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Abstract

Exploring the spatio-temporal variations of COVID-19 transmission and its potential determi-
nants could provide a deeper understanding of the dynamics of disease spread. This study aims to
investigate the spatio-temporal spread of COVID-19 infection rate in England, and examine its as-
sociations with socioeconomic, demographic and environmental risk factors. Using weekly reported
COVID-19 cases from 7 March 2020 to 26 March 2022 at Middle Layer Super Output Area (MSOA)
level in mainland England, we developed a Bayesian hierarchical spatio-temporal model to predict
the COVID-19 infection rates and investigate the influencing factors. The analysis showed that
our model outperformed the ordinary least squares (OLS) and geographically weighted regression
(GWR) models in terms of prediction accuracy. The results showed that the spread of COVID-19
infection rates over space and time was heterogeneous. Hotspots of infection rate exhibited incon-
sistent clustered patterns over time. Among the selected risk factors, the annual household income,
unemployment rate, population density, percentage of Caribbean population, percentage of adults
aged 45-64 years old, and particulate matter concentrations were found to be positively associated
with the COVID-19 infection rate. The findings assist policymakers in developing tailored public
health interventions for COVID-19 prevention and control.
Keywords: COVID-19, spatio-temporal patterns, risk factors, Bayesian hierarchical model, England

1 Introduction

Coronavirus Disease 2019 (COVID-19) has caused an enormous challenge to global public health, social
security and the economy. The disease originated in Wuhan in China in December 2019, and was
declared a pandemic by the World Health Organisation (WHO) in March 2020 [64]. As of February
2023, over 650 million people have been infected by the virus across the world, and the global death
toll linked to COVID-19 has been recorded at over 6.7 million (https://covid19.who.int/). Although
vaccination and public health measures have been successful in reducing the spread of COVID-19 in
many areas, gaining a comprehensive understanding of the spatio-temporal transmission patterns and
key determinants of the virus remains crucial in the ongoing public health fight against this global
health threat. Recent research studies have proposed that COVID-19 transmission and severity may be
influenced by various risk factors. Some researchers examined the association of COVID-19 mortality
and infections data with socioeconomic status (e.g., deprivation index, income and unemployment), and
found that the virus hit harder in socioeconomically disadvantaged communities [1, 9, 16, 58]. Some
scholars indicated that environmental conditions such as air pollution, humidity and temperature could
influence the virus transmission [4, 14, 41, 63, 70]. In addition, there have been papers on investigating
the demographic influencers (e.g., race, gender, age distribution) of COVID-19 transmission [2, 18,
21, 23, 27, 38, 50, 60, 69]. However the available evidence on these determinants to date presents
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a mixed and inconsistent picture. For example, Castr et al.[7] found a strong positive relationship
of COVID-19 incidence and mortality with income, whereas Liu et al.[34] showed that higher income
groups demonstrated lower incidence rates. A multi-country study carried out by Huang et al. [25] found
significant effects of PM2.5 on COVID-19 incidence in the USA but not in Italy or Canada. Furthermore,
few studies have accounted for socioeconomic, demographic and environmental factors simultaneously to
explain the spatio-temporal variations of COVID-19 infection. Therefore, this paper adds to the global
evidence base on the topic of identifying influencing factors of COVID-19 spread, by presenting a new
study that investigates the spatio-temporal spread of COVID-19 infection rates and its associations with
socioeconomic, demographic and environmental factors in England. Our study is based on aggregated
count data summarising COVID-19 infected cases between 7 March 2020 and 26 March 2022 at Middle
Layer Super Output Area (MSOA) scale in England and by week. The data are modelled using a Bayesian
hierarchical model, where the spatio-temporal variation in COVID-19 infection rate is explained by a
set of risk factors of interest, important confounding factors, and random effects that account for the
spatio-temporal autocorrelation in the data.

To the best of our knowledge, this study represents the first attempt to incorporate socioeconomic,
demographic and environmental factors simultaneously to analyse the spread of COVID-19 infection
rates at MSOA level across England. Furthermore, it is one of the most up-to-date and comprehensive
studies in terms of its temporal duration. For example, Sun et al. [58] used data up to May 2020,
Sartorius et al. [56] used data up to 23 August 2020, while the data used by Harris & Brunsdon
[23] goes up to 21 May 2021. In addition, compared to previous studies that mostly used frequentist
approaches, such as the geographically weighted regression [7, 71, 73], spatial error model [27, 39, 55]
and spatial lag model [26, 29, 35], to identify the drivers of the spread of COVID-19, the Bayesian
hierarchical model developed here has several advantages. Firstly, it allows for the incorporation of prior
knowledge and a more robust assessment of the uncertainties in estimates by specifying prior distributions
through a hierarchical modelling scheme [12, 19, 68]. Secondly, the model accounts for spatio-temporal
autocorrelation in the data by modelling the random effects via a continuous Gaussian random field
process. Thus it is able to account for unreported or missing case data by borrowing information from
nearby locations in space and/or time based on the modelled spatio-temporal dependence structure.
This enables predictions of COVID-19 infection rates in any geographical location and at any time point,
even if the infection cases have not been recorded. This is important from a public health perspective,
because COVID-19 is often asymptomatic and under-reported globally, especially during the early phase
of the pandemic when there was a lack of resources to facilitate large-scale testing [23, 30]. Therefore,
the ability of the model to predict the infection rate even in areas where data are incomplete could
provide decision-makers with more comprehensive and accurate information to guide interventions and
resource allocation in the fight against the pandemic. This study quantifies the spatio-temporal patterns
and disparities in COVID-19 infection rates across England, while also identifying hotspot areas and
providing additional evidence on the influencing factors of COVID-19 spread. The Bayesian model
utilised in this analysis has demonstrated its effectiveness in accurately predicting COVID-19 infection
rates, by exhibiting better modelling accuracy than the ordinary least squares (OLS) and geographically
weighted regression (GWR) models. The obtained findings provide valuable insights for policymakers
to optimise healthcare resources, establish targeted public health interventions, and improve epidemic
prevention and control systems.

2 Materials and methods

2.1 Ethics statement

No specific permissions were required for the described study, because we did not carry out any experi-
ments. All the work in this study was developed using published data from the official UK Government
COVID-19 dashboard, Office for National Statistics and Department for the Environment, Food and
Rural Affairs.

