
GAUSSIAN MIXTURE IDENTIFIABILITY

FROM DEGREE 6 MOMENTS

ALEXANDER TAVEIRA BLOMENHOFER

Abstract. We resolve most cases of identifiability from sixth-order moments
for Gaussian mixtures on spaces of large dimensions. Our results imply that

the parameters of a generic mixture of m ≤ O(n4) Gaussians on Rn can

be uniquely recovered from the mixture moments of degree 6. The constant
hidden in the O-notation is optimal and equals the one in the upper bound

from counting parameters. We give an argument that degree-4 moments never

suffice in any nontrivial case, and we conduct some numerical experiments
indicating that degree 5 is minimal for identifiability.

1. Introduction

Gaussian mixtures are a fundamental distributional model for machine learn-
ing and Data Science applications. They have a tremendous range of applications,
encompassing Machine learning primitives such as clustering ([48],[44],[55, Note-
book 5.12],[11]) and subspace learning ([29],[36],[56],[26]). Historically, Gaussian
mixtures emerged as an object of study due to Pearson [42], who tried to gather
evidence for the theory of evolution by separating distinct crab species. In a time
where DNA tests were not yet accessible, he inferred, based on a Gaussian mixture
model, that his sample of crabs likely consisted of more than one species.

Ca. 120 years later, there is a vast ocean of research on the topic of Gauss-
ian mixtures (e.g., [18],[51],[19],[40],[31],[30],[4],[47],[37],[1],[2],[17],[20]), fueled by
the craze on machine learning and big data. Many fundamental aspects of Gauss-
ian mixtures are still very poorly understood, including identifiability and efficient
parameter recovery.

A mixture of m Gaussians is sampled as follows: From a box containing the m
Gaussians N (µ1,Σ1), . . . ,N (µm,Σm), draw one of them at random. Then, sample
the Gaussian that was drawn from the box. The probability to draw the i-th
Gaussian is called the i-th mixing weight λi. We denote such a Gaussian mixture
distribution as λ1N (µ1,Σ1) ⊕ . . . ⊕ λmN (µm,Σm). In order to learn a Gaussian
mixture model, one needs to obtain the mean vectors and the covariance matrices
of every Gaussian which contributes to the mixture, and usually also the mixing
weights. The number m is called the rank of the mixture representation.

However, learning a Gaussian mixture model is not necessarily a well-posed task,
since Gaussian mixture models are not identifiable in the strict sense: A statistical
model is called identifiable, if two different choices of model parameters produce
distinct model distributions. Trivial reasons prevent Gaussian mixture models from
being identifiable. E.g., it is possible to permute the parameters, to choose two
Gaussians with identical parameters (vs. adjusting the weights), to add Gaussians
with mixing weight equal to zero, etc.
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Ideally, we would like a result which guarantees that in “most” cases, it is possible
to uniquely recover the parameters. Additionally, recovery should be possible from
a finite amount of information about the mixture distribution. The most natural
candidate for this finite amount of information would be a set of samples, drawn
from the mixture distribution. However, there is a second-most natural1 candidate.
Distributions are elements of an infinite-dimensional vector space, but a canonical
approach is to describe them via their moments of degree at most d ∈ N. These
are elements of a finite-dimensional vector space. The focus of this paper is the
following question.

Question 1.1. For which ranks m, dimensions n and degrees d can we recover
the parameters of a general rank-m Gaussian mixture on Rn from its moments of
degree d?

The term “general” here means generic in the sense of the Zariski topology.
The results we give will only depend on the values m,n and d, and not on any
other properties of the mixture. In other words, for “almost all” rank-m degree-d
Gaussian mixture moments on Rn, the answer is the same. Note that Question 1.1
is not about computationally efficient recovery, but about information theoretic
recoverability. In other words, we want to know when the parameters are uniquely
determined by the moments.

1.1. Overview of contributions. In this paper, we resolve most cases of degree-
6 Gaussian moment identifiability. Precisely, we show that the parameters of a
generic, uniformly weighted mixture Y = 1

mN (µ1,Σ1) ⊕ . . . ⊕ 1
mN (µm,Σm) of m

Gaussians are uniquely determined by the moments of Y of degree 6, if m ≤ m(n) is
at most some threshold, depending on n, with asymptotic growth equal to m(n) =
Θ(n4). For the same threshold m ≤ m(n), we also show that the parameters of a
Gaussian mixture Y = λ1N (µ1,Σ1)⊕ . . .⊕λmN (µm,Σm) with general parameters
and general mixing weights are uniquely determined by the moments of Y of degree
6 and 4. The precise statement can be found in Theorem 3.5. Note that for the
weighted case, moments of two distinct degrees are necessary for any such result.

We complement our theoretical results with some computations of the secant
dimensions of GMd(Cn) in small numbers of variables n ∈ {1, . . . , 19}, and various
degrees d ∈ {4, 5, 6}.

Techniques. Moment identifiability for Gaussian mixtures has been a long standing
open problem, with progress over the last years mostly limited to the univariate
case and often only proving that there exist less than infinitely many solutions
(so called finite-to-one identifiability). Very recent developments allowed us to
advance beyond that. Our identifiability proof uses three main ingredients: First,
the new result of Massarenti and Mella [39], see Theorem 2.6, building up on work
of Casarotti and Mella [13], which showed that m-identifiability can, under mild
conditions, be obtained from m + 1 (tangential) nondefectivity. Second, a result
of Nenashev [41], which we state in Theorem 2.9: It resolved a large number of
cases of Fröberg’s 1985 conjecture on the Hilbert series of sets of forms [22]. And
third, a carefully constructed degeneration argument, which allows to reduce secant
nondefectivity to a combinatorial puzzle.

The hidden fourth ingredient is a change in notation. Compared to some previous
work on the moments of Gaussian mixtures, we deviate from the convention to write

1Informally, moments provided a coarsened perspective: From sufficiently many samples, one
may clearly compute the empirical moments, which agree with the actual moments up to small

error, with high probability. By directly looking at the moments, we eliminate the probabilistic
aspect. As it turns out, this leads to very clean and structured results.
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the 2d-th moments of a Gaussian mixture as mode-symmetrization of a tensor in
S2(Cn)⊗d (cf. [25],[5],[43]). Instead, we interpret the moments of degree 6 of an
n-variate Gaussian distribution N (µ,Σ), with mean µ ∈ Rn and positive definite
covariance matrix Σ ∈ Rn×n, as the coefficients of the sextic form

s6(ℓ, q) = ℓ6 + 15qℓ4 + 45q2ℓ2 + 15q3 ∈ R[X]6, (1)

where X = (X1, . . . , Xn), ℓ = µTX and q = XT ΣX. Such a moment form sd does
exist in each degree, and up to scaling, it is the d-homogeneous part of the moment
generating series, which for a Gaussian N (µ,Σ) equals

exp
(
ℓ +

q

2

)
=

∞∑
d=0

1

d!

(
ℓ +

q

2

)d

. (2)

While the choice of notation is usually of minor importance, we wish to stress that
all our results strongly rely on the fact that we can express sd(ℓ, q) as a binary
polynomial in ℓ and q. For instance, we make use of factorizations. Table 1 shows
the sd(ℓ, q) for various values of d.

d Gaussian moment form of degree d
1 ℓ
2 ℓ2 + q
3 ℓ3 + 3qℓ
4 ℓ4 + 6qℓ2 + 3q2

5 ℓ5 + 10qℓ3 + 15q2ℓ
6 ℓ6 + 15qℓ4 + 45q2ℓ2 + 15q3

7 ℓ7 + 21qℓ5 + 105q2ℓ3 + 105q3ℓ
8 ℓ8 + 28qℓ6 + 210q2ℓ4 + 420q3ℓ2 + 105q4

Table 1. Moment forms of a Gaussian distribution N (µ,Σ) in
degree d ∈ {1, . . . , 8}, with ℓ = µTX and q = XT ΣX. All expres-
sions were normalized such that the coefficient of ℓd is 1.

