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Abstract

Stable water isotopes are naturally occurring conservative tracers that can ‘finger-
print’ water sources and track ecohydrological fluxes across the critical zone (CZ).

Parsimonious, tracer-aided models allow effective quantification of the eco-

hydrological partitioning of rainfall into different water fluxes. We incorporated sta-

ble water isotopes into a one-dimensional, tracer-aided model (EcoIsoPlot) to follow

the pathway of precipitation through the CZ at a lowland catchment—the long-term

experimental Demnitzer Millcreek Catchment (DMC), Germany—with contrasting

vegetation covers (forest, agroforestry, grassland and arable). Precipitation (amount

and δ2H), potential evapotranspiration (PET), leaf area index (LAI), air temperature

and relative humidity were used as input data for modelling the growing season of

2021. The year had relatively average overall wetness, but a dry, cold spring with

snowfall, and an exceptionally large summer storm event (�60 mm precipitation).

Multi-criteria calibration of the model was conducted using depth-specific soil mois-

ture and soil water δ2H measurements as targets. The novel incorporation of iso-

topes into model calibration constrained process representation of the estimated

water balance with reasonable simulations and uncertainty bounds for water par-

titioning. Throughout the soil profile, soil moisture dynamics and stable water isotope

variations were captured reasonably well. Green water fluxes (evapotranspiration)

were highest at the forest site and blue water fluxes (groundwater recharge) highest

at the grassland. Comparing simulations with estimated potential evapotranspiration

(ET) and measured groundwater table fluctuations added further confidence to the

modelling result. Overall, these may suggest a slight underestimation of ET and slight

overestimation of recharge, though the results are similar to previous findings. Our

study demonstrated the potential of stable water isotope data to enhance relatively

simple, transferrable approaches to ecohydrological modelling of water fluxes in the

CZ and to help improve model consistency. Such low-parameterised tracer-aided

models have major potential for evidence-based applications to aid management and

help stakeholder communication.
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1 | INTRODUCTION

Incoming precipitation can be partitioned through a variety of eco-

hydrological processes when moving through the critical zone (CZ),

which extends from the vegetation canopy to groundwater (Grant &

Dietrich, 2017). Understanding and quantifying these processes that

partition water into blue (i.e. groundwater recharge and stream flow

generation) and green (i.e. evaporation and transpiration) fluxes

(Falkenmark & Rockström, 2006) is important to understanding land-

scape functionality and developing sustainable water management

strategies. The main driver of water partitioning in the CZ in many

areas is evapotranspiration (ET) (Kool et al., 2014), with transpiration

comprising up to 60% of ET at the global scale (Coenders-Gerrits

et al., 2014; Schlesinger & Jasechko, 2014). Transpiration is strongly

dependent on vegetation cover (Schlesinger & Jasechko, 2014), which

further influences processes like interception (Gerrits et al., 2010),

infiltration (Zhang et al., 2013), soil water retention (Balist

et al., 2022), solar reflection and aerodynamic roughness

(Roberts, 2009).

Changing economic priorities, for example, for different food or

fibre production, can change vegetation cover and often result in

changes in water ‘consumption’ according to land use (Foley

et al., 2005). Hence, sustainable water and land management policies

to improve resilience strategies against climate extremes such as

droughts (Orth & Destouni, 2018; Tague et al., 2019) as well as cli-

mate change-induced shifts in precipitation amounts and patterns

(Wunsch et al., 2022) are increasingly the main goals of eco-

hydrological studies. Understanding vegetation cover effects on water

partitioning may help to identify more sustainable alternative land

uses, like agroforestry, which may reduce water consumption whilst

remaining economically viable (Noordwijk, 2020; Rijal, 2019).

Differentiating water partitioning of ET into evaporation and tran-

spiration is challenging because of multiple, interacting, uncertainties

over controls like atmospheric demand, leaf area index (LAI), rooting

zone distributions and stomatal resistance (Dubbert & Werner, 2019;

Kool et al., 2014). Previous studies have utilised stable water isotopes

to help partition water fluxes into evaporation and transpiration using

evaporative fractionation signals (Kool et al., 2014; Rothfuss

et al., 2010; Sprenger et al., 2016). Further, ecohydrological modelling

can conceptualise and quantify the coupled dynamics of water, vege-

tation, and nutrients and hence support decisions on sustainability of

natural resources (Fatichi et al., 2016; Porporato et al., 2015). Specifi-

cally, tracer-aided models with isotope tracking can allow water

sources and fluxes to be better constrained (Rothfuss et al., 2010) and

may help validate physical-based models for water partitioning

(Kuppel et al., 2018). Incorporating vegetation dynamics into such

models can better quantify ET (Shao et al., 2019) and separate evapo-

ration from transpiration (Kool et al., 2014; Sprenger et al., 2016). For

example, a recent study of reforestation by Neill et al. (2021) using

the tracer-aided, process-based, EcH2O-iso model found that older,

early-stage thicket forest was likely to increase transpiration and

interception evaporation compared to non-forested moorland, leading

to decreased soil evaporation, groundwater recharge and streamflow

in the Scottish Highlands. Another study by Sprenger et al. (2022),

incorporating plant water isotopes into StorAge Selection functions

(SAS), found winter precipitation to be the main source of ET at the

Can Vila catchment in the Spanish Pyrenees mountains. Moreover,

Knighton et al. (2017) found that the incorporation of a plant growth

model for ET partitioning substantially improved stream water isotope

simulations in spring in a small watershed in the USA.

Here, we investigated water partitioning in the CZ under various

land use types in the long-term experimental catchment Demnitzer

Mill Creek (DMC), Germany, during the growing season of 2021. The

mixed-land use catchment is typical for the drought sensitive lowlands

of north-eastern Germany in terms of its landforms, geology, topogra-

phy, and soils, with forest, grassland, crops and recently developed

agroforestry (an increasingly popular agent of land use change). Previ-

ous work at the DMC identified the crucial role of land use cover on

water partitioning in the local effects of the 2018 European drought.

Forests used more water in ET, as well as sourcing transpiration by

deeper root uptake of older soil water, whereas grassland root-uptake

used shallower soil water with similar ages to soil evaporation (Smith,

Tetzlaff, Kleine, et al., 2020). Forests were also shown to be subject to

greater moisture stress (because of higher ET), though with more

rapid recovery from drought and greater flexibility in root-water

uptake compared to grassland (Kleine, Tetzlaff, Smith, Dubbert, &

Soulsby, 2021). In contrast, the grassland showed higher and older soil

water storage and slower replenishment of deeper soil water (Kleine,

Tetzlaff, Smith, Dubbert, & Soulsby, 2021).

Both studies used the model EcH2O-iso, a physically based model

combining water and energy fluxes with vegetation carbon allocation.

However, as a process-based model, EcH2O-iso requires a variety of

substantial input data, is highly parameterised and requires extensive

calibration (with the risk of overfitting). The high data needs and com-

putational demands of such models limit transferability to various

data-poor ecohydrological settings where the impacts of land use

change on water use need to be assessed. As an alternative approach,

simpler conceptual, lumped tracer-aided modelling tools require less

extensive input data and are potentially more transferable, whilst

enabling similar quantification of ecohydrological fluxes and resolving

of ET into its component fluxes (Stevenson et al., 2023).

Our study utilised data of precipitation amount and isotopic

composition, soil water storage and isotopes monitored in the DMC

lowland catchment in 2021, to estimate water fluxes and eco-

hydrological partitioning under various vegetation covers. This was

partly motivated by the increasing need to quantify the water “foot-
print” of alternative land uses following the 2018 drought which

resulted in substantially reduced crop yields in some areas and

increased forest tree mortality (Hänsel et al., 2022; Kleine, Tetzlaff,

Smith, Dubbert, & Soulsby, 2021; Moravec et al., 2021). We used the

lumped, low-parameter, EcoHydroPlot model, which is easy to

parameterise for different vegetation cover types (Stevenson

et al., 2023), added isotope tracer simulations, and applied it for plot-

scale simulations of four different dominant land use and soil units at

the DMC catchment. Such a simple, one-dimensional, plot-scale

model with a parsimonious concept also has high potential to be

used in communicating to stakeholders to underpin management

decisions as model concepts are easy to follow. We aimed to quan-

tify water partitioning in the CZ under alternative land uses through

the following research questions:

1. How well can a simple, conceptual tracer-aided ecohydrological

model capture land use influences on water partitioning in a

drought-sensitive catchment?
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2. How well can the key ecohydrological interactions that control

important CZ processes such as ET and groundwater recharge be

quantified and represented?