2.2 Study region and data

The study region, as shown in Fig 1(a), is mainland England, which is partitioned into n = 6789 small
neighbourhood units called Middle Layer Super Output Areas (MSOAs). MSOAs are a statistical geog-
raphy which are designed by English Government for reporting small-area statistics. They represent a
formal, administrative specification of neighbourhoods and are developed with specific criteria, including
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broadly equal population size, socio-economic similarity based on accommodation type and tenure, and
spatial compactness of the zones [10]. The shapefiles for MSOAs were obtained from the open geoportal
platform (https://geoportal.statistics.gov.uk/) provided by the UK government. The median
geographical size of an MSOA in England is 3.04 km2, and as of the end of June 2020, the population
size in a single MSOA ranges between 4843 and 27911 persons, with a median population size of 8123.

(a) (b)

(c)

Fig 1. Maps of the study region (a) and cumulative number of COVID-19 infection cases
(b) at English MSOA level during the study period. (c): Plot of the reported number of
COVID-19 cases by week for all MSOAs in mainland England between 7 March, 2020 and
26 March, 2022. Weeks of lockdown are highlighted in pink.

The COVID-19 infection data used for this study were obtained from the official UK Government
COVID-19 dashboard (https://coronavirus.data.gov.uk/details/download) on the weekly number
of reported COVID-19 cases for each MSOA. The infections data tally, by date reported, the number of
individuals who had at least one positive COVID-19 test result, over that and the preceding six days.
The observed time frame of the study spanned T = 108 weeks from the seven days leading up to 7 March
2020 (week 1) to the seven days to 26 March 2022 (week 108). The data only include pillar 1 cases
until 2 July 2020, from when pillar 2 cases are also included. Pillar 1 cases come from the swab testing
carried out in Public Health England lab and NHS hospitals for those with a clinical need, and health
and care workers, while pillar 2 cases are also swab tests but done for the wider population. These tests
are done at local and regional test sites, mobile testing units, satellite test centres and via home tests
(https://www.gov.uk/government/publications/nhs-test-and-trace-statistics-england-methodology/). A
total of 12 097 525 cases (MSOA and week combinations) were reported during the entire study period,
whose values ranged from 3 to 978 cases in a single MSOA and week with a median of 28 cases. Note
that the positive cases per MSOA range from 3 upwards is because of censoring of smaller numbers
(between 0 and 2 cases) in the reported data. Fig 1(b) displays the spatial pattern of the cumulative
COVID-19 infection cases over all weeks at English MSOA level, with higher numbers of infected cases in
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and around major metropolitan areas such as Newcastle, Manchester, Liverpool, Birmingham, Leicester,
Sheffield, and London. Fig 1(c) presents the weekly number of reported COVID-19 cases for all MSOAs,
with the x-axis labeled “date” indicating the start date of each observation week. During the COVID-19
pandemic, the UK government introduced various measures, such as the tiered system, the localise and
nationwide lockdowns to limit the spread of COVID-19. Our observation window encompasses three
separate periods of national lockdown in England, which were officially announced and took place from
26 March to 12 May 2020, 5 November to 2 December 2020, and 5 January to 28 March 2021, respectively
[46]. To aid in visualising these periods, they have been shaded in pink in the figure. The figure shows
that the first wave of the COVID-19 outbreak in England started in March 2020 and ended at the end
of May 2020, whereas the second wave started at the beginning of September 2020 and then reached
an initial peak in mid-November. After that the infection levels declined before drastically rising again
in late December of 2020 and peaking in early January 2021. There were signs of decrease in the week
starting 9 January 2021 until early June, after which the infections started to rise and then wavered until
the end of March 2022, with the highest numbers of confirmed cases (> 400 000 cases) observed in early
January 2022 (i.e., the week beginning 8 January 2022). Overall, there was typically a reduction in the
number of infection cases after the national lockdowns were in place, particularly during the second and
third lockdown periods.

A variety of socioeconomic, demographic and environmental factors were selected as potential ex-
planatory variables for the spread of COVID-19 infections, and all these variables were retrieved or pre-
pared at MSOA level. Based on existing studies and data availability, our socioeconomic variables include
annual household income, which was available for 2018 (https://www.ons.gov.uk/employmentandlabourmarket/
peopleinwork/earningsandworkinghours), and unemployment rate, which was measured as the per-
cent of people aged 16 years and over unemployed in the labour force, and was available from the 2021
UK census (https://www.nomisweb.co.uk/census/2021/bulk) held by the Office for National Statis-
tics (ONS). The demographic factors of population density, ethnic and age distributions by MSOA were
also available from the 2021 UK census. Population density was measured as the number of persons
per square kilometer, and it was found to be highly skewed to the right. Thus a log-transformation
was applied. Environmental variables include the annual mean concentrations of fine particulate matter
(PM2.5), coarse particulate matter (PM10) and nitrogen dioxide (NO2) for 2021, all of which were mea-
sured in µg m−3. We used concentrations data for 2021 rather than for 2022 or 2020, because the data for
2022 were not available, while the data for 2020 were artificially lower than normal concentration levels
due to the implementation of lockdowns and mobility restrictions across England in 2020, which signif-
icantly reduced transport usage and hence pollution concentrations of that year. Department for the
Environment, Food and Rural Affairs (DEFRA) offers 1 × 1 km gridded annual mean PM2.5, PM10 and
NO2 concentrations (https://uk-air.defra.gov.uk/data/pcm-data), which is spatially misaligned
with the irregularly shaped MSOAs. Thus we adopted the simple averaging method [22] to obtain the
concentrations by MSOA. Specifically, each 1 km2 gridded concentration has an associated centroid, and
the pollution concentration in an MSOA is computed by averaging the grid square concentrations whose
centroids are located within the MSOA. If an MSOA does not contain a grid square centroid, it is assigned
the pollution concentration from the nearest grid square. Table 1 lists the variables together with their
source of data. Finally, we also considered two other confounding factors that may impact COVID-19
ill health, including the number of care home beds per adult population (https://www.cqc.org.uk/),
and a binary variable indicating whether there is a hospital with emergency facilities or not in an MSOA
(https://www.nhs.uk/).
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Table 1. Summary of the socioeconomic, demographic and environmental variables used
in this study.

