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ABSTRACT

The open-source FastLanes project aims to improve big data for-

mats, such as Parquet, ORC and columnar database formats, in

multiple ways. In this paper, we significantly accelerate decoding

of all common Light-Weight Compression (LWC) schemes: DICT,

FOR, DELTA and RLE through better data-parallelism. We do so

by re-designing the compression layout using two main ideas: (i)

generalizing the value interleaving technique in the basic operation

of bit-(un)packing by targeting a virtual 1024-bits SIMD register, (ii)

reordering the tuples in all columns of a table in the same Unified

Transposed Layout that puts tuple chunks in a common ł04261537ž

order (explained in the paper); allowing for maximum independent

work for all possible basic SIMD lane widths: 8, 16, 32, and 64 bits.

We address the software development, maintenance and future-

proofness challenges of increasing hardware diversity, by defining

a virtual 1024-bits instruction set that consists of simple operators

supported by all SIMD dialects; and also, importantly, by scalar

code. The interleaved and tuple-reordered layout actually makes

scalar decoding faster, extracting more data-parallelism from to-

day’s wide-issue CPUs. Importantly, the scalar version can be fully

auto-vectorized by modern compilers, eliminating technical debt

in software caused by platform-specific SIMD intrinsics.

Micro-benchmarks on Intel, AMD, Apple and AWS CPUs show

that FastLanes accelerates decoding by factors (decoding >40 values

per CPU cycle). FastLanes can make queries faster, as compressing

the data reduces bandwidth needs, while decoding is almost free.

PVLDB Reference Format:

Azim Afroozeh and Peter Boncz. The FastLanes Compression Layout:

Decoding >100 Billion Integers per Second with Scalar Code. PVLDB, 16(9):

2132 - 2144, 2023.

doi:10.14778/3598581.3598587

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/cwida/FastLanes.

1 INTRODUCTION

Analytical data systems routinely employ columnar storage. This al-

lows queries to skip columns that they do not need, saving network,

disk and memory bandwidth. Further, columnar storage tends to

be more compact than row storage, thanks to compression.
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Vectorized execution is a broadly adopted design for query execu-

tion where computational work in query expressions is performed

on chunks of e.g., 1024 values called łvectorsž, by an expression

interpreter that invokes pre-compiled functions that perform sim-

ple actions in loops over these vectors (arrays), thus amortizing

function call overhead over 1024 tuples and allowing compilers to

optimize these functions using techniques like loop-pipelining, code

motion and auto-vectorization: generation of SIMD instructions [5].

Vectorized decoding carries over these efficient properties when

applied to decoding compressed data. We focus on FOR, DICT,

DELTA and RLE (resp. the Frame Of Reference [9], Dictionary,

Delta and Run Length encodings). Also, when a vectorized table

scan decompresses a vector, (compact) compressed data in RAMgets

decompressed into an uncompressed vector, which is a small array

of 1024 values, that fits the CPU L1/L2 caches and is immediately

processed by the query pipeline, so it typically does not spill to

RAM. As such, decompression happens between RAM and CPU,

reducing memory, network and disk bandwidth consumption [39].

Parquet [1] also uses columnar encodings, albeit using a scheme

that always applies DICT and represents the dictionary codes

in variable-sized runs using bit-packing or RLE. Such variable-

sized adaptivity hinders fast vectorized decoding [3], and the non-

interleaved bit-packing and classic RLE it uses do not expose the

opportunities for data-parallelism introduced by our techniques.

Compressed execution.We think scans in next-gen database sys-

tems should not decompress columns eagerly to their SQL type,

which often is a wide integer (e.g., a decimal stored in 64-bits), but

rather to the smallest type that makes the values processable by

query operators. Modern systems like Procella [6], Velox [20] and

DuckDB [25] support compressed vectors, where data is both ran-

domly accessible yet still partially compressed: e.g., a FOR-vector or

a DICT-vector, where 1024 values are represented as uint8[1024],

accompanied by one uint64 base (FOR), resp. a pointer to a Dictio-

nary. Such tight representations unlock optimizations (e.g., SIMD)

for operators higher in a pipeline, and reduce the size of data struc-

tures, lessening (cache) memory pressure. It also causes best case

scan decoding performance, where one decompresses a vector to

its smallest possible lane-width, to become the common case.

FastLanes is a project initiated at CWI, intended as a foundation

for next-generation big data formats. It introduces a new layout for

compressed columnar data that increases the opportunities for data-

parallel decoding, improving performance by factors. It does so in a

way that works across the heterogeneous and evolving Instruction

Set Architectures (ISAs) landscape, is future-proof, and minimizes

technical debt by relying on scalar-only code.
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1.1 Challenges and Contributions

In the FastLanes project we are re-designing columnar storage to

expose more independence in data decoding, to make future query

engines better at exploiting data-parallelism present in modern

hardware. We contribute solutions to six challenges in Table 1:

Many SIMD widths. In the course of 25 years, SIMD ISAs have

widened by a factor 8. Rather than taking the current widest SIMD

ISA and proposing a data layout optimized for it, we preempt further

widening of SIMD registers and propose a layout optimized for a

virtual 1024-bits register FLMM1024 that gets the best performance

out of any existing ISA, and even from scalar code. At the lowest

level of bits, this means FastLanes applies an interleaved bit-packed

layout to 1024 bits; which distributes all logically subsequent e.g.,

3-bit values round-robin over 128 separate 8-bit lanes. On the im-

plementation level, it leads to vectorized decoding functions that

deliver a vector of 1024 tuples at-a-time, in sometimes as little as

17 CPU cycles (an astonishing 70 values per CPU core cycle).

Heterogeneous ISAs. In order to deal with concurrently existing

generations of x86 SIMD hardware, as well as ARM, where AWS

Graviton1-3 and Apple M1-2 support 128-bits NEON, and Gravi-

ton3 also supports SVE; and other ISAs for POWER and RISC-V, we

define a simple instruction set1 on FLMM1024 that is easily sup-

ported by the common denominator of all SIMD instruction sets.

While it is out of scope in this paper, we think FLMM1024 instructions

on the FastLanes layout can also map efficiently to GPUs and other

future data-parallel hardware (such as TPUs).

Decoding dependencies. Decoding RLE has an intrinsic control-

dependency, as it needs a loop for emitting repeated values; but

SIMD does not support control-instructions. DELTA decoding has

an intrinsic data-dependency between subsequent values, which

in SIMD are located in adjacent lanes; yet instructions with lane-

dependencies are much slower. We tackle the latter problem by re-

ordering the column using a technique we call "transposing", such

that all lanes handle completely independent DELTA sequences. We

then remap RLE to a combination of DELTA and DICT encoding,

that leverages this very efficient DELTA decoding kernel.