1.2. Related work. Classically, a lot of focus had been directed towards the uni-
variate case. Pearson’s original work [42] examined moments of a univariate rank-2
Gaussian mixture of degree at most 5. More recent results on the univariate case
are, e.g., due to Amendola, Sturmfels et al. ([1],[2]), who examined univariate
identifiability for higher ranks. Massarenti and Mella [39] recently proved identifia-
bility for univariate Gaussian distributions, as a corollary of their new, very general
identifiability theorem.

The special case of multivariate Gaussians with identical covariance matrices is
also very well-understood: These can essentially be reduced to 1-Waring decom-
positions, sometimes also called symmetric tensor decompositions, see the author’s
doctoral thesis [8, p. 42, p. 47]. For 1-Waring decompositions, the question of
identifiability is now completely understood, see Section 2.1, and there are some
efficient algorithms for the low-rank case, see [34] and [3].

With the advent of big data, there emerged interest to understand Gaussian
mixtures in high dimensions, preferably with full freedom on the covariance ma-
trices. This direction was pioneered by some algorithmic recovery results: Moitra
and Valiant [40] gave a polynomial-time algorithm to estimate the parameters of
a constant-rank mixture in large dimensions. The constant-rank regime has been
further improved since then, for instance under the aspect of robustness in [6] and
in [37]. Recently, there have also been attempts to give homotopy continuation
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based algorithms for the constant rank regime [35], which seem to run well in prac-
tice, if the rank is 2. Unfortunately, the computational complexity of the homotopy
continuation method is not understood. A major leap was the 2015 result of Ge,
Huang and Kakade [25], who gave an algorithm to handle mixtures of rank at most
m = O(

√
n) on Rn. This was the first breakout from the constant-rank regime.

The special case of centered Gaussians, where all Gaussians have identical means,
was subsequently studied from the algorithmic perspective in [24] and [5], and also
by the author in [9] and [10], the latter in joint work with Casarotti, Micha lek and
Oneto.

This paper gives, to the best of our knowledge, the first identifiability result that,
asymptotically in a large number of variables n, matches the rank upper bound

m ≤
(
n+5
6

)(
n+1
2

)
+ n

=
1

360
n4 +

1

30
n3 +

49

360
n2 +

13

60
n +

1

9
(3)

from counting parameters. Our result also matches this parameter counting bound
up to the correct constant in the leading n4-term. Previous results were either
limited to very low rank m = Θ(

√
n), due to algorithmic constraints, see [25], or

limited to the univariate case, see [1] and [2].

Acknowledgements. I wish to thank Monique Laurent for a lot of very valuable
feedback. I also wish to thank my former doctoral advisor Mateusz Micha lek for
the guidance I received during my time in Konstanz, and Alex Casarotti, for some
very helpful discussions. Part of this work was completed while the author was sup-
ported by the Dutch Scientific Council (NWO) grant OCENW.GROOT.2019.015
(OPTIMAL).

Disclosure. The proof of skewness of tangent spaces in the case of degree 6 and 7
was part of my doctoral thesis, see [8, Lemma 3.3.4 and Theorem 3.3.8].

2. Preliminaries

Notation. Let us write N = {1, 2, 3, . . .} for the set of natural numbers, with N0 =
N ∪ {0}. We work with polynomials in real or complex coefficients. For K ∈
{R,C}, the polynomial ring in n variables X = (X1, . . . , Xn) is denoted K[X]. By
K[X]d, we denote the finite-dimensional subspace of all homogeneous polynomials
of degree d ∈ N0, which are also called d-forms. Unless explicitly stated otherwise,
a polynomial on Cn is by default assumed to be in variables X. Both algebraic
unknowns and random vectors are always denoted with capital letters.

We assume familiarity with the notion of a Gaussian distribution N (µ,Σ), which
is parametrized by a mean vector µ ∈ Rn and a positive definite covariance matrix
Σ ∈ Rn×n. For each α ∈ Nn

0 and each random vector Y with distribution Y ∼
N (µ,Σ), the expected value

E[Y α] =

∫
Rn

xαdN (µ,Σ)(x) (4)

of the monomial Y α exists. The value |α| = α1 + . . . + αn is called the degree or
order of the moment. If one knows all moments of order d of some probability
distribution, then one may compute the expectation E[f(Y )] of any given d-form
f ∈ C[X]d. Moments are related to the coefficients of the moment generating series

M(Y ) :=
∑
α∈Nn

0

1

|α|!

(
d

α

)
E[Y α]Xα ∈ R[[X]], (5)

which is a formal power series in X. In Section 2.2, we recall combinatorial expres-
sions for the homogeneous parts of M(Y ) in terms of the mean and the covariance.
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Gaussian mixtures are real objects by nature, but it helps a lot to examine iden-
tifiability over the complex field. Therefore, we formally extend all notions related
to Gaussians distributions to the domain of complex numbers. In particular, the
Gaussian moment variety, introduced in Definition 2.7, will contain the moments
of formal “Gaussians” N (µ,Σ), where µ ∈ Cn and Σ ∈ Cn×n is a symmetric matrix
with complex entries. These objects do not have any statistical meaning (to the
best of our knowledge), and are just considered to facilitate the analysis.

For K ∈ {R,C}, we endow any finite dimensional K-vector space U ∼= Kn with
the K-Zariski topology on U . The closed sets with respect to this topology are
the solution sets of systems of polynomial equations on U . Algebraic (sub)varieties
(of U) are dense subsets of closed sets in U . In the literature, this definition of a
variety is sometimes also called a quasi-affine variety. All our closed varieties V
will be affine cones, saying that for each x ∈ V and λ ∈ K, also λx ∈ V . We denote
the tangent space at x ∈ V by TxV . For each x ∈ V , the tangent space is a linear
subspace of Kn.

We use the classic symbols from Landau notation, f = O(g) and f = Θ(g),
to denote the behaviour of certain functions in large numbers of variables n. In

addition, we introduce f = Θ#(g), to denote that limn→∞
f(n)
g(n) = 1. This relation

is stricter than f = Θ(g): While f = Θ(g) means that the functions f and g
asymptotically differ only by a multiplicative constant, f = Θ#(g) means that this
constant is one.

The base case of the proof of Proposition 2.13 was verified on a computer. The
secant dimensions presented in Section 4 were also calculated numerically. Data
and code for both can be found in the accompanying git repository, see [53]. When
referring to specific parts of this git repository, we will use a citation with the path to
the file or the folder, relative to the main folder named gaussian-identifiability

of the repository, e.g., [53, path/to/folder]. We used the Julia [7] programming
language, with the non-base package DynamicPolynomials.jl [33].

2.1. Identifiability in geometry and the Waring problem. Aside from the
statistical identifiability problem, there is a second notion of identifiability of secant
varieties, which stems from a geometrical perspective. Here, an algebraic variety2

V ⊆ CN is given and the question is: When is an m-fold sum of elements of V
uniquely representable as an m-fold sum of elements of V ? Just like Gaussian mix-
tures, secant identifiability is a problem with a similarly long history ([52],[54],[27]).
The development of the theory of secant varieties was motivated by the study of
the k-Waring problem: Given m, k, d ∈ N and k-forms q1, . . . , qm ∈ C[X]k, when
are these the only k-forms such that the sum of their d-th powers equals

f = qd1 + . . . + qdm? (6)

The most classical case is the 1-Waring problem, which corresponds to secant iden-
tifiability of Veronese varieties. Some of the major achievements for the 1-Waring
problem were the Alexander-Hirschowitz theorem [28], then a series of work due to
Chiantini, Ottaviani and Vannieuwenhoven on identifiability of forms of subgeneric
rank ([14],[15],[16]), and finally Galuppi and Mella’s classification of all the cases
where a generic form is identifiable with respect to 1-Waring decompositions [23].

