
The Impact of Asynchrony on Parallel Model-Based EAs
Arthur Guijt

Arthur.Guijt@cwi.nl
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands

Dirk Thierens
D.Thierens@uu.nl
Utrecht University

Utrecht, The Netherlands

Tanja Alderliesten
T.Alderliesten@lumc.nl

Leiden University Medical Center
Leiden, The Netherlands

Peter A.N. Bosman
Peter.Bosman@cwi.nl

Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Delft University of Technology

Delft, The Netherlands

ABSTRACT
In a parallel EA one can strictly adhere to the generational clock,
and wait for all evaluations in a generation to be done. However,
this idle time limits the throughput of the algorithm and wastes
computational resources. Alternatively, an EA can be made asyn-
chronous parallel. However, EAs using classic recombination and
selection operators (GAs) are known to suffer from an evaluation
time bias, which also influences the performance of the approach.
Model-Based Evolutionary Algorithms (MBEAs) are more scalable
than classic GAs by virtue of capturing the structure of a problem
in a model. If this model is learned through linkage learning based
on the population, the learned model may also capture biases. Thus,
if an asynchronous parallel MBEA is also affected by an evalua-
tion time bias, this could result in learned models to be less suited
to solving the problem, reducing performance. Therefore, in this
work, we study the impact and presence of evaluation time biases
on MBEAs in an asynchronous parallelization setting, and compare
this to the biases in GAs. We find that a modern MBEA, GOMEA,
is unaffected by evaluation time biases, while the more classical
MBEA, ECGA, is affected, much like GAs are.

CCS CONCEPTS
•Mathematics of computing→ Evolutionary algorithms; •
Theory of computation → Parallel computing models.

KEYWORDS
Genetic Algorithms, Model-Based Evolutionary Algorithms, Link-
age Learning, Parallel Algorithms, Asynchronous Algorithms

ACM Reference Format:
Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman.
2023. The Impact of Asynchrony on Parallel Model-Based EAs. In Genetic
and Evolutionary Computation Conference (GECCO ’23), July 15–19, 2023,
Lisbon, Portugal. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3583131.3590406

GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0119-1/23/07.
https://doi.org/10.1145/3583131.3590406

1 INTRODUCTION
For the optimization of many real-world problems the assessment
of the quality of a solution (evaluation) involves a time-consuming
process, e.g., the training of a neural network. Problems with such
evaluation functions are called expensive optimization problems.

More often than not, the amount of wall time spent should be
minimized. Rather than using the resources to perform these evalua-
tions sequentially, it is preferred to use the resources simultaneously,
to run evaluations in parallel. As evaluations are also commonly
independent, the parallelization potential is significant, allowing
us to save significant amounts of time.

However, the generational nature of an EA may limit how par-
allelizable the algorithm is. EAs often follow a loop of generating
offspring, evaluating them, and performing selection. Selection is
only performed once all offspring solutions are evaluated, and new
solutions are only generated and evaluated once selection has been
performed. This describes a standard generational scheme. Alterna-
tively, the population can be altered incrementally. For example, by
generating a single solution at a time and attempting to introduce
it into the population immediately after evaluation, resulting in a
steady-state scheme.

In a parallel EA, unless very large population sizes are used, this
limited number of solutions per generation means that processors
may run out of solutions to evaluate until the next generation
starts, i.e., when new offspring will be generated. Before continuing,
these processors must wait on the other processors to ensure all
evaluations have finished. This waiting on other processors is also
called synchronization.

Synchronizing is however only required if one wishes to have
the exact same behavior as the sequential implementation of the
EA. Alternatively, one can also asynchronously sample, evaluate,
and apply selection, as is the case for the asynchronous steady-state
GA [15]. This may be beneficial as waiting wastes computational
resources. For example, in a situation with many computing nodes,
a slower node or evaluation may stop all other nodes from pro-
gressing, introducing a bottleneck into the optimization process,
see Figure 1 for an illustrative example. Furthermore, in the case
of node or network failures, synchronization will even lock up the
optimization process indefinitely. In the remainder of this work we
will refer to approaches employing synchronization as synchronous
approaches, and approaches that forgo this as asynchronous.

910

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://doi.org/10.1145/3583131.3590406
https://doi.org/10.1145/3583131.3590406
https://doi.org/10.1145/3583131.3590406
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583131.3590406&domain=pdf&date_stamp=2023-07-12

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

asynchronous synchronous

0

1

2

3

4

5

6

7

pr
oc

es
so

r
ID

Figure 1: Resource consumption of synchronous and asyn-
chronous approaches under heterogeneous evaluation times.
Ideally, without synchronization the target solution can be
found earlier (in this example: the most expensive solution
of the second ’generation’).

However, not synchronizing does not guarantee better overall
performance of the EA. For example, while in [3] the asynchro-
nous configuration outperformed the synchronous configuration,
in [21] performance degraded when using an asynchronous ap-
proach. Evaluation time biases were investigated in [14–16], in
which was shown that there exists an evaluation time bias, i.e., the
distribution of the population is biased such that it is correlated
with the corresponding evaluation times, such that this bias is not
explained by fitness based selection. They note that this bias de-
pends on both the distribution of evaluation times and the number
of processors. More specifically, a preference towards both short
and long evaluation times on a flat fitness landscape was observed.

Even so, it is difficult to determine based on current literature,
when asynchronous execution of an EA is problematic. This is in
part due to how comparisons are often performed. First, the selec-
tion procedure is often altered when switching from synchronous
to asynchronous, making it impossible to distinguish effects caused
by asynchrony from those caused by steady-state selection and vari-
ation. Selection and variation are key aspects of an EA, and should
also be considered as an additional influence. Furthermore, in order
for effects of time biases to be interpretable, the time distributions
of evaluations need to be known as well.

More generally, for EAs the population size is important as well.
Different approaches may require different population sizes to per-
form best, especially if variation and selection are different. When
switching between synchronous and asynchronous the population
size should therefore be tuned again to avoid giving preferential
treatment to the approach for which the population size was tuned.

Given all of this, we are particularly interested in the impact of
selection and variation on the behavior of the EA. Together they
induce a bias towards higher fitness solutions in the population.
An oversight in how these operators work could very well induce,
preserve, or halt evaluation time biases too.

