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Multilevel models with random residual variances for joint modelling school value-

added effects on the mean and variance of student achievement 

 

Abstract 

School value-added models are widely applied to study the effects of schools on student 

achievement and to monitor and hold schools to account for their performances. The 

traditional model is a multilevel linear regression of student current achievement on student 

prior achievement, background characteristics, and a school random intercept effect. The 

predicted random effect aims to measure the mean academic progress students make in each 

school. In this article, we argue that much is to be gained by additionally studying the 

variance in student progress in each school. We therefore extend the traditional model to 

allow the residual variance to vary as a log-linear function of the student covariates and a new 

school random effect to predict the influence of schools on the variance in student progress. 

We illustrate this new model with an application to schools in London. Our results show the 

variance in student progress varies substantially across schools – even after adjusting for 

differences in the variance in student progress associated with different student groups – and 

that this variation is predicted by school characteristics. We discuss the implications of our 

work for research and school accountability. 

 

Keywords: school value-added models, multilevel models, variance functions, mixed-effects 

location scale models, school effectiveness, school accountability 
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1. Introduction 

School value-added models attempt to estimate the effects of individual schools on student 

achievement and are widely applied in educational (Goldstein, 1997; Reynolds et al., 2014; 

Teddlie and Reynolds, 2000; Townsend, 2007) and statistical research (American Statistical 

Association, 2014; Braun and Wainer, 2007; McCaffrey et al., 2004; Raudenbush and 

Willms, 1995; Wainer, 2004). They are also used in the US, UK and other school 

accountability systems where the predicted school effects, often referred to as school value-

added scores, provide the basis of reward and sanction decisions on schools (Amrein-

Beardsley, 2014; Castellano and Ho, 2013; Koretz, 2017; Leckie and Goldstein, 2017; 

OECD, 2008). In educational and statistical research, additional interest lies in identifying 

school policies and practices which predict the school effects and that might therefore prove 

effective at raising student achievement in schools in general. 

The traditional school value-added model is a multilevel linear regression model 

(Goldstein, 2011; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012) of student current 

achievement on student prior achievement measured at the start of the value-added period 

(typically defined as one or more school years or a phase of schooling) and a school random 

intercept effect to predict the school effects (Aitkin and Longford, 1986; Goldstein et al., 

1993; Raudenbush & Bryk, 1986). The adjustment for student prior achievement is 

fundamental as simpler comparisons of unadjusted school mean achievement would in large 

part reflect school differences in student achievement present at the start of the value-added 

period. Such differences are considered beyond the control of the school. Student 

sociodemographic characteristics are often added to more convincingly adjust for the non-

random selection of students into schools (Ballou et al., 2004; Leckie and Goldstein, 2019). 

Schools with higher school effects are said to add more value: produce higher student 

achievement for any given set of students. The school effects are argued to reflect the net 
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influences of differences in the quality of teaching, availability of resources, and other 

policies and practices across schools which are typically unobserved to the data analyst. 

While concerns remain around potential further omitted student characteristics and selection 

into schools (Castellano et al., 2014), the predicted school effects from school value-added 

models are widely viewed as fairer and more meaningful measures to compare schools for 

research and accountability purposes than comparing simple school mean achievement. 

School value-added models are frequently motivated and discussed in terms of 

measuring the academic ‘progress’ (learning or improvement) made by students over the 

value-added period (Goldstein, 1997) and we shall adopt that language here. Specifically, 

student progress is measured by the difference between observed and predicted student 

current achievement, that is, the total residual. The total residual is in turn modelled as the 

summation of the school random intercept effect and the student residual. The school random 

effect measures the mean student progress in each school. In contrast, the constant residual 

variance assumes the variance in student progress is the same in every school. This 

inconsistent modelling of the mean and variance does not seem very realistic. Any given 

school policy or practice will have different effects on students as a function of their observed 

and unobserved characteristics and will therefore contribute to the variance in student 

progress operating in each school. The different sets of school policies and practices 

operating in each school will therefore lead the variance in student progress to vary across 

schools as well as the mean. 

Studying the variance in student progress in each school would provide valuable new 

information as to the influence of schools on student learning. Consider two schools which 

show similar high levels of mean student progress. The traditional school value-added model 

would view these two schools as equally effective. Suppose, however, the two schools differ 

in their variance in student progress. Should the two schools continue to be viewed as equally 
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effective? The school which shows higher variance in student progress might now be viewed 

as the less effective as their positive mean student progress does not appear to be spread as 

evenly across students as for the school which shows lower variance in student progress. 

More generally, schools which show more variable student progress might be regarded as 

showing less control over their student learning. They might also be viewed as struggling to 

mitigate inequalities in student achievement relative to schools which show less variable 

student progress. We might then wish to follow up schools which show very low or high 

variance in student progress to try to identify the specific school policies and practices which 

lead their students to progress at similar or dissimilar rates. These policies might then be 

promoted or deterred in schools in general in the same way as is done for school policies and 

practices which predict higher or lower mean student progress. While we interpret lower 

school variances in student progress positively, such an interpretation is open to debate. For 

example, if lower school variances reflect schools which are hindering the progress of their 

higher progress students, preventing them from reaching their full potential, then lower 

school variances would then be viewed negatively. We will return to this point in the 

Discussion. 

