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ABSTRACT
The aim of Symbolic Regression (SR) is to discover interpretable
expressions that accurately describe data. The accuracy of an ex-
pression depends on both its structure and coefficients. To keep
the structure simple enough to be interpretable, effective coeffi-
cient optimisation becomes key. Gradient-based optimisation is
clearly effective at training neural networks in Deep Learning (DL),
which can essentially be viewed as large, over-parameterised ex-
pressions: in this paper, we study how gradient-based optimisation
techniques as often used in DL transfer to SR. In particular, we first
assess what techniques work well across random SR expressions, in-
dependent of any specific SR algorithm. We find that mini-batching
and gradient-clipping can be helpful (similar to DL), while second-
order optimisers outperform first-order ones (different from DL).
Next, we consider whether including gradient-based optimisation
in Genetic Programming (GP), a classic SR algorithm, is beneficial.
On five real-world datasets, in a generation-based comparison, we
find that second-order optimisation outperforms coefficient mu-
tation (or no optimisation). However, in time-based comparisons,
performance gaps shrink substantially because the computational
expensiveness of second-order optimisation causes GP to perform
fewer generations. The interplay of computational costs between
the optimisation of structure and coefficients is thus a critical aspect
to consider.
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1 INTRODUCTION
Symbolic Regression (SR) is the problem of finding both the struc-
ture (or parametric function) 𝜙 and coefficients (or parameters) 𝜃
that form a symbolic expression that fits a given set of data well
[26, 51]. Symbolic expressions are appealing to use asmachine learn-
ing models because they have the potential of being interpretable.
Interpretability is an important property for using Artificial Intelli-
gence (AI) in a responsible manner (see, e.g., the EU or the US Act
on AI [1, 12]), as well as for scientific discovery. Indeed, SR has been
used to discover interpretable models in, e.g., space exploration [18],
medicine [47], and physics [35].

Different techniques have been proposed to search for the struc-
ture 𝜙 . These include exhaustive search [4, 21], greedy search [9],
Genetic Programming (GP) [28], Deep Learning (DL) [20, 42], and
hybrids [8, 23, 32, 46]. However, the accuracy of the entire model 𝜙𝜃
clearly also depends on optimising the coefficients 𝜃 . If the optimisa-
tion of 𝜃 is poor, then the model 𝜙𝜃 might need a large and complex
structure 𝜙 in order to be sufficiently accurate. For example, GP is
known to bloat, i.e., to evolve large structures with limited gains in
accuracy [28]. For symbolic expressions to stand a chance at being
interpretable, 𝜙 needs to remain sufficiently small. Therefore, it is
critical that the coefficients 𝜃 are optimised effectively.

Gradient-based optimisation is popular in machine learning in
general, and much work has been done on improving its efficacy in
DL in particular. Advancements in activation functions [37], net-
work architecture [15], normalisation schemes [17], and weight
initialisation [14] have shown to substantially help train accurate
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and well-generalising DL models with gradient-based optimisation.
The number of contributions in the context of SR is far more mod-
est (see Sec. 2). We cannot assume that findings that apply to DL
transfer to SR, because SR expressions are substantially different
from DL networks: SR expressions are normally represented with
sparse, relatively shallow graphs, use operators that can induce
very large or very small gradients, and are subject to structural
change, while DL architectures are normally fixed. Moreover, DL
models are often overparameterised, a property that does not apply
to SR, where the goal is to find interpretable and thus relatively
small models (i.e. expressions).

Overall, the literature is unclear on what configurations of
gradient-based optimisation might work well in SR. In this paper,
we address this issue by bringing together concepts and techniques,
scattered in the literature on SR or prominent in the literature on
DL, into an SR-focused comparison. Specifically, we design experi-
ments with different configurations of gradient-based optimisers,
gradient-clipping, learning rates, and options for mini-batching.
These configurations are first applied to SR expressions using ini-
tialisation values for coefficients 𝜃 with static structure 𝜙 , to gain
insights that are agnostic of the algorithm chosen to search for 𝜙 , as
well as also in conjunction with GP, i.e., when 𝜙 evolves alongside
the optimisation of 𝜃 , since GP is a classic method for SR.

