
Mathematical Programming
https://doi.org/10.1007/s10107-023-02005-8

FULL LENGTH PAPER

Series B

A simple method for convex optimization in the oracle
model

Daniel Dadush1 · Christopher Hojny2 · Sophie Huiberts3 · Stefan Weltge4

Received: 27 July 2022 / Accepted: 11 July 2023
© The Author(s) 2023

Abstract
We give a simple and natural method for computing approximately optimal solutions
for minimizing a convex function f over a convex set K given by a separation oracle.
Our method utilizes the Frank–Wolfe algorithm over the cone of valid inequalities
of K and subgradients of f . Under the assumption that f is L-Lipschitz and that K
contains a ball of radius r and is contained inside the origin centered ball of radius

R, using O
(

(RL)2

ε2
· R2

r2

)
iterations and calls to the oracle, our main method outputs a

point x ∈ K satisfying f (x) ≤ ε+minz∈K f (z). Our algorithm is easy to implement,
and we believe it can serve as a useful alternative to existing cutting plane methods. As
evidence towards this, we show that it compares favorably in terms of iteration counts
to the standard LP based cutting plane method and the analytic center cutting plane
method, on a testbed of combinatorial, semidefinite and machine learning instances.

Keywords Convex optimization · Separation oracle · Cutting plane method

Mathematics Subject Classification 90C05 · 90C25

A preliminary version of this article has appeared in the conference proceedings of IPCO 2022.

B Christopher Hojny
c.hojny@tue.nl

Daniel Dadush
dadush@cwi.nl

Sophie Huiberts
sophie@huiberts.me

Stefan Weltge
weltge@tum.de

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

2 Eindhoven University of Technology, Eindhoven, The Netherlands

3 Columbia University, New York, USA

4 Technical University of Munich, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-02005-8&domain=pdf
http://orcid.org/0000-0002-5324-8996

D. Dadush et al.

1 Introduction

Weconsider the problem ofminimizing a convex function f : Rn → R over a compact
convex set K ⊆ R

n .We assume that K contains an (unknown) Euclidean ball of radius
r > 0 and is contained inside the origin centered ball of radius R > 0, and that f
is L-Lipschitz. We have first-order access to f that yields f (x) and a subgradient of
f at x for any given x . Moreover, we only have access to K through a separation
oracle (SO), which, given a point x ∈ R

n , either asserts that x ∈ K or returns a linear
constraint valid for K but violated by x .

Convex optimization in the SOmodel is one of the fundamental settings in optimiza-
tion. The model is relevant for a wide variety of implicit optimization problems, where
an explicit description of the defining inequalities for K is either too large to store or
not fully known. The SO model was first introduced in [29] where it was shown that
an additive ε-approximate solution can be obtained using O(n log(L R/(εr))) queries
via the center of gravity method and O(n2 log(L R/(εr))) queries via the ellipsoid
method. This latter result was used by Khachiyan [27] to give the first polynomial
time method for linear programming. The study of oracle-type models was greatly
extended in the classic book of Grötschel et al. [23], where many applications to com-
binatorial optimization were provided. Further progress on the SOmodel was given by
Vaidya [36], who showed that the O(n log(L R/(εr))) oracle complexity can be effi-
ciently achieved using the so-called volumetric barrier as a potential function, where
the best current running time for such methods was given very recently [25, 28].

From the practical perspective, two of the most popular methods in the SO model
are the standard linear programming (LP) based cutting plane method, independently
discovered byKelley [26], Goldstein-Cheney [9] aswell asGomory [22] (in the integer
programming context), and the analytic center cutting plane method [34] (ACCPM).

The LP based cutting planemethod, whichwe henceforth dub the standard cut loop,
proceeds as follows: starting with finitely many linear underestimators of f and linear
constraints valid for K , in each iteration it solves a linear program that minimizes the
lower envelope of f subject to the current linear relaxation of K . The resulting point
x is then used to query f and the SO to obtain a new underestimator for f and a new
constraint valid for K . Note that if f is a linear function, it repeatedly minimizes f
over linear relaxations of K . While it is typically fast in practice, it can be unstable,
and no general quantitative convergence guarantees are known for the standard cut
loop.

To link to integer programming, in that context K is the convex hull of integer points
of some polytope P and the objective is often linear, and the method is initialized with
a linear description of P . A crucial difference there is that the separator SO is generally
only efficient when queried at vertices of the current relaxation.

ACCPM is a barrier based method, in which the next query point is the minimizer
of the barrier for the current inequalities in the system. ACCPM is in general a more
stable method with provable complexity guarantees. Interestingly, while variants of
ACCPM with O

(
n log(RL/(rε))2

)
convergence exist, achieved by judiciously drop-

ping constraints [1], the more practical variants have worse guarantees. For instance,
if K is the ball of radius R, the standard variant of ACCPM is only shown to achieve
O(n(RL/ε)2 log(RL/ε)) convergence [30].

123

A simple method for convex optimization in the oracle model

In this paper, we describe a new method for convex optimization in the SO model
that computes an additive ε-approximate solution within O(R4L2/r2ε2) iterations. Our
algorithm is easy to implement, and we believe it can serve as a useful alternative to
existing methods. In our experimental results, we show that it compares favorably in
terms of iteration counts to the standard cut loop and the analytic center cutting plane
method, on a testbed of combinatorial, semidefinite and machine learning instances.

Before explaining our approach, we review the relevant work in related models.
To begin, there has been a tremendous amount of work in the context of first-order
methods [3, 5], where the goal is to minimize a possibly complicated function, given
by a gradient oracle, over a simple domain K (e.g., the simplex, cube, �2 ball). These
methods tend to have cheap iterations and to achieve poly(1/ε) convergence rates.
They are often superior in practice when the requisite accuracy is low or moderate,
e.g., within 1% of optimal. For thesemethods, often variants of (sub-)gradient descent,
it is generally assumed that computing (Euclidean) projections onto K as well as linear
optimization over K are easy. If one only assumes access to a linear optimization (LO)
oracle on K , K can become more interesting (e.g., the shortest-path or spanning-tree
polytope). In this context, one of the most popular methods is the so-called Frank–
Wolfe algorithm [19] (see [24] for a modern treatment), which iteratively computes a
convex combination of vertices of K to obtain an approximate minimizer of a smooth
convex function.

In the context of combinatorial optimization, there has been a considerable line
of work on solving (implicit) packing and covering problems using the so-called
multiplicative weights update (MWU) framework [20, 31, 33]. In this framework,
one must be able to implement an MWU oracle, which in essence computes optimal
solutions for the target problem after the “difficult” constraints have been aggregated
according to the current weights. This framework has been applied for getting fast
(1 ± ε)-approximate solutions to multi-commodity flow [20, 33], packing spanning
trees [8], the Held–Karp approximation for TSP [7], andmore, where theMWUoracle
computes shortest paths, minimum cost spanning trees, minimum cuts respectively in
a sequence of weighted graphs. The MWU oracle is in general just a special type of
LO oracle, which can often be interpreted as a SO that returns a maximally violated
constraint. While certainly related to the SOmodel, it is not entirely clear how to adapt
MWU to work with a general SO, in particular in settings unrelated to packing and
covering.

