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With quantum computing devices increasing in scale and complexity, there is a
growing need for tools that obtain precise diagnostic information about

quantum operations. However, current quantum devices are only capable of
short unstructured gate sequences followed by native measurements. We
accept this limitation and turn it into a new paradigm for characterizing
quantum gate-sets. A single experiment—random sequence estimation—solves
a wealth of estimation problems, with all complexity moved to classical post-
processing. We derive robust channel variants of shadow estimation with
close-to-optimal performance guarantees and use these as a primitive for
partial, compressive and full process tomography as well as the learning of
Pauli noise. We discuss applications to the quantum gate engineering cycle,
and propose novel methods for the optimization of quantum gates and
diagnosing cross-talk.

Recent years have seen the rapid development of quantum computing
devices to unprecedented system sizes. These devices are still noisy
and of limited computational power, but go substantially beyond what
was conceivable not very long ago. In order to scale even further to
larger and more accurate devices, it is key to develop tools for effi-
ciently characterizing quantum operations'* at scale. Besides provid-
ing crucial actionable advice for the practitioner, the characterization
of quantum operations is also important for developing an in-depth
theoretical understanding of the actual capabilities of quantum devi-
ces and for providing a fair comparison between different types of
devices, and with classical computing power on the same tasks®~. Over
the years, many protocols for characterizing quantum operations have
been developed®™.

That said, while a wealth of theoretical ideas for benchmarking,
verification, and tomographic recovery have been suggested, only a
few of them are relevant in practice. With present quantum devices,
only relatively short gate sequences can be implemented on qubit

arrays, followed by a native measurement at the end of the circuit that
typically suffers from sizeable read-out noise. With these limitations,
the most prominent protocols for characterizing digital quantum
gates fall into the class of randomized benchmarking (RB)°** (includ-
ing newer protocols such as averaged circuit eigenvalue sampling™). RB
implements suitable sequences of random quantum gates and extracts
a measure of quality as parameters describing the decay rate of the
measured signal with the sequence length. This has the advantage of
yielding state preparation and measurement (SPAM) error robust error
metrics. The experimental sequences of most RB protocols are care-
fully designed (such as compiled circuit inverses) to efficiently extract
specific information from a gate set. Prominent exceptions are ‘fil-
tered’ RB protocols such as linear cross-entropy benchmarking (XEB)?
that directly work with random sequences of i.i.d. drawn gates and,
e.g., omit an inversion gate.

In this work, we take these observations seriously and revert to the
mindset that is commonly applied when devising new schemes for
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benchmarking and characterization. We ask the question: If all we can
feasibly do is implement unstructured random sequences followed by
a native measurement, what can we learn? At first sight, this endeavor
is not promising. Compared to ‘traditional’ RB and tomographic pro-
tocols we are giving up on central ingredients. Thinking about how
much information we measure in an unstructured way, we run into the
problem that typically, the probabilities of individual measurement
results are exponentially small in the number of qubits. This is ortho-
gonal to the careful design of efficient characterization schemes in
prior work and does not obviously yield sample efficient estimation
schemes at all.

Our change of paradigm is analogous to the mindset of classical
shadows'®”. Classical state shadows allow for the sample-efficient
estimation of (exponentially) many different functions of a quantum
state from the same data by only modifying the classical post-
processing. Perhaps the central surprise value of the result of ref. 16 is
rigorously guaranteeing that the fidelity of a quantum state with
respect to any pure state can be estimated from the same experiment,
using only constantly many state copies with sufficiently randomized
basis measurements. This is in stark contrast to schemes like direct
fidelity estimation’ that given a priori knowledge of the target state
carefully optimize the measurements that are performed.

In this work, we define the observed measurement outcomes of
random sequences of quantum gates as the classical shadow of a gate-
set and study the sample efficiency of SPAM-robust estimators for
different linear functionals of a gate-set from the same data. Borrowing
the median-of-means estimators used on classical state shadows, we
show that the sampling complexity of the estimation (the number of
single-shot quantum measurements) can be controlled by a dynamic
shadow norm with exponential confidence. We prove bounds on this
dynamic shadow norm—a considerably more involved object than its
state counterpart—for prominent gate-sets such as the multi-qubit
Clifford group and the local Clifford group. We find that by a suitable
post-processing we can estimate the relative average gate fidelities of
the noise of a Clifford gate-set with respect to an exponentially large

number of unitary channels from polynomially many measurement
samples from the same uniformly random experiment. More generally,
we show that the dynamical shadow norm can be controlled in terms
of the unitarity of the estimated linear quantity. Using local gate-sets,
we show that one can selectively gain information about channel
marginals capturing correlations in their noisy implementation. We
promote this primitive further to design a highly scalable and efficient
tomography scheme for cross-talk effects. Furthermore, we exemplify
how gate-set shadows can be used to construct SPAM-robust objective
functions for learning noise models and for robust low-rank quantum
process tomography.

The important feature of all these schemes is that we only adopt
the classical post-processing to the task at hand, not the quantum
experiment. A single type of data, namely samples from simple local
measurements on uniformly random gate sequences, is sufficient to
perform alarge class of diagnostic tasks of benchmarking, verification,
and tomographic recovery. The mindset can be captured as “Measure
first, ask later!”. Going beyond uniformly independently random
sequences, we can generalize our approach to provide an optimal
scheme to learn Pauli noise, emulating the protocol of ref. 19 with a
simpler experimental prescription and theoretical analysis.