Theme Variable Year Source
Socioeconomic Annual household income (in thousand, £) 2018 ONS

Unemployment rate (%) 2021 ONS
Demographic Log(Population density) 2021 ONS

Percent of Chinese (%) 2021 ONS
Percent of Indian (%) 2021 ONS
Percent of Pakistani (%) 2021 ONS
Percent of Bangladeshis (%) 2021 ONS
Percent of African (%) 2021 ONS
Percent of Caribbean (%) 2021 ONS
Percent of white British (%) 2021 ONS
Percent of age 18-29 (%) 2021 ONS
Percent of age 30-44 (%) 2021 ONS
Percent of age 45-64 (%) 2021 ONS
Percent of 65 years old and over (%) 2021 ONS

Environmental Annual mean PM2.5 (µg m−3) 2021 DEFRA
Annual mean PM10 (µg m−3) 2021 DEFRA
Annual mean NO2 (µg m−3) 2021 DEFRA

2.3 Statistical analysis

An infection rate is the probability or risk of an infection in a population, which in epidemiology is de-
fined as the proportion of affected people in a population during a specific time period [52]. In this study,
it was calculated as the ratio of the number of reported COVID-19 cases to the total population in each
MSOA and week. However, naively using such infection rate as a measure of the variations in COVID-19
transmission ignores the spatio-temporal autocorrelation that characterises the disease dynamics. More-
over, it also ignores the potential effects of risk factors on COVID-19 infections. Therefore, it is necessary
to develop a model-based approach that can capture the spatio-temporal variations of the disease spread,
separate the variations from random noise and account for the spatio-temporal autocorrelation structure
in the data.

2.3.1 Spatial and temporal autocorrelation analysis

The presence of positive spatial autocorrelation in the COVID-19 infections data was evidenced by
performing the Moran’s I test [45]. Moran’s I is widely used to measure the level of spatial autocorrelation
between adjacent locations globally. The computed Moran’s I value was 0.242 and the associated P
value was less than 0.0001, indicating statistically significant spatial correlation in the COVID-19 spread
throughout England. To assess the temporal autocorrelation in the data, a Ljung-Box test [36] was
conducted. The test showed strong evidence of positive temporal correlation in the COVID-19 infection
rates over time, as indicated by a P value of less than 0.0001.

2.3.2 Variable selection

Before modelling the data, we examined the multicollinearity among the variables described in Table 1
as well as the confounding risk factors using a Pearson’s correlation analysis, because the presence of
multicollinearity among independent variables can cause overfitting and less reliable inferences about
the associations between the response and predictor variables. The air quality components PM10 and
NO2 were found to be strongly correlated with PM2.5, with the Pearson’s correlation coefficients of 0.86
and 0.85, respectively. Given that previous studies have identified PM2.5 as an important risk factor for
COVID-19 infections [4, 14, 31], we selected PM2.5 over the other two air pollutants for further analysis.
The percent of each MSOA’s population who were white British was highly correlated with the percent
of African and Indian population, with the correlation coefficients of -0.7 and -0.6 respectively, and hence
was not included in the analysis. The percent of the population between 30 and 44 years old was also not
considered in the model due to its high correlations with the percent of age groups 45-64, and 65 years
and over, with the correlation coefficients of -0.6 and -0.8, respectively. Simultaneously, the variance
inflation factor (VIF) was used to verify multicollinearity. The VIF values for all the filtered variables
were less than 5 (between 1.02 and 4.89), indicating no serious multicollinearity exists [42]. This means
that all the predictor variables in the final model were not highly correlated to each other.
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2.3.3 Bayesian spatio-temporal modelling

We employed a Bayesian hierarchical model to predict the COVID-19 infection rates at MSOA level over
space and time and identify the associated risk drivers, by utilising a generalised linear mixed model
with a combination of the selected risk factors, and random effects which account for any residual spatio-
temporal dependence of COVID-19 transmission. Let Y (si, t) and N(si, t) be the number of reported
COVID-19 cases and total population in MSOA i ∈ (1, . . . , nt) during week t ∈ (1, . . . , T ), respectively.
Here si ∈ R2 denotes the geographical location for MSOA i, and nt represents the number of MSOAs
that have reported COVID-19 cases during week t. Let θ(si, t) be the logarithm of the observed infection
rate in MSOA i during week t, then it is defined as

θ(si, t) = log

(
Y (si, t)

N(si, t)

)
. (1)

We chose to model the logarithm of the infection rates (θ(si, t)), because the raw infection rates

( Y (si,t)
N(si,t)

) were highly skewed to the right. Moreover, researchers [32, 59] have demonstrated that the

logarithmic transformation is a superior choice over probit or logit transformations for explaining the
spread of COVID-19. The first level of the Bayesian hierarchical model is the Gaussian specification
given by

θ(si, t) ∼ N(µ(si, t), σ
2
e), i = 1, . . . , nt; t = 1, . . . , T,

µ(si, t) = x(si)
⊤β + ξ(si, t), (2)

where µ(si, t) is the COVID-19 infection rate in MSOA i and week t on the log scale, and σ2
e is the variance

of the measurement error. The log-infection rate is modelled by two components, the first of which is the
vector of p known covariates x(si) = (1, x1(si), . . . , xp(si)) related to location si, including an intercept
term, with regression parameters β = (β0, β1, . . . , βp). As the temporally varying covariate information is
not available, we cannot include this in the model and the regression parameters are assumed unchanged
over time. The second component accounting for the variations in µ(si, t) is the spatio-temporal random
effect ξ(si, t), which represents the realization of a spatio-temporal process for the logarithm of COVID-
19 infection rates after covariate adjustment. The spatial correlation is modelled by location specific
random effects through a Gaussian random field process, which captures the correlation via a covariance
matrix expressed as a function of distance between locations. The temporal correlation is modelled by a
first-order autoregressive (AR1) process. Specifically, the second level of the model is given by