Layouts that depend on lane-width. Previous work [15, 16, 21,

22, 27, 29, 31, 37] studied data encodings in isolation, but here we

also look at the system context, i.e. table scans of multiple columns.

When the optimal layout depends on a specific lane-width (8, 16,

32, 64 bits), this is problematic in that context. In table formats,

different columns will store different value distributions which get

bit-packed using different bit-widths and get decoded into types

that fit different lane-widths. Our idea of transposing also runs into

problems in this regard. Naively applied, it would lead to different

column reorderings inside the same table. Therefore, we invented

a very specific reordering of 1024 tuples that suits all possible lane-

widths. This we call the Unified Transposed Layout. The gist of

this reordering is to organize 1024 values in eight 8x16 transposed

blocks, and to put these eight blocks in the order ł04261537ž. We

will explain why this order works well with any column-width.

1The idea is similar to [32] but as SIMD width interacts with data layout, we design for
a concrete 1024-bits width. Rather than trying to cover all ISAs in intrinsics, our simple
FLMM1024 instruction set has a scalar implementation that gets auto-vectorized.

Table 1: Challenges to efficient data-parallel decompression

in big data formats, and how FastLanes tackles them.

Challenge FastLanes Solution

many SIMD widths target a virtual FastLanes FLMM1024 SIMD register

heterogenous ISAs FLMM1024 uses simple operators, present in all ISAs

decoding dependencies reorder (transpose) columns to break dependencies

1 layout per lane-width same Unified Transposed Layout forall lane-widths

keeping code portable no intrinsics: use scalar code & auto-vectorization

LOAD/STORE-bound vectorized execution & fused unpacking+decoding

Keeping code portable. The simple design of the FLMM1024 Fast-

lanes 1024-bits instruction set allows to implement it in scalar code

that uses uint64 registers and operations. This portability also al-

lows low-end CPUs that do not support any SIMD and that may

even have 32-bits registers and memory addressing (but where

compilers emulate 64-bits arithmetic) to also run FastLanes rather

efficiently to their standard. On 64-bits CPUs, scalar FastLanes code

achieves SIMD-like acceleration when handling small lane-widths

(i.e. 8-bits gets 8x faster using 64-bits scalar). We find it remarkable

that SIMD-friendly ideas like interleaving and transposing accel-

erate our scalar code, rather than slow it down. Last but not least,

modern compilers can auto-vectorize our scalar code-path without

loss of performance, avoiding the need for SIMD intrinsics, thus

reducing technical debt and further making FastLanes future-proof.

Avoid getting LOAD/STORE-bound. We propose to use Fast-

Lanes decoding in vectorized execution, where the compressed data

is read from RAM and gets decoded into 1024-value arrays, which

are then processed from the CPU caches by the query pipeline.

This reduces memory traffic by the compression ratio (often 2-3x).

Further, most CPU time will be spent on the operators in the query

pipeline, so scans run at much lower than the maximum decoding

speed, further reducing bandwidth pressure. Sequential scans will

trigger memory hardware prefetching, so good throughput can be

reached. All this reduces the probability to be LOAD bound.

However, as FastLanes decoding is much faster than previous

LWC schemes, and can achieve astonishing speeds, the decoding

functions can become STORE bound, even when storing just into

L1 cache. We show that fusing our bit-unpacking kernels with

the decoding kernels for FOR/DELTA/RLE/DICT benefits perfor-

mance, as this saves an intermediate STORE+LOAD.

1.2 Outline

The remainder of the paper is organized as follows. In Section 2

we explain these contributions in more detail, helped by a series of

figures in visual language. First we explain 1024-bits interleaved

bit-unpacking. The Unified Transposed Layout of FastLanes is mo-

tivated and explained around DELTA decoding. We further discuss

efficient decoding of RLE exploiting this foundation. We follow-up

in Section 3 with an evaluation of decompression performance of

FastLanes bit-unpacking and DELTA and RLE decoding on all major

hardware platforms. We also perform an end-to-end query execu-

tion benchmark based on Tectorwise [12] showing that using Fast-

Lanes decoding, instead of just an uncompressed in-memory array

scan, can make a query faster. In Section 4, we discuss related work,

covering the main differences between FastLanes and the state-of-

the-art using both explanatory figures and micro-benchmarks. We

conclude the paper and discuss future work in Section 5.
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Figure 1: The 1024-bit interleaved layout. 𝐵=3 adjacent FLMM1024 words (red boxes, shown top-down) store 1024 values. Black

bars indicate bit-packed values with their logical positions in the column: logically subsequent𝑊 =3-bit encoded values are

round-robin spread into 𝑆 =128 lanes of 𝑇 =8-bits. In the first word, only the first two bits (yellow,pink) of the value at position
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Figure 2: Legenda for our visual explanations.

2 FASTLANES

In order to explain the FastLanes compressed data layout, we make

extensive use of drawings in the visual language introduced in

Figure 2. We now explain the main FastLanes features in detail.

2.1 Many SIMD widths

Over the past three decades, SIMD register widths in x86 CPUs have

doubled three times from MMX (64-bits) to SSE1-4 (128-bits 1999),

AVX/AVX2 (256-bits, 2008) and AVX512 (512-bits, 2015). A next

doubling is not imminent, but we do see GPUs - and Apple CPUs -

adopting a 1024-bit cache-line, which facilitates such a move.

Existing SIMD decoding algorithms and their data layouts typi-

cally target a specific register width. Consider the 4-way interleaved

layout [16], which distributes bit-packed tuples among 4 SIMD lanes.

This layout avoids expensive cross-lane PERMUTE or BITSHUFFLE

instructions, needed if bits would be packed consecutively. While

being efficient for unpacking four 32-bits values CPUs on 128-bit

SIMD registers, this layout does not have enough parallelism for

256-bits or 512-bits registers. In response, the 8-way and 16-way

interleaved formats were proposed [10], which are all different.

To preempt changing data formats when some ISA starts to sup-

port a wider SIMD register, FastLanes targets a still-not-existent

register width, concretely 1024-bits.2 One should note that as long

2We could have picked 2048 or 4096 as well; we chose to be conservative as the layout
chunk-size grows with it: a chunk of 1024𝑊 (bit-width) encoded values fit in exactly

as ś expensive ś lane-crossing operations are avoided, it is triv-

ial to support data layouts designed for a wider register without

performance penalty on a thinner SIMD register; just by using mul-

tiple identical thinner instructions working on adjacent data. The

reverse is not true: supporting thin layouts on wide registers typi-

cally leads to lack of parallel work and unused lanes or expensive

compensating actions such as PERMUTE and BITSHUFFLE.

Figure 1 shows the interleaved bit-packed layout in the example

case of integers that can be encoded in 3 bits (𝑊 =3). To maximize

decoding performance we use the smallest lane-width that fits that,

i.e. 8-bits (𝑇=8), and therefore we have 128 (𝑆=1024/𝑇=128) lanes in

our FLMM1024 word. Note that bit-packing is a building block that

is used in all encodings and can optionally be combined with an

exception-handling technique (such as "Patching" [39]), to handle -

in this case ś infrequently occurring values that do not fit 3 bits.