The Waring problem for higher k is also classical. An early specific case was
famously considered in 1913 by Ramanujan ([45], [46, p. 326]). Another explicit
consideration of a higher order Waring problem was in 1880 due to Desboves ([21,
p. 684]). Initially this problem caught the interest of mathematicians due to un-
expected patterns of dependence among powers of forms. See the work of Reznick,

2Precisely, an irreducible affine cone.
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who mentions the two classical problems from above in [49] and [50]. Recently,
k-Waring decompositions have also been studied from the viewpoint of secant iden-
tifiability, e.g., by Lundqvist, Oneto, Reznick and Shapiro [38].

It turns out that the statistical and the geometrical notions of identifiability
are related: The Waring problem for linear forms is connected to identifiability
for finitely supported distributions, and to mixtures of Gaussians with identical
covariance matrices, for the latter see the author’s doctoral thesis [8, p. 42, p.
47]. The Waring problem for quadratic forms is connected to mixtures of centered
Gaussians, where every Gaussian has the same mean ([10],[9]).

However, in the fully general case, Gaussian mixture identifiability is not a War-
ing problem. Instead, it asks about uniqueness of representations

f = sd(ℓ1, q1) + . . . + sd(ℓm, qm), (7)

where sd(ℓ, q) is some explicit, bivariate (weighted homogeneous) polynomial ex-
pression in ℓ, q. The 1-Waring problem is recovered, if all quadratic forms qi are set
to zero. From a statistical viewpoint, setting qi to zero degenerates the Gaussians
to Dirac distributions. As a result, one obtains a problem of atom reconstruction
from finitely supported measures. The 2-Waring problem is recovered, if d is even
and all linear forms ℓi are set to zero. Therefore, Gaussian moment decompositions
can be seen as sort of an “interpolation” between linear Waring decomposition and
quadratic Waring decomposition.

In the following, we will briefly introduce the main technical tools and results
needed from the theory of secant varieties for an abstract variety V .

Definition 2.1. Let V be an irreducible affine cone in some complex vector space
and m ∈ N. One says that V is (generically) m-identifiable, if a sum

z = x1 + . . . + xm (8)

of m general elements of V has no decomposition as a sum of m elements of V
other than (8).

Definition 2.2. Let V be an irreducible affine cone in some complex vector space
and m ∈ N. The Zariski closure of the set

{x1 + . . . + xm | x1, . . . , xm ∈ V } (9)

is called the m-th secant variety of V , and denoted σm(V ).

The notion of identifiability exists also for individual elements of a secant variety.

Definition 2.3. Let V be an irreducible affine cone, m ∈ N and t ∈ σm(V ). Then,
t is called m-identifiable with respect to V , if there is precisely one way to write t
as a sum of m elements of V .

Lemma 2.4 (Terracini, [54]). Let V ⊆ CN be an irreducible and non-degenerate
affine cone of dimension n, m ∈ N and x1, . . . , xm general points of V . Then, for
all general points z ∈ ⟨x1, . . . , xm⟩, it holds

Tzσm(V ) =

m∑
i=1

TxiV (10)

Furthermore, if the sum
m∑
i=1

TxiV =

m⊕
i=1

TxiV (11)

is direct, then each general z ∈ σm(V ) has only finitely many decompositions as a
sum of m elements of V . In that case, we say that V is m-nondefective.
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We need one more technical definition, before we are ready to state the main
tool that we use for identifiability.

Definition 2.5. Let V an irreducible affine cone and x ∈ V . We write

ΓV (x) = {y ∈ V | TyV ⊆ TxV }. (12)

The union of all irreducible components of ΓV (x) that pass through x is denoted
CV (x). We call CV (x) the tangential contact locus of V at x.

Note that the tangential contact locus always contains the line Cx of multiples
of x. The variety V is called 1-tangentially weakly defective, if the dimension of
CV (x) at general x ∈ V is strictly greater than 1.

Tangential weak defectivity might seem like a complicated, technical constraint,
but intuitively, it should be seen as a condition that the base variety we start with
is “reasonable”. For instance, if V ⊆ CN is a linear subspace of dimension at least
2, then V is 1-tangentially weakly defective, since all points have the same tangent
space. On the other hand, it is also completely clear that a sum of 2 elements
of a linear subspace V will not uniquely determine the summands. As a similar
example, Massarenti and Mella show that the secant V = σ2(V0) of an irreducible
and nondegenerate variety V0 is never 1-tangentially weakly defective, and also
never 2-identifiable [39, Proposition 2.20 and Remark 3.11]. The reason is that by
Terracini’s Lemma, for general x, y ∈ V0, all general points in ⟨x, y⟩ ⊆ σ2(V0) have
the same tangent space.

Theorem 2.6 (Massarenti-Mella [39, Theorem 1.5, Remark 2.3]). Let V ⊆ CN

be an irreducible and non-degenerate affine cone of dimension n. Let m ∈ N and
assume that

(1) mn ≤ N − n
(2) V is not 1-tangentially weakly defective,
(3) V is not (m + 1)-defective.

Then, V is m-identifiable.

Massarenti and Mella formulate Theorem 2.6(2) differently. Instead, they re-
quire that V has a nondegenerate Gauss map. By [39, Remark 2.3], 1-tangential
weak defectivity is equivalent to V having a degenerate Gauss map. The Gauss
map is, informally, the function that maps smooth points x ∈ V to their tangent
spaces TxV , which are seen as elements of a Grassmannian variety. We will avoid
talking about Gauss maps throughout this article, since there could be confusion,
if too many notions are named after Carl Friedrich Gauß. Condition (1) also looks
differently in [39]: Since the authors work in projective space, both n and N are
shifted by one, and the terms are arranged differently.

2.2. Gaussian Moments. A large amount of information about a distribution
is stored in its moment forms.3 The moment forms of a Gaussian distribution
with mean µ ∈ Rn and positive definite covariance matrix Σ ∈ Rn×n are the
homogeneous parts in X of the formal power series

exp

(
µTX +

1

2
XT ΣX

)
(13)

in variables X = (X1, . . . , Xn), which is called the moment generating series of
N (µ,Σ). Writing ℓ := µTX and q := XT ΣX, we can conveniently expand this

3Assuming the distribution is sufficiently nice, in the sense that integrals of polynomials exist.
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representation

exp
(
ℓ +

q

2

)
=

∞∑
d=0

1

d!

(
ℓ +

q

2

)d

(14)

Since ℓ and q have different degrees, it takes a bit of effort to sort the representation
(14) into d-homogeneous parts, but the result for the d-homogeneous part is

1

d!

⌊d/2⌋∑
k=0

2−k

̂̂(
d

k

)
qkℓd−2k. (15)

Here, the combinatorial expression̂̂(
d

k

)
:=

d!

k!(d− 2k)!
=

d!
(
d−k
k

)
(d− k)!

= k!

(
d

k

)(
d− k

k

)
(16)

occurs, which we will refer to as the duonomial coefficients. The connection between
statistics, moments and these combinatorial expressions is explained in detail in my
doctoral thesis [8, Chapter 3]. For some concrete examples, Table 1 shows the first
Gaussian moment forms.

Gaussian moment varieties. Note that the Gaussian moment forms are polynomial
expressions in (ℓ, q). It thus makes sense to consider the polynomial morphism
which sends (ℓ, q) to the degree-d moment form. This map will be easier to study
over the complex numbers, but we will give an argument why complex identifiability
also implies identifiability over the real field (and actually all fields of characteristic
zero, in analogy to [8, Remark 3.2.5]).