3. What are the advantages and limitations of using isotopes in such

models and how might they be improved?

2 | STUDY AREA

2.1 | Demnitzer Millcreek catchment

The study was conducted in the DMC which is located approximately

60 km east of Berlin (52�23’ N, 14�150 E), NE Germany. The catch-

ment is 66 km2 with a warm temperate humid climate and warm sum-

mers (Köppen–Geiger climate classification, Kottek et al., 2006). The

annual precipitation ranges from 357 to 793 mm (mean 548 mm),

mean annual air temperatures from 7.8 to 10.9�C (mean 9.8�C)

(1990–2020, weather station Müncheberg, Deutscher Wetterdienst

[DWD] 2022), and annual potential evapotranspiration (PET) from

650 to 700 mm (Smith, Tetzlaff, Gelbrecht, et al., 2020). Because of

high intensity convective events, summer is usually wetter than win-

ter, whereas winter precipitation is more frequent and less intense.

Average annual snowfall in Demnitz is small �34 mm (2000–2009,

Deutscher Wetterdienst [DWD], 2022), although in 2021 this was

61 mm (Deutscher Wetterdienst [DWD], 2022). Because of the domi-

nance of ET, annual runoff coefficients are typically >15% at DMC,

and storm events resulting in surface runoff and erosion are rare

(Gelbrecht et al., 2005). Nevertheless, an increasing trend in heavy

rainfall events (events with >30 mm d�1; 1990–1999: 7; 2011–2020:

13, Deutscher Wetterdienst [DWD], 2022) as well as rising mean air

temperature (1990–1999: 9.2�C; 2011–2020: 10.1�C, Deutscher

Wetterdienst [DWD], 2022) have been observed over the last

30 years. Additionally, longer drought periods were observed, for

example, 2018–2020 in the catchment (Kleine, Tetzlaff, Smith,

Goldhammer, & Soulsby, 2021), and are predicted to become more

common in the future across the region (Lüttger et al., 2011).

The DMC is a typical lowland catchment of the North German

Plain with a long history of anthropogenic influence including historic

wetland drainage and canalisation of the stream network to facilitate

intense agricultural land use (>60%). The second major land use is for-

estry (35%). Only small fractions (�4%) of the catchment are covered

by urban settlements or remaining wetlands (Figure 1). The

hydrogeological structure of the DMC is shaped by the last glaciation

(about 10,000–15,000 years BP) (Gelbrecht et al., 2005). Unconsoli-

dated sediments form the upper soil and aquifer layers (Gelbrecht

et al., 2005) with luvisols being dominant in the north of the catch-

ment (over ground moraines), whereas the south is characterised by

gleysols (in low-lying areas) and arenosols (over sandy deposits)

(Figure 1). This is reflected by land use, where the silt-rich luvisols are

used for agriculture, whereas the highly permeable, freely draining

sandy soils (arenosols) are forested (Figure 1). The shallow groundwa-

ter depths (�0.5 to �3.5 m at the DMC in Winter, see Kleine, Tetzlaff,

Smith, Dubbert, & Soulsby, 2021) allow for extensive groundwater

and stream interaction. Consequently, groundwater contributes >75%

of stream discharge (Smith, Tetzlaff, Gelbrecht, et al., 2020). At the

altitude of our study sites, the groundwater level is around 3 m below

soil surface depending on the season (see Figure 3d).

The DMC has been at the focus of many environmental studies

as a long-term experimental site. In the late 1990s, Gelbrecht

et al. (1998, 2005) focused on agricultural pollution, whereas more

F I GU R E 1 Study site area showing land use, plot sites, discharge, groundwater and weather stations (AWS) in the left panel and soil types in
the right panel. The panel shows an overview map of Germany with Brandenburg highlighted in green and the position of the site by a red star in

its upper left corner. Site photos provide representation of the modelled sites.
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recent studies have concentrated on ecohydrological (Kleine

et al., 2020; Kleine, Tetzlaff, Smith, Dubbert, & Soulsby, 2021; Kleine,

Tetzlaff, Smith, Goldhammer, & Soulsby, 2021; Landgraf et al., 2022;

Smith, Tetzlaff, Kleine, et al., 2020; Smith et al., 2021a, 2021b) and

nitrate (Wu et al., 2022a, 2022b) fluxes. These investigations become

especially important as the majority of agricultural land is not irrigated

and forests contain a large proportion of shallow-rooted pine trees.

Both are dependent on precipitation, its distribution and storage

inside the soil and thus extremely sensitive to drought.

2.2 | Plot sites

We investigated four sites in the catchment with contrasting land

uses at the plot scale. The sites are covered by forest, grassland, ara-

ble and an innovative mixed arable agroforestry scheme vegetation

inhabiting the various soils of the catchment. All sites are located

towards the latitudinal centre of the catchment with Grassland, Agro-

forestry (innovative arable) and Crops (arable) in the east and Forest in

the west (Figure 1). Agroforestry and Crops are situated south from

Grassland in close proximity to one another.

At the mixed deciduous-coniferous forest site, mature oak trees

(Quercus robur) are dominant with other species like Scots pine (Pinus

sylvestris), red oak (Quercus rubra) and Norway maple (Acer platanoides)

occurring as well. The soil is covered by a relatively thick humus layer

of � 10 cm and followed by silty sand. With increasing depth, the soil

becomes less silty (for detailed description of the sites’ soil texture,

see Kleine et al., 2021).

The Grassland is mostly inhabited by grass and some herbs

(e.g. yarrow, Achillea sp.). At the northern edge of the site, a small tree

shelter belt consisting of birch (Betula spp.) and aspen (Populus tremula)

forms the border, though this did not shade the grassland under

investigation (see Landgraf et al., 2022). The soil is characteristic of the

retisols of the region with sandy and silty soil layers. It also contains

small stone clasts up to 8 cm in diameter (see Landgraf et al., 2022).

The Agroforestry site is a combination of small deciduous trees or

bushes (up to 2 m in height) planted in rows with legumes cultivated

between. The rows are roughly 2–3 m apart and, though cultivated, are

not irrigated. The land management shaping this site started in 2019.

During 2021, no ploughing occurred but the legumes were mowed from

30 to 50 cm down to 10–20 cm a few times during growing season.

Part of the legumes area was used as a free-range area for chickens at

the last half of the year. The soil is a luvisol with sand content increasing

with depth, and its structure was affected by mice burrows.

At the crops site, rye (Secale cereale) was cultivated in a conven-

tional way without irrigation. Before spring, the site was ploughed and

planted and harvested in mid-summer. After harvest, grass overgrew

the site and was left over winter. The soil consists of luvisol which is

silt-rich at the top and becomes sandier with increasing depth.

