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SUMMARY

Summary

Natural products have high structural diversity with various pharmacological or biological activities,
which are of great significance to our life and drug research. Millions of natural products with
versatile structural diversity have been found in nature. In recent years, a large number of microbial
genome sequences have been released in public databases and revealed many silent or cryptic
secondary metabolite gene clusters hidden in their genomes. This shows the great potential for
discovering new metabolites. Advances in sequencing technology and bioinformatics analysis also
provide great advantages for studying the biosynthesis and structural diversity of these metabolites.
Structural differentiation of natural products begins with the formation of basic scaffolds using basic
building blocks derived from primary metabolism catalyzed by different backbone enzymes. The
structural complexity of natural products mainly arises from tailoring enzymes to highly functionalize
the skeletons with a set of chemical transformations. The well-studied modification enzymes range
from different types of oxidoreductases, cytochrome P450 enzymes, to various prenyltransferases
(PTs) and methyltransferases (MTs). In addition, nonenzymatic events have also contributed to the
formation of final products with vast diversity and complexity. Therefore, fully exploring these
unexplored gene clusters and the substrate promiscuity of enzymatic and non-enzymatic reactions
for the natural product formation may be a promising way and a new strategy to explore the
metabolite diversity.

In a cooperation study with Dr. Liujuan Zheng, the biosynthesis of a highly oxygenated phenethyl
derivative ustethylin A, isolated from Aspergillus ustus, was elucidated. Due to the instability of
ustethylin A, it was acetylated before isolation and structure elucidation. Gene deletion and
heterologous expression proved that the phenethyl core structure is assembled by a polyketide
synthase (UttA) harboring a methyltransferase domain. Isotopic labelling experiments proved that
the backbone of ustethylin A is derived from malonyl-CoA and the methyl groups, also in the
phenethyl residue, are from L-methionine. Modifications on the core structure by an aryl acid
reductase (UttJ), a putative nonheme Fe'/2-oxoglutarate dependent oxygenase (UttH), a cytochrome
P450 enzyme (UttC) and a O-methyltransferase (UttF) led to the final product ustethylin A. This

study is the first report on the biosynthetic pathway of a phenethyl-containing natural product.

In cooperation with Dr. Jing Liu, the biosynthesis of streptoazine C and guanitrypmycin D1 was
elucidated. Firstly, a three-gene cluster coding for a cyclodipeptide synthase, a prenyltransferase,
and a methyltransferase was identified in Streptomyces aurantiacus by genome mining.
Heterologous expression and precursor incubation experiments led to the elucidation of the
biosynthetic steps of streptoazine C. In vivo biotransformation experiments proved the high flexibility

of the prenyltransferase SasB toward tryptophan-containing cyclodipeptides and their

1
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dehydroderivatives for regular C-3-prenylation. This study provides an enzyme with a high substrate
promiscuity from the less explored prenyltransferase group in cyclodipeptide synthase-related

pathways.

Afterwards, a two-gene cluster coding for a CDPS and a cytochrome P450 was identified in
Streptomyces sp. NRRL S-1521 by phylogenetic analysis. Heterologous expression and structural
elucidation of the isolated products proved that the cytochrome P450 GutD1s21 catalyzes the
regiospecific transfer of guanine to C-2 of the indole ring of cyclo-(L-Trp-L-Tyr) via a C-C linkage,
which represents a new chemical transformation within this enzyme class. Precursor incubation
experiments revealed that GutD1s21 efficiently accepts several other tryptophan-containing
cyclodipeptides or derivatives for regiospecific coupling with guanine, thus generating different
guanitrypmycin analogs. This study provides a biocatalyst for a new linkage pattern between a
indole ring and a guanine moiety and expands the functional spectrum of P450s as tailoring

enzymes.
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Zusammenfassung

Naturstoffe haben eine hohe strukturelle Vielfalt mit verschiedenen pharmakologischen und
biologischen Aktivitaten, die fiir unsere Lebens- und Arzneimittelforschung von groRRer Bedeutung
sind. Millionen von Naturstoffen mit vielseitiger Strukturvielfalt wurden in der Natur gefunden. In den
letzten Jahren wurde eine grofte Anzahl mikrobieller Genomsequenzen in 6ffentlichen Datenbanken
publiziert, welches viele stille oder kryptische Gencluster von Sekundarmetaboliten enthiillte, die in
den Genomen der Mikroorganismen verborgen sind. Dies verdeutlicht das groe Potenzial zur
Entdeckung neuer Stoffwechselprodukte. Fortschritte in der Sequenzierungstechnologie und der
bioinformatischen Analyse bieten auch groRe Vorteile fiir die Untersuchung der Biosynthese und der
strukturellen Vielfalt dieser Metaboliten. Die strukturelle Differenzierung von Naturstoffen beginnt mit
der Bildung von Grundgeristen unter Verwendung von Grundbausteinen aus dem
Primarstoffwechsel, die durch verschiedene Rickgratenzyme katalysiert werden. Die strukturelle
Komplexitat von Naturstoffen entsteht hauptsachlich durch sogenannte Tailoring Enzyme, welche
die Grundgeriste durch eine Reihe chemischer Umwandlungen hochgradig funktionalisieren. Die
am besten untersuchten Modifikationsenzyme reichen von verschiedenen Arten von
Oxidoreduktasen, Cytochrom P450 Enzymen, bis hin zu verschiedenen Prenyltransferasen (PTs)
und Methyltransferasen (MTs). Darliber hinaus tragen auch die nicht enzymatische Ereignisse zu
der groRRen Vielfalt und Komplexitat der Endprodukte bei. Die Erforschung unbekannter Gencluster
und die Nutzung der Substratpromiskuitat von enzymatischen und nichtenzymatischen Reaktionen
fur die Naturstoff-Biosynthese sind somit ein vielversprechender Weg und eine neue Strategie zur

Erforschung der Naturstoffvielfalt.

In einer Kooperationsstudie mit Dr. Liujuan Zheng wurde die Biosynthese eines aus Aspergillus
ustus isolierten hoch oxygenierten Phenethylderivates Ustethylin A aufgeklart. Hierbei wurden
Probleme bei der Isolierung und Strukturaufklarung instabiler Verbindungen mittels Acetylierung
Uberwunden. Gendeletion und heterologe Expression bewiesen, dass die Phenethyl-Grundstruktur
von einer Polyketid-Synthase (UttA) zusammengesetzt wird, welche eine Methyltransferase-Doméane
besitzt. Isotopenmarkierungsexperimente bewiesen, dass das Rickgrat von Ustethylin A von
Malonyl-CoA, die Methylgruppe im Phenethylrest und die O-Methylgruppe aus L-Methionin
abgeleitet sind. Modifikationen an der Grundstruktur durch eine Arylsdurereduktase (UttJ), eine
mutmaRliche Nichthdm-Fe'/2-Oxoglutarat-abhangige Oxygenase (UttH), ein Cytochrom-P450-
Enzym (UttC) und eine O-Methyltransferase (UttF) fliihren zum Endprodukt Ustethylin A. Diese

Studie ist der erste Bericht tGiber den Biosyntheseweg eines phenethyl-haltigen Naturstoffs.

In Zusammenarbeit mit Dr. Jing Liu wurde die Biosynthese von Streptoazin C und Guanitrypmycin

D1 aufgeklart. Zunachst wurde durch Genome Mining in Streptomyces aurantiacus ein Cluster mit
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drei Genen identifiziert, das fir eine Cyclodipeptid-Synthase, eine Prenyltransferase und eine
Methyltransferase kodiert. Heterologe Expressions- und Zufiitterungsexperimente dienten der
Aufklarung der Biosyntheseschritte von Streptoazin C. In-vivo-Biotransformationsexperimente
bewiesen die hohe Flexibilitat der Prenyltransferase SasB gegeniber Tryptophan-haltiger
Cyclodipeptide und deren Dehydroderivate fir die reguldre C-3-Prenylierung. Diese Studie
beschreibt ein Enzym mit einer hohen Substratpromiskuitdt aus der wenig erforschten Gruppe der

Prenyltransferasen in Stoffwechselwegen mit Cyclodipeptid-Synthasen.

Anschliefend wurde in Streptomyces sp. NRRL S-1521 durch phylogenetische Analysen,
heterologe Expression und Strukturaufklarung bewiesen, dass das Cytochrom P450 Enzym GutD1s21
den regiospezifischen Transfer von Guanin auf C-2 des Indolrings von cyclo-(L-Trp-L-Tyr) Uber eine
C-C-Verknipfung katalysiert, welches eine neue chemische Umwandlung innerhalb dieser
Enzymklasse reprasentiert. Zuflitterungsexperimente zeigten, dass GutD+s21 auch weitere
tryptophanhaltige Cyclodipeptide und Derivate davon effizient fir eine regiospezifische Kopplung mit
Guanin akzeptiert, wodurch verschiedene Guanitrypmycin-Analoga erzeugt wurden. Diese Studie
beschreibt einen Biokatalysator fiir ein neues Bindungsmuster zwischen einem Indolring und einer
Guanineinheit und erweitert das funktionelle Spektrum von Cytochrom P450 Oxidasen als Tailoring

Enzyme.



INTRODUCTION

1 Introduction

1.1 Natural products

Natural products (NPs) are chemical substances produced by living organisms in nature.” Although
there is no consensus on more restrictive definitions of NPs,? they can be classified according to
their biological function, biosynthetic pathway or source. In the field of organic chemistry, NPs are
usually defined as primary and secondary metabolites. In the fields of medicinal chemistry and
pharmacognosy, more specific definitions are often used, limiting NPs to secondary metabolites
(SMs).2 Primary metabolites are organic molecules with an intrinsic function that is essential to the
survival of the organism that produces them. In contrast, SMs are organic molecules that typically
have an extrinsic function that primarily affects other organisms besides the producer. SMs are not

essential for survival but increase an organism’s competitiveness in its environment.?'2

Most naturally occurring compounds are end products of secondary metabolism, which are unique
compounds for particular organisms or classes of organisms.?2 Most of the NPs possess a high
degree of structural diversity and unique pharmacological or biological activities due to thousands of
years of natural selection and evolutionary processes. In fact, the structural diversity of NPs far
exceeds the capabilities of synthetic organic chemists in the laboratory. In the past years, NPs have
been widely used in traditional and modern medicine to treat diseases. Currently, NPs are often
used as starting points for drug discovery, which are then synthetically modified to help reduce side
effects and increase bioactivity. Nearly half of all drugs approved by the U.S. Food and Drug
Administration (FDA) are derived from NPs.’® In addition to pharmaceuticals, NPs and their
derivatives are often used as food additives in the form of spices and herbs, antimicrobials and
antioxidants to preserve the freshness and longevity of food. Furthermore, natural and organic
products permeate nearly every aspect of our lives, from the clothes we wear to plastic and rubber

products, health and beauty products, and even the energy we use to power our cars.

NPs can be directly extracted from microorganisms, plants and animals.? %16 A crude extract from
any one of these sources contains a range of structurally diverse chemical compounds. Chemical
diversity in nature is based on biological diversity. Usually, a natural extract has some form of
biological activity that can be detected and attributed to a single compound or a set of related
compounds produced by the organism. These active compounds can be used in drug discovery and
development directly as they are, or they may be synthetically modified to enhance biological
properties or reduce side effects. In the last decades, great progress has been made in isolation and
chemical characterization of NPs from microorganisms.'”-'® Microbial metabolites are one of the

most important constitution of reported NPs.
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1.2 Strategy for NP-based drug discovery

The classical strategy for discovering new bioactive compounds is based on bioactivity screenings,
which have made great contributions to new NP-based drug discovery in the past century.?’ The
process begins with extraction of NPs from organisms, followed by the identification of a crude
extract with promising pharmacological activities, then the next step is (often multiple) consecutive

bioactivity-guided fractionation until the pure bioactive compounds are isolated (Figure 1).

bioactivity evaluation

\

organisms [mmmsdcrude extracts [mmmpd fractions [y single compounds

genome mining
and engineering

analytical techniques culturing systems

Figure 1. Strategies for NP-based drug discovery.

However, discovering new compounds with this strategy has become more difficult due to the
repeated isolation of already known ones. In addition, obtaining a sufficient amount of biological
material to isolate and characterize a new bioactive NP, and identifying the bioactive compounds of
interest can be challenging. Fortunately, there have been substantial advances both in the
development of screening assays and strategies to identify the modes of action of active
compounds.?'-?*4 Application of analytical techniques, genome mining and engineering, and advances
in microbial culturing systems help to overcome challenges in NP-based drug discovery. Many
advances discussed above are supported by computational tools including databases such as
genomic, chemical or spectral analysis data and NP databases. There are increasing tools that
enable the analysis of genetic information, the prediction of chemical structures and pharmacological
activities, the integration of data sets with diverse information and machine learning applications.?5-27
In conclusion, advances in microbiology, biochemistry, genome sequencing and bioinformatics

provide unlimited possibilities to enrich the NP library and expand the pharmaceutical repertoire.
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1.3 Categories of natural products

The majority of so far discovered NPs can be roughly classified into polyketides, peptides,

terpenoids, and alkaloids, etc.
1.3.1 Polyketides

Polyketides are a large group of structurally diverse and therapeutically important NPs.?® The
fundamental chemical aspect in the biosynthesis of polyketides is the Claisen condensation reaction,
where the polyketide backbone is formed by the condensation of starter units such as acetyl-CoA
with extender units such as malonyl-CoA. On the one hand, structural variety is achieved by PKS
inherent factors such as the use of various starter and extender units, the difference in polyketide
length, degree of reduction and methylation, as well as by different release and cyclization
mechanisms. On the other hand, further diversification can be achieved by polyketide tailoring

enzymes for oxidation, reduction, rearrangement, and transfer reactions.?%-30

Some polyketides and their derivatives are important drugs for clinical use (Figure 2). Among them,
lovastatin, also known as mevinolin, was isolated from Aspergillus terreus in 1978 and used as a
cholesterol-lowering agent.3'3*  Griseofulvin, isolated from Penicillium sp., has antifungal
properties.?® Tetracyclines isolated from Streptomyces aureofaciens and erythromycins obtained
from Saccharopolyspora erythraea are used as macrolide antibiotics.¢-3” Doxorubicin was obtained
from Streptomyces peucetius as a chemotherapeutic agent in the treatment of cancer.®® In addition
to the potential within the development of new drugs, polyketides can also be used for production of

biofuel in the chemical industry, as well as pigments in the textile industry.3%-40
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OH O OH,O O
OH

- OH
doxorubicin erythromycin A

Figure 2. Representatives of polyketides.
1.3.2 Peptides: 2,5-Diketopiperazines

2,5-diketopiperazines (2,5-DKPs), the smallest class of cyclic peptides, are achieved by the
condensation of two a-amino acids.*'*2 They are heterocyclic compounds and characterized by a
central diketopiperazine (DKP) ring. The general core of 2,5-DKPs is shown in Figure 3. Different
substitution of side chain groups Rs and Rz, depending on the incorporation of different amino acids,
will generate the simplest cyclodipeptides (CDPs). Their central scaffold, the six membered ring, can

be then modified by various substitutions and different stereochemistry.

The DKP scaffolds can be easily obtained from a-amino acids by conventional methodology.*? In
recent years, the synthesis of 2,5-DKPs via solid-phase intramolecular cyclization has been the most
utilized method, which is useful for the construction of chemical libraries for drug lead discovery.** In
nature, the 2,5-DKP scaffolds are synthesized by two different types of enzymes, the nonribosomal
peptide synthetases (NRPSs) and the cyclodipeptide synthases (CDPSs). Furthermore, the tailoring
enzymes introduce specific modifications to the DKP cores and (or) the side chains to generate

more complex DKP-containing NPs.

2,5-DKPs are ubiquitous in nature and often found as side products of polypeptides, especially

during the production process of food and beverages.*® In recent years, CDPs and their derivatives
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have attracted an increasing interest due to their important and diverse biological and potential
pharmacological properties, including antibacterial, antifungal, antiviral, antitumor, and
immunosuppressive effects.*> 46 Prominent representatives are cyclo-(L-Phe-L-Pro) (cFP) and cyclo-
(L-Phe-trans-4-OH-L-Pro), which exhibit antifungal activities.#” Phenylahistin, shows an inhibitory
effect on the cell cycle progression.*® Plinabulin (BPI-2358) is used for non-small cell lung cancer

treatment.*® Gliotoxin is used as an immunosuppressive cytotoxin (Figure 3).5°

O
NH N=\
YQ @ A
Vi
o) O
cyclo-(L-Phe-L-Pro) cyclo-(L-Phe-trans -4-OH-L-Pro) phenylahistin
0]
1
A NH N=\ HO, ’/\
HN P NH ' NH OH
HN.O OH
O B
O OH
plinabulin (NPI1-2358) bicyclomycin
O

o—/

nocardioazine A gliotoxin tadalafil (cialis)

Figure 3. General structure of 2,5-DKPs and examples of bioactive DKPs and derivatives.
1.4 Biosynthesis of NPs

1.4.1 Backbone enzymes of NPs

The biosynthetic genes for the formation of a given NP are often closely located in the microbial
genome and form a so-called gene cluster. Such clusters usually consist of one or more backbone
gene(s) as well as several genes for modifications.%'-%2 The backbone enzymes involved in the
biosynthesis of NPs generally include polyketide synthase (PKS), NRPS, CDPS, terpene cyclase
(TC), and so on. These enzymes usually catalyze the first step of the biosynthesis to form scaffolds,
which are afterwards modified by tailoring enzymes in multiple biosynthetic steps to produce the final

products. PKSs and CDPSs will be discussed in this section.
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1.4.1.1 Polyketide synthases

PKSs are one of the most abundant enzyme classes attributed in microorganisms for NP
biosynthesis. On the basis of their structural composition, PKSs can basically be divided into three

types.29, 53-54

Type | PKSs are large multidomain megaenzymes with distinct modules and can be further divided
into modular and iterative type | PKSs.?° In modular type | PKSs, each module consists of different
domains and is used only once during polyketide biosynthesis. Most prominent representative of the
modular type | PKSs is 6-deoxyerythronolide B synthase (DEBS), participating in the biosynthesis of
erythromycin A (Figure 4).%% In contrary, in iterative type | PKSs, domains are clustered in a single
module which is used repeatedly for polyketide formation. Depending on the domain architecture,
the type | iterative PKSs can be further subdivided into nonreducing PKSs (NR-PKSs), partially
reducing PKSs (PR-PKSs), and highly reducing PKSs (HR-PKSs).%%-%7 Their representative
examples are 5-methylorsellinic acid synthase (MpaC), 6-methylsalicylic acid synthase (6-MSAS)
and lovastatin nonaketide synthase (LovB) (Figure 4).3" %861 As mentioned above, modular type |
PKSs don’t work iteratively. Since each module is used only once, it is easier to predict the formed
polyketide compared to iterative type | PKS.

Type Il PKSs are enzyme complexes with mono functional proteins. Fungal type 1l PKSs have not
been described yet to date, therefore type Il PKSs are currently limited to the bacterial kingdom,
especially to Streptomyces species.?® 6265 The minimal set-up of a type Il PKS displays the
Ketosynthase domain (KS), catalyzing the Claisen-like condensation of acetyl- and malonyl-CoA
units in an iterative fashion. The acyl carrier protein domain (ACP) anchors the polyketide to the
enzyme complex and the chain length factor (CLF) shows very high similarity to the KS and
determines the length of the growing polyketide. Additionally, in some cases, the CLF domain can
catalyze the decarboxylation of malonyl-CoA to acetyl-CoA to generate the starter unit.?® Another
part of the enzyme complex is the malonyl-CoA:ACP transferase (MCAT) responsible for loading
malonyl-CoA to the ACP domain. A well-studied example for type Il PKS is TcmKLM involved in the

formation of the antibiotic tetracenomycin C (Figure 5).%7
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Modular type | PKS: 6-deoxyerythronolide B synthase (DEBS)
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Figure 4. Representatives of the type | PKSs, their domain architecture and reaction products
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Figure 5. Representative of the type Il PKS, their domain architecture and their reaction products

Distinct from the above mentioned type | and type Il PKSs, type Ill PKSs have no acyl carrier protein

domain. Type lll PKSs are the smallest types of PKS known up to this point with a common size of
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80 — 90 kDa.®® Type Il PKSs were not only firstly identified in plants but are also widely distributed
over the plant kingdom and were initially thought to be exclusive to plants.®® Later, type Ill PKSs
were also commonly discovered in bacteria.”’ Fungal type Ill PKSs are rare, but they are more
frequently identified in recent years.”" Type Ill PKSs catalyze the biosynthesis of small aromatic
polyketides. Typically, circular-form and linear-form acyl-CoAs are used as starter units and are
extended by the condensation of malonyl-CoA. For cyclization and product release, various types of
cyclization reactions are used like Claisen condensation, aldol or lactone formation.6®¢ The best-
studied type Ill PKS belongs to the family of chalcone synthases catalyzing the formation of

naringenin (Figure 6).7273

Type Il PKS:
Naringenin chalcone synthase (CHS):

»
A g g

naringenin chalcone ) .
naringenin

Figure 6. Representative of the type Il PKS, their domain architecture and their reaction product

The biosynthesis of polyketides proceeds in three phases, (1) starter unit loading, (2) chain
elongation and reduction, (3) polyketide cyclization and release. All these steps are catalyzed by the
concerted action of the different domains. The basic domains required for polyketide elongation
include KS domains for catalyzing the decarboxylative Claisen condensation to extend the
polyketide chain, acyltransferases (AT) for selection and recognition of the starter unit and extender
unit, and ACP domains which shuttle growing polyketides between the active sites of the PKS. In
addition to the minimal domain architecture of KS, AT, and ACP domains, there are further
accessory domains for polyketide chain modification. These include ketoreductase (KR) domain for
reduction of the -keto to a hydroxyl group, dehydratase (DH) domain for dehydration to generate an
o,B-unsaturated thioester, and enoylreductase (ER) domain for further reduction of the double bond

to a saturated moiety.”*">

The vast diversity and complexity of polyketides can be ascribed to the following strategies that are
utilized by PKSs during the assembly process. Firstly, utilization of different starter and extender
units by PKSs leads to the variation of polyketide skeletons.”>7¢ Secondly, PKSs employ different
reduction domains to form polyketide chains with different degrees of unsaturation.”” Thirdly,
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different cyclization mechanisms contribute to the polyketide variety.”® In recent years, combinatorial
biosynthesis was used as a new approach to generate large libraries of new compounds. Such
strategies include engineering modular PKSs by swapping and replacing PKS single domains or

entire modules.™
1.4.1.2 Cyclodipeptide synthases

Cyclodipeptide synthases (CDPSs) are enzymes that directly use the aminoacyl-tRNAs (aa-tRNAs)
from the primary metabolism as substrates to form the DKP scaffolds. They are small molecular
proteins (~30 kDa) typically with 200 — 300 amino acid residues.?° Since the first description of a
CDPS enzyme, AIbC from Streptomyces noursei in 2002 responsible for the formation of cyclo-(L-
Phe-L-Leu) (cFL), more than 120 CDPSs have been characterized.®” Over 75 different
cyclodipeptides are assembled by CDPSs, consisting of 18 of the 20 proteinogenic amino acids.
Very recently, CDPSs have been also demonstrated to incorporate non-canonical amino acids
(ncAAs) to produce noncanonical 2,5-DKPs. Functionally characterized CDPSs are mainly from
three bacteria phyla of Actinobacteria, Firmicutes, and Proteobacteria.t>® According to specific
catalytic residues, they fall into two main phylogenetically distinct subfamilies, namely NYH and
XYP.828 As the number of identified CDPSs keeps increasing, the classification of its subfamilies is

constantly adjusted and improved.

The earliest resolved crystallographic structures of three CDPSs, AlbC (PDB 30QV), Rv2275 (PDB
2X9Q) and YvmC (PDB 30QH), revealed the catalytic mechanism of the CDP formation.8¢-88 Their
monomeric protein possesses a common compact o/f fold and a conserved Rossmann-fold
domain.?” Although showing only about 15% sequence similarities, the three CDPSs mentioned
above share a high degree of structural similarity with the catalytic domains of class-Ic of aminoacyl-
tRNA synthetases (aaRSs), i.e., the Rossmann-fold subdomain and a helical connective polypeptide
1 (CP1) subdomain.*® Furthermore, all CDPSs possess two surface-accessible pockets for the
substrate selection and catalysis: pocket 1 (P1), corresponding to the aminoacyl binding pocket in
class-lc aaRSs, and pocket 2 (P2), missing in the aaRSs.8! The specificity of the first aa-tRNA
depends on its aminoacyl moiety, conversely that of the second aa-tRNA lies on both the aminoacyl
moiety and its tRNA sequence. It has been suggested that CDPSs use a sequential ping-pong
mechanism to achieve the synthesis of cyclodipeptides (Figure 7).8° After recognition of the first
substrate, the catalytic step begins with the binding of the first aa-tRNA to the CDPS and the
subsequent transfer of the aminoacyl group to the conserved serine residue of P1 to form an acyl-
enzyme intermediate. Then, the resulting intermediate reacts with the aminoacyl moiety of the
second aa-tRNA to form a dipeptidyl intermediate, which will further undergo intramolecular

cyclization, leading to the formation of the second peptide bond and the yield of final CDP product.*6
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It is noteworthy that most of the CDPSs exhibit some promiscuity in recognizing of the aa-tRNA
substrates, resulting in a mixture of CDP products. Subsequently, tailoring enzymes encoded by the

genes from CDPS BGC can catalyze various modifications on the CDP product.6: %0

o
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peptide bond " tRNArelease
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aa2-tRNA acyl-enzyme

intermediate
Figure 7. The proposed catalytic mechanism of CDPSs for cyclodipeptide biosynthesis.*®
1.4.2 Tailoring enzymes

With the rapid increasing works on the NP biosynthesis, many tailoring enzymes for modifications of
backbone structures have been identified, such as prenyltransferases (PTs), cytochrome P450
enzymes, methyltransferases (MTs), nonheme Fe'/2-oxoglutarate (Fe'/2-OG)-dependent
oxygenases, and flavin-containing oxidoreductases. Once the scaffold has been synthesized by a
backbone enzyme, it can be further diversified through subsequent oxidation, reduction,
rearrangement, and transfer reactions. In this section, prenyltransferases (PTs) and cytochrome

P450 enzymes will be introduced in detail.
1.4.2.1 Prenyltransferases

Prenyltransferases are one of the most important modifying enzymes of NPs, catalyzing the transfer

reactions of different prenyl units (n x Cs, n=1, 2, 3, 4 etc.) from prenyl diphosphates to various
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aliphatic and aromatic acceptors, which greatly increases the diversity of NPs.®"% Depending on
enzyme inherent factors, they can be further classified into UbiA-type, CloQ/NphB-type, and
dimethylallyltryptophan synthase (DMATS)-type groups.%%-%

UbiA-type PTs are membrane-bound enzymes and possess one or more conserved (N/D)DXXD
motifs. The bacterial UbiA and its eukaryotic homolog COQ2 are involved in the biosynthesis of
ubiquinones and menaquinones. They require metal ions, such as Mg?* for their catalytic activity. In
addition to participation in primary metabolism, members of the UbiA family also play an important

role in the biosynthesis of SMs.®”

PTs of the CloQ/NphB-type and DMATS-type are soluble proteins with a characteristic afpa fold,
also known as PT-barrel. Most of them can function ion-independently.®® The eponym for the
CloQ/NphB group is due to the first enzyme CloQ®® identified in Streptomyces roseochromogenes,
which is involved in the biosynthesis of clorobiocin, and later NphB'% identified in Streptomyces sp.