Related work: We build on a body of literature on randomized
schemes for quantum device characterization®. The potential of ana-
lyzing the output statistics of gate-set sequences to self-consistently
extract essentially all information of a gate-set (as well as the initial
state and the measurement) has been realized by gate-set
tomography?* > with recent variants only requiring random sequen-
ces (gate-set shadows)**”. In contrast to this self-consistent tomo-
graphic estimation of all gates in the gate-set, we here target individual
linear quantities of the gate-set’s average noise or an interleaved
quantum process. Our cross-talk tomography protocol follows the
spirit of simultaneous RB*, but goes significantly beyond simulta-
neous RB in providing higher-order correlation measures and tomo-
graphic information of noise-channel marginals, efficiently from the
data of a single randomized experiment. In ref. 29, it has been

Random sequences m Experiment /Data: Gate-set shadows)| Classical post-processing
D (z1,81) Input: Trreducible representation o, probe operator A
[] [] []U U U[] D D D (."z~_gz) @) Compute sequence correlation functions
! . . i} W" ( m—1 o =
P [] O O [] B w (zs,85) fA(iL‘ g) =aTr |E,o(gm) HAO‘ 9i (p)] } =
D U O D Lof different lengthm ) i=1 ) W
[] D O [:] D ] —_— _ (ii) Compute sequence averages fa(@r81)
( —N\
a1 g2 = T lA],:\g,... As | > 4 R J fa(za, g2)
= J \ JV (m) ;\/\ |
’"‘ Appllcatlons Combine estimates for - \f A(Ts,8s ),J
different probe operators
‘ Gate-set shadow‘ \ Full engineering cycle ‘ ) (iii) Fit theoretical model _ A\V4
| estimation £ g p [(‘? 1) ]
| — 1 p(A2)
“' Channel } ! Randomized benchma_rking ] Dl Output: Model parameter
 tomography) | without end gates — 1 n( AS)‘l

Fig. 1| The gate-set shadow estimation protocol proceeds in two stages. First,
for a fixed initial state p and varying sequence lengths m a total of S random
sequences of quantum gates of length m are experimentally implemented and
each is followed by a measurement. We call the observed tuples of measurement
outcome and gate sequence (¥, g} ,...,g}),j=1, ..., S the gate-set shadow. The
second classical post-processing stage consists itself of three steps: (i) A given
sequence correlation function is calculated for every entry of the gate set shadow.
For the UIRS protocol a sequence correlation function f; is specified in terms of a
probe super-operator A and an irreducible representation o. (ii) We calculate the
sequence average i‘fA (m) as the mean or median-of-means of the result of step (i)
over sequences of the same length m. (iii) Sequence averages for different lengths
m are used as data points to fit a theoretical model (Eq. (5)) in order to extract the
generalized gate-set fidelity with respect to the super-operator A and the

irreducible representation o, denoted here by p(A). One of the most important
features of this approach is that we can use the same experimental data to accu-
rately estimate exponentially many generalized fidelities p(Ay), p(A,), ..., p(As) by
evaluating different sequence correlation functions on the same gate-set shadow.
In this way, we can self-consistently and robustly estimate many different prop-
erties of the gate-set noise from a minimal amount of data obtained in a simple
experiment. Sections “Application: Learning unitary noise models”, “Application:
Cross-talk tomography”, and “Application: SPAM-robust channel reconstruction”
explain and derive guarantees of how the gate-set shadow estimation protocol can
be used as a primitive in other more detailed characterization task, such as com-
pressive channel or marginal tomography, potentially allowing one to run the
whole engineering cycle on essentially the same type of data.
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observed that variants of interleaved multi-qubit Clifford randomized
benchmarking experiments® have access to relative average gate
fidelities from which unital quantum channels can be reconstructed.
The protocol of ref. 29 performs a different experiment for each
fidelity yielding a sub-optimal overall sample complexity for tomo-
graphy or low-rank tomography"*, Gate-set shadow estimation solves
both these short-comings.

Results

We begin with explaining the general protocol. In the subsequent
sections, we then provide theoretical performance guarantees for
specific gate-sets and explain how the protocol can be used as a robust
estimation primitive in more complex characterization tasks, such as
channel tomography. The gate-set shadow estimation protocol con-
sists of two separate stages: an experiment, where measurement
results from random circuits of different lengths are recorded, and a
classical post-processing step, where different parameters can be
estimated from the measured data. Figure 1 summarizes the complete
protocol.

Protocol: Experiment

We aim at characterizing the accuracy of the implementation of a
target gate-set G. The experimental primitive is the realization of
random (gate) sequences of length m: After preparing an initial p (e.g.,
|0)(0|) a sequence of gates g € G *™ is drawn at random according to a
distribution g, : G*™ — [0,1] and applied to p. This is then followed
by a measurement specified by a POVM (£, },, with measurement out-
comes in X (e.g., a computational basis measurement). If x € X is
observed, the result of the primitive is a tuple (x,g) € XxG™*™.

Repeating the primitive multiple times yields a series of tuples
{(x;, gi)}f:1 which we refer to as a (self-consistent) gate-set shadow.
(Note that ref. 16 actually calls the dual frame elements indexed by the
observed output statistics of an informationally complete POVM a
state’s shadow. In contrast, we here directly refer to the sampled
sequence and observed measurement outcomes as a shadow.)

A complete experimental protocol further involves measuring
such shadows for a set of different sequence lengths m. In order to
simplify the theoretical analysis, we focus on the paradigmatic case of
G being a finite subgroup of SU(2") (such as the Clifford group) and
distributions on the sequences arising from the uniform measure over
these subgroups.

The simplest example of protocols in this context is uniform
independent random sequence (or UIRS) protocols where the gates in
the sequences are drawn from the gate-set uniformly and indepen-
dently at random. This can be seen as the paradigmatic case, although
we will go beyond this later in this work. We make shadow gate-set
estimation through the UIRS protocol explicit for several important
gate-sets: namely the multi-qubit Clifford group C,, and the indepen-
dent single-qubit Clifford group C;" (which we will call the local
Clifford group).