The aim of this article is to therefore broaden the traditional school value-added 

model to study the effects of schools on not just mean student achievement, but the variance 

in student achievement. Specifically, we propose modelling the residual variance in the 

underlying multilevel linear regression as a log-linear function of an intercept and a new 

school random effect. The log-linear link function ensures the resulting school-specific 

residual variances and therefore school variances of student progress are positive. We 

estimate this variance function simultaneously with the usual mean function and we allow the 

mean and variance school effects to correlate. Where there is an overall relationship between 

the residual variance and student prior achievement or other student background 
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characteristics (e.g., where higher prior achieving students in general show less variable 

progress), we enter these variables into the residual variance function as covariates so that the 

resulting school variance differences more credibly reflect only variation arising from 

differences in school policies and practices (and not school differences in student 

backgrounds). We illustrate this new approach with an application to schools in London. 

In biostatistics, our extended multilevel model would be referred to as a ‘mixed -effect 

location scale model’ where ‘location’ and ‘scale’ in the context of our study refer to the joint 

modelling of the mean and residual variance in student achievement. Hedeker et al. (2008) 

introduced this model in the context of studying intensive longitudinal data on mood. 

Subsequently, Hedeker and others further developed this model and applied it to a range of 

other longitudinal psychological and health data (e.g., Goldstein et al., 2018; Hedeker et al., 

2012; Nordgren et al., 2019; Parker et al., 2021; Rast et al., 2012). This new focus on joint 

modelling the mean and residual variance in multilevel models is also increasingly being 

explored in social science research, including in applications to clustered cross-sectional data 

(Brunton-Smith et al., 2017, 2018; Leckie et al., 2014; McNeish, 2020). However, the 

applicability of these extended multilevel models to school value-added studies has not yet 

been explored. 

One existing extension to the traditional school value-added model, which partially 

recognizes that schools influence the variance in student progress, is to include a random 

slope on student prior achievement. This allows mean student progress in each school to vary 

systematically as a function of student prior achievement and is sometimes referred to as 

allowing for ‘differential school effectiveness’ since schools are now allowed to have 

different effects on different types of students (Nuttal et al., 1989; Thomas et al., 1997; 

Strand, 2010). Implicitly, the variance in student progress is then also modelled as a function 

of student prior achievement. In practice, however, this extension can only be used to account 
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for a limited number (e.g., one, two, three) of observed student characteristics, not to students 

in general. Thus, random residual variances are still required. 

This article proceeds as follows. In Section 2, we discuss the use of school value-

added models in accountability in England and thereby motivate our application to London 

schools. In Section 3, we briefly review the traditional school value-added model and its 

implementation as a multilevel linear regression model. In Section 4, we propose our new 

school value-added model which measures the variance in student progress in each school 

and, where required, adjusts these variances for student covariates. In Section 5, we discuss 

data, models and software. In Section 6, we present the results. In Section 7, we provide a 

general discussion, including implications of our work for research and school accountability. 

 

2. School value-added models and accountability in England 

In England, since 2004, the Government has published school value-added scores for all 

secondary schools in the country in annual school performance tables (gov.uk/school-

performance-tables). These scores aim to measure the mean student progress shown in each 

school between the end of primary schooling national Key Stage 2 (KS2) tests (age 11, 

academic year 6) and the end of compulsory secondary schooling General Certificate of 

Secondary Education (GCSE) examinations (age 16, academic year 11). The school value-

added scores play a pivotal role in the national school accountability system, informing 

school inspections and judgements on schools. They are also promoted to parents as a source 

of information when choosing schools for their children. Their high stakes uses and very 

public presentation have drawn sustained criticism from the academic literature (Goldstein 

and Speigelhalter, 1996; Leckie and Goldstein, 2009, 2017, 2019). Nevertheless, these 

authors also argue that when used carefully and collaboratively with schools in a sensitive 

and less public manner there is still an important role for school value-added models to help 
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identify and understand the different ways schools influence student learning and it is in this 

spirit that we have carried out the current research (Goldstein, 2020). 

Leckie and Goldstein (2017) review the evolution of Government school value-added 

models and measures in England over time. From 2006-2015, multilevel linear regression 

models were used, regressing student age 16 GCSE examination score on student age 11 KS2 

score and a school random intercept effect. From 2006-2010 these models additionally 

entered a range of student sociodemographic characteristics which vary across schools and 

are predictive of student age 16 score (even after adjusting for student age 11 score). In 

contrast, the current ‘Progress 8’ model introduced in 2016 (DfE, 2020), is a conventional 

linear regression of student age 16 score on only student age 11 score (Leckie and Goldstein, 

2019; Prior et al., 2021b). Postestimation, the school effects are calculated as school averages 

of the predicted student residuals. Crucially, while the Government school value-added 

model has evolved over time, what has remained constant is that the Government have never 

reported any measure of the variance in student progress in each school and how this variance 

may potentially be larger in some schools than others. 

 

3. Review of traditional school value-added models 

3.1 Random-intercept model 

Let 𝑦𝑖𝑗 denote the current achievement for student 𝑖 (𝑖 = 1,… , 𝑛𝑗) in school 𝑗 (𝑗 = 1, … , 𝐽). 