CL190, involved in the biosynthesis of the naphterpin derivatives.

During the past decades, PTs belonging to the DMATS superfamily have been intensively
investigated in biochemistry, molecular biology, and structural biology.?® To date, more than 60
representatives of this family have been identified and characterized. For this reason, they are the
best-studied group of prenyltransferases.’®! In addition to biochemical characterization, the crystal
structures of some prenyltransferases such as FtmPT1, AtaPT, FgaPT2, and CdpNPT has also
been elucidated.'?1% The elucidation of the crystal structures also enabled the clarification of the
reaction mechanism. Formation of a dimethylallylic cation by cleavage of the diphosphate group
from the prenyl donor initiates the Friedel-Crafts alkylation. The dimethylallylic cation is then
nucleophilically attacked by the substrate to be prenylated, for example by the indole nucleus.

Rearomatization finally leads to the release of the prenylated product.'%?

One of the characteristics of DMATS enzymes is their substrate flexibility towards a broad spectrum
of aromatic compounds (Figure 8). Most DMATSs are specific for their prenyl donors and use
DMAPP as a prenyl donor. However, there are also examples of DMATS using FPP and GPP for
their reactions.’®" The first member of the DMATS superfamily is DmaW (4-DMATS) identified in the
ergot alkaloid gene cluster in Claviceps fusiformis.’® |t catalyzed the regular transfer of the
dimethylallyl (DMA) moiety from DMAPP to the C-4 position of tryptophan.'®” The dimethylallyl
moieties can be attached to N-1, C-2, C-3, C-4, C-5, C-6, or C-7 of the indole ring in a regular or
reverse manner. Among them FgaPT2, DmaW-Cs, and MaPT are for C4-prenylation, 5-DMATS for
C5-prenylation, 6-DMATS and CdpC7PT for C7-prenylation, NotF,'% BrePT,'%® CdpC2PT,""? TdiB,"""
and FtmPT1 for C2-prenylation; CdpNPT,'"2 AnaPT,""® CdpC3PT,'""* and Sas B for C3-prenylation;
and CTrpPT for both N1- and C7-prenylation (Figure 8). For the regular prenylation, DMAPP was
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proposed to form a dimethylallyl cation/pyrophosphate ion pair. The primary center of DMAPP is
attacked by the electron-rich aromatic ring with a concerted displacement of pyrophosphate to form
the arenium ion intermediate, which re-aromatizes by deprotonation to form the final product.''5-116
For the reverse prenylation, the nucleophilic attack takes place at the tertiary center instead of the
primary center of the dimethylallyl carbocation. In addition, SirD''” from Leptosphaeria maculans and
TyrPT"8 from Aspergillus niger are examples of known tyrosine O-prenyltransferases. Furthermore,
there are also some members of the DMATS group that transfer dimethylallyl moieties onto other

structural skeletons. Examples given in Figure 8 include PaxD,''® XptB,'? and NscD.'?!

DmawW
5-DMATS l R
\ 3/.— SasB
‘]\\ 2 ~__
76 N FtmPT1

7

6-DMATS /4 \

7- DMATS CTrpPT

XptB
OH
Sirb COOH

SOR

HO

Figure 8. Examples of substrates and prenylation positions of different PTs.

In general, conversion of indole derivatives, cyclodipeptides, tyrosine derivatives, flavonoids,
xanthones and hydroxynaphthalenes to their prenylated derivatives can be catalyzed by PTs of the
DMATS type.'?? Despite the extremely high abundance of prenylated products in nature, their

diversity can be further expanded by using engineered PTs for chemoenzymatic synthesis.
1.4.2.2 Cytochrome P450 enzymes

Cytochrome P450 enzymes (P450s) are a large superfamily of heme-dependent monooxygenases.

They are widely described as monooxygenases because they are able to catalyze versatile
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reactions that introduce oxygen into a vast range of molecules. 123The term "P450" is derived from
the spectrophotometric peak at the wavelength of the absorption maximum of the enzyme (450 nm)
when it is in the reduced state and complexed with carbon monoxide. 124P450s are the most
versatile biocatalysts in nature and widely distributed throughout all life kingdoms. At present, more
than 370,000 P450 sequences have been demonstrated (UniProt), which are distributed in all
kingdoms of life such as bacteria, plants, and yeast. P450s can catalyze a vast variety of reactions,
such as regio- and stereoselective oxidations of C—C and C—H bonds with oxygen under
atmospheric conditions, 125130 which is used for detoxification of xenobiotics, 131-136drug

metabolism and biosynthesis of steroids.123,137-142
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Figure 9. The P450 catalytic cycle with hydroxylation as an example.'3

The active site of cytochrome P450 enzymes contains a heme-iron center. The iron is tethered to the
protein via a cysteine thiolate ligand. The typical catalytic system of P450s involves the substrate,
electron shuttle carriers, NAD(P)H as electron donor and O: as oxidant.'*4° |t employs a
sophisticated, multi-step catalytic cycle involving a range of transient intermediates (Figure 9). (1)
One water molecule is coordinated to the ferric heme-iron (Fe'') as the sixth ligand. (2) The substrate
(R-H) binds to the active site and displaces the water ligand, resulting in Fe'' to form high-spin Fe''-
RH. (3) A single electron is transferred from a NADPH (P450 reductase) and reduces the ferric (Fe'")
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state to the ferrous (Fe') state. (4) One molecular oxygen binds to the ferrous heme iron (Fe') to
form the ferrous dioxy [Fe'-O:] complex. (5) The second electron reduction event generates a
peroxo-ferric [Fe'-O0?] intermediate. (6) This intermediate is protonated to form the ferric
hydroperoxy [Fe"'-OOH] complex (compound 0). (7) The second protonation generates a transient
intermediate (Fe""-OOHz) and further heterolytic cleavage of the O—-O bond with concurrent release
of a water molecule gives rise to the transient and highly reactive ferryl-oxo intermediate [Fe'V=0]
(compound I). (8) Compound | abstracts a hydrogen atom from the substrate to form the ferryl-
hydroxo compound Il with a substrate radical. (9) Compound Il rebounds with hydroxyl radicals to
form the hydroxylated product (R-OH). The dissociation of the monooxygenated product (R-OH)
from the active site and the rebound of a water molecule as the sixth heme ligand results in the
regeneration of the resting state of the P450 enzyme, thus completing the catalytic cycle. Specially,
some substrate-P450 complexes can directly convert into compound 0 by using H2O2 as the sole

electron and proton donor, termed the peroxide shunt pathway.

P450 are one of the most commonly used and versatile enzymes, catalyzing multiple reactions to
modify different NP scaffolds.*3 The types of P450 transformations known to occur on structurally
diverse NP backbones can be classified into the following categories (Figure 10).'43 (1) Oxygenation:
Hydroxylation of an aliphatic carbon is the prototypical transformation catalyzed by P450s, but
P450s can also oxygenate carbons by epoxidation and aromatic hydroxylation. These P450
oxidative reactions are very often stereo- and regioselective, thereby preserving configuration.#® (2)
Dehydrogenation: P450s can catalyze the transfer of two or more electrons, converting an sp?
hybridized carbon into an sp? or sp hybridization state. It also catalyzes the dehydro coupling of
molecules. (3) Other transformations: P450s can catalyze rare rearrangements, the installation of
oxygen on unactivated carbons, the formation of ether linkages with pre-installed oxygens. They are

also able to form C - N and C - S bonds and oxidative decarboxylation.
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Figure 10. Diverse transformations catalyzed by P450s in NP biosynthesis.
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2 Aims of this thesis

In this thesis, the following issues have been addressed:

Biosynthesis of ustethylins in Asperqillus ustus

Phenethyl-containing NPs are rare microbial metabolites. The ethyl group in these compounds
usually originates from propionate in bacteria, while L-methionine has been implicated in the
formation of some fungal metabolites. However, the responsible genes/enzymes for the methylation
have not been reported prior to this study. Hence, the aim of this project is to elucidate the
biosynthetic pathway of a phenethyl derivative and to identify the enzymes responsible for the

methylation. The following experiments were carried out in cooperation with Dr. Liujuan Zheng:

» ldentification and bioinformatic analysis of the utt gene cluster

» Deletion of the genes in the ustethylin cluster (uttA-J) by using the split marker strategy

> Heterologous expression of the PKS genes uftA, and NRPS-like gene uttJ in Aspergillus
nidulans LO8030

» Isolation and structure elucidation of ustethylin derivatives from the wild-type (WT) strain,
deletion mutants, and heterologous expression mutants

> Feeding with 3C-labeled precursors in WT strain

» Feeding biosynthetic precursors in AuttA, AuttD, and AuttJ mutants

Expanding structural diversity of prenylated CDPs and elucidation of the streptoazine

biosynthetic pathway in Streptomyces aurantiacus

2,5-Diketopiperazine (DKP) alkaloids with an indole or indoline ring and isoprenoid moieties are
usually derived from tryptophan-containing cyclodipeptides (CDPs). They represent an important
class of hybrid natural products and display diverse biological and pharmacological activities,
including antibacterial, anti-tumor, anti-inflammatory and insecticidal effects. Prenylation by
prenyltransferases (PTs) at different positions of the indole ring of tryptophan-containing CDPs plays
a key role for structural diversification of indole alkaloids and is involved in the biosynthesis of a
large number of CDP derivatives. PTs from bacteria and fungi are usually highly permissive and can
use structurally distinct compounds for prenylation. Until now, only two PTs from CDPS-dependent
pathways have been described. To investigate more PTs from CDPS-dependent pathways, the

following experiments were carried out in cooperation with Dr. Jing Liu:

» Bioinformatic and phylogenetic analysis to identify the putative sas gene cluster

21



AIMS OF THIS THESIS

Functional proof of the gene cluster for the biosynthesis of streptoazine
Large scale fermentation and isolation of the streptoazine
Substrate promiscuity of SasB and generation of diverse streptoazine derivatives

Structural elucidation of the streptoazine derivatives by 1D and 2D NMR

YV V V V V

Incubation in deuterium-enriched conditions to prove the non-enzymatic formation of

streptoazine

Biosynthesis of various C2-guaninylated guanitrypmycin analogs by a Streptomyces

cytochrome P450 enzyme

Cytochrome P450 enzymes have attracted significant attention in recent years, because they can
catalyze a wide range of interesting chemical transformations. In the featured CDPS-related
biosynthetic pathways, P450s were identified to catalyze various intriguing reactions, including
intramolecular C — C bond formation, different types of dimerization, aromatization of the DKP ring,
as well as nucleobase transfer reactions. Bioinformatic and phylogenetic analysis revealed the
presence of a cdps-p450 gene cluster, named gutssz21 from Streptomyces sp. NRRL S-1521. The
cytochrome P450 enzyme GutD1s21 shows high identities (approximate 51-63%) to the known
GutDs and GtmD that function as nucleobase transferases. However, this candidate was located in a
separate subclade in the phylogenetic tree based on the characterized P450s. Therefore, it could be
involved in the biosynthesis of novel DKP derivatives. The following experiments were carried out in

cooperation with Dr. Jing Liu:

Identification and bioinformatic analysis of the gutis21 gene cluster

Heterologous expression of CDPS gene gutA1s21 in Escherichia coli BL21 (DE3)
Heterologous expression of gutis21 gene cluster in Streptomyces albus J1074
Big-scale cultivation and isolation of new DKP products

Generation of diverse guanitrypmycin analogs by biotransformation

Cultivation of the S. albus transformants in media containing '>NH4ClI

Isolation and structural elucidation of guanitrypmycin D analogs

YV V.V V VYV V V VY

Antibacterial assays of generated guanitrypmycin analogs
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3 Results and discussion

3.1 Biosynthesis of ustethylins in Aspergillus ustus

Although the SMs of Aspergillus ustus are abundant, the biosynthesis of only a few of them has
been reported, including phenethyl-containing derivatives. The phenethyl units in NPs are products
of polyketide synthases (PKSs), which was proved in some cases by feeding experiments and
genetic studies. The ethyl groups in the phenethyl residue of bacterial metabolites are mostly
originated from propionate as starter unit of PKSs."%%-%" |n fungi, it can be derived from acetate,
which was confirmed by feeding with [1, 2-'3C] acetate.'®? However, most of the methyl groups of the
phenethyl residue in fungal metabolites are derived from S-adenosyl L-methionine (SAM), which has
been proven by feeding experiments with [methyl-'3C]-L-methionine.'®3-'%4 The responsible enzymes
for the methylation and the biosynthetic pathways for such metabolites have not been reported prior
to this study. In this study, we elucidated the biosynthetic pathway of phenethyl derivatives in A.
ustus and identified the enzymes responsible for the methylation by gene deletion, isotope-labeling

experiments, and heterologous expression.

Ustethylin A (1) was the major product detected by HPLC analysis of an EtOAc extract from A. ustus
cultures in PD medium. During the purification, the amount of 1 was significantly reduced, which
suggests that 1 might be instable. Dissolution of the final isolated sample in DMSO-de resulted in an
immediate precipitation. The "H NMR spectrum of the sample supernatant was very complex and
thus uninterpretable. To overcome this instability, we used acetylation to immediately convert 1 in

the fungal extract to its triacetate 2 for structural elucidation (Figure 11).

To elucidate the origin of 1, we carried out feeding experiments with isotope-labeled precursors in A.
ustus. In the '3C NMR spectra of the acetylated product 2 after feeding with sodium [1,2-13C] acetate,
four signal pairs of coupling carbons, C-1/C-7, C-2/C-3, C-4/C-5, and C-6/C-9, were detected,
proving unequivocally the incorporation of four intact acetate units. After feeding with [2-13C] acetate
and [2-13C] malonic acid, significantly increased intensities were observed for the signals of C-2, C-4,
C-6 and C-7. Feeding sodium [1-'3C] acetate clearly increased intensities were observed for the
signals of C-1, C-3, C-5 and C-9. All these proved the incorporation of four acetate units. To
determine whether A. ustus utilizes propionate as a starter unit, sodium [2-'3C] propionate was fed
into the culture. To our surprise, the labeling pattern of 2 is very similar to that of feeding with [1-'3C]
acetate. These results proved unequivocally that sodium [2-'3C] propionate was not directly utilized
for incorporation, but was degraded to acetyl-CoA likely via pyruvate by a-oxidation.'>® Acetyl-CoA

was converted to malonyl-CoA and incorporated in 1. After feeding with [methyl-'*C]-L-methionine,
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the three signals of C-8, C-10, and C-11 were enhanced, proving that the methyl group of the

phenethyl residue is derived from SAM (Figure 12).
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Figure 12. '3C NMR spectra of the labeled and unlabeled 2.
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3C] malonic acid with filled black squares, sodium [1,2-'3C] acetate with bold bonds for intact

acetate unit, and [methyl-'3C]-L-methionine with filled pink circles.
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From the structure of 1, it can be deduced that a PKS would be responsible for the formation of its
backbone. Transcriptome analysis indicated that the PKS gene coding for KIA75596, termed UttA
in this study, was one of the eighty best expressed genes under our culture conditions.

To prove its function, uttA was replaced with a hygromycin B resistance cassette by using a split
marker gene replacement protocol. HPLC analysis of the culture extract of a AuttA mutant showed
complete loss of 1 production. Afterward, uttA was heterologously expressed in A. nidulans LO8030.
In comparison to the secondary metabolite profile of the negative control, three additional products 3
-5 were detected in the uttA overexpression transformant with 3 as the predominant peak (98%).
They differ from each other only in the methyl group at C-3 and the ethyl group at C-6 of the

benzene ring, indicating multimethylation steps during the formation of 3 (Figure 11).

Feeding 3 into the A. ustus AuttA mutant led to detection of one additional major peak 6 and one
minor peak 7. Structure elucidation confirmed 6 to be the corresponding aldehyde of 3 (ustethylin D)
and the minor peak 7 as a dimerization product (Figure 11, Scheme 1). Trace amounts of 1 were
also detected in this culture, proving 3 to be a precursor of 1. It can be speculated that the
metabolism of 6 is a limited step in the biosynthesis. Interestingly, 3 was not detected in the AuttA

mutant after feeding with 4, excluding the direct methylation of the C6-methyl group in 4.

1 differs structurally from 3 in the oxidation states of the functional groups at C-1, C-3, and C-6, as
well as O-methylation at OH-4. The conversion of 3 to 1 would require three oxidoreductases and an
O-MeT. Deletion of uttJ abolished the formation of 1 and led to accumulation of 3 — 5, which
resembles the product profile of the A. nidulans uttA expression strain. This unambiguously proved
its role in the reduction of the carboxyl group to an aldehyde. Feeding 3 into the A. nidulans uttJ
overexpression strain led to the detection of 6, proving UttJ as an aryl acid reductase (Figure 11).
Further sequence comparison and analysis revealed UttH to be a putative nonheme Fe'/2-
oxoglutarate dependent oxygenase. Deletion of uftH led to the accumulation of UttJ product 6,
proving the reaction order of both enzymes. Deletion of uttC coding for a cytochrome P450 enzyme
abolished the formation of 1 and production of 8 (ustethylin B), which differs from 1 just in the
oxidation state of the ethyl group (Figure 11). This proved that UttC catalyzed the last step in the
biosynthesis of 1. Detection of 8 with a methoxy group in AuttC mutant indicates that the methylation
of the C4-hydroxyl group occurs before UttC and after UttH reactions and could be catalyzed by the
putative O-MeT UttF. Similar to 1, 9 was also found to be unstable and could not be obtained in pure
form for structure elucidation. However, its structure can be elucidated after conversion to its

diacetylated derivative 10 (Figure 11).
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Gene deletion results revealed the reaction sequence of the tailoring enzymes for the conversion of
3 to 1. Extracted ion chromatograms of the culture proved the presence of 1 as almost the only
pathway product, indicating the high efficiency of the involved enzymes in the wildtype A. ustus. The
utt cluster is positively regulated by a DNA binding enzyme UttD. Deletion of uttD completely
abolished product formation. Even feeding 3 to the AuttD deletion mutant did not lead to any
conversion. Deletion of uttG coding for an MFS transporter reduced production of 1 to 30.8% of that
of the wildtype A. ustus. 1 was still detected in the deletion mutants of the two oxidoreductase genes

uttB and uttE. They very likely are not involved in the formation of ustethylin A (Scheme 1).

—-———
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Scheme 1. Biosynthetic pathway of ustethylins in A. ustus and utt gene cluster.

In summary, we have identified the biosynthetic gene cluster of the highly oxygenated arylaldehyde
derivative ustethylin A in this study and elucidated its biosynthetic pathway by gene deletion,
expression, and isotopic labeling experiments. The PKS UttA is responsible for the formation of the
phenethyl core structure with methylation as a key reaction. Consecutive and coordinated
modifications by three different types of oxidoreductases and one O-MeT led to the final product. To
the best of our knowledge, this is the first report on the biosynthetic pathway of a phenethyl-

containing fungal metabolite.

For details on this work, please see the publications (sections 4.1)

Liujuan Zheng*, Yiling Yang*, Haowen Wang, Aili Fan, Liping Zhang, and Shu-Ming Li (2020).
Ustethylin biosynthesis implies phenethyl derivative formation in Aspergillus ustus. Organic Letters.
22, 7837-7841, DOI:10.1021/acs.orglett.0c02719. (*equal contribution)
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3.2 Expanding structural diversity of prenylated CDPs and elucidation of the

streptoazine biosynthetic pathway in Streptomyces aurantiacus

Significant progress has recently been achieved regarding the understanding of the biosynthesis of
prenylated CDPs and derivatives thereof, especially of those from fungi of the genera Penicillium
and Aspergillus.®" 9 156158 2 5_Diketopiperazine (DKP) alkaloids with an indole or indoline ring and
isoprenoid moieties are usually derived from tryptophan-containing cyclodipeptides (CDPs).#2 94 159
They represent an important class of hybrid NPs and display diverse biological and pharmacological
activities, including antibacterial, anti-tumor, anti-inflammatory and insecticidal effects.#> 159-160
Prenylation by prenyltransferases (PTs) at different positions of the indole ring of tryptophan-
containing CDPs plays a key role for structural diversification of indole alkaloids and is involved in
the biosynthesis of a large number of CDP derivatives.% 156 PTs from bacteria and fungi are usually

highly permissive and can use structurally distinct compounds for prenylation.®5 161

To investigate more PTs from CDPS-dependent pathways, we analyzed a wide range of cdps-
containing clusters by using characterized proteins as probes and identified a candidate from S.
aurantiacus NRRL ISP-5412. The cluster of interest, termed the sas cluster, consists of three open
reading frames coding for a putative CDPS (SasA) and two tailoring enzymes, a PT (SasB) and a
MT (SasC). To verify their functions, we first cloned the cdps gene sasA from S. aurantiacus into
expression vector pPWW50A'%? and expressed it in Streptomyces albus J1074. One major product
11, was detected with a [M + H]* ion at m/z 373.1659 compared to the host strain J1074 carrying
pPWW50A (Figures 13i — 13ii). Compound 11 was identified as cyclo-(L-Trp-L-Trp) (cWW) by

comparison with an authentic standard, proving SasA to be a cWW synthase. Then, the whole gene
cluster comprising sasABC was cloned into pPWW&50A and overexpressed in J1074 as described
above. In addition to the predominant 11, four new additional compounds were observed (Figure
13iii). The second dominant product 12 was detected with a [M + H]* ion at m/z 537.3224, 164 Da
larger than that of cWW, indicating the attachment of two prenyl and two methyl groups to 11. The
three minor compounds 13, 14, and 15 with [M + H]* ions at 441.2285, 509.2911, and 523.3068, are
68, 136, and 150 Da larger than 11, implying one prenyl, two prenyl, and two prenyl moieties plus
one methyl group in their structures, respectively. Compound 12 was then isolated by semi-
preparative HPLC after large scale fermentation. Comprehensive interpretation and comparison of
the '"H NMR data as well as the ECD spectrum with those reported in the literature'®® confirmed 12
to be streptoazine C (Scheme 2). These data strongly support the function of SasB as a regular C-3-
prenyltransferase and SasC as an indoline N-methyltransferase. Due to the low product yields, 13 -

15 could not be isolated from the sasABC transformant for structure elucidation by NMR analysis.
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Figure 13. LC-MS analysis of S. albus J1074 transformants with and without precursor incubation.

To confirm the functions of SasB and SasC and to figure out the reaction order, we co-expressed
sasA with sasB and sasC separately to yield sasAB and sasAC. In addition to the CDPS product 11,
two additional compounds 13 and 14 were detected in the fermentation culture of the sasAB
transformant (Figure 13iv). Isolation and structure elucidation by MS and 'H NMR analyses as well
as comparison with the data of known compounds'®® confirmed 13 and 14 to be regularly C3-
monoprenylated cWW and streptoazine A, respectively (Scheme 2). In contrast, only 11 was
observed in the culture of the sasAC transformant (Figure 13v). Neither mono-, nor dimethylated 11
was detected in the sasABC transformant, even in the sensitive extracted ion chromatograms (EICs).
These results supported that 11 cannot be methylated by the methyltransferase SasC and
prenylation takes place before methylation. Incubating the sasC transformant with 14 led to the clear
detection of 12 (Figure 13vi), whereas no new peaks were observed in the culture after incubation
with 13 (Figure 13vii). This demonstrated that methylation proceeds only after the attachment of two
prenyl moieties (Scheme 2). This reaction order is the same as for the recently reported two-gene

cluster responsible for streptoazine C biosynthesis. 63
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Scheme 2. The sas gene cluster and biosynthetic pathway of streptoazine C in S. aurantiacus.

To further verify that the formation of 13 and 14 are catalyzed by SasB, its coding sequence was
cloned into pPWWS50A and expressed in J1074. Neither 11 nor other additional metabolites were
observed in the sasB transformant (Figure 14Aiii). 13 and 14 were identified from incubating the
sasB transformant with 11 (100 pM) and cultivation for 5 days (Figure 14Aiv), whereas no
consumption of 11 was found in the control culture (Figure 14Aii). These results demonstrated that

SasB is able to catalyze the regular C-3 prenylation of 11.

In addition, we investigated the substrate specificity of SasB. In vitro testing of the acceptance of
tryptophan-containing CDPs by SasB was not possible, as recombinant proteins could not be
obtained after heterologous expression in both E. coli and Streptomyces. Thus, we supplied 12
CDPs to the J1074 transformant with sasB and monitored their consumption by LC-MS analysis. As
shown in Figures 14Av — 14Auviii, cyclo-(L-Trp-L-Phe) (cWF), cyclo-(L-Trp-L-Tyr) (cWY), cyclo-(L-Trp-
L-Leu) (cWL), and cyclo-(L-Trp-L-Met) (cWM) were efficiently converted by SasB. The [M + H]* ions
of the products 16 — 19 are 68 daltons larger than those of the precursors, indicating the attachment
of one dimethylallyl moiety to the substrates. Products 16 — 19 were obtained by large-scale
fermentation and subsequent separation by preparative HPLC, and their structures were analyzed
by NMR, including 'H, '3C, COSY, HSQC, HMBC, and NOESY. The typical signals of a regular C-3-
prenyl residue in the '"H NMR spectra are found in the ranges of o 2.44 — 2.46 (d, 6.9 — 7.2 Hz, H-
1, 5.01 — 5.03 (t, 6.9 — 7.2 Hz, H-2"), 1.57 — 1.58 (s, H-4'), and 1.63 — 1.64 (s, H-5'). The signals
of the five carbons are detected in the '3C spectra at about oc 34 (C-1'), 120 (C-2'), 134 (C-3'), 18
(C-4"), and 26 (C-5'). Prenylation at C-3 abolishes the aromatic character of the indole system and
causes a shielded shift of the H-2 signal to 64 5.24 — 5.26 as well as those of C-2 and C-3 to 6c 80

and 55, respectively. The configuration of the products was determined based on the correlations
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between H-1' and H-11, H-1"' and H-2 as well as H-2 and H-11 in the NOESY spectra. Comparison of
their ECD spectra provided additional evidence for their configurations. All the obtained data
confirmed that 16 — 19 are C-3-prenylated derivatives of the corresponding CDPs (Figure 9B). Low
conversions to prenylated derivatives were also detected by LC-MS analysis for cyclo-(L-Trp-L-Ala)
(CWA), cyclo-(L-Trp-D-Ala), cyclo-(D-Trp-L-Ala), cyclo-(D-Trp-D-Ala), cyclo-(L-Trp-L-Pro) (cWP), cyclo-
(L-Trp-D-Pro), cyclo-(D-Trp-L-Pro), and cyclo-(D-Trp-D-Pro). Due to the low product yields, the
structures of these products could not be elucidated in this study. These results suggest a more
flexible substrate specificity of SasB from S. aurantiacus than that of SazB from S. leeuwenhoekii.’®3
It was reported that cWF, cWY, cWA, and cWP were not accepted by SazB.'®3 In our case, all of

these four CDPs were prenylated by SasB with high conversions for cWF and cWY (Figure 14).
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Figure 14. A) HPLC analysis of the sasB transformant with and without precursors and B)

prenylated products of SasB. S: substrate.

Cyclodipeptide oxidases (CDOs) are frequently found in the CDPS-related pathways and install exo

double bonds at the DKP ring.'® For combinatorial application of SasB with these oxidases, we
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tested its acceptance of the dehydrogenated forms of the four efficiently converted CDPs, i.e. cyclo-
(L-Trp-APhe) (cWAF), cyclo-(L-Trp-ATyr) (cWAY), cyclo-(L-Trp-ALeu) (CWAL), and cyclo-(L-Trp-AMet)
(cCWAM), by incubation experiments in the sasB transformant. LC-MS analysis showed that all of
these compounds were good substrates for SasB and were completely converted to their prenylated
products (Figures 14Aix — 14AXxii). The products 20 — 23 were subsequently isolated and their
structures were confirmed to be regularly C-3 prenylated derivatives at the indoline ring (Figure 14B)
by detailed interpretation of their NMR data and the comparison with the data of 16 — 19.
Observation of the interaction between NH-15 and H-19/H-23 in the NOESY spectrum of 21 as well
as NH-15 and H-18 in that of 22 supported the Z-configuration of the exo double bonds in their

structures.