In this work, we will explicitly also consider Model-based Evo-
lutionary Algorithms (MBEAs). Through the use of linkage learn-
ing (LL) in MBEAs, variation can be performed based on inferred
variable dependencies. This can result in significant performance
improvements. To our knowledge, no prior work has studied the
impact of asynchronous parallelization on MBEAs. Yet this is of
interest, LL infers the structure of a problem through the use of the
population. If the composition of the population is based not only

on the fitness, but also the evaluation time associated with these
solutions, then this will also affect the structure learning process.
Therefore, while LL is known to improve performance, this could
be disrupted by biases, such as evaluation time biases.

Our research questions are therefore:

1. How does selection affect performance, the ability to find a
solution with target fitness, under various evaluation time
distributions in an asynchronous setting?

2. How does variation affect performance under various evalu-
ation time distributions in an asynchronous setting?

3. More specifically, how are MBEAs like GOMEA and ECGA
affected by the evaluation time distribution when made
(a)synchronous parallel?

The remainder of this work is structured as follows. First, in Sec-
tion 2 we will describe the EAs used in this work. Following that,
in Section 3, the artificial benchmark functions and the evaluation
time distributions used, in addition to a real-world NAS bench-
mark are described. The remainder of experimental considerations
is described in Section 4. We discuss the results in Section 5 and
conclude in Section 6.

2 APPROACHES
In this work, we include a Simple GA as described in Subsection 2.1.
To study how linkage learning (LL) and evaluation time biases
interact, we use both a classic MBEA named the Extended Com-
pact Genetic Algorithm (ECGA) and a modern MBEA named the
Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) as
described in Subsections 2.2 and 2.3 respectively.

2.1 Genetic Algorithm (GA)
In previous works, selection in GAs is often altered simultane-
ously with the (a)synchronous nature of the approach. For example,
in [15], the synchronous configuration uses a generational selection
scheme, whereas the asynchronous configuration is steady-state. A
steady-state configuration exhibits different behavior compared to
GAs employing a generational selection scheme [17]. We therefore
also investigate a ‘synchronous’ steady-state variant and an asyn-
chronous ‘generational’ approach in addition to the original two
configurations. Pseudocode for these approaches can be found in
the supplementary material.

For the synchronous steady-state approachwe operate in batches
of |𝑃 | offspring, generating each offspring at the start of the evalua-
tion, and synchronizing until all |𝑃 | offspring solutions are sampled
and evaluated. Steady-state selection is then performed once the
evaluation of an offspring solution is finished. For this we opt to
randomly select a solution from the population and replace this
solution if it is worse than the newly evaluated offspring solution.
This ensures that the population’s average fitness cannot decrease,
and thus stops any bias contrary of improvement to fitness from
taking over the population. When using generational selection in
an asynchronous setting, every solution that completes evaluation
is added into a selection pool first, similar to the approach described
in [16]. Once this pool has reached the prerequisite size, we apply
the generational selection operator, replacing the entire population

911

The Impact of Asynchrony on Parallel Model-Based EAs GECCO ’23, July 15–19, 2023, Lisbon, Portugal

with the end result. We perform generational selection using a Par-
ent + Offspring (P+O) tournament of size 4, where the number of
offspring is equal to the population size. Tournaments are created
based on shuffling, then by splitting the population in blocks of
the tournament size, repeating as often as necessary to select P
solutions.

For recombination, we use Uniform Crossover (UX) and Two-
point Crossover (TPX). In addition to Subfunction Crossover (SFX)
for problems for which subfunction information is available. While
UX is included as a baseline, TPX and SFX are included as they suit
the structure of at least one of the artificial benchmark functions
described in Subsection 3.1. Specifically, in SFX each block of vari-
ables that forms a subfunction is exchanged with 𝑝 = 0.5, perfectly
mixing the blocks of the concatenated DT function, whereas TPX is
especially suited for the ANKL problem due to its sequential adja-
cent structure. These operators should showcase how the behavior
changes when a well-suited operator is used from the start and
throughout the search, also providing an idealized reference for
approaches employing LL.

2.2 Extended Compact Genetic Algorithm
(ECGA)

ECGA is one of the first approaches employing LL. Unlike GOMEA,
explained in the next subsection, this approach still has separate
recombination / variation and selection steps. This allows us to use
exactly the same selection procedures as for the GA.

With ECGA, a marginal product model (MPM) is learned using
a metric based on model complexity and population compression
after applying selection [9]. For this selection step, we apply tour-
nament selection of size 4. In the resulting model every variable is
grouped disjoint subsets, thereby modeling each subset of variables
jointly. For example, given MPMM = {{0, 1}, {2, 3}} and popula-
tion (after selection) 𝑃𝑀 = 0011, 1100, allows us to sample 00 and
11 with, for each subset of variables, equal likelihood. Therefore,
allowing us to sample 0000, 0011, 1100, and 1111.

Learning a model is costly. Therefore, performing continuous
updates of this model for every solution sampled is too computa-
tionally expensive to be benchmarked properly. As such, for the
asynchronous configuration the model is updated only when |𝑃 |
(population size) evaluations finish. Thereby updating the model
with the same frequency as the generational approach (genera-
tionally). While this reduced update frequency should not have too
significant an impact on the learning of the MPM, solutions are
sampled using out-of-date frequency estimates.

2.3 Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA)

While ECGA utilizes LL, it does so differently from most modern
MBEAs. Modern model-based approaches like P3 [7, 8], DSMGA-
II [1, 11], and GOMEA [5, 19] all use an incremental change and ac-
cept/denymechanism, reminiscent of local search. This allows these
approaches to utilize non-disjoint models, like the Incremental Link-
age Set (ILS) in DSMGA and the Linkage Tree (LT) in GOMEA [19]
and P3 [7]. In this workwewill be using the LT, which is constructed
through UPGMA hierarchical clustering applied to normalized mu-
tual information (NMI) of the variables in the population. Each of

these models are often represented as a Family of Subsets (FOS),
i.e., a list of subsets containing variables to which variation should
be applied jointly. For the LT the resulting tree is flattened such
that each node in the tree corresponds to a subset of variables.

