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Abstract
pyWitness is a python toolkit for recognition memory experiments, with a focus on eyewitness identification (ID) data anal-
ysis and model fitting. The current practice is for researchers to use different statistical packages to analyze a single dataset.
pyWitness streamlines the process. In addition to conducting key data analyses (e.g., receiver operating characteristic anal-
ysis, confidence accuracy characteristic analysis), statistical comparisons, signal-detection-based model fits, simulated data
generation, and power analyses are also possible. We describe the package implementation and provide detailed instructions
and tutorials with datasets so that users can follow. There is also an online manual that is regularly updated. We developed
pyWitness to be user-friendly, reduce human interaction with pre-processing and processing of data and model fits, and
produce publication-ready plots. All pyWitness features align with open science practices, such that the algorithms, fits, and
methods are reproducible and documented. While pyWitness is a python toolkit, it can also be used from R for users more
accustomed to this environment.

Keywords Eyewitness · Memory · Receiver operating characteristic · Confidence accuracy characteristic ·
Signal detection theory · Detection-plus-localization · Recognition memory · Visual search task

Introduction

Recognitionmemory is used by eyewitnesses to crimeswhen
identifying perpetrators from identification (ID) procedures.
ID procedures always include the police suspect. The suspect
may be the perpetrator of the crime in question or an innocent
person. ID procedures vary in the number of people: from 1,
in the case of a procedure called a ‘showup,’ to 2 ormore (6 is
common in theUS), in the case of a ‘lineup.’ The other people
in lineups are ‘fillers’ and are known not to be involved in the
crime. Fillers are used to populate the lineup because they
physically resemble the description of the perpetrator or the
suspect (e.g., Wells et al., 2020). In the real world, showups
are typically administered where the suspect is viewed in
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person and lineups are administered using photos or videos of
the suspect and fillers. In the lab, researchers most often test
memory by using photos, even for showups (e.g., Gronlund et
al., 2012). And, unlike the police, researchers know whether
the suspect is innocent or guilty.

Eyewitnesses attempt to identify the person they saw
involved in the crime from a showup or lineup. In the lab, par-
ticipant eyewitnesses typicallywatch a video of amock crime
and then try to identify the actor perpetrating the crime in the
video.With showups, they either affirm that the suspect is the
personwho committed the crime or not. The potential correct
outcomes are correct IDs and correct rejections. A correct ID
occurswith the IDof the guilty suspect and a correct rejection
occurs when the eyewitness does not identify the innocent
suspect. The possible incorrect outcomes are false IDs and
misses. A false ID occurs by identifying the innocent suspect
and a miss occurs by not identifying the guilty suspect. With
lineups, the same decisions and outcomes are possible, and
because there are also fillers, eyewitnesses can make filler
IDs. Filler IDs, of course, are always incorrect.

Over the last decade, receiver operating characteristic
(ROC) analysis has become a standard analysis because it
measures discriminability (the ability to distinguish innocent
from guilty suspect) separate from response bias (the like-
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lihood of identifying or not identifying a lineup member)
(Wixted and Mickes, 2012; Albright and Rakoff, 2020).
Confidence-based ROC analysis is a graphical analysis that
plots correct ID and false ID rates for every level of con-
fidence. Another graphical analysis that is now commonly
conducted on lineup and showup data is confidence accuracy
characteristic (CAC) analysis (Mickes, 2015). CAC analysis
measures the likelihood the identified suspect is the perpe-
trator at each level of confidence. This analysis plots suspect
ID accuracy as a function of confidence.

To understand eyewitnesses’ performance on identifica-
tion procedures, researchers consider results from several
different types of analyses (i.e., ROC and CAC analyses).
They often use eclectic software, including MATLAB, R,
Excel, in piece-meal fashion. This common but less-than-
ideal approach can have multiple undesirable consequences.
Such downsides include being prone to errors made at any
stage of analyses that then get propagated through the analy-
sis pipeline. Another downside is that way of working makes
data sharing and analysis replication difficult. Thus, commu-
nication between researchers is limited. pyWitness solves
these problems by harmonizing and streamlining the analy-
ses of data from experiments involving lineups, showups, and
list-learning (standard recognition memory experiments).
There is an R package called “signal detection theory lineup”
(sdtlu; Cohen et al., 2021). With sdtlu, researchers can per-
form certain analyses and model fits on lineup data. There
is some overlapping functionality between sdtlu and pyWit-
ness, but the main differences are the available models that
each package supports, the possibility of extension, and
usability. Recently an R shiny app, powe(R)OC, was made
available to perform power analyses for eyewitness ROCs
(Mah, 2022). These technological solutions will advance the
way researchers conduct eyewitness ID analyses.

WedevelopedpyWitness to beuser-friendlywith aflexible
internal data format that requires as little human interaction
as possible (e.g.,manipulating data, transcribingvalues, etc.).
Importantly, it stores all of the relevant algorithms, fits, and
methods in a reproducible and documented way, promoting
open science practices. Throughout this paper, we denote
the code in a fixed-width font (e.g., example code). To bol-
ster usage, we provide an online manual, an issue tracker,
and a forum for users (available at https://lmickes.github.io/
pyWitness/). Users with any level of programming experi-
ence can analyse and fit complex models to data and produce
publication-ready figures and tables.

pyWitness is written in python, an up-to-date object-
oriented programming language. Python is simple to extend
to include new input data formats and add new models.
The code replicability is ensured by using unit tests and git.
Another benefit of python is an educational one because users
can obtain experience with a widely used programming lan-
guage. Users unfamiliar with python but familiar with R or

MATLAB, for example, should be able to easily use and
extend pyWitness. For users who still prefer using R, they
can use it directly in R via the reticulate library.

Python classes and objects allow a high level interface to
processing, enabling users to perform analyses with a sin-
gle line of code which might have taken hours in Excel,
for example. Therefore, pyWitness can free time that can be
spent on the scientific questions rather than on data manipu-
lation and analyses. pyWitness’s high-level interfaces allow
researchers to innovate and quickly create new analyses, par-
ticularly those that involve signal detection-based models.
A well-curated analysis framework, like pyWitness, has the
potential to create a community of users that work collec-
tively on analyses and modelling.

Code overview and structure

pyWitness follows a object-oriented design, where data and
functions are gathered together in high-level classes. pyWit-
ness is a Python module consisting of three base classes. The
classes are DataRaw, DataProcessed, and ModelFit. Each
class represents a stage of data processing and contains one
or more internal pandas.DataFrame to store the data. Each
class also has functions that operate on the internal data to
perform useful analysis operations. By keeping the under-
lying data as a pandas.DataFrame allows users to perform
complex data analysis steps just using pandas. The inclusion
of these interfaces allows for flexibility in adding features to
future versions of pyWitness. All data critical for standard
analyses are stored as member variables of the appropriate
classes. A typical analysis workflow proceeds from load-
ing the raw data, processing it, and performing a model fit.
To enable this workflow, ModelFit has a member variable
which is DataProcessed. Similarly, DataProcessed has a
member variable which is DataRaw. This workflow design
allows pyWitness to use information (parameters, computed
statistics, etc.) from the previous processing stepwithout user
interaction. Otherwise, user interaction could potentially be
a source of error. pyWitness object oriented design maxi-
mizes code reuse, which is critical for minimizing bugs and
maximizing reproducibility. For example, signal detection-
based model calculations only appear in one location in the
code. ROC plots, simulated data generation, and optimiza-
tion objective functions all use the same model code.