ξ(sj , t) = α× ξ(sj , t− 1) + ω(sj , t), and ξ(sj , 1) ∼ N

(
0,

σ2
ω

1− α2

)
, (3)

where α is a temporal dependence parameter such that |α| < 1. ω(sj , t) = (ω(s1, t), . . . , ω(snt
, t))

⊤
is a

spatial random effect that is assumed to follow a multivariate Gaussian distribution and have ω(sj , t) ∼
N(0nt , σ

2
ωΣω), where 0nt is a nt×1 vector of zeros and σ2

ω is the marginal variance of the spatial process.
Σω is the nt×nt covariance matrix with elements (Σω)ij = C(||si−sj ||), where ||si−sj || is the distance
between locations (si, sj), and C(·) is the Matern function [67] given by

C(||si − sj ||) =
1

2ν−1Γ(ν)
(κ||si − sj ||)νKν(κ||si − sj ||), (4)

where Kν(·) is the modified Bessel function of second kind, and Γ(ν) is the Gamma function. ν is the
smoothness parameter of the Matern covariance function, which is fixed at 1. κ is a scaling parameter
controlling the spatial correlation range ρ, which is the distance at which the correlation function has
fallen to about 0.13 and is given by ρ =

√
8ν/κ.

The third level of the model specifies the prior specifications for the model parameters. The regression
parameters β = (β0, β1, . . . , βp) were assigned independent weakly informative zero-mean Gaussian prior
distributions with a large variance, i.e., βj ∼ N(0, 1000), to ensure their values are mainly informed by
data. Penalised complexity priors [17] were specified for the correlation range ρ and the marginal standard
deviation parameter σω, with p(ρ < 1.5) = 0.5 and p(σω > 1) = 0.01, indicating a 0.5 probability of
ρ being smaller than 1.5, and a low probability of σω being greater than 1, respectively. The temporal
autoregressive parameter α was also assigned a penalised complexity prior, with p(α > 0) = 0.9. Finally,
a weakly informative log-gamma prior was specified for σ2

e , i.e., ln(σ
2
e) ∼ log-Gamma(1, 0.00005).
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All analyses were conducted using the statistical software R version 4.2.1 [49]. Model inference
was implemented using the stochastic partial differential equations (SPDE) method and the Integrated
Nested Laplace Approximations (INLA) algorithm via the R-inlabru package (2.5.2) [6, 33, 54]. This
approach has significant advantages in terms of computational efficiency and accuracy when handling
high-resolution spatio-temporal processes and large datasets. The INLA implementation of the SPDE
approach approximates a continuous Gaussian random field process with the Matern covariance function
by a discretely indexed spatial random process known as a Gaussian Markov random field (GMRF).
The GMRF has zero mean and uses a sparse precision matrix, which thus substantially reduces the
computational cost in matrix algebra operations compared to using dense covariance matrices [53]. To
represent the Matern field as a GMRF, the SPDE approach discretizes the space by defining a mesh
composed of non-intersecting triangles that partition the domain of the study area [33]. These triangles
allow the spatial autocorrelation between observations to be calculated in the modelling process. Then the
INLA algorithm estimates the posterior distribution of the latent Gaussian process and hyperparameters
using the Laplace approximation [54].

Other R packages including spdep (1.2.5) [51], ggplot2 (3.3.6) [65], rgdal (1.5.32) [5], dplyr (1.0.10)
[66], RColorBrewer (1.1.3) [48], leaflet (2.1.1) [8], and stats (4.2.1) have also been used for data analysis
and visualisation. Model parameter estimates were summarised in posterior mean, standard deviation
(SD) and 95% credible intervals. A risk factor is considered to have a statistically significant effect if
the 95% credible interval of its estimated regression coefficient does not include zero. The main code to
complete this analysis is available from https://github.com/XueqingYin/COVID19.git.

3 Results

3.1 Prediction performance

The model outlined above was applied to the COVID-19 infections data. For comparison purpose, the
OLS and GWR models were also fitted to the same data to observe which one produces the most accurate
predictions of COVID-19 infection rate. The OLS model is the most common and widely used global
non-spatial regression model, while the GWR model is a spatial model that allows the relationships
between the independent and dependent variables to vary by locality. Given the spatial nature of the
GWR model, it was applied separately to the COVID-19 infections data for each time period, without
considering the temporal autocorrelation in the data. To quantify the prediction accuracy of each model,
statistical measures including root mean square error (RMSE) and mean absolute error (MAE) for the
infection rate predictions were computed. Their mathematical equations are as follows:

RMSE =

√√√√ 1

nobs

T∑
t=1

nt∑
i=1

(θ̂(si, t)− θ(si, t))2, (5)

MAE =
1

nobs

T∑
t=1

nt∑
i=1

|θ̂(si, t)− θ(si, t)|, (6)

where θ(si, t) and θ̂(si, t) represent the observed and predicted values at a give location si and time t,
and nobs represents the total number of observations across all time steps.

It can be seen from Table 2 that our Bayesian model performed best in terms of prediction accuracy.
The RMSE value for the Bayesian model was 72.5% lower than that of the OLS model and 15.4% lower
than that of the GWR model. The MAE value for the Bayesian model outperformed the OLS model by
74.1% and the GWR model by 12.5%.

Table 2. Prediction accuracy of different models for the COVID-19 infection rates.

Model RMSE MAE
Bayesian 0.0011 0.0007

OLS 0.0040 0.0027

GWR 0.0013 0.0008

Therefore, the subsequent sections will present the primary results obtained from the proposed
Bayesian model, because it is the best fitting model in terms of model accuracy. To explore the trans-
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mission of COVID-19 infection rate at MSOA level and understand its relationships with socioeconomic,
demographic and environmental risk factors, we will focus on the following research questions of interest.

1. Are there health inequalities in COVID-19 infection rates among MSOAs in mainland England,
and how do these inequalities evolve over time?

2. What impacts do the socioeconomic, demographic and environmental factors have on COVID-19
infection rate?

3. Where are the hotspots of COVID-19 infection rates?

4. How does the COVID-19 infection rate change over time in different regions of England?

3.2 Overall health inequalities and temporal evolution of COVID-19 infec-
tion rate

Table 3 provides a summary of the estimates for the spatial correlation range parameter ρ and temporal
dependence parameter α from the model. It indicates that the spread of COVID-19 infections in England
had a positive spatial and temporal autocorrelation, with ρ = 0.568 (SD = 0.004, 95% CI = 0.559-0.575)
and α = 0.908 (SD = 0.003, 95% CI = 0.905-0.913). These estimates lend further support to the choice
of a spatio-temporal model as an appropriate framework for modelling the spread of COVID-19 infection
rates.

