research (FoSER ’10), 161–166. URL:
doi:10.1145/1882362.1882397.S2CID3485526.

Ittai Balaban, Frank Tip etc (2005). “Refactoring support for class library mi-
gration”. In: In Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, 265–279.
URL: doi.org/10.1145/1094811.1094832.

J. Brant W. Opdyke M. Fowler, K. Beck etc (1999). “Refactoring: Improving
the Design of Existing Code (Object Technology Series)”. In:

Jim Buckley, Tom Mens etc (Sept. 2005). “Towards a Taxonomy of Software
Change”. In: Journal of Software Main-tenance and Evolution: Research and
Practice 17, 5, pp. 309–332. URL: https://doi.org/10.1002/smr.v17:5.

Johannes Henkel, Amer Diwan (2005). “CatchUp!: capturing and replaying
refactoringsto support API evolution”. In: In 27th International Conference
on Software Engineering, 274––283. URL: https : / / doi . org / 10 . 1145 /
1062455.1062512.

Jurafsky Daniel, H. James Martin (2000). “Speech and language processing
: an introduction to natural language processing, computational linguis-
tics, and speech recognition”. In: Upper Saddle River, N.J.: Prentice Hall.

K. Prete, N. Rachatasumrit etc (2010a). “Catalogue of template refactoring
rules”. In: The University of Texas at Austin, Tech. Rep. UTAUSTINECE- TR-
041610, April.

— (Apr. 2010b). “Catalogue of template refactoring rules”. In: The University
of Texas at Austin, Tech. Rep. UTAUSTINECE- TR-041610.

Krizhevsky Alex, Sutskever Ilya etc (Apr. 2015). “ImageNet classification with
deep convolutional neural networks”. In: Communications of the ACM, 60
(6): 84–90. URL: doi:10.1145/3065386.ISSN0001-0782.S2CID195908774.

Kyle Prete, Napol Rachatasumrit etc (2010). “Template-based reconstruction
of complex refactorings”. In: In Proceedings of the 26th IEEEInternational
Conference on Software Maintenance (ICSM ’10), 1––10. URL: https://doi.
org/10.1109/ICSM.2010.5609577.

M. Kim, D. Notkin (2009). “Discovering and representing systematic code
changes”. In: IEEE Computer Society, in ICSE ’09. Washington, DC, USA,
pp. 309–319.

M. Kim, D. Notkin etc (2007). “Automatic inference of structural changes for
matching across program versions”. In: In ICSE, pp. 333–343.

Marco Tulio Valente, Danilo Silva (2017). “Detecting Refactorings in Version
Histories”. In: IEEE/ACM 14th International Conference on Mining Software

https://doi.org/10.1109/IWPSE.2004.1334766
https://doi.org/10.1109/IWPSE.2004.1334766
doi.org/10.1016/j.jss.2012.10.040
doi:10.1145/1882362.1882397. S2CID 3485526
doi.org/10.1145/1094811.1094832
https://doi.org/10.1002/smr.v17:5
https://doi.org/10.1145/1062455.1062512
https://doi.org/10.1145/1062455.1062512
doi:10.1145/3065386. ISSN 0001-0782. S2CID 195908774
https://doi.org/10.1109/ICSM.2010.5609577
https://doi.org/10.1109/ICSM.2010.5609577

132 Bibliography

Repositories (MSR), 291–301. URL: https://doi.org/10.1109/MSR.2017.
14.

Martin, Robert C. (2009). “Clean Code: Refactoring, Patterns, Testing, and
Clean Code Techniques”. In: mitp, Frechen.

Michele Tufano Fabio Palomba, etc (2017). “There and back again: Can you
compile that snapshot?” In: Journal of Software: Evolution and Process. URL:
https://doi.org/10.1002/smr.1838.

Miryung Kim, Dongxiang Cai etc (2011). “An Empirical Investigation into
the Role of API-level Refactorings During Software Evolution”. In: In Pro-
ceedings of the 33rd International Conference on Software Engineering (ICSE
’11) ACM, New York, NY, USA, 151–160. URL: doi.org/10.1145/1985793.
1985815.

Miryung Kim, Matthew Gee etc (2010). “Ref- Finder:A Refactoring Recon-
struction Tool Based on Logic Query Templates”. In: In Pro-ceedings of
the 18th ACM SIGSOFT International Symposium on Foundationsof Software
Engineering (FSE ’10). ACM, New York, NY, USA, 371–372. URL: https:
//doi.org/10.1145/1882291.1882353.

N. Tsantalis, V. Guana etc (2013). “A multidimensional empiricalstudy on
refactoring activity”. In: In Proceedings of the Conference of the Centre forAd-
vanced Studies on Collaborative Research (CASCON), 132––146.