Variation and selection are performed using Gene-pool Optimal
Mixing (GOM). In GOM changes are made to subsets of variables as
defined by a Family of Subsets, sampled from the population. After
each change solutions immediately compete against their parent.
Because of this, changes are evaluated more directly, preventing
changes to other variables from being a source of noise for assessing
the quality of the current change [5]. If no change was made to a
solution through all steps in GOM, or the strict non-improvement
stretch of a solution (1 +

⌊
log2 (|𝑃 |)

⌋
) was reached, Forced Improve-

ments (FI) are applied. FI is GOM where the donor is the current
best solution (elitist). If FI fails to improve a solution, the solution is
replaced with the current elitist. While this integrated variation and
selection operator prevents us from changing the selection operator,
this combined recombination and selection process is interesting
in itself.

2.3.1 Synchronous. The synchronous approach closely follows
the sequential version of GOMEA. Every generation starts with
learning a linkage model. Then, an offspring population is made,
initially containing a copy of each individual in the population.
GOM and potentially FI are then scheduled to be applied in parallel
on each of these offspring solutions, leaving the population from
which is sampled during GOM, unchanged. When processors are
available, and there are still offspring solutions left on which GOM
needs to be applied, GOM is applied to of the offspring solutions
in parallel. Each application of GOM is scheduled continuously
until all involved evaluations have completed. Once GOM (and FI)
complete the processor is freed up again. A generation ends once
all solutions had GOM applied to it once.

2.3.2 Asynchronous. When making GOMEA asynchronous, there
is no longer a generational offspring population which is genera-
tionally improved. Instead, GOM is scheduled to be applied after
initialization, and after completing GOM, using a queue. Once a
processor has finished its current task, the next task from the queue
gets executed. At the start of (asynchronous) GOM, if GOM has
been applied |𝑃 | (population size) times, a new FOS is learned. Fur-
thermore, a copy of the population is made. This effectively turns
every application of GOM into its own mini-generation. Conse-
quently, at the end of GOM we copy the generated offspring to
the population from which is sampled. We label this configuration
"a/e", for asynchronous end. However, this configuration leads to
significant use of out-of-date information: none of the accepted
changes of solutions undergoing GOM are visible to other solutions.
As such we also evaluate an alternative configuration that copies
the offspring to the shared population at intermediate stages during
GOM, not just at the end. This configuration is labelled "a/i".

3 PROBLEMS
Previous work has indicated that heritable heterogeneous evalua-
tion times can negatively influence the behavior of an asynchronous
EA [15]. Heritable heterogeneous evaluation times concern varia-
tions in evaluation time associated with the genotype itself, rather

912

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

than external factors like machine load. A good example of a prob-
lem with this property is training a neural network, which we will
discuss in Subsection 3.2.

However, both the fitness landscape and evaluation times of such
a problem are generally complex, which may complicate analysis.
We will therefore first describe benchmark functions with varying
kinds of landscapes and structure, for which we will also vary the
evaluation times associated with the solutions, in Subsection 3.1.

3.1 Artificial Benchmark Functions
In [15] it is indicated that evaluation times need to be heritable, and
as such wewill focus on this aspect. Similarly, evaluation times need
to be preserved under variation too, as otherwise no time bias can
develop. Furthermore, in [15] settings in which the evaluation cost
was perfectly positively and negatively correlated were investigated
- and found no significant difference in performance. As any bias
contrary to the improvement of fitness would be unlikely to survive
selection, performance of an EA is likely not impacted. We therefore
select a distribution based on the genotype which is not a simple
function of the fitness.

Furthermore, as the results in [14] indicate a bias towards the
extreme evaluation times, we will control where in our benchmark
functions these extremes are located. The evaluation time setting
in this work is expressed as a ratio 𝑎 : 𝑏, where 𝑏 is the cost of the
optimum 𝑠∗ and 𝑎 is the cost of the bitwise complement 𝑠∗ - i.e., the
solution with all bits flipped. The evaluation time 𝐸 (𝑠) of a solution
𝑠 , given the normalized Hamming distance 𝐻 (𝑠, 𝑠∗) between this
solution 𝑠 and the optimum 𝑠∗ is then:

𝐸 (𝑠) = 𝐻
(
𝑠, 𝑠∗

)
𝑎 +

(
1 − 𝐻

(
𝑠, 𝑠∗

))
𝑏 (1)

We choose to use the ratios 100 : 1, 10 : 1, 2 : 1, 1 : 1, 1 : 2, 1 : 10
and 1 : 100, that is, ranging from a cheaper optimum to a more
expensive optimum.

3.1.1 Concatenated Deceptive Trap (DT). The first problem we will
use is the concatenated DT function [4, 20]. It consists of 𝑛 blocks
of size 𝑘 which are concatenated together, forming a full string of
length ℓ = 𝑛𝑘 . In this work, we will only consider the case for 𝑘 = 5.
In order to evaluate the function, first the number of ‘1’ bits within
the block 𝑏 is counted. Following that, the 𝐷𝑇 function is applied
to the unitation of each block 0 through 𝑛 − 1 and aggregated by
summation:

𝐷𝑇 (𝑢) =
{

𝑘 𝑢 = 𝑘

𝑘 − 𝑢 − 1 otherwise (2)

𝑓 (𝑥) =
𝑛−1∑︁
𝑏=0

𝐷𝑇

(
𝑏𝑘+𝑘−1∑︁
𝑖=𝑏𝑘

𝑥𝑖

)
(3)

As there are many search paths indicating that more zeroes is
better, high-fitness solutions consisting of zeroes are easiest to find.
The solution consisting of all zeroes is referred to as the deceptive at-
tractor. Yet, the needle in a haystack where 𝑢 = 𝑘 , has better fitness:
𝑘 as opposed to 𝑘 − 1 for the deceptive attractor. It is therefore all
ones that is actually the optimum to this function. In order to solve
this problem in a scalable manner, variables should be exchanged
at the level of these blocks [18], for example by recognizing block
structure by using linkage learning.

The complement of the optimum to this problem consists of
all zeroes, and is the solution consisting of only attractors. We
have defined the range of evaluation times depending on these two
solutions. A preference towards cheaper solutions could therefore
make a cheap-to-evaluate attractor even more attractive.