3 | METHODOLOGY

3.1 | Measurements and data

Precipitation amount, air temperature and relative humidity were

monitored by two automatic weather stations (AWS) at Hasenfelde

and at Alt Madlitz (Figure 1). Devices used and their accuracy are

detailed in Table S1 in the supporting information. We mainly used

the hydroclimatic data measured at Alt Madlitz with data gaps being

filled by Hasenfelde (�5 to 10 km distance to study sites) or DWD

data (Deutscher Wetterdienst, German Weather Service Müncheberg,

�20 km distance to study sites Deutscher Wetterdienst [DWD],

2022). Data gaps of net radiation were assimilated from remote sens-

ing products (ERA5-Land; Muñoz Sabater, 2019). Additionally, a

mobile eddy covariance system (Li-COR Biosciences, Lincoln, NE, USA

with LI 7500DS open path analyser, frequency 10–20 Hz, height: radi-

ation 2 m and open path analyser 2.5 m; Smart Flux 3 system

[Burba, 2013]) monitored climate at an open space area of the Agro-

forestry site. We used air temperature, precipitation amount, wind

direction and speed, relative humidity, solar radiation, top soil latent

heat flux, and top soil moisture to estimate ET. Although technical

issues resulted in some calibration problems and data gaps, this gave a

useful benchmark of the dynamics of measured ET. We also estimated

PET via the FAO Penman–Monteith equation from the python pack-

age ETo (cf. Allen et al., 1998 for the method) at daily resolution (see

Landgraf et al., 2022 for input parameters).

Leaf area index (LAI) was measured at Forest with a handheld

device (LAI-2000 Plant Canopy Analyser) during soil sampling

(referred to as soil bag sampling). Comparison of measured LAI with

LAI extracted from the remote sensing product MODIS for Forest

resulted in similar values (R2 0.99, mean of R2 for 27 variables, sd:

0.117). Hence, we chose the measured LAI with approximately

monthly data for Forest, and remote sensing LAI at daily intervals for

the other sites. For the remote sensing LAI, the following vegetation

types were available: broad-leaved forest, conifer forest, pasture or

cropland. We used pasture LAI as input data for Grassland and

Agroforestry and cropland LAI for Crops. As pasture is grazed by

livestock, its LAI is representative of a grassland, whereas the cropland

LAI was representative for our crop site. For Agroforestry—being

covered mainly by legumes and grass with narrow rows of small

trees that are still establishing—we first simulated the site with all

available LAI vegetation types as input data but found the LAI of

pasture to be the best fit to simulate the measured soil water storage

and isotopes.

Groundwater level was measured 4-hourly via a pressure sensor

in the north of the catchment (Peat Ditch) and upstream of Forest

(Figure 1) (Landgraf et al., 2022). Stream water level was monitored by

the same pressure sensors at ‘Demnitz Mill’ (Figure 1). To convert

water level into discharge, we used the rating curve by Smith, Tetzlaff,

Gelbrecht, et al. (2020).

The top soils (0–10 cm) volumetric water content (VWC) was

estimated at monthly intervals via a handheld device measuring the

electric conductivity of the soil in mV, which was converted into VWC

through calibration. For each site, we estimated means of the mea-

surement replicas to gain top soil VWC. Below the top soil, perma-

nently installed probes monitored soil VWC; Forest and Grassland soil

pits had three depths (20, 60 and 100 cm). For Forest, we used the

mean of two pits because of their proximity (�15 m). At Agroforestry

and Crops, probes were installed at 20, 40 and 80 cm (Agroforestry) or

15, 40, 60 and 100 cm (Crops). All data sets were aggregated into daily

mean values with one VWC value per site and depth. As the soil mois-

ture pit depths were not consistent with the depths of the model

compartments (see below), the mean soil moisture for each depth of

4 LANDGRAF ET AL.
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the model was aggregated. For modelling, we converted volumetric

soil water content (%) into soil water storage (mm).

All isotopic results given (precipitation, stream, soil water, ground-

water and standards) are relative to the Vienna Standard Mean Ocean

Water (VSMOW). Daily samples for stable water isotope analysis of

precipitation were collected by a modified autosampler (ISCO 3700,

Teledyne Isco, Lincoln, USA) equipped with a funnel positioned �1 m

above ground level at the Hasenfelde AWS, including paraffin to pre-

vent evaporation. Stream isotope samples were collected daily by an

autosampler (ISCO 3700) similar to precipitation sampling (details of

sampling in Landgraf et al., 2022), also with paraffin included within

storage bottles. Groundwater was sampled monthly via a submersible

pump (COMET-Pumpen Systemtechnik GmbH & Co. KG,

Pfaffschwende, Germany). We stored all liquid samples (precipitation,

stream and groundwater) at low temperatures (8�C) until analyses via

cavity ringdown spectroscopy. Soil water isotopes were collected via

bulk soil samples at the four sites during the growing season at five

depths (0–5, 5–10, 10–20, 20–30, and 30–50 cm) on a 3- to 4-weekly

basis. Samples were analysed via direct-equilibrium method

(cf. Wassenaar et al., 2008) with an off-axis integrated cavity output

spectroscopy (OA-ICOS) triple water vapour isotope analyser. Rep-

licas were aggregated as means to gain single values per depth.

Detailed description of the sampling and measuring of stable water

isotopes can be found in Landgraf et al. (2022). The isotope results

were aggregated to represent the model soil compartments with their

according thickness. Statistics of the observed soil water storages and

isotopes are given in Table 1.

3.2 | Model structure and development

The applied model is derived from the one-dimensional, plot-scale

ecohydrological model EcoHydroPlot (see Stevenson et al., 2023 for

full details). Briefly, the model simulates the ecohydrological par-

titioning of water into green and blue fluxes of evaporation (E), tran-

spiration (Tr) and groundwater recharge (Re). The simulation of the

model’s water balance is conceptualised and based on canopy

interception, surface runoff, soil infiltration, canopy and soil evapora-

tion, transpiration, preferential vertical flow, percolation, and the

groundwater recharge as a loss term (Figure 2). We used precipitation

amount, PET and LAI at daily resolution of the calendar year 2021 as

input data for the water balance. Additionally, our version of the

model includes isotope tracking of deuterium (δ2H) and is hereafter

referred to as EcoIsoPlot. The processes for simulating stable water

isotopes of the canopy and soil compartments include mixing of resid-

ual water with incoming water and evaporative fractionation of the

canopy and upper soil compartment (Figure 2). To improve soil iso-

tope simulations, we added another soil compartment resulting in the

three soil compartments of upper, lower and deeper (0–10, 10–30 and

30–100 cm, respectively; Figure 2).

The model simulates canopy storage with precipitation inputs,

evaporation loss, a maximum storage threshold, and resulting

throughfall. Our version of the model simulates canopy storage with a

slightly different workflow as Stevenson et al. (2023) as we had a dif-

ferent climatic setting, and this improved model simulations. Here, the

available canopy storage was set as a maximum of interception stor-

age and further limited by a throughfall threshold (if exceeded by

interception storage, throughfall was allowed). Next, the available can-

opy storage was checked if changes in LAI reduced it below the cur-

rent maximum storage. For the upper soil compartment, the model

simulates net precipitation addition derived from throughfall, minus

overland flow and preferential flow directed to the second layer. Out-

flows of the upper soil compartment are percolation, soil evaporation

and transpiration. The lower soil compartment is regulated by percola-

tion and preferential flow as inflow and transpiration and deeper per-

colation as outflow. The deeper soil compartment has deeper

percolation as inflow and transpiration and groundwater recharge as

outflow. For all soil compartments, the model estimates transpiration

first until potential canopy transpiration is satisfied and allows evapo-

ration if soil water storage is above the calibrated minimum (soil water

storage range is used for calibration). Outflow below the simulated

soil compartment is only allowed if inflow occurs and depends on soil

conductivity via a nonlinearity parameter. Both are calibration param-

eters of the model.

T AB L E 1 Summary statistics of observed soil water content and stable water isotopes of the three soil compartments in 2021.
(SD = standard deviation).