Napol Rachatasumrit, Miryung Kim (2012). “. An empirical investigation
into the impact of refactoring on regression testing”. In: In Proceedings of
the 28th IEEE International Conference on Software Maintenance (ICSM ’12),
357–366. URL: doi.org/10.1109/ICSM.2012.6405293.

Nassif Matthieu, Robillard Martin P (Nov. 2017). “Revisiting turnover-induced
knowledge loss in software projects”. In: 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 261–272. URL: doi:
10.1109/ICSME.2017.64.ISBN978-1-5386-0992-7.S2CID13147063.

Nikolaos Tsantalis, Ameya Ketkar etc (2020). “RefactoringMiner 2.0”. In: IEEE
Transactions on Software Engineering, p. 21. URL: https://doi.org/10.
1109/TSE.2020.3007722.

Nikolaos Tsantalis, Matin Mansouri etc (May 2018). “Accurate and Efficient
RefactoringDetection in Commit History”. In: ICSE ’18, Gothenburg, Swe-
den, pp. 725–743.

Novais Renato, Santos José Amancio etc (2017). “Experimentally assessing
the combination of multiple visualization strategies for software evolu-
tion analysis”. In: Journal of Systems and Software, 128: 56–71. URL: doi:
10.1016/j.jss.2017.03.006.

PeterWeissgerber, Stephan Diehl (2006). “Identifying Refactorings from Source-
Code Changes”. In: In Proceedings of the 21st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’06), pp. 231–240. URL: https:
//doi.org/10.1109/ASE.2006.41.

Péter Hegedűs, István Kádár etc (Nov. 2017). “Em-pirical Evaluation of Soft-
ware Maintainability Based on a Manually Vali-dated Refactoring Dataset”.
In: Information and Software Technology. URL: https://doi.org/10.1016/
j.infsof.2017.11.012.

https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1109/MSR.2017.14
https://doi.org/10.1002/smr.1838
doi.org/10.1145/1985793.1985815
doi.org/10.1145/1985793.1985815
https://doi.org/10.1145/1882291.1882353
https://doi.org/10.1145/1882291.1882353
doi.org/10.1109/ICSM.2012.6405293
doi:10.1109/ICSME.2017.64. ISBN 978-1-5386-0992-7. S2CID 13147063
doi:10.1109/ICSME.2017.64. ISBN 978-1-5386-0992-7. S2CID 13147063
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722
doi:10.1016/j.jss.2017.03.006
doi:10.1016/j.jss.2017.03.006
https://doi.org/10.1109/ASE.2006.41
https://doi.org/10.1109/ASE.2006.41
https://doi.org/10.1016/j.infsof.2017.11.012
https://doi.org/10.1016/j.infsof.2017.11.012

Bibliography 133

Quinlan, J. Ross (1989). “Induction of decision trees”. In: Machine Learning 1,
1, 81–106.

— (1993). “C4.5: Programs for Machine Learning.” In:
Rabin, Michael O. (1981). “Fingerprinting by random polynomials”. In: Tech-

nical Report, Harvard University, pp. 15–81. URL: https://doi.org/10.
1007/11785477_24.

Ref-Finder. “Ref-Finder”. In: (). URL: https://sites.google.com/site/
reffindertool/.

Refactoring, All Commits with. “Projects”. In: (). URL: ps://aserg-ufmg.
github.io/why-we-refactor/#/allCommits.

RefactoringCrawler. “RefactoringCrawler”. In: (). URL: http : / / dig . cs .
illinois.edu/tools/RefactoringCrawler/.

RefactoringMiner. “Data”. In: (). URL: https://medium.com/@aserg.ufmg/
what- are- the- most- common- refactorings- performed- by- github-
developers-896b0db96d9d.

— “RefactoringMiner”. In: (). URL: https://github.com/tsantalis/RefactoringMiner.
RefDiff. “RefDiff”. In: (). URL: https://github.com/aserg-ufmg/RefDiff.
S. Kusumoto T. Kamiya, K. Inoue (July 2002). “CCFinder: A multilinguistic

tokenbased code clone detection system for large scale source code”. In:
IEEE Transactions on Software Engineering, 657–670.

Serge Demeyer, Stéphane Ducasse etc (2000). “Finding Refactorings viaChange
Metrics”. In: In Proceedings of the 15th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA ’00).
ACM,New York, NY, USA, 166––177. URL: https://doi.org/10.1145/
353171.353183.

Stas Negara, Nicholas Chen etc (2013). “A Comparative Study of Manual
and Automated Refactorings”. In: In Proceedingsof the 27th European Con-
ference on Object-Oriented Programming (ECOOP’13).Springer-Verlag, Berlin,
Heidelberg, pp. 552–576. URL: https://doi.org/10.1007/978-3-642-
39038-8_23.