During the isolation procedure, we observed the conversion of the cWAM product 23 to a new
compound 24. Isolation by using a chiral-phase HPLC column and structure elucidation by NMR
analysis including interpretation of the NOESY data and comparison of its ECD spectrum with that of
23 confirmed the epimerization at the C-11 position. As the nonenzymatic epimerization via keto-enol
tautomerism was already observed for the guanitrypmycins,'®® we speculated a similar mechanism
may explain the conversion of 23 to 24 (Figure 14). Incubation of 23 in CD3z0D/D20 (1:1) at pH 9 and
12 for 14 h and LC-MS analysis confirmed indeed the conversion of 23 to 24 and incorporation of
one deuterium in both molecules. This supported the epimerization at C-11 via keto-enol

tautomerism.

In conclusion, we elucidated the biosynthetic pathway of streptoazine C from S. aurantiacus by
heterologous gene expression in S. albus and precursor incubation experiments. More importantly,
the prenyltransferase SasB displays a remarkably high substrate tolerance and accepts not only a
number of tryptophan-containing CDPs, but also their dehydrogenated derivatives for rare regular
C3a-prenylation at the indole ring. This study provides an enzyme with a high substrate promiscuity
from the less explored prenyltransferase group in cyclodipeptide synthase-related pathways and

provides more details on their biochemical properties.

For details on this work, please see the publication (section 4.2)

Jing Liu*, Yiling Yang*, Lauritz Harken, and Shu-Ming Li (2021). Elucidation of the streptoazine
biosynthetic pathway in Streptomyces aurantiacus reveals the presence of a promiscuous
prenyltransferase/cyclase. Journal  of  Natural  Products, 84, 3100-3109. DOI:
10.1021/acs.jnatprod.1c00844. (*equal contribution)
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3.3 Biosynthesis of various C2-guaninylated guanitrypmycin analogs by a

Streptomyces cytochrome P450 enzyme

Cytochrome P450s were found as the most common modification enzymes in the characterized
cdps-related gene clusters. P450 enzymes from the featured biosynthetic pathways catalyze a wide
range of interesting chemical transformations, such as intramolecular C—C bond formation, different
types of dimerization, aromatization of the DKP ring, as well as nucleobase transfer reactions. 4 166-
67 Seven different types of cyclodipeptide-nucleobase linkages have been characterized from
CDPS-P450-related nucleobase transfer pathways, including C—C, C—N and C— O bonds. 65 168-171
Therefore, we aimed to find more CDPS related modification enzymes to expand the spectrum of

CDP derivatives and obtain more novel biocatalysts.

In the previous studies, we took the functionally characterized CDPSs and P450s as probes to
search and identify their putative homologs in the public databases. Subsequent phylogenetic
analysis led to the identification of plenty of uncharacterized cdps-p450 gene clusters. Based on the
phylogenetic information, one cdps-p450 gene cluster from Streptomyces sp. NRRL S-1521
attracted our attention. Following the nomenclature of the known clusters,'® 169 we named gutA1s21

and gutD1s24 for the cdps and P450 genes, respectively.

A sole peak for 25 was identified by HPLC analysis in the E. coli transformant harboring gutA1s2,
which was not detected in the mutant with the empty vector pET28a (+) as the negative control
(Figures 15i — 15ii). Compared to an authentic standard, compound 25 was characterized as cWY,
which was also confirmed by its 'H and '*C NMR data. This proved that the CDPS GutA+s21 functions
as a cWY synthase (Scheme 3). Based on the LC-MS data, expression of the candidate gene cluster
gut(AD)1s21 resulted in the production of two compounds 25 and 26. Neither was found in the
negative control with pPWWA50A (Figures 15iii — 15iv). Compound 26 exhibited a [M + H]* ion at m/z
499.1843, which is 149 Da larger than that of cWY. Thus, we deduced that an additional guanine
residue was attached to cWY. Subsequently, compound 26 was isolated from a large-scale
fermentation culture and its structure was further elucidated by detailed NMR analysis. Inspection of
the NMR data of compound 26 revealed the presence of three characteristic 'H signals of a guaninyl
residue at & 10.70 (H-1"), 12.98 (H-9'), and 6.33 (H-10') with five corresponding '3C signals at
151.6 (C-2"), 146.0 (C-4'), 106.0 (C-5'), 159.3 (C-6'), and 140.5 (C-8'). Although no clear correlation
in the HMBC spectrum was observed between the cWY skeleton and the guaninyl moiety, the
missing 'H signal for H-2 of the cWY part and that for H-8' of guanine indicated the new C—C bond
between C-2 and C-8' of the two moieties (Scheme 3). In addition, the signal of C-3 in the *C

spectrum of compound 26 is deshielded by 5 ppm in comparison to that in compound 25, whereas
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signals for other carbons like C-5 — C-7 are only deshielded approximately 3 ppm. As compound 26
features tryptophanyl and guaninyl residues, we named it guanitrypmycin D1. Cultivation of S. albus
carrying gut(AD)1s21 in '>NH4Cl-containing medium revealed incorporation of three and eight '°N
atoms in 25 and 26, respectively, providing additional evidence for the guanitrypmycin D1 structure.
The above results implied GutD+s21 as a new nucleobase transferase for the specific C-2 — C-8'

connection between the indole and guaninyl units, differing from the previous reported P450s.65 168
171
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Scheme 3. The gutss21 gene cluster and biosynthesis of guanitrypmycin D1 in Streptomyces sp.
NRRL S-1521.

In order to confirm the GutD1s21 function, we intended to carry out biochemical characterizations with
a recombinant protein overproduced in E. coli. Unfortunately, no soluble GutD1s21 was obtained.
Therefore, we cloned it into pPWWS50A for expression in S. albus J1074, followed by precursor
incubation experiments. Supplementation of compound 25 to the gutDs21 transformant led to the
production of 26, while no additional metabolites were detected in J1074 harboring pPWW50A
(Figures 15v — vii). These data proved unequivocally GutD+s21 as a specific C-2 — C-8' guaninyl
transferase, and being responsible for the generation of a new guaninylated DKP (Scheme 3).
Feeding of cyclo-(D-Trp-L-Tyr) to the gutD1s21 transformant did not lead to any conversion, proving

the importance of the L-configuration of the tryptophanyl moiety for acceptance by GutD1s21.
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Figure 15. HPLC analysis of the generated transformants and the gutD1s21 transformant with/without

precursor feeding. S: substrate.

Based on the GutD+s21 function, we investigated its substrate specificity toward other tryptophan-
containing CDPs including cWA, cWF, cyclo-(L-Trp-L-His) (cWH), cWL, cWM, cWP, and cWW. After
supplying these CDPs into the J1074 transformant harboring gutD1s21, the 5 day-old cultures were
monitored for their substrate conversion by LC-MS. As shown in Figure 15, cWF and cWW were

efficiently transformed to the products 27 and 28 (Figures 15viii — 15ix). Their [M+H]* ions are 149

daltons larger than those of the corresponding precursors, indicating the attachment of a guaninyl
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residue. In contrast, other CDPs like cWA, cWH, cWL, cWM, and cWP cannot be efficiently
converted by GutD1s21. Compounds 27 and 28 were subsequently isolated from the large-scale
cultures and their structures were elucidated based on NMR data. The typical signals of the guaninyl
moiety were clearly observed in their 'H NMR spectra. For compound 27, these signals are found at
On 10.63 (br s, H-1"), 12.94 (br s, H-9'), along with 6.27 (br s, H-10"). For compound 28, they are at
on 10.80 (br s, H-1"), 12.91 (br s, H-9"), and 6.42 (br s, H-10"). Compared with compound 26, very
similar values can be assigned for the five carbons of the guanine residue in the '3C spectra as well.
Similar to that of compound 26, the key correlation between C-2 — C-8' was absent in the HMBC
spectra. Nevertheless, the absence of the corresponding 'H signals supported them to be C-2-
guaninylated cWF (27, guanitrypmycin D2) and cWW (28, guanitrypmycin D3), respectively (Figure
15).

Because GutD1s21 can use cWF, cWY, and cWW as substrates for coupling with guanine, we further
tested its acceptance for the dehydrogenated forms of these well converted CDPs. Due to difficulties
in obtaining cyclo-(L-Trp-ATrp) (cCWAW), only cWAY and cWAF were prepared by large-scale enzyme
assays with the functionally characterized CDO Ndas_1146/1147 for biotransformation with the
gutD1s21 transformant.'”? After incubation for 7 days, the two dehydrogenated CDPs were converted
to peaks 29 and 30 (Figures 15x — 15xi). Structure elucidation by detailed interpretation of NMR
data confirmed both compounds as guaninylated derivatives at the C-2 of the indole ring (Figure 15),
i.e. guanitrypmycin D4 (29) from cWAY and guanitrypmycin D5 (30) from cWAF. Addition of cWF,
cWW, cWAY, and cWAF to cultures of S. albus harboring gutD1s21 containing '*NH4Cl led to detection
of compounds 27 — 30 with incorporation of five SN atoms, respectively, further supporting their

structures suggested by NMR and ECD analyses.

Additionally, we tested the antibacterial activity of the isolated compounds. Compounds 26 — 30

were subsequently tested for their antibacterial activities against E. coli ATCC 25922 and DH5q,
Enterococcus faecalis DSM2570, Klebsiella pneumoniae DSM26371, Bacillus subtilis NCIB 3610
and BSB 01, Bacillus circulans NRRL B-380, NRRL B-14032, and NRRL NRS-1108, Staphylococcus
aureus ATCC 29213, Staphylococcus delphini DSM20771 as well as Pseudomonas aeruginosa
ATCC 27853. Unfortunately, no inhibitory activity was observed.

Taking the results together, a two-gene cluster coding for a CDPS and a P450 was identified in
Streptomyces sp. NRRL S-1521 by phylogenetic analysis. Heterologous expression of the gene
cluster led to the identification of a new guaninylated DKP guanitrypmycin D1. Biotransformation
experiments demonstrated that GutD1s21 catalyzes the transfer of a guanine moiety onto C-2 of the

indole ring of cWY via a C — C bond formation. Precursor incubation experiments revealed that
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RESULTS AND DISCUSSION

GutD1s21 can also utilize other tryptophan-containing CDPs as well as their dehydrogenated forms as
substrates for the synthesis of different guanitrypmycin analogs. Therefore, this study provides a
biocatalyst for a new linkage pattern between a DKP indole ring and a guanine moiety and expands

the functional spectrum of P450s as tailoring enzymes.

For details on this work, please see the publication (section 4.3)

Jing Liu*, Yiling Yang*, Xiulan Xie, and Shu-Ming Li (2023). A Streptomyces cytochrome P450
enzyme catalyzes regiospecific C2-guaninylation for the synthesis of diverse guanitrypmycin analogs.
Journal of Natural Products, 2023, 86, 94-102. DOI: 10.1021/acs.jnatprod.2c00787. (*equal

contribution)
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ABSTRACT: A highly oxygenated phenethyl derivative ustethylin
A was isolated from Aspergillus ustus. Gene deletion, isotope
labeling, and heterologous expression proved that the phenethyl
core structure is assembled from malonyl-CoA by a polyketide
synthase harboring a methyltransferase domain. Propionate was
converted via acetyl-CoA to malonyl-CoA and incorporated into
the molecule. Modifications on the core structure by three different
oxidoreductases and one O-methyltransferase lead to the final product, ustethylin A.

henethyl-containing natural products are common micro-
bial metabolites. Barnol' and marilone A” are examples
from fungi, while gilvocarcin E’® and tiacumicin B* occur in
Streptomyces (Figure 1). Feeding experiments and genetic

from propionate in bacteria OH o
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H OCH
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Figure 1. Origins of ethyl groups in phenethyl-containing natural
products.

studies proved that the phenethyl units are products of
polyketide synthases (PKSs).”~> The ethyl groups in phenethyl
residue of bacterial metabolites are mostly originated from
propionate as starter unit of PKSs.>* In fungi, it can be derived
from acetate, as in the cases of LL-D253a° and O-
methylasparvenone,” which was confirmed by feeding with
[1,2-3C] acetate. However, the most methyl groups of the
phenethyl residue in fungal metabolites are derived from §-
adenosyl L-methionine (SAM), which has been proven by
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feeding experiments with [methyl-'*C]-L-methionine.”® The
responsible enzymes for the methylation and the biosynthetic
pathways for such metabolites have not been reported prior to
this study.

HPLC analysis of the EtOAc extract of an A. ustus culture in
PD media revealed the presence of one predominant peak 1
(Figure 2B(i)) with a [M + Na]* ion at m/z 249.0732 and a
deduced molecular formula of C;;H,,O; (see Figure S7 in the
Supporting Information). Attempts to get interpretable 'H
NMR spectrum for 1 from a large-scale fermentation failed,
although it was almost the only product peak in the HPLC
chromatogram. During isolation, the amount of 1 decreased
evidently. Dissolving the finally isolated 7 mg sample in
DMSO-d; led to precipitation immediately. The 'H NMR
spectrum of the supernatant was very complex, so that an
interpretation was impossible (data not shown). To overcome
the instability, 1 in the fungal extract was immediately
converted to its triacetate 2 for structural elucidation (see
Table S5, Figure S19, and Figures $21—S25 in the Supporting
Information), which confirmed 1 to be 2-hydroxy-3-hydrox-
ymethyl-4-methoxy-6-hydroxyenthylbenzaldhyde, termed uste-
thylin A (Scheme 1).

To elucidate the origin of 1, we performed a feeding
experiment with sodium [1,2-"*C] acetate in A. ustus. In the
BC NMR spectrum of the acetylated product 2 (Figure 3),
four signal pairs of coupling carbons, C-1/C-7, C-2/C-3, C-4/
C-5, and C-6/C-9, were detected, proving unequivocally the
incorporation of four intact acetate units. Feeding with sodium
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Figure 2. (A) Schematic representation of the utt cluster in A. ustus
and (B) HPLC analysis of the fungal extracts.

[1-13C] acetate revealed that C-2 at 5. 152.5, C-4 at 162.1, C-6
at 144.9, and C-7 at 189.0 ppm are from the carbonyl group of
acetate, with 3.8—6.1-fold enrichments (see Table S11 in the
Supporting Information). Correspondingly, significantly in-
creased intensity was observed for the signals at 5. 119.8 (C-
1), 116.0 (C-3), 112.1 (C-5), and 31.5 ppm (C-9), with 4.9—
8.9-fold of those of the unlabeled 2 after feeding with sodium
[2-3C] acetate and [2-*C] malonic acid (see Table S11). This
confirmed the methyl/methylene group of acetate/malonate as
their origin.

To determine whether A. ustus utilizes propionate as a
starter unit, sodium [2-'*C] propionate was fed into the
culture. To our surprise, the labeling pattern of 2 is very similar
to that with [1-'°C] acetate (Figure 3), with 3.6—6.1-fold

enrichments for C-2, C-4, C-6, and C-7 (see Table S11). No
enrichment for C-9 at 31.5 ppm was observed. These results
proved unequivocally that sodium [2-'*C] propionate was not
directly utilized for incorporation, but was degraded to acetyl-
CoA likely via pyruvate by a-oxidation.” Acetyl-CoA was
converted to malonyl-CoA and incorporated in 1.

In the C NMR spectrum of 2 after feeding with
[methyl-">C]-L-methionine (Figure 3), the three signals at 5¢
54.1 (C-8), 63.9 (C-10), and 56.6 ppm (C-11) were enhanced
to 13.1—15.9-fold of those of the unlabeled 2 (see Table S11),
proving that the methyl group of the phenethyl residue is also
from SAM.

The genome of A. ustus 3.3904 was sequenced and published
in 2015."° For our biosynthetic studies, we resequenced it and
used both sequences for prediction of putative gene clusters by
AntiSMASH."" Our sequence correlated very well with the
published data, at least for the cluster described in this study.
From the structure of 1, it can be deduced that a PKS would be
responsible for the formation of its backbone.'”” Genome
mining indicated the presence of more than 20 putative PKS
genes. Transcriptome analysis revealed that the PKS gene
coding for KIA75596, termed uttA in this study (recall Figure
2A), was one of the 80 best expressed genes under our culture
conditions (data not included).

To prove its function, uttA was replaced with a hygromycin
B resistance cassette by using a split marker gene replacement
protocol.”> The potential mutants were verified by PCR
(Figure S1 in the Supporting Information) and cultivated in
PD medium for secondary metabolite production. HPLC
analysis of the culture extract of a AuttA mutant showed
complete loss of 1 production (recall Figure 2B(ii)).
Afterward, uttA was cloned into pYH-gpdA-pyrG via homol-
ogous recombination in yeast'* for heterologous expression."
The obtained plasmid pLZS1 was linearized by Smal and
integrated into the genome of A nidulans LO8030 (Figure S2
in the Supporting Information).'® In comparison to that of the
negative control, three additional products 3—5 were detected
in the uttA overexpression transformant with 3 as the
predominant peak (98%) (see Figure 4B). The UttA products
3—5 were identified as benzoic acid derivatives by NMR
analysis and comparison with published data'”'® (see Tables
S6 and S7 in the Supporting Information, as well as Figure 4C
and Figures S26—S31 in the Supporting Information). They
differ from each other only in the methyl group at C-3 and the
ethyl group at C-6 of the benzene ring (Figure 4C), indicating
multimethylation steps during the formation of 3.

Scheme 1. Biosynthetic Pathway of Ustethylins in A. ustus®
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Figure 3. >C NMR spectra of the labeled and unlabeled 2. [Legend:
solid blue circles represent the labeled carbons after feeding with
sodium [1-'3C] acetate, solid green circles represent sodium [2-'*C]
propionate, solid blue squares represent sodium [2-'3C] acetate, solid
black squares represent [2-'3C] malonic acid, bold bonds represent
sodium [1,2-'3C] acetate for the intact acetate unit, and solid pink
circles represent [methyl-'*C]-L-methionine.]

Feeding 3 into the AuttA mutant led to detection of one
additional major peak 6 and one minor peak 7 (see Figure SA).
Structure elucidation confirmed 6 to be the corresponding
aldehyde of 3 (ustethylin D; see Scheme 1, as well as Table S7
and Figure S32 in the Supporting Information) and the minor
peak 7 as a dimerization product (see Table S8 and Figures
$33—S37 in the Supporting Information). Trace amounts of 1
were also detected in this culture (Figure SA), proving 3 to be
a precursor of 1. It can be speculated that the metabolism of 6
is a limited step in the biosynthesis. Interestingly, 3 was not
detected in the AuttA mutant after feeding with 4 (Figure S18
in the Supporting Information), excluding the direct
methylation of the C6-methyl group in 4.

Bioinformatics analysis revealed that UttA is a nonreducing
PKS with a domain architecture of KS-MAT-PT-ACP-ACP-
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Figure 4. (A) Structural model of UttA-MeT with conserved motifs
by alignments of 96 MeT domains in PKSs; (B) HPLC results of A.
nidulans heterologous expression strains; and (C) the reactions
catalyzed by UttA.
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Figure S. HPLC analysis of culture extracts of (A) A. ustus AuttA and
(B) A. nidulans utt] overexpression mutant after feeding with 3.

MeT-TE (f-ketoacyl synthase, KS; malonyl-CoA-ACP trans-
acylase, MAT; product template, PT; acyl carrier protein,
ACP; methyltransferase, MeT; thiolesterase, TE) (Figure
4C). fo The PT domain was deduced by phylogenetic analysis
with 30 known PKS PTs (see Figure S3 in the Supporting
Information).” It can be speculated that the methyl groups in
3 are transferred by the MeT domain from S-adenosyl L-
methionine. UttA shares a sequence identity of 37.8% with the
citrinin synthase PksCT from Monascus purpureus.”’ The
sequence identity of their MeT domains is found to be 39.7%.
Therefore, a model of UttA-MeT was built, using PksCT-MeT
as a template with SWISS-MODEL.”> Meanwhile, 96 MeT
domains in PKSs were analyzed and presented with Weblogo
(Figure 4A).”>** The highly conserved residues of the SAM
binding motif ExGxGxGx were identified at residues 1772—
1779 in UttA. His1850 acting as a key catalytic residue for
enolization is also highly conserved (see Figure S4 in the
Supporting Information). To delete MeT activity from UttA,
the UttA G1778 V and UttA_ _HI850A mutants were
constructed and expressed in A. nidulans LO8030. HPLC
results showed the abolishment of the PKS products 3—§
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without accumulation of any other products, indicating the
essential role of MeT domain for the functionality of UttA.
Feeding propionate to the two mutants did not resulted in any
detectable product formation, confirming that UttA cannot
directly utilize propionate as starter as described above (Figure
4B(ii)—(v). These results indicated that the methylation step is
essential for the polyketide assembling by UttA. We propose
that malonyl-CoA is loaded onto the MAT domain and
transferred to the ACP domain. The propionyl-ACP complex
is formed by methylation via SAM and decarboxylation. After
condensation with two malonyl-CoA molecules, the MeT
domain attaches the second methyl group. Condensation with
another malonyl-CoA molecule led to the production of a
polyketide chain, which is subsequent cyclized by the PT
domain and released by the TE domain, resulting in the
formation of the predominant product 3 (98%; see Figures 2B
and 4B). However, it cannot be excluded that mutation at
G1778 and HI850 had influence on the transcription,
translation process, or protein stability. Attempts to get
recombination protein of the MeT domain failed, so that no
in vitro study was possible. The reaction catalyzed by UttA
with involvement of two methylation steps is closely related to
that of 3-methylorcinaldehye synthase MOS from Acremonium
strictum. However, MOS contains a terminal reductase domain
for direct release of an aldehyde,25 while the UttA product, an
aryl acid, is afterward reduced to an aldehyde.

1 differs structurally from 3 in oxidation states of the
functional groups at C-1, C-3, and C-6, as well as O-
methylation at OH-4. The conversion of 3 to 1 would require
three oxidoreductases and an O-MeT. Inspection of the
genomic neighborhood of ufttA in A. ustus revealed the
presence of a putative biosynthetic gene cluster (uttA—utt],
coding for the putative proteins KIA75596—KIA75587 in the
database; see Figure 2A) containing such genes as well as those
coding for regulator and transporter (Table S1 in the
Supporting Information). Ut coding for an NRPS-like
enzyme with an A-T-R domain architecture is 1 of the 10
highly expressed genes in A. ustus under our culture conditions
(data not included). Given such enzymes from different fungal
strains for aryl acid reduction to aldehydes,***” Utt] is likely
involved in the conversion of 3 to 6. Indeed, deletion of utt]
abolished the formation of 1 and accumulation of 3—5 with
almost the same product profile of the A. nidulans uttA
overexpression strain (see Figures 2B(viii) and 4B(i), as well as
Figure S16 in the Supporting Information). This unambigu-
ously proved its role in the reduction of the carboxyl group to
an aldehyde. Feeding 3 into the A. nidulans utt] overexpression
strain led to the detection of 6 (see Figure SB(ii)), proving
Utt] as an aryl acid reductase (Scheme 1). Further sequence
comparison and analysis revealed UttH to be a putative
nonheme Fe''/2-oxoglutarate dependent oxygenase and shares
58% and 52% sequence identities with CitB from Monascus
ruber”® and ClaD from Penicillium crustosum,” respectively
(see Table S1 and Figure SS in the Supporting Information).
Both known enzymes catalyze hydroxylations of aryl methyl
groups. Deletion of uttH led to the accumulation of Utt]
product 6, proving the reaction order of both enzymes (see
Figure 2B(vii), as well as Figure SIS in the Supporting
Information). Deletion of uttC coding for a cytochrome P,
enzyme abolished the formation of 1 and production of 8
(ustethylin B; see Table S9 in the Supporting Information,
Figure 2B(iii), and Figures S9 and S38—S41 in the Supporting
Information), which differs from 1 just in the oxidation state of
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the ethyl group. This proved that UttC catalyzed the last step
in the biosynthesis of 1. Bioinformatics analysis showed that
UttC contains the conserved motifs ExxR (EAGR, 349—352)
and CxG (CLG, 434—436) of P,s, enzymes (see Figure S6 in
the Supporting Information).”” Usually, the hydroxylation of
phenyethyl group occurs at the a-position (—CH,—), e.g, in
the biosynthesis of marilone A>" Here, we present an unusual
P-hydroxylation of the phenyethyl group by the cytochrome
P,5o UttC. Detection of 8 with a methoxy group in AuttC
mutant indicates that the methylation of the C4-hydroxyl
group occurs before UttC and after UttH reactions and could
be catalyzed by the putative O-MeT UttF. Indeed, one
predominant peak 9 (ustethylin C) with a [M + Na]* ion at
m/z 219.0626, which is 14 Da less than that of 8, was observed
in the AuttF mutant (see Figure 2B(v), as well as Figure S13 in
the Supporting Information). Similar to 1, 9 was also found to
be unstable and could not be obtained in pure form for
structure elucidation. However, its structure can be elucidated
after conversion to its diacetylated derivative 10 (see Table
S10 and Figures S42—S45 in the Supporting Information).

Gene deletion results revealed the reaction sequence of the
tailoring enzymes for 3 conversion to 1. Extracted ion
chromatograms of the culture proved the presence of 1 as
almost the only pathway product (see Figure S7 in the
Supporting Information), indicating the high efficiency of the
involved enzymes in wildtype A. ustus. The utt cluster is
positively regulated by a DNA binding enzyme UttD. Deletion
of uttD completely abolished product formation (see Figure
2B(iv), as well as Figure S11 in the Supporting Information).
Even feeding 3 to the AuttD deletion mutant did not lead to
any conversion (see Figure S17 in the Supporting Informa-
tion). Deletion of uttG coding for an MFS transporter reduced
1 production to 30.8% of that of the wildtype A. ustus (see
Figures 2B(vi), as well as Figure S14 in the Supporting
Information). 1 was still detected in the deletion mutants of
the two oxidoreductase genes uttB and uttE (see Figures S9
and S12 in the Supporting Information). They very likely are
not involved in the formation of ustethylin A.

In summary, in this study, we have identified the
biosynthetic gene cluster of the highly oxygenated aryl-
aldehyde derivative ustethylin A and elucidated its biosynthetic
pathway by transcriptome analysis, gene deletion, and
expression, as well as isotopic labeling experiments. The PKS
UttA, as a key enzyme, is responsible for the formation of the
phenethyl core structure with methylation as key reactions.
Consecutive and coordinated modifications by three different
types of oxidoreductases and one O-MeT lead to the final
product. To the best of our knowledge, this is the first report
on the biosynthetic pathway of a phenethyl-containing fungal
metabolite.
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Experimental Procedures
1. Chemicals

Sodium [1-"*C] acetate, sodium [2-'>C] acetate, and sodium [2-"*C] propionate were purchased from Cambridge
Isotope Laboratories. Sodium [1,2-">C] acetate, [2-'*C] malonic acid, and [methyl-'*C]-L-methionine were obtained

from Sigma-Aldrich. Other reagents were from Fisher scientific, VWR or Sigma-Aldrich.