2 RELATEDWORK
Historically, SR has been tackled mostly with GP [30, 51]. One of
the first works on gradient-based optimisation in GP for SR is [45].
This work considers a single specific configuration of gradient-
based optimisation, i.e., 3 steps of full batch gradient descent (i.e.,
all available training data is used to calculate the gradient) with
a learning rate (lr) of 0.5, reverting worsening steps. Similar set-
tings are considered in [7]1, which investigates different options for
which expressions should undergo coefficient optimisation. In [10],
the authors assess whether feature standardisation, which is com-
monly used when training neural networks, also increases accuracy
when applied to gradient-based optimisation in GP. Other works
consider more involved optimisers, such as Adam (in combination
with semantic GP) [43], Levenberg-Marquardt (LM) [6, 21, 26, 27],
and Broyden–Fletcher–Goldfarb–Shanno (BFGS) [4, 5, 20, 35]. How-
ever, only a few of these works include some comparisons between
different gradient-based optimisers/configurations [35, 43].

Also in works where the structure of symbolic expressions is
sought with other methods than GP, an analysis of different coeffi-
cient optimisation options remains absent or limited. For example,
[5, 20, 42] use DLmodels (e.g., recurrent neural nets or transformers)
to generate symbolic expressions, whose coefficients are optimised,
in all cases, with BFGS. Motivated by this, our work includes ex-
periments where the structure is fixed, in addition to experiments
with GP.

To the best of our knowledge, our work is the first that attempts
to provide a more comprehensive comparison on gradient-based
optimisation in SR (and GP). Lastly, it is important to mention
that other approaches to coefficient optimisation exist besides

1This work states that gradient descent is used, however, the pseudocode describes
coordinate descent, where coefficients are optimised one at a time.

gradient-based ones, such as mutation-based coefficient optimi-
sation [3, 13, 50]. We compare gradient-based to classic mutation-
based optimisation in our experiments with GP.

3 METHOD
The use of gradient-based optimisation within a certain SR algo-
rithm (e.g., GP) leads to complex dynamics that make it hard to
isolate the contribution of gradient-based optimisation. Also, in-
sights obtained using one SR algorithm may not hold for different
SR algorithms (e.g., [20] outputs an expression in one shot, without
any search iteration). Therefore, we split our contribution into (1)
static experiments, where 𝜙 remains fixed and only 𝜃 is optimised,
and (2) dynamic experiments, where 𝜙 is also optimised, via GP.
This way, we can assess to what extent findings that apply to the
static case transfer to GP.

3.1 Setup static experiments
The basic principle for these experiments is as follows: we generate
random symbolic expressions and consider them as our target ex-
pression. We then perturb the coefficients within them and observe
the capability of gradient-based optimisers to improve the coeffi-
cients. To test the sensitivity of the optimisation methods to the
proximity to the optimum, we perturb the coefficients with three
levels of Gaussian noise N(𝜇, 𝜎) with (𝜇, 𝜎) ∈ {(0.1, 0.01), (1, 0.1),
(10, 1)}. Each perturbed symbolic expression is then optimised us-
ing the options for gradient-based optimisation that are described
below.

In order to gain insight into the effect of gradient-based optimi-
sation on typical structures 𝜙 that appear in SR, we need a wide
variety of symbolic expressions.We sample 10,000 random symbolic
expressions encoded by binary-unary trees (i.e., trees that contain
operator nodes with an arity of 1 or 2), with operators from O =

{+,−,×,÷, 𝑃𝑜𝑤,𝑀𝑎𝑥,𝑀𝑖𝑛, 𝑆𝑖𝑛,𝐶𝑜𝑠, 𝐿𝑛, 𝐸𝑥𝑝,
√·, 𝐴𝑏𝑠}. The sampling

process is taken from [31], which is uniform in terms of trees that
can occur up to a tree height of 4, with coefficients and input
features sampled with an equal probability. This means that the
largest tree that can be generated has 31 nodes, corresponding to a
symbolic expression with 31 terms. We make this choice because
arguably, symbolic expressions with 31 terms can already be very
hard to interpret [49]. Coefficients and values for the input features
are uniformly sampled between −10 and 10; the latter are used to
generate training and validation sets with 1,000 observations. The
process of sampling input features is repeated 10 times for each
level of Gaussian noise per tree. During our input feature sampling
process, we filter out: input features that lead to a Mean Squared
Error (MSE) lower than 10−6 on the training data, expressions with-
out coefficients, and expressions that result in invalid outputs on
the training or validation data (e.g.,

√
𝑥 when 𝑥 can be negative).