Table 3. Summary of the spatial correlation range parameter ρ and the temporal depen-
dence parameter α.

Parameter mean SD 0.025quant 0.975quant
Spatial range ρ 0.568 0.004 0.559 0.575
Temporal dependence α 0.908 0.003 0.905 0.913

Fig 2 shows two panels illustrating the estimated COVID-19 infection rates for all MSOAs by week. To
improve the data visibility, we chose to plot the logarithm of the infection rates. The top panel reveals the
presence of health inequalities in COVID-19 infection rates in England. There were substantial variations
in the estimated infection rates and the extent of these spatial inequalities increased over time, because
the interquartile range of the infection rate, which measures the spread of the distribution, widened from
0.0001 in the first observation week (starting on 7 March 2020) to 0.0028 in the last observation week
(starting on 26 March 2022), indicating a potentially growing disparity in COVID-19 infection rates
across different neighbourhoods over time.
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Fig 2. Summary of the estimated COVID-19 infection rates. The top panel displays
boxplots of the logarithm of the estimated infection rates across all MSOAs over the 108
weeks, while the bottom panel compares the model’s average estimated infection rate on
the log scale across mainland England (with 95% credible intervals represented by dashed
lines) to the log of the average infection rate computed based on UK COVID-19
dashboard reported cases in weeks. The x-axis label ”date” indicates the starting date of
each observation week. Weeks of lockdown are highlighted in pink.

The bottom panel in Fig 2 shows that the average infection rates estimated by our model were highly
consistent with the UK COVID-19 dashboard reported data. Over the study period, the COVID-19
infection rate displayed a series of fluctuations, but there was an overall upward temporal trend. The
estimated infection rates ranged from 0.0002 to 0.0417, with a mean of 0.0028 (SD = 0.0037). The average
infection rate curve shows an initial peak in mid-November 2020, followed by a decline in infection levels,
which then surged in December 2020 due to the Alpha (also known as B.1.1.7) variant of coronavirus.
Infections peaked in early January 2021, and then tapered off to almost baseline levels by April of the
same year. From the week of 5 June 2021 to mid-July, the infection rate began to rise again, reaching
an estimated 0.5%. The rate then fell and displayed a relatively stable trend with slight oscillations
until November 2021. However, the infection rate reached its highest point in the week of 1 January
2022 at 1.9%, before substantially decreasing until early March 2022. The curve also suggests that the
national lockdowns reduced the infection rate, particularly during the second and third lockdown periods,
while individuals were at a higher risk of COVID infection during the months of July, December, and
January. We also noted that in the first weeks of the study period both the estimated infection rates
and their variations across MSOAs were quite low. This is likely because during the first wave of the
pandemic between March and July 2020, COVID-19 testing capacity was strictly limited to priority
groups due to a lack of infrastructure for large-scale testing, which means that a large number of infected
individuals were not formally diagnosed with the virus. As a result, data on confirmed COVID-19 cases
were under-reported and incomplete, thus leading to underestimated infection rates and small variation.
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3.3 Risk factor effects

Table 4 presents the results of our Bayesian regression analysis, showing the estimated regression coef-
ficients and relative risks (RR) for each of the selected explanatory variables in relation to COVID-19
infection rates. The estimated relative risks and 95% credible intervals were computed by exponentially
transforming the regression coefficients associated with the variables. Note that the relative risks relate
to realistic increases in each variable, which are given in brackets in column 1 of the table.

Table 4. Estimated regression coefficients, relative infection risks and 95% credible intervals
for the effects of each risk factor on COVID-19 infection rates. The relative risks relate to
realistic increases in each covariate, which are given in brackets in column 1 of the table.

Variable Regression coefficient Relative risks (95% CI)
Annual household income (£1000) 0.0008 1.0008 (1.0005, 1.0012)
Unemployment rate (1%) 0.0027 1.0027 (1.0024, 1.0030)
Log(population density) 0.0145 1.0146 (1.0129,1.0164)
Percent of Chinese (1%) -0.0161 0.9840 (0.9823, 0.9858)
Percent of Indian (1%) -0.0005 0.9995 (0.9993, 0.9998)
Percent of Pakistani (1%) -0.0016 0.9984 (0.9982, 0.9990)
Percent of Bangladeshis (1%) -0.0014 0.9986 (0.9982, 0.9990)
Percent of African (1%) -0.0093 0.9907 (0.9901, 0.9913)
Percent of Caribbean (1%) 0.0022 1.0022 (1.0009, 1.0036)
Percent of age 18-29 (1%) -0.0049 0.9951 (0.9947, 0.9954)
Percent of age 45-64 (1%) 0.0031 1.0031 (1.0024, 1.0039)
Percent of 65 years old and over (1%) -0.0067 0.9933 (0.9929, 0.9937)
Annual mean PM2.5 (1 µg m−3) 0.0125 1.0126 (1.0083, 1.0167)
Care home beds (0.01) 1.3295 1.0134 (1.0121, 1.0147)
Emergency facilities (TRUE) 0.0007 1.0007 (0.9958, 1.0057)

The table clearly demonstrates that the selected variables significantly contribute to the spatio-
temporal variations of COVID-19 infection rate, with the exception of the emergency facilities variable
because its 95% credible intervals include the null risk of 1. One of the main drivers of elevated infection
rates is socioeconomic factor. We found that both annual household income and unemployment rate
were associated with higher infection rates. Specifically, an increase of £1000 in annual household income
within an MSOA was associated with a 0.08% increased infection rate (RR = 1.0008, 95% CI = 1.0005-
1.0012), while an increase of 1% in unemployment rate was associated with a 0.27% increased infection
rate (RR = 1.0027, 95% CI = 1.0024-1.0030). Expectedly, the logarithm of the population density was
positively correlated with the infection rate. A 1-unit increase in log(population density) was found to
be associated with a 1.5% rise in COVID-19 infection rate (RR = 1.0146, 95% CI = 1.0129-1.0164).
We also identified interesting patterns in the associations between ethnicity, age groups, and COVID-19
infection rates. Neighbourhoods with a greater percent of Chinese population tend to have lower rate
of infections (RR = 0.9840, 95% CI = 0.9823-0.9858). The Indian, Pakistani and Bangladeshi ethnic
groups had a lower level of infections, with rates decreasing by 0.05%, 0.16% and 0.14%, respectively,
for every 1% increase in the percentage of these groups within an MSOA. The African population was
also associated with a decreased rate of COVID-19 infection (RR = 0.9907, 95% CI = 0.9901-0.9913),
whereas the Caribbean population had statistically significantly higher COVID-19 infection rates (RR
= 1.0022, 95% CI = 1.0009-1.0036).