2. Strains, media, and growth conditions

Escherichia coli DH5o cells were grown in LB medium (1% NaCl, 1% tryptone, and 0.5% yeast extract). 50 mg/mL

ampicillin were supplemented for cultivation of recombinant E. coli strains.

Saccharomyces cerevisiae HOD114-2B cells were grown in YPD medium (1% yeast extract, 2% peptone and 2%
glucose). 1.5% agarose was used for plates. The SC-uracil medium (6.7 g/L yeast nitrogen base with ammonium
sulfate, 650 mg/L. CSM-His-Leu-Ura (MP Biomedicals), 20 mg/L. His and 60 mg/L Leu, 2% glucose, pH 6.2 — 6.3,

1.5% agarose was used for plates) was used for selection.

Fungal strains used in this study are summarized in Table S2. Aspergillus ustus (A. ustus) 3.3904 was purchased
from China General Microbiological Culture Collection Center (Beijing, China) and cultivated in PD (potato
dextrose broth, Sigma) or ISP3 (6% oat) medium at 230 rpm and 30 °C for secondary metabolite (SM) production.

Aspergillus nidulans strains were grown at 37 °C on GMM medium (1.0% glucose, 50 mL/L salt solution, 1 mL/L
trace element solution, 1.6% agar) for sporulation and transformation with appropriate nutrition as required. The
salt solution comprises (w/v) 12% NaNOs, 1.04% KCI, 1.04% MgSO47H,0, and 3.04% KH,PO4. The trace
element solution contains (w/v) 2.2% ZnSO, 7H,0, 1.1% H3BOs3, 0.5% MnCl,-4H,0, 0.16% FeSO47H,0, 0.16%
CoCly'5H,0, 0.16% CuS04-5H,0, 0.11% (NH4)sM07024-4H>0, and 5% Na;EDTA.

3. Genomic DNA isolation

The mycelia of 4. ustus 3.3904 and A. nidulans were dried on filter paper and collected in 2 mL Eppendorf tubes.
Four glass beads (2.85 mm in diameter) and 400 uL. of LETS buffer (10 mM Tris-HCI pH 8.0, 20 mM EDTA pH
8.0, 0.5% SDS, and 0.1 M LiCl) were added to the tubes. After vigorous mixing for 4 min, 300 uL. LETS buffer
were added. The solution was then treated with 700 uL phenol: chloroform: isoamyl alcohol (25: 24: 1). Genomic
DNA was precipitated by addition of 900 uL of absolute EtOH. After centrifugation at 13,000 rpm for 30 min and
washing with 70% EtOH, the obtained DNA was dissolved in 50 — 100 xL distilled H>O.

4. Genome sequencing and sequence analysis

The genome of 4. ustus 3.3904 was sequenced by Genewiz (Suzhou, China) using Nova-seq6000/X-ten

(Illumina). Initial prediction and analysis of biosynthetic gene clusters were carried out by using AntiSMASH.'
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Prediction of the enzyme function was performed with the online BLAST tools (http://blast.ncbi.nlm.nih.gov).
The genes uttA-J in the utt cluster are summarized in Table S1. The genomic DNA sequence of the u#t cluster

reported in this study corresponds to that depicted at GenBank under accession numbers JOMC01000079.1.

5. PCR amplification, gene cloning and plasmid construction

Plasmids and primers used in this study are listed in Table S3 and Table S4, respectively. Primers were synthesized
by Seqlab GmbH (Géttingen, Germany). PCR amplification was carried out by using Phusion® High-Fidelity DNA
polymerase from New England Biolabs (NEB) on a TIO0TM Thermal cycler from Bio-Rad. PCR thermal profiles
were set as recommended by the manufacturer’s instruction. The plasmids for gene deletion and heterologous
expression were constructed via homologous recombination in Escherichia coli DHS5a or Saccharomyces

cerevisiae HOD114-2B by using primers listed Table S4.
6. Molecular modeling for UttA_MeT

Homolog modelling for 300 amino acids of UttA MeT was carried out by using SWISS-MODEL.? S-Adenosyl-
L-homocysteine (SAH) was manually positioned by using Coot.> The illustration was created with Pymol (DeLano

Scientific LLC, Version 1.3.x.).

7. Genetic manipulation in 4. ustus 3.3904 and cultivation of deletion mutants

Fresh spores of 4. ustus 3.3904 were inoculated into 50 mL LMM medium in 250 mL flask and incubated at 230
rpm and 30 °C for germination. The germlings were harvested after 11 h by centrifugation at 5,000 rpm and 4 °C
for 10 min and washed with distilled H,O. The mycelia were then transferred into a 25 mL flask with 10 mL of
osmotic buffer (1.2 M MgSO4 in 10 mM sodium phosphate, pH 5.8) containing 40 mg lysing enzyme from
Trichoderma harzianum (Sigma) and 30 mg yatalase from Corynebacterium sp. OZ-21 (OZEKI Co., Ltd.). After
shaking at 100 rpm and 30 °C for 10 h, the mixture was transferred into a 50 mL falcon tube and overlaid gently
with 10 mL of trapping buffer (0.6 M sorbitol in 0.1 M Tris-HCI, pH 7.0). After centrifugation at 5,000 rpm and
4 °C for 10 min, the protoplasts were collected from the interface of the two buffer systems. The collected
protoplasts were then transferred to a sterile 15 mL falcon tube and resuspended in 100 4L of STC buffer (1.2 M
sorbitol, 10 mM CaCl; in 10 mM Tris-HCI, pH 7.5) for transformation.

The DNA fragments (2 — 3 ug in 8 — 10 L) were mixed with 100 uL of the protoplasts and incubated for 50 min
on ice. 1.25 mL of PEG solution (60% polyethylene glycol 4000, 50 mM CaCl,, 50 mM Tris-HCI, pH 7.5) was
then added and gently mixed. After incubation at room temperature for 30 min, 5 mL STC buffer was added into
the mixture and spread on plates with SMM bottom medium (1.0% glucose, 50 mL/L salt solution, 1 mL/L trace
element solution, 1.2 M sorbitol, and 1.6% agar) containing 100 #g/mL hygromycin B. SMM top medium (1.0%
glucose, 50 mL/L salt solution, 1 mL/L trace element solution, 1.2 M sorbitol, and 0.8% agar) containing 50 #g/mL

hygromycin B was overlaid softly on the plates. 3 — 4 days later, the transformants were transferred onto fresh PDA
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plates (PD medium with 3% agar) containing 100 #g/mL hygromycin B for selection. The obtained transformants
were inoculated in PD medium for isolation of genomic DNA to verify the integrity via PCR amplification (Figure
S2). After cultivation in PD liquid medium at 230 rpm and 30 °C for 7 days, the cultures were extracted with EtOAc,
dissolved in DMSO and subjected to HPLC and LC-MS for analysis.

8. Heterologous expression in A. nidulans

A. nidulans 1LO8030* was used as the recipient host. The protoplast preparation and transformation were performed
as described previously.” PLZ51 — 54 containing the PKS gene uttA, uttA-G1778V and uttA-HI1850A4 as well as the
NRPS-like gene uttJ were transformed into 4. nidulans LO8030 to create expression strain LZ51, LZ52, LZ53 and
LZ54, respectively. The transformants were verified by PCR (Figures S2 and S4).

9. Site-directed mutagenesis of UttA

The fragments containing the point mutation were constructed via fusion PCR. The mutated and non-mutated
fragments of uttA were then integrated into pYH-gpdA-pyrG following the same procedure for pLZ51 to produce
pLZ53 (UttA_G1778V) and pLZ54 (UttA_H1850A). The primers used for plasmids constructing were listed in
Table S3 — S4.

10. HPLC equipment for analysis and metabolite isolation

EtOAc extracts of fungal strains were analyzed on an Agilent HPLC series 1200 (Agilent Technologies) equipped
with an Agilent Eclipse XDB-C18 column (5 um, 4.6 x 150 mm). A linear gradient from 10 to 90% ACN in H,O
in 20 min was used. The column was then washed with 100% ACN for 5 min and equilibrated with 10% ACN in

H,O for another 5 min. Detection was carried out with a photodiode array detector from 190 to 400 nm.

The same HPLC system was also used for product isolation with a Multospher 120 RP-18 column (5 #m, 10 x 250
mm). The products were eluted with different solvent gradients of ACN in H,O, with or without HCOOH, at a flow

rate of 2 mL/min.
11. Large-scale fermentation, extraction and isolation of secondary metabolites

For metabolite extraction after large-scale fermentation, the supernatant was separated from mycelia by filtration
and extracted with equal volume of EtOAc for three times. The mycelia were extracted with acetone and
concentrated under reduced pressure to afford an aqueous solution and then extracted with EtOAc for three times.

Both EtOAc extracts were evaporated under reduced pressure to afford the crude extracts for further purification.

To isolate compound 1, 4. ustus spores were cultivated in 10 x 250 mL flasks containing 50 mL PDB liquid medium
for 2 days, then transferred to 10 x 2 L flasks containing 500 mL. PDB liquid medium each. The cultures were

maintained on a rotary shaker at 230 rpm and 30 °C for 9 days. The cultures were harvested and extracted as
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mentioned above to give 0.4 g crude extract. The crude extract was subjected to silica gel column chromatography
by using stepwise gradient elution with mixtures of petroleum ether/EtOAc (20:1 to 0:1, v/v) to give five fractions
(1-15). Fraction 2 was further purified on the HPLC system mentioned above by using ACN/H,0 (40:60) as elution

solvents, resulting in 7.0mg of 1.

To identify the structure of 1, we used the previously published acetylation method.® 4. ustus spores were inoculated
into 40 x 250 mL flasks containing 50 mL PDB liquid medium each and incubated on a rotary shaker at 230 rpm
and 30 °C for 6 days. 400 mg of the obtained crude extracts were immediately acetylated with acetic anhydride
(21.24 mmol) and NaOAc-3H,0 (0.3 mmol) at room temperature for 16 h. The mixture was extracted with 15 mL
EtOAc and washed with 15 mL saturated solution of NaHCOs for three times. After evaporation of the solvent,
11.4 mg of 2 were isolated by isocratic elution with ACN/H,O (55:45) on the aforementioned HPLC system for
MS and NMR analyses.

To isolate compounds 3 — 5 from the A. nidulans-pYH-gpdA-uttA-pryG transformant, the strain was cultivated in
ISP3 medium at 30 °C for 8 days. After extraction, 4.7 g crude extract was obtained from 5 L culture and subjected
to silica gel column chromatography. Petroleum ether/EtOAc (50:1 to 0:1, v/v) were used as elution solvents to
give 17 fractions (1 — 17). Fraction 6 was purified on the HPLC by isocratic elution with ACN/H,O (40:60, 0.1%
HCOOH) to get 3 (26.0 mg). 4 (14.6 mg) was obtained from fraction 8, which was purified on the HPLC system
by isocratic elution with ACN/H,O (25:75) containing 0.1% HCOOH. 5 (10.6 mg) was obtained from fraction 9

under the same conditions as for 4. 3 — 5 were also isolated from the A. ustus AuttJ mutant in a similar procedure.

To isolate compound 6, the AuttH mutant was cultivated in PDB medium at 30 °C for 7 days. After extraction,
0.1 g crude extract was obtained from 5 L culture and subjected to silica gel column chromatography by using
petroleum ether/EtOAc (50:1 to 0:1, v/v) as elution solvents to give 11 fractions (1 — 11). 6 (1.0 mg) was obtained
from fraction 2 after purification on HPLC using isocratic elution with ACN/H,O (53:47) containing 0.1%
HCOOH).

To isolate compound 8 from AuttC mutant, the mutant was cultivated in ISP3 medium at 30 °C for 8 days. After
extraction, 8.2 g crude extract was obtained from 5 L culture and subjected to silica gel column chromatography
by using petroleum ether/EtOAc (50:1 to 0:1, v/v) as elution solvents to give 13 fractions (1 — 13). Fraction 5 was
purified on the HPLC with a linear gradient from 10 to 100% ACN containing 0.1% HCOOH in H>O containing
0.1% HCOOH in 22 min. The column was then washed with 100% ACN containing 0.1% HCOOH for 5 min,
followed by 5 min equilibration with 10% ACN containing 0.1% HCOOH. 9.3 mg of 8 were obtained for MS and
NMR analyses.

To identify compound 9, spores of AuttF' mutant were inoculated into 40 x 250 mL flasks containing 50 mL PDB
medium each and incubated on a rotary shaker at 230 rpm and 30 °C for 6 days. After extraction, the crude extract

(175.0 mg) was also immediately acetylated via the same procedure described for compound 1. Finally, 5.9 mg of
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10 was obtained after purification on the HPLC by isocratic elution with ACN/H»O (46:54) for MS and NMR

analyses.
12. Feeding experiments
Feeding with 3C-labeled precursors

For labeling experiments, appropriate amounts of 4. ustus spores were transferred from plates into 250 mL flasks
containing 50 mL PDB medium and cultivated on a rotary shaker at 230 rpm and 30 °C. Aqueous stock solution of
the respective precursor was fed after 30 h cultivation, followed by a second feeding 24 h later. After cultivation
for another 60 h, the fungal cultures were extracted with EtOAc for three times. The EtOAc extracts were
evaporated at 30 °C to dryness and acetylated as mentioned above. The acetylated product was further purified on
the HPLC system and subjected to NMR analysis. The culture size, precursor amounts and product yields are given

below.

250 and 125 mg of sodium [1-"*C] acetate were used for the first and second feeding of the cultures in 25 flasks,
leading to 0.5 mg of 2. The feeding experiments with sodium [2-'°C] acetate and sodium [1,2-"*C] acetate followed

the same procedure, resulting in 1.5 and 1.0 mg of 2, respectively.

293 and 147 mg of [2-"*C] malonic acid were used for the first and second feeding of the cultures in 22 flasks,

yielding 2.5 mg of 2.

200 and 100 mg of sodium [2-'">C] propionate were used for the first and second feeding of the cultures in 12 flasks,
giving 0.6 mg of 2.

180 and 120 mg of [methyl-'">C]-L-methionin were used for the first and second feeding of the cultures in 40 flasks,
leading to 6.0 mg of 2.

Feeding experiments in A. nidulans expression mutants with UttA_G1778V and UttA_H1850A

A. nidulans with empty vector, UttA _G1778V or UttA_ H1850A mutant was cultivated as duplicate in 250 mL
flask containing 50 mL PDB medium at 230 rpm and 30 °C. 3 mL propionic acid (3 g) were diluted with NaOH
solution to 6 ml stock solution (pH 7). 650 uL (0.325 g propionic acid) of this solution were added into each of the
two days-old cultures. Another 350 uL (0.175 g propionic acid) solution were added one day later. After cultivation
in PD liquid medium at 230 rpm and 30 °C for 4 days, the cultures were extracted with EtOAc, dissolved in ACN
and subjected to LC-MS analysis.

Precursor feeding in AuttA, AuttD and uttJ overproduction mutants
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Compound 3 was dissolved in DMSO to a concentration of 18 mg/mL. 277 uL (5 mg) of this solution was added
into 4. ustus AuttA cultures in 250 mL flasks containing 50 mL PDB medium each after fermentation at 230 rpm
and 30 °C for three days. 2 L total culture in 40 flasks were used for this experiment and harvested after 7 days. 1.0
mg of 7 and 1.0 mg of 8 were obtained and subjected to NMR and MS analyses. Feeding compound 3 into 4.
nidulans-pYH-gpdA-uttJ-pyrG transformant led to the isolation of 12.4 mg of 6 for NMR and MS analyses.

Compound 3 was also fed to 4. ustus AuttD mutant.

1.0 mg (100 uL) of 4 was administered to a 100 mL flask containing 10 mL 4. ustus AuttA culture after 3 days
fermentation at 230 rpm and 30 °C. 1 mL culture was extracted for LC-MS analysis.

13. LC-MS analysis

LC-MS analysis was carried out on an Agilent HPLC 1260 series system equipped with a Bruker microTOF QIII
mass spectrometer by using an Agilent Eclipse XDB C18 column (5 um, 4.6 x 150 mm). Separation was performed
at a flow rate of 0.25 mL/min with a 40 min linear gradient from 5 to 100% ACN in H,O, both containing 0.1%
(v/v) HCOOH. The column was then washed with 100% ACN for 5 min and equilibrated for 5 min. The parameters
of the spectrometer were set as the following: electrospray positive ion mode for ionization, capillary voltage with
4.5 kV, collision energy with 8.0 eV. Sodium formate was used in each run for mass calibration. The masses were
scanned in the range of m/z 100 — 1500. Data were evaluated with the Compass DataAnalysis 4.2 software (Bruker

Daltonik, Bremen, Germany).

14. NMR analysis

NMR spectra of the isolated products were recorded at room temperature on a JEOL ECA-500 spectrometer (JEOL,
Akishima, Tokyo, Japan). The samples were dissolved in DMSO-ds or CDCls. All spectra were processed with
MestReNov.9.0.0 (Mestrelab Research, Santiago de Compostella, Spain).

The "*C enrichments were calculated by comparison of the integrals of the °C signals in the *C NMR spectra of
2. The integrals of the C-12 signal at dc 169.1 ppm in both labeled and unlabeled samples were chosen as reference
and set as 1.0. The integrals of other signals were normalized and expressed as relative values to this signal. For a

given carbon, the enrichment is the ratio of the normalized value of the labeled to unlabeled sample.

15. Physiochemical properties of the compounds described in this study
2: yellow power; 'H and >C NMR data given in Table S5; UV spectrum in Figure S21; HRMS (ESI) m/z: [M +

Na]" caled. for C17H20NaOg 375.1050; found 375.1057.

3: white power; 'H and '>C NMR data given in Table S6; UV spectrum in Figure S21; HRMS (ESI) m/z: [M + H]"
calcd. for CioH1304 197.0808; found 197.0810 .
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4: white power; 'H NMR data given in Table S7; UV spectrum in Figure S21; HRMS (ESI) m/z: [M + H]" calcd.
for CoH1104 183.0652; found 183.0652.

5: white power; 'H NMR data given in Table S7; UV spectrum in Figure S21; HRMS (ESI) m/z: [M + H]" calcd.
for CoH1104 183.0652; found 183.0656.

6: white power; "H NMR data given in Table S7; UV spectrum in Figure S21; HRMS (ESI) m/z: [M + H]" calcd.
for C10H1303 181.0859; found 181.0862.

7: yellow power; 'H and '*C NMR data given in Table S8; UV spectrum in Figure S21; HRMS (ESI) m/z: [M +
H]" calcd. for C19H2305 331.1540; found 331.1544.

8: yellow power; 'H and *C NMR data given in Table S9; UV spectrum in Figure S21; HRMS (ESI) m/z: [M +
Na]" calcd. for C;;H14NaO4 233.0784; found 233.0784.

10: yellow oil; 'H and '*C NMR data given in Table S10; UV spectrum in Figure S21; HRMS (ESI) m/z: [M +
Na]" calcd. for C14H;6NaOg 303.0839; found 303.0845.

16. Structural elucidation

The structures of the isolated products were elucidated by comprehensive interpretation of their MS and NMR
data (Figures S21 — S45). By comparison with the literature data, 4,” 5% and 6° were identified as known

compounds.

The molecular formula of 2 was deduced from its HRMS as C;7H20Os. 2 was obtained as a triacetylated derivative
of 1 after acetylation of the crude extract from the wild type, which was confirmed by detection of the difference
of their [M + Na]" ions and by the presence of the corresponding signals for three acetyl groups in the NMR spectra
of 2 (dc 169.1 ppm, C-12, du 2.32 and dc 20.4 ppm, CH;3-13; dc 170.1 ppm, C-14, ou 1.96 and éc 20.6 ppm, CH;-
15; 6c 170.0 ppm, C-16, du 1.96 and Jc 20.4 ppm, CH;-17, Table S5). The '"H NMR data of 2 suggested also the
presence of an aldehyde group (du 10.10 ppm), a five-substituted benzene ring (du 7.05 ppm), an aromatic methoxy
group (du 3.94 ppm), and three methylene groups (du 5.02, 3.33 and 4.22 ppm). This was also proven by
interpretation of its *C NMR data. HMBC correlations revealed that two of the methylene groups are corrected to
each other (Table S5 and Figure S25). Elucidation of the structure of 2 proved 1 to be 2-hydroxy-6-(2-
hydroxyethyl)-3-(hydroxymethyl)-4-methoxybenzaldehyde.

The molecular formula of 3 was deduced from its HRMS data to be CioH;204. Interpretation of its NMR spectra
including 'H, *C, HSQC, and HMBC (Table S6 and Figures S26 — S29) revealed its structure to be 6-ethyl-2,4-
dihydroxy-3-methylbenzoic acid.
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The molecular formula of 8 was deduced from the HRMS data to be Ci1H1404 with five degrees of unsaturation.
Comparison of its NMR data with those of 2 revealed the presence of signals for two instead of three methylene
groups. One of them couples with a methyl group, i.e. as an ethyl group as observed in 3 and 5. The signals of an
aromatic methoxy group are still detectable (du 3.93 and dc 56.1 ppm). This proved the structure of 8 to be 6-ethyl-
2-hydroxy-3-(hydroxymethyl)-4-methoxybenzaldehyde.

9 was unstable and its structure was elucidated after acetylation. The molecular formula of the diacetylated
derivative 10 was deduced from the HRMS data to be C;4H 606, one oxygen more than that of 6. The existence of
OH at C-2 was verified by the signal at dy 12.62 ppm. Comparison of the 'H NMR spectrum of 10 with that of 6
indicated the hydroxylation of the methyl group at C-3. Differing from those in 2 and 8, no signal for an aromatic
methoxy group was detected in the spectra of 6 and 10. This proved 9 as the hydroxylation product of C3-methyl
group in 6.
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Table S1. Putative functions of the genes from the ustethylin (utf) gene cluster

PKS Paso unknown  transporter unknown
uttC utte uttG uttl uttd
uttB uttD uttF uttH NRPS-Like
= ~Tkb unknown regulator O-MeT  oxygenase

Protein No. (S;Z? cover/identity, homologous protein, organism Putative function
UttA KIA75596 2318 99/46, polyketide synthase PkbA, AN6448.4, Aspergillus nidulans FGSC A4 Ustethylinic acid synthase
UttB KIA75595 486 95/43, oxidoreductase AzalL, G3XMDO0.2, Aspergillus niger ATCC 1015 FAD-dependent oxidase
uttC KIA75594 506 93/48, cytochrome P50 CicH, AN6449.2, Aspergillus nidulans FGSC A4 P4so, ethyl hydroxylase
uttD KIA75593 490 100/55, myb-related protein B, KFX41786.1, Talaromyces marneffei PM1 DNA-binding protein, positive regulator
UHE KIA75592 503 I9BS/33, bifunctional solanapyrone synthase Sol5, CEL54807.1, Rhizoctonia solani AG-1 FAD-dependent oxidase
UttF KIA75591 417 100/83, O-methyltransferase FtmD, KFX41536.1, Talaromyces marneffei PM1 O-methyltransferase
UttG KIA75590 532 95/49, MFS drug efflux transporter, PLN86962.1, Aspergillus taichungensis MFS transporter
uttl KIA75588 340 100/82, putative oxidoreductase, CEN59745.1, Aspergillus calidoustus Oxidorreductase
UttJ KIA75587 1120 97/42, NRPS-like CicB, AN6444.4, Aspergillus nidulans FGSC A4 aryl acid reductase
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Table S2. Strains used in this study

Stains Genotype

Wild type A. ustus 3.3904

AuttA AuttA::hph in A. ustus 3.3904
AuttB AuttB::hph in A. ustus 3.3904
AuttC AuttC::hph in A. ustus 3.3904
AuttD AuttD::hph in A. ustus 3.3904
AuttE AuttE::hph in A. ustus 3.3904
AuttF AuttF::hph in A. ustus 3.3904
AuttG AuttG::hph in A. ustus 3.3904
AuttH AuttH::hph in A. ustus 3.3904
Auttd Auttd::hph in A. ustus 3.3904
fgé‘(’)%’g”s pyroAd, riboB2, pyrG89, nkuA::argB

sterigmatocystin cluster (AN7804-AN7825)A,
emericellamide cluster (AN2545-AN2549)A,
asperfuranone cluster (AN71039-AN1029)A,
monodictyphenone cluster (AN70023-AN10021)A,
terrequinone cluster (AN8512-AN8520)A,

austinol cluster part 1 (AN8379-AN8384)A,
austinol cluster part 2 (AN9246-AN9259)A,

FI775 cluster (AN7906-AN7915)A,

asperthecin cluster (AN6000-AN6002)A

LZ51 gpdA::uttA::AfpyrG in A. nidulans LO8030

LZ52 gpdA:: uttd:::AfpyrG in A. nidulans LO8030

LZ53 gpdA:: uttA_G1778V::AfpyrG in A. nidulans LO8030

LZ54 gpdA:: uttA_H1850A::AfpyrG in A. nidulans LO8030
14
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Table S3. Plasmids used and constructed in this study

Plasmids Description
Two-third of the hph resistance gene at the 5°-end, originated from the pUChph and inserted into pESC-
p5HY ; .
URA. For gene replacement using hph as selection marker.

3YG Two-third of the hph resistance gene at the 3"-end, originated from the pUChph and inserted into
P pESC-URA. For gene replacement using hph as selection marker.
pLZ101(p5HY-uttA) a 1171 bp US PCR fragment of uttA from genomic DNA of A. ustus 3.3904 inserted in p5HY.
pLZ102(p3YG-uttA) a 1170 bp DS PCR fragment of uttA from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pLZ103(p5HY-uttB) a 1535 bp US PCR fragment of uttB from genomic DNA of A. ustus 3.3904 inserted in p5HY.
pLZ104(p3YG-uttB) a 1486 bp DS PCR fragment of uttB from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pLZ105(p5HY-uttC) a 1476 bp US PCR fragment of utfC from genomic DNA of A. ustus 3.3904 inserted in p5HY.
pLZ106(p3YG-uttC) a 1463 bp DS PCR fragment of uttC from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pLZ107(p5HY-uttD) a 1477 bp US PCR fragment of uttD from genomic DNA of A. ustus 3.3904 inserted in p5HY.
pLZ108(p3YG-uttD) a 1492 bp DS PCR fragment of uttD from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pLZ109(p5HY-uttE) a 1527 bp US PCR fragment of uttE from genomic DNA of A. ustus 3.3904 inserted in p5HY.
pLZ110(p3YG-uttE) a 1410 bp DS PCR fragment of uttE from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pLZ111(p5HY-uttF) a 1580 bp US PCR fragment of uttF from genomic DNA of A. ustus 3.3904 inserted in p5HY.
pLZ112(p3YG-uttF) a 1523 bp DS PCR fragment of uttF from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pLZ113(p5HY-uttG) a 1480 bp US PCR fragment of uttG from genomic DNA of A. ustus 3.3904 inserted in p5HY.
pLZ114(p3YG-uttG) a 1449 bp DS PCR fragment of uttG from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pLZ115(p5HY-uttH) a 1479 bp US PCR fragment of uttH from genomic DNA of A. ustus 3.3904 inserted in pSHY.
pLZ116(p3YG-uttH) a 1426 bp DS PCR fragment of uttH from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pLZ117(p5HY-uttJ) a 1416 bp US PCR fragment of uttJ from genomic DNA of A. ustus 3.3904 inserted in p5HY.
pLZ118(p3YG-uttJ) a 1505 bp DS PCR fragment of uttJ from genomic DNA of A. ustus 3.3904 inserted in p3YG.
pYH-gpdA-pyrG URAS3, wA flanking, gpdA, AfpyrG, Amp

L751 pYH-gpdA-uttA-pyrG; a 7836 bp fragment of uttA with its terminator from genomic DNA of A. ustus
P 3.3904 inserted in pYH-gpdA-pyrG
pLZ52 pYH-gpdA- uttd -dMeT-pyrG; a 177 bp fragment of uttA was removed in pYH-gpdA-pyrG.
pLZ53 pYH-gpdA-uttA_G1778V-pyrG; mutation at Gly1778 to Val in pLZ51.
pLZ54 pYH-gpdA-uttA_H1850A-pyrG; mutation at His1778 to Ala in pLZ51.