A final line of work, which directly inspires our work, has examined simple iterative
methods for computing a point in the interior of a cone � that directly apply in the
SO model. The application of simple iterative methods for solving conic feasibility
problems canbe traced toVonNeumann in 1948 (see [15]), and avariant of thismethod,
the perceptron algorithm [32] is still very popular today. Von Neumann’s algorithm
computes a convex combination of the defining inequalities of the cone, scaled to be of
unit length, of nearlyminimalEuclidean norm.The separation oracle is called to find an
inequality violated by the current convex combination, and this inequality is then used
to make the current convex combination shorter, in an analogous way to Frank–Wolfe.
This method is guaranteed to find a point in the cone in O

(
1/ρ2

)
iterations, where ρ

is the so-called width of � (the radius of the largest ball contained in � centered at a
point of norm1). Starting in 2004, polynomial time variants of this and relatedmethods

123

D. Dadush et al.

(i.e., achieving log(1/ρ) dependence) have been found [6, 10, 17], which iteratively
“rescale” the norm to speed up the convergence. These rescaled variants can also
be applied in the oracle setting [4, 11, 14] with appropriate adaptations. The main
shortcoming of existing conic approaches is that they are currently not well-adapted
for solving optimization problems rather than feasibility problems.

Our approach. In this work, we build upon von Neumann’s approach and utilize
the Frank–Wolfe algorithm over the cone of valid inequalities of K as well as the sub-
gradients of f in a way that yields a clean, simple, and flexible framework for solving
general convex optimization problems in the SO model. For simpler explanation, let
us assume that f (x) = 〈c, x〉 is a linear function and that we know an upper bound
UB on the minimum of f over K . Given some linear inequalities 〈ai , x〉 ≤ bi that
are valid for all x ∈ K , our goal is to find convex combinations p of the homogenized
points (c,UB) and (ai , bi) that are “close” to the origin. Note that if p = 0, the fact
that K is full-dimensional implies that (c,UB) appears with a nonzero coefficient and
hence (−c,−UB) is a nonnegative combination of the points (ai , bi), which in turn
shows that 〈−c, x〉 ≤ −U B is implied by the linear inequalities 〈ai , x〉 ≤ bi , i.e., UB
is equal to the minimum of f over K . In view of this, we will consider a potential
Φ : Rn+1 → R+ with the property that if Φ(p) is sufficiently small, then the convex
combination will yield an explicit certificate that UB is close to the minimum of f
over K .

Given a certain convex combination p, note that the gradient of Φ at p provides
information aboutwhethermoving towards one of the knownpointswill (significantly)
decrease Φ(p). However, if no such known point exists, it turns out that the “deho-
mogenization” of the gradient (a scaling of its projection onto the first n coordinates)
is a natural point x ∈ R

n to query the SO with. In fact, if x ∈ K , it will have improved
objective value with respect to f . Otherwise, the SO will provide a linear inequality
such that moving towards its homogenization decreases Φ(p).

In this work, we will show that the above paradigm immediately yields a rigorous
algorithm for various natural choices ofΦ and scalings of inequalities.Wewill also see
that general convex functions can be directly handled in the same manner by simply
replacing (c,UB)with all subgradient cuts of f learned throughout the iterations. The
same applies to pure feasibility problems for which we set f = 0. The convergence
analysis of our algorithm is simple and based on standard estimates for the Frank–
Wolfe algorithm.

Besides its conceptual simplicity and distinction to existing methods for convex
optimization in the SO model, we also regard it as a practical alternative. In fact,
in terms of iterations, our vanilla implementation in Julia1 performs similarly
and often even better than the standard cut loop and the analytic center cutting plane
method evaluated on a testbed of oracle-based linear optimization problems formatch-
ing problems, semidefinite relaxations of the maximum cut problem, and LPBoost.
Moreover, the flexibility of our framework leaves several degrees of freedom to obtain
optimized implementations that outperform our naive implementation.

A preliminary version of this article has appeared in the conference proceedings
of IPCO 2022 [13]. The current article extends on this version by providing missing

1 https://github.com/christopherhojny/supplement_simple-iterative-methods-linopt-convex-sets.

123

https://github.com/christopherhojny/supplement_simple-iterative-methods-linopt-convex-sets.

A simple method for convex optimization in the oracle model

proofs and presenting more detailed numerical experiments. Moreover, we generalize
Algorithm 1 by no longer requiring explicit knowledge on the Lipschitz constant L .

2 Algorithm

Recall that we are given first-order access to a convex function f : Rn → R that we
want tominimize over a convex body K ⊆ R

n . In the casewhere f is not differentiable,
with a slight abuse of notation we interpret ∇ f (x) to be any subgradient of f at x .
We can access K by a separation oracle that, given a point x ∈ R

n , either asserts that
x ∈ K or returns a point (a, b) ∈ A ⊆ R

n+1 with 〈a, x〉 > b such that 〈a, y〉 ≤ b
holds for all y ∈ K . Here, 〈·, ·〉 denotes the standard scalar product and we assume that
all points inA correspond to linear constraints valid for K . To state our algorithm, let
‖ ·‖ denote any norm onRn+1 and ‖ ·‖∗ its dual norm. Moreover, letΦ : Rn+1 → R+
be any strictly convex and differentiable function with minx∈Rn+1 Φ(x) = Φ(0) = 0.
Our method is given in Algorithm 1, in which we denote the number of iterations
by T for later reference. However, T does not need to be specified in advance, and
the algorithm may be stopped at any time, e.g., when a solution or bound of desired
accuracy has been found.

Algorithm 1
1: UB ← ∞, A1 ← {(0, 1)/‖(0, 1)‖∗}, G1 ← ∅
2: for t = 1, 2, . . . , T do
3: pt ← argmin{Φ(p) : p ∈ conv(At ∪ Gt)}
4: if pt = 0 then return UB.
5: xt ← −∇Φ(pt)[1 : n]/∇Φ(pt)[n + 1]
6: if xt ∈ K then
7: UB ← min{UB, f (xt)}
8: gt ← (∇ f (xt), 〈∇ f (xt), xt 〉)
9: if gt = 0 then return UB.

10: At+1 ← At .
11: Gt+1 ← Gt ∪ {gt /‖gt ‖∗}
12: else
13: get (a, b) ∈ A, with 〈a, xt 〉 > b and ‖(a, b)‖∗ = 1
14: At+1 ← At ∪ {(a, b)}.
15: Gt+1 ← Gt .