Stephen R. Foster, William G. Griswold (2012). “WitchDoctor: IDE support
for real-time auto-completion of refactorings”. In: In Proceedings of the 34th
International Conference on Software Engineering (ICSE ’12), 222–232. URL:
doi.org/10.1109/ICSE.2012.6227191.

Steven Davies, Marc Roper etc. “Catalog of Refactorings”. In: (). URL: https:
//refactoring.com/catalog/.

— (2014). “Comparing text-based anddependence-based approaches for de-
termining the origins of bugs”. In: Journal of Software:Evolution and Process
26, 1, pp. 107–139. URL: https://doi.org/10.1002/smr.1619.

T. H. Cormen, C. E. etc (2001). “Introduction to Algorithms”. In: MIT Press.
T. Kamiya, S. Kusumoto etc (2002). “CCFinder: A multilinguistic token-basedcode

clone detection system for large scale source code”. In: IEEE Transactions
on Software Engineering 28, 654––670.

Tan Liang, Christoph Bockisch (Oct. 2022a). “Checking Refactoring Detection
Results Using Code Changes Encoding for Improved Accuracy”. In: 22nd
IEEE International Working Conference on Source Code Analysis and Manipu-
lation.

https://doi.org/10.1007/11785477_24
https://doi.org/10.1007/11785477_24
https://sites.google.com/site/reffindertool/
https://sites.google.com/site/reffindertool/
ps://aserg-ufmg.github.io/why-we-refactor/#/allCommits
ps://aserg-ufmg.github.io/why-we-refactor/#/allCommits
http://dig.cs.illinois.edu/tools/RefactoringCrawler/
http://dig.cs.illinois.edu/tools/RefactoringCrawler/
https://medium.com/@aserg.ufmg/what-are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d
https://medium.com/@aserg.ufmg/what-are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d
https://medium.com/@aserg.ufmg/what-are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d
https://github.com/tsantalis/RefactoringMiner
https://github.com/aserg-ufmg/RefDiff
https://doi.org/10.1145/353171.353183
https://doi.org/10.1145/353171.353183
https://doi.org/10.1007/978-3-642-39038-8_23
https://doi.org/10.1007/978-3-642-39038-8_23
doi.org/10.1109/ICSE.2012.6227191
https://refactoring.com/catalog/
https://refactoring.com/catalog/
https://doi.org/10.1002/smr.1619

134 Bibliography

Tan Liang, Christoph Bockisch (Dec. 2022b). “Diff Feature Matching Network
in Refactoring Detection”. In: 29th Asia-Pacific Software Engineering Confer-
ence.

— (2023). “RefDiff-Model: Model-based Optimization Solution for Refactor-
ing Detection”. In:

Tomas, Mikolov (2013). “Efficient Estimation of Word Representations in Vec-
tor Space”. In: URL: arXiv:1301.3781.

Uri Alon, Meital Zilberstein etc (2019). “code2vec: Learning Distributed Rep-
resentations of Code”. In: POPL. URL: arXiv:1803.09473.

Van Gurp Jilles, Bosch Jan (Mar. 2002). “Design erosion: problems and causes”.
In: Journal of Systems and Software, 61(2): 105–119. URL: doi : 10 . 1016 /
S0164-1212(01)00152-2.

Volder, K. D. (1998). “Type Oriented Logic Meta Programming”. In: Ph.D.
dissertation, The University of British Columbia.

Xi Ge, Quinton L. DuBose etc (2012). “Reconciling Manual and Automatic
Refactoring”. In: In Proceedings of the 34th International Conference on Soft-
ware Engineering (ICSE ’12), 211–221. URL: http://dl.acm.org/citation.
cfm?id=2337223.2337249.

Xi Ge, Saurabh Sarkar etc (2014). “Towards Refactoring-awareCode Review”.
In: In Proceedings of the 7th International Workshop on Cooperative andHuman
Aspects of Software Engineering (CHASE ’14). ACM, New York, NY, USA,
99–102. URL: https://doi.org/10.1145/2593702.2593706.

— (2017). “Refactoring-Aware Code Review”. In: In Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC
’17), 71–79. URL: doi.org/10.1109/VLHCC.2017.8103453.

Xufeng Han, Thomas Leung etc (2015). “MatchNet: Unifying feature and
metric learning for patch-based matching”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). URL: DOI:10.1109/CVPR.
2015.7298948.

Zhangyin Feng, Daya Guo etc (2020). “CodeBERT: A Pre-Trained Model for
Programming and Natural Languages”. In: EMNLP. URL: arXiv:2002.
08155.

Zhenchang Xing, Eleni Stroulia (2005). “UMLDiff: An Algorithm for Objecto-
riented Design Differencing”. In: In Proceedings of the 20th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE ’05), ACM,
New York, NY, USA, pp. 54–65. URL: https://doi.org/10.1145/1101908.
1101919.