The traditional school value-added model can then be written as the following random-

intercept linear regression 

 

 𝑦𝑖𝑗 = 𝐱𝑖𝑗
′ 𝛃 + 𝑢𝑗 + 𝑒𝑖𝑗 (1) 
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where 𝐱𝑖𝑗 denotes the vector of student covariates including the intercept and student prior 

achievement, 𝛃 the associated vector of regression coefficients, 𝑢𝑗 the school random 

intercept effect, and 𝑒𝑖𝑗 the student residual. The school random intercept effect and student 

residual are assumed normally distributed with zero means and constant variances 

𝑢𝑗~𝑁(0,𝜎𝑢
2) and 𝑒𝑖𝑗~𝑁(0,𝜎𝑒

2). The random effect and residual are assumed independent of 

one another and independent of the covariates. 

The total residual 𝑢𝑗 + 𝑒𝑖𝑗 measures student progress over the value-added period 

relative to the overall average student who has a total residual and therefore progress of 0. 

The random effect 𝑢𝑗 measures the mean student progress in each school while the residual 

𝑒𝑖𝑗 measures the progress of each student relative to their school mean. The random effect 

variance 𝜎𝑢
2 measures the variation in school mean progress across schools. The residual 

variance 𝜎𝑒
2 measures the average variance in student progress within schools (averaged 

across all schools). Crucially, this parameter is assumed constant across schools 

(homoscedasticity). Thus, while the model allows mean student progress to vary from school 

to school 𝑢𝑗, it assumes the variance in student progress is the same in every school 𝜎𝑒
2. 

 

3.2 Random-slope model 

The differential effects version of the traditional school value-added model can be written as 

the following random-slope linear regression 

 

 𝑦𝑖𝑗 = 𝐱𝑖𝑗
′ 𝛃 + 𝐳𝑖𝑗

′ 𝐮𝑗 + 𝑒𝑖𝑗 (2) 

 

where 𝐳𝑖𝑗 denotes the vector of covariates with random slopes (a subset of 𝐱𝑖𝑗 including the 

intercept), and 𝐮𝑗 the associated vector of school random effects. The random effects are 
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assumed multivariate normally distributed with zero mean vector and constant covariance 

matrix 𝐮𝑗~𝑁(𝟎,𝛀𝐮). All other terms are defined as before. When 𝐳𝑖𝑗 = 1 the model 

simplifies to the random-intercept model (Equation 1).  

In the differential effects version of the model, the total residual, now 𝐳𝑖𝑗
′ 𝐮𝑗 + 𝑒𝑖𝑗, 

again measures the progress each student makes over the value-added period relative to the 

overall average student who again has a total residual and therefore progress of 0. School 

mean student progress 𝐳𝑖𝑗
′ 𝐮𝑗 now varies not only across schools, but also across students as a 

function of the covariates 𝐳𝑖𝑗 with random slopes. Thus, this version of the model allows 

schools to be potentially more or less effective for different types of students. 

School mean student progress averaging over all students in each school is given by 

𝐳̅.𝑗
′ 𝐮𝑗 where 𝐳̅.𝑗 denotes the average of 𝐳𝑖𝑗 in school 𝑗. For the purpose of identifying effective 

schools, it is necessary to evaluate 𝐳̅.𝑗
′ 𝐮𝑗 at common values of 𝐳̅.𝑗  for all schools. The variance 

in student progress in each school (over all students) is given by 𝒖𝑗
′Var𝑗(𝐳𝑖𝑗)𝒖𝑗 + 𝜎𝑒

2. The 

first component of this expression 𝒖𝑗
′Var𝑗(𝐳𝑖𝑗)𝒖𝑗 captures the variance in student progress 

attributable to interactions between the school effect 𝐮𝑗 and the covariates with random 

slopes 𝐳𝑖𝑗. The magnitude of this component varies across schools. For the purpose of 

identifying effective schools, it is necessary to evaluate 𝒖𝑗
′Var𝑗(𝐳𝑖𝑗)𝒖𝑗 at common values of 

Var𝑗(𝐳𝑖𝑗) for all schools. The second component 𝜎𝑒
2 is attributable to all other sources of 

variance in student progress. Crucially, this continues to be assumed constant across schools 

(homoskedasticity). Thus, adding random slopes only partially recognizes that schools may 

influence the variance in student progress. 

 

4. Proposed new school value-added models 

4.1 Random-intercept model with random residual variance function 
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We allow the variance in student progress to vary across schools by modelling the residual 

variance as a log-linear function of the covariates and a new random school effect. The 

variance function can be written as 

 

 ln(𝜎𝑒,𝑖𝑗
2 ) = 𝐰𝑖𝑗

′ 𝛂 + 𝑣𝑗 (3) 

 

where 𝐰𝑖𝑗  denotes the vector of covariates (typically a subset of 𝐱𝑖𝑗 including an intercept), 𝛂 

the associated vector of regression coefficients, 𝑣𝑗 the new school random effect assumed 

normally distributed with zero mean and constant variance, 𝑣𝑗~𝑁(0, 𝜎𝑣
2). We additionally 

assume that 𝑢𝑗 and 𝑣𝑗 follow a bivariate normal distribution and so 𝑢𝑗 and 𝑣𝑗 are allowed to 

correlate. 