Protocol: Classical post-processing

Given a gate-set shadow {(x;, g,-)}f:l, we define an empirical estimator
in terms of a sequence correlation function f(x,g) : X x G*™ — C. For
every such sequence correlation function, in the post-processing, we
(i) evaluate ffor all entries of the gate-set shadows and (ii) calculate the
empirical mean or median-of-means estimator

I}f(m) : = (median-of-)means {f (x;, ,gi)}f:1 €))

of the result. After repeating steps (i) and (ii) for different sequence
lengths m, we fit in step (iii) a theoretical model k¢ to the estimates of
the sequence means I}f(m). After giving this overview of the post-
processing protocol, let us take a closer look at the steps and explain
their roles in the UIRS protocol:

Regarding step (i): Generally speaking, sequence correlation
functions can be seen as the gate-set analog of an observable in sha-
dow estimation. They allow us to compute properties of noisy gate-
sets (for example the average fidelity of an average group element)
from experimentally observed gate-set shadows. We emphasize that,
like state shadow estimation, the data collection step of random
sequence estimation is independent of the gate-set properties one
wishes to estimate, with this estimation step happening entirely in
classical post-processing. Importantly, this enables one to estimate
many different correlation functions from the same experimental data.

We here introduce a particular class of sequence correlation
functions for UIRS protocols: Consider an irreducible representation o
of G with representation space V,. For the multi-qubit Clifford group,
e.g., its adjoint action on traceless Hermitian matrices is of main
interest. We further specify a sequence correlation function in terms of
a matrix A, POVM {£,},_, and state p, on V, as

m-1
fax.g)=aTr|Eo@,) [[ A0@)p)| )

i=1
with a suitable normalization factor a. (Note that for m=1, and per-
fectly implemented gates, this expression reproduces the classical
state shadows of ref. 16. Generally, restricted to multiplicity-free,
irreducible representations, the dual frame construction of ref. 16
simply amounts to introducing a proper normalization factor, justify-
ing our choice of calling the observed statistics directly the shadow.)

We refer to A as a probe (super-)operator as it specifies the linear
quantity of the gate-set that is encoded into the decay parameter of the
empirical estimator. Note that the expression Eq. (2) is closely related
to the Born probability of measuring x after applying the sequence g to
p. The main differences are that we restrict the computation to the
subspace V,; and interleave the sequence with the probe operator A.
Similar to classical shadows, the computation of f, requires, in general,
the same resources as simulating the physical evolution within a sub-
space. In many situations, however, further structure renders this task
efficient. This is in particular the case when both the gate-set and the
probe-operators are chosen to be multi-qubit Clifford operations.

Note that all previously existing RB protocols only use functions
that at most depend on the product of the operations in the sequence,
fi1(x,8)=h(x,8.8, - &) Infiltered RB protocols, such as linear cross-
entropy benchmarking’, character benchmarking® and Pauli-noise
tomography”, the inversion gate can in this way be omitted and
accounted for in post-processing. Using a non-trivial A goes sig-
nificantly beyond existing schemes and allows one to even efficiently
‘interleave in-post’ the same data with different probe operators.

Regarding step (ii): By taking an empirical average over the gate-
set, we expect I}f(m) to be a degree m polynomial in the ‘average noise’
of the gate-set. One insight of standard Clifford randomized bench-
marking is that by taking a uniform average over a sufficiently large
group the ‘average noise’ is probed isotropically, effectively projecting
it onto a depolarizing channel. Similarly, UIRS will probe the ‘average
noise’ of the gate-set, but by choosing different probe operators A, we
can alter the operator on which the noise is projected, revealing more
information. Performing the post-processing separately for different
irreducible representations g, ensures that the gate-set always avera-
ges sufficiently over the subspace under consideration. We will make
this intuition precise in the subsequent section.

Regarding step (iii): The projection onto isotropic noise (on each
representation space) also dramatically ‘simplifies’ the functional form
of the expected value of the sequence averages k;(m). Recall that for
standard Clifford RB, one effectively witnesses a single exponential
decay. Below we show that analogously for UIRS protocols, the theo-
retical fitting model is a single (matrix) exponential decay encoding
linear quantities of the noise in its decay parameter. The decay para-
meter(s) can be extracted using least-square fitting algorithms (or
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tone-finding algorithms such as ESPRIT). See ref. [**, Sec. VII] for a
discussion on different post-processing techniques. In the end, the
UIRS gate-set shadow estimation protocol returns the decay para-
meters for different choices of probe operators A and representa-
tions o.

Fitting model
In order to keep the theoretical derivation and statements concise and
straightforward to interpret, we adhere to some standard assumptions
that are commonly used in the analysis of RB protocols. First, we
assume that the quantum channel that implements a sequence g on
the quantum device can be written as £(g)= [/, ¢(g;) with a map
¢: G — S,. Here, S, is the space of n-qubit super-operators. The
existence of £ already excludes, e.g., time-dependent effects in
between different experiments, and the factorization into a map ¢
further restricts to Markovian noise. Under this assumption, it can be
proven that RB protocols’™ function correctly'***. For non-
Markovian noise much less is known, but in the context of RB rigor-
ous results have been obtained for quasi-static noise®, time-
dependent noise” and more recently using tensor-models®. We
expect these results to broadly carry over to random sequence
estimation.

Second, we assume gate-independent noise, positing the exis-
tence of quantum channels A, Ag such that

P@)=A w(@NAg 3)

where w(g)(p) = ngUé*, is some ideal implementation of the gate g. We
argue in the section “ Gate-dependent noise” that our results also apply
(up to a negligible error) in the more general Markovian error model,
but rigorously proving this (along the lines of ref. 14) is beyond the
scope of this work.

Instead of Ag, A_ describing the noise of the gate-set imple-
mentation, one can also take the perspective of actively interleaving a
channel of interest between a fairly ideal implementation of a gate-set
(as is done in interleaved randomized benchmarking®). While differ-
ent in protocol and data interpretation, in the analysis, this black-box
query model

) =Aw(g) “)

is simply a special case of the gate-independent noise model and
results carry over.