Table 4 further reveals that infection rates tend to be lower in MSOAs with higher percentages of
adults aged 65 years and older (RR = 0.9933, 95% CI = 0.9929–0.9937), and those with higher percent-
ages of adults aged 18-29 years (RR = 0.9951, 95% CI = 0.9947–0.9954). Conversely, the population
aged between 45 and 64 years old was positively correlated with infection rates, with a 1% increase
being associated with a 0.31% higher rate. Additionally, there was a positive relationship between PM2.5

concentrations and COVID-19 infections, with a 1 µg m−3 increase in concentrations associated with
between a 0.83% and a 1.67% increased rate (RR = 1.0126, 95% CI = 1.0083-1.0167). Finally, increas-
ing the number of care home beds per adult population (RR = 1.0134, 95% CI = 1.0121-1.0147) was
diagnosed positively linked to higher infection rates.

3.4 Hotspots of COVID-19 infection rates

It is of interest to identify which MSOAs showed the high infection rates during the study period,
and if there were any areas that consistently exhibited high rates. Clustering methods can be used
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to identify the groups of MSOAs with high and low rates, and in this study, k-means clustering [24]
was utilised. For ease of data visualization, we divided the 108-week time frame into six consecutive
and non-overlapping intervals, each spanning 18 weeks. Since k-means clustering uses distance-based
measurements to determine the similarity between data observations, we standardised the estimated
infections rates during weeks 1 to 18, 19 to 36, 37 to 54, 55 to 72, 73 to 90 and 91 to 108, respectively,
and then applied k-means clustering to the standardised rates. The MSOAs were assigned to between
one and ten clusters based on their similarities in the estimated rates, and the optimal number of clusters
was determined by using the elbow method. Here the optimal number of clusters is 3 clusters for each
time interval, and hence the MSOAs were classified into three distinct clusters that have a high, medium,
and low level of infection rate, respectively. Fig 3 displays the spatial patterns of the cluster memberships
of MSOAs for each time interval.

(a) Weeks 1-18. (b) Weeks 19-36. (c) Weeks 37-54.

(d) Weeks 55-72. (e) Weeks 73-90. (f) Weeks 91-108.

Fig 3. Maps showing the clusters that were formed according to the estimated infection
rates at MSOA level during weeks 1 to 18 (7 March 2020-4 July 2020), weeks 19 to 36 (11
July 2020-7 Nov 2020), weeks 37 to 54 (14 Nov 2020-13 March 2021), weeks 55 to 72 (20
March 2021-17 July 2021), weeks 73 to 90 (24 July 2021-20 Nov 2021) and weeks 91 to
108 (27 Nov 2021-26 March 2022), respectively.

Fig 3 illustrates that the distribution of high infection rates was not consistent across different time
periods and exhibited clustering patterns, indicating that certain areas were more significantly impacted
by the pandemic than others. During weeks 1 to 18 (7 March 2020-4 July 2020), the highest infection
rates were mainly concentrated in northern England, such as districts of Cumbria, Lancashire, Northum-
berland and Newcastle (County Durham, Gateshead, Sunderland), and in the far southwest, such as
Devon. From week 19 to week 36 (11 July 2020-7 Nov 2020), hotspots for COVID-19 infection rates were
highly clustered in a contiguous aggregation of MSOAs spanning from Lancashire, Manchester and Liv-
erpool through to Bradford, Leeds, Kirklees and Sheffield. However, this trend moved to the southeast,
particularly in London and some surrounding areas such as Kent and Essex in the following 18 weeks.
During weeks 55 to 72 (20 March 2021-17 July 2021), the clusters of MSOAs with high infection rates
were mainly in and around metropolitan areas for example Manchester, Liverpool, Newcastle, and North
Tyneside. Interestingly, weeks 73 to 90 (24 July 2021-20 Nov 2021) showed a more dispersed distribu-
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tion of hotspots, with hotspots scattered throughout England and no clear clustering patterns observed.
However, there was a higher number of hotspots in central England and surrounds (Nottingham, Birm-
ingham, Leicester, Stoke, Coventry, Leeds, Sheffield, Doncaster and Hull), as well as in the southwest
(Bath, Bristol, Plymouth and Exeter). Finally, in the weeks 91 to 108 (27 Nov 2021-26 March 2022),
high infection rates shifted towards the southeast of England, with the regions of Greater London, South
East and East of England most affected. Despite the varying spatial patterns over time, the hotspots
tended to cluster in urban and populous areas, particularly in the northwest, central, and southeast. The
shifting patterns of infection rates demonstrate the dynamic nature of the pandemic, and the importance
of monitoring temporal trends in different regions. Thus in the next section we investigated the temporal
trends of COVID-19 infection rates in diverse regions of England.

3.5 COVID-19 infection rates by region

Differences in COVID-19 infection rate trends can be explored at a larger geographical scale by examining
regional data, which provides a more aggregated view of the results. The 6789 MSOAs are nested exactly
within nine regions of England, comprising North East, North West, Yorkshire and The Humber, East
Midlands, West Midlands, East of England, London, South East and South West. Fig 4 provides a
geographical representation of these nine regions. To characterise the evolution of infection rates over
time in each region, we computed the weighted averages of estimated infection rates for region r and

week t as ϕ̂rt =
∑

i∈r pi exp(θ̂(si,t))

pr
, where θ̂(si, t) denotes the estimated log-infection rate in MSOA i and

week t, pi and pr indicate the population sizes of MSOA i and region r respectively, and i ∈ r means that
MSOA i is geographically located within region r. We used population size as the weighting factor in the
computation due to the assumption that neighbourhoods with larger populations are likely to make a
greater contribution to the overall infection level of a region compared to those with smaller populations.
Fig 5 depicts the line plots of the population-based weighted averages of estimated infection rates after
logarithm transformation by week and region. Here we chose to plot the log-infection rates instead of
the infection rates themselves, as this provides a more suitable scale that allows for better visualisation
of the temporal trend curves.