The variance function allows the inclusion of covariates 𝐰𝑖𝑗  and this will typically be 

necessary. Recall the reason for entering student prior achievement (and potentially further 

student covariates) into the mean function is that schools should not be held accountable for 

pre-existing differences in student achievement across schools at the start of the value-added 

period. A similar argument applies when comparing the variance in student progress across 

schools since such differences will also reflect school mean differences in student prior 

achievement even though we have adjusted for this in the mean function. For example, 

suppose the residual variance decreases with increasing prior achievement. This would 

suggest that schools with higher mean student prior achievement would in general be 

expected to show less variable student progress than schools with lower mean student prior 

achievement. However, following the arguments underpinning the traditional value-added 

model, this would be viewed as a reflection of their school intake rather than the influence of 

their school policies and practices. By entering student prior achievement into the model for 

the variance, we adjust for this overall variance trend. Focus then shifts to how schools 
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deviate from this overall trend. We can calculate school intake adjusted estimates of the 

school variance in student progress as 𝜎𝑒,𝑗
2 = exp(𝐰̿..

′𝛂 + 𝑣𝑗) where 𝐰̿.. denotes the overall 

average value for 𝐰𝑖𝑗  across all students and schools (or any other desired value common to 

all schools). 

 

4.2 Random-slope model with random residual variance function 

We can also extend the differential effects version of the model (Equation 2) to include a 

random residual variance function (Equation 3), in which case 𝐮𝑗 and 𝑣𝑗 are assumed 

multivariate normal distributed. School mean student progress (averaging over all students) is 

then given by 𝐳̅.𝑗
′ 𝐮𝑗 as it was in the constant residual variance case and so we will again need 

to evaluate this at a common value of 𝐳̅.𝑗 for all schools. The variance in student progress in 

each school (over all students) is now given by 𝒖𝑗 Var𝑗(𝐳𝑖𝑗)𝒖𝑗
′ + E𝑗 (𝜎𝑒𝑖𝑗

2 ). Crucially, the 

second component of this expression is now also free to vary across schools (Equation 3). 

 

5. Data, models and software 

5.1 Data 

We focus on schools in London whose Progress 8 scores (i.e., school mean progress scores) 

were published in the Government’s 2019 secondary school performance tables. The data are 

drawn from the National Pupil Database (DfE, 2021a) and consist of 71,321 students in 465 

schools (mean = 153 students per school, range = 14 to 330). To make our analyses 

accessible to a broad audience we standardise student age 16 and age 11 scores to have means 

of 0 and SDs of 1 so that the measures can be interpreted in SD units. Histograms show the 

age 16 and age 11 scores are approximately normally distributed (Figure S1 and S2 in the 

supplemental information) while a scatterplot shows the scores are approximately linearly 
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related with a strong Pearson correlation of 0.72 (Figure S3 in the supplemental information). 

There are very slight floor and ceiling effects in age 16 scores. 

 

5.2 Models 

We fit a series of increasingly complex models. Model 1 is the traditional random-intercept 

model which only adjusts for student prior achievement and assumes the residual variance 

and therefore variance in student progress is the same in every school (Section 3.1). Model 2 

is the new version of this model which allows this variance to vary randomly across schools 

(Section 4.1). Model 3 adjusts these school variances for any London-wide relationship 

between the variance and student prior achievement to better isolate the effects of schools’ 

policies and practices. Model 4 adds a random slope on student prior achievement to the 

mean function to explore the role of school by prior achievement interactions in inducing 

variation in the variances of student progress across schools (Sections 3.2 and 4.2). Model 5 

adds student sociodemographic characteristics to both the mean and residual variance 

functions to better measure student progress (remove factors beyond the control of schools) 

and therefore the school means and variances of student progress (we remove the random 

slope on prior achievement for simplicity and because it does not prove substantively 

important in our application). Model 6 adds in school characteristics to attempt to explain 

school differences in the school means and variances of student progress. 

 

5.3 Software 

The traditional school value-added models reviewed in Section 3 are typically fitted via 

maximum likelihood estimation using conventional multilevel modelling routines in standard 

software (R, SAS, SPSS, Stata). However, the extended versions of these models proposed in 

Section 4 cannot be fitted using these routines, nor can then be fitted in specialised multilevel 
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modelling packages (HLM, MLwiN). Hedeker and colleagues have developed the 

MIXWILD software to fit these models by maximum likelihood estimation (Dzubur et al., 

2020) but this proves computationally challenging on larger datasets with many random 

effects. In contrast, these models can be fitted relatively easily via Markov Chain Monte 

Carlo (MCMC) methods as implemented in Stata, R (Parker et al., 2021), and Mplus 

(McNeish, 2020), as well as dedicated Bayesian software such as Stan, WinBUGS, 

OpenBUGS, and JAGS.  

We fit all models using the bayesmh command in Stata (StataCorp, 2021) which 

implements an adaptive Metropolis-Hastings MCMC algorithm. We use hierarchical centring 

reparametrisations to improve mixing. We specify vague (diffuse) normal priors for all 

regression coefficients and minimally informative inverse Wishart prior for the random 

effects variance-covariance matrices. We specify overdispersed initial values for all 

parameters. We fit all models with four chains each with 5,000 burnin iterations and 10,000 

monitoring iterations. We judge convergence using Gelman-Rubin convergence diagnostics 

(Gelman and Rubin, 1992) and trace, autocorrelation, and scatter plots. All models converged 

and all parameters had effective sample sizes > 400. We compare model fit using the 

deviance information criterion (DIC) (Spiegelhalter et al., 2002). Smaller values are 

preferred. To support readers wishing to implement these models, we present annotated R 

and Stata syntax and simulated data in the supplemental information. 