Installing pyWitness

To install pyWitness, depending on the level of program-
ming proficiency, users can either download the ZIP file,
install via Conda (for less experienced users) or clone the
GIT repository (for more advanced users). pyWitness uses
standard packages from the python software ecosystem,
including numpy (numerical arrays; Harris et al. (2020)),
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SciPy (fitting and functions; Virtanen et al. (2020)), pan-
das (data frames; McKinney (2010)), matplotlib (plotting;
Hunter (2007a)), openpyxl (reading and writing excel;
https://pypi.org/project/openpyxl/), xlrd reading and writ-
ing excel; https://xlrd.readthedocs.io/en/latest/ and numba
(compiler to speed up code; Lam et al. (2015)). These
dependencies are best installed usingminiconda https://docs.
conda.io/en/latest/miniconda.html.We tested the installation
on Mac OS and Windows OS. The source code is stored in
git (https://github.com/lmickes/pyWitness) and documented
with Sphinx (https://www.sphinx-doc.org/en/master/).

Manuscript structure

This paper has the form of a tutorial using example datasets.
To show the features of pyWitness, we describe the steps
of standard analyses. No single dataset can show the major-
ity of the features of pyWitness. We therefore selected three
datasets to demonstrate pyWitness, labeled test1, test2, and
test3. The example datasets are also used in the online man-
ual tutorials which expand on the descriptions given in this
paper. The first dataset, test1, is of data collected on 6-person
simultaneous lineups and has only one condition (Seale-
Carlisle et al., 2019a). The other two datasets each have two
conditions. One dataset, test2, is data from 6-person simul-
taneous lineups, and the other dataset, test3, is data from
showups (Experiments 1 and 3 from Wilson et al. (2018),
respectively). These tutorial data are stored in the directory
pyWitness/data/tutorial/, and users will need to navigate to
this directory to follow the tutorial in this paper.

“Basic usage, and descriptive and inferential statistics”
section explains how to load data, perform ROC analysis,
CAC analysis, response time accuracy characteristic analy-
sis (RAC), bin the raw data, and obtain descriptive statistics.
“Model fitting” section explains how signal detection-based
models are fitted to the processed data. “Advanced analyses
and functionality” section briefly describes advanced func-
tionality, including complex raw data loading and manip-
ulating, bootstrapping raw data, and extending pyWitness.
Once pyWitness has been installed, the code listings provided
can be directly copied into a python terminal to produce the
results presented in this paper. To avoid ambiguity and for
completeness, code is often replicated in the listings.

Basic usage, and descriptive and inferential
statistics

Typically the first stage of an analysis is load experimental
raw data and calculate some basic statistics to check the prop-
erties of the data sample. pyWitness allows users to separate
data for different experimental conditions, to bin and pivot
raw data. With the data binned and pivoted, they can then get

Table 1 Mandatory raw data columns and allowed values

lineupSize targetLineup responseType confidence

integer targetAbsent suspectId integer/float

targetPresent fillerId

rejectId

correct ID (hit) and false ID (false alarm) rates, d ′ values,
and partial area under the curve (pAUC) values. pyWitness
also creates publication-ready ROC, CAC, and RAC plots.

Data formats

To use pyWitness, the data must in a standard format. This
can be achieved by using a data translator (a small fragment
of Python code) or by transforming the raw data manually
(e.g., in Excel or SPSS). Table 1 shows the mandatory data
column names and allowed data types or values per column.

Table 2 shows an example of theminimumdata needed in a
raw data file. Although there needs to be mandatory columns
and variables, the file can include many more. For example,
inclusion of conditions, demographic data, response time,
etc. is acceptable. It is important to note that confidence
has to be numerical (e.g., 1, 2 and 3) and not categorical
(e.g., low, medium, and high) as with the latter there is no
general way to order the data in ascending or descending con-
fidence. Accumulating participant responses in decreasing
confidence is needed for many of the commonly used eye-
witness identification analyses. If the confidence collected
was on a non-numerical scale, users will have to represent
the categories as numbers.

Loading and checking raw data

pyWitness provides multiple ways for loading datasets.
Listing 1 shows how a raw experimental data file (test1) in

Table 2 Example minimal raw data file

participant lineup target response confidence
Number Size Lineup Type

1 6 targetPresent suspectId 6

2 6 targetAbsent rejectId 9

3 6 targetPresent rejectId 1

. . . . .

. . . . .
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comma separated values (CSV) format is loaded as a pyWit-
ness.DataRaw object called dr1

Listing 1 pyWitness code to load a raw data file.

import pyWitness
dr = pyWitness.DataRaw("test1.csv")

The first line imports the pyWitness package and the sec-
ond line constructs a DataRaw object. Within the DataRaw
constructor, the function dr.checkData() is called and dis-
plays the mandatory data columns and unique values in
those columns. If additional columns are present, for exam-
ple, test1 contains response time, the unique values can be
displayed using dr.columnValues("responseTime"). Other
files, such as Excel files, can also be loaded using dr = pyWit-
ness.DataRaw("test1.xlsx").

Processing raw data

For all analyses, the raw data need processing. The core pro-
cessing consists of two steps. The first step is to create a
frequency pivot table. In the table are rows of the different
lineup types (target-absent and target-present) and partici-
pant responses (suspect ID, filler ID, and reject lineup). In
the columns are confidence levels2. The second step is to
cumulate the frequencies in decreasing confidence and com-
pute correct and false ID rates rates. These processing steps
are performed by calling the function dr.process() and it
returns a pyWitness.DataProcessed object dp. To confirm
that the processing stepsworked and to see the values, the fre-
quencies pivot and cumulative rates tables can be displayed
by using dp.printPivot() and dp.printRates(), respectively.
These commands are put together in Listing 2.

Listing 2 pyWitness code to process raw data to a frequency pivot table
and cumulative rates table

import pyWitness
dr = pyWitness.DataRaw("test1.csv")
dp = dr.process()
dp.printPivot()
dp.printRates()

With all the frequencies and rates availablemultiple values
can be calculated, including relative frequencies (Seale-
Carlisle et al., 2019b), the correct ID and false ID rates,
proportion correct, z-false alarms (zFA) and z-hits (zH ), and

1 The variables used for objects in code listings are typically an abbre-
viation, so a DataRaw object is stored as dr. A user can choose any
variable name they prefer.
2 We use “confidence,” but it does not have to be confidence, it could
be another variable, such as response time.