Definition 2.7. The degree-d Gaussian moment variety GMd(Cn) is the (Zariski)
closure of the image of the map

sd : (ℓ, q) 7→
⌊d/2⌋∑
k=0

2−k

̂̂(
d

k

)
qkℓd−2k (17)

For d ≥ 4, it is an irreducible, nondegenerate variety in C[X]d of dimension
(
n+1
2

)
+

n = 1
2n(n + 3). Formally,

GMd(Cn) = {sd(ℓ, q) | ℓ ∈ F1(Cn), q ∈ F2(Cn)} ⊆ C[X]d (18)

Remarks towards Definition 2.7. Note that GMd(Cn) is irreducible, since it is the
closure of the image of a polynomial map. The variety is nondegenerate, i.e., not
contained in a proper subspace of C[X]d, since it contains the (nondegenerate)
Veronese variety of d-th powers of linear forms, as the image of all expressions
sd(ℓ, 0). □

The tangent space at a general point of the Gaussian moment variety can be
found by deriving curves t 7→ sd(ℓ + th, q + tp). This yields the following:

Proposition 2.8. For d ≥ 3 and general (ℓ, q), the tangent space of GMd(Cn) at
sd(ℓ, q) is the set of expressions

sd−1(ℓ, q)h + sd−2(ℓ, q)p

s. t. h ∈ C[X]1, p ∈ C[X]2 (19)

Proof. Note that by definition, sd(ℓ, q) is the degree-d homogeneous part of the
moment generating series M(ℓ, q) := exp(ℓ+ q

2 ). When deriving sd, we can therefore
make use of the fact that the exponential series behaves nice under derivatives.
For instance, d

dtM(ℓ + th, q)|t=0 = h exp(th + ℓ + q
2 )|t=0 = hM(ℓ, q). Hence, the

derivative along a curve through ℓ shifts all homogeneous parts by one degree, so
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the ℓ derivative of sd equals sd−1, up to a normalization constant. Similarly, we see
that d

dtM(ℓ, q+tp)|t=0 = p
2 exp(ℓ+ q

2 ). Therefore, up to a constant, the q-derivative
of sd equals sd−2. □

2.3. Nenashev’s theorem and Fröberg’s conjecture. The interaction of tan-
gent spaces at various general points sd(ℓi, qi) plays a crucial role in identifiability,
as seen, e.g., from Terracini’s Lemma 2.4 and Theorem 2.6. While for fixed m, d and
n, determining the dimension of the sum of m general tangent spaces to GMd(Cn)
is a problem of Linear Algebra, unfortunately, it is often quite difficult to determine
these dimensions as functions of m, d and n.

In earlier work on some special cases of Gaussian mixtures [10], it was possible to
describe such a sum of tangent spaces as the graded component of an ideal generated
by powers of forms. Then, knowledge about the Hilbert series of “general” ideals
could be used. One major tool here was Nenashev’s partial resolution of Fröberg’s
conjecture.

Theorem 2.9 (Nenashev, [41, Theorem 1]). Let a ∈ N and let D be a variety of
degree-a forms which is closed under the canonical action of GLn(C) on forms. For
m,h ∈ N, general g1, . . . , gm ∈ D, and I = (g1, . . . , gm), as long as

m ≤ dimSa+h(Cn)

dimSh(Cn)
− dimSh(Cn) or (20)

m ≥ dimSa+h(Cn)

dimSh(Cn)
+ dimSh(Cn) (21)

it holds that:

(g1, . . . , gm)a+h = (g1)a+h ⊕ . . .⊕ (gm)a+h for m as in 20. (22)

(g1, . . . , gm)a+h = Sa+h(Cn) for m as in 21. (23)

A special case, classically considered by Alexander and Hirschowitz, is when the
variety D in Theorem 2.9 is the Veronese variety of powers of linear forms.

Theorem 2.10 (Alexander-Hirschowitz, cf. [12, Theorem 1.1], originally in [28]).

Let n, d,m ∈ N≥2 and I = (ℓd−1
1 , . . . , ℓd−1

m ) be an ideal generated by (d−1)-th powers
of generic linear forms ℓ1, . . . , ℓm on Cn. Then, the homogeneous component Id of
I has the expected dimension, which is min{mn,

(
n+d−1

d

)
}, in all but the following

exceptional cases:

• d = 2 and m = 2, . . . , n− 1.
• n = 3, d = 4, m = 5.
• n = 4, d = 4, m = 9.
• n = 5, d = 3, m = 7.
• n = 5, d = 4, m = 14.

Note that we rewrote the result to fit our notation: Brambilla and Ottaviani
[12], just like Alexander and Hirschowitz [28], formulate Theorem 2.10 from a dual
perspective. Also, in [12], they use projective dimensions.

Unfortunately, the tangent spaces to secants of GMd(Cn) do not have a structure
simple enough to be covered by Theorem 2.9. However, via some careful degener-
ation argument, we will still be able to make use of Theorem 2.9. The following
observation is trivial, but we will need to refer to it so often, that it is worth stating
it as a Lemma.

Lemma 2.11. Let m ∈ N and let f1, . . . , fm ∈ C[X] be forms of degree d ∈ N.
Let k1 ∈ N be such that (f1, . . . , fm)d+k1 = (f1)d+k1 ⊕ . . . ⊕ (fm)d+k1 in C[X].
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Let Y = (Y1, . . . , Yn′) another vector of variables. Then for all k2 ∈ N and all
bihomogeneous h1, . . . , hm ∈ C[X,Y ]k1+k2

of X-degree k1 such that

0 =

m∑
i=1

fihi, (24)

it holds h1 = . . . = hm = 0.

Proof. Plug in an arbitrary value y ∈ Cn′
and observe that 0 =

∑m
i=1 fihi(X, y).

Since f1, . . . , fm are linearly independent, it follows h1(X, y) = . . . = hm(X, y) = 0
for all y ∈ Cn. This shows the claim. □

2.4. Non-Tangential weak defectivity of Gaussian moment varieties. Tan-
gential weak nondefectivity is a technical requirement of Massarenti-Mellas identi-
fiability theorem. Unlike the condition on tangent spaces, note that 1-tangential
nondefectivity is a property of just the base variety GMd(Cn), not of the secants.
We will give a proof technique to show that for fixed d, and all n ∈ N, GMd(Cn)
is not 1-tangentially weakly defective. For the scope of this paper, only the cases
d = 5, 6, 7 are relevant. The idea is to use a degeneration argument due to Chi-
antini and Ottaviani [14], and then show that it allows to verify the statement for
all n, by verifying it for n = 2. The last step can be done on a computer, for fixed
d. Therefore, this section is mostly considered with the reduction to n = 2. For
the reduction step, we rely on factorizations of the bivariate polynomial expression
sd(ℓ, q). We believe that our proof technique extends to higher values of d and all
values of n. However, since our proof involves a machine computation, it can only
prove the statement for finitely many values of d (and all n).

Lemma 2.12. Let n ≥ 2, d ∈ {4, . . . , 9} and let ℓ ∈ C[X]1, q ∈ C[X]2 be such that

sd−1(ℓ, q) = 0 = sd−2(ℓ, q). (25)

Then ℓ = 0 = q.

Proof. For each k ∈ N, we may view sk(L,Q) ∈ Q[L,Q] as a bivariate polynomial in
variables (L,Q). For even k, it is simultaneously also a bivariate form in variables
(L2, Q). As the latter, it splits into a product of linear factors, or better called
“quadratic factors”, of the form Q + cL2, with nonzero c ∈ R. If k is odd, then
sk(L,Q)

L is a bivariate form in (L2, Q). Thus, sk(L,Q) splits into L times a product
of such quadratic factors, if k is odd. Let us write ŝk(L,Q) to denote sk(L,Q)/L,
if k is odd, and simply ŝk := sk, if k is even.

