
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tjhr20

Journal of Hydraulic Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tjhr20

Linear and nonlinear frequency-domain modelling
of oscillatory flow over submerged canopies

Otto E. Neshamar, Niels G. Jacobsen, Dominic A. van der A & Tom
O'Donoghue

To cite this article: Otto E. Neshamar, Niels G. Jacobsen, Dominic A. van der A & Tom
O'Donoghue (2023) Linear and nonlinear frequency-domain modelling of oscillatory
flow over submerged canopies, Journal of Hydraulic Research, 61:5, 668-685, DOI:
10.1080/00221686.2023.2231433

To link to this article:  https://doi.org/10.1080/00221686.2023.2231433

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 15 Sep 2023.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tjhr20
https://www.tandfonline.com/loi/tjhr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00221686.2023.2231433
https://doi.org/10.1080/00221686.2023.2231433
https://www.tandfonline.com/action/authorSubmission?journalCode=tjhr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tjhr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00221686.2023.2231433
https://www.tandfonline.com/doi/mlt/10.1080/00221686.2023.2231433
http://crossmark.crossref.org/dialog/?doi=10.1080/00221686.2023.2231433&domain=pdf&date_stamp=2023-09-15
http://crossmark.crossref.org/dialog/?doi=10.1080/00221686.2023.2231433&domain=pdf&date_stamp=2023-09-15


Journal of Hydraulic Research Vol. 61, No. 5 (2023), pp. 668–685
https://doi.org/10.1080/00221686.2023.2231433
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attri-
bution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited. The
terms on which this article has been published allow the posting of the Accepted Manuscript in
a repository by the author(s) or with their consent.

Research paper

Linear and nonlinear frequency-domain modelling of oscillatory flow over
submerged canopies
OTTO E. NESHAMAR , PhD Student, School of Engineering, University of Aberdeen, AB24 3UE Aberdeen, UK
Email: o.neshamar@abdn.ac.uk (author for correspondence)

NIELS G. JACOBSEN , Lead Engineer Hydrodynamics, Vattenfall Vindkraft A/S, Ørestads Blvd. 108, 2300 Copenhagen,
Denmark
Email: nielsgjoel.jacobsen@vattenfall.com

DOMINIC A. VAN DER A , Lecturer, School of Engineering, University of Aberdeen, AB24 3UE Aberdeen, UK
Email: d.a.vandera@abdn.ac.uk

TOM O’DONOGHUE , Professor, School of Engineering, University of Aberdeen, AB24 3UE Aberdeen, UK
Email: t.odonoghue@abdn.ac.uk

ABSTRACT
An analytical and experimental study of flow velocities within submerged canopies of rigid cylinders under oscillatory flows is presented, providing
insights into the momentum transfer mechanisms between the different flow harmonics. The experimental dataset covers an unprecedented wide
range of flow amplitudes with in-canopy velocity reductions ranging between 0.2 and 0.8 of the free stream velocity (from inertia- to drag-dominated
in-canopy flow). Results from the analytical model with nonlinear drag compare favourably to the experimental data. Having application of theories
for free surface waves over canopies in mind, the effects of linearization of the drag are analysed by comparing sinusoidal and nonlinear model
predictions. Finally, a unified prediction formula for in-canopy velocities for sinusoidal, velocity-skewed, and velocity-asymmetric free stream
velocities is presented. The formula depends on two non-dimensional parameters related to inertia and drag forces, and the unified formula allows
for easy assessment of the maximum in-canopy velocity.

Keywords: Canopies; drag force; nonlinear momentum transfer; oscillatory flow; velocity reduction

1 Introduction

The implementation of nature-based (green) coastal protec-
tion has received considerable attention in recent years. Recent
reviews of the topic include Jordan and Fröhle (2022),
Schoonees et al. (2019) and Morris et al. (2018), and sev-
eral practical guidelines for implementing nature-based solu-
tions in flood risk management have been developed (Bridges
et al., 2022; CISL, 2022; The European Commission, 2021; The
World Bank, 2017). However, nature-based solutions are still
characterised by significant uncertainties in their cost and poten-
tial impact, leading to a continued demand for research in order
to quantify and limit these uncertainties.

In relation to coastal engineering, the vast majority of
research has focused on wave attenuation by submerged and
emergent vegetation canopies, based on either analytical and

numerical modelling (e.g. Cao et al., 2015; Méndez et al., 1999;
Van Rooijen et al., 2020) or on direct measurements in the field
or in laboratories (e.g. Anderson & Smith, 2014; He et al., 2019;
Jadhav et al., 2013; Möller et al., 2014). Much of the experimen-
tal work has involved canopies of flexible vegetation (Mullarney
& Henderson, 2018). In the present paper, the vegetation is
represented as a canopy of rigid cylinders in order to address
fundamental aspects of the hydrodynamic processes.

For waves propagating over a vegetated bed, the in-canopy
velocities are important for wave attenuation and sediment
dynamics (Jacobsen et al., 2019; Jadhav et al., 2013). Veloc-
ities within the canopy are lower than the wave-generated
free-stream velocity above the canopy. Research thus far has
established that the smallest velocity reduction occurs in the
inertia-dominated regime corresponding to a1/S � 1, where a1

is the free-stream orbital amplitude and S is the average spacing
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between stems (Lowe et al., 2005; Pujol et al., 2013; Van Rooi-
jen et al., 2020), while higher velocity reduction occurs when
a1/S > 1, as the flow-canopy interaction becomes increasingly
drag dominated. This work extends the existing empirical evi-
dence with experiments involving high free-stream velocities
reaching well into the drag-dominated regime, and investigates
a closed form prediction formulation for the in-canopy velocity
reduction based on non-dimensional quantities.

Four approaches can be identified for determining in-canopy
velocities under wave-driven oscillatory flow, each approach
having its specific application and merits: (i) oscillatory time-
domain solutions with nonlinear drag and numerical integra-
tion of the momentum equation (Lowe et al., 2005; Zeller
et al., 2015); (ii) analytical solutions for free surface wave
propagation in submerged and emergent vegetation (Asano
et al., 1992; Dubi & Tørum, 1994; Jacobsen, 2016; Kobayashi
et al., 1993; Méndez et al., 1999), for which a linearization of
the drag term is used through the Lorentz’ principal of identi-
cal work (e.g. Sollitt & Cross, 1972); (iii) simulation of the flow
field using complex depth-resolving models (Chen & Zou, 2019;
Van Rooijen et al., 2020); and (iv) laboratory or field mea-
surements (Lowe et al., 2005; Pujol et al., 2013; Van Rooijen
et al., 2020). With respect to approach (ii), it is important
to note that the validity of linearizing the drag has not been
properly addressed in the literature, even though the lineariza-
tion leads to analytical expressions for radiation stress tensors
(Jacobsen, 2016; Mendez et al., 1998), Lagrangian Stokes drift
(Jacobsen, 2016; Jacobsen & McFall, 2022), and vertical distri-
butions of shear stress (Jacobsen & McFall, 2022), all of which
can be readily implemented in large-scale hydrodynamic models
using the procedure outlined in Jacobsen and McFall (2022) for
coupling between spectral wave models and large-scale hydro-
dynamic models based on the shallow water equations. Models
for the mean wave-induced current in canopies have been pro-
posed by Luhar et al. (2010) and Van Rooijen et al. (2020),
for which the in-canopy velocity reduction is of implicit impor-
tance.

The present work examines the oscillatory flow velocity
within a rigid canopy, with particular focus on the formula-
tion for the drag force in the governing equations. This is
achieved through a combination of analytical modelling and
laboratory experiments in a large-scale oscillatory flow tunnel.
Two frequency-domain models, one with nonlinear drag and
one with a sinusoidal velocity response akin to Airy wave theory
in which the drag is linearized, are described in Section 2 and
the experiments are presented in Section 3. The analytical mod-
els are validated against the experimental data in Section 4.1
and subsequently the models are compared for a wider range
of hydrodynamic and canopy conditions than covered by the
experiments. A practical engineering prediction model for in-
canopy velocity reduction is proposed in Section 4.4. Section 5
discusses implications of the results for modelling nonlinear
surface waves in the presence of canopies and for sediment
transport. The conclusions are presented in Section 6.