 

6. Results 

6.1 Model 1 = Traditional random-intercept school value-added model 

Model 1 regresses student age 16 score 𝑦𝑖𝑗 on student age 11 score 𝑥𝑖𝑗. The model is written 

as 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗, where 𝑢𝑗~𝑁(0, 𝜎𝑢
2) and 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒

2). This model allows 

mean student progress to vary across schools 𝑢𝑗, but assumes the variance in student progress 
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to be the same in every school 𝜎𝑒
2. For the purpose of comparing to subsequent models, we 

parameterise 𝜎𝑒
2 as exp(𝛼0). Plots confirm that the normality assumptions for 𝑢𝑗 and 𝑒𝑖𝑗 are 

reasonable (Figure S4 in the supplemental information). 

Table 1 presents the results. The slope coefficient on student age 11 score 𝛽1 is 

estimated as 0.678, and so a 1 SD difference in age 11 score is associated with a 0.678 SD 

difference in age 16 score. The total variance in student progress 𝜎𝑢
2 + 𝜎𝑒

2 is estimated to be 

0.487 (and so student age 11 scores accounts for 51% of the variation in student age 16 scores 

(= 100{1 − (𝜎𝑢
2 + 𝜎𝑒

2)}). The between-school variance in school mean progress 𝜎𝑢
2 is 

estimated as 0.067 and so 14% of the total variation in student progress (= 100 𝜎𝑢
2 (𝜎𝑢

2 + 𝜎𝑒
2)⁄ ) 

is variation in the schools means. The between-school variance implies an interdecile range 

(IDR) for the school means of student progress of (−0.34, 0.32) = 𝛽0 ± Φ−1(0.90)√𝜎𝑢
2, and 

so students in the most effective schools (operating at the 90th percentile of the distribution of 

all schools) are predicted to make 0.66 SD more progress (score 0.66 SD higher at age 16 than 

other students with the same age 11 score) than students in the least effective schools (operating 

at the 10th percentile). In contrast, the student residual variance 𝜎𝑒
2 = exp(𝛼0), estimated as 

0.419, is assumed constant, naively implying the variance in student progress is the same in 

every school.  

 

6.2 Model 2 = Model 1 + random residual variance 

Model 2 extends Model 1 by allowing the variance in student progress to vary across schools. 

Specifically, we model the student residual variance as ln(𝜎𝑒,𝑗
2 ) = 𝛼0 + 𝑣𝑗 where 

𝑣𝑗~𝑁(0,𝜎𝑣
2) and where we allow 𝑢𝑗 and 𝑣𝑗 to correlate. Thus, this model allows both mean 

student progress 𝑢𝑗 and the variance in student progress 𝜎𝑒,𝑗
2  to vary across schools. 

Model 2 shows a reduction in the DIC of 972 points confirming that the variance in 

student progress varies significantly across schools. Plots confirm that the normality 
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assumptions for 𝑢𝑗, 𝑣𝑗 and 𝑒𝑖𝑗 are reasonable (Figure S5 in the supplemental information). The 

mean function parameter estimates are largely unchanged. The residual variance function 

intercept 𝛼0 and variance of the new school random effect 𝜎𝑣
2 are estimated as -0.881 and 0.037. 

The population-averaged school variance in student progress is estimated to be 0.422 =

exp(𝛼0 + 𝜎𝑣
2

2
 ), which, as expected, is close to the Model 1 estimate of 0.419. The population 

IDR of school variances of student progress is estimated to be (0.32, 053) = exp{𝛼0 ±

Φ−1(0.90)√𝜎𝑣
2}. This range is substantial. For example, the difference in age 16 scores 

between otherwise equal students performing at the 90th and 10th percentile of student progress 

within the most variable schools 𝜎𝑒,𝑗
2 = 0.53 is 1.87 SD while in the least variable schools 

𝜎𝑒,𝑗
2 = 0.32 it is 1.46 SD.  

Figure 1 plots the predicted school means of student progress 𝑢𝑗 (y-axis) against the 

predicted school variances 𝜎𝑒,𝑗
2 = exp(𝛼0 + 𝑣𝑗) (x-axis). The means and variances are 

posterior mean predictions and so have been shrunk towards their population average values 

as a function of their sample size. The London average values are illustrated by the horizontal 

and vertical reference lines. Marker size is drawn proportional to school size. The plot 

visualizes the substantial variation in both school means and variances of student progress 

described above. The figure also shows a negative association between the school means and 

variances 𝑟 = −0.54. Thus, schools which are traditionally viewed as more effective by virtue 

of showing higher mean student progress would tend now to be viewed as doubly effective in 

that their students not only make high progress but do so consistently across their student 

intakes (i.e., schools in the top-left quadrant). 

Figure 2 presents ‘caterpillar plots’ of the 465 predicted school means (left panel) and 

school variances (right panel). Such plots are routinely used by researchers and accountability 

systems to identify schools that are significant different from average. The distribution of the 
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school variances is positively skewed, consistent with being modeled as log-normally 

distributed. Schools with fewer students have wider 95% credible intervals than schools with 

more students. Only 117 out of 465 schools (25%) can be statistically separated from the 

overall average in terms of their school variances compared to 320 out of 465 schools (69%) 

when we consider the school means. 