The main analytical result of this work is to establish rigorous
performance guarantees for the estimation from gate-set shadows.
The obvious first question being: what do we actually estimate? As a
first result, we establish the ‘simple’ model that we should be fitting to
the data. We show that for a probe operator A the empirical estimator
of the protocol converges in probability with the number of samples S
in the shadow to a matrix-exponential decay

S—o0

ke (m) 3 kg (m)=Tr@®™ 1], ©)

Here, the matrix ® depends only on the ‘between-gates noise channel’
A:=ArAL and the probe super-operator A, while © captures SPAM
dependence. In particular, if @ contains ¢ copies of the representation ¢
then we have

1
(D,-J- =— Tr(PiAPj/\) (6)
Pl

where P; is the projector onto the ith copy of the representation o
inside w. Note that here the trace is taken on the space of super-
operators. We give the derivation of this result in Supplementary
Note 4, in supplements that cite also refs. 39-45.

Equation (5) indicates that we should fit a linear combination of
(up-to) t exponential decays to the sequence average ka(m). The
resulting decay parameters are the eigenvalues of the matrix ®, which
encode information about the overlap of A and A in the
representation space.

A particularly simple fitting model with easily interpretable decay
parameters arises when the representation ¢ appears in the decom-
position of @ without multiplicities (i.e., there is no other representa-
tion in w related to o by a change of basis). If ¢ is multiplicity-free, then
kr,(m) describes a single scalar exponential decay

kg, (m) o< po 4 (W™, @)

with decay parameter
1
PoaM)= - TrlAA] ®
g

and A, = P,AP, the probe operator restricted to the representation ¢ of
dimension d,. Note that the proportionality now hides the SPAM-
dependent pre-factor.

Thus, by fitting a single exponential decay to the empirically
observed sequence averages I}fA, we can estimate p, 4(A), the trace-
overlap of A with A on ¢. The decay parameter can be thought of as a
generalized fidelity or effective depolarization parameter, indicating
how much the noise channel A agrees on average with the probe
operator A on the representation space of a.

Sample complexity

Against the background of the extensively explored variants of RB
protocols, the above decay model is not entirely unexpected. A priori
less obvious, however, is the sample efficiency of gate-set shadow
protocols. The sequence correlation functions f(x, g) involve normal-
ization factors that typically scale with the dimension of the irreducible
representation under consideration. As a consequence their range can
become exponentially large in the number of qubits, causing a simple
empirical mean estimator to be susceptible to outliers in the mea-
surement statistics, as well as making a suitably bounded variance a
priori nontrivial. Going significantly beyond the established statistical
guarantees in RB, we establish general variance bounds for the UIRS
protocol. We do this by introducing a sequence analog to the shadow
norm introduced in ref. 16 defined on probe super-operators A as
opposed to observables. Emphasizing its explicit dependence on the
sequence length m we call this norm (really a family of norms indexed
by m) the dynamic shadow norm ||A||gyn,m- This norm, formally defined
in Supplementary Equation (25), depends on the underlying gate-set G
as well as the ideal input POVM {£,} and state p. Given these para-
meters, it quantifies the sample complexity of estimating the mean
kg, (m) for arbitrary gate-independent noise. Because of its depen-
dence on the sequence length, the dynamic shadow norm is a more
intricate object than its state counterpart. Evaluating it for specific gate
sets accounts for the bulk of the technical innovation in this paper. In
terms of the dynamic shadow norm we have the following upper
bound on the variance of the UIRS protocol.

Theorem 1. (Upper bound on the variance). Consider an UIRS protocol
(at sequence length m) with gate-set G and a correlation function f, with
probe operator A. The variance of the associated mean k¢, (m) is boun-
ded as

\\"VA(H’I)S || Aden,m . (9)

An extended statement and the proof is given in Supplementary
Note 4. The bound on the variance V,(m) directly implies a non-
asymptotic bound on the sample complexity for the estimator k, (m)
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with exponential confidence through the use of median-of-means
estimation. The exponential confidence in particular allows us to
estimate ‘many’ quantities simultaneously from the same shadow data
with only logarithmic overhead in the number of quantities. See Sup-
plementary Note 3 for details. More precisely, we get the following
guarantee: Run the UIRS protocol (at sequence length m) and measure
a gate-set shadow of S many samples. Choose a set A of probe
operators, an € >0 and ensure that for allA € A

log(A)

- (10)

SZ C HA”dyn,m

for a suitable constant C. Then, in the post-processing, we obtain e-
additive estimates, i.e., |k (m) — I}A(m)\ <eforall A € A.

Hence, bounding the dynamic shadow norm for all A € A and
different sequence lengths m gives simultaneous guarantees for many
estimators k ,(m) with an overall sampling complexity being the sum of
the bounds Equation (10) for all m. As explained above, m — kA(m) is
then fitted using a theoretical signal model. For example, in the sce-
nario of multiplicity-free representations giving rise to a single expo-
nential decay Eq. (7), we thereby obtain an estimator for p,4(A) for all
A € A. The exponential fitting itself is a well-studied problem, for
which many advanced techniques*®*, flexible software packages*®,
and rigorous bounds*’ can be readily applied.

Example: Multi-qubit Clifford UIRS

We now provide two particularly practically relevant examples of UIRS
protocols, derive their signal model and a dynamical shadow norm
bound guaranteeing their efficiency.

The first example is the multi-qubit Clifford group C,, that already
takes a prominent role in quantum characterization and quantum
computation more generally®’. We consider an UIRS experiment for
C,: i.e., sequences of i.i.d. Clifford gates uniformly drawn at random,
acting on the initial state |0)(0| and ending in a computational basis
measurement. This is a common gate-set with a well-understood
representation structure, allowing us to explicitly calculate the
sequence mean k4(m) and give bounds on the dynamic shadow norm
lAllayn,» which controls the sample complexity of sequence
estimation.