16: return UB.

In Line 5, ∇Φ(pt)[1 : n] denotes the first n components of ∇Φ(pt), and
∇Φ(pt)[n +1] denotes the last component of ∇Φ(pt). The sets At and Gt denote the
already known/separated inequalities and objective gradients during iteration t .

Lemma 1 When xt ∈ R
n is computed in iteration t of Algorithm 1, it is well-defined

and we have 〈c, xt 〉 ≤ d for every (c, d) ∈ At ∪ Gt .

Proof Since pt minimizes Φ over conv(At ∪ Gt), for every q ∈ conv(At ∪ Gt) we
have 〈∇Φ(pt), q − pt 〉 ≥ 0. In particular, if pt �= 0, then we have

〈∇Φ(pt), q〉 ≥ 〈∇Φ(pt), pt 〉 ≥ −Φ(pt) + 〈∇Φ(pt), pt 〉

123

D. Dadush et al.

= −(Φ(pt) + 〈∇Φ(pt)), 0 − pt 〉) > −Φ(0) = 0,
(1)

First, apply (1) to q = (0, 1)/‖(0, 1)‖∗ ∈ At and conclude ∇Φ(pt)[n + 1] > 0. This
makes sure that xt can be computed. Second, we apply Inequality (1) to q = (c, d) ∈
At ∪ Gt and find that d −〈c, xt 〉 = 1

∇Φ(pt)[n+1] 〈∇Φ(pt), (c, d)〉 > 0, thus xt satisfies
〈c, xt 〉 ≤ d for all (c, d) ∈ At ∪ Gt . ��

Notice that throughout our algorithm UB is always an upper bound on OPT =
minx∈K f (x). We remark that when UB is returned in Line 9, then ∇ f (xt) = 0 and
hence f (xt) = UB = minx∈Rn f (x) = OPT. In what follows, we see that UB is
generally getting closer to OPT as the number of iterations increases. To this end, we
will first show that Φ(pt) decreases at a specific rate.

Note that, for the sake of presentation, in Line 3 we require pt to be the convex
combination of minimum Φ-value. As is implicit in the proof of Lemma 2, it is not
necessary to compute such a minimum to ensure the desired convergence rate. More
precisely, it suffices to let pt be a suitable convex combination of pt−1 and some
(c, d) ∈ At ∪ Gt with 〈∇Φ(pt−1), (c, d)〉 < 0. If the last coordinate of pt−1, as
discussed in the above proof, is not positive, then such an update can be made towards
(0, 1)/‖(0, 1)‖∗ ∈ At . Any such update will significantly decrease Φ(pt), and the
computation in Line 3 is guaranteed to make at least that much progress. This shows
that simple updates of pt , which may be more preferable in practice, still suffice to
achieve the claimed convergence rates.

Lemma 2 Suppose that Φ is 1-smooth with respect to ‖ · ‖∗. Then for every t =
1, . . . , T , Algorithm 1 satisfies Φ(pt) ≤ 8

t+2 .

Proof Suppose that pt �= 0. Then, by Line 3 in Algorithm 1, ‖pt‖∗ ≤ 1 since pt is
a convex combination of points with norm 1. We claim that in every iteration with
pt �= 0 we add a point qt ∈ At+1 ∪ Gt+1 with ‖qt‖∗ = 1 such that

〈∇Φ(pt), qt 〉 ≤ 0 (2)

holds. To see this, recall from the proof of the previous lemma that∇Φ(pt)[n+1] > 0
holds. If xt ∈ K , then qt = gt/‖gt‖∗ is added to Gt+1, which satisfies

‖gt‖∗〈∇Φ(pt), qt 〉 = 〈∇Φ(pt), gt 〉
= 〈∇Φ(pt), (∇ f (xt), 〈∇ f (xt), xt 〉)〉
= 〈∇Φ(pt)[1 : n],∇ f (xt)〉 + ∇Φ(pt)[n + 1]〈∇ f (xt), xt 〉
= 0,

where the last equality is due to the definition of xt . Otherwise, our algorithm receives
some (a, b) ∈ A with 〈a, xt 〉 > b and ‖(a, b)‖∗ = 1 and hence setting qt = (a, b) ∈
At+1 we see that

〈∇Φ(pt), qt 〉 = 〈∇Φ(pt)[1 : n], a〉 + ∇Φ(pt)[n + 1] · b

123

A simple method for convex optimization in the oracle model

= ∇Φ(pt)[n + 1] · (−〈xt , a〉 + b)

< 0

holds. This establishes the claim.
Next, recall that Φ is 1-smooth with respect to ‖ · ‖∗ if

〈∇Φ(x), x − y〉 ≤ Φ(x) − Φ(y) + 1
2‖x − y‖2∗ (3)

holds for all x, y ∈ R
n+1. In particular, for x = 0 and y = p1 this yields

Φ(pt) ≤ Φ(p1) ≤ Φ(0) + 〈∇Φ(0), p1〉 + 1
2‖p1‖2∗ = 1

2‖p1‖2∗ = 1
2 ,

where the first inequality follows from Line 3 in Algorithm 1 as well as A1 ⊆ At

and G1 ⊆ Gt . Moreover, setting λ := 1
4Φ(pt) we obtain λ ≤ 1 and

Φ(pt+1) ≤ Φ(pt + λ(qt − pt)) ≤ Φ(pt) − λ〈∇Φ(pt), pt − qt 〉 + 1
2λ

2‖pt − qt‖2∗
≤ Φ(pt) − λ〈∇Φ(pt), pt 〉 + 1

2λ
2‖pt − qt‖2∗

≤ Φ(pt) − λΦ(pt) + 1
2λ

2‖pt − qt‖2∗
≤ Φ(pt) − λΦ(pt) + 2λ2

= Φ(pt) − 1
8Φ(pt)

2,

where the second inequality follows from (3), the third inequality follows from (2),
the fourth inequality follows from convexity and Φ(0) = 0, and the last inequality
holds since ‖pt‖∗ ≤ 1 and ‖qt‖∗ ≤ 1. From this we derive

1

Φ(pt+1)
≥ 1

Φ(pt)
· 1

1 − 1
8Φ(pt)

≥ 1

Φ(pt)

(
1 + 1

8
Φ(pt)

)
= 1

Φ(pt)
+ 1

8
.

It follows that 1
Φ(pt)

≥ 1
Φ(p1)

+ 1
8 (t − 1) for all t , which yields the claim since

Φ(p1) ≤ 1
2 . ��

The following lemma yields conditions under which a small value ofΦ(pt) implies
that UB is close to OPT. Note in particular that it proves that if ‖pt‖ = 0 then UB =
OPT. Recall that a function f is L-Lipschitz on a set K ⊂ R

n when | f (x) − f (y)| ≤
L‖x − y‖2 for all x, y ∈ K .