Next, assume q, ℓ are such that sd−1(ℓ, q) = 0 = sd−2(ℓ, q). If either of ℓ or q
is zero, we readily see that the other one must be zero, too, by looking at some
vanishing quadratic factor. Therefore, assume to the contrary that ℓ ̸= 0 ̸= q.
Since (d − 1)sd−2 = ∂Lsd−1, Equation (25) means that for each value γ ∈ C, the
univariate polynomial ŝd−1(L, γ) has a double root. Let us choose γ = 1, so that
sd−1(L, 1) ∈ Z[L] is a polynomial with integer coefficients.

Now, we see from Eisenstein’s criterion that ŝd−1(L, 1) is irreducible over Q,
where we apply the criterion with the primes 3, 3, 5, 5, 7, 7 for d− 1 = 3, 4, 5, 6, 7, 8.
Confer Table 1 for the coefficients of sd−1. In particular, ŝd−1(L, 1) is separable,
and hence has no double roots over the real or complex numbers. As a concrete
example, for d = 6, the factorizations are

s5(L,Q) = 15(Q + (
√

10 + 5)L2)(Q + (
√

10 − 5)L2)L (26)

s4(L,Q) = 3(Q + (
√

6 + 3)L2)(Q + (
√

6 − 3)L2) (27)

From that, one easily sees that there is no common root. □
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We are now ready to verify Condition (2) from Theorem 2.6. While our focus is
on the case of degree 6, it does not hurt to verify it for a few other degrees, too.

Proposition 2.13. GMd(Cn) is not 1-tangentially weakly defective for d = 5, . . . , 8.

Proof. The claim is that for general (ℓ, q) the tangential contact locus C(sd(ℓ, q))
has projective dimension 0 locally at sd(ℓ, q). In other words, we need to check the
dimension of

Γ(sd(ℓ, q)) = {sd(ℓ′, p′) | Tsd(ℓ′, p′) ⊆ Tsd(ℓ, q)} (28)

By semicontinuity, (cf. [14, Theorem (iii) =⇒ (ii)]), we may show that the contact
locus is projectively zero-dimensional at (ℓ, q) for some specific choice of (ℓ, q). To
this end, write the n variables as (X,Y, Z1, . . . , Zn−2), with Z = (Z1, . . . , Zn−2).
Choose Y as the linear form and X2 as the quadratic form. Assume first that
n ≥ 3, so there is at least one Z-variable.

Now, to the contrary, assume that in any Zariski open neighbourhood U of
(Y,X2), there are (ℓ, q), such that sd(ℓ, q) is not a multiple of sd(Y,X2) and such
that for each pair (h, p) of a linear form h and a quadratic form p, there exists a
pair (h′, p′) such that

sd−1(ℓ, q)h + sd−2(ℓ, q)p (29)

= sd−1(Y,X2)h′ + sd−2(Y,X2)p′.

Split ℓ = ℓX,Y + ℓZ , q = qX,Y + q(X,Y ),Z + qZ into homogeneous parts in Z, where
qX,Y has degree 0 in Z, q(X,Y ),Z has degree 1 in Z and qZ has degree 2 in Z. Choose
h = Z1 and p = 0. The right hand side of (29) only has terms of degree at most 2
in Z = (Z1, . . . , Zn−2). Thus, on the left hand side, all terms of degree at least 3
in Z must vanish. Since the sk are bihomogeneous maps for each k ∈ N, the part
of sk(ℓ, q) of highest Z-degree is sk(ℓZ , qZ). We thus obtain, by looking at the part
of degree d ≥ 3 in Z, that

sd−1(ℓZ , qZ)Z1 = 0. (30)

Now, we choose p = Z2
1 and h = 0. Again, we get an identity just like Equation (29),

but with potentially different h′ and p′. In particular, we can look at the part of
degree d in Z on both sides, which this time yields

sd−2(ℓZ , pZ)Z2
1 = 0. (31)

By Lemma 2.12, Equations (30) and (31) together imply that ℓZ = 0 = qZ . The
mixed term q(X,Y ),Z of degree 1 in Z is then the only term left which depends on Z.

Choosing again h = 0 and p = Z2
1 yields, by looking at the part of largest degree

in Z, that

q
⌊ d

2 ⌋
(X,Y ),ZZ

2
1 = 0 (32)

Hence, also q(X,Y ),Z = 0. We conclude that ℓ and q only depend on the two variables
X and Y . Thus, it suffices to verify the claim for n = 2 variables on a computer,
see the code in the accompanying git repository [53, tangential-contact-locus].
Note that we need the assumption d ≥ 5 for the base case verification. □

Note that in the above proof, showing irreducibility of ŝk(L, 1) with Eisenstein’s
criterion is convenient, but unfortunately only works up to k = 8.
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2.5. Moment identifiability of Gaussian mixtures.

Notation 2.14. For a Gaussian mixture Y = λ1N (µ1,Σ1)⊕ . . .⊕λmN (µm,Σm),
we write Md(Y ) for the form of degree-d moments of Y . Formally, with the nota-
tion of Definition 2.7, it holds that

Md(Y ) =

m∑
i=1

λisd(XTµi, X
T ΣiX) ∈ R[X]d (33)

Definition 2.15. A mixture Y = λ1N (µ1,Σ1) ⊕ . . . ⊕ λmN (µm,Σm) of m ∈ N
Gaussians is called moment identifiable in degree d, if Md(Y ) is an m-identifiable
element of GMd(Cn).

2.6. Non-uniformly weighted mixtures. From moments of one, fixed degree, it
is never possible to identify the means, covariances and mixing weights of a Gaussian
mixture Y = λ1N (µ1,Σ1)⊕ . . .⊕λmN (µm,Σm) altogether. This is because Y and

Y ′ :=
1

m
N ( d

√
mλ1µ1,

d/2
√
mλ1Σ1) ⊕ . . .⊕ 1

m
N ( d

√
mλmµm, d/2

√
mλmΣm) (34)

have the same moments of degree-d, due to bihomogeneity of the parametrization.
If one wants to prove uniqueness of both the parameters and the mixing weights,
it is therefore necessary to use moments of at least two different degrees. In this
section, we will make the statement formal that “uniformly weighted identifiability
from degree-d moments implies weighted identifiability from moments of degrees d
and d− 2. In particular, this implies that one does not have to care about weights,
unless the mixture is very close to the generic rank.

Lemma 2.16. Let m,n ∈ N such that GMd(Cn) is m-identifiable. Let Y =
λ1N (µ1,Σ1) ⊕ . . . ⊕ λmN (µm,Σm) a (weighted) mixture of m Gaussians, with
general parameters and mixing weights. Let Z = ρ1N (ν1, T1)⊕ . . .⊕ρmN (νm, Tm),
another mixture of m Gaussians such that

Md(Y ) = Md(Z), and Md−2(Y ) = Md−2(Z). (35)

Then Y = Z, and, up to permutation, λi = ρi, µi = νi and Σi = Ti for all
i ∈ {1, . . . ,m}.

Proof. From Equation (35), we obtain that

m∑
i=1

λisd(µi,Σi) =

m∑
i=1

ρisd(νi, Ti) (36)

Since sd is bihomogeneous, we can pull the weights in and see that
m∑
i=1

sd( d
√

λiµi,
d/2
√
λiΣi) =

m∑
i=1

sd( d
√
ρiνi, d/2

√
ρiTi) (37)

Due to generality of λi, µi and Σi, the left-hand side of Equation (37) is a general el-
ement of σm GMd(Cn), and therefore has a unique Gaussian moment decomposition
by assumption. Thus, we conclude that

{( d
√
λiµi,

d/2
√
λiΣi) | i = 1, . . . ,m} = {( d

√
ρiνi, d/2

√
ρiTi) | i = 1, . . . ,m}. (38)

In particular, all ρi are nonzero. Wlog, renumber the parameters and weights such

that (νi, Ti) = (αiµi, α
2
i Σi), where αi = d

√
λi

ρi
. By Equation (35), we have a similar

identity between moments of degree d− 2:
m∑
i=1

λisd−2(µi,Σi) =

m∑
i=1

ρisd−2(νi, Ti) (39)
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Plugging in what we know for (νi, Ti), we obtain

0 =

m∑
i=1

(λi − ρiα
d−2
i )sd−2(µi,Σi). (40)

The forms sd−2(µi,Σi) are linearly independent for i = 1, . . . ,m. (Indeed, as
otherwise identifiability in degree 6 could not hold, due to the nested nature of
tangent spaces). We conclude that

∀i = 1, . . . ,m :
λi

ρi
=

(
λi

ρi

) d−2
d

(41)

This is only possible, if λi = ρi for all i ∈ {1, . . . ,m}. Since the weights are equal, it
readily follows from Equation (38) that the means and covariances must be equal,
too. □

3. Gaussian Mixture Moment Identifiability

After the preparation work, let us come towards the main result of this paper,
which concerns the case of degree 6 identifiability.