2.2 Heterogeneous ISAs

When new SIMD ISAs are introduced, we often see two kinds of

asymmetries: (i) new operators that did not exist in a thinner ISA

are introduced, or (ii) a wider register is introduced, but not all

operators existing on thinner registers are (initially) supported on

the wider register. Data layouts that depend on these operators

are then problematic to support efficiently on all plausibly in-use

hardware platforms, certainly for data systems that are distributed

as binaries (pre-compiled).

Recently, ISA heterogeneity has significantly increased as ARM

CPUs have become popular both on servers (AWS Graviton2,3) and

with end-users such as data scientists (Apple M1,2); which bring

their own subsets of NEON as well as SVE.

In order to support heterogeneous ISAs, FastLanes only uses

simple operators, such as load/store, left/right-shift, and/or/xor,

addition and set instructions; supported for all lane-widths, T ∈

{8, 16, 32, 64} as shown in Listing 1. This instruction set can be

trivially mapped to intrinsics in all previously mentioned thinner

ISAs, just by using multiple identical instructions on independent

𝑊 FLMM1024 registers. Larger chunk-sizes lead to worse compression ratios since
the bit-width for bit-packing depends on the value-domain of a chunk (an exception
mechanism to remove outliers can help to contain this problem). They also lead to an
increased minimum vector-size, i.e. access granularity, imposed to the scan subsystem.
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1 FLMM1024* // A pointer to 1024−bit word memory.

2 FLMM1024 // A variable of size 1024−bit

3
4 // Load 1024−bits from memory address ADR

5 FLMM1024 LOAD<T>(FLMM1024* ADR);

6
7 // Store 1024−bits from REG into memory address ADR

8 void STORE<T>(FLMM1024* ADR, FLMM1024 REG)

9
10 // forall T−bit lanes i in REG return (i & MASK) << N

11 FLMM1024 AND_LSHIFT<T>(FLMM1024 REG, uint<T> MASK, uint8 N)

12
13 // forall T−bit lanes i in REG return (i & (MASK << N)) >> N

14 FLMM1024 AND_RSHIFT<T>(FLMM1024 REG, uint<T> MASK, uint8 N)

15
16 // forall T−bit lanes (a,b) in (A,B) return (a & b)

17 FLMM1024 AND<T>(FLMM1024 A, FLMM1024 B)

18
19 // forall T−bit lanes (a,b) in (A,B) return (a | b)

20 FLMM1024 OR<T>(FLMM1024 A, FLMM1024 B)

21
22 // forall T−bit lanes (a,b) in (A,B) return (a ^ b)

23 FLMM1024 XOR<T>(FLMM1024 A, FLMM1024 B)

24
25 // forall T−bit lanes (a,b) in (A,B) return (a + b)

26 FLMM1024 ADD<T>(FLMM1024 A, FLMM1024 B)

27
28 // forall T−bit lanes, return VAL.

29 FLMM1024 SET<T>(uint<T> VAL)

Listing 1: FastLanes simple SIMD instruction set, with

FLMM1024 1024-bits registers and T-bits lanes; T ∈ {8, 16, 32,

64}. It can be trivially mapped onto any existing SIMD ISA,

as well as onto scalar code using uint64: ISAs with thinner

registers just use multiple identical instructions on multiple

registers and adjacent memory to reach 1024-bit width.

registers or adjacent memory locations, to reach the 1024-bit width

of our virtual FLMM1024 register. The extreme example of this is our

Scalar_T64 code-path, which relies on 64-bits integers (uint64):

struct { uint64 val[16]; } FLMM1024; // 16*uint64 = FLMM1024

FLMM1024 AND<8>(FLMM1024 A, FLMM1024 B) {

FLMM1024 R;

for(int i=0; i<16; i++) R.val[i] = A.val[i] & B.val[i];

return R;

}

As a detail, we note that we combined the shift instructions

with AND functionality. In bit-packing, these two operations are

typically followed by each other anyway, so in those cases, the

combined instruction is a shorthand. Another reason to introduce

this shorthand is our Scalar_T64 code-path that manipulates uint64

values. As shown above, we can support for instance eight 8-bits

lanes using instructions on uint64. However, shift instructions on

uint64 could transport bits from one lane into another, something

that is guaranteed not to happen in SIMD instructions. But, by

performing the AND before shifting in such a way that bits that

would cross a lane are masked out, this problem can be prevented

by manipulating the (constant) mask value, at no additional cost.3

Listing 2 shows the implementation for unpacking 3-bit (𝑊 =3)

codes into 8-bit (𝑇=8) integers. Rather than writing such code by

hand, we generate it statically for all 1 ≤𝑊 ≤ 64, 𝑇 ∈{8,16,32,64}

3Note that cross-lane bit-spilling is also a risk in the ADD operator. However, as SIMD
ISAs do not support overflow detection, usage of SIMD ISAs for summations already
requires the use of overflow prevention techniques in order to ensure correctness.
Hence for ADD we can assume that overflow does not happen.

1 uint<8> MASK1 = (1<<1)−1, MASK2 = (1<<2)−1, MASK3 = (1<<3)−1;

2 FLMM1024 r1, r0;

3 r0 = LOAD<8>(in+0);

4 r1 = AND_RSHIFT<8>(r0,0,MASK3); STORE<8>(out+0,r1);

5 r1 = AND_RSHIFT<8>(r0,3,MASK3); STORE<8>(out+1,r1);

6 r1 = AND_RSHIFT<8>(r0,6,MASK2);

7 r0 = LOAD<8>(in+1); STORE(out+2,OR<8>(r1,

8 AND_LSHIFT<8>(r0,2,MASK1)));

9 r1 = AND_RSHIFT<8>(r0,1,MASK3); STORE<8>(out+3,r1);

10 r1 = AND_RSHIFT<8>(r0,4,MASK3); STORE<8>(out+4,r1);

11 r1 = AND_RSHIFT<8>(r0,7,MASK1);

12 r0 = LOAD<8>(in+2); STORE(out+5,OR<8>(r1,

13 AND_LSHIFT<8>(r0,1,MASK2)));

14 r1 = AND_RSHIFT<8>(r0,2,MASK3); STORE<8>(out+6,r1);

15 r1 = AND_RSHIFT<8>(r0,5,MASK3); STORE<8>(out+7,r1);

Listing 2: Interleaved bit-unpacking kernel in FLMM1024 SIMD

for 𝑇=8 and 𝑊 =3. We use code-generation to create such

implementations for all combinations of 𝑇 and𝑊 (𝑊 <𝑇 ).