US: upstream; DS: downstream
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Table S4. Primers used in this study

Primers Sequence 5°-3’ Targeted amplification
P5HY CAAGACCAATGCGGAGCATATAC 2/3 of the hph resistance gene at the 5’-end from pUChph
to construct p5HY
P3YG GAATTGATTCCGGAAGTGCTTGAC 2/3 of the hph resistance gene at the 3"-end from pUChph
to construct p3YG
p5HY-R GCTGAAGTCGATTTGAGTCCAC US of hph to verify 5F of A. ustus 3.3904 mutant
p3YG-F GCATTAATGCATTGGACCTCGC DS of hph to verify 3F of A. ustus 3.3904 mutant
uttA-U-F AAGAATTGTTAATTAAGAGCTCAGATCAAGAAGTGGGATCCGAAGGG
1171bp US fragment of uttA to construct pLZ101
uttA-U-R ACCCTCACTAAAGGGCGGCCGCACTAGGTTGAAGCGTGCGGAAAGAG
uttA-D-F ACTCACTATAGGGCCCGGGCGTCGAGGATGGATGGATGAGCTGGAT
1170 bp DS fragment of uttA to construct pLZ102
uttA-D-R TAGCCGCGGTACCAAGCTTACTCGACTATATCTGCGTACTGGTGCG
uttA-F CTTGAAATCCTTCGGGAGCAAC
1594 bp partial fragment of uttA
uttA-R GTTGAACACCTTGTACACGAGC
uttA-5F-F CCCCTGCAATTTTGATCGAC US of hph to verify AuttA mutant
uttA-3F-R CTTGAAATCCTTCGGGAGCAAC DS of hph to verify AuttA mutant
uttB-U-F AAGAATTGTTAATTAAGAGCTCAGATCAACGTAACAGCAGGAAGCGA
1535 bp US fragment of uttB to construct pLZ103
uttB-U-R ACCCTCACTAAAGGGCGGCCGCACTAGTCCACCGAACCGAGGAAAAGA
uttB-D-F ACTCACTATAGGGCCCGGGCGTCGAGTACTTCGCAATGAGGGGGA
1486 bp DS fragment of uttB to construct pLZ104
uttB-D-R TAGCCGCGGTACCAAGCTTACTCGAACGCACAAACACCGACATAG
uttB-F GCAAGCTTGTCGACGGAGCTCGAATTCCTAAACAACCGGCAACCCATTA
1754 bp partial fragment of uttB
uttB-R GGACAGCAAATGGGTCGCGGATCCATGGTTTCGTTCCTTCGATTCACAC
uttB-5F-F CAACGAAAGACTCGAAGAGCTG US of hph to verify AuttB mutant
uttB-3F-R GCTAGAATTGCATTGCAGGCTG DS of hph to verify AuttB mutant
uttC-U-F AAGAATTGTTAATTAAGAGCTCAGATCAGCTAGCTAGCTAGCAAGGT
1476 bp US fragment of uttC to construct pLZ105
uttC-U-R ACCCTCACTAAAGGGCGGCCGCACTAGTCGGTCGTTCTTTCGTTTCG
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Table S4. (continued)

uttC-D-F
uttC-D-R
uttC-F
uttC-R
uttC-5F-F
uttC-3F-R
uttD-U-F
uttD-U-R
uttD-D-F
uttdD-D-R
uttD-F
uttD-R
uttD-5F-F
uttD-3F-R
uttE-U-F
uttE-U-R
uttE-D-F
utte-D-R
uttE-F
uttE-R
uttE-5F-F
uttE-3F-R

ACTCACTATAGGGCCCGGGCGTCGAATTTGCACCCATCCAGCTAG
TAGCCGCGGTACCAAGCTTACTCGATGGAGACGGTGATCAGGTTC
TCTACACAAGCATCGCACTGAC

AGTAAGAAGTGCCCTCCCCA

TATCTGCTGAAACGCCTCCT

CATTGAACGAAGCCAGCGTC
AAGAATTGTTAATTAAGAGCTCAGATCAGCGGATCGTATCGGAGAAG
ACCCTCACTAAAGGGCGGCCGCACTAGTGAAGAATGGTTGCGGGGAT
ACTCACTATAGGGCCCGGGCGTCGATACCTTCAAGGGTATCTGGCG
TAGCCGCGGTACCAAGCTTACTCGAGAACAGGGCAGTGGAATCTTC
CATCAATGGGCGTATTCCACG

CGGTGGATCAAGCTGGATAGT

CACACCACTGCACAAGTACTAG

GTCGATGATGTCCTCACCCAT
AAGAATTGTTAATTAAGAGCTCAGATCTGCTTGGGCCACTAGATACAG
ACCCTCACTAAAGGGCGGCCGCACTAGAGATACCTCACCATCTTGCCC
ACTCACTATAGGGCCCGGGCGTCGAGGACACAAGGAGCACATGTTTG
TAGCCGCGGTACCAAGCTTACTCGACACACCAATCTCCACTTCCG
CCGCAAGCTTGTCGACGGAGCTCGAATTCCTACCGCCGAGGGAGCTTTT
GGTGGACAGCAAATGGGTCGCGGATCCATGCGCGCAACAACTGCTTCAA
TCGGACTGGAAGTCGCTCTTT

GAAGAATGACGGCTACAACAGC

1463 bp DS fragment of uttC to construct pLZ106

1555 bp partial fragment of uttC

US of hph to verify AuttC mutant

DS of hph to verify AuttC mutant

1477 bp US fragment of uttD to construct pLZ107

1456 bp DS fragment of uttD to construct pLZ108

1492 bp partial fragment of uttD

US of hph to verify AuttD mutant

DS of hph to verify AuttD mutant

1527 bp US fragment of uttE to construct pLZ109

1410 bp DS fragment of uttE to construct pLZ110

1909 bp partial fragment of utte

US of hph to verify AuttE mutant

DS of hph to verify AuttE mutant
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62

Table S4. (continued)

uttF-U-F
uttF-U-R
uttF-D-F
uttF-D-R
uttF-F
uttF-R
uttF-5F-F
uttF-3F-R
uttG-U-F
uttG-U-R
uttG-D-F
uttG-D-R
uttG-F
uttG-R
uttG-5F-F
uttG-3F-R
uttH-U-F
uttH-U-R
uttH-D-F
uttH-D-R
uttH-F

uttH-R

AAGAATTGTTAATTAAGAGCTCAGATCTGCTTGGGCCACTAGATACAG
ACCCTCACTAAAGGGCGGCCGCACTAGAGATACCTCACCATCTTGCCC
ACTCACTATAGGGCCCGGGCGTCGAGGACACAAGGAGCACATGTTTG
TAGCCGCGGTACCAAGCTTACTCGACACACCAATCTCCACTTCCG
TTGCTGATCGCAGTCTTGACTG

TGGACTTTAATTGTGCGGGGTG

TCGGACTGGAAGTCGCTCTTT

GAAGAATGACGGCTACAACAGC
AAGAATTGTTAATTAAGAGCTCAGATCTCCCACAGTGGACATATCCG
ACCCTCACTAAAGGGCGGCCGCACTAGCCCTAACACGTAACAACTCGC
ACTCACTATAGGGCCCGGGCGTCGAGGGGAAGGAAGGAATGGGTTA
TAGCCGCGGTACCAAGCTTACTCGAGATCTCGCGGTAGAACGAGT
TGCTGGCCATCCTCACTTCAA

CAGACTATCCGCAATCGTGCT

GCCTGACTTCAAGAGTGAGACT

TGCGCCGTGAAGAAGTCATG
AAGAATTGTTAATTAAGAGCTCAGATCCATACCACCATCAGCAGAAACC
ACCCTCACTAAAGGGCGGCCGCACTAGGATGAAGGTGGTGATGATCGTG
ACTCACTATAGGGCCCGGGCGTCGATTGGTTACCGGATGCGGTTG
TAGCCGCGGTACCAAGCTTACTCGAGAAGGCGATTGTTAGTACGCC
GCAAAAACCGCACCGACTCAA

ATAACTCTCCGCAACCCTCC

1580 bp US fragment of uttF to construct pLZ111

1523 bp DS fragment of uttF to construct pLZ112

1223 bp partial fragment of uftF

US of hph to verify AuttF mutant

DS of hph to verify AuttF mutant

1480 bp US fragment of uttG to construct pLZ113

1449 bp DS fragment of uttG to construct pLZ114

1451 bp partial fragment of uttG

US of hph to verify AuttG mutant

DS of hph to verify AuttG mutant

1479 bp US fragment of uttH to construct pLZ115

1426 bp DS fragment of uttH to construct pLZ116

975 bp partial fragment of uttH
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Table S4. (continued)

uttH-5F-F
uttH-3F-R
uttd-U-F
uttd-U-R
uttJ-D-F
uttd-D-R

uttJ-F

uttJ-R
uttJ-5F-F
uttd-3F-R
HE-uttA-P1-F
HE-uttA-P1-R
HE-uttA-P2-F
HE-uttA-P2-R
HE-uttJ-F
HE-uttJ-R
UttA-G1778V-F
UttA-G1778V-R
UttA-H1850A-F
UttA- H1850A-R
UttA-muta-F

UttA-muta-R

ATGTCACGACCACTCGCTTGA
CGATTGTGACGACGAGAAACAC
AAGAATTGTTAATTAAGAGCTCAGATCGTCTTCGCTGTAAGTCCACAG

ACCCTCACTAAAGGGCGGCCGCACTAGTCGGGTAAAGACACTAGGATGG

ACTCACTATAGGGCCCGGGCGTCGAATGGAGTTCCAGGGTCTCTCT
TAGCCGCGGTACCAAGCTTACTCGAGCCTCATCCTTCACATCATCCA
ACGAATATCCGGAAGATACCCC

ACGATCTGATCCGTCTAGCGA

CGCGATCCTCGACTTTTCTAGG

AGCACTGCTGTTCAAGGCATAC
TCATCTTCCCATCCAAGAACCTTTAATCATGGTCGTCGAAGGGTATCCA
CGGAGGTCTTTTTCGATCCCT

GTTTAGTCGGGTGCTCATCTCC
CGTCAGACACAGAATAACTCTCGCTAGGCTTCTTCCCGCTTCTGAAGT
CTTCCCATCCAAGAACCTTTAATCATGTGCGTGATTAATGGATCTGAAG
CATATTTCGTCAGACACAGAATAACTCTCACGAACTGAGCCCCTCAAAA
GGGACAGTCTCGACGACGAAATGGGTTGTCGATGCGCT
CGTCGTCGAGACTGTCCCCGCGCCGAGTTCCAGGATGC
TGCATCGCCGCCACGAGCAATCTGCCCAACTCGCTCAC
GCTCGTGGCGGCGATGCAGTTGGTCGAGAGGATGGTAT
TCTGGAAGAACGTGTACCCCAC

TTGGTGAGGATAATCCCGCTG

US of hph to verify AuttH mutant

DS of hph to verify AuttH mutant

1416 bp US fragment of uttJ to construct pLZ119

1505 bp DS fragment of uttJ to construct pLZ120

1529 bp partial fragment of uttJ

US of hph to verify AuttJmutant

DS of hph to verify AuttJ mutant

4014 bp partial fragment of uttA from A. ustus 3.3904 to
construct pLZ51

4095 bp partial fragment of uttA with its 624 bp terminator
from A. ustus 3.3904 to construct pLZ51

4229 bp of uttJ with its 651 bp terminator from A. ustus
3.3904 to construct pLZ52

Containing a mutation for G1778 to Val to construct pLZ53

Containing a mutation for H1850 to Ala to construct pLZ54

1203 bp of uttA fragment including the mutated points to
construct pLZ53 and pLZ54

US: upstream; DS: downstream
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Table S5. NMR data of compound 2 in DMSO-ds (500 MHz, & in ppm, J in Hz)

0O O O
15 )1‘# @) (}J\/O\Q /?HO
L o
1000716 4, H,CO \“s-k// o)
2 HMBC

Position Oc Oy (multi. J) HMBC
1 119.8 (C) - _
2 152.5 (C) - _
3 116.0 (C) - _
4 162.1 (C) - -
5 112.1 (CH) 7.05 (s) C-1,C-3,C-4,C-9
6 144.9 (C) - _
7 189.0 (CH) 10.10 (s) C-1,C-2,C-6
8 54.1 (CH,) 5.02 (s) C-2, C-3, C-4, C-14
9 31.5 (CH,) 3.33 (t, J= 6.6 Hz) C-1, C-5, C-6, C-10
10 63.9 (CHy) 422 (t, J = 6.6 Hz)) C-1, C-9,C-16
11 56.6 (OCH3) 3.94 (s) c-4
12 169.1 (C) - -
13 20.4 (CHs) 2.32 (s) c-12
14 170.1 (C) - _
15 20.6 (CHy) 1.96 (s) c-14
16 170.0 (C) - _
17 20.4 (CHs) 1.96 (s) c-16
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Table S6. NMR data of compound 3 in DMSO-ds (500 MHz, & in ppm, J in Hz)

OH | OH
821 COOH SN\ COOH
HO 34 N Hg: N
5 9
3 HMBC

Position ¢ 8w (multi. J) HMBC
1 103.0 (C) - _
2 162.1 (C) - _
3 108.0 (C) - -
4 160.1 (C) - -
5 108.9 (CH) 6.28 (s) C-1, C-4, C-6, C-9
6 145.8 (C) - _
7 173.8 (COOH) 9.97 (s) -
8 8.0 (CHs) 1.93 () C-2,C-3,C4
9 28.8 (CHy) 2.81(q, J = 7.4 Hz) C-5,C-6, C-10
10 16.1 (CHs) 1.10(t, J = 7.4 Hz) C-6, C-9
4-OH - 13.33 (s) -
2-OH - 12.65 (s) -
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Table S7. '"H NMR data of compounds 4 — 6 in DMSO-ds (500 MHz, & in ppm, J in Hz)

2l ,_cooH
Compounds 3 6 9
HO™ 4 s s
58
Position O (multi., J) O (multi., J) O (multi., J)
3 - 6.13 (d, J = 2.4 Hz) -
5 6.25 (s) 6.18 (d, J = 2.4 Hz) 6.33 (s)
7 - - 10.63 (s)
8 1.93 (s) 2.78 (g, J = 7.4 Hz) 1.92 (s)
9 2.39 (s) 111 (t, J=7.4 Hz) 2.83(q, J= 7.5 Hz)
10 - - 117 (t, J = 7.5 Hz)
2-OH 12.94 (s) 12.42 (s) 12.77 (s)
4-OH 12.94 (s) 12.42 (s) 10.02 (s)
7-OH 9.99 (s) 10.02 (s) -

The NMR data of 3, 4 and 5 correspond very well to those reported previously.”®
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Table S8. NMR data of compound 7 in DMSO-ds (500 MHz, & in ppm, J in Hz)

Position Oc Oy (multi., J) HMBC

1 111.5 (C) — -

2 163.8 (C) - -

3 112.7 (C) - -

4 154.3 (C) - -

5 109.4 (CH) 6.28 (s) C-1,C-3,C-9

6 148.8 (C) - -

7 194.1 (CH) 10.00 (s) C-2,C-3

8 18.9 (CHy) 3.71 (s) C-2, C-3, C-4, C-1',C-2', C-6'
9 24.3 (CHy) 2.82(q, J=7.5Hz) C-5, C-6, C-10

10 17.0 (CH,) 1.15(t, J = 7.5 Hz) C-6, C-9

1 115.6 (C) - _

2 163.8 (C) — -

3 108.7 (C) — -

4 154.4 (C) - -

5' 107.5 (CH) 6.16 (s) C-1', C-3', C-4', C-8'
6' 141.2 (C) — -

7 9.6 (CHs) 1.92 (s) C-3, C-4'

8' 25.9 (CHy,) 2.63(q, J=7.5Hz) C-1', C-5', C-6', C-9'
9' 16.1 (CHs) 0.98 (t, J=7.5Hz) C-6', C-8'

4'-OH - 8.72 (s) C-3', C-4'

2-OH - 13.15 (s) -
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Table S9. NMR data of compound 8 in CDCls (500 MHz, & in ppm, J in Hz)

OH O g\oi\lo
HO k
HWJ
8 HMBC
Positon ¢ By (multi., J) HMBC
1 151.2 (C) - _
2 163.5 (C) - _
3 114.2 (C) - _
4 164.3 (C) - -
5 104.0 (CH) 6.34 (s) C-3,C-4,C-6,C-9
6 112.7 (C) - -
7 193.3 (CH) 10.14 (s) C-2,C-3
8 53.9 (CHy) 476 (s) C-2,C-3, C-4
9 25.7 (CH,) 2.93(q, J=7.6 Hz) C-5,C-6, C-10
10 17.3 (CHs) 1.31(t, J = 7.6 Hz)) C-1,C-9
4-OCH;, 56.1 (OCH3) 3.93 (s) C-4
2-OH - 12.62 (s) -
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Table $10. NMR data of compound 10 in DMSO-ds (500 MHz, 6 in ppm, J in Hz)

OH

e S C 7oho

NG
A

10 HMBC

Position B¢ 5y (multi., J) HMBC
1 114.3 (C)
2 162.6 (C)
3 115.6 (C)
4 155.9 (C)
5 115.0 (CH) 6.72 (s) C-4,C-6,C-9
6 150.9 (C)
7 196.1 (CH) 10.28 (s) C1,C-2
8 53.9 (CH,) 5.02 (s) C-2, C-3, C-4, C-12
9 24.0 (CHy) 2.99 (q, J = 7.6 Hz) C-5,C-6, C-1, C-10
10 16.2 (CHp) 1.21 (t, J = 7.6 Hz)) C-6,C-9
11 170.0 (C)
12 204 (CHy) 1.96 (s) c-11
13 168.4 (C)
14 20.6 (CHs) 2.29 (s) c13
2-OH 12.58 (brs)

25

69



Table S11. Enrichments in 2 after feeding with '*C labeled precursors

sodium [1-3C] acetate sodium [2-'3C] propionate sodium [2-'3C] acetate [2-"*C] malonic acid [methyl-'3C]-L-methionine
13
Position 5c OJ\ o} o;\o 0 o;\o 0 o;\o
bt s Ay W M A
o 1°° 6 ~o” ~o OJ\ ~o OJ\ *o oJ\
1 119.8 (C) 1.0 0.8 49 6.7 1.0
2 152.5 (C) 4.5 3.7 1.1 1.2 1.1
3 116.0 (C) 0.9 1.3 5.8 7.4 0.9
4 162.1 (C) 3.8 3.6 1.2 1.0 1.1
5 112.1 (CH) 1.0 1.4 7.9 8.5 1.2
6 144.9 (C) 4.4 4.0 1.1 1.2 1.2
7 189.0 (CH) 6.1 6.1 1.3 1.3 1.2
8 54.1 (CH,) 0.9 1.0 0.9 1.0 13.1
9 31.5 (CHy) 0.9 1.2 6.6 8.9 0.8
10 63.9 (CH,) 0.9 1.0 1.0 1.1 15.0
1 56.6 (OCHs) 0.8 0.8 1.1 1.0 15.9
12 169.1 (C) 1.0 1.0 1.0 1.0 1.0
13 20.4 (CHy) 0.9 1.1 1.1 1.0 1.1
14 170.1 (C) 0.9 0.8 09 1.0 1.0
15 20.6 (CHs3) 0.9 1.0 1.0 1.0 1.0
16 170.0 (C) 1.0 0.9 1.0 1.0 1.0
17 20.4 (CHy) 0.9 1.1 1.1 1.2 1.2
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Figure S1. PCR verification of deletion mutants of A. ustus 3.3904.
PCR amplification for three different fragments from genomic DNA of WT and deletion mutants was used to prove the presence/absence of the
target gene and the integration site of the selection marker with up- and downstream regions. The PCR primers are given in Table S4.
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1 23 1 2

i -

1 110
181

i

]
11

1- HE-uttA 1- HE-uttJ
2- marker 2- WT/A. ustus
3- WT/A. ustus 3- marker

Figure S2. PCR verification of heterologous expression transformants.

A. nidulans-pYH-gpdA-uttA-pyrG (HE-uttA) (A),A. nidulans-pYH-gpdA-uttJ-pyrG (HE-uttJ) (B), and marker reference (C). A fragment of 1.5 kb
within the target gene was amplified from the primers listed in Table S4.
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Figure S3. Phylogenetic analysis of UttA_PT domain with 30 known PT domains from fungi
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pYH-gpda-uttA-pyrG

Fragment
with mutation

" et
kowmreTAeAR 10

e
P4

Homologous
recombination

pYH-gpda-uttA-pyrG/ mutations

Linearization and
Transfer into A. nidulans

Transformants

1 234

1- UttA-G1778V
2- UttA-H1850A

3- marker
4-WT

Jegeggggacaggetcgacgac
- T + T

:cgegeccotgtocgagetgotg

1
G 5 T T
in fre

»-
Feature 56

L 1775 . L 1780 .
G A G T G S T T

Jgcgcggggacaggetegacgac:
J6CGCOGGGACAGTETCGACGAC

tgcat g gag

Feature 57

accaactgcatccacgccacgage

ACCAACTGCATUBELGCCACGAGC

Figure S4. Point mutation in UttA and analysis of the obtained mutants.

(A) Schematic representation for the point mutation in UttA. (B) PCR verification of the mutants. (C) Sequence analysis of the UttA mutants
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Figure S5. Sequence alignments of 2-OG-dependent oxygenases.
CitB (ALI92653)'°, ClaD (QBK15042), and ANS (Q96323) are from Monascus ruber M7, Penicillium crustosum and Arabidopsis thaliana,
respectively. UttH contains the typical conserved 2-His-1-Asp ion-binding triad of non-heme Fe'/2-oxoglutarate-dependent oxygenases (His228,
His296 and Asp296) (marked with *) compared with the crystal structure of ANS''. Protein sequence alignments were carried out by using the
sequence alignment function of Multiple Sequence Alignment by CLUSTALW (https://www.genome.jp/tools-bin/clustalw) and visualized with
ESPript 3.0 (http://espript.ibcp.fr/ESPript/ESPript/).
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Figure S6. Weblogo illustration for the conserved ExxR and CxG motifs in UttC by using 96 Psso enzyme in fungi.
EAGR (349-352) in UttC (A); CLG (434-436) in UttC (B)

The amino acids in the following enzymes (accession number are listed) were used for analysis. UttC (KIA75594) is highlighted in red.

XP_664053.1_10-490, XP_033674816.1_17-507, XP_033595470.1_20-516, XP_033430050.1_21-509, XP_033391313.1_19-508,
XP_026608368.1_1-495, XP_025573321.1_5-496, XP_025464315.1_5-498, XP_024692041.1_6-487, XP_016600678.1_16-516,
XP_016589218.1_27-507, XP_016221951.1_24-495, XP_007806251.1_26-498, XP_007805323.1_1-429, XP_003234761.1_17-497,
XP_003170503.1_31-508, @ XP_003071602.1_35-507,  XP_002848393.1_22-522, @ XP_002145722.1_1-497,XP_001911463.1_5-497,
XP_001905657.1_14-503, XP_001245240.2_35-507, XP_001228060.1_35-520, VBB75775.1_5-497, TVY58386.1_20-510, SLM38802.1_31-
474, RYP92946.1_1-423, RYP43872.1_19-502, RVX74072.1_1-443,RMZ76241.1_762-1242, RMD39760.1_78-530, RAO64728.1_1-365,
QGA14808.1_1-497, QOCRQ3.2_13-480, PVH96859.1_19-500, POS74238.1_21-516, PLN86963.1_21-508, PCG99300.1_13-489,
OXV11655.1_4-509, 0OTB02447.1_24-516, OTA92375.1_13-516, OTA64244.1_13-516, (0SS44053.1_30-509, 0JJ68595.1_1-492,
OCK75412.1_40-531, KUL85074.1_3-484, KMP04844.1_28-510, KMM70176.1_35-510, KKY30492.1_16-525, KIH90520.1_27-527,
KIA75594.1_1-506, KGO38587.1_16-495, KFY99026.1_1-431, KFY63720.1_19-514, KFH44065.1_16-507, KFA68360.1_26-512,
KFAG0546.1_25-483, KEY71920.1_31-483, KEY71720.1_26-512, KAF4779182.1_34-507, KAF4310737.1_17-496, KAF4228494.1_6-502,
KAF3895032.1_17-525, KAF3406269.1_34-522, KAF3023069.1_9-517, KAF3012828.1_17-494, KAF2994041.1_1-422, KAF2847821.1_21-
515, KAF2678715.1_16-511,  KAF2258967.1_9-501,  KAF2205452.1_8-503, @ KAF2189392.1_14-523, @ KAF2004773.1_15-520,
KAE8553912.1_1-497, KAB8343000.1_743-1215, KAB5575480.1_31-514, KAAG412416.1_75-547, GFF93090.1_21-527, GFF54863.1_21-
527, GFF23783.1_21-510, GES61355.1_13-512, GAW17174.1_5-514, GAO84805.1_21-527, GAM43297.1_34-522, EZF36180.1_17-525,
EZF23312.1_17-525, ERS97303.1_27-525, EPE10457.1_18-502, EKG19934.1_1-426, EGE04287.1_17-525, EGD97508.1_17-525,
EFW13271.1_28-510, CEN59739.1_4-442, CEJ60330.1_15-521, CBF69449.1_10-497
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Figure S7. LC-MS analysis of the metabolite profile of the A. ustus wild type
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated (i). EICs with a tolerance range of + 0.005
refer to [M + H]* or [M + Na]" ions of 1, 3 — 6, 8 and 9 (ii — vii).
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Figure S8. LC-MS analysis of the metabolite profile of the A. ustus AuttA mutant
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated (i). EICs with a tolerance range of + 0.005
refer to [M + H]" or [M + Na]" ions of 3 — 6, 8 and 9 (ii — vi).
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Figure S9. LC-MS analysis of the metabolite profile of the A. ustus AuttB mutant
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated (i). EICs with a tolerance range of + 0.005
refer to [M + H]" or [M + Na]* ions of 1, 3 — 6, 8 and 9 (ii — vii).
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Figure S10. LC-MS analysis of the metabolite profile of the A. ustus AuttC mutant
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated (i). EICs with a tolerance range of + 0.005

refer to [M + H]* or [M + NaJ* ions of 1, 3 — 6, 8 and 9 (ji — vii).