Fig. 1 Test1 ROC. The point sizes reflect the relative frequency. The
dashed line represents chance performance

d ′. With the data processed, ROC and CAC curves can be
plotted with dp.plotROC() and dp.plotCAC(), respectively.
Figure 1 shows the ROC for the test1 data and Fig. 2 the
corresponding CAC. All the plots in pyWitness are created
using Matplotlib (Hunter, 2007b) and they can be formatted
and tailored to the user’s needs.

pAUC is used to evaluate discrimination performance
of an eyewitness (Mickes et al., 2012; Gronlund et al.,
2014). pyWitness computes the pAUC by integrating (using
Simpson’s rule) the correct and false ID rates up to an
integration limit in the false ID rate (the default is to the
maximum available false ID rate). The pAUC value is out-
put by print(dp.pAUC). The user can specify the cutoff rate
as a parameter for the process function. For example, if the
pAUC needs to be calculated to a false ID cutoff of 0.04,
thenprocessneeds to be calledwithdr.process(pAUCLiberal
= 0.04). The two ways to collapse, or bin, data are by
relabeling the categorical data or creating new labels by

Fig. 2 Test1 CAC. The point sizes reflect the relative frequency
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Table 3 Test1 frequencies of responses for each response type by level
of binned confidence, produced by printPivot()

confidence Low (1) Medium (2) High (3)

target-absent filler ID 78 34 14

reject ID 86 124 107

target-present filler ID 21 15 6

reject ID 49 42 37

suspect ID 81 122 74

defining bins. In the test1 dataset, there are 10 confidence
values, binning is performed on the raw data by calling the
dr.collapseContinuousData function. An example of bin-
ning is given in Listing 3, where 3 bins are defined with
confidence ranges (0, 60], (60, 80] and (80, 100] and labelled
Low (1), Medium (2), and High (3), respectively.

Listing 3 pyWitness code to bin and process raw data

import pyWitness
drBinned = pyWitness.DataRaw("test1.csv

↪→ ")
drBinned.collapseContinuousData(column

↪→ = "confidence",bins =
↪→ [-1,60,80,100],labels= [1,2,3])

dpBinned = drBinned.process()
dpBinned.printDescriptiveStats()

The frequencies of responses for each response type and
descriptive statistics for the test1 dataset after binning are
shown in Tables 3 and 4, respectively, produced by the func-
tions printPivot() and printDescriptiveStats().

Figures 3 and 4 show the binned and unbinned ROC and
CAC plots for test1. After binning, the confidence on the
horizontal axis of the CAC plot is the average reported con-
fidence in each respective bin.

Table 4 Test1 descriptive statistics, produced by printDescriptiveS-
tats()

value

Number of lineups 890

Number of target-absent lineups 443

Number of target-present lineups 447

Correct ID rate 0.62

False ID rate 0.05

d ′ 1.94

pAUC 0.02

Fig. 3 Test1 dataset unbinned and binned ROC. The point sizes reflect
the relative frequency. The dashed line represents chance performance

Response time analysis

pyWitness provides analyses of other dependent variables
than confidence, including response time. It plots suspect
ID accuracy by response time in RAC curves (Seale-Carlisle
et al. 2019b). To perform this analysis (other dependent vari-
ables can be analysed and plotted this way), use the code in
Listing 4. Response time analysis differs in the process func-
tion. When processing the raw data, the dependent variable
needs to be defined, so the arguments dependentVariable
=”responseTime” and reverseConfidence=True3 need to be
provided toprocess. Figure 5 is theRACplotwith suspect ID
accuracy (proportion correct) plotted against response time.

Listing 4 pyWitness code to plot RAC data

import pyWitness
drRAC = pyWitness.DataRaw("test1.csv

↪→ ")
drRAC.collapseContinuousData(column=

↪→ "responseTime",bins=[0, 5000,
↪→ 10000, 15000, 20000, 99999],
↪→ labels=[1, 2, 3, 4, 5])

dpRAC = drRAC.process(
↪→ reverseConfidence=True,
↪→ dependentVariable="
↪→ responseTime")

dpRAC.plotCAC()

The example test1 dataset is of a single experiment with
only one condition and no exclusions (e.g., participants who
failed a validation test). With pyWitness, it is possible to

3 Reverse confidence is set to true as the response time is usually smaller
for more confident responses.
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Fig. 4 Test1 dataset unbinned and binned ROC. The point sizes reflect
the relative frequency

select and process a raw data sub-sample. A sub-sample is
selected using the dr.cutData(column,value) function and
a particular experimental condition is processed by calling
dr.process(column,value). How to use these methods are
presented in examples in “Advanced analyses and function-
ality” section on test2 and test3 datasets. These datasets have
multiple conditions and data to be excluded.

Model fitting

Different signal detection-based models have been adapted
to fit lineup data (Wixted et al., 2018). The models share
general features, as shown in Fig. 6, of two Gaussian distri-
butions (one for fillers and innocent suspects and the other
for guilty suspects) along a memory strength axis. The lure
distribution has mean μl and standard deviation σl and the
target distribution hasmeanμt and standard deviationσt . The
figure shows an equal variance version of the model where

Fig. 5 Test1 RAC. The point sizes reflect the relative frequency

σt = σl . In an unequal variance model, σt does not have to
equal σl .

In both the equal and unequal variance models, c1, c2, and
c3 represent different criterion that map onto confidence lev-
els. If a memory signal strength exceeds c1, but not c2, the
participant gives a low confidence response. If the memory
signal strength exceeds c2, but not c3, the participant gives
a medium confidence response. And if the memory signal
strength exceeds c3, the participant gives a high confidence
response. If the memory signal strength does not exceed c1,
the participant makes no ID. To put it succinctly, when mem-
ory is tested on a lineup, if a memory strength signal is strong
enough to exceed any criterion, the eyewitness will make an
identification, otherwise they will reject the lineup.

The same applies when memory is tested on a showup
or list-learning recognition memory test where if an item
generates a signal strength that exceeds a criterion, then the
participant gives an “old” (I saw the item on the study list),
otherwise, a “new” (I did not see the item on the study list)
response is made. The Gaussian distributions for a recogni-
tionmemory test are of lures (similar to the filler and innocent
suspect distribution) and targets (similar to the guilty suspect
distribution).

Researchers can also designate an innocent suspect. To
model the frequency of a selection of a designated inno-
cent suspect a second lure distribution is required with mean
μl2 and standard deviation σl2. The decision rules are the
same as in the two-distribution variant of the model. One can
vary the designated innocent suspect distribution between the
filler/lure distribution and the target distribution, this would
enable modeling of unfair lineups. In simple terms, if μl2 =
μt and is greater than μl , the innocent suspect resembles the
guilty suspect more than the fillers (sign of an unfair lineup).
If, μl2 = μl , the innocent suspect does not stand out among
the fillers (sign of a fair lineup).

pyWitness implements fits for the simple independent
observation model (for lineup, showup, and list-learning
data), independent observation model, BEST-REST model,
ensemble model and integration model (for lineup data).
Table 5 shows 1) the definitions of the decision variables and
rules, 2) the python commands to run the fit, and 3) whether
memory strengths are correlated for each model. While the
models have characteristics in common, the decision rules
differ (Wixted & Mickes, 2018). Above, we described the
MAX decision rule for the simple independent observation
model.