3.1.2 Adjacent NK-Landscapes (ANKL). While the (additively de-
composable) concatenated DT function is difficult to solve with
a local searcher, it is separable. This makes the problem easy to
solve if the separability is known, or when this separability can be
inferred. We therefore also consider the non-separable problem of
ANKL. This problem consists of overlapping blocks consisting of 𝑘
adjacent variables with some stride 𝑠 from block to block. In this
work, we consider 𝑘 = 5 and 𝑠 = 2. For each block 𝑖 a randomly
generated function 𝑓𝑖 is defined that maps each genotype of this
block to a value ranging from [0, 1]. Given random functions 𝑓0
through 𝑓𝑛−1, where 𝑥 is a genotype of length ℓ = 𝑠𝑛 + 𝑘 − 1:

𝑓 (𝑥) =
𝑛−1∑︁
𝑖=0

𝑓𝑖 (𝑥𝑠𝑖 , . . . , 𝑥𝑠𝑖+𝑘−2, 𝑥𝑠𝑖+𝑘−1) (4)

Due to this more complex overlapping structure as well as the
random nature of the subfunctions, it will be more difficult for the
linkage learning approaches to configure the linkage model appro-
priately. As a result, such approaches require more generations to
obtain a suitable model. This may therefore provide more time for
any evaluation-time biases to steer the population towards or away
from the optimum, potentially causing structure to be found earlier,
or preventing the structure from being found at all.

3.2 NASBench 301
While benchmark functions are interesting and useful for analysis,
they are not necessarily representative of practical problems. Real-
world problems often contain elements that simpler benchmark
functions do not account for.

We will therefore apply the aforementioned approaches to the
Neural Architecture Search benchmark NASBench 301 [22]. NAS-
Bench 301 is a benchmark for neural architecture search applied
to the DARTS search space. In this search space, each network
is trained from scratch. In order to make this less expensive as a
benchmark, the benchmark provides both a surrogate model for
the fitness and the corresponding evaluation time. This allows for
an efficient simulation of a run on this problem without requiring
a GPU for hours.

We use version 0.9 of the XGB surrogate model for performance
and LGB model for runtime. As noisy objective functions are not
a subject of research for this work, we have disabled noise for the
performance model. For this experiment only the runtime model is
used as an evaluation time distribution. The runtime model does
not contain noise.

4 EXPERIMENTAL SETUP
For all problems, a run using a specific population size is stopped if
it has reached the target value, or if it has converged, i.e., when all
genotypes in the population are identical. As there will be configu-
rations and problem pairs for which the target value is not reached
within a reasonable amount of time, for each set of problems, we

913

The Impact of Asynchrony on Parallel Model-Based EAs GECCO ’23, July 15–19, 2023, Lisbon, Portugal

will also be limiting the amount of time spent on a full bisection run.
If bisection was terminated prematurely we will select the smallest
successful population size found by bisection within the time limit.

Statistical tests are performed using the Mann-Whitney U-test [6,
13] with 𝑝 = 0.05 with Holm-Bonferroni [10] correction where
applicable. All experiments are carried out on a machine with two
AMD EPYC 7282 16-Core Processors 2.8GHz, with 252 GB of RAM.
Source code can be found at https://github.com/8uurg/Impact-of-
Asynchrony-on-MBEAs

4.1 Artificial Benchmark Functions
Prior work [14–16] investigated the distribution of evaluation times.
However, if an approach is influenced such that the distribution of
evaluation times is biased, this does necessarily indicate a negative
impact on the performance of an approach, like the time required
to reach the optimum. We will focus on performance under various
evaluation time configurations.

However, using standard performance metrics is problematic.
When using the number of evaluations required to reach a target
fitness, synchronous approaches are favored as waiting does not
incur any penalty, whereas utilizing these resources with additional
evaluations does count as additional evaluations. For our first exper-
iment, we will be changing the distribution of evaluation times, and
compare all investigated distributions. Using the wall time in this
comparison is problematic as the total wall time spent will change
with the distribution. For example, scaling all evaluation times by
10 will not change the evaluation times with respect to one another.
As such a run will proceed identically, except with evaluation times
that are 10 times larger. For more complex distributions it would
be hard to say whether the approach is actually negatively affected
by the change in evaluation times, or whether the solutions to be
evaluated are more costly.

We instead choose a measure that stays constant if behavior is
the same, yet still indicates when performance worsens. For this we
use the minimally required population size to reach a target value as
determined by bisection, and compare how the minimally required
population size scales across varying evaluation time distributions.

This measure works for a convergent EA as in this case the
population acts as a buffer against diversity loss. As the minimally
required population size is the smallest population size for which
a problem is solved, an increase indicates the need for a larger
diversity buffer, in turn indicating the loss of important diversity
compared to the previous configuration. If the same approach is
used, and the only difference between two configurations is the
evaluation time distribution, an increase in the minimally required
population size is an indication that the approach is sensitive to a
harmful evaluation-time bias.

We will perform these first experiments with the number of
processors equal to |𝑃 | (the population size) as this maximizes the
degree of parallelization proportional to the number of evaluations
performed. Additionally, given this setting, the evaluations with a
fast evaluation time will also be the first to complete, which is not
guaranteed with low degrees of parallelization.

For these experiments, each configuration will be evaluated for
100 random seeds, with each bisection run limited to 1 hour. This

is orders of magnitude more than what most approaches need, and
ensures even the worst performing algorithms have a chance.

4.2 NASBench 301
While comparing how approaches scale across different time distri-
butions will allow us to study the impact of evaluation time biases,
a practical problem often only has a single evaluation time distribu-
tion associated with it. Furthermore, the amount of computational
hardware available is not unbounded in practice. If this were not
the case, one could evaluate the entire search space in parallel at
the cost of the most expensive solution. A more practical goal for
parallelization for a specific problem is to minimize the amount
of wall time spent to hit a target fitness given a limited amount
of resources. As we only regard a single evaluation time distribu-
tion, aforementioned concerns do not apply to the NASBench 301
experiment.

Therefore, for the NASBench 301 experiment we will run exper-
iments for the simulated wall time required to reach a target value.
Here, first a range bounding this minimal evaluation time is deter-
mined, followed by a modified golden section search [12], detailed
further in the supplementary material. This is to find the population
size that minimizes the corresponding wall time to ensure that each
approach can be compared fairly.

For this experiment the number of processors is restricted to 64.
Each configuration is evaluated for 20 different random seeds for at
most 16 hours, due to the more costly nature of using the surrogate
over a benchmark function. As in preliminary experiments this
time limit was found to be insufficient due to wasting a significant
amount of time on small population sizes, we additionally require
an improvement to be found every 2𝑒 + 10𝑃 evaluations, where 𝑒 is
the number of evaluations issued at the last improvement and 𝑃 is
the population size.