While in GP it is common to use protected operators to avoid
invalid computations at all times, different implementations ex-
ist, and they may harm interpretability. We, therefore, do not use
protected operators. Note that this means that the optimisation of
coefficients can fail (e.g., if an optimisation step for

√
𝜃𝑖𝑥 leads to

𝜃𝑖𝑥 < 0). Regarding the operators in O that are not differentiable
everywhere, we make use of Pytorch’s [41] approximations (e.g.,
𝛿 max(𝑥,0)

𝛿𝑥
for 𝑥 = 0 is 0).
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We experiment with a limit of 10 and 100 evaluations of the Jaco-
bian, i.e., the gradient vector of all elements of the (mini-)batch. A
small evaluation limit is chosen because, typically, only a small eval-
uation budget per individual can be afforded when gradient-based
optimisation is combined with GP (e.g., [7] and [45] use 3 evalua-
tions). To evaluate the performance, we consider two aspects. First,
we consider the accuracy gain in terms of MSE reduction between
the ground truth and perturbed symbolic expression, normalised
on the starting MSE:

Accuracy gain =
MSEstart −min(MSEend,MSEstart)

MSEstart
. (1)

The normalisation of the MSE allows us to compare different sym-
bolic expressions on the same footing. Gradient-based optimisation
can fail due to divergence (MSEend > MSEstart), or stepping out-
side of the symbolic expressions’ domain (e.g., by producing a nan
or inf output). Symbolic expressions resulting in nan or inf are
considered to have an accuracy gain of zero and to have failed to
optimise. Since certain configurations can lead to higher accuracy
gains but also higher failure rates (and vice versa), we analyse per-
formance in terms of the trade-off between these two objectives. A
selection of configurations that lie on the non-dominated front will
then be used in experiments in a dynamic setting. All experiments
are executed on AMD EPYC ROME 7282 32-core 3.2GHz processors.

Optimisers. We experiment with various optimisers. Optimisers
that use momentum may be more robust to the choice of lr: we
experiment with SGD+momentum with the momentum parameter
set to 0.9, Adam [25], which is popular in DL [44], LM [33, 36],
and BFGS [55]. The implementations of LM and BFGS in the SciPy
library [52] do not require setting a learning rate. For the others, we
consider an lr of 0.5, 0.01, and 0.001. LM and BFGS are “pseudo”-
second-order optimisers in that they iteratively approximate the
Hessian. This type of optimiser is not usually used for deep neural
networks because the number of parameters is typically too large
and results in infeasible runtimes. However, for the relatively small
number of coefficients in SR expressions, they are viable.

Note that whereas the first-order methods can calculate one
Jacobian matrix per batch, in order for the pseudo-second-order
methods to work, multiple Jacobian calculations are needed per
batch. This makes it hard to compare all methods on an equal
footing when using a Jacobian evaluation budget. For example,
BFGS may use all available budget for one single batch. To make
the comparison fair, a larger Jacobian evaluation budget of 100
evaluations is also experimented with, so that BFGS and LM can
process more batches.

Batch size. Typically the full training batch is used in SR when
using gradient-based optimisation [7, 45]. In DL, mini-batches are
used for several reasons. One is due to memory constraints. In our
experiments, the difference in memory consumption and compu-
tation speed is negligible for the first-order optimisation methods,
but for LM; the batch size does influence the execution speed, see
Figure 2. Another reason why mini-batches are used in DL is that
their use may lead to better generalisability, due to optimisation
using mini-batches finding wide minima in the optimisation land-
scape more often [24, 53, 56]. It is unknown whether this might

also happen for small symbolic expressions. We experiment with
batch sizes of 32, 256, and 1000 (full batch).

Clipping. Operators such as Pow can induce extremely large
gradients. Clipping the value of the gradient can help to prevent
numerical instability and divergence [40]. Here, we consider the
following options: Clip Value—we clip gradients between −1 and
+1; Clip Norm—we divide gradients by their norm, as proposed in
[40]; Clip Operator—we implement clipping at each intermediate
computation that takes place in the backpropagation chain.