Reminder 3.1. The degree-6 Gaussian moment variety GM6(Cn) is the closure of

{ℓ6 + 15qℓ4 + 45q2ℓ2 + 15q3 | ℓ ∈ C[X]1, q ∈ C[X]2}, (42)

which is the image of the map s6 from Definition 2.7. It is an irreducible, nonde-
generate subvariety of C[X]6 of dimension

(
n+1
2

)
+ n = 1

2n(n + 3).

Reminder 3.2. For general (ℓ, q), the tangent space at s6(ℓ, q) equals

{(ℓ5 + 10qℓ3 + 15q2ℓ)h + (ℓ4 + 6qℓ2 + 3q2)p | h ∈ C[X]1, p ∈ C[X]2}

Proof. Proposition 2.8 shows that the image of the tangent map Tℓ,qs consists of
the expressions s5(ℓ, q)h + s4(ℓ, q)p. Combine with Table 1 to obtain the explicit
expression above. □

Lemma 3.3. Let n ∈ N. There exists some function m = m(n) = Θ(n4) with
the following property: If ℓ1, . . . , ℓm are general linear forms and q1, . . . , qm are
general quadratic forms on Cn, then the tangent spaces Tℓi,qi GM6(Cn), where i ∈
{1, . . . ,m}, are skew spaces.

Proof. We will show that
∑m

i=1 imTs6(ℓi, qi) has the maximum possible (a.k.a. ex-

pected) dimension m(
(
n+1
2

)
+n). To show the claim for general parameter choices,

it is sufficient to find a specialized choice of (ℓi, qi), for which

0 =

m∑
i=1

(ℓ5i + 10qiℓ
3
i + 15q2i ℓi)hi +

m∑
i=1

(ℓ4i + 6qiℓ
2
i + 3q2i )pi (43)

implies h1 = . . . = hm = 0 = p1 = . . . = pm = 0, whenever the hi are linear forms
and the pi are quadratic forms on Cn.

We produce our specialized choice with a variable splitting trick : Rewrite the
variables as (X,Y ) = (X1, . . . , Xn1 , Y1, . . . , Yn2), with n1 + n2 = n, and assume
that all qi ∈ R[X]2 are generic quadratic forms in X, while ℓi ∈ R[Y ]1 are generic
linear forms in Y . Then, Equation (43) splits into a system of 7 equations, which
correspond to the parts of degree 0, . . . , 6 in X. At the same time, the hi =
hi,X + hi,Y split into an X-part and a Y -part, while the pi = pi,X + pi,X,Y + pi,Y
split into a pure X-part pi,X , a pure Y -part pi,Y , and a part bilinear in (X,Y ). We



14 BLOMENHOFER

start by looking at the part of degree 6 in X. Here, only one term can contribute,
so we get

0 = 3

m∑
i=1

q2i pi,X (44)

Nenashev’s result, Theorem 2.9, guarantees that

(q21 , . . . , q
2
m)6 = (q21)6 ⊕ . . .⊕ (q2m)6 (45)

as long as m = Θ(n4
1). It follows that pi,X = 0 for all i. Next, we look at the terms

whose X-degrees are 4. We obtain the equation:

0 = 15

m∑
i=1

q2i ℓihi,Y + 3

m∑
i=1

q2i pi,Y (46)

Note that the term
∑m

i=1 qiℓ
2
i pi,X cannot make a contribution since we just showed

that all pi,X vanish. Equation (45) implies that q21 , . . . , q
2
m are linearly independent.

Thus, Lemma 2.11 implies that −5ℓihi,Y = pi,Y for all i (choose (k1, k2) = (0, 2) in
the Lemma). Let us plug this newly-obtained identity into the part of Y -degree 6
from (43), which is

0 =

m∑
i=1

ℓ5ihi,Y +

m∑
i=1

ℓ4i pi,Y (47)

to obtain

0 =

m∑
i=1

ℓ5ihi,Y − 5

m∑
i=1

ℓ5ihi,Y = −4

m∑
i=1

ℓ5ihi,Y (48)

From the Alexander-Hirschowitz Theorem, see Theorem 2.10, we obtain that the
degree-6 component of the ideal (ℓ51, . . . , ℓ

5
m)6 = (ℓ51)6 ⊕ . . . ⊕ (ℓ5m)6 in C[Y ] is a

direct sum, as long as mn1 is at most the dimension of C[Y ]6. Precisely, this is
satisfied for all m ≤ 1

n2

(
n2+5

6

)
= Θ(n5

2). Thus, we conclude that hi,Y = 0 for all i

(and thus, also pi,Y = −4ℓihi,Y = 0). Let us repeat the same procedure with the
part of degree 5 in X, which is

0 = 15

m∑
i=1

q2i ℓihi,X + 3

m∑
i=1

q2i pi,X,Y , (49)

This readily yields that pi,X,Y = −5ℓihi,X for all i, again by applying Lemma 2.11,
with k1 = k2 = 1 therein. We can plug that into

0 =

m∑
i=1

ℓ5ihi,X +

m∑
i=1

ℓ4i pi,X,Y , (50)

which is the X-degree-1 part of (43), to obtain

0 = −4

m∑
i=1

ℓ5ihi,X (51)

Lemma 2.11 yields hi,X = 0 and thus hi = 0 for all i. As we have pi,X,Y =
−4ℓihi,X = 0 for all i, we obtain p1 = . . . = pm = 0, since we showed that all
X-homogeneous components of the pi vanish. This proves that a sum of m general

tangent spaces to GM6(Cn) is direct, as long as m < 2
n1(n1+3)

(
n1+5

6

)
− n1(n1+3)

2

and m < 1
n2

(
n2+5

6

)
. Splitting the variables evenly does already yield m = Θ(n4),

which concludes the proof. For a discussion on the optimal splitting strategy, see
Remark 3.4. □
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Remark 3.4. Note that for the range of ranks m in the proof of Lemma 3.3,
the constraints involving the X-variables are the bottleneck: Our proof technique
requires m = O(n4

1) and m = O(n5
2). We can therefore optimize our result,

by splitting the variables unevenly: Choose c = cn ∈ [0, 1] such that approx-
imately a c-fraction of the variables goes to Y and a (1 − c) fraction goes to

X. Particularly, choosing c ≈ 5
√

1/n, we obtain for large n with this trick that
identifiability holds up to the correct constant, i.e., for ranks up to a function
mmax(n) = Θ#(dimC[X]6/dim GM6(Cn)) = 1

360Θ#(n4).
More precisely, the two constraints on m with respect to n1 and n2 are:

m ≤
(
n1+5

6

)(
n1+1

2

) −
(
n1 + 1

2

)
=

1

360
n4
1 +

7

180
n3
1 +

109

360
n2
1 +

13

180
n1 +

1

3
(52)

m ≤
(
n2+5

6

)
n2

− n2 =
1

720
n5
2 +

1

48
n4
2 +

17

144
n3
2 +

5

16
n2
2 −

223

360
n2 +

1

6
. (53)

For any ε > 0, we can choose c = 5
√

1/n
(1−ε)

and plug in (n1, n2) = ((1 − c)n, cn)
(up to rounding to integers). One obtains that GM6(Cn) is m-identifiable as long
as

m ≤ 1

360
n4 + O(n3+ε) (54)

m ≤ Ω(c5n5) = Ω(n4+ε) (55)

With this trade-off, the second constraint, (55), will eventually be irrelevant for
large n.