The other models also use the MAX decision rule. That
is, the identified face is the one that yields the highest signal
strength to exceed the criterion. For the Ensemble (Wixted &
Mickes, 2014) and BEST-REST (Clark, 2003); Clark et al.
(2011) models, the identified face is the one that yields a dif-
ference score of the facewith themaximummemory strength
and the average of memory strengths of all faces in the lineup
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Fig. 6 Equal variance signal
detection model with a lure
(innocent suspect and fillers)
distribution with μl and σl and
target (guilty suspect)
distribution with μt and σt
along a memory strength axis
(top panel). The bottom panel
shows the different criteria, c1,
c2, and c3 that represent most
liberal criterion to most
conservative criterion

that exceeds the criterion. For the integrationmodel (Duncan,
2002), the identified face is the one that yields a sum of all
memory strengths that exceed the criterion. For models with
more complex decision rules than in the simple independent
observation model, the criteria apply to the respective deci-
sion variable and not memory strength (e.g., in the bottom
panel of Fig. 6, the decision making variable on the x-axis
would be, for example, the sum of memory strengths for the
integration model (Wixted et al., 2018).

To implement the fits from these models, pyWitness has
a generic framework that uses a single base class pyWit-
ness.ModelFit. Specific models (e.g., independent observa-
tion model) are implemented as derived classes from the
pyWitness.ModelFit superclass. The base class implements
all of the parameter management, including calculating χ2

values, fitting and minimizing, plotting functions, and gen-
erating data. The derived classes only need to implement the
calculations for a particularmodel. For example, the concrete

Table 5 Models’ decision variables, decision rules, commands, and whether memory strengths are correlated

Model Decision variable Positive decision rule Command Correlated memory
strength parameter

SIO Memory strength Identify the face that ModelFitIndependentObservationSimple No

of a face exceeds the decision criterion

IO Memory strength of a Identify the MAX face if its memory ModelFitIndependentObservation Yes

lineup member’s face strength exceeds the decision criterion

EN Memory strength of a face Identify the MAX face if its difference ModelFitEnsemble Yes

minus the mean memory score exceeds the decision criterion

strength of all the lineup

members’ faces

BR Memory strength of a face Identify the MAX face if its difference ModelFitBestRest Yes

minus the mean memory score exceeds the decision criterion

strength of the other lineup

members’ faces

IN Memory strength values Identify the MAX face if summed ModelFitIntegration Yes

summed across all the memory strength exceeds the

lineup members’ faces decision criterion

SIO is the simple independent observation model, IO is the independent observation model, EN is the ensemble model, BR is the best minus rest
model, IN is the integration model
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class for the independent observation model is ModelFitIn-
dependentObservation. The derived fit classes only need to
implement a function called calculateCumulativeFrequen-
cyForCriterion that returns the predicted number of filler IDs
and suspect IDs for target-absent and target-present lineups
for each criterion value.

Fit �2 calculation

pyWitnessminimizes χ2 calculated from comparing observed
O and model predicted E values. pyWitness uses the stan-
dard SciPy minimizers. Model predictions are calculated for
the number of target-absent lineupswhere a filler is identified
(TAFID), target-absent lineups where the lineup is rejected
(TARID), target-present lineups where a filler is identified
(TPFID), target-present lineups where a suspect is identi-
fied (TPSID), and target-present lineups where the lineup
is rejected (TPRID). The level of confidence is denoted by
subscript i . For example, the expected number of lineup
rejections in target-present lineups for a given level of confi-
dence i is ETPRID,i . There are cases of lineups where there is
a designated innocent suspect in target-absent lineups, if this
suspect is identified it is a target-absent suspect ID (TASID).
The innocent suspect identifications are usually estimated
for fair lineups from the target absent filler IDs. The three χ2

calculations for different types of data are described below.

Lineups without a designated innocent suspect

For data without a designated innocent suspect, the χ2 used
by the minimizer is the sum of the following contributions

χ2
TAFID =

N∑

i=1

(
OTAFID,i − ETAFID,i

)2

ETAFID,i
, (1)

χ2
TPFID =

N∑

i=1

(
OTPFID,i − ETPFID,i

)2

ETPFID,i
, (2)

χ2
TPSID =

N∑

i=1

(
OTPSID,i − ETPSID,i

)2

ETPSID,i
, (3)

χ2
TARID = (OTARID − ETARID)2

ETARID
, (4)

χ2
TPRID = (OTPRID − ETPRID)2

ETPRID
, (5)

where N is the number of confidence bins, yielding a total
χ2 for a lineup χ2

lineup of

χ2
lineup = χ2

TAFID + χ2
TPFID + χ2

TPSID

+χ2
TARID + χ2

TPRID. (6)

The number of degrees of freedomndflineups is given by 3N−
Nparameters. Nparameters is the number of fit parameters.

Lineups with a designated innocent suspect

For data with a designated innocent suspect, an additional
innocent suspect lure distribution is considered by the addi-
tional contribution of χ2

TASID

χ2
TASID =

(
OTASID,i − ETASID,i

)2

ETASID,i
, (7)

making the total χ2
unfair-lineup to

χ2
unfair-lineup = χ2

TAFID + χ2
TPFID + χ2

TPSID

+χ2
TARID + χ2

TPRID + χ2
TASID. (8)

The number of degrees of freedom, ndfunfair-lineups, is given
by 4N − Nparameters.

List-learning and showups

For data from list-learning recognition memory tests (i.e.,
participants study a list of target items and test on the targets
and lures items) and showups (where participants are shown
the guilty suspect, target-present, or the innocent suspect,
target-absent) there are only two contributions

χ2
TA =

2N∑

i=1

(
OTA,i − ETA,i

)2

ETA,i
, (9)

χ2
TP =

2N∑

i=1

(
OTP,i − ETP,i

)2

ETP,i
, (10)

to the total χ2
showup,

χ2
showup = χ2

TA + χ2
TP. (11)

For target-present or target-absent trials where the par-
ticipant rejects with confidence ci , the confidence level is
inverted to a negative value, hence, the sum ranges from 1
to 2N . The number of degrees of freedom ndfshowup is given
by 4N − Nparameters.

Calculating expected values

For the different forms of data, each model must produce the
expected number of participant responses, so the E values.
The following sections describe how the expected values are
calculated in pyWitness.
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Lineups without a designated innocent suspect

The current state-of-the-art models for lineup data are
relatively complex, so we consider a simple signal detection-
based model for a lineup with n lineup members for illus-
trative purposes. Performing a fit involves calculating the
cumulative likelihoods L (LTAFID, LTPFID, and LTPSID) for
different models. Calculating each of the likelihood values
is fundamentally an integral over memory strength of a sig-
nal detection-based model. The decision rule for this simple
model is that there is a single memory strength for a target
that is larger than any lure memory strengths. The cumula-
tive (i.e., summing or integrating up to a confidence level or
criterion) likelihoods Li for the simple model are

LTAFID,i = n
∫ ∞

ci
Φ(x;μl , σl)

n−1φ(x;μl , σl) dx, (12)

LTPFID,i = (n − 1)
∫ ∞

ci
Φ(x;μl , σl)

n−2Φ(x;μt , σt )

φ(x;μl , σl) dx, (13)

LTPSID,i =
∫ ∞

ci
Φ(x;μl , σl)

n−1φ(x;μt , σt ) dx, (14)

where φ is a Gaussian probability density function and Φ is
a Gaussian cumulative density function.