3.2 Results static experiments
A selection of the results of the static experiments can be observed
in Figure 1, which shows where configurations lie compared to the
best-obtained results, i.e., the non-dominated configurations with
respect to the aforementioned objectives. Results for perturbations
with 𝜇 = 1, 𝜎 = 1, and with 100 evaluations, can be found in
Appendix A.

Optimisers. We observe that in general pseudo-second-order
methods perform well on all perturbations in both the training
and validation set, as both LM and BFGS are located on every non-
dominated front. Configurations of SGD+momentum and Adam is
located on the non-dominated front due to their low failure rates,
however, their training accuracy gains are limited. The accuracy
gain of Adam is close to that of BFGS or LM only when the pertur-
bance is small (i.e., 𝜇 = 0.1 and 𝜎 = 0.01), but comes with higher
failure rates. A similar pattern holds for 100 evaluations (see Ap-
pendix A).

Batch size. We find that the smallest batch size (32) leads to
limited gain in training accuracy. With 10 evaluations this can be
expected, as with a mini-batch of 32 and 1,000 training observations,
at most 32% of the data is observed (BFGS and LM use several
evaluations per batch). With 100 evaluations, BFGS, with a batch
size of 256, is located on all non-dominated fronts. Interestingly,
also in the validation plots, BFGS with a batch size of 256 is located
on every non-dominated front (both 10 and 100 evaluations, all
noise levels). This may be due to a batch size of 256 striking the
right balance between observing enough data, and finding wider
basins of attraction around the minima (compared to full batch),
which are believed to improve generalisation in DL.

Although full batch LM is located on each training non-dominated
front for both 10 and 100 evaluations, we observe that full batch
evaluations are expensive for LM. Figure 2, inspired from [26],
shows how runtime increases with respect to the batch size. As ex-
pected, the pseudo-second-order optimisers, i.e., BFGS and LM, take
more time compared to first-order ones. Furthermore, LM becomes
particularly expensive with the largest batch size we consider.

Clipping. In general, clipping reduces failure rates (especially
for LM and Adam), but may lower accuracy gains (e.g., for BFGS):
the variant of BFGS that uses no clipping appears in 4 out of 6
training fronts (including the 100 evaluation cases). Within the
BFGS method, gradients of subsequent timesteps are subtracted
from each other. This term could become zero, e.g., when both
gradients are clipped to 1, or much smaller when using Clip Norm,
causing BFGS’s estimate of the inverse Hessian to worsen.
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Figure 1: Average accuracy gain vs. percentage of failures on a logarithmic scale. The non-dominated front is indicated by a
dashed line. Zoomed-in plots of the configurations on the non-dominated front are found to the left of the main plots with a
grey rectangle indicating the zoomed-in area. The magnitude of lr corresponds with the opacity of the colour.
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Figure 2: Evaluation speed per batch size, with 𝜇 = 10,
lr = 0.001, and no clipping. The scale of both axes is log-
arithmic. Lines are median values over the 10,000 trees of the
experiment described in Sec. 3.1, and shaded areas indicate
interquartile ranges.

3.3 Setup dynamic experiments
We now bring promising settings for gradient-based optimisation
to GP, to assess whether the previous findings apply to one of the
well-known methods for SR. In particular, we consider the follow-
ing selection of options for gradient-based optimisation, which is
located on the non-dominated validation fronts (see Figure 1 and
Appendix A):

(1) Adam with Clip Value, using full batch and lr = 0.01,
(2) BFGS without clipping, using a batch size of 256,
(3) LM with Clip Value, using a batch size of 256.

From hereon, for brevity, we refer to these simply by Adam, BFGS,
and LM, respectively. As baselines, we consider GP without any
form of coefficient optimisation (from now on, pure GP), and GP
with a simple coefficient mutation step (GP with CM) from [16, 50]:

𝜃𝑖 ← 𝜃𝑖 + 𝜏 |𝜃𝑖 | · N (0, 1) . (2)

We choose 𝜏 = 0.25, the default value from the library used for our
experiments (omitted for double-blind review).