Figure 1 Definition sketch for oscillating (tunnel) spatially averaged
flow with submerged, rigid vegetation. The analytical domain is verti-
cally unbounded. u0 is the bulk free stream velocity, U(t) is the bulk
in-canopy velocity and the blue u(t, z) is the velocity profile including
viscous effects

2 Mathematical model

2.1 Governing equations

In the present work, pure oscillatory (tunnel) spatially-averaged
flow is considered, which means there is no organized, vertical
velocity (w = 0 m s−1). It is furthermore assumed in the analyt-
ical derivation that the flow is unbounded along the positive and
vertical z-axis and that the canopy stems are rigid. The theoret-
ical domain is depicted in Fig. 1, where the spatially-averaged
velocity profile (blue line) and the associated 2-layer solution
to the bulk velocities (red lines) are shown. The authors arrive
at governing equations of the same form as Lowe et al. (2005),
Luhar et al. (2010), Zeller et al. (2015) (with minor differences
in the canopy shear term). The present work applies these equa-
tions in the frequency domain to investigate the required number
of harmonics for an accurate solution and to validate against
experiments with large free stream velocity amplitudes.

The pure oscillatory and spatially averaged flow along the x-
axis means that ∂/∂x = ∂/∂y = 0 when applied to any quantity.
The continuity equation thus reads:

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= ∂w
∂z

= 0 (1)

which means w = 0 for all z in order to satisfy the no-slip con-
dition at the bottom. Inserting w = 0 in the vertical momentum
equation for the flow in porous media (e.g. Jensen et al., 2014),
it follows that ∂p/∂z = 0, i.e. the pressure is hydrostatic over
the vertical. Finally, the horizontal momentum equation takes
the following form (see Appendix A.1):

(
1 + CmN

d2

4
π

)
∂

∂t
u
n

= − 1
ρ

∂p
∂x

+ 1
n

∂

∂z
(ν + νt)

∂u
∂z

− FD

(2)
Here, in the momentum equation for porous flow the filter
velocity u is used (Jensen et al., 2014). Cm is the added mass
coefficient for the individual stem with circular cross-section
and diameter d, N is the number of stems per unit area, n is the
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porosity (n = 1 − l, with l = Nd2π/4 being solidity, as used
by other authors), ρ is fluid density, ν and νt are the molecu-
lar and eddy viscosities, and FD is the fluid drag. Above the
canopy l = N = FD = 0 and n = 1. In the following, we use �I

for (1 + CmNd2π/4)/n. The filter velocity is the average veloc-
ity over the entire cross section (water and stems), while the
pore velocity is the average velocity over the water part of the
cross section. The relationship reads u = nup , where subscript p
denotes the pore velocity.

Far above the canopy (away from the canopy shear layer)
Eq. (2) reduces to:

∂u
∂t

= ∂u0

∂t
= − 1

ρ

∂p
∂x

(3)

where u0 is the free stream velocity. Since ∂p/∂z = 0, substi-
tution of − 1

ρ
∂p/∂x with the prescribed free stream acceleration

(∂u0/∂t) is also valid within the canopy. The drag on the stems
is defined as:

FD = 1
2

CDP(n)Nd|u|u (4)

where P(n) is a function that accounts for whether filter or pore
velocities are applied for the evaluation of the drag (see dis-
cussion in Etminan et al., 2019). In the present work, the drag
force in the model is based on pore velocity, because the mea-
sured drag coefficients are based on measured pore velocities
(see Section 3), so P(n) = n−2. CD is the drag coefficient.

Our focus is not on predicting the vertical profile of hori-
zontal velocity, but rather on the overall performance of linear
versus nonlinear drag formulations in predicting the bulk in-
canopy velocity. For this reason, a two-layer solution is adopted,
akin to the work by Lowe et al. (2005), where the diffusion
term in Eq. (2) is replaced by a shear stress at the top of the
canopy (the shear at the bottom is proportional to the drag and
is absorbed into CD, see Appendix A.2):

�I
∂U
∂t

= ∂u0

∂t
+ Cf

hv
|�U|�U − 1

2
CDPNd|U|U (5)

where U is the bulk in-canopy filter velocity, �U = u0 − U is
the velocity difference between the in-canopy and free stream
velocities, and Cf is a friction factor for the shear layer on
top of the canopy. U is defined as the vertical average over
the canopy height hv ( Appendix A.2). Note that following
Eq. (3), the “bulk” velocity above the canopy equals u0. Lowe
et al. (2005) described the canopy shear based on the free stream
velocity, while the present model describes the shear contribu-
tion in terms of the velocity deficit in order to account for the
influence of the in-canopy velocity U on canopy shear, as out-
lined by Zeller et al. (2015). For very short and sparse canopies,
the bottom friction may have important contributions to the
momentum balance; however, bottom friction is still parame-
terized as proportional to U|U| without accounting for phase
leads between in-canopy velocity and bottom shear stress, so an

appropriate correction to CD covers this scenario in the present
two-layer model. The bottom boundary layer must be resolved
to accurately account for phase lead effects between in-canopy
velocity and bottom shear stress, which is often impossible for
large-scale hydrodynamic models based on the shallow-water
equations.

The following non-dimensional parameters (indicated with
a circumflex accent) are introduced: Û = U/u1, û0 = u0/u1,
t̂ = tω. The characteristic dimensional quantities are the ampli-
tude of the first harmonic of the free stream velocity, u1, and
the cyclic frequency ω = 2π/T, where T is the oscillatory flow
period.1 This gives the following non-dimensional form of the
momentum equation for Û:

�I
∂Û
∂ t̂

= ∂ û0

∂ t̂
+ �f |�Û|�Û − �D|Û|Û (6)

which shows that the in-canopy velocity is governed by three
non-dimensional parameters:

�I = 1
n

(
1 + Cm

d2

4
πN

)
, �f = Cf a1

hv
, �D = CD

2
PNda1

(7)
related to inertia (�I ), canopy interface friction (�f ), and drag
on the stems (�D). a1 = u1/ω is the free stream orbital ampli-
tude of the first harmonic. It is seen that the importance of the
friction is inversely proportional to the height of the canopy. The
parameter Nda1 ∝ (d/S) · (a1/S) is the product of the two gov-
erning parameters proposed by Lowe et al. (2005), where S ∝
N−1/2 is the spacing between the stems. In the following deriva-
tions, the ˆ is omitted; however, it is reintroduced in Section 4
to distinguish between dimensional and non-dimensional quan-
tities.

Non-dimensional solutions to the free stream and in-canopy
velocities of the following forms are considered:

u0 = 1
2

M∑
m=1

[
umeimt + c.c.

]
, U = 1

2

M∑
m=1

[
Umeimt + c.c.

]
(8)

where c.c. is the complex conjugate and M is the number of
harmonics. The formulation for U explicitly allows for phase
lags between the harmonics Um.

2.2 Sinusoidal solution

Free surface wave models over submerged and emerging
canopies based on linear wave theory are often derived with
a linearized drag term, which results in sinusoidal flow veloc-
ities throughout the water column (Asano et al., 1992; Jacob-
sen, 2016; Méndez et al., 1999). Analogous to these linearized
free surface models, a model for the in-canopy velocity is
derived here for M = 1, and it is termed the “sinusoidal model”
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throughout. We assume that the friction and drag can be lin-
earized in the following fashion:

�f |�U|�U + �D|U|U = �L,f �U + �L,DU (9)

Here, �L,f and �L,D are the linearized friction and drag param-
eters. The equality is fulfilled by equalizing the energy dissipa-
tion over one wave period (Sollitt & Cross, 1972) separately for
friction and drag:

�L,f �U2 = �f |�U|�U2 and �L,DU2 = �D|U|U2 (10)

where the overline means period-averaging. This linearization
based on identical energy dissipation is adopted from free sur-
face wave models, where it corresponds to matching of the wave
attenuation across a canopy, and it is employed here in order to
ensure that the model can be used in conjunction with the afore-
mentioned free surface models. The parameters �L,f and �L,D

are found numerically. Inserting Eqs (8) and (9) in Eq. (6), it
follows that:

�I iU1 = (i + �L,f )u1 − (�L,f + �L,D)U1 (11)

Here, subscript “1” means that only the first harmonic (sinu-
soidal) component is included. Therefore:

U1 = (i + �L,f )

i�I + �L,f + �L,D
u1 = GLu1 (12)

The final expression shows that the in-canopy velocity is in-
phase with the free stream velocity for inertia dominated flows
(imaginary part of GL goes to 0), while increasing influence of
drag and friction gives rise to a phase lead of the in-canopy flow
over the free stream velocity (maximum phase lead is π/2, when
the real part of GL goes to zero).