Fig 4. A map of the nine regions of mainland England.
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Fig 5. Population-based weighted averages of COVID-19 infection rates on the log scale
by week and region in mainland England. Weeks of lockdown are highlighted in pink.

Fig 5 suggests that the national lockdown measures have been successful in containing the transmis-
sion of the virus, because in all regions the infection rates visibly declined following the initiation of any
of the three lockdowns. During the first lockdown period, the Greater London region had the quickest
decline in infection rate, while infection rates in other regions, particularly East Midlands, took longer
to reduce. After the lockdown was lifted, infection levels remained stable in most regions until August
2020, but increased notably from September 2020 onwards, with peaks observed in mid-November 2020
in all regions except for North West. When the second lockdown was in place, infection rates decreased
in all regions, but remained higher in the northern (i.e., North East, North West) and central regions
(i.e., Yorkshire and The Humber, East Midlands and West Midlands) of England. After the lockdown
was lifted, the rates surged particularly in London, South East, and East of England due to the dominant
Alpha variant, which was estimated to be more transmissible than preexisting variants [13].

During the third lockdown, infection rates across England reduced substantially, with the Greater
London region showing the most rapid decline as was the case in the first lockdown. A possible reason
for this is that the percentage of key workers in London is relatively lower than that in other regions [3].
Key workers, such as healthcare workers and public transportation workers, are more likely to contract
the virus as they continue to work and interact with the public during the imposition of restrictions.
With fewer key workers in London, the lockdown measures may have been more effective and noticeable
in reducing virus transmission compared to regions with larger numbers of key workers. There were
no lockdown restrictions imposed from April 2021 to the end of the study, during which all regions
experienced two infection peaks. One peak occurred in mid-July 2021, with rates ranging between 0.42%
and 0.89%, while the other was in early Jan 2022, with rates ranging between 1.21% and 2.61%. Infection
rates remained relatively stable between the peaks, with London having the lowest values. Infection levels
sharply reduced from 8 Jan 2022, but rebounded by the end of Feb 2022. South West, South East, and
East of England had the highest infection rates throughout the remainder of the study.

4 Discussion

This study aimed to explore the spatio-temporal spread of COVID-19 infection rate in mainland Eng-
land from 7 March 2020 to 26 March 2022, and its associations with socioeconomic, demographic and
environmental factors. It can provide information for public health policies at the neighbourhood level,
offering valuable insights for policymakers to optimise healthcare resources, establish targeted public
health interventions, and improve epidemic prevention and control systems. Additionally, the study
contributes new cases and knowledge to the growing body of research on the space-time transmission of
COVID-19.

A Bayesian hierarchical spatio-temporal model was used to predict the COVID-19 infection rates
based on weekly reported COVID-19 cases from 7 March 2020 to 26 March 2022 at MSOA level. Note
that we utilised the COVID-19 data at MSOA level rather than the other geographical levels such as the
Lower Layer Super Output Area (LSOA) level due to data availability. At the time of the analysis, the
MSOA level was the smallest geographic unit for which both COVID-19 data and risk factors data were
accessible from open sources. We did not downscale the MSOA geographical information to a higher-
resolution geographical level, because the downscaling procedure will likely induce bias and inflate the
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reported credible intervals for the predicted infection rate [28]. Moreover, the MSOA level is commonly
used in the literature for studying the small-areas COVID-19 transmissions [56]. To evaluate the model’s
prediction performance, our Bayesian model was compared with the non-spatial regression model (OLS
model) and the geographically weighted regression model (GWR model). The RMSE and MAE values
of the Bayesian approach were lower than those of OLS and GWR models, indicating that the Bayesian
model exhibited better prediction accuracy than the other models in this study.

The model estimation results showed that the level of spatial inequalities of COVID-19 infection
rate increased over time, highlighting the need for effective strategies to address the disparities between
different neighbourhoods. The COVID-19 infection rates in England exhibited spatio-temporal hetero-
geneity, with higher rates observed during the months of July, December and January. These findings
could be explained by the increased travel, outdoor activities, and social gatherings during the summer
months, and holiday celebrations and family gatherings during the winter months. These factors could
contribute to higher levels of interpersonal contact within a population, potentially leading to increased
transmission risk. Besides, COVID-19 virus may be more transmissible in colder and drier conditions
[41, 62], contributing to higher infection rates during the winter months. The infection rates were not
evenly distributed across the country, with certain areas more vulnerable to the pandemic. Further-
more, the hotspots of infection rates exhibited clustered patterns that changed over time, with a higher
frequency of occurrence in and around urban areas such as Newcastle, Manchester, Birmingham, Liver-
pool, Nottingham, Sheffield, Leeds, and London. The analysis of regional data indicated that although
identical national lockdowns were announced across England, different regions displayed varying impacts
in response to these measures. This variation could be influenced by factors such as the proportion of
essential workers and the emergence of new variants of the virus. Moreover, it is important to note that
different regions in England experienced slight variations in the start and end dates of these national
lockdowns due to local epidemiological conditions and the tier system. The tier levels, ranging from
Tier 1 (medium alert) to Tier 4 (very high alert), determine the extent of restrictions imposed on social
interactions, businesses, and public spaces (https://www.ageuk.org.uk/). Regions with higher infection
rates and greater risk were typically assigned to higher tier levels, leading to more stringent measures
and restrictions. Thus some regions may have entered lockdown earlier or experienced more prolonged
periods of restrictions compared to those in lower tiers. Therefore, the observed differences in response
to these measures may also be influenced by the region-specific timing and duration of the lockdown
measures.