Site Layer

Soil water storage mm Soil water δ2H ‰

Min Max SD Min Max SD

Forest 0 to 10 cm 7.53 26.28 7.03 �98.84 �29.01 3.14

10 to 30 cm 8.78 50.40 11.88 �98.82 �44.28 5.18

30 to 100 cm 34.13 135.10 34.04 �97.01 �49.32 4.35

Grassland 0 to 10 cm 5.66 28.87 5.82 �90.34 �22.31 4.00

10 to 30 cm 9.49 44.86 10.44 �96.28 �41.67 4.13

30 to 100 cm 58.96 101.22 11.17 �94.99 �48.97 4.99

Agroforestry 0 to 10 cm 10.40 32.06 7.77 �91.78 �21.85 2.55

10 to 30 cm 9.92 49.78 11.03 �106.31 �47.70 3.19

30 to 100 cm 108.84 213.90 35.58 �101.65 �57.13 5.26

Crops 0 to 10 cm 11.54 28.71 5.69 �86.44 �22.62 3.51

10 to 30 cm 9.06 55.70 13.49 �101.81 �48.24 3.30

30 to 100 cm 161.63 221.13 19.22 �103.18 �50.12 3.90

LANDGRAF ET AL. 5
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Further, a throughfall threshold volume (TF; which if exceeded by

interception storage, throughfall was allowed) was set and a preferen-

tial flow threshold volume (PFT; minimum net precipitation amount

required to allow rapid preferential flow to depth) was estimated by

Equation 6 (Table 2). In total, we used 13 water balance parameters

(Table 2, Figure 2) with additional six isotope model parameters for

calibration. For isotope tracking, the model requires inputs of precipi-

tation isotopic composition (δ2H; for model simplicity, only one

isotopologues was used), air temperature, and relative humidity at

daily resolution. The isotope tracking addition of the model consists

of mixing processes of residual and incoming water as well as fraction-

ation because of evaporation. We estimated the isotopic mixing dur-

ing storage mixing via inflow and outflow of the compartment and

assumed complete mixing for each layer.

We set (using observed values) or estimated initial values

(e.g. means) for interception and soil water storage as well as isotopic

composition (Table 2). The following parameters for isotope fraction-

ation were calculated within the model (Table 2): fractionation factor

at equilibrium (αeH) (Horita & Wesolowski, 1994), equilibrium fraction-

ation factor with permille notation (epseH), kinetic fractionation factor

(epskH) (Merlivat, 1978), precipitation–equilibrium assumption (IdlH)

(Gibson et al., 2008), enrichment slope (mH) (Gibson et al., 2016) and

limiting δ2H (dstarH) (Gonfiantini, 1986).

The initial values of interception were estimated via

Equations 1 and 2 (Table 2) for storage and isotopes, respectively.

For soil water storage, the starting values were equal to the first

soil water content measurements (Table 2). As the first measure-

ments for soil water isotopes were atypical and strongly influenced

by snowmelt, we determined it was most effective to set the initial

values as means per soil compartment (Table 2). As the different

sites were similar in their isotopic compositions, the means were

standardised. Estimation of surface cover fraction (SCF), interception

storage and evaporation, net precipitation, preferential flow, soil

water storage and transpiration (upper and lower soil compartment,

as EcoHydroPlot only contained two soil compartments), and soil

water evaporation (upper soil compartment) are explained in detail

in Stevenson et al. (2023). Our EcoIsoPlot version of the model fur-

ther included Hortonian overland flow, use of three soil compart-

ments as opposed to two and stable water isotope tracking of

interception and soil water storage (Table 3). Overland flow was

allowed if net precipitation exceeded maximum infiltration capacity

(parameter retained during calibration).

3.3 | Model calibration and evaluation

The model was applied to each site using data from 2021, with this

data looped once for spin-up as previous work had shown this to be

optimal for initialising storages (Stevenson et al., 2023). Initial parame-

ter ranges were guided by field experience and monitoring. For each

model run, we used Latin Hypercube sampling to generate 100,000

parameter sets within the defined parameter ranges (LatinHyper func-

tion, FME package in R; Soetaert & Petzoldt, 2010). Simulations were

evaluated using the modified Kling–Gupta efficiency (KGE) (Kling

et al., 2012), as well as the mean absolute error (MAE) of observed

versus simulated soil water isotope values. Finally, each model output

was checked after each run to ensure improvements in these quanti-

tative metrics were not at the cost of unrealistic simulations in other

areas of the model.

During initial calibration, we principally focussed on soil mois-

ture KGEs of the three compartments for evolving the parameter

ranges, given isotope simulations were less sensitive at this stage.

After the parameter ranges of each vegetation type had been con-

strained to a point where further refinement resulted in worsening

model performance, the global (e.g. calculated from all vegetation

types) minimum and maximum value for each parameter was identi-

fied and used to define the initial parameter range then applied to

each site (Table 4).

Next, this parameter range was further refined (independently for

each vegetation type) by retaining only those parameter sets generat-

ing simulations in the 0.6 and above quantile for both soil moisture

and isotope KGE values. Finally, the overall mean average of KGE

values for all soil moisture and isotope data from all compartments

were calculated, with the best performing 100 retained for final simu-

lations. This approach ensured only parameter sets which gave, on

average, the best simulations across the model domain were

retained—with this process repeated independently at each site. This

resulted in the final parameter ranges shown in Table 5, and the KGEs

of soil moisture and isotopes in Table 6.

F I GU R E 2 Conceptual diagram of the model showing the input
data (PET: potential evapotranspiration; LAI: leaf area index; air T: air
temperature; rel hum: relative humidity), compartments and the
modelled processes. Water fluxes are divided into blue and green
water fluxes according to coloration. Parameters of the model are
included in their respective compartments and denoted in black.
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4 | RESULTS

4.1 | Hydroclimate

The hydroclimatic conditions of the study year are shown in Figure 3

and were characterised by relatively high PET rates (>5 mm d�1 for

47 days), an unusually large storm event in summer (with �10% total

precipitation) and a strong snow-influence in winter, which provided

widely varying hydrological conditions in which to test the model. The

year started with snow in February and afterwards it was relatively

dry from February to April with �100 mm of precipitation during

those months. The following summer was relatively wet with a nota-

bly large summer convectional storm event of �60 mm in June. Total

precipitation in 2021 was 545 mm, and mean annual air temperature

was 9.5�C. Relative humidity was highest in winter (100%) and lowest

in summer before the mid-summer storm event (45%). PET was low at

the beginning and end of the year and peaked during June, with an

annual sum of �870 mm. Groundwater levels on the DMC catchment

showed seasonal variability of �50 cm with a maximum in mid-March

and minimum in November ranging between �270 and �320 cm

below the ground surface, respectively. Streamflow generally

correlated with seasonal changes in groundwater levels and was

highest in winter following rainfall events, with the stream drying up

in July until flow recommenced in November.

4.2 | Simulating soil storage dynamics

Both the seasonal and storm event scale dynamics of the soil water

storage in all soil compartments were generally well captured for all

vegetation covers (Table 6). Only Grassland showed a slight offset

between simulated and measured soil water storage in the deeper soil

compartment from April onwards with lower KGEs (Figure 4).

Soil moisture was highest at Crops and lowest at Forest, and at all sites,

water content increased with increasing depth (Table 1). Observed

means of soil water storage for all sites during the study were 15 mm

in the upper, 28 mm in the lower and 82 mm in the deeper soil com-

partments. Fluctuations were highest in the upper soil compartment

and were attenuated with increasing depth, with reduced variability in

the simulated soil water storage compared to the monitored data. Soil

water storage of the upper soil compartment was simulated best for

Crops and Grassland. The drying of the lower soil compartment from

T AB L E 2 Overview of initial, threshold and calculated parameters.