2.3 Nonlinear solution

To obtain a nonlinear solution, the following Fourier expansions
are introduced:

|�U| = b0 + 1
2

∞∑
q=1

[
bqeiqt + c.c

]
(13a)

|U| = B0 + 1
2

∞∑
q=1

[
Bqeiqt + c.c

]
(13b)

The products |�U|�U = |u0 − U|(u0 − U) and |U|U can be
given in Fourier terms by evaluating the products of the expan-
sions in Eqs (8), (13a) and (13b). These products suggest that
there will be an exchange of momentum between the frequen-
cies; the momentum exchange is mathematically identical to the
generation of super- and subharmonics in free surface wave the-
ory (Madsen & Fuhrman, 2006). Inserting Eqs (8), (13a) and

(13b) into Eq. (6), the following momentum equation for the m
th harmonic is found:

�I imUm = imum + �f

[
b0�Um + bq�Ul + G(b∗

p�Uk)
]

− �D

[
B0Um + BqUl + G(B∗

p Uk)
]

(14)

where ∗ means the complex conjugate and �Um = um − Um.
The indices are such that m = q + l (super-harmonic interac-
tion for all q > 0 and l > 0) and m = |k − p| (sub-harmonic
interaction for all k > 0 and p > 0). The function G reads:

G(ϕpk) =
{

ϕpk for k − p > 0

ϕ∗
pk for k − p < 0

(15)

Introducing the decomposition Um = Ur,m + iUi,m, where super-
scripts r and i refer to the real and imaginary components,
and treating Ur,m and Ui,m as separate variables, Eq. (14)
can be written as a 2M × 2M matrix system with a non-
homogeneous right-hand side. The matrix system is nonlinear,
because the coefficients bq and Bq for q = 0, 1, 2, . . . depend
on all components in U. The matrix system is solved by suc-
cessively inserting the solution from previous iterations until
converged below a 2-norm of 10−10. M = 21 is used through-
out the present analysis, and Eqs (13a) and (13b) are eval-
uated with 2M components to incorporate all sub-harmonic
contributions.

The momentum equation (Eq. (6)) is, as already discussed,
practically identical to the two-layer models proposed by
Lowe et al. (2005) and Zeller et al. (2015). However, the
main difference is the solution procedure: where their mod-
els were solved in the time-domain, the present sinusoidal
and nonlinear models are solved in the frequency domain,
which has the advantage that the in-canopy momentum dis-
tribution (e.g. |U2|/|U1|, |U3|/|U1|,. . . ) is obtained directly
without additional post-processing and the super- and sub-
harmonic interactions are quantified. This advantage will be uti-
lized in Section 4.3, where momentum distribution, momentum
exchange, and importance of super- and sub-harmonic terms
are quantified for sinusoidal and velocity-skewed free stream
velocities.

3 Experiments

3.1 Experimental set-up

The experiments were performed in the Aberdeen Oscillatory
Flow Tunnel (AOFT) (Fig. 2). The test section is 10 m long,
0.3 m wide and 0.75 m tall. A 7 m long false bed was installed
at an elevation of 0.25 m above the tunnel floor within the
test section with ramps of slope 1:4 at either end, reducing
the effective flow depth within the test section to 0.5 m. Stiff,
circular PVC rods, with hv = 130 mm and d = 8.3 mm, were
fixed to the false bed in a regular geometric pattern over its full
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Figure 2 Layout of the AOFT with the rigid cylinder array installed on the false bottom. The force is measured on the test cylinder as described in
Neshamar (2022)

Figure 3 Pictures of (a) the sparse canopy and (b) the dense canopy

length. Two canopy densities were tested: a sparse canopy with
N = 579 stems m−2, shown in Fig. 3a, and a dense canopy with
N = 1736 stems m−2, shown in Fig. 3b. The corresponding
porosities are n = 0.969 and n = 0.906, respectively. These
array densities were selected to resemble submerged vegeta-
tion canopies, for which porosities of 0.9–0.99 were reported
by Nepf (2012). One rod in the centre of the canopy ( ∼ 3.5 m
from the leading edge of the canopy) was mounted on a force
transducer (ATI Nano17 IP68 6-axis load cell) built into the
false bed to measure forces from which the hydrodynamic
force coefficients could be determined. The load cell measures
forces and moments along all three axes and can be operated
in three different calibration settings, with sensing ranges of
12–50 N for force and 120–500 N mm for moment; the cor-
responding measurement resolutions are 0.003–0.013 N and
0.016–0.063 N mm.

For each canopy density, experiments were conducted for
five free stream velocity amplitudes with constant oscillatory
flow period T = 6 s. The piston input signal was sinusoidal
but the measured free-stream velocities showed slight depar-
ture from sinusoidal with higher harmonics present in the flow.
The velocities were measured using a Dantec FibreFlow 2-
component laser Doppler anemometer (LDA), consisting of

a 300 mW Ar-ion laser and F60 burst spectrum analyser, oper-
ating in back-scatter mode. During the LDA experiments, the
water was seeded with Sphericel 110P8 hollow glass micro-
spheres of 9–13 µm diameter. Accurate positioning of the mea-
surement volume was achieved with the LDA probe mounted
on a 3-axis computer-controlled traverse that enables x, y and z
positioning with a resolution of 12.5 µm. Measurements were
made over 100 flow periods, with data rates typically higher
than 100 Hz (depending on seeding and flow velocity). The
measured data were processed to give 50 Hz phase-averaged
velocity time-series.

The experimental conditions are listed in Table 1, including
the magnitude and phase of the first three harmonics of the mea-
sured free-stream velocity. The free-stream orbital amplitudes
had a range of 0.16–0.92 m, similar to near-bed orbital ampli-
tudes under full-scale storm waves. With a total canopy length
of 7 m, flow near the middle of the canopy is assumed to be min-
imally influenced by transitional features originating at the ends
of the canopy, effectively resembling oscillatory flow through an
infinitely long, uniform canopy. This assumption was validated
with velocity measurements over a 30-cm range of x-locations
and a range of y-locations (106 mm for the sparse array and
54 mm for the dense array) near the middle of the canopy, which
showed no significant difference in phase-averaged flow veloci-
ties with x or y (see Neshamar, 2022, for a detailed description
of these measurements). Flow in the middle of the tunnel is
therefore minimally influenced by the finite length of the test
section and the tunnel side walls.