 

6.3 Model 3 = Model 2 + student prior achievement adjustment to random residual 

variance 

Model 3 extends Model 2 by adding student age 11 scores to the residual variance function to 

adjust for any London-wide relationship between prior attainment and the variance in student 

progress to better isolate the effects of school policies and practices on the variance in student 

achievement. The variance function becomes ln(𝜎𝑒,𝑖𝑗
2 ) = 𝛼0 + 𝛼1𝑥1𝑖𝑗 + 𝑣𝑗. 

Model 3 is preferred to Model 2 (ΔDIC = 34) showing the residual variance 

significantly increases with student age 11 scores. However this relationship is very weak. The 

population IDR of school intake adjusted variances of student progress is effectively the same 

as in the previous model where we did not adjust for school intake, (0.32,0.53) =

exp{𝛼0 + 𝛼1𝑥̿1.. ± Φ−1(0.90)√𝜎𝑣
2} where 𝑥̿1.. = 0 denotes the London-wide average 

covariate value for 𝑥1𝑖𝑗. 

 

6.4 Model 4 = Model 3 + random slope on student prior achievement 

Model 4 is a random-slope version of Model 3 where we add a random slope on age 11 score. 

The model is written as 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖𝑗 + 𝑢0𝑗 + 𝑢1𝑗𝑥1𝑖𝑗 + 𝑒𝑖𝑗, where 𝑢0𝑗~𝑁(0,𝜎𝑢0
2 ), 

𝑢1𝑗~𝑁(0, 𝜎𝑢1
2 ) and where 𝑢0𝑗, 𝑢1𝑗 and the random residual variance effect 𝑣𝑗 are allowed to 

correlate. Postestimation, plots confirm that the normality assumptions for 𝑢0𝑗, 𝑢1𝑗 , 𝑣𝑗 and 𝑒𝑖𝑗 

are reasonable (Figure S6 in the supplemental information). 
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Model 4 is preferred to Model 3 (ΔDIC = 301) confirming the age 11 slope varies 

significantly across schools. The mean and variance of the age 11 slope across schools 𝛽1 and 

𝜎𝑢1
2  are estimated to be 0.672 and 0.004. The latter implies an IDR of school slopes of 

(0.59,0.75) = 𝛽1 ± Φ−1(0.90)√𝜎𝑢1
2 . Figure 3 visualises this variation for the sample 

schools by plotting the predicted school lines based on the previous random-intercept model 

(left panel) and the current random-slope model (right panel). The plots appear very similar 

suggesting the variance in student progress in each school attributable to the interactions 

between the school and student prior achievement 𝑢1𝑗𝑥1𝑖𝑗 while statistically significant is 

substantively modest. 

We calculate the variance in student progress for each school in our sample for a 

common reference distribution of students with a common mean 𝑥̿1.. = 0.00 (the mean of the 

school means of student prior achievement) and variance 𝜎𝑥1..

2 = 0.83 (the mean of the school 

variances of student prior achievement) of student age 11 scores. The resulting expression is 

𝑢1𝑗
2 𝜎𝑥1..

2 + 𝜎𝑒,𝑗
2  where 𝜎𝑒,𝑗

2 = exp(𝛼0 + 𝛼1𝑥̿1.. + 𝑣𝑗). The first component 𝑢1𝑗
2 𝜎𝑥1..

2  gives the 

variance attributable to the interactions. The IDR in the sample ranges from just 0.00005 to 

0.0045. The second component 𝜎𝑒,𝑗
2  captures all remaining variance. The IDR in the sample 

ranges from 0.33 to 0.51. In sum, the inclusion of the random slope on prior achievement has 

done very little to explain the variance in student progress in each school. For this reason and 

to illustrate the subsequent models as simply as possible, we remove the random slope. 

 

6.5 Model 5 = Model 3 + student sociodemographic characteristics 

Model 5 extends Model 3 by adding student age (summer born or not), gender, ethnicity 

(white, black, Asian, Chinese, mixed, other), first language (English or not), special 

educational needs (SEN) status, and free school meal (FSM) status into the mean and residual 

variance functions. Table S1 in the supplemental information presents definitions and 
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summary statistics. Adding these characteristics to the mean function implies students are 

now compared to other students across London who not only share the same age 11 score, but 

who also share the same sociodemographic characteristics. The aim is to ensure that schools 

do not appear more or less effective simply as a result of recruiting more or less educationally 

advantaged students (Leckie and Goldstein, 2019). The resulting improvement in predicted 

age 16 scores will lead the student progress scores to in general reduce in absolute magnitude 

(and reorder) leading the overall variance in student progress to decrease. In turn, the school 

means and variances of student progress scores will also change, again in general reducing in 

magnitude and reordering. We then further adjust the school variances of student progress via 

including the student characteristics in the student residual variance function. This ensures 

that if there are any London-wide relationships between the variance in student progress and 

particular student characteristics this again will not benefit or count against schools with 

disproportionate numbers of these students. 

Table 2 presents the results. Model 5 is preferred to Model 3 (ΔDIC = 7247) 

confirming the statistical importance of the student characteristics. First consider the mean 

function. The results show that summer born students, girls, all ethnic minority groups except 

Mixed ethnicity students (relative to White), and students who speak English as a second 

language, are all predicted to score higher at age 16, than otherwise equivalent students. SEN 

and FSM students, in contrast, are predicted to score lower than otherwise equivalent 

students. These results are established and consistent with the literature (Leckie and 

Goldstein, 2019). What is not known is whether there are also sociodemographic differences 

in the variance in student progress. The results show that, all else equal, the residual variance 

and therefore variance in student progress now increases with age 11 scores and is also higher 

for SEN and FSM students than for otherwise equal students. Thus, it proves harder to predict 

reliably the age 16 scores of these student groups relative to other student groups. In contrast, 
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summer born students, girls, Black and Asian students show lower variance in student 

progress and therefore appear to perform in a more consistent fashion than otherwise equal 

student groups within schools. 