Signal model. The adjoint representation of the multi-qubit Clifford
group w(g) decomposes into two inequivalent irreducible
representations’: g, supported on the normalized identity matrix and
0,4 supported on the space of traceless matrices, spanned by the
generalized Pauli matrices. See Supplementary Note 2 for details. We
focus on sequence correlation functions with support on g,4 only, i.e.,
A=PagAP,q. Then, k¢ (m) describes a single exponential decay Eq. (7)
with

1
PagaN)= ﬁTr(P 2dAPaaN) - 1)

This is a familiar quantity: For A=P,q, it corresponds to the
depolarizing probability (essentially the average fidelity) of the chan-
nel A. As a very special case, the Clifford UIRS protocol in this way
emulates standard Clifford randomized benchmarking without per-
forming an inversion. However, gate-set shadows are considerably
more flexible. For instance, by choosing A=U a unitary channel,
Pad,u(A) measures the relative average fidelity of A w.r.t. the unitary U
(i.e., the average fidelity of U'-A). In particular, for U a Clifford channel,
the corresponding sequence correlation function can be evaluated
efficiently. Relative average gate fidelities are also estimated in
interleaved RB. Compared to existing interleaved RB protocols such
as the scheme of ref. 29, gate-set shadows have the crucial advantage
that the experimental protocol itself is independent of U.

Since we do not have to implement A on a quantum device, we can
also consider A that do not correspond to quantum channels such as
rank-one super-operators of the form X Tr(Y -) for operators X, Y.
Hence, the gate-set shadows are a versatile tool to estimate properties
of the implementation of a Clifford gate-set.

Dynamical shadow norm. The versatility of Clifford UIRS in practice
of course crucially depends on the sample efficiency of the estimation.
From the above, it is not clear that k,(m) can be efficiently estimated
for arbitrary A. Demanding that k(1) =1 in the limit of perfect state
preparation, measurement, and gates, the normalization factor « in
Eq. 2) is a=2"+1, leading to a single-shot estimator taking values
exponentially large in n. Building upon the machinery of the dynamic
shadow norm and Theorem 1, we can still provide guarantees for
efficiently estimatable probe operators and investigate the limits of
Clifford UIRS. As a first step, we assume A to be a restriction of a unitary
channel U to the traceless subspace, i.e., A = P,qUP,q. In this case, the
dynamic shadow norm can in fact be bounded by a small constant
independent of the sequence length.

Theorem 2. (Clifford UIRS unitary norm bound). For the n-qubit Clif-
ford UIRS protocol, U a unitary channel, and A = P,qUP,q, it holds that

| Allgyn,m <10 12)

Theorem 2 is noteworthy for several reasons. First, it does not
depend on the number of qubits n. Therefore, the estimation of k (m)
is efficient even on a quantum system consisting of many qubits.
Second, the shadow-norm bound does not depend on the sequence
length m, enabling relative accuracy estimation of the decay rate in
certain regimes. We note that the constant 10 is probably sub-optimal.
The derivation of this theorem can be found in Supplementary Note 6.

As the main consequence of Theorem 2 together with Eq. (10), we
find that it is possible to sample-efficiently estimate exponentially
many relative fidelities with respect to unitary channels to additive
precision from the same gate-set shadows obtained by multi-qubit
Clifford UIRS.

Next, we consider a general probe super-operator A restricted to
the traceless subspace. Note that A does not need to be a quantum
channel. In the following, we show that the dynamical shadow norm
can be controlled in terms of the unitarity** of A,

u(A)=Traahe* — 1) 13)

For instance, u(A) < 1if A is a quantum channel with equality if A is
indeed unitary. We prove the following theorem.

Theorem 3. (Clifford UIRS general norm bound). Consider the n-qubit
Clifford UIRS protocol and let A=P,4AP,q be a probe super-operator
restricted to the traceless subspace. The dynamic shadow norm for m >2
is upper bounded by

1Al dynm < € M2r(AY™ " max{r(A), 1}, (14)
with r(A) = 1+ 2*")u(A) and suitable constant C.

The proof of this theorem, given in Supplementary Note 6, is
similar in spirit to Theorem 2, but significantly more involved.
Choosing A to be unitary (u(A) =1) does not recover Theorem 2, due to
the appearance of the quadratic scaling in m. This term arises because
we consider general probe super-operators A, giving rise to polynomial
transient dynamics in the dynamic shadow norm (due to the non-
normality of the underlying operators [ref. 53, Chapter 6]). For many
sensible choices of A, the polynomial scaling in m does not appear as is
evidenced by theorem 2. Also, the bound does not quite scale with the
unitarity u(A), but rather with the parameter r(4) which differs from
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u(A) by an exponentially small factor. We believe this to be an artifact
of the proof technique.

This theorem leads us to the remarkable conclusion that the
multi-qubit Clifford UIRS protocol allows us to estimate overlaps p(AA)
for a very large class of super-operators. In particular, A can be any
trace non-increasing map, allowing us, e.g., to characterize the overlap
between the noise channel A and sets of Kraus operators, making the
Clifford UIRS protocol an all-purpose tool for noise map exploration.

Example: local Clifford UIRS

A particularly scalable and interesting protocol arises when perform-
ing a UIRS protocol with the local Clifford group C; " over n qubits. In
this case, the experiment consists of performing sequences of i.i.d.
random single-qubit gates simultaneously on all qubits, initially pre-
pared in |0)(0| ending with a computational basis measurement.

For C[" the conjugate representation w(g)=U, - U; with
Ug=Ug, ¢,=Ug ®...®U; decomposes into 2" irreducible,
mutually inequivalent representations o, with w € {0,1}" that have
support on the normalized non-identity Pauli operators on all qubits i
for which w; =1. We denote the projectors onto these irreducible sub-
representations as P, (see Supplementary Note 2 for more details).