Theorem 3.5. GM6(Cn) is m-identifiable for all m ∈ N bounded by some function
m ≤

(
n+5
6

)
/dim GM6(Cn) −O(n3.00001).

Proof. The third condition of Theorem 2.6 is satisfied due to Lemma 3.3, combined
with Remark 3.4. Proposition 2.13 verifies Condition (2) of Theorem 2.6. Condition
(1) of Theorem 2.6 is trivially satisfied for our choices of m. □

As a direct consequence, we obtain the following result in statistical language.

Theorem 3.6. For some m = Θ(n4), general weights λ1, . . . , λm ∈ R>0, general
linear forms µ1, . . . , µm ∈ Rn and general positive definite covariance matrices
Σ1, . . . ,Σm ∈ Rn×n, denote by

f6 = λ1s6(µ1,Σ1) + . . . + λms6(µm,Σm) (56)

f4 = λ1s4(µ1,Σ1) + . . . + λms4(µm,Σm)

the moment forms of degree 4 and 6, respectively, of the Gaussian mixture that is
parametrized by the µi and Σi.

Then, there is only one way to represent (f4, f6) as the mixture moments of
(at most) m Gaussians. Precisely, if ν1, . . . , νm ∈ Rn, ρ1, . . . , ρm ∈ R≥0 and
T1, . . . , Tm ∈ Rn×n are symmetric matrices such that

f6 = λ1s6(ν1, T1) + . . . + λms6(νm, Tm) (57)

f4 = λ1s4(ν1, T1) + . . . + λms4(νm, Tm)

then, up to permutation, λi = ρi, µi = νi, and Σi = Ti, for all i ∈ {1, . . . ,m}.
Additionally, if the mixing weights λi = 1

m are uniform, then the same result holds
true without any requirement about f4.

Proof. For the uniformly weighted case, the claim directly follows from Theo-
rem 3.5. Lemma 2.16 then yields the weighted case. □
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4. Numerical experiments, degree 5 and inhomogeneous moments

Numerical results suggest that the Gaussian moment varieties GMd(Cn) behave
in a very regular way with respect to identifiability: It appears that for the Gaussian
moment varieties of degree 5 and 6, all secants are nondefective up to the rank bound
obtained from counting parameters. The Gaussian moment variety of degree 4 is
never identifiable, for simple reasons explained in Section 4.1. We formalize the
numerical results in the Conjectures 4.1 and 4.3. Code and data of the dimension
calculations may be found in [53, secant-dimensions].

Conjecture 4.1. For all m,n, d ∈ N with n ≥ 2 and d ≥ 5, the Gaussian moment
variety GMd(Cn) is m-identifiable, if

m <

(
n+d−1

d

)(
n+1
2

) − 1. (58)

The numerical experiments were conducted by sampling random linear forms
and covariance matrices (ℓ1, q1), . . . , (ℓm, qm), and then calculating the dimension
of the sum of tangent spaces

∑m
i=1 Tℓi,qi GMd(Cn), which is the third respective

column in Table 2. The column labeled “expected dimension” is the dimension of
the direct sum of tangent spaces. We always chose the rank m in accordance with
the bound from counting parameters.

GM5(Cn)-secants
n rank secant dim. exp. dim.
2 1 5 5
3 2 18 18
4 4 56 56
5 6 120 120
6 9 243 243
7 13 455 455
8 18 792 792
9 23 1242 1242

10 30 1950 1950
11 39 3003 3003
12 48 4320 4320
13 59 6136 6136
14 72 8568 8568
15 86 11610 11610
16 102 15504 15504
17 119 20230 20230
18 139 26271 26271
19 161 33649 33649
20 184 42320 42320

GM6(Cn)-secants
n rank secant dim. exp. dim.
2 1 5 5
3 3 27 27
4 6 84 84
5 10 200 200
6 17 459 459
7 26 910 910
8 39 1716 1716
9 55 2970 2970

10 77 5005 5005
11 104 8008 8008
12 137 12330 12330
13 178 18512 18512
14 228 27132 27132
15 287 38745 38745
16 357 54264 54264
17 438 74460 74460
18 534 100926 100926
19 644 134596 134596

Table 2. Numerical experiments show that for n = 2, . . . , 19, the
Gaussian moment variety is nondefective up to the maximum pos-
sible rank m = ⌊dimC[X]d/ dim GMd(Cn)⌋ for both d = 5 (left)
and d = 6 (right). The value for (d, n) = (6, 20) is missing due to
memory limitations.

We formalize the numerical results from Table 2 in the following theorem.

Theorem 4.2. For any n ∈ {1, . . . , 19} and d ∈ {5, 6}, if m is strictly smaller
than the value in the “rank” column of Table 2, then GMd(Cn) is m-identifiable.
In addition,
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(1) for all n ≥ 20, GM5(Cn) is m-identifiable for all m ≤ 183.
(2) for all n ≥ 19, GM6(Cn) is m-identifiable for all m ≤ 643.

Proof. First, for n ∈ {1, . . . , 19}, the claims follow from Table 2 together with
Theorem 2.6 and Proposition 2.13. Note that we require m to be strictly smaller
than the parameter counting bound dimC[X]d/dim GMd(Cn), in order to account
for the conditions in Theorem 2.6. Also, note that if an irreducible, nondegenerate
affine cone V is m-identifiable, then it is also (m − 1)-identifiable, see [8, Lemma
2.2.32]. Thus, identifiability holds for all values m which are smaller than the value
in the “rank” column of Table 2. (NB: Obviously, m-nondefectivity also implies
(m− 1)-nondefectivity).

Last, if GMd(Cn0) is m-identifiable (or m-nondefective) for some n0 ∈ N, then
GMd(Cn) is m-identifiable (or m-nondefective, respectively), for all n ≥ n0: Indeed,
consider a general linear projection π : Cn → Cn0 and the induced map Π: C[X] →
C[X1, . . . , Xn0 ]. Observe that if a sum of m tangent spaces to GMd(Cn) was not
direct, then their projection to tangents of GMd(Cn0) would not be direct, either.
Similarly, if a general element t ∈ σm GMd(Cn) had two different decompositions
as m-fold sums, then Π(t) would have, too. □

Figure 1. The blue, red, green points correspond to the dimen-
sions of the secant variety σm GMd(Cn) for d = 4, 5, 6, respectively,

and several small values of n. We always choose m = ⌊dimC[X]d

(n+1
2 )+n

⌋.
This is the bound for identifiability obtained from counting param-
eters. The dashed lines correspond to the expected dimensions.

4.1. Non-identifiability from degree-4 moments. Moments of degree at most
4 never suffice to recover the parameters of a mixture of at least 2 Gaussians. In
fact, a mixture of two general Gaussians will have infinitely many Gaussian mixture
representations of rank 2 in degree 4. To see this, look at the tangent space

Tℓ1,q1 GM4(Cn) + Tℓ2,q2 GM4(Cn), (59)

which consists of elements of the form

(ℓ31 + q1ℓ1)h1 + (ℓ21 + q1)p1 + (ℓ32 + q2ℓ2)h2 + (ℓ22 + q2)p2, (60)

where h1, h2 are linear forms and p1, p2 are quadratic forms. The subspaces spanned
by the p1- and the p2-expressions have a nonempty intersection: Indeed, note that
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for p1 = (ℓ22 + q2) and p2 = −(ℓ21 + q1), it holds that

(ℓ21 + q1)p1 + (ℓ22 + q2)p2 = 0. (61)

Therefore, σ2 GM4(Cn) is not of expected dimension. The alert reader might have
noticed that (61) is a Koszul syzygy of the “shifted” covariance matrices ℓ2i + qi
(which are the second-order moment forms). Thus, the defect of the m-th secant
of GM4(Cn) is at least

(
m
2

)
.