. . . 0 0257385513641383511639767 256384512640

. . . 257383 256

. . . 0 00129 1257S- 1255 127383 S- 1128 0256

. . . 1127 0

. . .257 129 128

. . .127 1 0

. . .383 257 256

. . .383 257 256

r 0 = LOAD<8>( i n+0)

STORE<8>( out +0, r 1)

STORE<8>( out +1, r 1)

r 0 = LOAD<8>( i n+1)

STORE<8>( out +3, r 1)

. . .255 129 128

. . . 0 0257 256383

1

0

0

1

2

3

0

r 1 = AND_RSHI FT<8>( r 0, 0, MASK3)

r 1 = AND_RSHI FT<8>( r 0, 3, MASK3)

r 1 = AND_RSHI FT<8>( r 0, 6, MASK2)

AND_LSHI FT<8>( r 0, 2, MASK1) ) )

OR<8>( r 1,  AND_LSHI FT<8>( r 0, 2, MASK1) )

Figure 3: Lines 3-8 of Listing 2 in action: ten FLMM1024 instruc-

tions bit-unpack the first 384 3-bits codes into 8-bit integers.

The investment in interleaving of bits leads to perfectly se-

quential unpacked integers using few simple instructions.

where𝑊 <𝑇 (116 pre-compiled functions that each deliver a vec-

tor of 1024 values). Figure 3 shows the algorithm in action: in 10

instructions, 384 values are unpacked. On this unpack kernel, Intel

AVX512 CPUs get to the astonishing speed of 70 values per cycle

= 140 billion values per second on one 2GHz core. Given 3-bits

per value this requires 52GB/s - close to RAM bandwidth limit. In

reality, however, a query pipeline spends at least a few cycles per

value in its operators, so the pipeline runs 100x slower; but with

this unpacking speed the decompressing scan is practically free.
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(a) Default DELTA layout with data dependencies on arrows.
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(c) Example DELTA layout with multiple bases.
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Figure 4: The Transposed Data Layout. Idea: reorder column

values to make data dependencies SIMD-friendly.

2.3 Dealing with Sequential Data Dependencies

Dependencies between subsequent values are SIMD-unfriendly

since adjacent values end up in adjacent lanes. Figure 4a shows that

the default layout (one value after the other) has this problem. The

additions needed for DELTA decoding are lane-crossing operators:

suppose the values in in Figure 4b are 32-bits, then adding the

values at position 0 and position 1 correspond to different lanes (if

e.g., positions 0-3 were loaded in a 128-bit SIMD register).

In these figures, the yellow boxes indicate base values. These

bases provide entry-points to start DELTA decoding. In FastLanes,

we allow to start decoding with a granularity of 1024 tuples. Base

values would be found in the header of a compressed columnar

block. But, rather than having one base per vector, Figure 4c shows

the idea of having four bases. This allows to start decoding at posi-

tions 0,4,8 and 12. It still does not solve the lane-crossing problem,

though. Figure 4d shows the "transposed" layout, that stores the

values out-of-order. The order for the first 16 values here is 0, 4,

8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15. Figure 4e show this leads to

optimal 128-bits SIMD processing: only 4 additions are needed.

We call this re-ordering a transposition because the idea is to

cut up the value column in SIMD register-sized chunks and put

these chunks vertically under each other, as shown in Figure 4f. In

case of our 1024-bits FLMM1024 register, this means that this matrix

has exactly 𝑇 rows and 𝑆 columns; where 𝑇 is the value (=lane)

bit-width and 𝑆 is the amount of such values in a register.

We argue that changing the tuple order is not problematic in the

database scan context. Relational algebra is set-based and query

operator semantics typically do not depend on order, so if the tuples

arrive perturbed from insertion order, they can usually be processed

in whatever order they arrive. Even if the order matters for the

query result or operator semantics, the original order could be

restored or encoded in a selection vector. While the presence of a

selection vector can slow down operations, it can often be avoided:

vectorized query executors typically have an optimization where

simple arithmetic operators (that cannot raise errors) will ignore

(identical) selection vectors on all parameters, if many tuples are

still in play, executing the operation on all values, at much lower

per-value cost thanks to full sequential access (and SIMD).
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(b)We need 8 independent operations here, but this layout only offers

4. This leads to unused SIMD lanes while decoding.

Figure 5: Transposed Layout and resulting value reordering

designed for one data type, is unsuited for thinner data types.
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(e) The 04261537 tile order is SIMD-friendly for all lane-widths. Note: the numbered blue-red boxes here are abbreviations for a 8x16 tile, and

imply 8 SIMD ADD operations each during DELTA decoding. This layout benefits all encodings with dependencies (i.e., also RLE).

Figure 6: Unified Transposed Layout: (a)-(c) idea of order unification, (d) how our unified approach arrives at the 04261537 order

(blue) of 8x16 tiles (green) and the final value order (green), (e) how it provides data-parallelism for all possible lane-widths.

Notably, FastLanes does not only store each sequence of 1024 tuples permuted in this reordering, but the individual columns are usually

also encoded with some LWC scheme (DELTA, FOR, DICT, RLE), which involves bit-packing using 1024-bit interleaving (Figure 1). So

the eventual bit-sequences stored are humanly hard to grasp. However, decoding the values requires only regular and astonishingly fast

calculations that are completely data-parallel.
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2.4 The Unified Transposed Layout

In our Transposed Layout, the order of the tuples depends on𝑇 . This

creates a problem for database scans: relational tables consist of

multiple columns and different columns will have different widths.

However, when we reorder tuples, we should use the same order

for all columns, because a scan needs to create a consistent stream

of tuples.4 Figure 5 shows that when we apply the reordering from

Figure 4d to a data type of half the width, there is not enough

independent work for the thinner type. In our example, the wide

data-type was 32-bits such that 4 values fit a 128-bits SIMD register.

So when putting a column of 16-bits integers in that order, we see

that we only can take advantage of four lanes, instead of 8. In this

case, the problem can be solved by just using a different ordering,

shown in Figure 6a-c, that works well with columns of both widths.

Our Unified Transposed Layout provides a generic solution to

this problem for all lane-widths. The basic building block are trans-

posed tiles of 8x16 values. We have eight such tiles for each vector

of 1024 tuples. For the widest 64-bits type, each row in the tile is

one FLMM1024 register, making it a suitable format to process one

tile-at-a-time: for DELTA decoding, the 8 rows are processed using

8 FLMM1024 ADD<64>. In case of 32-bits values, however, one row

occupies half a register, so we need to group two independently

processable tiles together in one register. This is done by taking the

lower half of tiles 0-7 and placing them to the left, arriving at 4 rows

of 2 tiles. This process repeats for 16-bits and 8-bits, arriving at a

single row of 8 tiles in the 04261357 ordering (blue). The complete

value ordering for all 1024 tuples is shown in green.