Figure 4 presents scatterplots of the school means and variances of student progress 

based on the current model which adjusts for student background against those based on 

Model 3 which ignores student background. We calculate the school variances in each model 

by plugging in the sample mean values for the covariates 𝐰̅..  into 𝜎𝑒,𝑗
2 = exp(𝐰̅..

′𝛂 + 𝑣𝑗). The 

plots show both the school means and the school variances are correlated 0.94 across the two 

models. Thus, schools which show high mean progress when one ignores student background 

nearly always still show high mean progress after adjustment. The same applies for school 

variances of student progress. However, even with such high correlations, the rank ordering 

of those schools whose social mix differ most markedly from the London-wide average still 

change considerably as shown by schools located furthest away from the 45-degree line in the 

bottom plots. 

 

6.6 Model 6 = Model 5 + school characteristics 

We now shift from attempting to best define and measure student progress, and therefore the 

school means and variances of student progress, to attempting to explain why some schools 

show higher mean student progress and lower variance in student progress than others. 

Unfortunately, we do not observe school policies and practices in our data. However, we do 

observe school characteristics. We add school type (standard, converter academy, sponsored 

academy, other), school admissions (comprehensive, grammar, secondary modern), school 

gender (mixed, boys, girls), and school religion (none, religious) to the mean and residual 

variance functions. Table S2 in the supplemental information presents definitions and 

summary statistics. 
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 The results for the existing mean and residual variance function regression 

coefficients are very similar to before and so we restrict our interpretation here to the new 

results. First, consider the mean function. Relative to standard school types, school mean 

progress is in somewhat higher in sponsored and converter academies having adjusted for the 

other covariates. Similarly, school mean progress is higher in girls schools and religious 

schools, all else equal. However, the most sizeable differential related to school admissions: 

school mean progress is considerably higher in grammar schools and  lower in secondary 

modern schools relative to comprehensive schools. These results agree with the literature 

(Leckie and Goldstein, 2019). With respect to the residual variance function, we see new 

findings. School variances in student progress tend to be lower in converter academies 

compared to standard school types, lower in grammar schools versus comprehensive school 

types, and lower in religious schools versus non-religious schools, and this is after adjusting 

for London wide relationships between the variance in student progress and student 

characteristics. Thus, students in converter academies, grammar, and religious schools not 

only tend to show higher student progress on average, but also tend to show more consistent 

student progress. 

 

7. Discussion 

In this article, we have argued that the focus of school value-added models should broaden to 

measure not just school mean differences in student progress (student achievement beyond 

that predicted by student prior achievement and other student background characteristics), but 

school variance differences in student progress. We have suggested that schools which show 

lower variance in student progress might, all else equal, be viewed more positively as their 

lower variances might arguably signal greater control of their students’ performances. Put 

differently, such schools appear to enable students to progress at similar rates and so limit the 
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extent to which their learning might otherwise be overpowered by external idiosyncratic 

influences. To study school variance differences in student progress, we have proposed 

extending the traditional school value-added model – a random-intercept linear regression of 

current achievement on prior achievement and other student background characteristics – to 

model the residual variance as a log-linear function of the student covariates and a new 

random school effect. The school random intercept effect and random residual variance in 

this model measure the school mean and variance in student progress. This model can be 

viewed as an application of the mixed-effects location scale model popular in biostatics 

(Hedeker et al., 2008).  

We have illustrated our new school value-added model with an application to schools 

in London. Our results suggest meaningful differences in the variance in student progress 

across schools. We also find a moderate to large negative association between the school 

mean and variance in student progress. Thus, schools which show the highest mean student 

progress also tend to be the schools which show the lowest variance in student progress. 

These schools might therefore be viewed as doubly effective. One process by which school 

variance differences may arise is if there is a London-wide negative relationship between the 

variance in student progress and student prior achievement. We adjusted for this by entering 

student prior achievement into the residual variance function. A second  process by which 

school variance differences may arise is via interaction effects between the different school 

policies and practices envisaged to be represented by the school random intercept effect and 

observed and unobserved student characteristics. Previous research has studied this via 

entering a school random slope on student prior achievement and this showed schools to be 

differentially effective for students with low, middle, and high prior achievement. In our 

application, however, these school-by-student prior achievement interactions are small and 

explain little of the variation in school variances between schools. We then turned our 
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attention to entering student characteristics into the model, both in the mean and residual 

variance functions, to better measure student progress. In terms of new results, we find that 

FSM and SEN students show greater variance in student progress and therefore less 

predictable age 16 scores than otherwise equal students. The resulting predicted school means 

and variances of student progress, however, are similar to those based on the model which 

only adjusts for student prior achievement. Nevertheless, schools whose sociodemographic 

student mix differ most from the average school still move up and down the London-wide 

rankings considerably, demonstrating the importance of adjusting for student background at 

least for some schools (Leckie and Goldstein, 2019). Finally, we shifted our emphasis from 

measuring school means and variances of student progress to seeking to explain them. We 

find converter academies and grammar schools tend to show lower variances in student 

progress than other school types. That is, students in these schools progress at more similar 

rates versus students in other schools. Importantly, here too we adjusted for any overall 

relationship between the variance in student progress and student prior achievement and 

background characteristics and so these differences in school variances lie beyond this simple 

explanation. Future work might seek to identify whether school variance differences in 

general as well as those relating to these two school types can be predicted by specific school 

policies and practices. 