— (2007). “API-Evolution Support with Diff- CatchUp”. In: IEEE Transactions
on Software Engineering 33, 12, 818–836. URL: doi.org/10.1109/TSE.2007.
70747.

Zisserman, J. Sivic & A. (2003). “Video Google: A Text Retrieval Approach to
Object Matching in Videos”. In: Proc. of ICCV.

arXiv:1301.3781
arXiv:1803.09473
doi:10.1016/S0164-1212(01)00152-2
doi:10.1016/S0164-1212(01)00152-2
http://dl.acm.org/citation.cfm?id=2337223.2337249
http://dl.acm.org/citation.cfm?id=2337223.2337249
https://doi.org/10.1145/2593702.2593706
doi.org/10.1109/VLHCC.2017.8103453
DOI: 10.1109/CVPR.2015.7298948
DOI: 10.1109/CVPR.2015.7298948
arXiv: 2002.08155
arXiv: 2002.08155
https://doi.org/10.1145/1101908.1101919
https://doi.org/10.1145/1101908.1101919
doi.org/10.1109/TSE.2007.70747
doi.org/10.1109/TSE.2007.70747

	Declaration of Authorship
	Acknowledgements
	Summary
	State of the Art in Detecting Refactoring
	Problem Statement
	Meta-Analysis and Unified Benchmark Evaluation
	Detection of Nested Refactoring
	Matching Problem

	Solution Approach and Results
	Result of Meta-Analysis
	Detection Approach of Nested Refactoring
	Solution Approach of Matching Problem

	Conclusion
	Future Work
	Chapter Arrangement

	A Survey of Refactoring Detection Tools
	Purpose of Survey
	Refactoring detection tool
	RefactoringCrawler
	Theory
	Discussion
	Conclusion

	Ref-Finder
	Theory
	Discussion
	Conclusion

	RefDiff
	Theory
	Discussion
	Conclusion

	RefactoringMiner
	Theory
	Discussion
	Conclusion

	Experimental Comparison of Tools for Detecting Refactorings
	Experimental results
	Accuracy
	Performance

	Comparing influence of repository structure on RM

	Threats to Validity
	External Validity
	Internal Validity
	Discussion
	Detection of Move Class and Rename Package
	 Distinguishing Move Class and Rename Package

	How to choose a refactoring tool
	Conclusion

	Probability Model for Nested Refactoring
	Detecting Problems with Nested Refactoring
	Nested Refactoring
	Problem Solution

	Probability modeling based on random forest
	Theory of Probability Model

	Algorithm
	Proof of Concept
	Training
	Validation for Single Refactorings

	Detecting Nested Refactoring
	Extract Features and Calculation
	Results and Analysis
	Specific Strategy

	Evaluation
	Threats to Validity
	Internal Validity
	External Validity

	Conclusion

	Diff Extractor and Diff Encoder
	The Role of Diff in Refactoring Detection
	Analysis of Refactoring Diff
	Classification of Refactoring Diff
	Analysis of Refactoring Diff

	Diff Extractor
	Basic Algorithm of Diff Extractor
	Implementation Algorithm of Diff Extractor

	Diff Encoder
	Related Encoding Approach
	Jigsaw Hypothesis
	Encoding Approach for Diff
	Code To Array
	Encoding Tokens
	Array To Image

	Training Model Base on Diff
	Solution Problem
	Code similarity algorithm
	Analysis

	Diff Structure Feature Model
	Approach Overview
	Training Process
	Model Evaluation

	Evaluation
	Approach Evaluation
	Performance of Result Checker
	Result Analysis

	Threats to Validity
	Challenges and limitations

	Diff Feature Matching Network
	Approach Overview
	Training Process
	Data preparation
	Training Process

	Model Evaluation
	Approach Evaluation
	Deployment
	Performance of Diff Feature Matching Network
	Result Analysis

	Threats to Validity
	Challenges and Limitations

	RefDiff-Model
	Problem Analysis
	Problems with existing models
	Problem with Diff Structure Feature Model
	Problem with Diff Feature Matching Network

	Problems with Diff Tool
	Problem with Diff Extractor
	Problem with Diff Encoder

	Approach Overview
	Approach Workflow
	Core Mechanism

	Optimised Solutions
	Optimised Diff Extractor
	Optimised Diff Encoder
	Encoding Approach For Diff Features Network Network
	Encoding Approach For Diff Structure Features Model

	Training
	Optimised Diff Features Marching Network
	Model Training
	Model Evaluation

	Optimised Diff Structure Features Model
	Model Training
	Model Evaluation
	Generalized Applications

	Evaluation
	Result Analysis
	Threats to Validity
	Challenges and Limitations

	RefDiff-Model with Random Forest Model
	Implementation
	Train Abstract Features
	Application in Nested Refactoring
	Model Embedment

	Bibliography