Start or threshold parameters Site Input value Equation

Interception storage All 1) α�LAI 1½ � �0:5
Upper soil water storage Forest 20.3 mm

Grassland 15.5 mm

Agroforestry 26.8 mm

Crops 26.5 mm

Lower soil water storage Forest 36.6 mm

Grassland 33.3 mm

Agroforestry 38,8 mm

Crops 45.9 mm

Deeper soil water storage Forest 86.3 mm

Grassland 85.8 mm

Agroforestry 196,6 mm

Crops 194.1 mm

Interception storage δ2H (IntH) All �58 ‰ 2) IntH ¼
P

Precipitation δ2H 1:365½ �
365

Upper soil water δ2H (STOH) All �52 ‰ 3) STOH ¼
P

Upper soil δ2H 1:n½ �
n

Lower soil water δ2H (GWH) All �66 ‰ 4) GWH ¼
P

Lower soil δ2H 1:n½ �
n

Deeper soil water δ2H (LowH) All �70 ‰ 5) DeeperH ¼
P

Deeper soil δ2H 1:n½ �
n

Throughfall threshold, TF All 4.5 mm

Preferential flow threshold, PFT All 4.2 mm 6) PFT¼ quantile P i :365½ �,0:9ð Þ
Calculated parameters Equation

Fractionation factor at equilibrium 7) αeH[i] = exp 1
1000� 1158,8�Tk i½ �3

109 � 1620:1�Tk i½ �2
106 þ 794:84�Tk i½ �

103 �161:04þ 2:9992�109

Tk i½ �3
� ��

Equilibrium fractionation factor 8) epseH i½ � ¼ αeH i½ ��1ð Þ �1000
Kinetic fractionation factor 9) epskH i½ � ¼0:9755� 1�0:9755ð Þ �1000� 1�RH i½ �ð Þ
Precipitation–equilibrium assumption 10) IdlH i½ � ¼ �58:7�k�epseH i½ �

1þk�epseH i½ ��10�3

Enrichment slope 11) mH i½ � ¼ RH i½ ��IdlH i½ �þepskH i½ �=αeH i½ �
1�RH i½ �þepskH i½ ��10�3

Limiting δ2H 12) dstarH i½ � ¼ RH i½ ��IdlH i½ �þepskH i½ �þepseH i½ �=αeH i½ �
RH i½ �� epskH i½ �þepseH i½ �=αeH i½ �ð Þ�10�3

Note: Initial parameters were set as starting values (i.e. first timestep) for the simulations and constrained by the following model equations, whereas

threshold parameters were set to a value limiting certain processes or fluxes without being edited during model simulation. Calculated parameters were set

at the beginning of the model process and calculated for each simulated timestep directly. LAI, leaf area index.
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May until the mid-summer storm event end of June was captured less

well as soil storage was underestimated at the sites except Crops. All

sites responded strongly to the storm event and simulations matched

the resulting increase of the observed soil water storage well at the

lower soil compartment. Although the peak of the mid-summer storm

in the deeper soil compartment was simulated damped compared to

observations, still, in general, the damped seasonality of the deeper

soil compartment was captured well by the model.

4.3 | Simulated isotope dynamics

Soil water isotopic dynamics were captured generally well with

dynamics in the deeper compartment captured best, with slightly

depleted results for the simulations of the upper and lower

compartment compared to monitored data (Figure 5 and Table 6). The

upper soil compartment isotopic composition is simulated by mixing of

residual and incoming water, and also by fractionation. The latter is

related to soil evaporation. This evaporated, mixed water is what is

assumed to be transported into the lower layer affecting its isotopic

composition by mixing. At the beginning of the year, observed soil

water isotopic composition was depleted in heavier isotopes because

of snow, which was reflected well in the simulations (Figure 3a).

During the year, stable water isotopes in the upper soil were enriched

in heavier isotopes because of summer rainfall inputs and the effects

of evaporative fractionation, with a mid-summer storm event resetting

the evaporative signal. The resetting is not evident from our plots, but

it was obvious in the study from Landgraf et al. (2022) where lc-excess

data are also estimated (see Figure S1). The event equalised the

T AB L E 3 Model stores and fluxes.

Water balance addition
Stores and fluxes Meaning Equation

Overland flow Surface runoff, if net precipitation larger infiltration capacity (Ic) 13) Qs i½ � ¼ PN i½ �� Ic

Deeper soil

transpiration

Transpiration if demand and if deeper soil water storage above

minimum

14) Trdeeper i½ � ¼ Tp i½ ��Trupper i½ ��Trlower i½ �ð Þ � Sdeep i½ �
Lmax

� �

Groundwater recharge Water percolating deeper layer into groundwater 15) Recharge i½ � ¼ ks3 � Sdeep i½ �
Lmax

� �g3

Isotope fluxes and mixing stores
Stores and fluxes Meaning Equation

Initial interception storage Interception storage before

precipitation, evaporation

16) IntD i½ � ¼ I i½ ��D i½ �þEi i½ �þTh i½ �þ IntSp

δ2H interception reservoir Mixing initial interception

storage, precipitation

17) IntCD i½ � ¼ IntD i½ ��IntCD i�1½ �ð Þþ D i½ ��upPCD i½ �ð Þ
IntD i½ �þD i½ �

Residual liquid interception

storage

Defined by enrichment slope,

limiting isotopic composition

18) IdlH i½ � ¼ IntCD i½ ��dstarH i½ �ð Þ � 1�xð ÞmH i½ � þdstarH i½ �

Fractionated δ2H interception

reservoir

Interception evaporation !
fractionation of residual

liquid; effects interception

storage δ2H

19) fIntCD i½ � ¼ IntD i½ � � IntCD i½ �ð Þ� Ei i½ ��IdlH i½ �
IntD i½ �

Initial upper soil storage Upper soil water storage before

precipitation, evaporation,

transpiration, percolation

20) upSTOD i½ � ¼ STO i½ �� P i½ ��D i½ �ð Þ�Th i½ �þEs i½ �þTrupper i½ �þPerc i½ �þ stoSp

δ2H upper soil storage Mixing initial upper soil storage,

infiltrated precipitation

21) upSTOCD i½ � ¼ upSTOD i½ ��upSTOCD i�1½ �ð Þþ Th i½ ��fIntCD i½ �ð Þþ P i½ ��D i½ �ð Þ�upPCD i½ �ð Þ
upSTOD i½ �þP i½ ��D i½ �þTh i½ �

Residual liquid upper soil storage Defined by enrichment slope and

limiting δ2H
22) SdlH i½ � ¼ upSTOCD i½ ��dstarH i½ �ð Þ � 1�xð ÞmH i½ � þdstarH i½ �

Fractionated δ2H upper soil

storage

Soil evaporation ! fractionation

residual liquid; effects upper

soil water δ2H

23) fupSTOCD i½ � ¼ upSTOD i½ � �upSTOCD i½ �ð Þ� Es i½ ��SdlH i½ �
upSTOD i½ ��Es

Initial lower soil storage Lower soil water storage before

percolation, preferential flow,

transpiration, compartment

outflow

24) gwSTOD i½ � ¼GW i½ ��Perc i½ ��Pref_Flow i½ �þTrlower i½ �þGWflow i½ �þgwSp

δ2H lower soil storage Mixing initial lower soil water,

infiltrated percolation,

preferential flow

25) gwSTOCD i½ � ¼ gwSTOD i½ ��gwSTOCD i�1½ �ð Þþ Perc i½ ��upCQD i½ �ð Þþ Pref_Flow i½ �ð Þ�upPCD i½ �ð Þ
gwSTOD i½ �þPerc i½ �þPref_Flow i½ �

Initial deeper soil storage Deeper soil water storage before

compartment inflow,

transpiration, groundwater

recharge

26) lowSTOD i½ � ¼ Sdeep i½ ��GWflow i½ �þTrdeeper i½ �þRecharge i½ �þ lowSp

δ2H deeper soil storage Mixing initial deeper soil water,

infiltrated inflow

27) lowSTOCD i½ � ¼ lowSTOD i½ ��lowSTOCD i�1½ �ð Þþ GWflow i½ �ð Þ�gwCQD i�1½ �ð Þ
lowSTOD i�1½ �þGWflow i½ �

Note: We only describe equations not present in the approach by Stevenson et al. (2023). Equations describe the water balance of the deeper soil

compartment and the stable water isotope simulation which includes water balance recalculation required for mixing simulation.
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isotopic composition of the monitored soils at all sites except Forest

and disturbed the hysteresis cycle (Landgraf et al., 2022). This was

simulated especially well in the lower and deeper soil compartment. At

the end of August and October, increasingly depleted isotopic inputs

from precipitation events resulted in depletions of heavier isotopes in

soil water which were captured well by the simulations. At Forest,

isotope signatures of the deeper soil compartment showed highest

variability, whereas at Agroforestry, we found lowest variability

(Table 6).