36
80



100 -

A.ustus 4 uttD
2 1O
E Acg2nm
0' — S FL . . — F
9.0x102-
[M + Naj+ of 1
2 (i) miz 249.073
1 (i
£
0 - i
2.0x10% 4
" [M+H]*of 3
5 (iii) miz 197.081
<
0 s sms i sanatini e it {2 el i e Y Bl el o i R
3.0x102-
” [M+H]*of4and 5
E { v miz 183.065
8.0x 1001
" [M+H]J*of6
g 1w miz 181.086
5.0x 1(ﬂ.
" [M + Naj+of 8
g 1w miz 233.078
£
” [M + NaJ*of 9
g { (i) miz 219.063

t/min

Figure S11. LC-MS analysis of the metabolite profile of the A. ustus AuttD mutant
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated. (i). EICs with a tolerance range of + 0.005
refer to [M + H]" or [M + Na]" ions of 1, 3 — 6, 8 and 9 (ii — vii).
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Figure S12. LC-MS analysis of the metabolite profile of the A. ustus AuttE mutant

UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated. (i). EICs with a tolerance range of + 0.005
refer to [M + H]* or [M + Na]" ions of 1, 3 — 6, 8 and 9 (i — vii).
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Figure S13. LC-MS analysis of the metabolite profile of the A. ustus AuttF mutant
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated. (i). EICs with a tolerance range of + 0.005

refer to [M + H]* or [M + Na]" ions of 1, 3, 6, 8, and 9 (ii — vi).
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Figure S14. LC-MS analysis of the metabolite profile of the A. ustus AuttG mutant
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated. (i). EICs with a tolerance range of + 0.005

refer to [M + H]* or [M + Na]" ions of 1, 3, 6, and 9 (ii — v).
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Figure S15. LC-MS analysis of the metabolite profile of the A. ustus AuttH mutant

UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated. (i). EICs with a tolerance range of + 0.005
refer to [M + H]* or [M + Na]" ions of 1, 3, 6, 8, and 9 (ii — vi).
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Figure S16. LC-MS analysis of the metabolite profile of the A. ustus AuttJ mutant

UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated. (i). EICs with a tolerance range of + 0.005

refer to [M + H]* or [M + Na]" ions of 1, 3 — 6, 8 and 9 (ii — vii).
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Figure S17. LC-MS analysis of the metabolite profile of the A.ustus AuttD after feeding with 3.
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated (i). EICs with a tolerance range of + 0.005

refer to [M + H]* or [M + Na]" ions of 1, 3 — 6, 8 and 9 (ii — vii).
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Figure $18. LC-MS analysis of the metabolite profile of the A. ustus AuttA after feeding with 4.
UV detection was carried out on a diode array detector and absorptions at 292 nm are illustrated (i). EICs with a tolerance range of + 0.005
refer to [M + H]* of 3 and 4 (ii — iii).
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Figure $19. LC-MS analysis of the acetylated EtOAc extract from A. ustus.

EIC of 2 is selected with a tolerance range of +0.005.
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Figure S20. LC-MS analysis of the acetylated EtOAc extract from AuttF of A. ustus.

EIC of 10 is selected with a tolerance range of +0.005.
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Figure S21. UV spectra of the compounds identified in this study
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Figure S25. HMBC spectrum of compound 2 in DMSO-dg
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Figure S27. "*C{'"H} NMR spectrum of compound 3 in DMSO-d; (125 MHz)
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Figure $29. HMBC spectrum of compound 3 in DMSO-ds
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Figure $33. 'H NMR spectrum of compound 7 in DMSO-ds (500 MHz)
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Figure S34. *C{'H} NMR spectrum of compound 7 in DMSO-ds (125 MHz)
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Figure S37. HMBC spectrum of compound 7 in DMSO-dg
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Figure S$38. "H NMR spectrum of compound 8 in CDCl3 (500 MHz)
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Figure S$39. "*C{'H} NMR spectrum of compound 8 in CDCl; (125 MHz)
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Figure S42. "H NMR spectrum of compound 10 in DMSO-ds (500 MHz)
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Figure S43. *C{'H} NMR spectrum of compound 10 in DMSO-ds (125 MHz)
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Figure S44. HSQC spectrum of compound 10 in DMSO-ds
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Figure S45. HMBC spectrum of compound 10 in DMSO-ds
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ABSTRACT: Heterologous expression of a three-gene cluster
from Streptomyces aurantiacus coding for a cyclodipeptide synthase,
a prenyltransferase, and a methyltransferase led to the elucidation
of the biosynthetic steps of streptoazine C (2). In wvivo

biotransformation experiments proved the high flexibility of

the

prenyltransferase SasB toward tryptophan-containing cyclodipep-
tides for regular C-3-prenylation. Furthermore, their corresponding
dehydrogenated derivatives prepared by using cyclodipeptide
oxidases were also used for prenylation. This study provides an enzyme with high substrate promiscuity from a less explored
group of prenyltransferases for potential use to generate prenylated derivatives.

2,5-Diketopiperazine (DKP) alkaloids with an indole or
indoline ring and isoprenoid moieties are derived from
tryptophan-containing cyclodipeptides (CDPs).'~ They
represent an important class of hybrid natural products and
display diverse biological and pharmacological activities,
including antibacterial, antitumor, anti-inflammatory, and
insecticidal effects.””* Representatives of tryptophan-contain-
ing CDP derivatives with various amino acids and one or more
dimethylallyl (C;) moieties at different positions of the indole
or indoline ring are shown in Chart 1. Okaramin c,>°
fellutanine D,”® fructigenine AS fumitremorgin B, roque-
fortine E,"" and echinulin'? are examples of a large number of
fungal products. In comparison, only a limited number of
prenylated DKP derivatives, such as nocardioazine AP
drimentine G,'* and streptoazine C (2),"” are bacterial
metabolites.

Significant progress has been achieved recently regarding the
understanding of the biosynthesis of prenylated CDPs and
derivatives thereof, especially of those from fungi of the genera
Penicillium and Aspergillus.m_20 In nature, the 2,5-DKP
scaffolds are usually biosynthesized by two distinct enzyme
types, either by the nonribosomal peptide synthetases
(NRPSs)'®*" or by the cyclodipeptide synthases
(CDPSs).””** NRPSs are modular multidomain enzyme
complexes and incorporate free amino acids to form the final
peptide products.”* Bimodular NRPSs are responsible for the
formation of CDPs.'®** In contrast, CDPSs, mostly of bacterial
origin, directly hijack aminoacyl-tRNAs from the protein
biosynthesis as substrates to form the DKP scaffolds.”” The
DKP scaffolds can be further modified by diverse tailoring
enzymes including prenyltransferases (PTs), methéyltrans—
ferases (MTs), and cytochrome P450 enzymes.'®'”>%2¢

© 2021 American Chemical Society and
American Society of Pharmacognosy
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3100

A\ HNTH%/R
N )

tryptophan-containing
CDP or derivative

regularly C-3
prenylated product

sasB transformant

Prenylation by PTs at different positions of the indole ring
of tryptophan-containing CDPs plays a key role for structural
diversification of indole alkaloids and is involved in the
biosynthesis of a large number of CDP derivatives."'® So far,
most of the prenylated CDP alkaloids have been identified
from NRPS-dependent pathways in fungi, and at least 13
fungal CDP PTs for regular (normal) or reverse prenylation
were characterized biochemically.'”?” PTs from bacteria and
fungi are usually highly permlsswe and can use structurally
distinct compounds for prenylatlon ® For example, a fungal
PT for a given CDP shows high flexibility toward not only
CDPs but also hydroxynaphthalines and flavonoids.”® Sub-
strate and catalytic promiscuity were frequently reported for
bacterial PTs as well. NphB in the biosynthesis of the
naphterpin catalyzes a C-prenylation of hydroxynaphthalines
and can accept some simple phenols, phenylpropanoids,
flavonoids, and stilbenes for O- and C-prenylation as
well”>*° Until now, only two PTs from CDPS-dependent
pathways have been described. Zhang et al."® recently reported
the identification of a two-gene cluster from Streptomyces
leeuwenhoekii, being responsible for the biosynthesis of
streptoazine C (2) (Chart 1). In this pathway, cyclo-(L-Trp-L-
Trp) (c(WW), the product of the CDPS SazA, was further
prenylated and methylated by the bifunctional enzyme SazB
containing both PT and MT domains. It was reported that

i . o
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Chart 1. Examples of Prenylated Diketopiperazine Derivatives
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streptoazine C (2)

SazB-PT showed strict substrate specificity and accepted only
dimethylallyl diphosphate and cWW as substrates.'> The
prenyltransferase DmtC1 from Streptomyces youssoufiensis is
involved in the biosynthesis of drimentines and catalyzes the
C-3-farnesylation of cyclo-(L-Trp-L-Pro), cyclo-(L-Trp-L-Val),
cyclo-(1-Trp-L-Leu), and cyclo-(1-Trp-L-Tle).”* However, all of
these compounds are CDPS products of the drimentine
pathway, ie., the natural substrates of DmtCl. The sharp
contrast between the high flexibility of fungal CDP PTs and
the strict substrate specificity of the bacterial SazB-PT
encouraged us to investigate more PTs from CDPS-dependent
pathways.

In this study, we identified by genome mining a putative
cdps-containing gene cluster with one gene for a PT and an
additional gene for an MT. Heterologous expression provided
evidence for their roles in the biosynthesis of streptoazine C
(2). Furthermore, we proved via biotransformation that the
prenyltransferase SasB was able to prenylate diverse
tryptophan-containing cyclodipeptides and their dehydrogen-
ated derivatives, which highlights its potential as a useful
biocatalyst to generate diverse prenylated DKPs.

B RESULTS AND DISCUSSION

Identification and Analysis of the Putative sas Gene
Cluster. Genome mining and heterologous expression in a
well-characterized host have been proven to be an efficient
strategy to explore the silent/ crj});ptic biosynthetic potential for
natural product production.”’ ™ Using this strategy, we have
successfully identified several new metabolites from different
CDPS-associated biosynthetic pathways and characterized
intriguing chemical reactions thereof, including the novel
nucleobase-containing alkaloid guanitrypmycins and several
dimeric DKPs with distinct linkage patterns.”® In analogy, we
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analyzed a wide range of cdps-containing clusters by using
characterized proteins as probes and identified a candidate
from S. aurantiacus NRRL ISP-5412. The cluster of interest,
termed the sas cluster, consists of three open reading frames
coding for a putative CDPS (SasA, WP_079103588.1) and
two tailoring enzymes, SasB (WP_121505431.1) and SasC
(WP_054413754.1) (Table S1). SasA with a polypeptide
chain length of 252 amino acids shares a sequence identity of
82% on the amino acid level with SazA mentioned above
(Table S1). SasB comprising 347 amino acids displays
sequence identities of 85% and 38% with the known SazB-
PT and DmtCl, respectively, indicating its role as a
prenyltransferase. Phylogenetic analysis with functionally
characterized PTs showed that SasB and SazB-PT are closely
located to each other (Figure S1). The 290 amino acid bearing
SasC has a high sequence identity of 82% with the MT domain
of SazB. All of these data indicate that the two clusters
probably evolved from the same ancestor and underwent
diversification during the evolutionary process.

Functional Proof of the Gene Cluster in the Biosyn-
thesis of Streptoazine. To verify their functions, we first
cloned the cdps gene sasA from S. aurantiacus into
pPWWS0A® and expressed it in Streptomyces albus J1074
(Tables S2 and S$3).> The obtained transformant harboring
sasA was cultivated in modified RS media at 28 °C for 7 days.
The bacterial culture was subsequently extracted with EtOAc
and analyzed by LC-MS. In comparison to the host strain
J1074 harboring pPWWSO0A (Figure 1-i), one predominant
product (1) bearing a [M + H]* ion at m/z 373.1659 was
detected (Figure 1-ii). Compound 1 was identified as c(WW by
comparison with an authentic standard, proving SasA to be a
cWW synthase. Afterward, the whole gene cluster comprising
sasABC was cloned into pPWWS0A and overexpressed in

https://doi.org/10.1021/acs.jnatprod.1c00844
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Figure 1. LC-MS analysis of S. albus J1074 transformants with and
without precursors. Absorptions at UV 296 nm are illustrated. [M +
H]" ions with a tolerance range of +0.005 were detected at m/z
373.166 for 1, 537.322 for 2, 441.229 for 3, 509.291 for 4, and
523.307 for S, respectively. The [M + H]" ion of the peak at 32.5 min
in the negative control differs from that of 4.

J1074 as described above. In addition to the predominant 1,
four new additional compounds were observed (Figure 1-ii).
The second dominant product (2) was detected with a [M +
H]* ion at m/z 537.3224, 164 Da larger than that of cWW,
indicating the attachment of two prenyl and two methyl groups
to 1. The three minor compounds 3, 4, and § with [M + H]*
ions at 441.2285, 509.2911, and 523.3068 are 68, 136, and 150
Da larger than 1, implying one prenyl, two prenyl, and two
prenyl moieties plus one methyl group in their structures,
respectively. Compound 2 was then isolated by semi-
preparative HPLC after large-scale fermentation. Comprehen-
sive interpretation and comparison of the 'H NMR data as well
as the ECD spectrum (Table S4, Figures S2 and S59) with
those reported in the literature’> confirmed 2 to be

streptoazine C (Scheme 1). These data strongly support the
function of SasB as a regular C-3-prenyltransferase and SasC as
an indoline N-methyltransferase. Due to the low product
yields, 3—5 could not be isolated from the sasABC trans-
formant for structure elucidation by NMR analysis.

To confirm the SasB and SasC functions and figure out the
reaction order, we performed the coexpression of sasA with
sasB and sasC separately, that is, sasAB and sasAC. In addition
to the CDPS product 1, two additional compounds, 3 and 4,
were detected in the fermentation culture of the sasAB
transformant (Figure 1-iv). Isolation and structure elucidation
by MS and 'H NMR analyses as well as comparison with the
data of known compounds'® confirmed 3 and 4 to be regularly
C-3 monoprenylated ¢(WW and streptoazine A, respectively
(Scheme 1, Table S4, and Figures S3 and S4). In contrast, only
1 was observed in the culture of the sasAC transformant
(Figure 1-v). Neither mono- nor dimethylated 1 was detected
in the sasABC transformant, even in the sensitive EIC
chromatogram (data not shown). These results supported
that 1 cannot be methylated by the methyltransferase SasC and
prenylation and cyclization take place before methylation.

Incubating 4 with the sasC transformant led to the clear
detection of 2 (Figure 1-vi), whereas no new peaks were
observed in the culture after incubation with 3 (Figure 1-vii).
This demonstrated that methylation proceeds only after the
attachment of two prenyl moieties (Scheme 1). This is also the
reason for the absence of methylated monoprenylated 1 in the
sasABC transformant (Figure 1-iii). This order of reactions is
the same as that recently reported for the two-gene cluster
responsible for streptoazine C biosynthesis."®

To further verify that the formation of 3 and 4 is catalyzed
by SasB, its coding sequence was cloned into pPPWWS0A and
expressed in J1074. In comparison to J1074 harboring the
empty vector, neither 1 nor other additional metabolites were
observed in the sasB transformant (Figure 2A-iii). Incubating
the sasB transformant with 1 (100 M) and cultivation for S
days led to the identification of 3 and 4 (Figure 2A-iv),
whereas no consumption of 1 was found in the control culture
(Figure 2A-ii). These results demonstrated that SasB is able to
catalyze the regular C-3 prenylation of 1.

Substrate Promiscuity of SasB and Generation of
Diverse Prenylated Tryptophan-Containing DKP Deriv-
atives. SasB acts as a C-3-prenyltransferase and complements

Scheme 1. Biosynthetic Pathway of Streptoazine in S. aurantiacus”

H
o N
tRNA NH N\
\\ NH, SasA \\ HN
N N
H H 0
L-Trp!RNA cyclo-L-Trp-L-Trp (1)

SasB
—_—

“The structures of streptoazine C (2), compound 3, and streptoazine A (4) were confirmed by NMR analysis.
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Figure 2. (A) HPLC analysis of the sasB transformant with and without precursors and (B) prenylated products of SasB. The [M + H]" ions of the
peaks at 26.3 and 32.5 min in the negative control differ clearly from those of 7 and 4, respectively. S: substrate.
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the reverse C-3-prenylation of fungal CDP PTs such as AnaPT,
CdpNPT, and CdpC3PT' and the regular C-3-prenylation
feature of FtmPT1.*® Such an enzyme with flexible substrate
specificity is welcome for its potential use in the production of
prenylated DKPs.”” We therefore investigated the substrate
specificity of SasB. Because no recombinant protein was
obtained after heterologous expression in E. coli and
Streptomyces (data not shown), in vitro testing for the
acceptance of tryptophan-containing CDPs by SasB cannot
be achieved. Thus, we supplied 12 CDPs to the ]J1074

108
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transformant with sasB and monitored their consumption by
LC-MS analysis. As shown in Figure 2A-v—viii, c(WF, cWY,
cWL, and cWM were efficiently converted by SasB. The [M +
H]" ions of the products 6—9 are 68 Da larger than those of
the precursors, indicating the attachment of one dimethylallyl
moiety to the substrates.

Large-scale fermentation and subsequent isolation via
preparative HPLC resulted in the products 6—9 of high purity
for NMR analysis including 'H, C, COSY, HSQC, HMBC,
and NOESY (Figures 3 and S5—528). The typical signals of a
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Table 2. NMR Data of Compounds 10 and 11 in DMSO-d,
10 11
position 8¢, type Sy multi. (J in Hz) 8¢, type Sy, multi. (J in Hz)
1 6.64, d (2.8) 6.60, d (2.8)
2 79.9, CH 5.32,d (2.8) 79.8, CH 5.29,d (2.8)
3 54.7, C 54.7, C
4 122.5, CH 7.11,d (7.1) 122.5, CH 7.10, d (7.5)
5 117.6, CH 6.62,t (7.7) 117.6, CH 6.61, td (7.5, 1.3)
6 127.8, CH 6.97, br t (7.6) 127.8, CH 6.96, td (7.9, 1.3)
7 108.8, CH 6.52, d (7.8) 108.7, CH 6.51,d (7.9)
8 148.5, C 1485, C
9 1327, C 1328, C
10a 39.8, CH, 246" 39.5, CH, 2.44, dd (12.8, 7.4)
108 2.04, dd (12.8, 10.5) 2.04, dd (12.8, 10.5)
11 56.6, CH 472, dd (10.5, 7.4) 56.5, CH 4.65, dd (10.5, 7.4)
13 160.4, C 161.0, C
14 1283, C 1257, C
15 9.97, br s 9.86, br s
16 1673, C 1672, C
17 115.9, CH 6.77, s 116.8, CH 6.70, s
18 1333, C 1241, C
19/23 129.4, CH 7.56, d (7.6) 1312, CH 7.42, d (8.6)
20/22 128.6, CH 741, t (7.4) 115.5, CH 6.80, d (8.6)
21 1282, CH 7.32, t (7.4) 157.8, C
OH-21 9.78, br s
iy 34.6, CH, 2.46° 34.6, CH, 2.48,d (7.2)
2 119.6, CH 5.02,t (7.3) 119.6, CH 5.02,t (7.2)
3 134.1, C 134.0, C
4 18.0, CH, 1.59, s 18.0, CH, 1.58, s
s 25.7, CH, 1.64, s 25.7, CH, 1.64, s

“Signals overlapping with each other. See Supporting Information for structure numbering.

regular C-3-prenyl residue in the 'H NMR spectra are found in
the ranges of 5y 2.44—2.46 (d, 6.9—7.2 Hz, H-1'), 5.01-5.03
(t, 6.9—7.2 Hz, H2'), 1.57—1.58 (s, H-4'), and 1.63—1.64 (s,
H-S') (Table 1). The signals of the five carbons are detected in
the "*C spectra at about 5 34 (C-1'), 120 (C-2'), 134 (C-3'),
18 (C-4'), and 26 (C-5') (Table 1). Prenylation at C-3
destroys the aromatic character of the indole system and causes
a shielded shift of the H-2 signal to dy 5.24—5.26 as well as
those of C-2 and C-3 to ¢ 80 and SS, respectively. The
configuration of the products was determined based on the
correlations between H-1" and H-11, H-1/, and H-2 as well as
H-2 and H-11 in the NOESY spectra. Comparison of their
ECD spectra provided additional evidence for their config-
urations (Figure S60). All the obtained data confirmed that 6—
9 are C-3-prenylated derivatives of the corresponding CDPs
(Figure 2B). More fascinatingly, SasB performed also very
effective conversions of these four substrates, at least in our
experiments.

Low conversions to prenylated derivatives were also
detected by LC-MS analysis for cyclo-(L-Trp-L-Ala), cyclo-(L-
Trp-p-Ala), cyclo-(p-Trp-L-Ala), cyclo-(D-Trp-p-Ala), cyclo-(L-
Trp-L-Pro), cyclo-(1-Trp-p-Pro), cyclo-(p-Trp-L-Pro), and cyclo-
(p-Trp-p-Pro) (Figures S63 and S64). Due to the low product
yields, the structures of these products could not be elucidated
in this study. These results suggest a more flexible substrate
specificity of SasB from S. aurantiacus than that of SazB from S.
leeuwenhoekii."> It was reported that cWF, cWY, cWA, and
cWP were not accepted by SazB." In our case, all of these four
CDPs were prenylated by SasB with high conversion for cWF
and cWY (Figures 2, S63, and S64).
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Cyclodipeptide oxidases (CDOs) are frequently found in the
CDPS-related pathways and install exo double bonds at the
DKP ring.”® For combinatorial application of SasB with these
oxidases, we tested its acceptance of the dehydrogenated forms
of the four efficiently converted CDPs, ie., c(WAF, cWAY,
cWAL, and c(WAM, by incubation experiments in the sasB
transformant. LC-MS analysis showed that all of these
compounds were good substrates for SasB and were
completely converted to their prenylated products (Figure
2A-ix—xii). The products 10—13 were subsequently isolated,
and their structures confirmed to be regularly C-3-prenylated
derivatives at the indoline ring (Figure 2B) by detailed
interpretation of their NMR data and the comparison with the
data of 6—9 (Tables 2 and 3, and Figures 3, $29—S52, and
S61). Observation of the interaction between NH-15 and H-
19/H-23 in the NOESY spectrum of 11 as well as NH-15 and
H-18 in that of 12 supported the Z-configuration of the exo
double bonds in their structures (Figures S40 and $46).

During the isolation procedure, we observed the conversion
of the c(WAM product 13 to the new compound 14. Isolation
by using a chiral-phase HPLC column (Figure S65) and
structure elucidation by NMR analysis including interpretation
of the NOESY data and comparison of its ECD spectrum with
that of 13 (Table 3 and Figures 3, S53—SS8, and S62)
confirmed the epimerization at the C-11 position. As the
nonenzymatic epimerization via keto—enol tautomerism was
already observed for the guanitrypmycins,®® we speculated a
similar mechanism may explain the conversion of 13 to 14.
Incubation of 13 in CD;0D/D,O (1:1) at pH 9 and 12 for 14
h and LC-MS analysis confirmed indeed the conversion of 13

https://doi.org/10.1021/acs.jnatprod.1c00844
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Table 3. NMR Data of Compounds 12—14 in DMSO-d,
12 13 14

position 8¢, type Sy multi. (J in Hz) 8¢ Sy, multi. (J in Hz) 8¢, type Sy, multi. (J in Hz)
1 6.55,d (2.8) 6.60, d (2.9) 6.51,d (1.0)
2 79.8, CH 5.23,d (2.8) 79.9, CH 526, d (2.9) 79.0, CH 5.33,brs
3 54.4, C 54.4, C 544, C
4 122.5, CH 7.08, d (7.2) 122.5, CH 7.08, dd (7.4, 1.1) 123.1, CH 7.12,d (7.2)
5 117.5, CH 6.60, td (7.2, 1.0) 117.5, CH 6.60, td (7.4, 1.1) 117.6, CH 6.61, td (7.2, 1.0)
6 127.8, CH 6.95, td (7.7, 1.0) 127.8, CH 6.96, td (7.8, 1.3) 128.1, CH 6.97, td (7.4, 1.0)
7 108.6, CH 6.49, d (7.7) 108.6, CH 6.50, d (7.8) 1082, CH 6.51,d (7.4)
8 1485, C 1485, C 1502, C
9 132.8, C 1327, C 1309, C
10 40.1, CH, 242, dd (12.8, 7.1) 40.1, CH, 244, dd (12.7, 7.1) 39.8, CH, 2.20, t (11.9)
108 1.94, dd (12.8, 10.8) 1.95, dd (12.7, 11.0) 2.46, dd (11.9, 5.9)
11 56.3, CH 4.57,4dd (10.8, 7.1) 56.4, CH 4.62, dd (11.0, 7.1) 7.8, CH 4.02, dd (11.9, 5.9)
13 159.7, C 159.1, C 157.0, C
14 127.0, C 130.1, C 129.7, C
15 9.92, s 10.12, s 10.10, s
16 1669, C 1669, C 165.9, C
17 125.5, CH 5.68, d (10.5) 113.6, CH 5.84,t (87) 112.8, CH 577, t (8.7)
18 24.4, CH 2.82, m 27.3, CH, 3.41, dd (14.0, 8.7) 272, CH, 3.39, dd (14.0, 8.7)

3.29¢

19 22.3, CH, 0.96, d (6.5)
20 22.1, CH, 0.96, d (6.5) 14.0, CH, 2.01, s 14.0, CH, 1.99, s
% 34.6, CH, 2.46, d (7.3) 34.6, CH, 2.47,d (7.2) 36.0, CH, 2.40,d (7.3)
2’ 119.6, CH 4.99, t (7.3) 119.6, CH 4.99, t (7.2) 119.3, CH 5.08, t (7.3)
3 134.0, C 134.0, C 133.8, C
4 18.0, CH, 1.58, s 18.0, CH, 1.58, s 18.0, CH, L5, s
s/ 25.7, CH, 1.63, s 25.7, CH, 1.64, s 25.7, CH, 1.64, s

“Signals overlapping with that of water. See Supporting Information for structure numbering.

to 14 and incorporation of one deuterium in both molecules
(Figure S66). This supported the epimerization at C-11 via
keto—enol tautomerism.

Taking the above results together, a putative cdps-containing
gene cluster with a prenyltransferase and a methyltransferase
gene was identified from S. aurantiacus and successfully
expressed in S. albus J1074. The diprenylated and dimethylated
diketopiperazine indole alkaloid streptoazine C (2) was
identified as the cluster end product. Heterologous expression
of different gene combinations and precursor incubation
experiments enabled us to evaluate the order of the
biosynthetic steps to 2. The cWW formation catalyzed by
SasA is followed by two regular prenylation steps with SasB
and final N-methylations with SasC. It is noteworthy that the
same order of reaction steps occurs in the biosynthesis of the
same product in S. leuwenhoekeii."> However, differing from
sazB from S. leeuwenhoekii coding for both PT and MT
activities, the two independent genes sasB and sasC are located
in the streptoazine cluster in S. aurantiacus described in this
study. More importantly, SasB displays a remarkably high
substrate tolerance and can accept not only a number of
tryptophan-containing CDPs but also their dehydrogenated
derivatives for prenyl decoration. The successful production of
dehydrogenated and prenylated CDPs by combination of
cyclodipeptide oxidases and the prenyltransferases SasB will
provide an excellent example for accessing diversified natural
products in the combinatorial biology field, which also inspires
us to explore the combination of SasB with other modification
genes in order to access more diverse DKPs. This is the first
report on the substrate flexibility of a CDPS-related PT toward
non-natural substrates. Identification of additional PTs from
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this less explored enzyme group will provide more details on
their biochemical properties.