Lemma 3 Assume that ‖(x,−1)‖ ≤ 2 holds for every x ∈ K , and there exist
z ∈ K and α ∈ (0, 1] such that 〈(a, b), (−z, 1)〉 ≥ α‖(−z, 1)‖‖(a, b)‖∗ holds
for every (a, b) ∈ A ∪ {(0, 1)/‖(0, 1)‖∗}. If ‖pT ‖∗ ≤ α/2 in Algorithm 1,
then the returned value satisfies UB ≥ OPT ≥ UB − 8U‖pT ‖∗

α
, where U :=

maxx∈K ‖(∇ f (x), 〈∇ f (x), x〉)‖∗.

123

D. Dadush et al.

Proof Let x∗ ∈ K minimize f (x) over x ∈ K and let F ⊂ [T − 1] be the set of
iterations (except the last one) in which xt ∈ K . Now write the point pT as a convex
combination

pT =
∑

(a,b)∈AT

λ(a,b)(a, b) +
∑
t∈F

γt gt/‖gt‖∗,

where λ ≥ 0, γ ≥ 0 and ‖(λ, γ)‖1 = 1, and where gt = (∇ f (xt), 〈∇ f (xt), xt 〉) as
defined in Algorithm 1. Then we have

∑
t∈F

γt (f (xt) − f (x∗)) ≤
∑
t∈F

γt 〈∇ f (xt), xt − x∗〉

=
〈∑

t∈F

γt gt , (−x∗, 1)
〉

≤
〈∑

t∈F

γtU · gt/‖gt‖∗ + U ·
∑

(a,b)∈AT

λ(a,b)(a, b), (−x∗, 1)
〉

= U · 〈pT , (−x∗, 1)〉
≤ U · ‖pT ‖∗ · ‖(−x∗, 1)‖ ≤ 2U‖pT ‖∗.

Here, the first inequality arises from convexity of f , the second from the facts that
U ≥ 0 and that x∗ ∈ K satisfies 〈(a, b), (−x∗, 1)〉 ≥ 0 for every (a, b) ∈ AT , and the
third from the Cauchy–Schwarz inequality. In particular, we find that mint∈F f (xt)−
f (x∗) ≤ 2U‖pT ‖∗∑

t∈F γt
whenever

∑
t∈F γt > 0. To lower bound this latter quantity, we use

the assumptions on z to derive the inequalities

α

(
1 −

∑
t∈F

γt

)
‖(−z, 1)‖ = α‖(−z, 1)‖

∑
(a,b)∈AT

λ(a,b)

≤
〈 ∑

(a,b)∈AT

λ(a,b)(a, b), (−z, 1)

〉
(since ‖(a, b)‖∗ = 1)

= 〈pT , (−z, 1)〉 −
∑
t∈F

γt 〈gt/‖gt‖∗, (−z, 1)〉

≤ ‖pT ‖∗ · ‖(−z, 1)‖ +
∑
t∈F

γt‖(−z, 1)‖ (Cauchy–Schwarz) .

Now divide through by ‖(−z, 1)‖ to find α(1 − ∑
t∈F γt) ≤ ‖pT ‖∗ + ∑

t∈F γt .
Hence, if ‖pT ‖∗ ≤ α

2 then α/2 ≤ (α + 1)
∑

t∈F γt ≤ 2
∑

t∈F γt . This lower bound
on

∑
t∈F γt suffices to prove the lemma. ��

Combining the previous two lemmas, we obtain the following convergence rate of
our algorithm:

123

A simple method for convex optimization in the oracle model

Theorem 1 Assume that β > 0 is such that Φ(x) ≥ β‖x‖2∗ for all x ∈ R
n+1. Under

the assumptions of Lemmas 2 and 3, Algorithm 1 computes, for every T ≥ 32
βα2 , a

value UB < ∞ satisfying UB ≥ minx∈K f (x) ≥ UB − 32U
α
√

β(T +2)
.

Proof After T iterations, we have β‖pT ‖2∗ ≤ Φ(pT) ≤ 8
T +2 ≤ βα2/4 per Lemma 2.

Since then ‖pT ‖∗ ≤
√
8√

β(T +2)
≤ α/2, Lemma 3 tells us that OPT ≥ UB− 32U√

β(T +2)α
.

��
Theorem 2 Let K ⊂ R

n be a convex body satisfying z + rBn
2 ⊂ K ⊂ RBn

2 , given by
a separation oracle A, and let f : Rn → R be an L-Lipschitz convex function given
by a subgradient oracle.

Apply Algorithm 1 to the function f using norm ‖(x, y)‖ := √
2‖(x/R, y)‖2 and

potential Φ(a, b) := 1
4‖(Ra, b)‖22. Then, for every ε > 0, after

T = O

(
R2

r2
· R2L2

ε2

)

iterations we have UB ≥ minx∈K f (x) ≥ UB − ε.

Proof Note that our choice of norm implies that ‖(a, b)‖∗ = 1√
2
‖(Ra, b)‖2. We

claim that our choice of input satisfies the conditions of Theorem 1 with β = 1/2 and
α = r/4R. Given the claim, Theorem 1 directly proves the result. To prove the claim,
apart from verifying that the bounds on β and α hold, we must verify smoothness of
Φ with respect to the dual norm, a bound of 2 on the norm of (−x, 1) for x ∈ K , as
well as U ≤ L R.

The setting β = 1/2 is direct by definition of Φ. Since ‖ · ‖∗ is a Euclidean norm,
it is immediate that Φ is 1-smooth with respect to ‖ · ‖∗. For each x ∈ K , we may also
verify that

‖(x, 1)‖ = √
2‖(x/R, 1)‖2 = √

2
√

‖x/R‖22 + 1 ≤ 2,

and

‖(∇ f (x), 〈∇ f (x), x〉)‖∗ = 1√
2
‖(R∇ f (x), 〈∇ f (x), x〉)‖2

≤ 1√
2

√
R2‖∇ f (x)‖22 + ‖∇ f (x)‖2‖x‖2

≤ 1√
2

√
R2L2 + L2R2 = L R,

which implies that U ≤ L R. We now show the lower bound α ≥ r/4R. Firstly, we
see that

〈
(−z, 1),

(0, 1)
‖(0, 1)‖∗

〉
= 1 ≥ 1

2
‖(−z, 1)‖‖ (0, 1)

‖(0, 1)‖∗
‖∗.