Equation 12 is the likelihood of filler IDs for target-absent
lineups. The integrand is n independent probabilities drawn
from the lure distribution. Equation 13 is the likelihood of
filler IDs for target-present lineups. The integrand is n − 2
draws from the lure distribution, multiplied by a draw from
the target distribution and a draw from the lure distribution.
Equation 14 is the likelihood of suspect IDs for target-present
lineups.The integrand isn−1draws from the lure distribution
and a single draw from the target distribution.

The structure of the integrals for lineup models with
a more complex decision rule (independent observation,
BEST-REST, ensemble, or integration models) are similar
to those of the simple model. The main differences are the
integration interval and a model dependent term F (Wixted
et al., 2018) that encodes the decision rule. The likelihoods
are given by

LTAFID,i =
∫ ∞

−∞
Φ(x;μl , σl)

n−1φ(x;μl; σl)

F(x; ci , μl , σl , n) dx, (15)

LTPFID,i = (n − 1)
∫ ∞

−∞
Φ(x;μl , σl)

n−2Φ(x;μt , σt )

φ(x;μl , μl)F(x; ci , μl , σl , n) dx, (16)

LTPSID,i =
∫ ∞

−∞
Φ(x;μl , σl)

n−1φ(x;μl; σl)

F(x; ci , μl , σl , μt , σt t, n) dx . (17)

In general, the calculation of F is rather involved and thus
not described in this paper, pyWitness implements the appro-
priate terms from Wixted et al. (2018).

The expected number in a given confidence bin can be
calculated from two likelihoods between two criteria and
multiplying by the number of lineups,

ETAFID,i = NTA
(
LTAFID,i − LTAFID,i−1

)
, (18)

ETPFID,i = NTP
(
LTPFID,i − LTPFID,i−1

)
, (19)

ETPSID,i = NTP
(
LTPSID,i − LTPSID,i−1

)
, (20)

where NT A is the number of target-absent lineups and NT P

is the number of target-present lineups.
The expected number of lineup rejections is calculated by

summing the all of the IDs and taking the difference between
the number of target-present NTP and target-absent NTA line-
ups,

ETARID = NT A − ETAFID − ETASID, (21)

ETPRID = NT P − ETPFID − ETPSID, (22)

where E values without subscripts are the sum over all con-
fidence levels, for example

ETAFID =
∑

i

ETAFID,i . (23)

Lineups with a designated innocent suspect

For data from lineups with a designated suspect in target-
absent lineups, extra expected values ETASID,i are required.
The simple version of the likelihood (which would corre-
spond to Eqs. 12, 13 and 14) for this case is given by

LTASID,i =
∫ ∞

ci
�(x;μl , σl)

n−1φ(x;μl2, σl2) dx, (24)

whereμl2 and σl2 are the mean and standard deviation of the
thirdGaussian distribution for the innocent suspects in target-
absent lineups. In fair lineups with a designated innocent
suspect, there is no statistical value in separately fitting the
TASID.

List-learning and showups

For list-learning and showup data the simple independent
observation model is applicable. The model is simplified
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when n = 1, so LTPFID,i = 0 and LTAFID,i = LTASID,i ,
so Eqs. 12, 13 and 14 reduce to

LTASID,i =
∫ ∞

ci
φ(x;μl , σl) dx, (25)

LTPSID,i =
∫ ∞

ci
φ(x;μt , σt ) dx . (26)

This model is the standard signal detection model described
in classic texts or papers (e.g.,Macmillan&Creelman, 2005).

Fit example

pyWitness greatly simplifies the process of fitting models to
data. Code Listing 5 shows an example of an independent
observation model fit in pyWitness. The model fitmf is con-
structed with a pyWitness.DataProcessed object, called dp
in the example.

Listing 5 pyWitness code to fit the independent observation model to
test1 data

dr = pyWitness.DataRaw("test1.csv")
dr.collapseContinuousData(column = "

↪→ confidence",bins =
↪→ [-1,60,80,100],labels= [1,2,3])

dp = dr.process()
mf = pyWitness.

↪→ ModelFitIndependentObservation(dp
↪→ )

mf.setEqualVariance()
mf.setParameterEstimates()
mf.fit()

Figure 7 shows the comparison between the observed and
expected frequencies for test1 data for each response type
and confidence bin. The plot is created after a fit has finished
by calling mf.plotFit(). Similarly the signal detection-based
model, like the one shown in Fig. 6, can be created by calling
mf.plotModel(). Figures 8 and 9 show the ROC and CAC
from the model fit compared with data.

Table 6 shows the fit parameters and the information about
the fitting (e.g., number of iterations andfit time) for the avail-
able models, including equal and unequal variance models
for test1 data. All models fit the data adequately. The number
of iterations ranged from 89 to 435 and the fit times range

from 7.39 to 48.07 seconds. Performing this number of fits is
trivially easy and fast with pyWitness, the results are highly
reproducible, and requires minimal user input.

Controlling fits

A key feature of pyWitness is the ability to control model
fitting using an easy to use python code interface which
aids reproducibility. Controlling the convergence of signal
detection-based models can be difficult due to the large
number of fit parameters. In addition to controlling the fit
convergence, modellers require the ability to allow param-
eters to vary, set to fixed values, or set to be equal to each
other. pyWitness has a simple code interface to the control
the behavior of the fit. The python class ModelFit stores all
the fit parameters as Parameter objects. A Parameter is the
aggregation of the parameter name string Parameter.name,
a numerical value Parameter.value, a Boolean flag to indi-
cate if the parameter is free to vary or fixed Parameter.fixed,
and a link to another parameter object Parameter.other.

Using a fit object to store the model parameters and
functions to execute the fit, has many advantages over a
function. One advantage is that the fit can be stopped, param-
eter or parameters adjusted, and the fit restarted. Another
advantage is that multipleModelFit objects can be used con-
currently, for example one with equal variance and another
with unequal variance. This design also makes it simple to
performa simultaneousfit tomulitple data sets using the same
parameters.

In the model fit code in Listing 5, the ModelFit has
a method setEqualVariance. A simplified version of the
method (only the lure and target Gaussian parameters)
is given in Listing 6. The model has a lure distribution
mean (lureMean) and sigma (lureSigma) and target mean
(targetMean) and sigma (targetSigma). The lureMean is
fixed and set to value of 0, the lureSigma is set equal to the
targetSigma. The targetMean is free to vary and is set to
initial value of 1, and the targetSigma is fixed to a value
of 1.

Listing 6 pyWitness code to set an equal variance model

def setEqualVariance(self) :
self.lureMean.value = 0.0
self.lureMean.fixed = True
self.lureSigma.set_equal(self.