B EXPERIMENTAL SECTION

General Experimental Procedures. The optical rotation was
measured with an A KRUSS P3000 polarimeter at 20 °C using the D-
line of the sodium lamp at 4 = 589.3 nm. Prior to the measurement,
the polarimeter was calibrated with chloroform as solvent. Circular
dichroism spectra were taken on a J-1500 CD spectrometer (Jasco
Deutschland GmbH). The samples were dissolved in MeOH and
measured in the range of 200—400 nm by using a 1 mm path length
quartz cuvette. The NMR spectra of the purified compounds were
recorded on a JEOL ECA-500 MHz spectrometer in DMSO-dy, and
all spectra were processed with MestReNova 9.0.0 (Metrelab).
Chemical shifts are referred to those of DMSO-d¢ (6 2.50 and &¢
39.5). High-resolution mass spectrometric analysis was performed on
an Agilent 1260 HPLC system equipped with a microTOF-Q III
spectrometer (Bruker) using a Multospher 120 RP-18 column (250 X
2 mm, S ym) (CS-Chromatographie Service GmbH) or a Multohigh
Chiral AM-RP HPLC column (150 X 4.6 mm, CS-Chromatographie
Service GmbH). Electrospray positive ionization mode was selected
for determination of the exact masses. The capillary voltage was set to
4.5 kV and the collision energy to 8.0 eV. Sodium formate was used in
each run for mass calibration. The masses were scanned in the range
of m/z 100—1500. Data were evaluated with the Compass
DataAnalysis 4.2 software (Bruker Daltonik). Semipreparative
HPLC was performed on the same HPLC equipment with an Agilent
ZORBAX Eclipse XDB C18 HPLC column (250 X 9.4 mm, S um)
and a Multohigh Chiral AM-RP HPLC column (250 X 10 mm, CS-
Chromatographie Service GmbH). Sephadex LH-20 (Merck) was
used for column chromatography, and HPLC for detection of the
desired substance in the fractions.

Chemicals. cyclo-(.-Trp-L-Trp), cyclo-(L-Trp-L-Phe), cyclo-(L-Trp-
L-Tyr), and cyclo-(L-Trp-L-Leu) were purchased from Bachem. cyclo-

https://doi.org/10.1021/acs.jnatprod.1c00844
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(L-Trp-L-Met) was isolated from the strain described previously.”
The stereoisomers of cyclo-Trp-Ala and cyclo-Trp-Pro were synthe-
sized according to the method published previously.’ The
dehydrogenated CDP substrates used in this study were prepared
by using cyclodipeptide oxidases according to the method described
in a previous work.*

Bacterial Strains, Plasmids, and Growth Conditions.
Streptomyces aurantiacus NRRL ISP-5412 was obtained from the
ARS Culture Collection (NRRL). Streptomyces albus J1074>° was
kindly gifted by Prof. Dr. Andriy Luzhetskyy (Saarland University). S.
albus J1074 and the generated exconjugants were maintained on MS
plates (mannitol 20.0 g/L, soya flour 20.0 g/L, agar 20.0 g/L) at 28
°C for sporulation. For secondary metabolite production, S. albus
J1074 transformants were cultivated in liquid modified RS medium
(sucrose 103.0 g/L, glucose 10.0 g/L, yeast extract 5.0 g/L, MgCl,-
6H,0 10.12 g/L, K,SO, 0.25 g/L, Difco casamino acids 0.1 g/L,
MOPS 21.0 g/L, trace element solution 2 mL/L, pH 7.2) at 28 °C for
7 days.

Computer-Assisted Sequence Analysis. Nucleotide and amino
acid sequences used in this study were obtained from NCBI databases
(http://www.ncbi.nlm.nih.gov). Comparison of protein sequences
was carried out by using the BLASTP program (http://blast.ncbi.nlm.
nih.gov/). The phylogenetic tree of PTs (Figure S1) was created by
MEGA version 7.0 (http://www.megasoftware.net).

Genetic Manipulation, PCR Amplification, and Gene
Cloning. Strains and plasmids used in this study are listed in Table
S2 and Table S3, respectively. Recombinant E. coli strains were
cultivated in liquid or on solid lysogeny-broth (LB) with 100 ug/mL
ampicillin, 50 #g/mL kanamycin, 50 yg/mL apramycin, or 25 pig/mL
chloramphenicol when necessary.

Genetic manipulation in E. coli was performed according to the
protocol by Green and Sambrook.”' Genomic DNA isolation from
Streptomyces was performed as described in the literature.*’

Gene regions were amplified by PCR from genomic DNA of S.
aurantiacus by using primers listed in Table S3 and Phusion high-
fidelity DNA polymerase from New England Biolabs. The generated
PCR fragments were cloned into pGEM-T Easy vector (Promega),
and the sequence integrity was confirmed by sequencing. Sub-
sequently, the fragments were released with restriction endonucleases
from pGEM-T Easy and ligated into pPWWS30A,>* which was
digested with the same enzymes, previously. The generated constructs
(Table S3) were used for heterologous expression in S. albus J1074.

Heterologous Gene Expression in Streptomyces albus J1074
and Cultivation for Secondary Metabolite Production. The
constructed plasmids harboring different genes or the gene cluster
were transformed into nonmethylated E. coli ET12567/pUZ8002,
then conjugated with S. albus J1074. The positive conjugants were
selected by the phenotype showing apramycin resistance and further
confirmed by PCR. The spores of the S. albus J1074 transformants
were inoculated into 50 mL of modified RS liquid media supplied
with 50 pg/mL of apramycin in 250 mL baffled flasks and cultured at
28 °C and 200 rpm for 7 days. This culture (1 mL) was extracted with
the same volume of EtOAc three times. After that, the organic phases
were combined and evaporated, and the dried residues were dissolved
in 200 uL of MeOH. Samples (S uL) were subjected to LC-MS for
analysis.

Biotransformation for the Generation of Various Preny-
lated DKPs. The S. albus J1074 transformant harboring sasB was
incubated in modified RS medium at 28 °C, 200 rpm for 2 days.
Tryptophan-containing CDPs or dehydrogenated derivatives were
separately added to 10 mL of these precultures to final concentrations
of 100 M. After cultivation at 28 °C for an additional S days, the
metabolites were extracted with EtOAc and analyzed by LC-MS.

LC-MS Analysis. For secondary metabolite analysis, a linear
gradient of 5—100% MeCN in H,0, both containing 0.1% HCOOH,
in 40 min and a flow rate at 0.25 mL/min were used. The column was
then washed with 100% MeCN containing 0.1% HCOOH for S min
and equilibrated with 5% MeCN in H,O for 5 min. For analysis of the
samples after incubation of the prenylated dehydrogenated DKPs in
CD;0D/D,0, a Multohigh Chiral AM-RP HPLC column (150 X 4.6
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mm, CS-Chromatographie Service GmbH) was used. Separation was
carried out with a linear gradient of 50—100% MeCN in H,O in 30
min and a flow rate of 0.5 mL/min.

Extraction and Isolation of Secondary Metabolites. For
structure elucidation of the accumulated products, S. albus J1074
transformants harboring sasABC and sasAB were fermented in
modified RS medium on large scales (8 L) at 28 °C for 7 days.
The culture supernatants were collected and extracted with an equal
volume of EtOAc three times. The EtOAc phases were evaporated to
dryness, dissolved in MeOH, and applied to chromatography on a
Sephadex LH-20 column with MeOH as eluent. The fractions
containing the target products were further purified on an Agilent
HPLC 1260 series by using a semipreparative Agilent ZORBAX
Eclipse XDB C18 HPLC column (250 X 9.4 mm, S ym). The flow
rate was set to 2.0 mL/min. Compounds 2, 3, and 4 were purified
with 95%, 70%, and 85% MeCN in H,O, respectively.

For the prenylated DKP derivatives generated by biotransforma-
tion, the extracts were obtained by extraction with EtOAc as described
above. Compounds 6—12 were further purified on an Agilent HPLC
1260 series with 60—65% MeCN in H,0. Compounds 13 and 14
were separated on an Agilent HPLC 1260 series by using a
semipreparative Multohigh Chiral AM-RP HPLC column (250 X
10 mm, CS-Chromatographie Service GmbH) with 80% MeCN in
H,0. The flow rate was set to 2.0 mL/min.

Streptoazine C (2): yellow oil; [a]*°, +180 (¢ 0.33, CHCL,); ECD
(029 mM, MeOH) A, (Ae) 292 (+3.71), 277 (+2.64), 255
(+9.86), 229 (—3.08), 211 (+10.51) nm; '"H NMR data, Table S4;
HRESIMS m/z: 537.3245 [M + HJ]* (caled for C;H,N,O,,
537.3224).

Compound 3: yellow oil; [a]*, +45 (c 0.40, CHCL;); ECD (0.27
mM, MeOH) A, (Ag) 290 (+3.09), 265 (+1.59), 244 (+10.82), 222
(—4.78), 214 (—4.60) nm; '"H NMR data, Table S4; HRESIMS m/z
4412288 [M + HJ]* (caled for C,,HyN,O,, 441.2285).

Streptoazine A (4): yellow oil; [a]*p +340 (c 0.26, CHCl;); ECD
(0.30 mM, MeOH) A, (Ag) 291 (+2.69), 265 (+1.08), 245
(+11.14), 219 (—1.46), 208 (+25.47) nm; "H NMR data, Table S4;
HRESIMS m/z 509.2911 [M + H]* (caled for C;,H;,N,O,,
509.2911).

Compound 6: yellow oil; [a]*, +40.1 (¢ 1.87, CHCL); ECD
(070 mM, MeOH) A, (Ae) 294 (+3.70), 270 (+0.43), 243
(+9.02), 218 (—~124) nm; 'H and C NMR data, Table I;
HRESIMS m/z 402.2182 [M + H]* (caled for C,gH,sN;0,,
402.2176).

Compound 7: yellow oil; [a]* +25 (c 0.71, CHCl;); ECD (0.51
mM, MeOH) A,,,,, (Ag) 287 (+2.23), 267 (+0.55), 243 (+12.14), 225
(=1.80), 213 (+1.14) nm; 'H and C NMR data, Table 1;
HRESIMS m/z 4182127 [M + HJ]* (caled for C,sH,gN;Os,
418.2125).

Compound 8: yellow oil; [a]*’, +113 (c 1.34, CHCl;); ECD (0.55
mM, MeOH) 4., (A€) 293 (+3.10), 264 (+0.83), 242 (+10.11), 223
(=0.97), 210 (+8.14) nm; 'H and *C NMR data, Table 1;
HRESIMS m/z 3682330 [M + HJ]* (caled for C,HiyN;O,,
368.2333).

Compound 9: yellow oil; [a]*p +14.2 (¢ 2.19, CHCL); ECD
(0.68 mM, MeOH) /.. (Ae) 291 (+2.28), 268 (+0.57), 243
(+8.54), 224 (+1.23), 210 (+7.29) nm; 'H and *C NMR data, Table
1; HRESIMS m/z 368.1906 [M + HJ]* (caled for C,;H,N;0,S,
368.1897).

Compound 10: yellow oil; []*y +150 (¢ 0.89, CHCl;); ECD
(0.34 mM, MeOH) 1., (Ae) 293 (+8.48), 254 (+1.11), 229
(+12.71), 215 (+12.83) nm; 'H and '3C NMR data, Table 2;
HRESIMS m/z 400.2020 [M + H]* (caled for C,sH,¢N;0,,
400.2020).

Compound 11: yellow oil; [a]*p +25 (c 0.85, CHCl;); ECD (0.31
mM, MeOH) 4, (Ag) 328 (+7.90), 315 (+7.98), 301 (+10.74), 258
(=2.19), 221 (+20.25) nm; 'H and *C NMR data, Table 2;
HRESIMS m/z 416.1968 [M + H]* (calcd for C,sH,¢N;0;,
416.1969).

Compound 12: yellow oil; [a]*’p +24 (c 0.67, CHC,); ECD (0.28
mM, MeOH) 4,... (Ag) 306 (+2.94), 276 (+0.26), 248 (+13.56), 237
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(+9.72), 219 (+26.54) nm; 'H and 3C NMR, Table 3; HRESIMS m/
2 366.2178 [M + H]* (calcd for C,,H,gN;0,, 366.2176).

Compound 13: yellow oil; [@]*y +227 (¢ 1.29, CHCl;); ECD
(040 mM, MeOH) A, (Ae) 306 (+2.48), 287 (+1.71), 247
(+10.40), 246 (+10.25), 220 (+29.36) nm; 'H and *C NMR data,
Table 3; HRESIMS m/z 384.1746 [M + H]* (calcd for C,;H,4N;0,S,
384.1740).

Compound 14: yellow oil; [@]*y +170 (¢ 0.61, CHCl;); ECD
(048 mM, MeOH) A, (Ae) 302 (+3.88), 287 (+3.11), 249
(+12.83), 220 (—2.94), 207 (—13.33) nm; ‘H and *C NMR data,
Table 3; HRESIMS m/z 384.1737 [M + H]* (caled for C,;H,4N;0,S,
384.1740).
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Supplementary Tables

Table S1. Comparison of sas genes with known entries

sasA sasB sasC

Sas cluster m—) m——) —)

Sequence identity (length in aa) in %

Protein Accession No. L?;g)th S. leeuwenhoekii S. youssoufiensis
NRRL B-24963! 0OUC6819?
SasA WP_079103588.1 252 SazA (252) 82 DmtAl (233), 41
SasB WP_121505431.1 347 SazB-PT domain (314) 85 DmtC1 (311), 38
SasC WP_055513754.1 290 SazB-MT domain (276) 82

Table S2. Bacterial strains used in this study

Strain Source Cultivation media
E. coli DH5a Invitrogen LB

E. coli ET12567/pUZ8002 3 LB

Streptomyces albus J1074 4 MS

Streptomyces aurantiacus NRRL ISP-5412 NRRL modified R5

NRRL: ARS Culture Collection

LB medium: tryptone 10.0 g/L, yeast extract 5.0 g/L, NaCl 10.0 g/L.

MS medium: mannitol 20.0 g/L, soya flour 20.0 g/L, agar 20.0 g/L.

Modified RS medium: sucrose 103.0 g/L, glucose 10.0 g/L, yeast extract 5.0 g/L, MgCl,.6H,0 10.12 g/L, K>SO,
0.25 g/L, Difco casaminoacids 0.1 g/L, MOPS 21.0 g/L, trace element solution 2 mL/L, pH 7.2.

Table S3. Cloning and expression constructs used in this study

Gene Primer sequences (5°-3") Cloning Expression (;loning Expression
construct vector sites constructs

sasA CATATGTCCAGCAAGGACGTCGAC pJL81 pPPWW50 Ndel/Xbal pJL87
TCTAGACTATGTGCGGTTGACTTCCTTC

sasABC CATATGTCCAGCAAGGACGTCGAC pJL82 pPWW50 Ndel/Spel pJL88
ACTAGTCTGCGTTCACCGGGTCG

sasAB CATATGTCCAGCAAGGACGTCGAC pJLS83 pPWW50 Ndel/Spel pJL89
ACTAGTTCACCGGTCCGTCTCCGC

sasAC CATATGTCCAGCAAGGACGTCGAC pJL84 pPWW50 Ndel/Bglll
AGATCTTGTCCAGCAAGGACGTCGAC pJL90
ACTAGTATGTATCAGTCCGGGACCCGTTT pJL86 Spel/Xbal
C
TCTAGATCACCGGGTCGGACCGCTG

sasB CATATGAGCCAGCGAGAACTCACCG pJL85 pPWW50 Ndel/Spel pJLI1
ACTAGTTCACCGGTCCGTCTCCGC

sasC ACTAGTATGTATCAGTCCGGGACCCGTTT pJL86 pPWW50 Spel/Xbal pJL92

C
TCTAGATCACCGGGTCGGACCGCTG

Restriction sites for cloning are underlined in the primer sequences. Cloning constructs are based on pGEM T EASY vector.
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Table S4. 'H NMR data of compounds 2 — 4 in DMSO-ds

2 3 4
Position Jun, multi. (J in Hz) ou, multi. (J in Hz) Ju, multi. (J in Hz)
1 6.53,d(3.0) 6.49,d (3.4)
2 5.10,s 5.28,d (3.0) 5.28,d (3.4)
4 7.11,dd (7.4, 0.9) 7.05,d (7.4) 7.08,d (7.3)
5 6.70, td (7.4, 0.9) 6.59, td (7.4, 1.0) 6.59,t(7.3)
6 7.08,td (7.8, 1.3) 6.98,td (7.8, 1.0) 6.94,1d (7.8, 0.9)
7 6.47,d (7.8) 6.49,d (7.8) 6.44,d (7.8)
10a 2.38,dd (12.9,7.2) 2.33,dd (13.0,7.7) 2.41,dd (13.1,7.7)
108 1.96, dd (12.9, 11.1) 1.98, dd (13.0, 10.0) 1.99, dd (13.1, 10.7)
11 4.76,dd (11.1,7.2) 4.50,1(9.0) 4.66, dd (10.7, 7.7)
14 4.76,dd (11.1,7.2) 4.37,t(5.5) 4.66,dd (10.7,7.7)
15 7.59, s
17 10.81,s
18 5.10, s 7.22,d(2.3) 5.28,d (3.4)
20 7.11,dd (7.4, 0.9) 7.57,d(7.8) 7.08,d (7.3)
21 6.70, td (7.4, 0.9) 6.95,td (7.8, 1.0) 6.59,t(7.3)
22 7.08, td (7.8, 1.3) 7.07,td (8.1, 1.0) 6.94,1d (7.8, 0.9)
23 6.47,d (7.8) 7.32,d (8.1) 6.44,d (7.8)
260 2.38,dd (12.9,7.2) 3.37,dd (15.2,5.5) 2.41,dd (13.1,7.7)
268 1.96,dd (12.9, 11.2) 3.00, dd (15.2, 6.7) 1.99, dd (13.1, 10.7)
/1" 2.54,d(7.4) 2.45,d (7.1) 2.51,d(7.3)
2'/2" 4.99,brt (7.3) 5.02,brt(7.3) 5.03,t(7.1)
4'/4" 1.61,s 1.58,s 1.60, s
5'/5" 1.64, s 1.64, s 1.64, s
6'/6" 2.87,s

The NMR data of 2 — 4 correspond well to those reported previously.'
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Supplementary Figures

" _‘“: BrePT Aspergilius versicolor

CdpC2PT Aspergilius fischeri
AnaPT Neosartarya fischeri
ABR14712.1 Aspergilius fumigatus
ADIB0056.1 Aspergillus oryzae
FtmPT1 Aspergilius furnigatus
FgaPT2 Aspergitius fumigatus
T-DMATS Aspergiilus terreus
FaaPT1 Aspergillus furnigatus
PaxD Penicilliura paxili
GliD1 Aspergillus furnigatus
SirD Aspergilius luchuensis

AstPT Aspergillus terreus
s ﬂB Aspergilus nidulans
" LtxC Lyngbya majuscula
{Tlec Strepfomyces blastmyceticus

. . CymbD Salinispora arenicola
| o] — LptA Sirepformyces sp. SN-593
- _E SAMLOBS4 Streptornyces ambofaciens

! SCOT467 Streptormyces coelicolor A3(2)
CD36 Candida dubliniensis
7] XiaP Streptornyces sp. SCSIO 02999
E LdsA Coryrebacterium glutarnicum
- XiaN Streptomyces sp. SCSIO 02999
# —— CloQ Streptomyces roseochromogenus
L Nova Streptomyces niveus
SCOT7190 Streptormyces coelicobor A3(2)
] Fng28 Strepformyces cinnarmonensis
—{___ Fng26 Streptomyces sp. CL190
NzsG Streptornyces sp. MA3T7
e DmtC1 Streptomyces youssoufiensis
* _: DmtC3 Streptornyces aidingensis
m X ———— DmtC2 Streptomyces sp. NRRL F-5123
[ SasB Strepfomyces aurantiacus

SazB-PT Streptomyces leeuwenhoeki
e " HopA Strepforryces peucetius
HpnC Zyrmomonas mobilis
¢ CrtM Staphylococcus aureus
CnB Strepforryces griseus
HopB Streptoryces peucetius

02

Figure S1. Phylogenetic analysis of PTs
Investigated in this study (in bold red) and functionally characterized PTs from bacteria and fungi. The protein sequences were

downloaded from NCBI database.
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ABSTRACT: Heterologous expression of a cdps-p450 locus from
Streptomyces sp. NRRL S-1521 led to the identification of
guanitrypmycin D1, a new guaninylated diketopiperazine. The
cytochrome P450 GutDs,, catalyzed the regiospecific transfer of
guanine to C-2 of the indole ring of cyclo-(L-Trp-L-Tyr) via a C—C
linkage and represents a new chemical transformation within this
enzyme class. Furthermore, GutD;s,, efficiently accepts several
other tryptophan-containing cyclodipeptides or derivatives for
regiospecific coupling with guanine, thus generating different
guanitrypmycin analogs.

Natural products (NPs), especially those from microbes,
play important roles in drug discovery and develop-
ment.' Although the traditional methods such as the
bioactivity screening strategy have made great contributions
to new NP discovery in the past century, it becomes much
more difficult to get new compounds because of the repeated
isolation of known ones.” The rapid development of next
generation sequencing (NGS) technologies led to an increase
in microbial genome sequences in public databases.’
Bioinformatic analysis showed that a broad range of
uncharacterized and cryptic biosynthetic gene clusters
(BGCs), coding for novel metabolites, are hidden in the
genomes. Different strategies such as promoter-exchange and
heterologous expression have been successfully used to unveil
the mystery of some of these BGCs.” To date, a large number
of NPs including 2,5-diketopiperazines (2,5- DKPs) have been
discovered by exploiting these cryptic BGCs.*~

2,5-DKPs with a central diketopiperazine ring are
ubiquitously distributed in nature and often found as side
products of polypeptides.”® They are formed by condensation
of two @-amino acids and therefore represent the smallest class
of cyclic peptides.® In microorganisms, they are products of
two distinct enzyme families, the nonribosomal peptide
synthetases (NRPSs) and cyclodipeptide synthases
(CDPSs).”~'" NRPSs for CDP formation are bimodular
enzymes and mainly found in fungi. Each module typically
consists of three domains, adenylation (A) domain, peptidyl
carrier protein (PCP), and the condensation (C) domain,
which incorporate one amino acid into the peptide back-
bone.'” Compared to NRPSs, CDPSs are small proteins first

© 2023 American Chemical Society and
American Society of Pharmacognosy
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reported from Streptomyces noursei and harbor very similar
structures to class-I aminoacyl-tRNA synthetases.'>'* They use
aminoacyl-tRNAs (aa-tRNAs) as substrates to synthesize the
DKP scaffolds.”> Most of CDPSs in actinobacteria are
clustered with genes for tailoring enzymes. To date, diverse
classes of tailoring enzymes, such as prenyltransferases (PTs),
methyltransferases (MTs) and cytochrome P4S0 enzymes,
cyclodipeptide oxidases (CDOs), and 2-oxoglutarate/Fe?"-
dependent oxygenases, have been found in cdps-related gene
clusters.*

It is worth mentioning that cytochrome P450s are found as
the most prevalent modification enzymes in the characterized
cdps-related gene clusters. P450 enzymes from the featured
biosynthetic pathways catalyze a wide range of interesting
chemical transformations, such as intramolecular C—C bond
formation, different types of dimerization, aromatization of the
DKP ring, and nucleobase transfer reactions.”®'® Seven
different types of cyclodipeptide—nucleobase linkages have
been characterized from CDPS-P450-related nucleobase trans-
fer pathways, including C—C, C—N, and C—O bonds (Figure
1)."77?! Additionally, different tryptophan-containing and
tyrosine-containing CDPs as well as two nucleobases, guanine
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Figure 1. Examples of guaninylated NPs with nucleobases attached on different positions of the DKP core.

and hypoxanthine, have been found as the substrates of these
P450 enzymes.'”~>' These findings significantly expanded the
spectrum of DKP derivatives and highlight the promise of
CDPS-related enzymes as unique biocatalysts for novel
transformations.

In this study, a two-gene cluster coding for a CDPS and a
P450 was identified in Streptomyces sp. NRRL S-1521 by
phylogenetic analysis. Heterologous expression of the gene
cluster led to the identification of a new guaninylated DKP
guanitrypmycin D1. Biotransformation experiments demon-
strated that GutDs,, catalyzes the transfer of a guanine onto
C-2 of the indole ring of cyclo-(L-Trp-L-Tyr) (cWY) via a C—C
bond. Precursor incubation experiments revealed GutDs,, can
also utilize other tryptophan-containing CDPs as well as their
dehydrogenated forms as substrates, for the synthesis of
different guanitrypmycin analogs. Therefore, this study
provides a biocatalyst for a new linkage pattern between a
DKP indole ring and a guanine moiety and expands the
functional spectrum of P450s as tailoring enzymes.

B RESULTS AND DISCUSSION

Identification and Analysis of the gut;;,; Gene
Cluster. We have identified a dozen cdps-p450-containing
gene clusters since 2019."”7'"** Most of them coded for new
DKP derivatives and biosynthetic enzymes, which inspired us
to explore more cdps-related gene clusters for novel
metabolites. In the previous studies, we took the functionally
characterized CDPSs and P450s as probes to search and
identify their putative homologues in the public databases.
Subsequent phylogenetic analysis led to the identification of
plenty of uncharacterized cdps-p450 gene clusters. Based on

95

the phylogenetic information, one cdps-p450 gene cluster from
Streptomyces sp. NRRL S-1521 attracted our attention.
Following the nomenclature of the known clusters,"®"® we
named gutA;s,; and gutD;s,; for the cdps and P450 genes,
respectively. GutDs,, shows high identities (approximate 51—
63%) to the known GutDs and GtmD that function as
nucleobase transferases (Table S1). However, this candidate
was located in a separate subclade in the phylogenetic tree
based on the characterized P450s. Therefore, we speculated
that this gene cluster could synthesize novel diketopiperazine
derivative(s) (Table S1, Figure S1).

Expression of gut;s,; Gene Cluster for the Production
of Guanitrypmycin D1. As heterologous expression has been
demonstrated to be a rapid and efficient approach to exploit
the chemical potential from diverse microorganisms, we
expected successful application of this method to identify the
product of this gene cluster as well. First, the CDPS gene
gutA s, was directly cloned into the pET28a (+) vector and
expressed in Escherichia coli BL21 (DE3). After induction with
isopropyl f-p-1-thiogalactopyranoside (IPTG) for 20 h, the
cultures were extracted with EtOAc and analyzed on LC-MS. A
sole peak for 1 with a [M + H]" ion at m/z 350.1497 was
identified in the E. coli transformant harboring gutAs,;, which
was not detected in the mutant with the empty vector pET28a
(+) as the negative control (Figure 2i and ii). Compared to an
authentic standard, compound 1 was characterized as cWY,
which was also confirmed by its 'H and *C NMR data (Table
1, Figures S2 and S3). This proved that the CDPS gutA,,,
functions as a cWY synthase (Scheme 1).

After characterization of the CDPS, the two-gene cluster was
amplified from genomic DNA of the strain NRRL S-1521 by

https://doi.org/10.1021/acs.jnatprod.2c00787
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Figure 2. HPLC analysis of the generated transformants and the
gutDs,; transformant with/without precursor supply. S: substrate.

PCR and cloned into pPWWS0A for expression in the widely
used host Streptomyces albus J1074 by conjugation. The
obtained conjugants were cultivated in modified RS medium
for 7 days and treated as mentioned above for the gutA;s,,
transformant. Based on the LC-MS data, expression of the
candidate gene cluster gut(AD)s,; resulted in the production
of two compounds, 1 and 2. Neither was found in the negative
control with pPPWWS0A (Figure 2iii and iv). Compound 2
exhibited a [M + H]" ion at m/z 499.1843, which is 149 Da
larger than that of c(WY. Thus, we deduced that an additional
guanine residue was connected to cWY. Subsequently,
compound 2 was isolated from a large-scale fermentation
culture, and its structure was further elucidated by detailed
NMR analysis.