4.4 | Dynamics in ecohydrological fluxes

The general partitioning of green and blue water fluxes was plausibly

simulated with model estimations allowing us to quantify differences

in fluxes of transpiration, interception evaporation, soil evaporation,

overland flow and recharge between the contrasting land covers

(Table 7). Green water fluxes directing water back to the atmosphere

were highest at Forest, whereas blue fluxes contributing to groundwa-

ter recharge were highest at Grassland (Table 7). Transpiration and

overall evaporation (sum of interception and soil evaporation) were

highest at Forest and Agroforestry, whereas recharge was highest at

Grassland and Crops (Figure 6). Both of the latter were overlapping in

terms of their water partitioning dynamics. Comparing partitioning

results for solely soil moisture KGE selection with combined soil

moisture and isotope KGE selection, Forest deviated more from the

other sites by only considering soil moisture KGEs as it showed even

less recharge in those estimations (Figure 6). Temporal partitioning of

water fluxes may be found in Figure S2 and shows that soil evapora-

tion is higher in winter and spring until leaves are fully developed at

the end of May when interception becomes the dominant evaporative

loss, particularly under forest.

Cumulative totals of simulated ET were less than half of those of

PET (Figure 7). This can be explained by PET commonly being higher

than actual ET when soils are drier and cannot sustain atmospheric

moisture demand (Anabal�on & Sharma, 2017). Although PET data

were derived from Hasenfelde, a station set 5-10 km further North in

the catchment, it’s proximity to settlements (houses and streets) with

less forest around than the monitored sites possibly resulted in

greater rates of PET than our modelled sites. Still, Hasenfelde was the

closest weather station with reliable complete time-series. Finally,

given the relatively simple structure of the model, it is likely that the

decrease in simulated ET when soils experienced more substantial

drying was not fully representative of the actual ET occurring because

of the shallow evaporative front of 10 cm in the model.

Recharge was highest in spring and lowest in September and

October. Grassland had the highest recharge, and Forest had the low-

est (Figure 8). Recharge effectively “shut down” in June, except at

Crops, where recharge continuously increased following summer rain-

fall and caught up with Grassland levels (Figure 8). Comparing

normalised groundwater level and simulated recharge, we found those

were similar, with a short time lap between normalised simulated

recharge (faster) and normalised groundwater level (Figure 9).

During a dry phase between August and November, the normalised

groundwater-level curve had a steeper slope than normalised simu-

lated recharge (Figure 9).

5 | DISCUSSION

5.1 | Modelling land use-induced evaporation and
transpiration

Different vegetation covers can result in different water fluxes

depending on the effects of energy partitioning (resulting in ET varia-

tions; Moore & Heilman, 2011) and precipitation partitioning (Friesen &

Van Stan, 2019). The model captured well the observed differences in

soil moisture between the sites (Landgraf et al., 2022), and, given

soil moisture acted as a constraint in ET simulations, provided

confidence in ET simulations which increased volumetrically in the order

Grassland < Crops < Agroforestry < Forest. Nonetheless, some uncer-

tainty was present (Figure 6) being greatest at the Forest site because

of its heterogeneity in soil (e.g. thickness of humus layer) and vegetation

(e.g. various tree species with different life stages). The importance of

canopy and rooting densities in transpiration was evident at the

grassland site, which had the lowest transpiration, as has been observed

elsewhere (Douinot et al., 2019; Liu et al., 2021). Conversely, simulated

ET was greatest at the Forest and Agroforest sites because of the

denser canopies and deeper rooting systems resulting in higher inter-

ception and transpiration (Moore & Heilman, 2011; Wang et al., 2017).

T AB L E 4 Calibrated parameters in the model.

Water balance
Parameters Meaning

rE Extinction factor

α Interception threshold parameter

Ic Maximum infiltration capacity

PF_Scale Preferential flow path parameter

Smax Maximum soil moisture content upper soil

compartment

ks1 Saturated hydraulic conductivity upper soil

compartment

g1 Nonlinear scaling parameter upper soil

compartment, if g1 = 1, linear case

GWmax Maximum soil moisture content lower soil

compartment

kfs2 Saturated hydraulic conductivity lower soil

compartment

g2 Nonlinear scaling parameter lower soil

compartment, if g2 = 1, linear case

Lmax Maximum soil moisture content deeper soil

compartment

ks3 Saturated hydraulic conductivity deeper soil

compartment

g3 Nonlinear scaling parameter deeper soil

compartment, if g3 = 1, linear case

Isotope tracking
Parameters Meaning

IntSp Passive interception storage mixing volume

stoSp Passive upper soil water storage mixing volume

gwSp Passive lower soil water storage mixing volume

lowSp Passive deeper soil water storage mixing volume

k Seasonality factor Craig–Gorden model

x Water vapour mixing ratio Craig–Gorden model
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Compared to soil moisture, the isotopic composition of soil water

was less affected by land use, possibly because of relatively wet con-

ditions of the study year of 2021 resulting in less distinct variability of

ET (Andréassian, 2004; Hasselquist et al., 2018). Looking at ET vari-

ability, a study from Canada found deciduous trees and croplands to

be transpiration dominated (Gibson et al., 2021). Our simulations were

transpiration dominated, considering the whole year (Figure S2). How-

ever, winter was evaporation dominated, and the transition from soil

evaporation to transpiration dominated occurred for most sites

around April and for Forest roughly 1 month later in May following

leaf-out and increasing LAI. In Figure S3, the monitored normalised

forest sap flow suggests a delayed response in simulated transpiration

of Forest as transpiration is directly correlated with sap flow rates

(Wullschleger et al., 2001). However, the sap flow data are derived

from evergreen pine trees nearby, whereas the site Forest mainly com-

prises deciduous trees resulting in a postponed rise of transpiration

because of the absence of leaves early in the season. Importantly, the

model captured those canopy differences. The ratio of simulated

Tr/ET was highest at Forest (59%) and lowest at Grassland (56%), simi-

lar to previous studies (Ma et al., 2020; Schlesinger & Jasechko, 2014;

Smith et al., 2021a; Zhou et al., 2016). This showed that Forest soil

moisture was more strongly influenced by transpiration than evapora-

tion, whereas at Grassland, evaporation plays a more important role

(still, transpiration is the largest component of ET).

5.2 | Water partitioning of an evolving
agroforestry site

Agroforestry being a mixture of forest and crops is described to have

positive impacts on various aspects like farm productivity, environ-

mental sustainability, and water conservation (Noordwijk, 2020; Rijal,

2019). However, the processes influencing the water dynamics via

canopy or rooting structure are yet to be fully understood

(Hasselquist et al., 2018). Striking are the simulation results of our

Agroforestry site which fall between Forest and Crops results in our ET

ternary plot (Figure 6). A study by Andréassian (2004) found flux

partitioning between crop/grassland and forest sites without deep-

rooting system to have been mainly affected by canopy interception.

We found that the Agroforestry site is similar to Grassland and Crops in

terms of transpiration, interception evaporation and soil evaporation,

whereas it is more similar to Forest in terms of recharge (Figures 6 and

8). These similarities with Grassland/Crops and other similarities with

Forest may be caused by the canopy and deeper rooting system at

Agroforestry being not fully developed yet (trees 2 m at max; Landgraf

et al., 2022). This lack of canopy differences between Agroforestry and

Grassland in the model may also be related to the LAI inputs, which

are equal for both sites because of the lack of distinct agroforestry

LAI. Still, it is likely that the Agroforestry site because of growing can-

opy and rooting system transitions into the direction of Forest, which

was not clear by the isotope analysis of the previous study (Landgraf

et al., 2022) but captured via our model.