The main velocity measurements were made near a cylin-
der in the middle of the array, adjacent to the instrumented
cylinder. With the coordinate system centred at the base of
the nearby cylinder, vertical profiles of flow velocities were
measured at x = − 12 mm (halfway between cylinder rows),
for four y-positions in the case of the sparse canopy (y =
0, 5.4, 12, 18.7 mm) and three y-positions in the case of the
dense canopy (y = 0, 2.7, 5.3 mm). For each vertical profile,
velocities were measured at 11 vertical (z) positions over the
canopy depth (Nw = 11, Table 1), and between 5 and 17 vertical
positions above the canopy (Na in Table 1).
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Table 1 Overview of the ten experimental cases

Case N |u1| arg u1 |u2|/|u1| arg u2 |u3|/|u1| arg u3 Nw Na �I �D �f δS δNL δLKM

[m−2] [m s−1] [◦] [%] [◦] [%] [◦] [–] [–] [–] [–] [–] [%] [%] [%]

S1 579 0.17 − 89 1.7 − 89 5.0 − 94 11 5 1.043 0.495 0.024 10.4 6.9 6.0
S2 579 0.37 − 90 1.7 − 50 3.4 − 92 11 10 1.043 1.093 0.054 11.8 7.7 7.7
S3 579 0.51 − 90 1.3 − 66 2.9 − 88 11 11 1.043 1.518 0.150 12.4 7.9 9.1
S4 579 0.73 − 90 1.1 − 62 2.4 − 86 11 12 1.043 2.175 0.214 11.6 7.1 9.1
S5 579 0.95 − 90 1.1 − 41 2.0 − 97 11 13 1.043 2.839 0.350 10.2 5.4 9.3

D1 1736 0.17 − 90 1.8 − 88 5.1 − 101 11 10 1.137 2.630 0.034 16.1 6.3 9.9
D2 1736 0.37 − 90 1.4 − 97 4.0 − 106 11 13 1.137 5.797 0.074 13.7 4.4 9.0
D3 1736 0.51 − 90 1.4 − 56 3.6 − 98 11 14 1.137 8.047 0.093 13.9 3.8 8.7
D4 1736 0.73 − 89 1.2 − 70 3.1 − 99 11 14 1.137 11.496 0.147 13.5 5.0 10.8
D5 1736 0.96 − 90 0.9 − 51 3.5 − 71 11 17 1.137 15.186 0.127 14.5 6.2 11.0

Note: Cases S1–S5 have a sparse canopy and cases D1–D5 have a dense canopy. Case names are applied in Figs 8 and 10. u1, u2, and u3 are
free stream velocity amplitudes. Nw and Na are the number of averaging points within and above the canopy, respectively. �I , �D, and �f are
non-dimensional resistance quantities. The normalized deviations to the experiments for the sinusoidal (δS), nonlinear (δNL), and Lowe et al. (2005)
(δLKM ) models are defined in Section 4.1.

3.2 Local and spatial averaged velocities

Figure 4 shows the x –y positions of the in-canopy measure-
ment positions; the positions form a row of approximately
evenly-spaced points spanning the periodic domain along y.
The effective number of velocity profiles is doubled because
of a “mirroring” effect: since the array geometry is symmet-
ric, and the free-stream velocity is approximately sinusoidal,
phase-averaged velocities around each cylinder will be oppo-
site in magnitude along x but otherwise identical during the first
and second halves of the flow cycle. Consequently, measure-
ments of the “local velocity” ul at a given “real” measurement

Figure 4 Periodic representation of the (a) sparse and (b) dense array
geometries viewed from above. The dashed line at the bottom of each
figure indicates symmetry, and the dotted lines around the other three
sides indicate periodic boundaries. The figures show the coordinates
where vertical profiles were measured (•), as well as correspond-
ing “mirrored” coordinates based on symmetry of geometry and flow
characteristics (X) as described in Section 3.2

coordinate can represent an additional measurement at the “mir-
ror” position by inverting the measured velocity time-series and
phase-shifting by 180◦. For example, ul recorded at a position
immediately in front of a cylinder in the first flow half-cycle is
equal to −ul recorded at a point immediately behind the cylinder
in the second half-cycle.

Since phase-averaged vertical velocities within the array are
negligible, in-canopy flow is effectively divided into thin hor-
izontal “layers” with negligible mass transfer between layers.
From continuity, the spatially-averaged filter velocity, ue(z, t)
(subscript e refers to experimental value), is therefore found by
averaging velocities along y at x = −Sx/2, where Sx is the cylin-
der centre-to-centre spacing along x. The spatially-averaged
filter velocity was obtained by interpolating the velocity mea-
surements (real and mirrored) onto an evenly-spaced grid span-
ning the periodic domain along y, and averaging the result. This
procedure results in an approximation of ue, which assumes the
overall flow to be fully periodic and symmetric. Due to the mir-
roring, the calculated ue is symmetric in time and contains no
even-numbered harmonics. Neshamar (2022) describes how this
method was validated experimentally, by comparison with mea-
surements made along two different y-transects (at x = −Sx/2
and x = −Sx/4).

The depth- and spatially-averaged in-canopy filter velocity,
Ue, is found through vertical integration:

Ue(t) = 1
hv

∫ hv

0
ue dz (16)

whereby the bulk pore velocity follows: Ue,p = Ue/n.

3.3 Force coefficients

Hydrodynamic force on a cylinder is determined from the
Morison equation, where the spatially-averaged pore velocity
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(ue,p = ue/n) is used as the characteristic velocity:

Fx(z) = 1
2
ρCDd|ue,p |ue,p + ρ(1 + Cm)

d2π

4
∂ue,p

∂t
(17)

where Fx(z) is the in-line force per unit length at elevation z.
Note that force varies with z due to variations in ue,p ( Fig.
10); the coefficients CD and Cm are assumed constant with z.
The added mass coefficient Cm can, in principle, be estimated
directly from force measurements. However, since the associ-
ated force is much smaller than the drag force under the present
conditions, there is large uncertainty when estimating Cm from
the measurements. Instead, the established value of Cm ≈ 1 is
used in the present work (e.g. Sumer & Fredsøe, 1999).

Since the load cell measures moments with a higher resolu-
tion compared to the forces, the drag coefficient CD is calculated
from the moment measurements. A force in the x-direction pro-
duces a moment about the y-axis, and the total moment applied
to the load cell My can be calculated by multiplying the inline
force (Eq. (17)) by the “lever-arm” and integrating vertically,
i.e.:

My = My,D + My,m (18a)

My,D = 1
2
ρCDd

∫ hv

0
|ue,p |ue,p

(
z + zoffset

)
dz (18b)

My,m = ρ(1 + Cm)
d4π

4

∫ hv

0

∂ue,p

∂t
(
z + zoffset

)
dz (18c)

where My,D and My,m are the components of moment due to
drag and added mass, respectively, and zoffset = 10 mm is the
vertical distance between the front face of the load cell and
the tunnel floor. To determine CD, My,m is first calculated from
Eq. (18c), with Cm = 1, obtaining the flow acceleration at each z
using a central difference method, and performing the numerical
integration along z by interpolating linearly between measure-
ment points. The result is subtracted from the total moment
measured by the load cell, My,LC, to produce a “measured”
drag-related moment My,D,LC = My,LC − My,m. Using an initial
value of CD = 1, the actual value of CD is then determined by
matching the “predicted” My,D time-series (Eq. (18b)) to the
“measured” My,D,LC time-series using a least-squares method
(see e.g. Sumer & Fredsøe, 1999).

Figure 5 shows an example comparison between My mea-
sured by the load cell and the calculated My obtained using the
method described above, which for this case (S4) results in a fit-
ted drag coefficient of CD = 1.37. The figure shows that the two
curves match very well in both phase and shape, indicating that
the given values of Cm and CD are accurate. The same method
was used to calculate CD for all flow cases, and each case pro-
duced a similarly close match between measured and calculated
moments as shown for the example case in Fig. 5.

Figure 6 shows the CD values obtained from the moment
measurements for all flow cases, presented as a function of
Reynolds number, defined as Re = Up ,maxd/ν, where Up ,max is

Figure 5 Measured and calculated moment around the y-axis My , case
S4. The free-stream velocity u0 is also shown for reference

the maximum in-canopy pore velocity. The figure also shows
CD from tests involving oscillatory flow past a single, isolated
cylinder, which were conducted prior to the present series of
experiments using the same experimental arrangement. Note
that, for the isolated cylinder, the increase in CD observed
around Re = 103 is due to the onset of flow-induced vibra-
tions, similar to those discussed by Neshamar et al. (2022).
No vibrations were observed during canopy experiments. CD in
oscillatory flow is governed by Re and the Keulegan–Carpenter
number KC = Up ,maxT/d. The experiments were conducted at
a constant value of Re/KC = 11.5, which means that the KC

values corresponding to the results in Fig. 6 are obtained from
KC = Re/11.5. CD for a cylinder within an array is also influ-
enced by array geometry: Etminan et al. (2019) hypothesized
that CD for a cylinder within an array is governed by two
effects, namely “blockage” and ‘sheltering’. The blockage effect
describes the locally increased flow velocity in the constricted
space around the cylinder, which results in increased drag on the
cylinder. Conversely, sheltering occurs when a cylinder is “hid-
den” in the wake of an upstream cylinder, and drag is reduced
due to a lower incident velocity. Of the two mechanisms, their
simulations showed the blockage effect to be dominant, partic-
ularly for high canopy densities. To account for the blockage
effect, they proposed that CD for a cylinder in an array can
be quantified using the constricted velocity, uc, defined as the
velocity averaged over the constricted cross-sections around the
cylinder. For the array layout shown in Fig. 4, uc is related to up