One can ask if 04261357 is the only ordering (starting at 0) that

is suitable for DELTA decoding. We want to start at 0, because for

64-bits values we compute on data from one tile at-a-time, starting

at tile 0; and for 64-bits data, the header thus holds bases for tile 0

only (see Figure 6a-b with base values in yellow). Beyond starting at

0, the second desirable property is that for processing tiles in SIMD

operations, we need the subsequent operations to touch directly

subsequent tile numbers in the same SIMD lane position.

Now the proof. Considering 16-bits values, where four tiles fit

the SIMD register width, and given that 0 is first; we see that 1 must

be in fourth position (as it must be subsequent in 0xxx→1xxx). In

fact, the only way to get subsequent numbers in the two halves of

the ordering is to have all even numbers first, and the odd numbers

later. Now, considering 32-bits data types, where data from two tiles

is processed at-a-time, the ordering should start with 04. Because, if

we would start with 02, then after 02→13, the next SIMD operation

should be on 24, but tile 2 was already processed. The other even

choice 06 runs out of work, as after 06→17 there is no tile 8. As the

first pair is 04, the third pair must be 15, and this fixes the second

pair to 26 and the final pair to 37; so we arrive at 04261537 as the

only ordering with the desired properties. Figure 6e shows that for

8-bits types, DELTA decoding processes: bases→ 04261537 (drawn,

as all layouts, right-to-left in our Figures). For 16-bits types the

processing order is: bases → 0426 → 1537. For 32-bits it is: bases

→ 04 → 15 → 26 → 37. For 64-bits: bases → 0 → 1 → .. → 7.

4Even if a query processor would be able to work with column vectors that each have
a different value order, e.g., by accompanying each with their own selection vector
that restores order; this would likely carry performance penalties due to the indirect
memory access needed and reduce the applicability of our format to systems that could
do this. Therefore we enforce the ability to retrieve all column data in the same order.

FastLanes-RLE. Value sequences get Run Length Encoded in clas-

sic RLE as (value,length) tuples. Decoding requires two nested loops:

one that iterates over the tuples, and inside, one that iterates over

length; while writing out the value-s. A loop is by definition scalar,

and the inner loop will suffer from branch mispredictions on short

lengths. The best SIMD acceleration so far for RLE works when

run-lengths are large, such that the uncompressed run is very sig-

nificantly larger than the SIMD register. In this case, one can set

all lanes of a SIMD register to the constant value, and reduce the

amount of STORE instructions by the amount of lanes [7].

We propose a new scheme called Fastlanes-RLE, that maps RLE

to DELTA and supports storage reordered in the Unified Transposed

Layout. It targets systems like Velox [20] and DuckDB [25], that

prefer to represent decoded RLE as compact in-flight Dictionary

vectors; rather than full/eager decompressed vectors. The twist

here is that the Dictionary is the Run Value vector from RLE, and

hence may contain duplicates. The Index Vector monotonically

increases by one, whenever a new run starts. FastLanes-RLE uses

16-bit indexes for vectors withmany short runs and 8-bits otherwise.

These Index Vectors are DELTA encoded using only 1-bit per value.

Base storage in the 8-bit case can use 3-bit bit-packing, adding .375

bits of storage per value, making the compression ratio better than

classic RLE, up to average run-lengths of 12. For longer average

run-lengths, we should use 0-bit DELTA encoding, that memsets

the Index Vector to 0, and where the 1-s are inserted by an exception

mechanism (we will cover such mechanisms in follow-up work).
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Figure 8: Bit-unpacking performance of the 1024-bit interleaved layout. (1) Scalar_T64 uses 64-bit scalar registers as quasi-SIMD

and beats naive Scalar up to 8x. (2) clang++ auto-vectorizes Scalar perfectly, matching performance of explicit SIMD intrinsics. (3)

Decoding can reach 70 tuples/cycle (𝑇=8,𝑊 =1). Except in the leftmost box here (tuples/cycle), lower is better in all Figures (cycles/tuple).

3 EVALUATION

The C++ FastLanes library is released under a MIT license in open

source and will be put in github.com/cwida/FastLanes on Jan 7.

We now experimentally evaluate the following questions:

(Q1) What is the absolute speed of the proposed FastLanes 1024-

bit interleaved bit-unpacking?

(Q2) Does decoding performance scale with SIMD width, and

how does it vary between the platforms listed in Table 2?

(Q3) Can scalar code profit from 1024-bits interleaving and the

Unified Transposed Layout?

(Q4) What is the performance of the scalar implementation, and

how well does compiler auto-vectorization compare with

the use of explicit SIMD intrinsics?

(Q5) How does the proposed Unified Transposed Layout influ-

ence decoding performance, specifically for LWC schemes

with sequential dependencies, such as DELTA?

(Q6) What effect on end-to-end query performance could the

adoption of FastLanes have?

We also investigate the performance benefits of potentially fusing

the implementations of bit-unpacking and decoding kernels. Note

that in Section 4, we present additional micro-benchmarks while

comparing FastLanes with related work.

3.1 Micro-benchmarks

We implemented bit-unpacking and decoding into𝑇 = {8, 16, 32, 64}

result columns in 4 different ways: Scalar, Scalar_T64, SIMD, and

Auto-vectorized. The Scalar code unpacks/decodes one uint𝑇 value

at-a-time. The Scalar_T64 implementation treats a uint64 variable

as a quasi-SIMD register consisting of 64/𝑇 lanes of 𝑇 -bits.

We used clang++ for our experiments. To make sure that our

scalar code is not auto-vectorized, we explicitly disabled the auto-

vectorizer for the Scalar and Scalar_T implementations by using:

-O3 -mno-sse -fno-slp-vectorize -fno-vectorize.

Table 2: Hardware Platforms Used

Architecture Scalar ISA Best SIMD ISA CPU Model Frequency

Intel Ice Lake x86_64 AVX512 8375C 3.5 GHz

AMD Zen3 x86_64 AVX2 (256-bits) EPYC 7R13 3.6 GHz

AMD Zen4 x86_64 AVX512 Ryzen9 7950X 4.5 GHz

Apple M1 ARM64 NEON (128-bits) Apple M1 3.2 GHz

AWS Graviton2 ARM64 NEON (128-bits) Neoverse-N1 2.5 GHz

AWS Graviton3 ARM64 NEON (128-bits) modified 2.6 GHz

SVE (variable) Neoverse-V1

The SIMD implementations use explicit SIMD intrinsics. Note that

for ARM64, all SIMD implementations are based on NEON instruc-

tions. This is because our experiments on Graviton3 showed that

SVE [30] is slower than NEON. Finally, the Auto-vectorized imple-

mentation is the Scalar implementation, with the difference that

auto-vectorization is not disabled.

These micro-benchmarks aim to characterize pure CPU cost and

decompress a single vector 30M times; hence all data is L1 resident.