5.3 | Modelling land use-induced differences in
groundwater recharge

Understanding the impact of vegetation on the subsurface processes

affecting groundwater recharge is crucial for managing groundwater

as a resource (Owuor et al., 2016; Taylor et al., 2013). At the DMC,

the Grassland site had the highest simulated recharge, whereas Forest

recharge was lowest, like findings of Kleine et al. (2020) at DMC and

Douinot et al. (2019) at Stechlin, some 100 km northwest. A global

study by Kim and Jackson (2012) found recharge to be highest at

cropland followed by grassland, woodland and shrubs. However, the

study included irrigated cropland, whereas our crop site was non-

irrigated. We found no major differences of simulated groundwater

recharge for Grassland and Crops, whereas another study in Germany

found transition from grassland to winter crops reduced GW recharge

(Orlowski et al., 2016). Our Crops site was harvested in August and

reverted to grass in the following months, whereas the cropland site

of Orlowski et al.’s (2016) study remained cropland during winter,

possibly explaining the differences. Nevertheless, this is an interesting

finding as it shows that the EcoIsoPlot model captured those temporal

T AB L E 6 KGEs for soil water storage and deuterium based on observed value against minimum-, mean- and maximum-simulated value and
confidence bounds.

Soil water storage

Vegetation

Upper soil
minimum
(�)

Upper
soil mean
(�)

Upper soil
maximum
(�)

Lower soil
minimum
(�)

Lower
soil mean
(�)

Lower soil
maximum
(�)

Deeper soil
minimum
(�)

Deeper
soil mean
(�)

Deeper soil
maximum
(�)

Forest 0.79 0.79 0.60 0.75 0.88 0.80 0.66 0.90 0.79

Grassland 0.69 0.83 0.85 0.72 0.84 0.87 0.26 0.28 0.28

Agroforestry 0.74 0.82 0.79 0.82 0.89 0.86 0.77 0.84 0.84

Crops 0.72 0.70 0.61 0.62 0.68 0.72 0.59 0.68 0.62

Soil water δ2H

Vegetation

Upper soil
minimum
[�]

Upper
soil mean
[�]

Upper soil
maximum
[�]

Lower soil
minimum
[�]

Lower
soil mean
[�]

Lower soil
maximum
[�]

Deeper soil
minimum
[�]

Deeper
soil mean
[�]

Deeper soil
maximum
[�]

Forest 0.57 0.63 0.66 0.62 0.67 0.73 0.66 0.69 0.77

Grassland 0.69 0.71 0.73 0.69 0.70 0.70 0.71 0.71 0.73

Agroforestry 0.73 0.75 0.77 0.77 0.73 0.74 0.76 0.76 0.77

Crops 0.68 0.70 0.72 0.67 0.67 0.64 0.59 0.60 0.66
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changes in canopy characteristics. Water partitioning differences are

also connected to soil properties (Geris et al., 2015), for example,

sandy forest soils are highly conductive and lowest soil water content,

whereas crop soils are more retentive (silt/clay), least conductive and

highest soil water content maintaining water availability for ET

(Landgraf et al., 2022). In general, the model structure successfully

conceptualised those differences by calibration of the soil conductiv-

ity and nonlinear scaling parameters.

5.4 | Capturing key influence of ET processes in
the critical zone

The parsimonious model simulated the multiple processes of water

partitioning in the CZ, that is, evaporation (soil and interception), tran-

spiration and groundwater recharge reasonably well, although abso-

lute estimations may be improved. Overall, the storage dynamics were

captured well, similar to process-based ecohydrological models

F I GU R E 3 (a) Hydroclimatic conditions with precipitation daily amount, sum and δ2H; (b) air temperature, relative humidity, and sampling
dates (vertical dotted lines); (c) ET and PET daily amount and PET sum; (d) groundwater level variation, discharge, groundwater, and stream δ2H
(with data gaps when stream was not flowing). PET, potential evapotranspiration; ET, evapotranspiration.
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(e.g. Smith et al., 2022). Key water fluxes were simulated well and

with reasonable values for the region, for example, ET higher than

recharge (Douinot et al., 2019; Kleine, Tetzlaff, Smith, Dubbert, &

Soulsby, 2021). Simulated overland flow was very small with only a

few millimetres over the whole year as the area of the DMC is

relatively flat (average slope 2%, Smith, Tetzlaff, Gelbrecht,

et al., 2020). The simulated ET dominated the water balance at the

DMC (68–80% of precipitation) for the study year 2021. This is con-

sistent with previous findings of ET at the DMC (83.7%; >80%) (Smith

et al., 2021b; Wu et al., 2022a) and just higher than global ET

F I GU R E 4 Soil water storage dynamics with measured and simulated (mean) results also representing the modelled range from minimum to
maximum of the 100 best-performing simulations in the shading. Error bars of the data points represent minimum and maximum of the measured
replicas.

F I GU R E 5 Soil stable water isotope dynamics with measured and simulated (mean) results also representing the modelled range from
minimum to maximum of the 100 best-performing simulations in the shading. Error bars of the data points represent minimum and maximum of
the measured replicas.
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averages (about 60% of precipitation) (Jung et al., 2019). Simulated

transpiration (38–47%), soil evaporation (13–15%) and interception

evaporation (15–20%) results are also comparable to those from

Smith et al. (2021b) (transpiration 49.8%, soil evaporation 9.4% and

interception evaporation 24.4%) with soil evaporation being slightly

higher and interception evaporation being slightly lower for our simu-

lations. In general, simulated ET is lower than estimated PET. From

model perspective, this might hint at flux underestimation by the

model or limitations to support high ET demands by the upper soil

compartment. However, annual PET of 870 mm in 2021 is relatively

T AB L E 7 Water balance of the different sites with final calibration showing mean and standard deviation (SD for PN: net precipitation, Qs:
surface runoff, I: interception storage (after evaporation), Th: throughfall (included in net precipitation), Ei: interception evaporation, Tr:
transpiration, Es: soil evaporation, recharge: outflow below deeper soil compartment, ET: evapotranspiration (sum of Ei, Tr, and Es), re + ET + Qs:
total blue and green water fluxes (sum of ET, recharge and surface runoff).

Site

PN

mm

Qs

mm

I

mm

Th

mm

Ei

mm

Tr

mm

Es

mm

Recharge

mm

ET

mm

Re + ET + Qs

mm

Forest Mean 264 13 144 17 107 258 69 114 435 561

SD 23 3 39 3 4 14 9 10

Grassland Mean 287 1 31 1 83 208 80 174 371 546

SD 8 1 4 0 3 8 5 7

Agroforestry Mean 273 5 51 4 94 246 82 122 422 550

SD 9.5 3.1 5.8 1.0 2.8 5.6 3.9 5.5

Crops Mean 273 1 52 0 80 220 80 164 380 545

SD 11.4 1.7 9.2 0.2 3.3 7.0 4.0 7.7

Note: For comparison, annual observed precipitation was 545 mm.

F I G U R E 6 Shown are ternary plots
for percentages of annual transpiration
(Tr), soil (Es) and interception evaporation
(Ei) on the left with plot ranges of 0.8 for
Tr, 0.5 for Es and 0.45 for Ei. On the right
ternary plots for percentage of annual
transpiration (Tr), evaporation (E = Ei
+ Es) and recharge (re) are shown with
ranges of 0.7 for Tr, 0.6 for E, 0.5 for
Re. Each site is represented by 100 data
points derived from the selected best-
performing simulations considering soil
moisture KGEs for the top plots and soil
moisture and isotope KGEs for the base
plots. KGEs, Kling–Gupta efficiency.
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high for the DMC, which is described around 650–700 mm a�1 by

Smith, Tetzlaff, Gelbrecht et al. (2020). Absolute values of ET are chal-

lenging to estimate, still our model stayed in ranges similar to previous

studies and was able to capture ET variability which improves our

understanding of ET flux changes.