Signal model. We consider sequence correlation functions with probe
operator A that only have support on a single irreducible representa-
tion o0,(g) and set a=2"3". Then, the mean k¢, (m) again describes a
single exponential decay Eq. (7) with
PuaN) =Tr(P,AP,A)3 . 1s5)
We will refer to this quantity as a local fidelity w.r.t. A. The local
fidelity is again somewhat familiar. The special case p,,; has been
called the ‘addressability’ in ref. 28, where it was used to gain infor-
mation about the strength of correlated errors. Using gate-set shadows
of simultaneously applied local gate sequences, we can collect even
more information about correlated errors, giving rise to an efficient
cross-talk tomography protocol introduced in the section “Application:
Cross-talk tomography”. We can again equip the UIRS protocol with
sampling complexity guarantees by bounding the shadow norm.

Dynamic shadow norm. We derive a bound on the dynamic shadow
norm of the local Clifford group that depends exponentially on the
Hamming weight |w| of the bit-string w labeling the representation
being addressed but is independent of the total number of qubits in
the system.

Theorem 4. (Local Clifford UIRS norm bound). For the local Clifford
UIRS protocol on n qubits, w € {0,1}", and A = P,AP,, a probe operator, it
holds that

Iw] 321w| [ 41| #]m!
I Allgnm <2132 [37Tr(aah| ™ (16)

The proof is given in Supplementary Note 5. Note that the term
inside the square bracket in Eq. (16) can be considered as a variant of
the unitarity restricted to the image of P,. In particular, if A = P,UP,, for
any unitary channel Uwe have 37'Tr(A4™) =1. Thus, for restrictions of
unitary probe operators, the bound becomes independent of the
sequence length and in consequence, the protocol is sample-efficient
for bounded |w]|.

Example beyond UIRS: Pauli-noise estimation

Thus far we have focused on uniformly independently sampled ran-
dom sequences (UIRS protocols). It is also fruitful to consider more
general probability distributions on the set of sequences of a given
length. We give an example of this by constructing a simple protocol

that estimates the diagonal elements of an n-qubit channel A using
only O(n2") samples. This sampling complexity matches the asymp-
totic bound given for this task in ref. 19. Using gate-set shadows,
however, gives a simpler experimental description and analysis. To this
end, consider random sequences of the form g=(c},p,,, ...,p;, ©)
where py, ..., p, are chosen independently uniformly at random from
the Pauli group P, and c is chosen uniformly at random from the
Clifford group C,,. Note the inverse ¢ * here at the end of the sequence.
In a black-box fashion, we additionally intersperse the channel A in
between executing the random Pauli elements in the experiment. The
measurement is again a computational basis measurement and the
initial state p=]0)(0|. Choose 7 to be a Hilbert-Schmidt normalized
traceless Pauli operator. As the associated correlation function, we
define
f106,8) : =a TIE, 0(OW(pP)A; ... A o(pw(C)p] 17)
with A, : =7 Tr(r-) and a=2"(2"+1). For convenience, we ignore the
SPAM in deriving and stating the following results. Both of these
assumptions can be easily relaxed. As we show in Supplementary
Note 7, the corresponding sequence mean is the power of the diagonal
matrix entry of A corresponding to 7, i.e.,
k. (m)=Tr[tA(T)]™ . (18)
We further show that the variance of the associated estimator can
be bounded as

22" +1)°

c 7 19
23” (22" _ 1) ( )

V. (m)< =0(2"),

for all choices of 7. Note that there are 4"-1 such choices, char-
acterizing all diagonal elements of the quantum channel A. Hence,
by using median-of-means estimators, we can estimate k,(m) for all
to uniform additive precision using O(n2") samples (independently
of m). By the analysis in ref. 49 for the estimation of single
exponential decays and the fact that the decay rates A, ; are strongly
clustered (ref. 33, Lemma 4) leads to a relative precision estimation
of the associated Pauli fidelities, matching the performance given
in ref. 19.

Application: Learning unitary noise models

In the previous section, we have shown how to efficiently estimate the
overlap of certain probe operators with the noise of a gate-set. This
data, e.g., the average gate fidelity of the noise with a specific gate, is
already of interest. The most intriguing feature, however, is that we can
estimate many different probe operators from the same data. In this
way, we can use estimates from gate-set shadows as a subroutine in a
complex post-processing pipeline that extracts more information
about the noise. This opens up the way to perform many different
characterization tasks that arise in a full-scale engineering cycle of
building a quantum computer from the same simple data. Importantly,
the resulting protocols automatically inherit the SPAM robustness of
the estimation protocol. We illustrate these possibilities with three
concrete examples.

When characterizing noisy quantum gates one differentiates
between coherent noise (due to imperfect specification of the gate)
and incoherent noise (due to interactions with the environment).
These two types of noise have different consequences, for e.g., error
correction™”* and are engineered away in different ways. At the same
time, coherent errors can be corrected by experimental design and
control if one has a concrete description. Given a model for a unitary
channel 8 —~ U(6), we can learn the model parameters 8 approximating
the noise channel A by maximizing F(U(6), A). During the optimization,
the objective function, its gradient, etc. can be estimated from the
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Fig. 2 | Numerical simulations of two potential applications, unitary noise
optimization (section “Application: Learning unitary noise models”) and cross-
talk tomography (section “Application: Cross-talk tomography”). Panels a and
b show simulation results of the multi-qubit Clifford UIRS protocol for two
qubits and 1000 random sequences per sequence length. Between every
Clifford gate C, two independent Z-rotations R,(8) with rotation angles
6,=0.07 and 6, =0.13 have been applied (see circuit diagram c). Panel