We use a typical implementation of GP, see Algorithm 1, with
traditional settings [39] (see Table 1). We remark that in pure GP
new (random) coefficient values can be sampled through structural

Table 1: General settings for the dynamic set of experiments.

Parameter Setting

Population size 1000
Crossover rate 0.9 subtree swap
Mutation rate 0.1 subtree mutation, 0.1 node mutation
Tree initialisation Ramped half & half (depth from 2 to 6)
Max tree size 31 nodes
Terminal set Equal chance of features and constants
Constant initialisation ∼ 𝑈 (−10, 10)
Selection Parents ∪ offspring, tournaments of 7
Fitness function MSE with linear scaling
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mutations (from 𝑈 (−10, +10), see Table 1). We experiment with 5
UCI datasets [2] (see Table 2 for more details), with 75% train–25%
validation random splits. Runs are repeated 30 times and are ter-
minated at six hours. In preliminary experiments, we tested the
use of linear scaling [22] (explained below), 𝑧-scaling (i.e., data nor-
malisation by subtraction of the mean and division by the standard
deviation), and the combination of linear and 𝑧-scaling, as advised
in [10, 38]. We experimentally found that the combination leads to
the best performance, confirming prior work.

Algorithm 1 Implementation of one GP generation including opti-
misation.

offspring← ∅
for 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do

o← clone(individual)
o← undergoVariation(o) # crossover or mutation
if optimiseCoefficients then

o← gradientBasedOptimisation(o) or coefficientMutation(o)
end if
offspring← offspring ∪ {o}

end for
population← tournamentSelection(offspring ∪ population)

Linear scaling simplifies the search for 𝜙 by analytically calculat-
ing an intercept 𝑎 and slope 𝑏 that make the expression invariant
to translation and scaling. This is realised by:

𝜙𝜃 𝐿𝑆 (𝑥) = 𝑎 + 𝑏 · 𝜙𝜃 (𝑥),

𝑏 =

∑𝑛
𝑖=1

(
𝜙𝜃 (𝑥𝑖 ) − 𝜙𝜃 (𝑥)

)
(𝑦𝑖 − 𝑦)∑𝑛

𝑖=1

(
𝜙𝜃 (𝑥𝑖 ) − 𝜙𝜃 (𝑥)

)2 ,

𝑎 = 𝑦 − 𝑏 · 𝜙𝜃 (𝑥) .

(3)

Linear scaling is normally applied (including here) at fitness evalua-
tion time and is relatively inexpensive (O(𝑛)) [22]. In our work, the
linear scaling slope and intercept are kept fixed during gradient-
based optimisation (instead, e.g., [26] uses gradient-based optimisa-
tion also upon 𝑎 and 𝑏).

Table 2: General dataset information. Datasets are sorted
in terms of the number of samples, since these influence
evaluation time. UCI datasets can be downloaded on the UCI
repository website. The SciPy dataset can be found in the
SciPy dataset loading utility. Mean and variance of 𝑦 are
reported as context for Eq. (4).

Dataset (source) #Samples #Features Mean 𝑦 Variance 𝑦

Diabetes (SciPy) 442 10 152.1 77.0
Boston (UCI) 506 13 22.5 9.2
Concrete (UCI) 1030 8 35.8 16.7
Airfoil (UCI) 1503 5 124.8 6.9
Tower (UCI) 4999 25 342.1 87.8

3.4 Results dynamic experiments
We present the results in two ways: results obtained (1) with an
equal number of generations and (2) with an equal time budget. For
the former, we consider 100 generations, which are reached by all
configurations. For the latter, we consider six hours. Pros and cons
for both choices are discussed in Sec. 4.

Generation-based comparison. Figure 3 (two left-most columns)
shows the training and validation performance per generation for
the best-found expression in terms of coefficient of determination

𝑅2 = 1 − MSE(𝑦, 𝜙𝜃 (𝑥))
Var(𝑦) , (4)

equivalent to minimising the MSE but maximisation is sought and
1.0 represents the perfect fit. We find that LM and BFGS have a
comparatively fast rate of convergence, both reaching a high 𝑅2 at
the 100th generation cut-off. Table 3 shows that LM significantly
outperforms the GP and coefficient mutation baselines in 4/5 train-
ing sets. Furthermore, BFGS and in particular LM also generalise
well to the validation set in 3/5 sets. We also observe that the maxi-
mum generation that is actually reached by LM and BFGS within
six hours of runtime is approximately five times smaller than the
other methods. This suggests that the success of the second-order
methods is due to superior coefficient optimisation and not due to
structural optimisation.