Figure 6 Drag coefficients obtained from moment measurements as a
function of Reynolds number
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Figure 7 CD,c obtained from moment measurements as a function
of constricted Reynolds number, with predicted values from Eq. (20)
shown for comparison

by:

uc = n
1 − d/2Sy

up (19)

where Sy is the cylinder centre-to-centre spacing along y.
Based on this, a constricted Reynolds number, Re,c, and
constricted drag coefficient, CD,c, can be defined as Re,c =
Re(uc/up) and CD,c = CD(up/uc)

2. For high values of KC, Etmi-
nan et al. (2019) propose that the two are related by the empirical
expression:

CD,c = 1 + 10Re,c
−2/3 (20)

Figure 7 shows a comparison between the present data and
Eq. (20). While there is some scatter, the results from the present
isolated-cylinder and canopy experiments fall within approxi-
mately 10% of predicted values from Eq. (20), demonstrating
that the equation can provide a good estimation of CD in the
absence of direct measurements. Nevertheless, in the present
work, model calculations are based on measured CD-values as
shown in Fig. 6, taking the average measured values of CD =
1.30 for the sparse canopy and CD = 2.30 for the dense canopy.

It should be noted that most wave attenuation studies define
an empirical “bulk drag coefficient” CD,b, obtained from the
measured wave attenuation using the method first described
by Dalrymple et al. (1984). Henry et al. (2015) show exam-
ples of different CD,b formulations. In these studies, CD,b tends
to decrease significantly with increasing Re, because the cal-
culation does not account for velocity reduction within the
canopy (relative to the free-stream velocity), which increases
with increasing Re. In contrast, CD in the present work is based
directly on the incident in-canopy velocity, and, as Fig. 6 shows,
CD does not appear to vary significantly with Re.

4 Results

4.1 Model validation

A comparison between the experimental results and the two
analytical models is shown in Fig. 8 for all 10 cases. The mea-
sured free stream velocity is used to force the analytical models,

where the first three free stream harmonics are included in the
nonlinear model and only the first harmonic in the sinusoidal
model (Table 1). Based on the laboratory measurements, model
calculations use Cm = 1, CD = 1.3 for the sparse canopy and
CD = 2.3 for the dense canopy, while Cf is tuned for each case
to achieve the best fit between the experimental data and the
nonlinear model. The resulting non-dimensional quantities �I ,
�D and �f are given in Table 1. It can be observed that the non-
linear model accurately captures both the phase, amplitude and
overall temporal variation of the in-canopy velocity. The sinu-
soidal model is limited to a single harmonic (M = 1) and cannot
reproduce the higher-order in-canopy velocity components, but
it does accurately capture the phase and magnitude of the in-
canopy velocity. The accuracy of the models is evaluated by
calculating the normalized deviation to the experiments:

δ = ‖U − Ue‖2

‖Ue‖2
(21)

Here, U is the model prediction and Ue is the experimental data,
with ‖ · ‖2 denoting the 2-norm. The normalized deviations for
the sinusoidal, nonlinear and Lowe et al. (2005) models, δS, δNL

and δLKM , are provided in Table 1. The sinusoidal model shows
differences between 10% and 16%, while the nonlinear and
Lowe et al. (2005) models show better performance with differ-
ences between 4% and 11%. It is seen in Table 1 that the present
nonlinear model generally results in smaller deviations from the
experiments compared to the LKM model; however, this merely
reflects that CD and Cf are derived and tuned, respectively, to
the present resistance formulation. The resistance formulation
in Lowe et al. (2005) differs to the one proposed in the present
work, which explains the small differences between δNL and
δLKM . Identical results are obtained when applying the resistance
formulation from Section 2.1 in both nonlinear models.

Figure 8 shows a comparison between measured velocities U
and predictions obtained from sinusoidal and nonlinear models.
Results from Lowe et al.’s (2005) time-domain model (hence-
forth LKM, 2005) are also shown in Fig. 8: there is practically
no difference between the present nonlinear frequency domain
model and LKM (2005), except for a small phase shift and
difference in amplitude, which are attributed to the difference
in canopy resistance formulation between the two nonlinear
models.

The experimental data and nonlinear model predictions
show a rapid flow acceleration followed by slow decelera-
tion after the maximum velocity (Fig. 8). This is explained
by the fact that the free stream velocity has its maximum
at t = 1.5 s while the in-canopy velocity peaks much earlier,
which means the external pressure gradient ∂p/∂x = −ρ∂u0/∂t
remains negative for some time after the maximum in-canopy
velocity is reached, providing a forward driving force during this
time.

Figure 9 shows the frequency composition of flow velocities
for six representative cases (S1, S3, S5, D1, D3, and D5). The
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Figure 8 Comparison between the spatially-averaged in-canopy velocity, U, from experiments and predicted values from sinusoidal, nonlinear, and
LKM (2005) models. The free stream velocity, u0, is shown with axis on the right of each panel. Left: Results for sparse canopy. Right: Results for
dense canopy

figure shows the magnitude and phase of the 1st, 3rd and 5th
harmonic of free-stream and in-canopy velocities for each case,
together with model predictions obtained using the sinusoidal
and nonlinear models, all normalized by the magnitude of the
1st harmonic of the free-stream velocity. Predictions obtained
using LKM (2005) are also shown, and they are practically
identical to the results from the nonlinear frequency-domain
model. All three models predict the magnitude and phase of the
1st harmonic with relatively good accuracy. For each case, the
figure shows that the free-stream velocity contains a 3rd har-
monic with magnitude of between 1–5% of the first harmonic,
while the 5th harmonic has a magnitude of < 1% of the 1st har-
monic. The results demonstrate the nonlinearity introduced by
the canopy, since for the first four cases shown, the 3rd harmonic
of the in-canopy velocity is increased relative to the free-stream.

This nonlinearity is most pronounced for case S5, where the
1st harmonic reduces by |U1|/|u1| ≈ 0.6 and the 3rd harmonic
increases by |U3|/|u3| ≈ 2.5. For the other two cases (D3 and
D5), the 1st harmonic is significantly reduced (|U1|/|u1| ≤ 0.33)
while the 3rd harmonic remains near-constant. The canopy
also introduces a 5th harmonic component with magnitude of
between 0.5–2% of the 1st harmonic. In all cases, the nonlinear
model, as well as LKM (2005), are shown to predict the magni-
tude and phase of the 3rd harmonic with good accuracy. The 5th
harmonic is also approximated, albeit with less accuracy due to
its small magnitude.

A comparison between the predicted (sinusoidal and non-
linear models) and measured velocity profiles is shown in
Fig. 10. The two-layer models are found to capture the bulk
behaviour accurately. The boundary layer formation on top of
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Figure 9 Comparison of the harmonic behaviour of the experimental results, sinusoidal, nonlinear, and LKM (2005) models. The label “Mode”
refers to the n = 1, 3, 5 harmonics in the nonlinear models and experiments, and the n = 1 harmonic in the sinusoidal model. Top rows: The odd har-
monic velocity magnitudes |U1|, |U3|, and |U5|. Bottom rows: The odd phases relative to the first harmonic free stream phase: φn = arg Un − arg u1
for n = 1, 3, 5