b shows average fidelities F(U(6), A) reconstructed from the gate-set shadows
using the ansatz U(6,, 0,) = Rz(6;) ® Rz(0,). Example decays of the sequence
averages k(m) are shown in panel a with bootstrapped 95% confidence
intervals around the decay points. Panels e-g display simulation results for
cross-talk tomography from two-qubit local Clifford UIRS data with 15,000
random sequences per sequence length. After every layer of local Cliffords,

an entangling cross-talk noise process N, has been applied (see the circuit
diagram (d). Panel e shows the Pauli transfer matrix (PTM) of the recon-
structed pinched marginal S given in Supplementary Equation (107), for
cross-talk of the form N =XX(0), with dashed boxes indicating the unital
marginals Ao 1, A10, and Ay ;. Panels f and g show the PTMs of the difference
between the unital marginal A;; and the tensor product A; o ® Ag; as a
characterization of the cross-talk between the two qubits, for cross-talk

N =XX(0=0.4) in fand N.=ZZ(6=0.4) in (f). Simulations have been per-
formed using Qiskit®” with single-qubit depolarizing noise of p;=0.002 for
single-qubit gates and two-qubit depolarizing noise p,=0.01 for two-qubit
gates (on top of the custom noise processes after each Clifford layer). For the

same classical gate-set shadow. For the multi-qubit Clifford UIRS, every
estimation requires a polynomial-size shadow in the number of qubits
and only a logarithmic overhead in the number of evaluations
F(U(6), N). A numerical simulation of a simple learning example is given
in Fig. 2.

Application: Cross-talk tomography
A key source of error in today’s quantum computing devices is cor-
related noise or cross-talk. For this reason, a significant effort has gone
into characterizing cross-talk errors specifically’®*>*¢, Using the flex-
ibility of extracting manifold information from gate-set shadows in the
post-processing, we here propose cross-talk tomography as an effi-
cient, robust, and detailed cross-talk characterization procedure,
based on the local Clifford UIRS protocol.

The protocol gains tomographic information about, what we call,
the unital marginals A, =P, \P,, w € {0,1}", of the noise channel A.
(Here, P, is again the projector onto the irreducible representations of
the local Clifford group.) These unital marginals arise as restrictions of
channel marginals A;, where one evaluates A on a maximally mixed
input on a system A and traces out the resulting state on A”.

Now A, can be reconstructed via simple linear inversion (see
ref. 32, Lemma 37) from the local fidelities p,,o(A)=3""Tr(AP,CP,)
with respect to the probe-operators given by the local Clifford channel

PTM plots, modified functions from the Forest Benchmarking package’ have
been used.
C according to
1 2
M= 157 22 3 PucNC'Py, 20)

ceC,

where the sum is restricted to local Clifford channels with unitaries
from the subgroup C,, of C,, acting non-trivially on only the qubits in
the support of w. In fact, it is sufficient to consider all local Clifford
channels C that act non-trivially on the support of the bit-string w. Not
restricting the non-trivial support of C, however, allows us to
simultaneously reconstruct A,, for multiple values of w.

This constitutes the basis of cross-talk tomography for k-local
interactions. Let Hy < {0, 1}" be the subset of bit strings with Hamming
weight k. (i) Perform the UIRS experiment for the local Clifford group
over n qubits. (ii) Estimate p,,(C) for all w € Hy and for all C acting non-
trivially on the support of w. (iii) Reconstruct all A,, for w € H;.

By comparing A, for different bit strings, one obtains information
about the correlations present in A. Building upon the guarantees for
UIRS, we show that cross-talk tomography is e-accurate in the diamond
norm for all A, using O(k* 2°*/€%) shadow samples (up-to log-factors).
Thus, for small &, cross-talk tomography is highly scalable to large
numbers of qubits. In light of Theorem 4, this efficiency stems from
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using local unitary probe operators. The derivation and even tighter
guarantees are given in Supplementary Note 8.

As an illustration, we study the protocol with a 2-qubit example.
We start by using the local Clifford UIRS protocol to reconstruct the
2-qubit unital marginals A; o, Ao; and A; ;. Next, we compute the tensor
product A; o ® Ao;. It is straightforward to see that if the channel Ais a
tensor product of single-qubit quantum channels featuring no corre-
lations (i.e., there is no cross-talk) then A; o ® Ag;=A;;. Hence, both
the difference Ao ® Ag1—Ar1 and the product A; (Ao ® /\0,1)’1 pro-
vide meaningful characterizations of cross-talk present between qubits
1and 2. The difference measure can be considered as a generalization
of the commonly used addressability metric proposed in ref. 28. But
going beyond a mere metric, we expect that the channel marginals not
only detect the presence of cross-talk but also provide more detailed
diagnostic information. As a proof of principle, we have numerically
simulated the above protocol to diagnose cross-talk in a two-qubit
system. The results of a numerical simulation of the protocol are
presented in Fig 2.

Application: SPAM-robust channel reconstruction

Kimmel et al.”’ have proposed the idea to combine the output of 0(2*")
different interleaved RB experiments in order to get a robust tomo-
graphic estimate of an unital quantum channel A. By explicitly
exploiting the low Kraus-rank, compressive RB tomography®-** can
reconstruct a unitary approximation to the quantum channel from (up-
to-log-factors) 0(2%") randomly selected different relative average-gate
fidelities with respect to Clifford unitaries. The previous references,
however, left the problem open of providing a SPAM-robust RB pro-
tocol that achieves the information-theoretically optimal sampling
complexity of O(2**)** for reconstructing a unitary channel.