To gain a deeper understanding of the effect of gradient-based
optimisation, Figure 4 (left) shows the percentage of offspring that
are better in terms of training accuracy than their respective par-
ent per generation, for one dataset. We choose Concrete as it has
the median number of observations; we find similar patterns for
the other datasets, see Figure 7. It can be seen that the percent-
age of offspring better than their respective parents is higher for
gradient-based methods compared to the baseline for the majority
of generations. This emphasises the importance of good coefficient
optimisation in the initial generations. From Figure 4 (middle) it
can be seen that the number of unique expressions (in terms of
structure excluding differences in coefficients) in the population
drops off roughly at the same rate for all methods. This indicates
that the higher success rate of the gradient-based methods does not
impact the rate of convergence.

Time-based comparison. From Figure 3 (two right-most columns)
it can be seen that under a time-based comparison, coefficient mu-
tation is a strong competitor to gradient-based methods. Coefficient
mutation converges to good expressions quicker than second-order
optimisers (BFGS and LM) and, at validation time, these expressions
tend to generalise well. In fact, even baseline GP (i.e., no coefficient
optimisation) generally performs rather well. Hence, these time-
based results indicate that, given a same-time budget, having more
focus on structure optimisation and less powerful but much faster
coefficient optimisation can lead to decent results.

When considering statistical significance (Table 3), we find that
second-order methods (LM in particular) performwell on the Tower
and Airfoil datasets and significantly outperform the baseline but
not coefficient mutation. Yet, overall, pseudo-second-order methods
remain a suitable choice as they are not outperformed.
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Figure 3:Median best-found training𝑅2 and respective validation𝑅2 duringGPwith different options for parameter optimisation.
In the generation-based plots, the dotted vertical line indicates 100 generations, and coloured dots represent the maximum
generation reached under the six hours time budget.
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Table 3: Significance of validation results at 100 generations or 6hr of runtime. Kruskal-Wallis is used as omnibus test (Omn) and
Wilcoxon signed-rank is used as post-hoc test for pairwise comparisons, both with 𝑝 < 0.05 and Holm-Bonferroni correction.
B=Baseline, CM=Coefficient Mutation.

Train Validation
100 generations 6hrs 100 generations 6hrs

Dataset Omn Post-hoc Omn Posthoc Omn Post-hoc Omn Post-hoc
Diabetes × - × - × - × -

Boston ✓
LM, BFGS ≻ B, CM
LM ≻ Adam × - ✓ BFGS ≻ CM × -

Concrete ✓
LM ≻ B, CM, Adam
BFGS ≻ B, Adam ✓ LM ≻ B, CM ✓ LM, BFGS, CM ≻ B ✓ LM ≻ B

Airfoil ✓ LM ≻ B, CM, Adam × - ✓ LM ≻ B, CM, Adam ✓ LM ≻ B
Tower ✓ LM, BFGS ≻ B, CM, Adam ✓ LM, BFGS ≻ Adam ✓ LM, BFGS ≻ B, CM ✓ LM, BFGS ≻ Adam
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Figure 4: Left—Coefficient optimisation leads to a higher percentage of successful offspring. Middle—When comparing unique-
ness (exact tree match), no substantial differences are found. Right—Second-order methods use more constants than other
methods. Lines are median values over 10 runs, shaded areas indicate interquartile ranges.

Differences in discovered expressions. In [29, 45] it was found that
using optimisation during GP influences the types of expressions
that are discovered. Similarly, we find that the choice of optimiser
can influence the number of coefficients that are used. BFGS and
LM find end-of-run (six hours time limit) symbolic expressions with
more coefficients than other techniques for all datasets as can be
observed in Table 4. A similar pattern arises when the number of
generations is capped at 100. From Figure 4 (right) it can be seen
that the pseudo-second-order methods use more coefficients early
on in the evolutionary process. This comes at the cost of using fewer
input features or operators as all methods result in expressions that
are close to the maximum number of allowed terms (31).