123

D. Dadush et al.

Next, any (a, b) returned by the oracle is normalized so that ‖(a, b)‖∗ = 1 ⇔
‖(Ra, b)‖2 = √

2. Note then that ‖(−z, 1)‖‖(a, b)‖∗ ≤ 2. From here, we observe
that

〈(a, b), (−z, 1)〉 = b − 〈a, z〉 = b − 〈a, z + ra/‖a‖2〉 + r‖a‖2 ≥ r‖a‖2,

since z + ra/‖a‖2 ∈ K by assumption. Furthermore, b − 〈a, z〉 ≥ b − ‖a‖2‖z‖2 ≥
b− R‖a‖2. Thus, b−〈a, z〉 ≥ max{r‖a‖2, b− R‖a‖2}.We now examine two cases. If
‖a‖2 ≥ 1/2R, then b−〈a, z〉 ≥ r/2R ≥ r/4R ·‖(−z, 1)‖‖(a, b)‖∗. If ‖a‖2 ≤ 1/2R,
then |b| ≥ 1 since ‖(Ra, b)‖22 = 2. This gives b − 〈a, z〉 ≥ b − ‖a‖2 ≥ 1/2 ≥ r/2R.
Thus, α ≥ r/4, as needed. ��

3 Computational experiments

In this section,weprovide a computational comparison of ourmethodwith the standard
cut loop, the ellipsoid method, and the analytic center cutting plane method on a
testbed of linear optimization instances. For comparison purposes, all four methods
are embedded into a common cutting plane framework such that the same termination
criteria apply, see Algorithm 2 which we describe in the next paragraph in more detail.

3.1 Framework

Our generic cutting plane framework gets the objective 〈c, x〉which is to beminimized,
the radius R of an outer ball containing the feasible region K , and two oracles as input.
The separation oracle SO is equipped with a set of initial linear inequalities valid
for K (such as bounds on variables). These inequalities define an initial polyhedral
relaxation P of K , which will be refined whenever new inequalities are separated. The
point oracle PO implements the points that are to be separated by the differentmethods,
e.g., the oracle for the standard cut loop will return a point in argmin{〈c, x〉 : x ∈ P}.
Moreover, for each instance, we will be given a finite upper bound UB and incorporate
the linear inequality 〈c, x〉 ≤ UB in a similar way. This upper bound gets updated

Algorithm 2 Generic cutting plane method.
1: Input: point oracle (PO), separation oracle (SO), objective 〈c, x〉, outer radius R > 0

2: UB ← R‖c‖
3: P ← polyhedron defined by inequalities A1 queried from SO as well as 〈c, x〉 ≤ UB
4: while UB − LB > 10−3 do
5: LB ← min{〈c, x〉 : x ∈ P}
6: x ′ ← ask PO for next point to be separated
7: 〈a, x〉 ≤ b ← ask SO for inequality that is maximally violated by x ′
8: if 〈a, x ′〉 > b then
9: P ← P ∩ {x ∈ R

n : 〈a, x〉 ≤ b}
10: else
11: UB = min{UB, 〈c, x ′〉}

return UB, LB

123

A simple method for convex optimization in the oracle model

whenever a feasible solution of better objective value was found. Our framework
collects all inequalities queried by the currentmethod and computes the resulting lower
bound on the optimum value in every iteration. Each method is stopped whenever the
difference of upper and lower bound is below 10−3.

We will also inspect the possibility of a smart oracle that, regardless of whether
a given point x is feasible, may still provide a valid inequality as well as a feasible
solution (for instance, by modifying x in a simple way so that it becomes feasible).
Such an oracle is often automatically available and can have a positive impact on the
performance of the considered algorithms. For the problems we consider, the actual
implementation of a smart oracle will be specified below.

3.2 Implementation

The framework has been implemented in julia 1.6.2 using JuMP and
Gurobi 9.1.1. To guarantee a fair comparison, all four methods have been imple-
mented in a straightforward fashion. We use the textbook implementation of the
ellipsoid method, and Badenbroek’s implementation of the analytic center cutting
plane method [2]. Our method is implemented2 in the spirit of Theorem 2, where pt

is computed using Gurobi. Note that the number reported in Table 1 deviate slightly
from those reported in [13], because we have rerun the experiments in a different
computational environment and Algorithm 1 does not longer require to normalize
objective gradients.

3.3 Test sets

We use three problem classes in our experiments: linear programming formulations of
themaximum-cardinalitymatching problem, semidefinite relaxations of themaximum
cut problem, and LPBoost instances for classification problems.

For the maximum-cardinality matching problem, we consider the linear program

max
∑

e∈E
xe

∑
e∈δ(v)

xe ≤ 1, for all v ∈ V ,

∑
e∈E[U]

xe ≤ |U | − 1

2
, for all U ⊆ V with |U | odd

x ∈ [0, 1]E ,

due to Edmonds [18], where G = (V , E) is a given undirected graph, δ(v) is the
set of all edges incident to v, and E[U] is the set of all edges with both endpoints
in U . The latter constraints are handled within an oracle that computes an inequality
minimizing (|U | − 1)/2 − ∑

e∈E[U] xe, whereas the other inequalities are provided
as initial constraints. For the above problem, the smart version of the oracle does not

2 https://github.com/christopherhojny/supplement_simple-iterative-methods-linopt-convex-sets.

123

https://github.com/christopherhojny/supplement_simple-iterative-methods-linopt-convex-sets.

D. Dadush et al.

provide a feasible point since there is no obviousway of transforming a given point into
a feasible one. However, the smart version always provides the minimizing inequality.

Weconsider 16 random instanceswith 500nodes, generated as follows. For each r ∈
{30, 33, . . . , 75} we build an instance by sampling r triples of nodes {u, v, w} and
adding the edges of the induced triangles to the graph, forming the test set matching.
We believe that these instances are interesting because the r triangles give rise to many
constraints to be added by the oracle. Moreover, we selected all 13 instances from the
Color02 symposium [12]with less than 300 edges, yielding the test set matching02.

Our second set of instances is based on the semidefinite relaxation of Goemans and
Williamson [21] for the maximum cut problem

max

{ ∑
{v,w}∈E

c(v,w)(1 − Xv,w)/2 : Xv,w = Xw,v for all v,w ∈ V ,

Xv,v = 1 for all v ∈ V , X � 0

}

where c are edge weights on the edges of (V , E). We add the box constraints
X ∈ [−1, 1]V ×V to the initial constraints and handle the semidefiniteness constraint
by a separation oracle that, given X , computes an eigenvector h of X of minimum
eigenvalue and returns the inequality 〈hhᵀ, X〉 ≥ 0.

Within the smart version of the oracle, this constraint is returned regardless of the
feasibility of X . If X is not feasible, the semidefinite matrix 1

λ−1 X − λ
λ−1 I is returned,

where λ denotes theminimum eigenvalue of X and I the identity matrix.We generated
10 complete graphs on 10 nodes with edge weights chosen uniformly at random in
[0, 1].