We fill in this blank using the data from a multi-qubit Clifford UIRS
protocol. Using a set of randomly selected Clifford unitaries as probe
operators, we can provide the input data to the reconstruction algo-
rithm of ref. 32. We show in Supplementary Note 9 that the number of
gate-set shadows to guarantee an accurate reconstruction (in Hilbert-
Schmidt norm of the Choi-states) indeed matches the lower bound of
0(2*"). Note that the number of channel invocations is bounded by the
maximal sequence length times the number of sequences. Besides the
favorable scaling, the UIRS protocol has a crucial advantage compared
to, e.g., the interleaved protocol of ref. 29 that the same measurement
data is used for estimating all the average fidelities.

Going beyond the compressive reconstruction of unitary quan-
tum channels, we can use Clifford UIRS as a primitive for the robust
reconstruction of arbitrary unital quantum channels in the spirit of
ref. 29, see also ref. [, Theorem 38] and ref. 58. The required size of
the gate-set shadow is O(2%") for accurate reconstruction in any norm
in which unitary channels are normalized.

Gate-dependent noise

The presentation so far assumed gate-independent noise. This
assumption can be substantially relaxed, at the cost of introducing a
more complex description of the noise. We will focus on the UIRS
protocol, which is particularly robust against gate-dependent fluc-
tuations. We give a fairly comprehensive argument but leave rigor-
ous proof of the robustness to future work. Our argument follows
that of the robustness against gate-dependent errors for RB***, For
gate-dependent noise, the data form in expectation can be generally
written as

ky(m)=Tr[Z(A® DFE@Io)"™ ], @y

where = depends on the state and measurement and the operator
F(@lo]:=E,;0(8) @ ¢(g) is known as the (non-commutative)
Fourier transform of ¢, evaluated at the irreducible representation o;
see the derivation of Theorem 7 in Supplementary Information.

A key fact about this Fourier transform (see, e.g., ref. 59 for proof)
is that if ¢ is a representation w (i.e., a perfectly implemented gate-set),
then F(¢)[o] is an orthogonal projector with rank equal to the number
of copies of ¢ present in . For simplicity, let @ be multiplicity-free.
Then, F(¢)[o] is a rank-one projector. This implies that (A ® 1)F(¢)[0]
is also a rank-one projector. When ¢ is a sufficiently ‘good” imple-
mentation of w, the difference between F(¢)[o] and F(w)[o] is small (in
some suitable norm) and can be regarded as a perturbation of 7 (w)[o].
(See ref. 14 for a discussion of norms on this space.) Applying the
perturbation theory of non-normal matrices, we conclude that (A ®
)F(¢)[o] is as well approximately rank-one, and in particular that there
exist super-operators A;, Az such that

(A® DF(P)o)" = (A/\RPJTr[POAL-])m +E™ (22)
where E is a matrix of the small norm and P, is the projector onto o (in
the image of w). This means that the decay rate k,(m) has the general
functional form

k(m)=B,p(A)™ " + B,S(E)™ ! (23)
where B;, B, are real numbers encoding SPAM, 6(E) is small, and p(A),
the dominant eigenvalue of (A ® 1)F(¢)[0o], is given by
D(A)= P, ' Tr(A P, AP, AR) . (24)

Up to a small and exponentially decreasing error, we thus recover
the functional form of Eq. (5) also in the presence of gate-dependent
noise. It is important to note, however, that in this general case, A, and
Ar (and their product) need not be CPTP. This complicates the
interpretation of p(4) as describing an aspect of a physical noise
process.

Discussion

It has long been known that classical randomness can facilitate the
construction of informative characterization protocols for quantum
devices. Randomized benchmarking” and classical shadow
estimation'®"” are examples of this mindset. In our work, we follow this
paradigm even more stringently for diagnosing noise in gate-set
implementations. Instead of engineering sophisticated and specific
experimental protocols for a specific task, we turn the approach
upside down: we focus on the ‘simplest’ randomized protocol that can
be implemented with current and near-term quantum architectures:
Random gate sequences followed by native measurements. Accepting
this restriction, we then ask how detailed diagnostic information can
be extracted from the resulting data and most importantly how many
samples are required.

It turns out that the resulting prescription—a single experiment
that can and has been implemented experimentally already—allows for
solving many benchmarking, certification, and identification problems
with (near-)optimal efficiency. All the technicalities that come along
with different tasks are shifted to the classical post-processing phase.
Most importantly, multiple diagnostic tasks can be performed from
the same measurements, allowing us to base an entire engineering
cycle on a single experiment.

The ideas advocated here constitute the beginning rather
than the conclusion of a program. We regard our theoretical
results as a strong motivation to experimentally realize and make
use of concrete applications, such as robust learning of unitary
noise and cross-talk tomography. In addition, several further
extensions seem exciting. A logical first extension of our work is
UIRS with other groups and non-uniform measures over said
groups. As with state shadow tomography and randomized
benchmarking, we believe the UIRS protocol can be furnished
with rigorous guarantees for several other useful gate sets such as
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the matchgates®™®, the Heisenberg-Weyl group, the CNOT-
dihedral group, and even gate sets that do not constitute a
group"z'“.

We also illustrated the potential of using correlated sequences
where the gates are not drawn independently. We believe that using
simple correlated sequences gives a fruitful perspective on long-
standing problems such as the characterization of non-Markovian and
time-varying noise processes in an experimentally friendly and scal-
able way. Furthermore, while not demonstrated here, akin to their
state analog, gate-set shadows can also be used for estimating non-
linear quantities.

While the bulk of this work discusses diagnostic tools for devel-
oping near-term quantum computing devices, random sequence
protocols apply beyond that. We expect that gate-set shadows will for
instance find application as a primitive in quantum machine learning®,
in particular in dynamic settings such as time-series estimation. Also in
this context, the possibility to ‘measure first and ask later’ increases the
flexibility in devising hybrid quantum-classical schemes with experi-
mentally feasible quantum computations.

Data availability
The simulated data used for creating the plots in Fig. 2 have been
deposited on Figshare and are publicly available®.

Code availability
The code used to simulate the protocol and create the plots in Fig. 2 is
available upon request.
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