We report CPU cycles per value (lower is better!), but for 𝑇=8 bit-

unpacking also the reverse: values per cycle (cycles per value there

get close to 0 and hard to discern). These measures make the results

more meaningful to compare across platforms than elapsed time, as

our hardware comes from different frequency classes (hi/mid/low

end, consumer vs. server). We disabled CPU turbo scaling features

where present to make clock normalization stable.

Bit-unpacking. Figure 9 we see that the 1024-bits interleaving of

packed data does not even hinder Scalar decoding: performance

is equal to the naive "horizontal" (non-interleaved) bit-packed lay-

out. But, only the interleaved layout provides the opportunity of

decoding multiple lanes in parallel seized by Scalar_T64, making it

8x faster than Scalar on 8-bits values. As for (Q1), Figure 8 shows

the high speed of FastLanes decoding: thanks to SIMD it signifi-

cantly outperforms Scalar across all platforms: 40x-70x for 8-bits,

to 3x-4x for 64-bits types. Regarding (Q2): we do see that Gravitons
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Figure 11: Fusing 1024-bits interleaved bit-unpacking with decoding (FOR) improves performance (Ice Lake).

have weaker SIMD; which especially shows for 64-bits types. Apple

M1 also has just 128-bit NEON, but clearly has more instruction

level paralellism (ILP). Wider SIMD does not always equate more

performance: despite supporting AVX512, Zen4 is not faster than

Zen3. This is expected if the CPU executes one AVX512 instruction

using two AVX2 (256-bits) units. The absence of dependencies and

the opportunities for data-parallelism that FastLanes code exposes,

make it profit from total CPU execution capability, which is the

product of ILP and register width.

Figure 8 highlights that (1) Scalar_T64 is indeed 64
𝑇

times faster

than Scalar for different 𝑇 s (Q3); (2) clang++ can auto-vectorize

our Scalar code, matching the performance of explicit intrinsics Ð

denoted SIMD (Q4); (3) FastLanes can decompress 70 tuples per cycle

for 8-bits types (Q1), where SIMD paralellism is maximal. Point (2)

means that when incorporating FastLanes in future systems, we

recommend just using the Scalar code paths; in fact for the kernels

described in this paper, just the Scalar_64 code is enough. This

result significantly enhances the future-proofness of FastLanes.

Unified Transposed Layout.We performed experiments for (Q5)

regarding DELTA decoding for all six hardware platforms. Figure 10

shows that the Unified Transposed layout ś the idea to reorder the

tuples in order to break sequential dependencies ś also benefits our

Scalar_T64 code-paths, that uses uint64 scalar registers as if they

were 8x8-bits, 4x16-bits or 2x32-bits SIMD registers. In terms of

scalar performance, M1 tops Ice Lake clock-for-clock. Remarkably,

Graviton and Zen3 are slower in scalar additions on 8- and 16-bits

numbers than on 32- and 64-bits. The Gravitons again show weak

SIMD. Performance can again be very high, like >40 tuples per cycle

on the faster platforms for 8-bits DELTA. Most DELTA decoding

will be on the larger datatypes (32-, 64-bits), but FastLanes-RLE

(evaluated later) uses very fast on 1-bit decoding in a 16-bits lane.

As bit-unpacking and FastLanes decoding use dependency-free

instructions, column contents do not influence performance at all.

Only the bit-width matters, hence we evaluate all bit-widths.5

Fusing Bit-packing and Decoding. The 116 bit-unpacking ker-

nels we generate for all bit-packing widths𝑊 and unpacked type-

widths 𝑇 ≤𝑊 could possibly be fused with the decoding kernel

for DELTA, FOR, DICT and FastLanes-RLE in a single kernels that

do both unpacking and decoding. The benefit of fusing is that the

STORE instructions that bit-unpacking ends with, and the LOAD

instructions that decoding starts with, are saved. Figure 11 shows

that fusing indeed improves the decompression speed.

In case of decoding into compressed vectors, fusing is not needed

for DICT and FOR (decoding is just bit-unpacking in that case ś

therefore we do not micro-benchmark these schemes separately).

For decoding DELTA into a compressed FOR vector, we can use

fusing; what is then needed is to keep MinMax stats per vector, and

subtract Min from the bases before decoding.

5Regarding (ordered) DELTA columns, we finally argue that subsequent query perfor-
mance after decompression is not likely to be affected even if the tuple order is left
transposed, since the permutation caused by transposing is within a 1024-vector only,
and hence localized, such that any column order is largely preserved.
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Figure 12: SELECT SUM(COL) FROM TAB runtime for various COL bit-

widths and threads (T) on Ice Lake. The crossover pointwhere

decompressing scans (plots) outperform plain array scans

(horizontal lines), moves from a minimal compression ratio

of 4x (≈8bits) with Scalar decoding to just 25% compression

(≈24bits) with FastLanes. Note that with higher thread counts,

the crossover point (thick stripes) moves right a bit, as RAM

bandwidth gets scarcer. FastLanes can then improve end-to-

end performance up to 7x vs. uncompressed and 4x vs. scalar.

3.2 End-to-End Query Performance

We also ran a complete query pipeline, by integrating FastLanes

in the experimental Tectorwise [12] vectorized query processor.

We created a table TAB with a single column COL that has 10 ∗ 228

uint32 integer values (10GB), and benchmarked the query SELECT

SUM(COL) FROM TAB on our IceLake platform.

Figure 12 shows the performance of this query, depending on the

domain of the values in the column, which is uniform-randomly

generated from the domain [0-2𝑊⟩. We run this unmodified Tector-

wise query, that reads COL from an uint32 array, and two modified

versions (FastLanes and Scalar) that scan a compressed COL ś which

gets bit-packed in𝑊 bits per value. In all cases the data is RAM-

resident. As for (Q6), we thus see that reading from FastLanes

typically makes a query faster, despite the decompression, because

the query needs less RAM-bandwidth. Parallel execution increases

the RAM bottleneck: with 8 threads we see up to 7x end-to-end

performance improvement vs. uncompressed (and 4x vs. Scalar).

FastLanes shifts the crossover point where queries get faster from

data with a >4x compression ratio (Scalar) to almost any data.

4 RELATED WORK

For more than two decades, researchers have been trying to use

SIMD instructions to improve the performance of database sys-

tems [14, 38]. Much of this effort has been made on SIMDizing the

compression and decompression of data [15, 16, 21, 22, 27, 29, 31, 37].

Surveys of these SIMDized compression schemes are [3, 7].