Figure 10 Measured and predicted vertical velocity profiles. Top panels: Root-mean-square velocity, urms. Bottom panels: Phase difference between
in-canopy and free stream velocities based on the first harmonic only

the canopy is not captured, as this would require a higher vertical
resolution (e.g. Chen & Zou, 2019; Zeller et al., 2015). The
velocity in the canopy leads over the free stream velocity
(bottom panels) and the sinusoidal and nonlinear models both
predict almost identical phase leads (φ1 = arg U1 − arg u1) with
good match to the measurements. The experimental measure-
ments did not resolve the wave boundary layer at the bottom
of the flow tunnel, though it is hypothesized that the phase lead
will further increase towards the bed akin to observations from
laminar and turbulent wave boundary layers over smooth and

rough beds (Jensen et al., 1989). It is furthermore hypothesized
that the additional phase lead will be smaller than that for undis-
turbed wave boundary layers, because the canopy has already
introduced a phase lead with respect to the external pressure gra-
dient. These hypotheses should be addressed experimentally and
theoretically, as they might prove important for a description
of in-canopy sediment transport. The accuracy of the nonlinear
model in terms of predicting the phase lead, momentum distri-
bution, and in-canopy velocity reduction factors is incorporated
in the results presented in Sections 4.2–4.4.
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4.2 Comparison between sinusoidal and nonlinear drag
models

In this section, we compare sinusoidal and nonlinear model pre-
dictions of in-canopy flow for a wide range of conditions: n =
[0.9, 0.999], d = 0.01 m, T ∈ [2, 16] s, |u1| ∈ [0.01, 2.0] m s−1,
Cm = {1, 2}, Cd = {1, 2}, and Cf = {0, 0.02}. The comparison
is done for 4700 conditions in total. In all cases, the free-stream
velocity is purely sinusoidal (um = 0 for m = 2, 3, . . .). Two
assessment measures are used in the comparison: (i) magnitude
of the first harmonic, and (ii) the phase between u1 and U1.

The magnitude of the first harmonic Û1 was found to be
within ±5% of each other for all cases (not shown). This is
of considerable practical importance, because it suggests that
the linearization applied in free surface models is sufficiently
accurate (e.g. Jacobsen, 2016; Méndez et al., 1999). It could be
that the vertical velocity component in the case of real waves
influences the accuracy of the sinusoidal model; however, in the
absence of a valid nonlinear wave theory for canopies, it seems
to be a good engineering approximation to apply a wave theory
based on a linearized drag force.

The phase lead in the oscillatory flow case has limited
direct physical implications; however, for real waves the vertical
distribution of the phase lead between the horizontal and ver-
tical velocities is important for residual wave-induced stresses
(Deigaard, 1993; Deigaard & Fredsøe, 1989; Guannel & Özkan-
Haller, 2014; Jacobsen, 2016; Jacobsen & McFall, 2022;
Philips, 1980). Since there is no nonlinear free surface wave
theory for canopies, the oscillatory solution is used to assess
the implications of using a linearized wave theory to calculate
period-averaged wave stresses. The two analytical models, with
Cf = 0.0, are compared in Fig. 11 (top panel) and it is seen
that there are some differences between the two. However, the
differences are small (less than 3◦) and are seen only at high
�D for which the phase lead is already considerable (greater
than 45◦).

Figure 11 (bottom panel) shows the phase leads predicted by
the two models with Cf = 0.02. It is seen that the models predict
lower phase leads for Cf = 0.02 compared to Cf = 0.00. Fur-
thermore, for large values of �D, the results for Cf = 0.02 show
decreasing phase lead with increasing �D, which is attributed
to the increasing importance of �f for large in-canopy veloc-
ity. For �D > 2, the predicted phase leads branch off and the
different branches are found to coincide with constant values
of NCD, where the lowest branches correspond to small values
of NCD and the highest branches to large values of NCD. The
branching off therefore relates to the relative importance of fric-
tion versus in-canopy drag. The experimental phase leads are
included in Fig. 11 and are seen to align better with the model
predictions for Cf = 0.02 than for Cf = 0.0. The importance
of Cf on the in-canopy velocity reduction is addressed below.
For the remainder of the work, only the nonlinear model is
applied.

Figure 11 Comparison of the arg U1 relative to arg u1 = 0 for the
sinusoidal and nonlinear models. Top: Cf = 0.00. Bottom: Cf = 0.02.
The range of NCD is 13–2546

4.3 In-canopy frequency distribution and momentum
exchange

It was discussed in Section 2.3 that the products |U|U and
|�U|�U give rise to an exchange of momentum between the
harmonics for the nonlinear model. The relative magnitude of
the in-canopy harmonics |Um|/|U1| for m = 2, 3, 4, 5 is depicted
in Fig. 12 as a function of �D and the free stream magni-
tude of the second harmonic |u2|/|u1| = {0.00, 0.125, 0.25}. The
extension of the simulations from Section 4.2 to now include
|u2|/|u1| > 0 is to consider the effect of finite wave heights
and Stokes second-order type phenomena (Svendsen & Jons-
son, 1982), which leads to skewed free stream velocity signals.
The free stream velocity signal has a secondary bump in the
trough of the velocity signal for |u2|/|u1| > 0.25, which is
non-physical for a regular wave signal.

Results obtained for Cf = 0.0 in Fig. 12 (all panels) col-
lapse well when plotted against �D, demonstrating that �D is an
appropriate descriptive parameter for the higher harmonic con-
tent of the in-canopy velocity. The results for Cf = 0.02 and
|u2|/|u1| = 0 exhibit the same branching as seen for the phase
lead, whereby branches correspond to different values of NCD.
The experimental data are also shown (top panel) and there is
reasonable correspondence with the model results. However, the
experimental ratio for |U3|/|U1| is larger than the model ratio.
This is explained by the presence of small amounts of higher
harmonic content in the measured free stream velocity (Table 1),
e.g. |u3|/|u1| � 5% for case D1, which is the “outlier” in Fig. 12.
There is an overall good match between model and experiments
for |U5|/|U1|. It is furthermore seen that |U3|/|U1| becomes
larger when friction is introduced (Cf = 0.02) and �D is not the
sole descriptive parameter for the momentum exchange between
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Figure 12 In-canopy velocity amplitudes |Um|/|U1| for m = 2,
3, 4, 5 predicted by the nonlinear model. Top: |u2|/|u1| = 0.
Cf = {0.00, 0.02}. Middle: |u2|/|u1| = 0.125 and Cf = 0.00. Bottom:
|u2|/|u1| = 0.25 and Cf = 0.00. The experimental data are inserted in
the top panel

harmonics. The effect of Cf on the bulk velocity reduction is
treated in Section 4.4.

For the velocity-skewed cases (middle and bottom panels) it
can be seen that |U2|/|U1| ≥ |u2|/|u1| and that the introduction
of free stream momentum content on u2 suppresses the rela-
tive momentum content on the odd harmonics (|Um|/|U1| for
m = 3, 5, . . .). Furthermore, for the simulations with |u2|/|u1| =
0.25, |U2|/|U1| ≥ 0.25, which means that a secondary bump
is encountered in the in-canopy velocity signal. Examples of
velocity time-series for �D = {0.1, 1.0, 10.0} and |u2|/|u1| =
{0.00, 0.125, 0.25} are shown in Fig. 13, where the secondary
bump can be seen in the bottom panel. The free stream velocity
signals in the middle and bottom panels are velocity-skewed,
though the in-canopy velocity signal becomes increasingly
asymmetric (sawtooth-shaped) for increasing �D and |u2|/|u1|.
The influence of the time variation in U on sediment transport is
discussed in Section 5.3.

The importance of the sub-harmonic contributions is
depicted in Fig. 14, where the sum of self-induced and super-
harmonic contributions are shown as solid markers and the
sub-harmonic contributions are shown as open markers. For
|u2|/|u1| = 0 (top panel), it is seen that the sub-harmonic con-
tributions are small for m = 1 for all values of �D, while for
m = 3 the sub-harmonic contributions are 10% or more rela-
tive to the self-induced and super-harmonic contributions for
�D > 10. Introduction of a velocity-skewed free stream veloc-
ity (|u2|/|u1| = 0.25, bottom panel) shows that the distribution

Figure 13 The velocity time-series for three values of
�D = {0.1, 1, 10} and the associated free stream velocity for nonlinear
model results. Top: |u2|/|u1| = 0. Middle: |u2|/|u1| = 0.125. Bottom:
|u2|/|u1| = 0.25

is practically unaltered for m = 3 and that the sub-harmonic
contributions are small for m = 2. For m = 1 the sub-harmonic
contribution exceeds 10% for �D > 1. The importance of sub-
harmonic momentum on m = 1 is relevant to consider, if a
solution to nonlinear, free surface waves in canopies is sought:
Any nonlinear wave will have significant velocity-skewness, so
the relative importance of drag contributions will have more
resemblance to the bottom panel than to the top panel and
sub-harmonic contributions may not be negligible.