5.5 | Capturing key influence of groundwater
recharge in the CZ

The dynamics of simulated groundwater recharge at the DMC are

good as shown by comparison with groundwater table fluctuation

F I GU R E 7 Measured ET (flux tower), estimated
PET and simulated ET (mean of 100 best-
performing simulations) with sum curves for
estimated PET and simulated ET. PET is derived
from data at Hasenfelde; hence, site-specific ET
may differ in magnitude because of potential
overestimation at Hasenfelde. PET, potential
evapotranspiration; ET, evapotranspiration.
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reflecting the seasonality and episodicity (cf. Wu et al. 2019 for

groundwater seasonality and episodicity). Simulated recharge varies

between � 21% and �32% of precipitation, which is higher than the

findings of 18% at the DMC from Wu et al. (2022a) or 10% by Smith,

Tetzlaff, Gelbrecht et al. (2020). Globally, �16% of precipitation con-

tributes to groundwater recharge, although uncertainties because of

data scarcity of several regions were pointed out (Jasechko

et al., 2014; model from Wada et al. 2010). Another Germany wide

study estimated a maximal possible recharge of 10–25% for the

region of the DMC (Jankiewicz et al., 2005). It has to be considered

that snow melt in the beginning of the year and the mid-summer

storm event may have resulted in relatively high recharge, although

the extent may be debatable. Nevertheless, the model captured those

higher recharge results with possibly minor overestimation. Previous

studies of the DMC found the catchment to be dominated by vertical

flow (Kleine, Tetzlaff, Smith, Goldhammer, & Soulsby, 2021; Smith,

Tetzlaff, Gelbrecht, et al., 2020). It may be valuable to consider here

that the model estimated soil water storage down to 1 m and outflow

of the compartment base is assumed to be recharge, which may also

refill the unsaturated zone (e.g. from 1 to 3 m below soil surface) or

be accessed by roots instead of contributing to groundwater.

5.6 | Effects of integrating stable water isotopes
into a lumped tracer-aided model

The study demonstrates that incorporating isotopes into a parsimoni-

ous tracer-based modelling approach provided an additional con-

straint on the process realism of water partitioning into blue and

green water fluxes. Previous studies showed such parsimonious

models to reflect water fluxes quite well (Soulsby et al., 2016;

Stevenson et al., 2023). Integrating tracers into flux models helps

identifying an appropriate structure (Vaché & McDonnell, 2006) and

internal consistency of the model (Birkel et al., 2015). Here, we used

F I GU R E 8 Simulated groundwater recharge (mean of 100 best-performing simulations of water losses from the bottom of the model
domain) for each site and the cumulative sum.

F I GU R E 9 Normalised and simulated recharge of the study sites compared with normalised groundwater level of the groundwater well.
Simulated normalised data equal to zero were set to NA.
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the most common concepts of state variables to quantify the tracer

concentration of different CZ compartments in the soil, whereas

tracer movement is controlled separately by flux and mixing equations

(Birkel & Soulsby, 2015; Hrachowitz et al., 2016; Qi et al., 2022). The

soil moisture simulations showed a higher goodness-of-fit than iso-

topes, although the higher resolution soil moisture data set had a

greater information content and more commensurability than the

monthly isotope measurements. Still, simulation of isotopic composi-

tion captured the dynamics well with good KGEs. If simulations were

solely selected by soil moisture KGEs, the selected KGEs are slightly

higher if adding isotope KGEs to the selection process. We also saw a

better constraint in terms of partitioning as adding the stable water

isotopes resulted in reduced spread of simulations (e.g. Forest and

Agroforestry recharge). This means that model performance was

slightly decreased, although process representation of the model

was improved as the model covered two interacting processes

(Birkel & Soulsby, 2015; Stadnyk & Holmes, 2020). During calibration,

similar to a study by Smith et al. (2022), we found isotope KGEs

improved with soil moisture performance. Others found a decrease in

model parameter uncertainty by implementing stable water isotopes

into a run-off model (He et al., 2019). In future studies, an improve-

ment of our model may be the implementation of lc-excess to better

capture E influences (see Smith et al., 2022; Sprenger et al., 2018).

However, the quantitative estimations are more likely caused by

structural limitations of the model (particularly the generic

parameterisation of the Craig–Gordon equilibration and uncertainty

over depth of the evaporating front). The good predictability of the

isotopic composition may also be linked to the previously mentioned

major storm event that probably acted like a tracer test, although

resetting the evaporative signal (shown in Landgraf et al., 2022).

The simulated soil water isotopic composition at the upper and

lower soil compartment was more depleted compared to the mea-

surements. Possibly, the model underestimated soil evaporation, and

hence, less fractionation was simulated. A study by Stumpp

and Hendry (2012) used a one-dimensional equilibrium flow and

transport model and found that snowmelt input was not represented

in the simulated isotopic composition. They assumed lateral flow to

be the cause of snowmelt input which was not covered by the one-

dimensional model (Stumpp & Hendry, 2012). Further, non-uniform

flow has been found to result from imperfect lateral mixing

(Jackisch & Zehe, 2018). Although, as mentioned above, the DMC

fluxes are vertically dominated, hence it is unlikely that the lack of lat-

eral flow in our model causes large uncertainties in our simulations.

For simulation of isotopic composition, instant mixing was assumed,

except for the deeper layer where data were derived from the previ-

ous timestep, resulting into better results for deeper soil water isoto-

pic composition, possibly because of longer travel times required for

wetting fronts to reach the layer depth of 70 cm. Still, such partial

mixing is unlikely to be a major issue for the upper and lower soil com-

partment, as relatively quick responses in isotopic composition to pre-

cipitation events occurred (Landgraf et al., 2022). Interesting for

future studies may be to explore the more general value and informa-

tion content of isotopes in ecohydrological models, for example, how

to weight them and how many samples are sufficient to improve sim-

ulations adequately (Stevenson et al., 2021). In general, tracer-based

models are suitable for testing mixing assumptions as it was shown

by several studies (Birkel & Soulsby, 2015; Dehaspe et al., 2018;

Mayer-Anhalt et al., 2022; Piovano et al., 2019; Sprenger et al., 2018).

6 | CONCLUSIONS

To better understand ecohydrological processes of the CZ—the

dynamic living skin at the Earth’s system—we successfully constrained

estimates of water fluxes and storages through tracer-aided eco-

hydrological modelling, which allowed us to follow the fingerprint of

precipitation through the soil–plant–atmosphere continuum. We used

ecohydrological and stable water isotope data from an intense moni-

toring programme of a lowland headwater catchment to test a parsi-

monious, tracer-aided model for its capability to simulate the complex

couplings of CZ processes at the plot scale. Further, we aimed to

quantify effects of different vegetation covers from a mixed land use

catchment (forest, grassland, agroforestry and crops) on water par-

titioning into blue and green water fluxes.

The model reflected the dynamics of soil moisture (KGE typically

> 0.7) and soil water isotopic composition (KGE typically > 0.6) well,

although absolute values of simulated soil water isotopes were

depleted compared to observed data, probably because of an under-

estimation of soil evaporation. Water table fluctuation dynamics were

also captured well by the simulation of groundwater recharge. The

simulated ET was inside ranges of previous studies, whereas simulated

recharge was slightly overestimated, although the hydroclimatic con-

ditions of 2021 (snow and summer storm event) may explain the dif-

ferences to previous studies. Differences between vegetation cover

were shown to increase transpiration and interception evaporation in

the forest compared to the other sites. Forest and Agroforestry had

increased ET and decreased recharge compared to Grassland and

Crops. Implementing stable water isotopes into the model added

confidence in the model results, improved process representation

and allowed new insights to be gained into both the systems

functioning and model limitations. For future studies, it will be inter-

esting to see how well the model predicts water fluxes and isotopic

mixing with more extensive data sets over multiple years (cf. Smith

et al., 2021b) and to improve quantitative ecohydrological partitioning

estimations under alternative land uses. Overall, the lumped,

tracer-aided model with a parsimonious concept showed its potential

to capture complex couplings of the CZ through a simple and compu-

tationally efficient conceptualisation. Further, the model proved its

flexibility and transferability between contrasting vegetation cover

and its utility as a tool for applied ecohydrological investigations on

flux changes.
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