5 RESULTS AND DISCUSSION
First, we will discuss the results on the artificial benchmark func-
tions (Table 1 for DT and Table 2 for ANKL). After this, we will
discuss the results on NASBench 301.

5.1 Artificial Benchmark Functions
From Figure 2 it is apparent that asynchronous configurations ex-
perience an evaluation time bias that leads to a change in behavior.
Specifically, the required population size is lower when the op-
timum is cheaper, i.e., is faster to evaluate, and larger when the
optimum is more expensive, i.e., takes longer to evaluate. Simulta-
neously, synchronous approaches are invariant to the distribution
of evaluation times investigated. This is in line with what would
be expected based on the results in literature [14–16].

However, the extent of the differences in minimally required
population size is highly dependent on the crossover used. When
the most suitable crossover is used, i.e., SFX for DT and TPX for
ANKL, the differences between the timing settings are small. At
the same time, when an unsuitable crossover is used, differences
in required population size range across orders of magnitude. In
the worst case, the problem is not solved within the allotted time
for more expensive optima, as such evaluation time biases can
negatively impact the performance of an approach.

914

https://github.com/8uurg/Impact-of-Asynchrony-on-MBEAs
https://github.com/8uurg/Impact-of-Asynchrony-on-MBEAs

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

- steady-state generational

10
0:

1
10

:1 2:
1

1:
1

1:
2

1:
10

1:
10

0
10

0:
1

10
:1 2:

1
1:

1
1:

2
1:

10
1:

10
0

10
0:

1
10

:1 2:
1

1:
1

1:
2

1:
10

1:
10

0

10
2

10
3

10
4

time distribution

m
in

im
al

ly
 r

eq
ui

re
d

po
pu

la
tio

n
si

ze

Concatenated Deceptive Trap

- steady-state generational

10
0:

1
10

:1 2:
1

1:
1

1:
2

1:
10

1:
10

0
10

0:
1

10
:1 2:

1
1:

1
1:

2
1:

10
1:

10
0

10
0:

1
10

:1 2:
1

1:
1

1:
2

1:
10

1:
10

0

10
1

10
2

10
3

10
4

10
5

time distribution

Adjacent NK-Landscape

approach GOMEA/e GOMEA/i ECGA GA-UX GA-TPX GA-SFX

Figure 2: Correlation between time distribution and minimally required population size, with to the left the optimum being
cheaper and to the right the optimum being more expensive than its complement. All runs are plotted as a point with opacity.
Only asynchronous configurations are shown. For the creation of the regression lines we assume that failed runs used the
maximum population size tested and are not drawn if more than half of the runs did not find the optimum. (Left: Concatenated
DT 𝑙 = 50, 𝑘 = 5, Right: ANKL 𝑙 = 40, 𝑠 = 2, 𝑘 = 5)

Table 1: Median minimally required population size on DT for ℓ = 50, 𝑘 = 5. Extended table in supplementary material.

selection - steady-state generational
approach GOMEA ECGA GA ECGA GA

cx LL-LT LL-MPM UX TPX SFX LL-MPM UX TPX SFX
(a)sync a/i a/e s a s a s a s a s a s a s a s a s
timing
100:1 44 44 44 1944 4216 - - 192 262 102 132 1906 4046 - - 434 546 176 190
10:1 44 44 44 2038 4216 - - 196 262 102 132 2022 4046 - - 450 546 174 190
2:1 44 44 44 2166 4216 - - 208 262 104 132 2042 4046 - - 512 546 164 190
1:1 44 44 44 4110 4110 - - 264 264 130 130 4052 4052 - - 496 496 182 182
1:2 44 44 44 2110 4118 - - 256 244 120 122 2060 4050 - - 482 508 168 188
1:10 44 44 44 2394 4118 - - 286 244 132 122 2316 4050 - - 584 508 198 188
1:100 44 52 44 2562 4118 - - 288 244 128 122 2534 4050 - - 634 508 234 188

Table 2: Median minimally required population size for ANKL for ℓ = 40, 𝑠 = 2, 𝑘 = 5. Extended table in supplementary material.

selection - steady-state generational
approach GOMEA ECGA GA ECGA GA

cx LL-LT LL-MPM UX TPX SFX LL-MPM UX TPX SFX
(a)sync a/i a/e s a s a s a s a s a s a s a s a s
timing
100:1 40 40 44 454 4004 7034 16260 120 206 968 11516 382 3704 1968 3682 268 408 1578 2990
10:1 36 40 48 506 4004 8156 16260 114 206 3602 11516 512 3704 1982 3682 254 408 1752 2990
2:1 40 40 44 1426 4004 16380 16260 124 206 7160 11516 1214 3704 3468 3682 396 408 3634 2990
1:1 48 48 44 2992 2992 - 17098 178 178 23488 9540 4012 4012 4076 3962 386 386 3442 3058
1:2 40 42 48 1784 3760 - 15648 194 182 49152 10848 1756 2848 4066 3630 444 444 2872 3310
1:10 40 40 48 2924 3760 - 15648 228 182 57344 10848 2802 2848 6260 3630 516 444 5046 3310
1:100 40 40 48 3722 3760 - 15648 218 182 - 10848 3654 2848 8148 3630 512 444 4096 3310

Table 3: Median of minimally required amount of time to find a solution with an accuracy of 95.2727 or higher on NASBench
301 and corresponding median population size. Sample count is even, median is midpoint average.

selection GOM steady-state generational
approach GOMEA ECGA GA ECGA GA

cx LL-LT LL-MPM UX TPX - UX TPX
(a)sync a/i a/e s a s a s a s a s a s a s

population size 63.5 49.5 58.5 - - 252.5 368.5 1024 1110 3072 - 816 480.5 2048 2048
simulation time (s) × 106 1.36 1.68 1.65 - - 0.98 1.40 4.26 4.49 7.73 - 1.52 0.98 4.43 4.77

915

The Impact of Asynchrony on Parallel Model-Based EAs GECCO ’23, July 15–19, 2023, Lisbon, Portugal

The selection method can also impact how the approach scales
across different evaluation time settings. For example, on ANKL the
asynchronous steady-state GAs with UX and SFX degrade substan-
tially, even to the point of failure, whereas the same GA, but with
a (pseudo-)generational scheme degrades substantially less, by at
most a factor 5. Yet, with the right crossover, steady-state actually
has a smaller minimally required population size, and degradation
between both configurations is at most a factor of 2.