The existence of higher in-canopy harmonics (even for um =
0, m = 2, 3, . . .) means that there must be a shear transfer of
higher harmonic velocities into the free stream, since there is
otherwise no momentum balance at the canopy interface. This
higher harmonic shear component could be a source for eddy
viscosity generation and shear layer instabilities in the wave
boundary layer on top of the canopy.

4.4 In-canopy velocity reduction

Lowe et al. (2005) presented a solution for, and qualitative dis-
cussion of, the in-canopy velocity reduction. However, they
considered two independent nondimensional quantities (d/S and
a1/S) instead of their product: �D ∝ (d/S) · (a1/S). All the
results from the nonlinear computations above are presented
as the ratio max Û/ max û0 in Fig. 15 (top panel), where it is
important to note that the use of Û and û0 includes all higher-
order velocity components. Overall, there is limited scatter
in max Û/ max û0 at given �D, except for small �D (inertia-
dominated flow). The scatter for small �D follows directly from
the momentum equation, which reads as follows for vanishing
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Figure 14 The drag contributions to the first three harmonics, where
solid markers are the combination of self-induced and super-harmonic
drag and open markers are the sub-harmonic drag. Top: |u2|/|u1| = 0.
Bottom: |u2|/|u1| = 0.25

Figure 15 In-canopy velocity reduction as a function of �D. Top:
max Û/ max û0. Bottom: max Û�I / max û0. The colourbar shows n.
The functional fit in the bottom panel is given by Eq. (23)

drag:

∂Û
∂ t̂

= 1
�I

∂ û0

∂t
→ Û = û0

�I
(22)

This gives a minimum inertia-related velocity reduction by
�−1

I < 1, which is incorporated in the bottom panel, where
the ratio max Û�I/ max û0 is shown to be a function of �D

only. Note that the figure contains data for both Cf = 0.00 and
Cf = 0.02, so the friction on top of the canopy has no noticeable

effect on the velocity reduction, which is contrary to the find-
ings for the phase lead and momentum distribution on individual
harmonics. The bottom panel shows that when normalized by
the minimum inertia-related velocity reduction, �D is the sole
nondimensional parameter that determines the velocity reduc-
tion. Figure 15 also contains the experimental data and there is
a good match from inertia- to drag-dominated regimes.

Based on these results, an analytical expression is presented
that can be used for an engineering estimate of the in-canopy
velocities for regular, oscillatory flows:

max Û
max û0

� 1
�I

√
1 + 1.40�D

1 + 1.30�D + 1.37�2
D

(23)

This function is valid for horizontal, oscillatory free stream
flows with a first and second harmonic content, where the
two harmonics are in phase, and |u2|/|u1| ≤ 0.25. It is further-
more valid for 0.9 ≤ n and 0.00 ≤ Cf ≤ 0.02. It remains to
be shown whether this expression can be used for the predic-
tion of in-canopy velocities for real waves with a considerable
vertical velocity component. The inertia-related velocity reduc-
tion (�−1

I ) on the left-hand side is reasonably estimated by
setting Cm = 1 for large Keulegan–Carpenter numbers (Sumer
& Fredsøe, 1999). It is also found that:

max Û
max û0

� Ûrms

û0,rms
(24)

following the same functional fit. This is a relaxation (use of
“ � ”) of the exact identity for purely sinusoidal motion for
which max Û = √

2Ûrms and max û0 = √
2û0,rms.

5 Perspective and implications

5.1 Development of higher-order free surface wave theory

Analytical models of dissipative, free surface waves in canopies
are found in the literature and they are all restricted to first
order with a linearized drag formulation (Asano et al., 1992;
Dubi & Tørum, 1994; Jacobsen, 2016; Kobayashi et al., 1993;
Méndez et al., 1999), i.e. with a sinusoidal time variation of all
variables. The present analysis has shown that accurate results
should be expected from linear wave theories with respect to
the in-canopy velocity, so the estimated radiation stress tensors
(Jacobsen, 2016; Mendez et al., 1998), Lagrangian Stokes drift
(Jacobsen, 2016), and vertical shear stress distribution (Jacobsen
& McFall, 2022) should be reasonably approximated and can be
applied in large-scale, practical engineering models, which rely
on the second-order terms from Airy wave theory.

However, for waves in non-vegetated, shallow water with
high nonlinearity, the use of linear wave theory breaks down
for the horizontal momentum flux, which was illustrated quan-
titatively by Dean and Bender (2006), so development of a
higher-order wave theory for in-canopy wave propagation is
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Figure 16 Velocity-asymmetric free stream velocity. Left column: maximum free stream velocity of 0.075 m s−1 and varying r = {0, 0.375, 0.75}.
Middle column: same as left with maximum free stream velocity of 0.70 m s−1. Right column: fit with Eq. (23) for ratio of maximum velocities and
ratio of standard deviations, respectively

needed for special applications. The present analysis suggests
that there is limited gain in developing a second-order free
surface wave theory, because the theory would still rely on a
linearized drag (no third-order contributions proportional to e.g.
B1U2, B2U1). Secondly, the present analysis indicates that a
higher-order wave theory ought not to be based on a perturbation
approach, but rather on a direct solution of the closure coeffi-
cients, as done with stream function wave theory (Fenton, 1988;
Rienecker & Fenton, 1981), because the sub-harmonic contri-
butions may not be negligible to the first harmonic and thus
invalidate a perturbation approach for large values of �D.

5.2 Velocity-asymmetric free stream velocity

The bulk of this work investigated velocity-skewed free stream
velocities, so here the transformation of a velocity-asymmetric
free stream velocity into a canopy is briefly presented. The free
stream velocity by Abreu et al. (2010) is applied:

u0 = uw

√
1 − r2 sin ωt + r sin ϕ/(1 + √

1 − r2)

1 − r cos(ωt + ϕ)
(25)

where 0 ≤ r ≤ 0.75 gives the degree of velocity-asymmetry
for ϕ = 0, and uw = (max u0 − min u0)/2. u0 is decomposed
as per Eq. (8) and the harmonic amplitudes are given as input
to the nonlinear frequency-domain model. Examples with uw =
{0.075, 0.70} m s−1, N = 1736 stems m−2, d = 0.0083 m, Cm =
1, CD = 2.3, T = 6.0 s, and r = {0, 0.375, 0.75} are shown in
Fig. 16. It is seen that there is a significant difference between the
positive and negative part of U and qualitatively it is concluded
that U becomes increasingly velocity-skewed for increasing r
(increasing free stream velocity asymmetry). This holds both for
�D � 1 and �D � 10. Here, “ � ” is applied, since |u1| varies
with r for a fixed uw.

U was computed for a range of uw ∈ [0.01, 2.5] m s−1 and
the two forms of the velocity reduction Ûrms�I/û0,rms and
max Û�I/ max û0 are depicted against Eq. (23) in Fig. 16

(right panel). It can be seen that only the form based on the
rms-velocities collapses with the functional fit.

5.3 Sediment transport

Sediment transport within canopies under oscillating flow
and waves has been reported in a few studies (Tinoco
& Coco, 2014, 2018; Yang et al., 2016), who report that the
sediment transport is linked to the in-canopy turbulent kinetic
energy. Yang et al. (2016) found that the critical velocity
within the canopy for incipient sediment transport decreased
with decreasing porosity (increasing solidity), while the criti-
cal turbulence level was estimated to be constant. Furthermore,
Tinoco and Coco (2018) measured suspended sediment con-
centrations and showed positive correlations between sediment
concentrations, turbulence levels and solidity.

Nakayama and Kuwahara (1999), Yang et al. (2016) and
Tinoco and Coco (2018) proposed formulations for turbulent
kinetic energy in repeated arrays that are proportional to the
square of the in-canopy velocity, with the proportionality factor
depending on the porosity (solidity). A combination of the pro-
posed empirical formula for the in-canopy velocity (Eq. (23))
and the work by Nakayama and Kuwahara (1999) can be used
to predict in-canopy turbulent kinetic energy, though validation
against experimental data is required for a validated, predictive
formulation. A validated model would allow for a prediction of
the in-canopy suspended sediment concentrations based on �D

and �I as sole input parameters along with the characteristics of
the sediment (density and median diameter).