Inspection of the NMR data of compound 2 revealed the
presence of three characteristic 'H signals of a guaninyl residue
at § 10.70 (H-1'), 12.98 (H-9'), and 6.33 (H-10") with five
corresponding *C signals at § 151.6 (C-2"), 146.0 (C-4'),
106.0 (C-§’), 159.3 (C-6’), and 140.5 (C-8’) (Table
1)."¥*7%% Although no clear correlation in the HMBC
spectrum was observed between the cWY skeleton and the
guaninyl moiety, the missing 'H signal for H-2 of the cWY part

160
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and that for H-8' of guanine indicated the new C—C bond
between C-2 and C-8 of the two moieties (Scheme 1, Figures
S4—S8). In addition, the signal of C-3 in the "*C spectrum of
compound 2 is deshielded by 5 ppm in comparison to that in
compound 1 (Table 1, Figure S3), whereas signals for other
carbons like C-5—C-7 are only deshielded approximately 3
ppm. As compound 2 features tryptophanyl and guaninyl
residues, we named it guanitrypmycin D1. Cultivation of S.
albus carrying gut(AD);s,; in “NH,Cl-containing medium
revealed incorporation of three and eight 15N atomsin 1 and 2,
respectively, providing additional evidence for the guanitryp-
mycin D1 structure (Figure 3). The above results implied
GutDs,; as a new nucleobase transferase for the specific C-2—
C-8" connection between the indole and guaninyl units,
differing from the previous reported P450s (Figure 1).""~*'

In order to confirm the GutD,g,; function, we intended to
carry out biochemical characterization with an E. coli
overproduced recombinant protein. Unfortunately, no soluble
GutD,s,; was obtained. Therefore, we cloned it into
pPWWS0A for expression in S. albus J1074, followed by
precursor incubation experiments. Supplementation of com-
pound 1 to the gutD,s,; transformant led to the production of
2, while no additional metabolite was detected in J1074
harboring pPWWS0A (Figure 2v—vii). These data proved
unequivocally GutD5,; as a specific C-2—C-8' guaninyl
transferase and being responsible for the generation of a new
guaninylated DKP (Scheme 1). Addition of cyclo-(p-Trp-L-
Tyr) to the gutDs,; transformant did not lead to any
conversion (Figure S30), proving the importance of the L-
configuration of the tryptophanyl moiety for acceptance by
GutDs,;.

Generation of Diverse Guanitrypmycin Analogs by
Biotransformation. After proof of the GutD;s,, function, we
investigated its substrate specificity toward other tryptophan-
containing CDPs including cyclo-(L-Trp-L-Ala) (cWA), cyclo-
(L-Trp-.-Phe) (cWE), cyclo-(1-Trp-1-His) (cWH), cyclo-(1-
Trp-L-Leu) (¢WL), cyclo-(1-Trp-L-Met) (cWM), cyclo-(L-Trp-
L-Pro) (cWP), and cyclo-(1-Trp-L-Trp) (cWW). After supply-
ing these CDPs into the J1074 transformant harboring
gutD;s,;, the S-day-old cultures were monitored for their
conversion by LC-MS. As shown in Figure 2, c(WF and c(WW
were efficiently transformed to the products 3 and 4 with
conversion yields of 68 + 2% and 84 + 2%, respectively
(Figure 2viii and 2ix). Their [M + H]" ions are 149 Da larger
than those of the corresponding precursors, indicating the
attachment of a guaninyl residue. In contrast, other CDPs like
cWA, cWH, ¢cWL, ¢cWM, and cWP cannot be efficiently
converted by GutD s, (Figure S31).

Compounds 3 and 4 were subsequently isolated from the
large-scale cultures, and their structures were elucidated based
on NMR data (Tables 1 and 2, Figures S9—S18). The typical
signals of the guaninyl moiety were clearly observed in their "H
NMR spectra. For compound 3, these signals are found at dy
10.63 (br s, H-1'), 12.94 (br s, H-9'), and 6.27 (br s, H-10’).
For compound 4, they are at §; 10.80 (brs, H-1"), 12.91 (brs,
H-9'), and 6.42 (br s, H-10"). Compared with compound 2,
very similar values can be assigned for the five carbons of
guanine residue in the '*C spectra as well. Similar to that of
compound 2, the key correlation between C-2—C-8’ was
absent in the HMBC spectra. Nevertheless, the absence of the
corresponding 'H signals supported them to be C-2-
guaninylated ¢WF (3, guanitrypmycin D2) and cWW (4,
guanitrypmycin D3), respectively (Scheme 2).
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Scheme 1. Biosynthesis of Guanitrypmycin D1 in Streptomyces sp. NRRL S-1521
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Figure 3. Isotope pattern of the [M + H]" ions of products 1—6 detected in cultures with and without "NH,CI.
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Scheme 2. In Vivo Conversion of CDPs and Derivatives by GutDs;,
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Dehydrogenation at the DKP ring catalyzed by cyclo-
dipeptide oxidases (CDOs) exists widely in CDPS-related
biosynthetic pathways.26 Because GutD;,; can use c(WF, cWY,
and c(WW as substrates for coupling with guanine, we further
tested its acceptance for the dehydrogenated forms of these
well-converted CDPs. Due to difficulties in obtaining cyclo-(1-
Trp-ATrp) (c(WAW), only cyclo-(1-Trp-ATyr) (cWAY) and
cyclo-(L-Trp-APhe) (cWAF) were prepared by large-scale
enzyme assays with the functionally characterized CDO
Nads_1146/1147 for biotransformation with the gutD s,
transformant.”® After incubation for 7 days, the two
dehydrogenated CDPs were converted to peaks 5 and 6 with
conversion yields of 79 + 1% and 98 + 1%, respectively
(Figure 2x and xi). Structure elucidation by detailed
interpretation of NMR data confirmed both compounds as
guaninylated derivatives at the C-2 of the indole ring (Table 2,
Scheme 2, and Figures $19—S28), i.e., guanitrypmycin D4 (5)
from cWAY and guanitrypmycin DS (6) from cWAF.
Addition of (WF, c(WW, c(WAY, and cWAF to cultures of S.
albus harboring gutDs,; containing '"NH,Cl led to detection
of compounds 3—6 with incorporation of five "N atoms,
respectively (Figure 3), further supporting their structures
suggested by NMR (Figures S9—S28) and ECD analyses
(Figure S29).

Compounds 2—6 were subsequently tested for their
antibacterial activities against E. coli ATCC 25922 and
DHSa, Enterococcus faecalis DSM2570, Klebsiella pneumoniae
DSM26371, Bacillus subtilis NCIB 3610 and BSB 01, Bacillus
circulans NRRL B-380, NRRL B-14032, and NRRL NRS-1108,
Staphylococcus aureus ATCC 29213, Staphylococcus delphini
DSM20771, and Pseudomonas aeruginosa ATCC 27853.
Unfortunately, no inhibitory activity was observed.

In conclusion, a cdps-p450-associated gene cluster was
identified in Streptomyces sp. NRRL S-1521 by genome mining.
Introduction of this BGC into a heterologous expression host
led to identification of guanitrypmycin D1 (2), a new
guaninylated DKP. Biotransformation experiments confirmed
that the P450 catalyzes the key step for the guanitrypmycin D1
formation, that is, the attachment of the guaninyl residue at the
indole ring via the C-2—C-8’ linkage. This differs from the
reported guanine—DKP connections. Further precursor
incubation experiments unveiled that GutDs,; can also accept
other tryptophan-containing CDPs with a second aromatic side
chain as substrates. In addition, GutD;s,; can use the
dehydrogenated forms of two CDPs for guaninyl decoration,
which was achieved by a combination with a cyclodipeptide
oxidase. Combination of such intriguing P450 enzymes with
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other modification enzymes is a promising strategy to increase
structure diversity of DKP derivatives.

B EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were
measured with an A KRUSS P3000 polarimeter at 20 °C by using
the D-line of the sodium lamp at 4 = 589.3 nm. Prior to the
measurement, the polarimeter was calibrated with MeOH—H,O (1:1,
v/v). UV and circular dichroism spectra were taken on a J-1500 CD
spectrometer (Jasco). The samples were dissolved in MeOH—H,0O
(1:1, v/v) and measured in the range of 200—400 nm by using a 1
mm path length quartz cuvette. IR spectra were acquired on a Bruker
ALPHA FTIR spectrometer. NMR spectra were recorded on a JEOL
ECA-500 or a Bruker AVIII 500 spectrometer. All samples were
dissolved in 200 puL of DMSO-d4 and filled in Wilmad 3 mm tubes
(Rototec-Spintec, Bad Wildbad, Germany). The *C and the 'H-"*C
HMBC spectra were recorded on a Bruker AVIII 500 spectrometer
installed with a S mm cryo BBO probe Prodigy, with 64 000 and 64
transients, respectively. The spectra were processed with MestReNova
9.0.0 (Metrelab). Chemical shifts are referred to those of DMSO-dg
(84 2.50 and 8¢ 39.5). HRMS analysis was performed on an Agilent
1260 HPLC system equipped with a microTOF-Q_III spectrometer
(Bruker) using a VDSpher PUR 100 C18-M-SE column (150 X 2
mm, 3 ym) (VDS Optilab Chromatographie Technik). Electrospray
positive ionization mode was selected for determination of the exact
masses. MS conditions were set as described previously.”” Semi-
preparative HPLC was performed on the same equipment with a
VDSpher PUR 100 C18-M-SE column (250 X 10 mm, S ym) (VDS
Optilab Chromatographie Technik) for detection of the desired
substance in the fractions.

Chemicals. cyclo-(1-Trp-L-Leu), cyclo-(L-Trp-L-Trp), cyclo-(L-Trp-
L-Phe), cyclo-(L-Trp-L-Tyr), and cyclo-(D-Trp-L-Tyr) were purchased
from Bachem. cyclo-(L-Trp-L-His), cyclo-(L-Trp-L-Pro), and cyclo-(L-
Trp-L-Ala) were synthesized according to the methods published
previously.”® cyclo-(1-Trp-.-Met) was obtained from a previous
study.”” The dehydrogenated CDP derivatives used in this study
were prepared by using the cyclodipeptide oxidase Ndas_1146/1147
according to the method described in a previous work.>®

Bacterial Strains and Growth Conditions. Streptomyces sp.
NRRL S-1521 was kindly provided by the ARS Culture Collection
(NRRL) and cultivated on MS plates (mannitol 20.0 g/L, soya flour
20.0 g/L, agar 20.0 g/ L). Streptomyces albus ]10743’0 was kindly gifted
by Prof. Dr. Andriy Luzhetskyy (Saarland University). S. albus J1074
and the generated exconjugants were maintained on MS at 28 °C for
sporulation. For secondary metabolite production, S. albus J1074
transformants were cultivated in liquid modified RS medium (sucrose
103.0 g/L, glucose 10.0 g/L, yeast extract 5.0 g/L, MgCl,-6H,0 10.12
g/L, K,80,4 0.25 g/L, Difco casamino acids 0.1 g/L, MOPS 21.0 g/L,
trace element solution 2 mL/L, pH 7.2) at 28 °C for 7 days.

Computer-Assisted Sequence Analysis. Nucleotide and amino
acid sequences used in this study were downloaded from the NCBI
databases (http://www.ncbinlm.nih.gov). The phylogenetic tree of
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P450s (Figure S1) was created by MEGA version 7.0 (http://www.
megasoftware.net).

Genetic Manipulation, PCR Amplification, and Gene
Cloning. Strains and plasmids used in this study are listed in Table
S2 and Table S3, respectively. Recombinant E. coli strains were
cultivated in liquid or on solid lysogeny broth (LB) with 100 yug/mL
ampicillin, 50 ptg/mL kanamycin, 50 pg/mL apramycin, or 25 ug/mL
chloramphenicol when necessary.

Genetic manipulation in E. coli was performed according to the
protocols by Green and Sambrook.”’ Genomic DNA isolation from
Streptomyces was performed as described in the literature.”

Genetic loci of interest were amplified by PCR from the genomic
DNA of NRRL S-1521 by using primers listed in Table S3 and
Phusion High-Fidelity DNA Polymerase from New England Biolabs.
The generated PCR fragments were cloned into pGEM-T Easy vector
(Promega), and the sequence integrity was confirmed by sequencing.
Subsequently, the fragments were released with restriction endonu-
cleases (see Table S3 for details) from pGEM-T Easy and ligated into
pET28a (+) or pPWW50A,*® which had been digested with the same
enzymes, previously. The generated constructs (Table S3) were used
for heterologous expression in E. coli BL21 (DE3) or S. albus J1074.

Expression of the CDPS Gene gutA;s,; in E. coli. The
generated construct pJL16S was introduced into E. coli BL21 (DE3)
by transformation. For CDPS overproduction, 0.5 mL of 16 h
overnight culture was used to inoculate 50 mL of LB medium
containing S0 pg/mL kanamycin. The culture was maintained at 200
rpm and 37 °C to an absorption at 600 nm of about 0.6. Isopropyl -
p-thiogalactopyranoside (IPTG) was then added to the cultures at the
final concentration of 0.2 mM. After induction at 18 °C for 20 h, 1
mL of culture was extracted with the same volume of EtOAc three
times. After that, the organic phases were combined and evaporated,
and the dried residues were dissolved in 200 yL of MeOH. A § uL
amount of these samples was subjected to LC-MS analysis.

Heterologous Gene Expression in Streptomyces albus J1074
and Cultivation for Secondary Metabolite Production. The
constructed plasmids harboring gutD,s,; or the gene cluster
gut(AD) s, were transformed into the nonmethylated strain E. coli
ET12567/pUZ8002 and then conjugated with S. albus J1074. The
positive conjugants were selected by apramycin resistance and further
confirmed by PCR amplification. The spores of the S. albus J1074
transformants were inoculated into 50 mL of modified RS liquid
media supplied with 50 pzg/mL of apramycin in 250 mL baffled flasks
and cultured at 28 °C and 200 rpm for 7 days. Then the cultures were
treated as mentioned above and sent for LC-MS analysis.

Biotransformation and Generation of Guaninylated DKPs.
The S. albus J1074 transformant harboring gutDs,, was cultivated in
modified RS medium at 28 °C and 200 rpm for 2 days. Tryptophan-
containing CDPs or dehydrogenated derivatives were separately
added to 10 mL of these precultures at the concentration of 100 yM.
After cultivation for an additional S days, the cultures were extracted
with EtOAc and analyzed on LC-MS. Three independent experiments
were carried out, and the conversion yields were calculated by using
the isolated products as standards.

Cultivation of the S. albus Transformants in Media
Containing "NH,Cl. The S. albus transformant harboring gut-
(AD);s,; was cultivated in 10 mL of modified RS medium containing
10 mg of “NH,CI at 28 °C for 7 days. The EtOAc extract was
subsequently analyzed on LC-MS for detection of 1 and 2. For
labeling 3—6, the S. albus transformant harboring gutD,s,; was
cultivated in the same medium under the same conditions for 30 h.
After addition of cyclo-(L-Trp-L-Phe), cyclo-(L-Trp-L-Trp), cyclo-(1-
Trp-ATyr), and cyclo-(.-Trp-APhe) separately, the cultures were
maintained for additional 6 days and analyzed by LC-MS. The isotope
patterns of the [M + H]" ions of products 1—6 isolated from cultures
with and without *NH,CI are illustrated in Figure 3.

LC-MS Analysis. For secondary metabolite analysis, a linear
gradient of 5—100% MeCN in H,O, both containing 0.1% HCOOH,
in 10 min and a flow rate at 0.3 mL/min were used. The column was
then washed with 100% MeCN containing 0.1% HCOOH for 5 min
and equilibrated with 5% MeCN in H,O for 5 min.
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Extraction and lIsolation of Secondary Metabolites. For
structure elucidation of the accumulated products, the S. albus J1074
transformant harboring gut(AD);s,; was fermented in 3 L of modified
RS medium at 28 °C for 7 days. The culture supernatants were
collected and extracted with an equal volume of EtOAc three times.
Then, the EtOAc phases were evaporated to dryness, dissolved in
MeOH, and centrifuged. The precipitate was dispersed in MeOH,
centrifuged, and repeated twice. The precipitated fractions were
dissolved in DMSO and further purified on an Agilent HPLC 1260
series instrument by using a semipreparative VDSpher PUR 100 C18-
M-SE column (250 X 10 mm, 5 ym). The flow rate was set to 2.0
mL/min. Compound 2 (30 mg) was purified with 20% MeCN in
H,0.

For the guaninylated DKP derivatives generated by biotransforma-
tion, the crude extracts were obtained by extraction with EtOAc as
described above. Compounds 3 (30 mg), 4 (25 mg), 5 (8 mg), and 6
(15 mg) were further purified on an Agilent HPLC 1260 series with
20—30% MeCN in H,O.

Physiochemical Properties of the Identified Products.
Cyclo-(t-Trp-t-Tyr) (1): white powder; 'H and 3C NMR data, Table
1; HR-ESI-MS m/z 350.1497 [M + H]* (caled for CyyH,(N;05,
350.1499).

Guanitrypmycin D1 (2): white powder; [a]®p, +280 (¢ 0.07,
MeOH-H,0, 1:1, v/v); UV (MeOH—H,0, 1:1, v/v) A, (log €)
310 (3.53), 270 (4.60), 250 (4.93) nm; ECD (1.30 mM, MeOH—
H,0, 1:1, v/v) A, (Ag) 352 (+4.72), 322 (—6.36), 293 (+6.39), 262
(—2.12), 242 (+3.74), 224 (+1.43), 208 (—0.67) nm; IR v, 3160,
2918, 1662, 1643, 1558, 1511, 1454, 1436, 1367, 1331, 1014, 772,
741 cm™; 'H and 3C NMR data, Table 1; HR-ESI-MS m/z
499.1843 [M + H]* (caled for CysH,3NgO,, 499.1837).

Guanitrypmycin D2 (3): white powder; [a]®p +320 (¢ 0.08,
MeOH-H,0, 1:1, v/v); UV (MeOH—H,0, 1:1, v/v) A, (log &)
309 (3.74), 268 (5.01), 251 (6.29) nm; ECD (1.62 mM, MeOH—
H,0, 1:1, v/v) An. (A€) 342 (—0.89), 330 (—0.92), 304 (+0.71),
275 (-0.12), 251 (+0.34), 217 (—5.59) nm; IR v, 3158, 3111,
2871, 2725, 1683, 1656, 1451, 1440, 1372, 1333, 745, 705 cm™'; 'H
and C NMR data, Table 1; HR-ESI-MS m/z 483.1890 [M + H]"
(caled for C,qH,3N3O4, 483.1888).

Guanitrypmycin D3 (4): white powder; [a]®*p +560 (c 0.06,
MeOH-H,0, 1:1, v/v); UV (MeOH-H,0, 1:1, v/v) A, (log &)
311 (0.87), 268 (2.44), 259 (2.57) nm; ECD (1.09 mM, MeOH—
H,0, 1:1, v/v) Ap. (A€) 342 (—1.19), 330 (—1.27), 303 (+0.91),
267 (—0.02), 252 (+0.32), 217 (—8.32) nm; IR v, 3047, 2912,
1674, 1567, 1508, 1454, 1433, 1364, 1324, 1012, 741, 693 cm™; 'H
and *C NMR data, Table 2; HR-ESI-MS m/z 522.2001 [M + H]*
(caled for C,,H,,NyO4, 522.1997).

Guanitrypmycin D4 (5): white powder; [a]*’, —250 (c 0.10,
MeOH-H,0, 1:1, v/v); UV (MeOH-H,0, 1:1, v/v) Apy (log &)
309 (20.45), 270 (14.14), 243 (19.10) nm; ECD (1.99 mM, MeOH—
H,0, 1:1, v/v) Ap. (A€) 333 (—14.57), 308 (—0.63), 296 (—2.01),
279 (+0.41), 267 (—0.35), 251 (+0.82), 221 (—0.77) nm; IR v,
3088, 2912, 1673, 1632, 1605, 1567, 1511, 1428, 1366, 1336, 1010,
742, 683 cm™'; 'H and *C NMR data, Table 2; HR-ESI-MS m/z
497.1702 [M + H]* (caled for CysH, NGO, 497.1680).

Guanitrypmycin D5 (6): white powder; [a]*’, —160 (¢ 0.07,
MeOH-H,0, 1:1, v/v); UV (MeOH—H,0, 1:1, v/v) A, (log €)
303 (17.28), 270 (14.10), 248 (16.47) nm; ECD (1.44 mM, MeOH—
H,0, 1:1, v/v) A (Ae) 321 (—12.93), 275 (—1.31), 266 (—1.64),
252 (—1.09), 230 (—5.93) nm; IR v, 3051, 2912, 1677, 1631, 1565,
1508, 1429, 1365, 1335, 1014, 742, 689 cm™'; 'H and *C NMR data,
Table 2; HR-ESI-MS m/z 481.1752 [M + H]" (caled for
C,sH, N3O, 481.1731).

Antibacterial Assays. For compounds 2—6, the antibacterial
activities against different bacterial strains were conducted using a disk
diffusion method.** The compounds were dissolved in DMSO to
prepare stock solutions at 2 mg/mL. A 1 mL overnight culture of each
tested strain was mixed with 100 mL of LB medium and 1.5 g of agar
to prepare the testing plates. A S uL amount of the stock solutions
was dropped onto paper disks with a S mm diameter on the agar
plates. After incubation at 37 °C overnight, the inhibition zones
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around the disks were visually observed. Kanamycin and chlor-
amphenicol were used as positive and DMSO as negative controls.
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Supplementary Tables

Table S1. Comparison of cdps-containing gene clusters in four Streptomyces strains.

0?8‘
gut;sps Cluster » ‘

M M
& )
0 o

Q
D
$

Streptomyces sp. NRRL S-

S. monomycini NRRL B-24309'

S. purpureus NRRL B-57372

S. lavendulae NRRL B-2774%

; 4
1521 S. cinnamoneus DSM 40646
Protein Length Protein Sequence Protein Sequence Protein Sequence Protein Sequence
(Accession No.) (aa) (Accession No.) identity (%) (Accession No.) identity (%) (Accession No.) identity (%) (Accession No.) identity (%)
GutA1s21 236 GutA24309 39 GutAs7ar 42 GutAzr7a 40 GtmA 43
(WP_079106955.1) (WP_078624487.1) (WP_106959855.1) (WP_078950527.1) (WP_071967254.1)
GutD1521 GutD24309 GutDs737 GutDa2774 GtmD
(WP_062768047.1) 59 53 63 60 51

(WP_050502760.1)

(WP_019889608.1)

(WP_051841251.1)

(WP_079274605.1)
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Table S2. Bacterial strains used in this study.

Strain Source Cultivation media
E. coli DH5a Invitrogen LB

E. coli ET12567/pUZ8002 5 LB

S. albus J1074 6 MS

Streptomyces sp. NRRL S-1521 NRRL MS and modified R5

NRRL: ARS Culture Collection
LB medium: tryptone 10.0 g/L, yeast extract 5.0 g/L, NaCl 10.0 g/L.
MS medium: mannitol 20.0 g/L, soya flour 20.0 g/L, agar 20.0 g/L.

Modified R5 medium: sucrose 103.0 g/L, glucose 10.0 g/L, yeast extract 5.0 g/L, MgCl..6H20 10.12 g/L,
K2S040.25 g/L, Difco casaminoacids 0.1 g/L, MOPS 21.0 g/L, trace element solution 2 mL/L, pH 7.2

Table S3. Cloning and expression constructs used in this study.

. ’_as Cloning Expression Cloning Expression
Gene Primer sequences (5'-3') construct sites constructs
CATATGACCACAGCAGTAGAACTC .
CATATGACCACAGCAGTAGAACTC
CATATGAATCCCGGCAGAAAGCGGAC
S5
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Supplementary Figures
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Figure S1. Phylogenetic analysis of GutD1s21 with putative and known P450s.

P450s catalyzing the nucleobase transfer reactions are highlighted in red, and the analog
of interest in purple.
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5 Conclusions and future prospects

In this thesis, structural diversification of NPs was achieved by using tailoring enzymes of
biosynthetic pathways via biotransformation. Although thousands of microbial genome sequences
are already available in public databases, many gene clusters remain to be explored. It is expected
that advanced genome mining strategies and tools will greatly accelerate the discovery and
characterization of new and interesting biocatalysts and SMs from these unexplored biosynthetic

pathways.

For the biosynthesis of ustethylin A, heterologous expression and isotopic feeding experiments
confirmed that the PKS UttA is responsible for assembling the phenethyl core structure with
methylation as a key reaction. The in vivo results proved that the NRPS-like enzyme UttJ catalyzes
the reduction of the aryl acid to aldehyde and the nonheme Fe'/2-oxoglutarate-dependent
oxygenase UttH performs the subsequent hydroxylation at the benzyl group. After methylation by the
O-MeT ULttF, the cytochrome P450 enzyme UttC catalyzes the hydroxylation of the phenethyl
residue to form the product ustethylin A. Deletion of uttD coding for a regulator completely abolished
product formation, proving its role in regulating the expression of the uft BGC. These results suggest
that mining novel secondary metabolite gene clusters is a powerful tool to increase the structural
diversity of natural products.

For the biosynthesis of strepazine C and its derivatives, a three-gene cluster was identified by
genome mining from Streptomyces aurantiacus. Heterologous expression and precursor incubation
experiments elucidated the biosynthetic steps of strepazine C. It demonstrated that cyclo-(L-Trp-L-
Trp), initially assembled by the cyclodipeptide synthase SasA, serves as a DKP precursor, followed
by regular C-3 prenylation catalyzed by the prenyltransferase SasB and further methylation by the
methyltransferase SasC. Furthermore, in vivo biotransformation experiments demonstrated the high
flexibility of SasB towards different tryptophan-containing cyclodipeptides, as well as their dehydro
derivatives for regular C-3 prenylation. Thus, this study provides an enzyme with high substrate
promiscuity to the group of prenyltransferases in the less explored cyclodipeptide synthase-related

pathways and provides more details about its biochemical properties.

Furthermore, a two-gene cluster coding for a CDPS and a P450 from Streptomyces sp. NRRL S-
1521 was identified for the biosynthesis of guanitrypmycins, which are rare and novel C2-guaninyl
indole alkaloids, by phylogenetic analysis. Heterologous expression, biochemical characterization,
together with structural elucidation proved that cyclo-(L-Trp-L-Tyr), initially assembled by the
cyclodipeptide synthase GutA, serves as a DKP precursor. Subsequently, the cytochrome P450
enzyme GutD+s21 catalyzes the regiospecific transfer of guanine to C-2 of the indole ring of cyclo-(L-

Trp-L-Tyr) via a C-C linkage, which represents a new chemical transformation within this enzyme
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class. Precursor incubation experiments revealed that GutD1s21 efficiently accepts several other
tryptophan-containing cyclodipeptides or derivatives for regiospecific coupling with guanine, thus
resulting in different guanitrypmycin analogs. This study provides a new linkage mode between the
indole ring of DKPs and a guanine moiety and expands the functional scope of P450s as tailoring

enzymes.
For future prospects, the following works can be performed:

» For the biosynthesis of ustethylin A, there are still some enzymes whose functions are not
clear. Therefore, the role of the unknown enzymes can be further studied by in vivo and in
vitro experiments.

» For the two studies on CDP derivatives, unfortunately, neither the prenyltransferase SasB
nor the cytochrome P450 GutD+s21 could be obtained as soluble proteins. Thus, a method to
obtain soluble proteins for biochemical and structural investigation still needs to be
established.

» Guanitrypmycins are novel nucleobase-containing DKPs. However, antibacterial activity tests
of guanitrypmycin analogs showed no obvious inhibitory activity. Therefore, further bioactivity
assays toward some representative screening models are required to explore their potential

biological and pharmaceutical activities.
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