Note that the dashed lines in Figure 1 correspond to the expected dimensions,
which, for degree 5 and 6, agree with the actual dimensions (shown as points in
Figure 1). However, for degree 4, this is not the case. Here, the blue points align
with the blue non-dashed line, which plots the expected dimension minus

(
m
2

)
.

Thus, our numerical experiments suggest the following conjecture.

Conjecture 4.3. For m,n ∈ N≥2, the (tangential) defect of σm GM4(Cn) is pre-
cisely

(
m
2

)
, unless σm GM4(Cn) fills the entire space C[X]4. In other words, the

defect of the m-th secant of GM4(Cn) is completely explained by the Koszul syzy-
gies of the second-order moments.

It is instructive to compare Conjecture 4.3 with Ottaviani’s conjecture on powers-
of-forms, as described in [38, Conjecture 1.2], or, independently, also in [32, Con-
jecture 1]: For sums of squares, Ottaviani’s conjecture states that the defect of
the m-th secant variety of squares of k-forms is precisely

(
m
2

)
. We believe that

the first stepping stone towards resolving Conjecture 4.3 should be to work on this
particular case of Ottaviani’s conjecture.

5. Generic ranks of Gaussian moment varieties

At last, we would like to address another classical question for the setting of
Gaussian moments: Given a generic d-form f , how many generalized Gaussian
moments (i.e., elements of GMd(Cn)) do we need to represent f as their sum? An
analogous question was classically studied for Waring decompositions and resulted
in the celebrated Alexander-Hirschowitz Theorem, see [28].

Definition 5.1. Let V an irreducible, nondegenerate affine cone in some finite-
dimensional C-vector space U . Then, the smallest integer m ∈ N0 such that σmV =
U is called the generic rank with respect to V .

Proposition 5.2. Let n, d ∈ N with d ≥ 5 and denote by m◦ the generic rank with
respect to GMd(Cn). Then,⌈ (

n+d−1
d

)(
n+1
2

)
+ n

⌉
≤ m◦ ≤

⌈(
n+d−1

d

)(
n+1
2

) +

(
n + 1

2

)⌉
(62)

Proof. The lower bound stems from counting parameters: Clearly, the summation
map GMd(Cn)m → C[X]d can only be dominant, if the dimension of the domain is
at least the dimension of the codomain. The upper bound is due to the following
observation: The dimension of the secant variety σm GMd(Cn) equals the dimension
of its tangent space at a general point. Let (ℓ1, q1), . . . , (ℓm, qm) pairs of general
linear and quadratic forms on Cn. The tangent space to the secant variety at
f = sd(ℓ1, q1) + . . . + sd(ℓm, qm) equals the set of all expressions

sd−1(ℓi, qi)hi + sd−2(ℓi, qi)pi, (hi ∈ C[X]1, pi ∈ C[X]2) (63)

A lower bound for the dimension of this space can therefore be obtained by setting
all hi to zero. Then, the set

{sd−2(ℓi, qi)pi | pi ∈ C[X]2} = (sd−2(ℓ1, q1), . . . , sd−2(ℓm, qm))d (64)
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is a graded component of the ideal generated by the forms sd−2(ℓi, qi). We can
now apply Nenashev’s result, but this time, we use the second case of Theorem 2.9,
applied to the variety D := im sd−2, which is closed under the action of GL(Cn).
We obtain from (21) in Theorem 2.9, that for

m ≥
(
n+d−1

d

)(
n+1
2

) +

(
n + 1

2

)
, (65)

the ideal spanned by the sd−2(ℓi, qi) is the entire space C[X]d. □

6. Conclusions

6.1. Outlook: Even degree identifiability. It is possible to verify that the
proof of Lemma 3.3 generalizes to several higher even degrees d ≥ 6. While the
structure of the proof remains the same, the occurring coefficients change. It would
therefore be good to know whether Theorem 3.6 generalizes to all even degrees d ≥ 6
simultaneously. This would take some significant combinatorial effort. Similarly, in
order to generalize Proposition 2.13 to higher degrees, one would need to replace
the computer argument. We leave this to future work.

6.2. Outlook: Odd degree identifiability. We also expect the moment varieties
of odd degree to be identifiable. A proof that a sum of m = Θ(n4) general tangents
to GM7(Cn) is skew can be found in my doctoral thesis [8, Theorem 3.3.8]. Unfortu-
nately, for odd degrees, the variable splitting argument loses a multiplicative factor
of n, and therefore does not match the upper bound from counting parameters,
which would be m = Θ(n5), for degree 7.

Corollary 6.1. GM7(Cn) is m-identifiable for some m = Θ(n4).

Proof. Combining [8, Theorem 3.3.8] with Proposition 2.13 shows that the assump-
tions of Theorem 2.6 are satisfied. □

6.3. Outlook: Exponential varieties. The Veronese varieties, powers-of-forms
varieties (as considered in [10, Section 4]) and Gaussian moment varieties all fall
into a similar category of varieties, which we aim to capture with the following
definition.

Definition 6.2. Let U a finite-dimensional subspace of the ideal (X1, . . . , Xn).
Then for d ∈ N, we call the closure of the image of

sd(U) : U → C[X]d, f 7→ exp(f)=d, (66)

the degree-d exponential variety Ed(U) of U . Here, g=d denotes the degree-d homo-
geneous part of some power series g in X.

The Veronese varieties are recovered, if one takes U as the space of linear forms.
Powers-of-forms varieties are recovered, if one takes U as the space of k-forms, for
some k ∈ N. The Gaussian moment variety is recovered by this notion, if one
takes U = C[X]1 ⊕C[X]2. It is natural to conjecture that many other exponential
varieties will eventually have identifiable secants, if d is large enough. E.g. for
U = C[X]1⊕ . . .⊕C[X]k, one expects a similar variable-splitting argument to work
for large d, unless something goes wrong with the combinatorics of the coefficients
of sd(U). Identifiability of exponential varieties could therefore be an interesting
direction of future study, and we hope that the present work gave some convincing
motivation for it.
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[28] Hirschowitz, A., and Alexander, J. Polynomial interpolation in several variables. Journal

of Algebraic Geometry 4, 4 (1995), 201–222.
[29] Hong, D., Malinas, R. P., Fessler, J. A., and Balzano, L. Learning dictionary-based

unions of subspaces for image denoising. In 2018 26th European Signal Processing Conference

(EUSIPCO) (2018), pp. 1597–1601.
[30] Hsu, D. J., and Kakade, S. M. Learning mixtures of spherical gaussians: moment methods

and spectral decompositions. In Innovations in Theoretical Computer Science, ITCS ’13.

Berkeley, CA, USA, 2013, pp. 11–20,.
[31] Kalai, A. T., Moitra, A., and Valiant, G. Efficiently learning mixtures of two Gaus-

sians. In STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of

Computing (2010), ACM, New York, pp. 553–562.
[32] Le, H., Sorber, L., and Van Barel, M. The pythagoras number of real sum of squares

polynomials and sum of square magnitudes of polynomials. Calcolo 50 (12 2013).

[33] Legat, B., Timme, S., and Deits, R. Juliaalgebra/multivariatepolynomials.jl: v0.3.18, 07
2021.

[34] Leurgans, S. E., Ross, R. T., and Abel, R. B. A decomposition for three-way arrays.
SIAM Journal on Matrix Analysis and Applications 14, 4 (1993), 1064–1083.
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