The in-canopy redistribution of momentum to higher har-
monics may be important in determining period-averaged (net)
sediment flux, which is required for practical engineering appli-
cations. It is documented for non-vegetation wave boundary
layers that the direction of net sediment transport under nonlin-
ear free stream velocities depends on the sediment fall velocity
and the velocity asymmetry and skewness (Fuhrman et al., 2013;
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Hassan & Ribberink, 2005; O’Donoghue & Wright, 2004).
Coarse sediment is found to have a net transport in the direction
of wave propagation, while the net transport of finer sediment
can be in the opposite direction. This effect is expected to be
more pronounced for vegetated wave boundary layers, because
the stem drag introduces higher-order modes within the canopy,
even for sinusoidal free-stream flow.

6 Conclusion

Two frequency-domain models for the bulk in-canopy velocity
under oscillatory flow have been presented, one in which the
drag due to the canopy depends nonlinearly on the flow veloc-
ity and one in which the drag is linearized (called the sinusoidal
model). For the former, the super- and sub-harmonic mecha-
nisms of momentum transfer between frequencies are quanti-
fied. The models have been validated against new experimental
data from an oscillatory flow tunnel for unprecedented large-
amplitude free-stream velocities up to 1.00 m s−1. The nonlin-
ear model is seen to capture the higher-harmonic momentum
generation by the vegetation.

A direct comparison between the sinusoidal and nonlinear
model predictions of in-canopy velocity magnitudes and phase
leads show minor differences between the two models. From
this, it is inferred that linearized free surface wave models pro-
vide reasonable accuracy, when it comes to the quantification of
radiation stresses, vertical shear stress distribution, and Stokes
drift for application in large-scale, practical engineering models.

The momentum transfer between harmonics is described and
it is seen that it is a function of one non-dimensional parame-
ter: �D. It is also seen that sub-harmonics are of considerable
importance for large values of �D and high free-stream nonlin-
earity. This means that a perturbation approach for a nonlinear
free surface model will not account correctly for all in-canopy
momentum transfer between harmonics.

Finally, it was found that �I and �D are determining factors
for in-canopy velocities. Normalization of the in-canopy veloc-
ity by �I unified all velocity reduction factors onto a single
fitting line (Eq. (23)), which shows good agreement with the
experimental data and it is applicable to both velocity-skewed
and velocity-asymmetric free stream velocities.

Notation

ˆ = non-dimensionalised term
∗ = complex conjugate
a1 = 1st harmonic of free stream orbital amplitude (m)
bi = i’th Fourier component of |�U| ( − )
Bi = i’th Fourier component of |U| ( − )
CD = drag coefficient ( − )
CD,b = bulk drag coefficient ( − )
CD,c = constricted drag coefficient ( − )
Cf = friction coefficient ( − )

Cm = added mass coefficient ( − )
d = stem diameter (m)
FD = fluid drag per unit mass (m s−2)
hv = canopy height (m)
KC = Keulegan-Carpenter number ( − )
M = size of matrix system ( − )
My = moment applied to load cell (kg m2 s−2)
N = stems per unit area (m−2)
Nw, Na = number of measuring points within and above

canopy ( − )
n = porosity ( − )
P(n) = stem geometry parameter ( − )
p = pressure (Pa)
r = Abreu et al. (2010) skewness parameter ( − )
Re = Reynolds number ( − )
Re,c = constricted Reynolds number ( − )
S = generic measure for stem spacing (m)
Sx, Sy = stem centre-to-centre spacing along x, y (m)
T = oscillatory flow period (s)
t = time (s)
u, v, w = velocity components along x, y, z (m s−1)
u0(t) = free stream velocity (m s−1)
ui = i’th harmonic of u0 (m s−1)
uc = constricted velocity (m s−1)
urms = root-mean-square of u0 (m s−1)
uw = Abreu et al. (2010) velocity height (m s−1)
U(t) = bulk in-canopy filter velocity (m s−1)
Urms = root-mean-square of U (m s−1)
�U(t) = velocity difference (m s−1)
ue(z, t) = experimentally measured velocity (m s−1)
up = pore velocity (m s−1)
Ui = ith harmonic of U (m s−1)
x, y, z = spatial coordinates (m)
�D = non-dimensional drag term ( − )
�f = non-dimensional friction term ( − )
�I = non-dimensional inertia term ( − )
�L,D = linearised drag term ( − )
�L,f = linearised friction term ( − )
αU = shape factor for in-canopy velocity profile ( − )
δ = normalised measurement deviation ( − )
l = solidity ( − )
ν = kinematic viscosity (m2 s−1)
νt = eddy viscosity (m2 s−1)
ρ = fluid density (kg m−3)
φi = i’th component of the phase lag (rad)
ϕ = Abreu et al. (2010) waveform parameter ( − )
ω = cyclic frequency (s−1)

Note

1. Note that this choice of characteristic parameters is consistent
with Jacobsen, Bakker, et al. (2019); see their Section 3.1 for a
discussion.
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Appendix A. Derivation of bulk formulation

A.1 Porous media formulation for pure oscillating flow

It is discussed in Section 2.1 that the vertical momentum
equation for the spatially-averaged vertical velocity w simplifies
to:

∂p
∂z

= 0 (A1)

because w = 0 given the form of the continuity equation for
oscillatory motion (Eq. (1)). Consequently, focus is given to
the derivation of the horizontal momentum equation Eq. (2).
The horizontal momentum equation reads as follows (Jensen
et al., 2014, with the present work’s formulation of drag and

inertia resistance):

(
1 + CmN

d2

4
π

)
∂

∂t
u
n

+ 1
n

[
∂n−1uu

∂x
+ ∂n−1uv

∂y
+ ∂n−1uw

∂z

]

= − 1
ρ

∂p
∂x

+ 1
n

∂

∂z

[
(ν + νt)

(
∂u
∂z

+ ∂w
∂x

)]
− FD (A2)

where horizontal diffusion terms are already ignored, since all
derivatives along x and y vanish for spatially-averaged quan-
tities. In the same way, the first two convective terms can be
removed. The third convective term vanishes, since w = 0 given
the bottom boundary condition and the continuity equation
(Eq. (1)). Finally, the diffusion term proportional to ∂w/∂x van-
ishes (again, since w = 0 for all z). This results in the horizontal
momentum equations in Eq. (2).

A.2 Bulk two-layer model

The bulk two-layer model is found by a vertical averaging of
Eq. (2) over the canopy height:

1
hv

∫ hv

0

[
�I

∂

∂t
u = − 1

ρ

∂p
∂x

+ 1
n

∂

∂z
(ν + νt)

∂u
∂z

−1
2

CDP(n)Nd|u|u
]

dz (A3)

and introduction of the bulk velocity:

U = 1
hv

∫ hv

0
u dz (A4)

The first two terms in Eq. (A3) become �I∂U/∂t and 1
ρ
∂p/∂x,

respectively, as per Eq. (5): the first term, because ∂/∂t can
be taken outside the integral, and the second term, because p
is independent of z. The only horizontal shear terms acting on
the control volume bounding the vegetation are on the seabed
and the top of the canopy, which are lumped into a single shear
term τ = Cf |�U|�U (see Section 2.1 for a discussion on this
parameterization). However, since Eq. (A3) is averaged over the
canopy height it follows that:

1
hv

∫ hv

0

1
n

∂

∂z
(ν + νt)

∂u
∂z

dz = Cf

hv
|�U|�U (A5)

Finally, the drag term reads:

1
2

CDP(n)Nd
1
hv

∫ hv

0
|u|u dz = 1

2
CDP(n)Nd

αU|U|Uhv

hv
(A6)

Here, αU is the shape factor accounting for the slight deviations
from the near-constant in-canopy velocity profile (Fig. 10); αU

is in practice lumped into CD, when CD is derived from the
experimental results.
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