↪→ targetSigma)
self.targetMean.value = 1.0
self.targetSigma.value = 1.0
self.targetSigma.fixed = True

123



Behavior Research Methods

Fig. 7 Histograms of observed
and fitted expected frequencies
using the equal variance
independent observation model
for test1 data

Using these Parameters, a user can create their own func-
tions or input code directly into the python command line to
constrain fits according their requirements.

Fits with a large number of criteria tend to take a long time
to converge. This convergence can be substantially acceler-
ated by a suitable estimation of the fit starting parameters.
pyWitness does this by computing a z-ROC of the processed
data. The z-ROC (zH and zFA) and signal detection (σt and
μt ) parameters are related by

zH = zFA + μt

σt
, (27)

Fig. 8 ROC for unbinned and binned test1 data. The dashed lines are
the equal (EV) and unequal (UV) independent observation (IO) models
fits on the binned data. The point sizes reflect the relative frequency.
The black dashed line represents chance performance

where zH is the z-score of the correct ID rate and zFA is the
z-score of the false ID rate. Starting parameters for the fits
can be determined by fitting a linear function to zH against
zFA, the z-ROC. The gradient is the target sigma and the
intercept with the vertical axis is the target mean. The fit
starting parameters can be set from the z-ROC by calling
ModelFit.setParameterEstimates().

The methodModelFit.fit() calls a standard scipy.optimize
routine. The method has the signature ModelFit.fit(maxiter,
method,resetParameters). The argument maxiter specifies
the maximum number of iterations (the default is 5000),
method is the name of the minimization algorithm passed
onto scipy.optimise (the default is ‘Nelder-Meade’), and

Fig. 9 CAC for unbinned and binned test1 data. The point sizes reflect
the relative frequency. The dashed lines are the equal (EV) and unequal
(UV) independent observation model (IO) fits on the binned data
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Table 6 Signal detection-based model fit parameters and number of iterations and fit time for dataset test1

Parameter SIO-EV SIO-UV IO-EV IO-UV BR-EV BR-UV EN-EV EN-UV IN-EV IN-UV

μl 0 0 0 0 0 0 0 0 0 0

σl 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

μt 1.95 1.96 1.80 1.89 2.04 2.04 2.04 2.04 2.54 2.73

σt 1.00 0.74 1.00 0.79 1.00 0.61 1.00 0.61 1.00 1.44

σb - - 0.60 0.45 - - - - - -

c1 1.62 1.65 1.40 1.54 1.74 1.75 1.45 1.46 1.23 1.28

c2 2.10 2.08 1.94 2.00 2.21 2.17 1.84 1.81 2.77 2.90

c3 2.80 2.67 2.68 2.63 2.95 2.76 2.46 2.30 4.79 5.07

ndf 4 3 4 3 4 3 4 3 4 3

χ2 20.15 8.79 10.30 4.53 23.20 7.87 23.20 7.87 12.78 7.35

χ2/ndf 5.04 2.93 2.58 1.51 5.80 2.62 5.80 2.62 3.20 2.45

p-value 0.001 0.032 0.036 0.209 0.000 0.049 0.000 0.049 0.012 0.062

number of iterations 89 141 189 353 100 164 105 182 435 435

fit time [s] 7.39 15.15 7.47 14.55 12.18 17.74 12.57 19.41 15.10 48.07

SIO = simple independent observations model, IO = independent observations model, BR = best-rest model, EN = ensemble model, IN = integration
model, EV = equal variance, UV = unequal variance

resetParameters in a optional flag to reset the parameters
to their default values.

The ModelFit class gives the user the convenient abil-
ity to store the fit history. For example, the parameters and
χ2 values for each step in the minimization is stored to
diagnose non-convergent fits or to investigate false min-
ima. Once a fit has converged, the fit parameters with their
associated uncertainties can be displayed by using the Mod-
elFit.printParameters() method.

The fitting has been tested on a wide range of publicly
available eyewitness ID data. These datasets can be found
in the pyWitness code repository. Furthermore, we have per-
formed comparison tests between the models in pyWitness
with models in R and MATLAB (Wixted et al., 2018) and
achieved excellent agreement.

Advanced analyses and functionality

“Basic usage, and descriptive and inferential statistics” and
“Model fitting” sections provided a walk-through of a com-
plete analysis using data from a single experiment with a sin-
gle condition (test1). This section describes more advanced
features of pyWitness, e.g., bootstrapping and pAUC statis-
tical comparisons. To walk-through these features requires
more complex data, including data that start with a more
complex data format and has two conditions per experiment.
In this advanced tutorial, we use data from Wilson et al.
(2018), referred to as test2 and test3.

Converting raw data formats and data translators

There is large degree of diversity in the format that exper-
imental data is stored. To perform analysis of these data
samples, there needs to be a clearly documented and
reproducible translation or reformatting process. The data
format used by pyWitness is based on the format used
by sdtlu Cohen et al. (2021). If translation of the data
is simply a one-to-one mapping of column names and
their values stored in each column pyWitness.DataRaw
has methods to perform the mapping. Otherwise a data
translator (a small fragment of python code) is needed, there-
fore a wide range of translators are provided in the class
pyWitness.DataTranslator.

Including or excluding data

DataRaw has a method to include or exclude data from sub-
sequent analyses, called DataRaw.cutData. In Listing 7, the
data in which the column labelled "previouslyViewedVideo"
is equal to 1 is kept within the DataRaw object.

Listing 7 pyWitness code select raw data for analysis

import pyWitness
dr = pyWitness.DataRaw("test2.csv")
dr.cutData(column="

↪→ previouslyViewedVideo",value=1,
↪→ option="keep")
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The option can be either "keep" or "cut". The DataRaw.
cutData can be called multiple times to obtain the data sam-
ple required for subsequent analyses.

Extracting data for different experimental
conditions

Processing raw data for different experimental conditions
is similar to including (option="keep") or excluding data
(option="cut"). Below in Listing 8 is an example of selecting
data in a “control” condition and “verbal” condition.

Listing 8 pyWitness code to process raw data for two experimental
conditions using DataRaw.cutData

import pyWitness
drControl = pyWitness.DataRaw("test2.

↪→ csv")
drVerbal = pyWitness.DataRaw("test2.csv

↪→ ")
drControl.cutData(column="

↪→ previouslyViewedVideo",value=1,
↪→ option="keep")

drControl.cutData("group","Control","
↪→ keep")

drVerbal.cutData(column="
↪→ previouslyViewedVideo",value=1,
↪→ option="keep")

drVerbal.cutData("group","Verbal","keep
↪→ ")

dpControl = dr.process()
dpVerbal = dr.process()

The DataRaw.process method can also be used to select
data for processing. In Listing 9, the column and value
arguments for the DataRaw.process method are used to
select a subset of the raw data. This is equivalent to the
DataRaw.cutData described above.

Listing 9 pyWitness code to process raw data for two experimental
conditions “Control” and “Verbal”

import pyWitness
dr = pyWitness.DataRaw("test2.csv")
dr.cutData(column="

↪→ previouslyViewedVideo",value=1,
↪→ option="keep")

dpControl = dr.process(column="group",
↪→ condition="Control")

dpVerbal = dr.process(column="group",
↪→ condition="Verbal")

dpControl and dpVerbal are instances of DataProcessed
and can be used for all analyses described in this paper.