Our third set of instances arises from LPBoost [16], a classifier algorithm based on
column generation. To solve the pricing problem in column generation, the following
linear program is solved:

max

{
γ : (γ, λ) ∈ [−1, 1] × [0, D]n, 〈1, λ〉 = 1,

m∑
i=1

yi h(xi , ω)λi ≤ −γ for ω ∈

}
,

where
 is a set of parameters, for i ∈ [m], xi is a data point labeled as yi = ±1,
h(·, ω) is a classifier parameterized byω ∈
 that predicts the label of xi as h(xi , ω) ∈
{−1,+1}, and D > 0 is a parameter. In our experiments, we restrict h(·, ω) to be
a decision tree of height 1, so-called tree stumps, and choose D = 5

n . To separate a
point (γ ′, λ′), we usejulia’sDecisionTreemodule to compute a decision stump
with score function λ′ that weights the data points, whose corresponding inequality
classifies (γ ′, λ′) as feasible or not. A smart oracle always returns the computed
inequality and decreases γ ′ until (γ ′, λ′) becomes feasible according to the found
decision stump.

We extracted all data sets from the UC Irvine Machine Learning Repository [35]
that are labeled as multivariate, classification, ten-to-hundred attributes, hundred-to-
thousand instances. Data sets with alpha-numeric values or too many missing values

123

A simple method for convex optimization in the oracle model

Fig. 1 Typical primal/dual bounds for a random matching, random max-cut, and LPBoost instance

123

D. Dadush et al.

have been discarded. If a selected data set contains data points with missing values,
these are removed from the data set. Table 5 in Appendix 1 reports on more details of
this test set.

3.4 Results

In the remainder of this section, we evaluate the performance of Algorithm 1 in com-
parison to the standard cut loop, the ellipsoid method, and the analytic center method.
To this end,we have conducted three different experiments, whichwewill detail below.
In what follows, we report on the number of iterations, i.e., oracle calls, each method
needs to obtain a gap (upper bound minus lower bound) below 10−3. We impose a
limit of 500 iterations per instance. Since we are testing naive implementations of each
method, we do not report on running time.

To get more insights on the primal and dual performance of the tested methods, we
also report on their primal and dual integrals. Note that we are solving maximization
problems in this section, as opposed to minimization problems in Sect. 2. That is,
primal (dual) solutions provide lower (upper) bounds on OPT. If �i is the lower bound
on the optimal objective value OPT in iteration i , the primal integral is

∑500
i=1

OPT−�i
OPT−�1

.
The dual integral is computed analogously. If an integral is small, this indicates quick
progress in finding the correct value of the corresponding bound.

Our first experiment compares the different algorithms using non-smart oracles
and using R‖c‖ as upper bound on the optimal objective value. Table 1 summarizes
our results, where all numbers are average values. Here, “matching” refers to the
random instances and “matching02” to the instances from the Color02 symposium.
The standard cut loop is referred to as “LP”, the ellipsoid method as “ellipsoid”, the
analytic center method as “analytic”, and Algorithm 1 as “our”. Note that Table 2 does
not report on the primal integral of “LP” since the standard cut loop is a dual method.

For all tested instances, we observe that the ellipsoid and analytic center methods
are struggling with solving any instance within 500 iterations. The standard cut loop is
able to solve all problemsmore efficiently with, on average, between 90–284 iterations
per instance. Our algorithm outperforms the standard cut loop on all test sets except
for LPboost. For matching problems, our algorithm requires 44% (matching) and 84%
less iterations than the standard cut loop, for maxcut problems it is 27% faster, and
only for LPboost instances it requires three times as many iterations as the standard
cut loop on average.

An explanation for this behavior is explained by the integral values, which are
provided by Table 1. Among all tested algorithms, our method beforms best in finding
an optimal solution as the primal integrals are comparably very small. On the dual
side, the picture is less clear, but in particular for matching instances our algorithm is
able to quickly find the true dual value. For LPboost, however, our method converges
much slower on the dual side than the other methods. We conjecture that this behavior
is due to the special structure of the objective for LPboost instances. While the other
problem classes have a completely dense objective, only one variable contributes to
the objective for LPboost.