The analysis of socioeconomic, demographic, and environmental factors in relation to COVID-19
infections further indicated the key factors influencing the COVID-19 landscape in England. We found
that MSOAs with higher annual household income had a higher infection rate, which is in agreement with
previous investigations conducted in other countries or regions [7, 37]. It is assumed that the influence
of annual household income on the infections is related to the presence of a better network of health
services, expanding the population’s access to carrying out diagnostic tests in the communities with high
income, reducing underreporting, and contributing to increased COVID-19 incidence. Another socioe-
conomic indicator is unemployment rate, which was found to be positively associated with COVID-19
infection rate. Consistent findings have been found to exist in France and the United States [20, 72]. A
positive relationship was found between the infection rate and population density. We uncovered that
the percent of Asians, including Chinese, Indian, Pakistani, and Bangladeshis, was negatively related to
COVID-19 infection rate. This corroborates with the study conducted by Lee et al. [31]. Conversely,
MSOAs with a higher proportion of Caribbean population had elevated infection rates. These relation-
ships may be related to the ethnic differences in COVID-19 vaccine uptake [40] and health behaviours
(https://www.iser.essex.ac.uk/blog/). The age composition of MSOAs was also found to impact COVID-
19 infection levels. Higher proportions of adults aged 65 and older were related to lower infection rates.
This association could be linked to factors such as higher vaccination rates among older adults, as they
were among the first groups prioritised for COVID-19 vaccination in the UK. MSOAs with a higher per-
centage of young adults aged 18-29 years old showed a lower level of infection, while populations between
45 and 64 years old were positively associated with infection rates. Finally, elevated concentrations of
PM2.5 were found to be positively associated with COVID-19 infection rates, which is consistent with
existing studies that have reported a positive relationship between increasing PM2.5 concentrations and
COVID-19 infections in various regions such as Ohio, Colorado, and Scotland [4, 31, 43]. This could
be related to the increased susceptibility to respiratory infections such as COVID-19 given exposure to
air pollution [11, 15]. In addition, air pollution has been linked to underlying health conditions such
as diabetes, cardiovascular, and respiratory diseases, which are known risk factors for severe COVID-19
[57]. Therefore, it may be necessary to implement more rigorous COVID-19 prevention measures in areas
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with higher PM2.5.
This study provides evidence that local rates of COVID-19 infections are influenced by patterns of

household income, unemployment rate, population density, ethnic composition, age population struc-
ture and exposure to air pollution. It provides a scientific basis for accurately predicting COVID-19
response and targeting recovery efforts in England based on community-specific risk factors. It is impor-
tant to consider these risk factors when developing effective control measures and allocating resources
in different communities to control the pandemic spread. For example, public health interventions, such
as promoting measures to reduce personal exposure to fine particle pollution could be implemented in
specific neighborhoods at higher infection risk, providing better protection for vulnerable populations.
Perhaps, most importantly we show that our BHM framework is an effective and powerful tool for
modelling and understanding the risk factors that influence the infectious disease dynamics in general.
Nevertheless, this study has some limitations. The most significant is its ecological design, where the
unit of inference is the group of individuals living in each MSOA rather than having data for each indi-
vidual. The aggregation of data at the geographic level can cause loss or concealment of certain details
about individuals, resulting in ecological fallacy [61] in the observed association. Thus, the estimated
population-level associations should not be interpreted as cause-and-effect relationships at the individual
level, because they may be influenced by factors such as within-area variation in either the exposure or
the confounders. We used this ecological study design because the data required for an individual-level
study were not available due to confidentiality reasons. We note, however, that this ecological approach
has been predominant in the COVID-19 literature that focuses on exploring the distribution pattern of
the pandemic and its influencing risk factors [44, 47, 58]. Our findings outlined above should be treated
as indicative associations, rather than conclusive evidence of individual-level causation. To fully under-
stand the causal relationships, further research, including tailored experimental designs combined with
primary data collection, is necessary to establish causality definitively and investigate the mechanisms
and biological pathways behind the observed associations. Secondly, since the annual household income
data used were for 2018, the time gap between income data and other predictors and response data may
influence the model estimation results. Thirdly, the reported COVID-19 infection cases were linked to
the MSOA where the test was conducted, rather than the patient’s place of residence. This is a concern
for metropolitan areas where a considerable number of patients could have been admitted or transferred
to neighboring healthcare facilities before being tested. Finally, the infections data collected in the early
phase of the pandemic were often underestimated due to a lack of testing, which could potentially lead
to biased estimates and uncertainty in the model predictions. Thus, the limitations of data quality and
potential biases should be carefully considered when interpreting the modelling results for the initial
pandemic stage.

We noted that in this study the effect sizes of the risk factors on the COVID-19 infection rate were
relatively small. The small effect sizes are likely due to the small geographical level (MSOA) and the
short time steps (weekly basis) for reporting the data. MSOAs represent small geographic areas with
limited populations, therefore the spatial variations of risk factors and COVID-19 infections between
English MSOAs naturally tend to be smaller than those between the larger geographical units such as
counties or cities in other studies. Additionally, the use of weekly reporting interval tends to yield smaller
infection rate variations compared to longer time steps. However, we believe that even these small effect
sizes carry important information and implications for public health strategies. They contribute to our
understanding of how specific risk factors influence infection rates at a fine-grained geographical level. By
considering these effects, we can gain valuable insights for shaping localised interventions and preventive
measures to reduce the spread of COVID-19 at neighbourhood level, and promote community health
at this level of granularity. There are several avenues for future work. In this study we assumed fixed
effects of risk factors over time, however, we also acknowledged that the associations between these factors
and the outcome variable may vary with time, thus there is potential to further enhance the model by
incorporating spatially and temporally varying effects of risk factors. In addition, future applications
could consider other potentially important predictors for COVID-19 infections such as comorbidities,
population mobility and and behavioural factors (e.g., alcohol consumption, smoking). The level of
population immunity also plays a crucial role in shaping the disease dynamics and outcomes. To account
for this factor in the model, vaccination data could be incorporated as a relevant variable, which is
frequently cited as a proxy for population immunity. Lastly, extending the research to other countries
and regions could offer comprehensive insights into the global spread of COVID-19 and inform the
development of more targeted actions.
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