Computing bootstrapped confidence intervals

pyWitness uses the bootstrapmethod to determine uncertain-
ties (e.g., confidence intervals) on descriptive and model-
dependent statistics. Replica data are created from the
original data with replacement. These replicas are pro-
cessed using the full pyWitness analysis pipeline, as the
entire analysis can be automated. Listing 10 shows how
to compute 95% confidence intervals using 2000 bootstrap
replicas.

Listing 10 pyWitness code to perform bootstrapping

import pyWitness
dr = pyWitness.DataRaw("test1.csv")
dp = dr.process()
dp.calculateConfidenceBootstrap(

↪→ nBootstraps=2000, cl=95)
dp.printPivot()
dp.printRates()

The distributions of the final quantities are used to calcu-
late confidence intervals. Table 7 shows the 95% confidence
limits of test1 descriptive statistics computed using 2000
bootstrap replicas.

Given all values are recomputed for each bootstrap replica,
it is straightforward to compute confidence intervals on
cumulative rates, such as those needed for ROC and CAC
plots. Figures 10 and 11 show the ROC and CAC plots,
respectively, with the 95% confidence limits indicated as
error bars.

Statistical partial area under the curve tests

To statistically compare two ROC curves, the partial area
under the curve (pAUC) for each group or condition is com-
puted and then compared. The approach taken in pyWitness

Table 7 Test1 descriptive statistics with bootstrapped 95% confidence
intervals

Statistic Value Lower 95% CL Upper 95% CL

Correct ID rate 0.619 0.568 0.663

False ID rate 0.047 0.039 0.054

d ′ 1.941 1.765 2.107

pAUC 0.021 0.016 0.025
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Fig. 10 Test1 ROC for unbinned and binned data with uncertainties
on the binned data. The point sizes reflect the relative frequency. The
dashed lines are the equal and unequal independent observation model
(IO) fits on the binned data. The black dashed line represents chance
performance

is the same as in pROC R-package (Turck et al., 2011), a Z
score is computed as

Z = pAUC1 − pAUC2

sd(pAUC1 − pAUC2)
, (28)

where pAUC1 and pAUC2 are the pAUCs from the two
conditions to be compared. The standard deviation in the
denominator is computed from all the bootstrap replicas. The
Z score is then used for a one-tailed Z -test.

The test2 example dataset consists of data from two
groups, called “control” and “verbal.” The overall false ID
rate will generally not be the same for two groups. The data

Fig. 11 Test1 CAC for unbinned and binned data with uncertainties
on the binned data. The point sizes reflect the relative frequency. The
dashed lines are the equal (EV) and unequal (UV) independent obser-
vation model (IO) fits on the binned data

for both groups have to be processed first to find themost con-
servative condition (the cutoff often used). Listing 11 shows
a two pass processes, the first processing is to find the two
cutoffs and then the second pass is to compute pAUC with a
consistent cutoff.

Listing 11 pyWitness code to compare two pAUCs

import pyWitness

# prepare input data
dr = pyWitness.DataRaw("test2.csv")
dpControl = dr.process("group","Control

↪→ ")
dpVerbal = dr.process("group","Verbal")

# find lowest false ID rate
minRate = min(dpControl.

↪→ liberalTargetAbsentSuspectId,
↪→ dpVerbal.
↪→ liberalTargetAbsentSuspectId)

# reprocess and bootstrap with
↪→ consistent

# maximum false ID rate
dpControl = dr.process("group","Control

↪→ ",pAUCLiberal=minRate)
dpControl.calculateConfidenceBootstrap(

↪→ nBootstraps=2000)

dpVerbal = dr.process("group","Verbal",
↪→ pAUCLiberal=minRate)

dpVerbal.calculateConfidenceBootstrap(
↪→ nBootstraps=2000)

# Comparison between pAUC
dpControl.comparePAUC(dpVerbal)

For test2 data the smallest, most conservative overall false
ID rate is 0.09 (i.e., the rightmost point of the verbal ROC
curve). The output of dpControl.comparePAUC, gives the
pAUC for the control group of 0.0259 with a standard error
of 0.004 and pAUC for the verbal group of 0.0310 with a
standard error of 0.003. Using Eq. 28 yields a Z value of
1.16 with a p-value of 0.247. This is consistent with results
reported in Wilson et al. (2018).

The ROC curves can be plotted to show the pAUCs used
for the comparison. Figure 12 shows the ROC curves of data
of the two conditions (test2 dataset). Much information is
provided in this plot. The compared pAUCs are shown by
the shaded regions, including the false ID cut-off rate. The
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Fig. 12 Test2 ROC curves for two conditions. The shaded regions show
the pAUCs that were compared; in this example, the false ID rate of
the condition that yielded the most overall conservative responding was
used as the cut-off point. The dashed colored curves represent the equal
variance independent observations model (IO EV) fits per condition.
The error bars are 95% confidence intervals. The point sizes reflect the
relative frequency. The dashed line represents chance performance

verbal condition yielded the most conservative responding
overall. Therefore, the cut-off for measuring pAUC was the
overall false ID rate from that condition (0.09). The relative
frequencies are reflected by point sizes, so the smaller points
show fewer responses than the larger points.Uncertainties are
95% confidence levels. Equal variance independent observa-
tion model fits for each condition are also presented.

Showup analyses

We use the test3 dataset as an example of a showup exper-
iment. A showup is a one-person ID procedure where only
the innocent or guilty suspect is presented. This procedure is
much like a standard list-learning recognitionmemory exper-
iment with old (targets) and new (lures) items. In the case
of the showup, the innocent suspect is new, and the guilty
suspect is old. However, unlike in a recognition memory
experiment, where participants are tested on tens to hundreds
of trials, participants are typically only tested on one showup
trial. The processing for showup data is exactly the same as
for lineup data (see Listing 2), the input data has a mandatory
column, lineupSize, which is set to 1 for showup data. This
notifies pyWitness that the data are from showups.

Figure 13 shows the ROC curve of the test3 showup
dataset. With showup and list-learning data, the entire range
of the ROC is plotted, not truncated as with lineup data (i.e.,
there is no lineup rejection associated with a particular face

Fig. 13 Test3 ROC curve with 95% confidence intervals. The black
dashed line represents chance performance. The dashed curve is the
equal (EV) independent observation model (IO) fit. The point sizes
reflect the relative frequency

in a lineup, e.g., “they are not in the lineup,” thus only old
responses are plotted).

Simulating data and power analyses

It is possible to simulate raw data from either processed data
ormodels. BothDataProcessed andModelFit have amethod
called generateRawData(nGenParticipants), which creates
a new set of simulated data with nGenParticipants. The
number of responses in each category (rejectID, fillerID, sus-
pectID) are generated from amultinomial distribution. Using
the basic fit example in Listing 5, Listing 12 is expanded to
generate simulated data from the fit model.

Listing 12 pyWitness code to generate simulated data from an indepen-
dent Observation model fit

import pyWitness
dr = pyWitness.DataRaw("test1.csv")
dr.collapseContinuousData(column = "

↪→ confidence",bins =
↪→ [-1,60,80,100],labels= [1,2,3])

dp = dr.process()
mf = pyWitness.