We conjecture that this is caused by the following. In a steady-
state approach the solution is immediately integrated into the pop-
ulation. Additionally, it is also immediately available to be used
by crossover to generate new offspring. These offspring are now
more likely to be fast evaluating solutions, depending on how well
variation will preserve the evaluation time of a solution. This effect
can accumulate over time, leading to premature convergence.

On the other hand, in a generational scheme these solutions are
not immediately integrated into the population. Newly generated
offspring are hence distributed according to the original distribu-
tion of solutions – with less evaluation time bias affecting them.
Simultaneously, solutions with longer evaluation times will take
longer for a processor to evaluate. During this time, no other solu-
tions will be sampled for evaluation on this processor. In effect, the
pool of currently evaluating solutions performs selection against
short evaluation times. This will cause the amount of resources
allotted to fast evaluating solutions to be lower. Finally, this results
in less accumulation of evaluation time bias towards fast evaluating
solutions, avoiding premature convergence towards such solutions.

Variation also has a notable impact on the impact of evalua-
tion times. When variation aligns with the problem’s structure, the
different selection schemes unexpectedly scale similarly across eval-
uation time settings. Picking the right crossover operator will help
with avoiding significant degradation for asynchronous approaches,
even if the approach is in a steady-state configuration.

These results are promising for MBEAs because in MBEAs prob-
lem structure is automatically learned to inform its variation oper-
ator. One could therefore expect performance to always be reason-
able, resulting in the precise selection scheme mattering less.

Before we discuss the results for ECGA, we repeat that ECGA’s
steady-state configuration is not truly steady-state, but only applies
steady-state like selection. This is because ECGA only updates
its model once |𝑃 | (population size) solutions finish evaluating, as
stated in Section 2.2. This results in an approach with behavior
more closely resembling that of the generational approach. The
differences between the two selection methods is negligible if the
distribution updates less frequently, as is the case for ECGA.

First of all, there is the oddity that the constant time distribution
requires a larger population size in order to find the optimum than
the other asynchronous configurations for ECGA. The required
population size is more in line with the synchronous configuration
than the other time distributions. We explain this as follows. In an
asynchronous setting with heterogeneous evaluation times, after
the first few solutions finish evaluation, not enough solutions have
finished evaluation yet to update the model. As such, the next
solutions to be evaluated are still sampled from the initial random
model. These solutions are therefore additional random solutions.
Conversely, in the case where the evaluation time distribution is
constant, all evaluations finish at the same time. This results in the

4000

6000

8000

90 91 92 93 94 95

accuracy

e
v

a
lu

a
ti

o
n

 t
im

e

Figure 3: Objective (accuracy of the trained network) versus
evaluation time sampled by runs of the approaches for NAS-
Bench 301. Showing the experienced correlation between the
two for the approaches.

model being updated. Therefore, the next solutions to be evaluated
on the freed up processors, will be sampled using an updated model,
potentially with some (evaluation time) bias.

After a model update, only the solutions that are currently being
evaluated can originate from an older model. There are at most
"number of processors" such solutions. In the case of the experi-
ments above, this would be equal to the population size. This is
reflected in the results: the minimally required population size is
approximately twice as big, only for the constant evaluation time.
The set of solutions that are currently evaluating may therefore act
like an extension of the population itself.

When observing how ECGA’s minimally required population
size scales for different evaluation time settings in Figure 2, note
that it scales worse compared to a GA with a suitable crossover for
ANKL, and even with a non-suitable crossover with generational
selection. Variation is more than the subsets of variables that are
captured in the MPM model. How the model is used is just as
important. In this case, the global sampling for each subset seems
to be worse than the recombinative crossover of a GA. In conclusion,
though not necessarily the fault of LL, LL within an MBEA is no
guarantee that variation will perform well.

In contrast to ECGA and the GAs, GOMEA is found to be in-
variant to the evaluation time setting in most cases. There exists
only a single time setting and problem combination for GOMEA
for which the medians are statistically significantly different from
the rest: ’a/e’ on DT for 1:100, see Table 1. This is likely due to
the combined variation and selection method used in GOMEA. As
changes are made to individuals, they only compete against their
parent. When parent and offspring are similar in evaluation time,
this automatically results in niching behavior with respect to the
evaluation times of solutions. In comparison to global selection,
this approach stops solutions that evaluate quicker from taking
over the population, in effect removing a large source of evaluation
time bias.

5.2 NASBench 301
For NASBench 301 the distribution of the objective and evaluation
time of a solution is shown in Figure 3. From the positive corre-
lation and observations on the benchmarks one would expect to
see asynchronous configurations to be outperformed by their cor-
responding synchronous approaches. Yet, if one refers to Table 3,

916

GECCO ’23, July 15–19, 2023, Lisbon, Portugal Arthur Guijt, Dirk Thierens, Tanja Alderliesten, and Peter A.N. Bosman

this is not the case. As a matter of fact, some of the best performing
approaches are asynchronous. We explain this as follows.

Referring to Figure 3, one may note that the correlation is not
perfect. The target solution for this problem is not actually the most
expensive or least expensive solution, as was the case for the artifi-
cial benchmark functions. Additionally, an EA does not utilize all of
these solutions simultaneously. If we look at the correlation from
a particular fitness value onwards, i.e., truncating the population,
the correlation decreases as this fitness threshold increases. Eventu-
ally, this correlation even becomes slightly negative for these data
points: a setting which would actually be considered beneficial for
steady-state asynchronous GAs based on our previous results.

For ECGA this is particularly notable. The approach itself is
known to have trouble working with certain multi-modal func-
tions [2], and it seems NASBench 301 is among these problems.
Even so, the asynchronous approach has runs in which a solution
with at least the target fitness was found, whereas the synchronous
approach does not. This could be due to evaluation time biases help-
ing the approach, much like what happens with the asynchronous
steady-state GA for ANKL. It is therefore plausible that evaluation
time biases may in part be responsible for the improvements in
performance observed for asynchronous approaches, rather than
only the improvements in throughput.