4 DISCUSSION
We find a reasonable level of transfer of the results from the static
experiments (Sec. 3.1) to the dynamic ones (Sec. 3.3). The pseudo-
second-order methods tend to outperform the other approaches
when considering a generation-based comparison (in the static
experiments, we also used generations and not runtime).

It is important to note that while we selected promising con-
figurations on the basis of accuracy gain and the percentage of
failures, there are also other trade-offs that could be made, e.g.,

taking the number of optimisation steps into account. Observing
that the dynamic configuration using Adam did reasonably well
in the dynamic experiments while not reaching a high accuracy
gain in the static experiments indicates that other qualities besides
accuracy gain may work well in a dynamic setting.

Comparing results with an equal number of generations is partic-
ularly meaningful when coefficient optimisation time is negligible
with respect to structure optimisation time. For example, this may
be the case in approaches that use probabilistic models or neural
networks to capture and sample salient structure patterns (see,
e.g., [19, 34, 54]). Moreover, generation-based comparisons are com-
mon in literature on gradient-based optimisation in GP [10, 45]. For
classic GP, however, crossover, mutation, and selection operations
take a negligible amount of time compared to fitness or gradient
evaluations, thus a time-based comparison may be more sensible.
Still, a limitation of a time-based comparison is that it depends on
the specific hardware and code implementation. We used Python,
and specifically SciPy for LM and BFGS, and Pytorch for the other
optimisers. More performant implementations may exist, e.g., the
implementation of GP with LM from [6] reaches excellent results
in the recent SR benchmark SRBench [30].
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Table 4: Median ± interquartile range of expression term use
in end-of-run elite expressions resulting from the dynamic
experiment.

Dataset Optimiser #total #coefficients #features

Diabetes

Baseline 31.0 ± 0.0 2.0 ± 2.0 11.0 ± 2.2
Coeff. Mutation 31.0 ± 0.0 2.0 ± 2.0 12.0 ± 2.0
Adam 31.0 ± 1.0 2.0 ± 1.0 12.0 ± 1.0
BFGS 31.0 ± 0.0 4.0 ± 2.0 10.0 ± 2.0
LM 31.0 ± 1.0 4.0 ± 1.0 10.0 ± 1.0

Boston

Baseline 31.0 ± 0.0 4.0 ± 2.2 10.0 ± 3.0
Coeff. Mutation 31.0 ± 1.0 5.0 ± 1.0 8.0 ± 3.0
Adam 31.0 ± 1.0 4.5 ± 2.2 10.0 ± 2.2
BFGS 31.0 ± 0.2 6.0 ± 2.2 8.0 ± 2.0
LM 31.0 ± 1.0 6.0 ± 2.0 8.0 ± 1.2

Concrete

Baseline 31.0 ± 0.0 4.0 ± 2.0 9.0 ± 1.2
Coeff. Mutation 31.0 ± 0.0 4.0 ± 2.0 10.0 ± 1.2
Adam 31.0 ± 0.0 3.5 ± 3.0 9.0 ± 2.0
BFGS 31.0 ± 1.0 5.0 ± 3.0 8.0 ± 2.0
LM 31.0 ± 1.0 5.0 ± 2.0 8.5 ± 1.0

Airfoil

Baseline 31.0 ± 1.0 2.5 ± 2.0 11.0 ± 2.0
Coeff. Mutation 31.0 ± 0.0 4.0 ± 2.0 11.0 ± 2.0
Adam 31.0 ± 0.2 3.0 ± 2.2 11.0 ± 2.2
BFGS 31.0 ± 1.0 5.0 ± 2.0 9.0 ± 3.0
LM 31.0 ± 1.0 5.0 ± 2.0 9.0 ± 2.0

Tower

Baseline 31.0 ± 0.0 3.0 ± 2.0 9.0 ± 3.0
Coeff. Mutation 31.0 ± 0.0 4.0 ± 2.2 9.5 ± 3.0
Adam 31.0 ± 1.0 4.0 ± 3.2 9.0 ± 2.0
BFGS 31.0 ± 1.0 6.0 ± 2.0 8.0 ± 2.0
LM 31.0 ± 1.0 6.0 ± 2.2 9.0 ± 3.0