↪→ ModelFitIndependentObservation(dp
↪→ )

mf.setEqualVariance()
mf.setParameterEstimates()
mf.fit()

drSimulated = mf.generateRawData(
↪→ nGenParticipants=10000)
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The drSimulated object is an instance of DataRaw,
which allows all analyses to be performed. Examples where
this feature is critical are model recovery fits and power
analyses.

Listing 13 is a simple power analysiswhere simulated data
are generated for 500, 1000, 1500, 2000, ... 5000 participants
and the pAUC with its confidence limits is computed.

Listing 13 pyWitness code to generate simulated data for a range of
number of participants. This code needs to be used in conjunction with
Listing 12

for nGen in numpy.linspace(500, 5000,
↪→ 9+1) :
drSimulated = mf.generateRawData(

↪→ nGenParticipants = nGen)
dpSimulated = drSimulated.process()
dpSimulated.

↪→ calculateConfidenceBootstrap(
↪→ nBootstraps=2000)

print(nGen, dpSimulated.
↪→ liberalTargetAbsentSuspectId,
↪→ dpSimulated.pAUC, dpSimulated
↪→ .pAUC_low, dpSimulated.
↪→ pAUC_high)

Currently, designated innocent suspect lineups cannot be
simulated, but will be added in a future release.

Extending pyWitness

pyWitness is designed to be extended and adapted. Two
extensions that would be particularly useful for users are
complex raw data import and manipulation, and new mod-
els.

Users may want to import data that is not easily trans-
lated to pyWitness format, if, for example, the data need
to be manipulated in a non-trivial manner or there is com-
plex logic needed to exclude participants. TheDataRaw class
has a member variable DataRaw.data that is of type pan-
das.DataFrame. Users familiar with pandas can create their
own pandas.DataFrame and assign it to themember variable
of DataRaw.data or directly manipulate DataRaw.data.

A new signal detection inspired model can be created
quickly in pyWitness. Each model is a Python class derived
from ModelFit and must implement at least two methods,
a constructor and ModelFit.calculateCumulativeFrequency
ForCriterion(self,c). The argument c is a floating point num-
ber for the criterion and the function returns a list of ETAFID,
ETPFID and ETPSID.

Future directions

pyWitness allows for many potential innovations in analy-
sis and modelling of eyewitness ID and list-learning data.
This paper describes the current version 1.0 of the code.
Many extensions are possible, including confidence inter-
vals on fit parameters, full Monte Carlo simulations of data
with complex decision rules, binned and unbinned maxi-
mum likelihood fits, Bayesian analyses, and advanced power
analyses. sdtlu also implements a parameter for base rates4

(the proportion of lineups that contain a guilty suspect) and
sequential lineups with a stopping rule(s), these features can
be easily added to pyWitness, and will be in version 2.0.
Beyond eyewitness ID research, the code can also already be
applied to general memory (as measured with standard list-
learning recognition memory tasks) and visual perception
(e.g., detection-plus-localization visual search tasks; Wixted
et al. (2021)). This section briefly describes the planned
future developments of pyWitness.

Estimating the uncertainties on the fit parameters remains
a challenge for signal detection-based modelling of eyewit-
ness identification data. The processes for bootstrapping and
subsequently fitting the replicas is straightforward in pyWit-
ness, but still thousands of fits are required. Each individual
fit can be optimized using techniques described in this paper,
for example using the z-ROC estimates for the target and
lure distribution parameters and other heuristics for estimat-
ing the criteria thresholds before fitting (Selker et al., 2019).
Assuming a time per fit of 10 s would result in total com-
putation time for 2000 bootstraps of 5.6 hours. Given each
replica is independent from another, computational time can
be reduced using simple parallel processing methods, for
example dividing the problem over multiple processors on
modern multi-core CPUs.

The integrations performed for all of the signal detection-
based model fits for lineups have assumptions in order to
simplify the integration overmemory strength. This approach
is computationally efficient but might affect the final results.
A Monte Carlo approach, where many lineups are fully sim-
ulated assigning probabilities from each distribution (lure,
target, and lure2, for lineups with a designated suspect) and
a decision rule formulated on the basis of the n memory
strengthsmight be the simplestway to constructmodelswith-
out assumptions. pyWitness provides a framework to carry
out the Monte Carlo simulations and will be included in a
future release. The main issue with this approach is the com-
putational speedwhenperformingfits.Againmodernparallel
programming practices can come to the rescue.

4 Most experiments use a base rate of 0.5 base, so half of the lineups
contain the guilty suspect.
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With the current χ2 minimization function used in pyWit-
ness, the expected frequency for a given confidence bin
cannot be zero. It might be possible to use the observed vari-
ance, andpyWitness does allow this via anoptional parameter
to the fitting functions, but still the observed variance poten-
tially could also be zero. It is the users’ responsibility to
appropriately bin the data so that the χ2 is well-defined. This
requirement can be avoided by using maximum likelihood as
opposed to χ2. This also has the added benefit of not making
an assumption of Gaussian uncertainties when there are low
numbers of participant responses in a given bin.

“Simulating data and power analyses” section outlines
how a power analysis can be performed using pyWitness.
As implemented in the current version, the user needs to
understand and use most of the functionality of pyWitness
to perform a power analysis. A useful development is a
simplified and streamlined power analysis function that can
quickly estimate the power required for future studies based
on existing verified models. We are investigating deploying
a dashboard application based on pyWitness.

Concluding remarks

pyWitness is a powerful tool to process experimental eyewit-
ness identification and recognition memory data, perform
current state-of-the-art model fits, perform standard ROC
statistical tests, and simulate experimental data. pyWitness
gathers together in a single package many of the most cur-
rent eyewitness signal detection-based models and serves as
a reference implementation for future eyewitness memory
research. The code was designed to be simple enough for
an early career researcher without any modelling experience
to use quickly, yet flexible enough for an expert to extend.
The output of pyWitness is numerical (e.g., pAUC statistical
tests), excel spreadsheets (e.g., pivot table frequencies and
rates), and publication-ready plots.

We developed pyWitness with replication and reproduc-
tion inmind. The code has been extensively tested onpublicly
available experimental data. The code since inception has
been stored in git and freely available from github (https://
github.com/lmickes/pyWitness). The online manual (https://
lmickes.github.io/pyWitness/) is a mixture of restructured
text and automatic documentation generated from the com-
ments within the python code. The code is distributed with
a set of regression tests that allow a user or developer to
compare the code against previously obtained results.

As described in the “Future directions” section there are
many developments which could extend pyWitness. It is our
hope that a community of researchers and modellers will use
and extend pyWitness and future developments are likely
to be community driven. Many of the future plans exist in
development form, but are not yet validated and ready for

use. These developments will appear in the code repository
and online manual as soon as possible.

We believe that reproducible and easily communicated
analyses, open science practices, training of early career
researchers in modelling and programming should not be a
chore, but an integral part of psychological science practice
andwe demonstrate this as much as possible with pyWitness.
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