123

A simple method for convex optimization in the oracle model

Ta
bl
e
1

C
om

pa
ri
so
n
of

ite
ra
tio

ns
an
d
du

al
/p
ri
m
al
in
te
gr
al

#i
te
ra
tio

ns
D
ua
li
nt
eg
ra
l

Pr
im

al
in
te
gr
al

In
st
an
ce

L
P

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

L
P

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

M
at
ch
in
g

17
5.
44

50
0.
00

50
0.
00

97
.4
4

56
.2
8

54
7.
32

25
.3
4

24
.4
6

89
2.
03

15
9.
55

74
.1
5

M
at
ch
in
g0

2
28

3.
77

46
0.
77

49
1.
69

46
.4
6

8.
46

7.
64

4.
05

0.
56

35
9.
95

90
.0
0

30
.4
9

M
ax
cu
t

26
5.
30

50
0.
00

50
0.
00

19
4.
30

39
.4
8

22
5.
43

17
.7
8

27
.3
9

27
4.
48

11
7.
13

81
.3
4

L
Pb

oo
st

91
.3
8

48
9.
06

47
9.
12

26
9.
00

3.
63

14
.9
1

21
.9
2

51
.9
4

33
9.
65

54
.2
0

52
.8
3

123

D. Dadush et al.

Ta
bl
e
2

C
om

pa
ri
so
n
of

ite
ra
tio

ns
an
d
du

al
/p
ri
m
al
in
te
gr
al
us
in
g
sm

ar
to

ra
cl
es

#I
te
ra
tio

ns
D
ua
li
nt
eg
ra
l

Pr
im

al
in
te
gr
al

In
st
an
ce

L
P

E
lli
ps
oi
d

an
al
yt
ic

A
lg
or
ith

m
1

L
P

el
lip

so
id

an
al
yt
ic

A
lg
or
ith

m
1

el
lip

so
id

an
al
yt
ic

A
lg
or
ith

m
1

M
at
ch
in
g

17
5.
44

50
0.
00

50
0.
00

97
.4
4

56
.2
8

54
7.
32

25
.3
4

24
.4
6

89
2.
03

15
9.
55

74
.1
5

M
at
ch
in
g0

2
28

3.
77

46
0.
77

49
1.
69

46
.4
6

8.
46

7.
64

4.
05

0.
56

35
9.
95

90
.0
0

30
.4
9

M
ax
cu
t

26
5.
30

50
0.
00

50
0.
00

19
4.
00

39
.4
8

21
8.
39

17
.8
2

27
.3
3

26
4.
97

11
5.
39

71
.0
4

L
Pb

oo
st

89
.5
6

34
6.
38

88
.0
0

12
6.
75

3.
77

14
.7
5

6.
14

6.
12

23
.2
5

6.
00

6.
26

123

A simple method for convex optimization in the oracle model

Ta
bl
e
3

C
om

pa
ri
so
n
of

ite
ra
tio

ns
an
d
du

al
/p
ri
m
al
in
te
gr
al
us
in
g
sm

ar
to

ra
cl
es

an
d
an

op
tim

al
in
iti
al
iz
at
io
n
of

th
e
up

pe
r
bo

un
d
va
lu
e

#i
te
ra
tio

ns
D
ua
li
nt
eg
ra
l

Pr
im

al
in
te
gr
al

In
st
an
ce

L
P

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

L
P

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

M
at
ch
in
g

16
6.
19

50
0.
00

30
.8
1

29
.8
1

56
.2
8

57
8.
48

17
.5
1

17
.4
6

0.
00

0.
00

0.
00

M
at
ch
in
g0

2
19

7.
23

18
7.
62

1.
46

1.
46

8.
46

8.
46

0.
03

0.
03

0.
00

0.
00

0.
00

M
ax
cu
t

22
5.
90

50
0.
00

92
.7
0

18
6.
50

39
.4
7

62
0.
00

15
.5
5

30
.0
0

0.
00

0.
00

0.
00

L
Pb

oo
st

56
.7
5

30
3.
06

45
.5
6

10
1.
56

3.
61

14
.7
5

3.
79

3.
91

0.
00

−0
.0
0

0.
00

123

D. Dadush et al.

Ta
bl
e
4

C
om

pa
ri
so
n
of

ite
ra
tio

ns
an
d
du

al
/p
ri
m
al
in
te
gr
al
us
in
g
sm

ar
to

ra
cl
es

an
d
an

al
m
os
to

pt
im

al
in
iti
al
iz
at
io
n
of

th
e
up

pe
r
bo

un
d
va
lu
e

#i
te
ra
tio

ns
D
ua
li
nt
eg
ra
l

Pr
im

al
in
te
gr
al

In
st
an
ce

L
P

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

L
P

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

E
lli
ps
oi
d

A
na
ly
tic

A
lg
or
ith

m
1

M
at
ch
in
g

17
5.
44

50
0.
00

50
0.
00

97
.4
4

56
.2
8

54
7.
32

25
.3
4

24
.4
6

89
2.
03

15
9.
55

74
.1
5

M
at
ch
in
g0

2
28

3.
77

46
0.
77

49
1.
69

46
.4
6

8.
46

7.
64

4.
05

0.
56

35
9.
95

90
.0
0

30
.4
9

M
ax
cu
t

26
5.
30

50
0.
00

50
0.
00

19
4.
00

39
.4
8

21
8.
39

17
.8
2

27
.3
3

26
4.
97

11
5.
39

71
.0
4

L
Pb

oo
st

90
.1
9

34
6.
38

87
.8
1

12
6.
75

3.
79

14
.7
5

6.
14

6.
12

23
.2
5

6.
00

6.
25

123

A simple method for convex optimization in the oracle model

For this reason, our second experiment tested the impact of smart oracles on the
performance of the four different methods. In particular for LPboost this might make
a difference, because it is rather easy to turn an infeasible point into a feasible solution
by setting the objective value γ on the corresponding value. Indeed, as Table 2 shows,
there is almost no effect of smart oracles on the tested maxcut problems. Moreover,
there is no effect onmatching problems since there we did not implement smart oracles
as discussed above. For LPboost, however, the ellipsoid and analytic center method
as well as our algorithm benefit greatly from smart oracles. While the analytic center
method and Algorithm 1 achieve the lowest primal integral values of approximately 6,
the relative improvement is most pronounced for the ellipsoid method whose primal
integral drops by 93%.

Finally, we investigated the impact of knowing a good feasible solution on the
performance of the four different algorithms. To this end, we initialized the upper
bound on the optimal objective value in our cutting plane framework either with the
optimal value or the a value being 1% larger than the optimum value. In the first case,
all algorithms only need to find a matching dual value, whereas in the second case
also an (almost) optimal primal solution needs to be found. Tables 3 and 4 report on
our results, respectively, using smart oracles.

We can see that initializing the upper boundwith the optimal value greatly improves
the performance of the analytic center method and our algorithm, and also the ellipsoid
method performs faster for matching02 instances. The performance of the standard cut
loop, however, does not show significant differences in comparison with the standard
initialization. But if an almost optimal initialization of the upper bound is used, we
cannot observe large differences in the average iteration count in comparison to the
standard initialization. This shows that all tested methods perform rather well on the
dual side, but are struggling in finding an almost optimal primal solution. Based on the
primal integral values, however, we can see that ourmethod performs on average better
than the ellipsoid and analytic center method. The above findings are also supported
by the plots in Fig. 1 that show the typical development of the relative primal and dual
bounds for the different problem types.

Acknowledgements We would like to thank Robert Luce and Sebastian Pokutta for their very valuable
feedback on our work. The first author has received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant agreement QIP–
805241)

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

D. Dadush et al.

Table 5 Overview of LPboost
instances

Name #Data points #Features

00451 116 9

audit_risk 772 27

australian 690 14

colposkopy-green 98 68

echocardiogram 61 11

german 1000 24

heart 270 13

house-votes-84 232 16

ionosphere 351 34

mesothelioma 324 34

parkinsons 195 22

pop_failures-2 540 20

sonar 208 60

spect 187 22

tic-tac-toe 958 9

wpbc-1 194 33

ADetails about the LPboost test set

Table 5 reports about the characteristics of the LPboost test set. The names of the
different data sets match those from the UC Irvine Machine Learning Repository [35]
and columns “#data points” and “#features” report about the number of data points
and the number of different features of each data point.

References

1. Atkinson, D.S., Vaidya, P.M.: A cutting plane algorithm for convex programming that uses analytic
centers. Math. Program. 69(1), 1–43 (1995)

2. Badenbroek, R., de Klerk, E.: An analytic center cutting planemethod to determine complete positivity
of a matrix. INFORMS J. Comput. 34, 1115–125 2022 . https://doi.org/10.1287/ijoc.2021.1108

3. Beck,A.: First-OrderMethods inOptimization. Society for Industrial andAppliedMathematics (2017).
https://doi.org/10.1137/1.9781611974997

4. Belloni, A., Freund, R.M., Vempala, S.: An efficient rescaled perceptron algorithm for conic systems.
Math. Oper. Res. 34(3), 621–641 (2009)

5. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. Society for Industrial and
Applied Mathematics, London (2001). https://doi.org/10.1137/1.9780898718829

6. Betke, U.: Relaxation, new combinatorial and polynomial algorithms for the linear feasibility problem.
Discret. Comput. Geom. (2004). https://doi.org/10.1007/s00454-004-2878-4

7. Chekuri, C., Quanrud, K.: Approximating the Held–Karp bound for metric TSP in nearly-linear time.
In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). IEEE (2017).
https://doi.org/10.1109/focs.2017.78