Bit-packing. Zukowski et al. propose to bit-pack 128 integers se-

quentially using the same bit-width [39]. Schlegel et al. call this

layout horizontal [27]. Willhalm et al. propose a SIMDized bit-

unpacking for the horizontal layout [35]. In addition to the hori-

zontal layout, Schlegel et al. propose the k-way vertical layout [27],

where each of the 𝑘 consecutive bit-packed values are distributed

among consecutive memory words. This vertical idea is also called

interleaved layout, and we use that terminology in this paper. This
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Figure 13: Bit-unpacking using the 4-way layout vs. 1024-

bit interleaved layout, where 𝑇 = 32 (Ice Lake). The 4-way

layout cannot take advantage of wide SIMD registers, with a

performance penalty of 2x resp. 4x for AVX2 resp. AVX512.

distribution allows to have bit-packed values in different SIMD

lanes and avoids the extra PERMUTE instruction, required in the hori-

zontal layout. Lemire et al. use the 4-way vertical layout (k=4) to

SIMDize the bit-unpacking for 32-bit integers on CPUs with SSE

registers [16]. Also, Habich et al. use 8-way and 16-way vertical

layouts for AVX2 and AVX512 registers [10]. However, these lay-

outs do not cover all challenges that have been discussed earlier in

Table 1: these layouts are tied to a specific SIMD-width, they do not

address the problem of sequential data dependencies in LWCs that

work on the decoded data (such as DELTA), and do not address the

issue of different data type widths in relation to that.

Figure 13 shows that the 4-way layout becomes only slightly

faster onAVX2 andAVX512 ISAs. On the other hand, the interleaved

layout becomes respectively 2x and 4x faster on AVX2 and AVX512.

This confirms that the 4-way layout cannot take advantage of wider

registers, while the 1024-bit interleaved layout can.

In addition to the bit-packed layouts that focus on decompres-

sion speed, there are other bit-packed layouts that focus more on

the filter scan. BitWeaving [18] and ByteSlice [8] are two examples

of such layouts. BitWeaving proposes two novel bit-packed data lay-

outs: HBP and VBP. These layouts allow using all the bit-parallelism

of a SIMD register during the filter scan. HBP is more focused on

supporting efficient lookup operations, while VBP provides a faster

filter scan. ByteSlice tries to achieve both fast lookup and fast filter

scan by applying all the BitWeaving techniques in the byte-by-byte

manner instead of bit-by-bit. However, neither BitWeaving nor

BitSlice provides a fast and efficient way to actually decompress

data. Polychroniou et al. propose a SIMDized bit-unpacking for the

VBP layout [24]. However, the reported performance of this layout

is roughly 30x slower than our 1024-bit interleaved layout.

DELTA coding is an LWC that encodes a sequence of integers by re-

placing each integer with its difference to its preceding integer [19].

DELTA is typically used on top of bit-packing to reduce the number

of bits required to represent values. While improving the compres-

sion ratio, DELTA decoding becomes a bottleneck in combination

with bit-unpacking. Three approaches have been proposed to data-

parallelize DELTA decoding: vertical computation [36], horizontal

computation [11] [17], and the SIMDized tree computation [36]. Ver-

tical computation is based on the SIMD SCATTER/GATHER instructions
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Table 3: Summary of all proposed approaches for SIMD

DELTA decoding. Decompression Cost is the number of ADD

instructions required to decode 𝑆 values, while the Compres-

sion Overhead is the number of extra bits required.

Approach Decompression Compression Shortcoming

Cost Overhead

Scalar [19] 𝑆 0 Data dependent

Four Cursor [3] 𝑆 4·𝑇
𝑁

Data dependent

Vertical [36] 2 0 Random access

Horizontal [11] log𝑆 0 Not efficient

Tree [36] 2 0 Random access

D4 [16] 1 log𝑆 Compression ratio

DM [16] 2 log
(𝑆+𝑆−1+···+1)

𝑆
Compression ratio

Unified Trans- 1 1024
𝑆

-

posed Layout
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(a) Unified Transposed Layout. The vector can be bit-packed

using 3 bits per value as the maximum delta is 6.
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(b) D4 data layout. The maximum delta is now 19. Therefore, 5

bits are required to bit-pack each value.
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(c) DM data layout. The maximum delta is now 18. Therefore, 5

bits are required to bit-pack each value.

Figure 14: The Unified Transposed layout needs fewer bits

than D4 and DM as it keeps DELTAs between subsequent values.

with non-sequential access pattern. Unfortunately, these instruc-

tions are costly and do not make decoding faster [36]. Horizontal

computation reduces the complexity of DELTA decoding from𝑂 (𝑛)

to 𝑙𝑜𝑔(𝑛). This is achieved by using the SIMD SHIFT instructions.

However, these instructions do not exist in all ISAs, and it is costly

to simulate them. Finally, the tree approach is based on Guy et

al.’s work [4] and also relies on SCATTER/GATHER instructions [36].

The SIMD implementation of horizontal computation can be

considered state-of-the-art [36]. This implementation depends on
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Figure 15: DELTA decoding on the Unified Transposed layout

is 3x-40x faster than the alternatives (Ice Lake). Note the

AVX512 horizontal computation falls back to scalar for 𝑇 = 8

and 𝑇 = 16 as it requires the _mm512_alignr_epi instruction.

the SHIFT instruction that shifts bits together arbitrarily times to

the right. However, this instruction only exists for SSE registers.

Zhang et al. propose to extend this implementation to AVX-512 by

simulating the SHIFT instruction with two SET, and ALIGNR instruc-

tions [36]. This implementation needs 12 instructions for every 16

integers. Compared to FastLanes, we can see that this SIMDiza-

tion does not address all the challenges mentioned earlier. First,

data dependency still exists. Second, these implementations are not

designed to support all SIMD ISAs.

Rather than SIMDizing the decoding part of the naive DELTA

layout, several studies have focused on changing the data layout of

DELTA. Lemire et al. [16] has proposed two approaches: DM and D4.

The key idea behind these two approaches is to keep deltas between

adjacent batches of values instead of adjacent values. As shown in

Figure 14b, D4 subtracts the values batch-wise, while DM (Figure 14c)

subtracts the last value of the previous batch with the next batch.

Although D4 provides more data parallelization, the problem here is

that the DELTAs are bigger because they are the difference between

more distant values. In D4, the differences are 4x bigger, which

reduces the compression factor typically by log2(4), hence a factor

2. Unfortunately, to support ever wider SIMD registers, ever larger

batches are necessary, increasing this overhead.

Another layout proposed to mitigate the issue of data depen-

dency is the four cursors layout [3]. The key idea is to keep more

base values, so we can decode more values in parallel without de-

pendencies. This layout was already shown in Figure 4c. Note that

although we cannot use SIMD instructions to decode these four

values simultaneously, it allows a wide-issue scalar CPU to achieve

better ILP by working on four cursors inside one same scalar loop.