Furthermore, we have observed ECGA to prematurely merge
FOS elements together on NASBench 301. As the model is unlikely
to merge variables if they are not correlated, such a merge seems
to only further reinforce correlation for this problem. Combined
with the high selection pressure, this is likely to result in premature
convergence to a single mode. In contrast, the linkage tree used
in GOMEA does not suffer from this issue. The LT FOS always
includes the univariate FOS elements: subsets with each variable on
their own. Combined with the niching behavior described above,
this significantly reduces the possibility of premature convergence
no matter the source.

This further reinforces that an MBEA not only has to learn the
right linkage from the population, but also use it in the right manner.

For GOMEA we would expect a difference between the time re-
quired for the synchronous and asynchronous approach. Since with
GOM many similar variation steps are done to a single solution
sequentially, the variance in evaluation times is potentially ampli-
fied. Furthermore, population sizes are relatively small compared
to the GA and ECGA. We would therefore expect the throughput
for asynchronous GOMEA to be considerably higher, and as such
the time required to be lower.

However, no statistically significant difference in time between
the asynchronous/e and synchronous approach is observed (𝑝 =

0.52, 𝑈 = 224, 20 samples). Furthermore, a more detailed investi-
gation of a single run does indicate that the amount of time spent
idle for the synchronous approach is notable, on average 140059s
per processor over the entire run. In contrast, there is a statistically
significant difference for the time required between the asynchro-
nous/i and synchronous approach (𝑝 = 0.007 < 0.05, 𝑈 = 100, 20
samples). Effectively, when using outdated parents, offspring are
more likely to have a lower fitness value. This degrades the perfor-
mance of the approach, counteracting any gains in throughput.

For an asynchronous MBEA to actually gain performance com-
pared to its synchronous counterpart, model updates should not

be too infrequent and material with which is recombined should
be recent. GOMEA could still be improved in this regard: each
run of GOM keeps a copy of the population for sampling. As this
population was created at the start of GOM, prior to the first evalua-
tion, this population will gradually become outdated. Updating this
population during GOM could result in recombination with more
up-to-date solutions, potentially further improving performance.

6 CONCLUSIONS
Answering RQ 1, we have observed that steady-state asynchronous
EAs are much more vulnerable to the biases induced by heteroge-
neous evaluation times, compared to asynchronous EAs using a
generational scheme. Furthermore, answering RQ 2, when paired
with a variation operator that is not competent in terms of im-
proving fitness, the impact on an algorithm’s capability to solve a
problem can be severe. In contrast, when using well suited variation
and selection operators, any differences between synchronous and
asynchronous configurations become much smaller.

For the first time we have investigated the impact of heteroge-
neous evaluation times on parallel MBEAs and linkage learning
(LL). The addition of LL promises to automatically align a variation
operator with the structure of a problem. However, answering RQ
3, there are significant differences in the impact of evaluation times
on the performance of ECGA, and GOMEA.While LL is not affected
to the extent that evaluation time biases prevent the approach from
finding high quality solutions, its performance greatly depends on
how variation and selection are performed.

Finally, rather than negatively impacting the results, LL, when
paired with the right variation and selection scheme can be a useful
tool for obtaining good performance in general, even when an EA is
asynchronous. GOMEA is an example of such an EA. GOMEA gets
selection and variation right for all the problems evaluated, and is
invariant to the choice between a synchronous or asynchronous
configuration.

ACKNOWLEDGMENTS
This publication is part of the project "DAEDALUS - Distributed
and Automated Evolutionary Deep Architecture Learning with
Unprecedented Scalability" with project number 18373 of the re-
search programme Open Technology Programme which is (partly)
financed by the Dutch Research Council (NWO). Other financial
contributions as part of this project have been provided by Elekta
AB and Ortec Logiqcare B.V..

REFERENCES
[1] Ping-Lin Chen, Chun-Jen Peng, Chang-Yi Lu, and Tian-Li Yu. 2017. Two-Edge

Graphical Linkage Model for DSMGA-II. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (GECCO ’17). Association for Computing Ma-
chinery, New York, NY, USA, 745–752. https://doi.org/10.1145/3071178.3071236

[2] Chung-Yao Chuang and Wen-Lian Hsu. 2010. Multivariate Multi-Model Ap-
proach for Globally Multimodal Problems. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation (GECCO ’10). Association
for Computing Machinery, New York, NY, USA, 311–318. https://doi.org/10.
1145/1830483.1830544

[3] Alexander W. Churchill, Phil Husbands, and Andrew Philippides. 2013. Tool
Sequence Optimization Using Synchronous and Asynchronous Parallel Multi-
Objective Evolutionary Algorithms with Heterogeneous Evaluations. In 2013
IEEE Congress on Evolutionary Computation. 2924–2931. https://doi.org/10.1109/
CEC.2013.6557925

917

https://doi.org/10.1145/3071178.3071236
https://doi.org/10.1145/1830483.1830544
https://doi.org/10.1145/1830483.1830544
https://doi.org/10.1109/CEC.2013.6557925
https://doi.org/10.1109/CEC.2013.6557925

The Impact of Asynchrony on Parallel Model-Based EAs GECCO ’23, July 15–19, 2023, Lisbon, Portugal

[4] Kalyanmoy Deb and David E. Goldberg. 1994. Sufficient Conditions for Deceptive
and Easy Binary Functions. Annals of Mathematics and Artificial Intelligence 10,
4 (1994), 385–408. https://doi.org/10.1007/BF01531277

[5] Arkadiy Dushatskiy, Marco Virgolin, Anton Bouter, Dirk Thierens, and Peter
A. N. Bosman. 2021. Parameterless Gene-pool Optimal Mixing Evolutionary
Algorithms. (2021). arXiv:2109.05259 http://arxiv.org/abs/2109.05259

[6] Michael P. Fay and Michael A. Proschan. 2010. Wilcoxon-Mann-Whitney or
t-Test? On Assumptions for Hypothesis Tests and Multiple Interpretations of
Decision Rules. Statistics surveys 4 (2010), 1–39. https://doi.org/10.1214/09-SS051

[7] Brian W. Goldman and William F. Punch. 2014. Parameter-Less Population
Pyramid. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation (GECCO ’14). Association for Computing Machinery, New York,
NY, USA, 785–792. https://doi.org/10.1145/2576768.2598350