8. Chekuri, C., Quanrud, K.: Near-linear time approximation schemes for some implicit fractional
packing problems. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. Society for Industrial and Applied Mathematics (2017). https://doi.org/10.1137/1.
9781611974782.51

123

https://doi.org/10.1287/ijoc.2021.1108
https://doi.org/10.1137/1.9781611974997
https://doi.org/10.1137/1.9780898718829
https://doi.org/10.1007/s00454-004-2878-4
https://doi.org/10.1109/focs.2017.78
https://doi.org/10.1137/1.9781611974782.51
https://doi.org/10.1137/1.9781611974782.51

A simple method for convex optimization in the oracle model

9. Cheney, E.W., Goldstein, A.A.: Newton’s method for convex programming and Tchebycheff approx-
imation. Numer. Math. 1(1), 253–268 (1959)

10. Chubanov, S.: A strongly polynomial algorithm for linear systems having a binary solution. Math.
Program. 134(2), 533–570 (2011). https://doi.org/10.1007/s10107-011-0445-3

11. Chubanov, S.: A polynomial algorithm for linear feasibility problems given by separation oracles.
Optimization Online (2017)

12. Color02—Computational Symposium: Graph Coloring and its Generalizations. Available at http://
mat.gsia.cmu.edu/COLOR02 (2002)

13. Dadush, D., Hojny, C., Huiberts, S., Weltge, S.: A simple method for convex optimization in the oracle
model. In: Aardal, K., Sanità, L. (eds.) Integer Programming and Combinatorial Optimization, 23rd
International Conference, IPCO 2022 (2022)

14. Dadush, D., Végh, L.A., Zambelli, G.: Rescaling algorithms for linear conic feasibility. Math. Oper.
Res. 45(2), 732–754 (2020). https://doi.org/10.1287/moor.2019.1011

15. Dantzig, G.B.: Converting a converging algorithm into a polynomially bounded algorithm. Technical
report, Stanford University, 1992. 5.6, 6.1, 6.5 (1991)

16. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via column generation.
Mach. Learn. 46(1), 225–254 (2002)

17. Dunagan, J., Vempala, S.: A simple polynomial-time rescaling algorithm for solving linear programs.
Math. Program. 114(1), 101–114 (2007). https://doi.org/10.1007/s10107-007-0095-7

18. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bureau Stand.
69B(1–2), 125–130 (1964)

19. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3(1–2), 95–110
(1956)

20. Garg, N., Könemann, J.: Faster and simpler algorithms for multicommodity flow and other
fractional packing problems. SIAM J. Comput. 37(2), 630–652 (2007). https://doi.org/10.1137/
s0097539704446232

21. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995). https://doi.org/
10.1145/227683.227684

22. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc.
64, 275–278 (1958)

23. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization, vol.
2. Springer (1988). https://doi.org/10.1007/978-3-642-78240-4

24. Jaggi, M.: Revisiting Frank–Wolfe: projection-free sparse convex optimization. In: Proceedings of
Machine Learning Research, vol. 28, pp. 427–435. PMLR, Atlanta, Georgia, USA (17–19, 2013).
http://proceedings.mlr.press/v28/jaggi13.html

25. Jiang, H., Lee, Y.T., Song, Z., Wong, S.C.w.: An improved cutting plane method for convex optimiza-
tion, convex-concave games, and its applications. In: Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pp. 944–953. STOC 2020, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3357713.3384284

26. Kelley, J.E., Jr.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4),
703–712 (1960)

27. Khachiyan, L.G.: A polynomial algorithm in linear programming (in Russian). Doklady Akademiia
Nauk SSSR 224, 1093–1096 (1979), English Translation: Soviet Mathematics Doklady 20, 191–194

28. Lee, Y.T., Sidford, A.,Wong, S.C.: A faster cutting planemethod and its implications for combinatorial
and convex optimization. In: 2015 IEEE56thAnnual SymposiumonFoundations ofComputer Science,
pp. 1049–1065 (2015). https://doi.org/10.1109/FOCS.2015.68

29. Nesterov, Y.: Cutting plane algorithms from analytic centers: efficiency estimates. Math. Program.
69(1), 149–176 (1995)

30. Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and
covering problems. Math. Oper. Res. 20(2), 257–301 (1995). https://doi.org/10.1287/moor.20.2.257

31. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the
brain. Psychol. Rev. 65(6), 386–408 (1958). https://doi.org/10.1037/h0042519

32. Shahrokhi, F., Matula, D.W.: The maximum concurrent flow problem. J. ACM 37(2), 318–334 (1990).
https://doi.org/10.1145/77600.77620

33. Sonnevend, G.: New algorithms in convex programming based on a notion of “centre” (for systems
of analytic inequalities) and on rational extrapolation. In: Hoffmann, K.H., Zowe, J., Hiriart-Urruty,

123

https://doi.org/10.1007/s10107-011-0445-3
http://mat.gsia.cmu.edu/COLOR02
http://mat.gsia.cmu.edu/COLOR02
https://doi.org/10.1287/moor.2019.1011
https://doi.org/10.1007/s10107-007-0095-7
https://doi.org/10.1137/s0097539704446232
https://doi.org/10.1137/s0097539704446232
https://doi.org/10.1145/227683.227684
https://doi.org/10.1145/227683.227684
https://doi.org/10.1007/978-3-642-78240-4
http://proceedings.mlr.press/v28/jaggi13.html
https://doi.org/10.1145/3357713.3384284
https://doi.org/10.1109/FOCS.2015.68
https://doi.org/10.1287/moor.20.2.257
https://doi.org/10.1037/h0042519
https://doi.org/10.1145/77600.77620

D. Dadush et al.

J.B., Lemarechal, C. (eds.) Trends in Mathematical Optimization: 4th French-German Conference on
Optimization, pp. 311–326. Birkhäuser Basel, Basel (1988)

34. UC Irvine Machine Learning Repository. https://archive-beta.ics.uci.edu/ml/datasets. Accessed 3 Sep
2021

35. Vaidya, P.M.: A new algorithm for minimizing convex functions over convex sets. Math. Program.
73(3), 291–341 (1996). https://doi.org/10.1007/bf02592216

36. Yudin, D., Nemirovsky, A.: Informational complexity and efficient methods for solution of convex
extremal problems. Econ. Math. Methods 12, 357–369 (1976)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://archive-beta.ics.uci.edu/ml/datasets
https://doi.org/10.1007/bf02592216

	A simple method for convex optimization in the oracle model
	Abstract
	1 Introduction
	2 Algorithm
	3 Computational experiments
	3.1 Framework
	3.2 Implementation
	3.3 Test sets
	3.4 Results

	Acknowledgements
	A Details about the LPboost test set
	References