Figure 15 shows the performance of the DELTA decoding meth-

ods summarized in table 3. The performance of the horizontal meth-

ods is inconsistent, as important SIMD instructions are not available

for all register- and lane-width combinations. Four-cursor improves

Scalar a little. The Unified Transposed layout is by far fastest. It

does increase the amount of base values per vector: from 1 to 𝑆 (the

amount of lanes, 1024/𝑇 ). The bit-packed vector with deltas takes

𝑊 *1024, and each base𝑊 bits, so the overhead is 1 bit per value.

But bases are ascending, so one could DELTA-encode all bases of

consecutive vectors in a row-group header. As each vector has 𝑇

values per lane, and the sum of𝑇 𝑊 -bit values needs𝑊 +log(𝑇 ) bits,

a DELTA-encoded base can be stored in𝑊 +log(𝑇 )+1 bits, where the

+1 is because these bases also need (uncompressed) bases. As 1024

main values need 1024/T bases, DELTA-encoding bases reduces
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Figure 16: RLE decoding: Scalar, vs SIMDized vs FastLanes-

RLE (Ice Lake). FastLanes-RLE is much faster except whith

run lengths >333, i.e. at avg 3 runs in a 1024-value vector.

base-overhead from 1 to (𝐵+log(𝑇 )+1)/𝑇 bits per value. For example,

for the 𝑇=64-bit data type, and DELTAs that fit𝑊 =7 bits, the extra

cost is:((7+log(64)+1)/64)=0.21 bit per value. So that turns𝑊 =7 bits

per value into 7.21 bits per value (3% overhead).

RLE has been shown to be useful in column-oriented databases [2].

Compared to other LWCs, RLE is fundamentally different: While

other LWCs represent the original data as a sequence of small

integers, RLE reduces the number of values required to represent the

original data. This makes it very challenging to data-parallelize RLE,

as we are dealing with a variable number of values. Nonetheless,

there were several attempts to SIMDize RLE. The encoding part

of RLE has been SIMDized in [15, 21, 31]. For the decoding part of

RLE, Damme et al. propose a new implementation that could be

considered the state-of-the-art [7]. We discussed this scheme when

we introduced FastLanes-RLE and call it SIMDized RLE here.

Figure 16 shows that FastLanes-RLE is significantly faster than

the other solutions, when runs are shorter than 333 (i.e. more than

3 runs in the 1024-value vectors we test on). This is because of two

reasons. First, the SIMDized RLE and Scalar suffer from branch miss

predictions. This happens in case of storing a new run, as there is a

need to take another path to load the new value, and the branch hap-

pens more frequently as there are more runs. Second, the SIMDized

RLE approach does not profit from the full width of a SIMD register.

This is because the next STORE instruction may overwrite most of

the values stored by the previous STORE instruction.

When introducing FastLanes-RLE, we already mentioned its

compression ratio is better for runs with an average length ≤12 (in

Figure 16, for more than 80 runs in a vector), but starts suffering

for longer runs, as its Run Lengths require 1.375 bits per value

(𝑊 =1 + (1+log(16)+1)/16 for bases, since FastLanes-RLE relies on

𝑊 =1, 𝑇=16 FastLanes-DELTA). However, RLE compression ratio

typically does not depend somuch on Run Lengths as on RunValues,

certainly if these are strings. Also, our future work on cascading

encodings (i.e. compressing Run Values, and DELTA-bases) and

exception handling schemes, will improve the compression ratio of

FastLanes-RLE, by moving to 0-bit DELTA storage with the 1-bits

as exceptions, for vectors with long runs.

5 CONCLUSION AND FUTUREWORK

Current database systems only profit to a limited extent from what

SIMD could bring [23, 24, 38]. With stalling progress in CPU fre-

quency and core counts, this is still an opportunity for performance

gains. In our vision, one needs to start by redesigning the basis

ś data storage ś to seize this opportunity. This is why FastLanes

proposes a new data layout, that creates opportunities for indepen-

dent work on data-parallel hardware. Besides SIMD, we remark

that other popular data-parallel hardware includes GPUs and TPUs

and that we are in an age of further hardware innovation. The gist

of FastLanes is that this age needs a data format that takes away

sequential decoding dependencies and that is why its key idea is to

reorder tuples in the special "04261357" 8x16 tiling order.

FastLanes can express all common LWC decoding methods in

simple operations on a virtual (and future-proof) 1024-bits register

that can efficiently map to existing SIMD instruction sets, as shown

by our experiments on Intel, AMD, Apple and AWS hardware.

Rather than looking at value decoding in isolation, we look at

it from a database systems context, where decompression is part

of a pipeline that should be in balance with hardware resource

limits, and where a column is not decoded fully in isolation, but

incrementally (vector-at-a-time), as the source of a query pipeline,

that processes the data further, and where the scan decodes multiple

different columns. And, where decoding infrastructure is part of a

(vectorized) software subsystem [13], where code portability in an

ever more heterogeneous hardware environment is of paramount

importance, to limit development effort and technical debt.

FastLanes also has a scalar code-path, and the data-paralellism on

compact data-types that it exposes, even accelerates scalar decoding

in comparison with naive bit-packed sequentially stored data. A

key result is that modern compilers can completely auto-vectorize

this scalar code-path, with no performance penalty compared to

explicit SIMD intrinsics. This makes FastLanes very portable.

The performance benefits of FastLanes start by providing much

faster decompression: our bit-unpacking followed by FOR and

DELTA decompression improve over naive sequential bit-packed

layouts by often an order of magnitude (or more). We showed that

RAM-resident queries can get even faster on FastLanes-compressed

data, when compared with direct in-memory array scans.

Future Work. Our proposed kernels, such as FastLanes-RLE are

not targeting full/eager decompression, but rather partial decom-

pression into compressed vector representations. Such vector rep-

resentations, that represent vectors of data in tight arrays that fit

in a lane-width that is much smaller than the fully decompressed

value, unlock opportunities for relational operators higher up in

the pipeline to exploit compressed execution [2, 6, 20, 25, 33, 34].

Research could establish whether the data-parallelism that Fast-

Lanes creates makes it also suitable to efficiently scan and process

data on widely-parallel hardware such as TPUs and GPUs [28].

In FastLanes we aim not only to improve the speed of LWC de-

coding, but also the compression ratio. We are researching the idea

of cascading LWCs [26], where compression methods are stacked

on top of each other, and combined with various exception han-

dling schemes; with the ultimate goal of making general-purpose

compression methods such as zstd, Snappy and (even) LZ4 less nec-

essary in big data formats; as their decoding speeds are orders of

magnitude slower than FastLanes, and holding back performance.

We leave an evaluation in a complete system on end-to-end

benchmarks for future work. We intend to integrate FastLanes in a

complete open source future-proof big data file format. Cascading

compression implies that each logical column chunk gets stored in

potentially multiple recursively compressed physical sub-column-

chunks, and this involves making and evaluating many design

decisions in row-group, data-chunk and meta-data organization.
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