[8] Brian W. Goldman and William F. Punch. 2015. Fast and Efficient Black Box
Optimization Using the Parameter-less Population Pyramid. Evolutionary Com-
putation 23, 3 (2015), 451–479. https://doi.org/10.1162/EVCO_a_00148

[9] Georges R. Harik, Fernando G. Lobo, and Kumara Sastry. 2006. Linkage Learning
via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA).
In Scalable Optimization via Probabilistic Modeling, Janusz Kacprzyk, Martin
Pelikan, Kumara Sastry, and Erick CantúPaz (Eds.). Vol. 33. Springer Berlin
Heidelberg, Berlin, Heidelberg, 39–61. https://doi.org/10.1007/978-3-540-34954-
9_3

[10] Sture Holm. 1979. A Simple Sequentially Rejective Multiple Test Procedure.
Scandinavian Journal of Statistics 6, 2 (1979), 65–70. https://www.jstor.org/
stable/4615733

[11] Shih-Huan Hsu and Tian-Li Yu. 2015. Optimization by Pairwise Linkage De-
tection, Incremental Linkage Set, and Restricted / Back Mixing: DSMGA-II. In
Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’15). Association for Computing Machinery, New York, NY, USA,
519–526. https://doi.org/10.1145/2739480.2754737

[12] J. Kiefer. 1953. Sequential Minimax Search for a Maximum. Proc. Amer. Math.
Soc. 4, 3 (1953), 502–506. https://doi.org/10.1090/S0002-9939-1953-0055639-3

[13] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether One of Two Random
Variables Is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50–60. https://doi.org/10.1214/aoms/1177730491

[14] Eric O. Scott and Kenneth A. De Jong. 2015. Evaluation-Time Bias in Asynchro-
nous Evolutionary Algorithms. In Proceedings of the Companion Publication of
the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO
Companion ’15). Association for Computing Machinery, New York, NY, USA,
1209–1212. https://doi.org/10.1145/2739482.2768482

[15] Eric O. Scott and Kenneth A. De Jong. 2015. Understanding Simple Asynchro-
nous Evolutionary Algorithms. In Proceedings of the 2015 ACM Conference on
Foundations of Genetic Algorithms XIII (FOGA ’15). Association for Computing
Machinery, New York, NY, USA, 85–98. https://doi.org/10.1145/2725494.2725509

[16] Eric O. Scott and Kenneth A. De Jong. 2016. Evaluation-Time Bias in Quasi-
Generational and Steady-State Asynchronous Evolutionary Algorithms. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference 2016 (GECCO
’16). Association for Computing Machinery, New York, NY, USA, 845–852.
https://doi.org/10.1145/2908812.2908934

[17] Gilbert Syswerda. 1991. A Study of Reproduction in Generational and Steady-
State Genetic Algorithms. In Foundations of Genetic Algorithms. Vol. 1. Elsevier,
94–101. https://doi.org/10.1016/B978-0-08-050684-5.50009-4

[18] Dirk Thierens. 1999. Scalability Problems of Simple Genetic Algorithms. Evolu-
tionary Computation 7, 4 (1999), 331–352. https://doi.org/10.1162/evco.1999.7.4.
331

[19] Dirk Thierens and Peter A.N. Bosman. 2011. Optimal Mixing Evolutionary Algo-
rithms. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’11). Association for Computing Machinery, New York, NY,
USA, 617–624. https://doi.org/10.1145/2001576.2001661

[20] L. Darrell Whitley. 1991. Fundamental Principles of Deception in Genetic Search.
Foundations of Genetic Algorithms 1 (1991), 221–241. https://doi.org/10.1016/B978-
0-08-050684-5.50017-3

[21] Mouadh Yagoubi and Marc Schoenauer. 2012. Asynchronous Master/Slave
MOEAs and Heterogeneous Evaluation Costs. In Proceedings of the 14th An-
nual Conference on Genetic and Evolutionary Computation (GECCO ’12). As-
sociation for Computing Machinery, New York, NY, USA, 1007–1014. https:
//doi.org/10.1145/2330163.2330303

[22] Arber Zela, Julien Siems, Lucas Zimmer, Jovita Lukasik, Margret Keuper, and
Frank Hutter. 2022. Surrogate NAS Benchmarks: Going Beyond the Limited
Search Spaces of Tabular NAS Benchmarks. https://doi.org/10.48550/arXiv.2008.
09777 arXiv:2008.09777 [cs]

918

https://doi.org/10.1007/BF01531277
https://arxiv.org/abs/2109.05259
http://arxiv.org/abs/2109.05259
https://doi.org/10.1214/09-SS051
https://doi.org/10.1145/2576768.2598350
https://doi.org/10.1162/EVCO_a_00148
https://doi.org/10.1007/978-3-540-34954-9_3
https://doi.org/10.1007/978-3-540-34954-9_3
https://www.jstor.org/stable/4615733
https://www.jstor.org/stable/4615733
https://doi.org/10.1145/2739480.2754737
https://doi.org/10.1090/S0002-9939-1953-0055639-3
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1145/2739482.2768482
https://doi.org/10.1145/2725494.2725509
https://doi.org/10.1145/2908812.2908934
https://doi.org/10.1016/B978-0-08-050684-5.50009-4
https://doi.org/10.1162/evco.1999.7.4.331
https://doi.org/10.1162/evco.1999.7.4.331
https://doi.org/10.1145/2001576.2001661
https://doi.org/10.1016/B978-0-08-050684-5.50017-3
https://doi.org/10.1016/B978-0-08-050684-5.50017-3
https://doi.org/10.1145/2330163.2330303
https://doi.org/10.1145/2330163.2330303
https://doi.org/10.48550/arXiv.2008.09777
https://doi.org/10.48550/arXiv.2008.09777
https://arxiv.org/abs/2008.09777

	Abstract
	1 Introduction
	2 Approaches
	2.1 Genetic Algorithm (GA)
	2.2 Extended Compact Genetic Algorithm (ECGA)
	2.3 Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA)

	3 Problems
	3.1 Artificial Benchmark Functions
	3.2 NASBench 301

	4 Experimental Setup
	4.1 Artificial Benchmark Functions
	4.2 NASBench 301

	5 Results and Discussion
	5.1 Artificial Benchmark Functions
	5.2 NASBench 301

	6 Conclusions
	Acknowledgments
	References