The rates for GP’s variation operators (Table 1) were inspired
by work in [10]. For completeness, we performed additional ex-
periments (see Appendix B) with equal variation rates for subtree
crossover, subtree mutation, and operator mutation (one-third each).
Results from this experiment show less pronounced differences
among the configurations, with LM only significantly outperform-
ing coefficient mutation in 1/5 datasets (see Figure 6 and Table 5 in
the appendix). This strongly indicates that the settings pertaining
to GP have a large influence on the effectiveness of coefficient opti-
misation. Nevertheless, we do not find cases where second-order
optimisers are outperformed by other methods.

In several works only arithmetic operators are chosen while
certain expressions may require non-linear operators [7, 10, 43, 45].
Non-linear operators may be approximated with linear operators,
e.g., using Taylor’s method, but this typically requires many opera-
tors and are hard to interpret. We choose to use a more extensive
operator set, both to increase the expressivity of expressions con-
fined to a small number of nodes while remaining interpretable,
and to experiment with optimising non-linear operators. Addition-
ally, [29] finds that using many non-linear operators with a small
expression size reduces the prevalence of ill-conditioned Jacobians,
which benefits optimisation using LM.

In this work, we focused on small symbolic expressions (at most
totalling 31 terms) because we wish to obtain expressions that may
be interpretable. The combination of linear scaling and 𝑧-scaling
works better for some configurations. However, this may come
at the cost of interpretability. The combination of linear and 𝑧-
scaling adds operators to the expression and furthermore changes
the feature scale that practitioners may be used to.

While we chose to optimise the coefficients of all offspring, there
exists some literature on optimising only part of the population, to
be efficient [7, 27]. This is another dimension that is worth explor-
ing in future work. Indeed, from the graphs in Figure 3, we can see
that the pseudo-second-order methods improve quickly, but also
run for fewer generations. The GP baseline keeps improving after
the pseudo-second-order methods have reached their maximum
number of generations, this could mean that the structure evolved
by the GP (combined with coefficient optimisation) may be subop-
timal and that it may be beneficial, e.g., to optimise the coefficients
at a later stage when a more appropriate structure is found.

Another dimension worth exploring further is the option to stop
coefficient optimisation early. Here, we always optimised up to 10
evaluations in the dynamic experiments, accepting bad steps, i.e.,
steps that worsen the fitness (as common in DL). Instead, [7, 45]
stop and revert the coefficients at the first occurrence of a bad
step. A window of consecutive bad steps could be considered as
an additional hyper-parameter. Similarly, more research could be
done on re-initialising coefficient values, which is not done in GP
literature but is common when optimising the architecture of deep
neural networks [11].

Here, we considered classic GP for simplicity, but state-of-the-art
SR algorithms such as GP-GOMEA [48, 49] could potentially also
benefit from integrating gradient-based coefficient optimisation,
and Operon [6], which uses LM, could benefit from mini-batching
and gradient-clipping. Similarly, it would be interesting to assess
the transferability of our results from the static experiment to other
algorithms than GP, such as large recurrent neural networks [42]
and pre-trained transformers [5, 20].

5 CONCLUSION
We studied the application of gradient-based optimisation with
techniques used in DL, both in isolation on random symbolic expres-
sions with a static structure, and in combination with GP. We found
that mini-batching in combination with second-order optimisation,
namely, BFGS or LM with gradient-clipping, results in effective
optimisation of SR expressions. When used within GP, these meth-
ods delivered solid performance in a generation-based comparison,
typically outperforming pure GP and GP with coefficient mutation.
However, when the comparison is framed in terms of time, the
performance gap decreased substantially because pure GP and GP
with coefficient mutation are far less expensive to execute. In fact,
coefficient mutation performed on par with second-order optimisa-
tion. In conclusion, gradient-based optimisation can work well for
SR, particularly when adopting second-order optimisers. However,
as this form of coefficient optimisation is relatively expensive, there
is only a clear advantage in choosing it over simpler methods (e.g.,
coefficient mutation) if the cost of searching for structure strongly
dominates the cost for optimising coefficients.
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