Expanding the focus of school value-added models to consider schools effects on the 

variance in student achievement raises interpretational challenges that future work will need 

to deal with. In particular, while we have interpreted lower school variances in student 

progress positively, we acknowledge that this is not necessarily so clear cut. For example, 

where two schools show the same mean student progress, the school with the smaller 

variance will not only have fewer students making unacceptably low progress (a positive), 

but also fewer students making exceptionally high progress (a negative). It is not immediately 
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clear which school would therefore be viewed more positively. Similarly, where one school 

has a higher variance as well as a higher mean student progress versus a second school, 

would the first school still be viewed as more effective, especially if its higher variance is 

such that the first school substantially increases the number of students actually scoring lower 

than they would have had they attended the second school?  More generally, faced now with 

two summaries of school effects on student learning (mean and variance effects), researchers 

and school accountability systems must make value judgements as to how to best combine 

them into any overall summary of school effectiveness for the purpose of making overall 

inferences, judgements and decisions about schools (Prior et al., 2021a). Crucially, it is only 

by extending the school value-added model to allow for school effects on the variance in 

student achievement that such debates are made possible. The extension we have presented 

paves the way for new substantive research into the reasons behind differences in variability 

and therefore how best differences should be interpreted. 

The new school value-added model presented here can also be extended in various 

ways beyond simply adding further covariates and random slopes suggesting avenues for new 

methodological research. First, in the school effectiveness literature, there is interest in 

studying the consistency of school effects across academic subjects (Goldstein, 1997; 

Reynolds et al., 2014; Teddlie and Reynolds, 2000; Townsend, 2007). We can extend our 

new school value-added model to study this phenomenon with respect to the school variance 

in student progress. Essentially, we would fit a multivariate response version of our model for 

multiple student achievement scores (Leckie, 2018). The model would have multiple residual 

variance functions, one for each academic subject. We can then study the correlations of the 

school means and variances of student progress across subjects. Second, the same 

multivariate response version of the model can be used to study the stability of school effects 

over time. Here we would fit a multivariate response model to a single achievement score, 
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but for multiple student cohorts (Leckie and Goldstein, 2009). Third, we could include a 

random slope in the residual variance function (Goldstein et al., 2018) to study whether 

schools exacerbate or mitigate any overall relationship between the variance in student 

progress and student prior achievement. Fourth, while we have flexibly modelled the residual 

variance, we have not modelled the random intercept variance (the random slope model 

relaxed this, but in a rather specific way). It is also possible to model the random intercept 

variance as a log-linear function of school covariates (Hedeker et al, 2008). For example, the 

variability of school mean progress scores across schools may appear greater for some school 

groups than others and this could then be tested by introducing the school group variable as a 

covariate in this second variance function. Fifth, we can expand the model to three levels to 

incorporate an additional random effect into the mean and residual variance functions relating 

to, for example, school district and thereby study school district differences in the mean and 

variance in student progress. This then raises the possibility of entering school district 

random effects into the school random intercept variance function since school mean progress 

might vary more in some school districts than in others and so with this extension we can 

potentially study differential school level inequalities in the education system by school 

district (Leckie and Goldstein, 2015). Alternatively, teacher random effects could be 

introduced as a new level between the student and school level. Finally, our focus has been 

on shifting attention from studying school mean of student progress to additionally focussing 

on the variance in student progress. In future work it would be interesting to explore further 

ways the distribution of student progress might vary across schools, for example, with respect 

to skewness. 
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Tables 

Table 1. 

Results for traditional and new school value-added models adjusting only for student prior achievement. 

  Model 1 

Traditional school 

value-added model 

Model 2 

Model 1 + random 

residual variance 

Model 3 

Model 2 + student 

prior achievement 

adjustment to random 

residual variance 

Model 4 

Model 3 + random 

slope on student prior 

achievement 

  Est. SE Est. SE Est. SE Est. SE 

  Mean function 

𝛽0 Intercept -0.011 0.012 -0.011 0.013 -0.011 0.012 -0.015 0.013 

𝛽1 Age 11 score 0.678 0.003 0.679 0.003 0.679 0.003 0.672 0.004 

𝜎𝑢0
2  School intercept effect variance 0.067 0.005 0.067 0.005 0.067 0.005 0.069 0.005 

𝜎𝑢1
2  School slope effect variance       0.004 0.000 

𝜌𝑢0𝑢1  Intercept slope effects correlation       0.229 0.067 

  Residual variance function 
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𝛼0 Intercept -0.870 0.005 -0.881 0.010 -0.881 0.011 -0.889 0.011 

𝛼1 Age 11 score     0.029 0.006 0.036 0.006 

𝜎𝑣
2 School intercept effect variance   0.037 0.003 0.040 0.004 0.040 0.004 

  Association between mean and variance function random effects 

𝜌𝑢0𝑣  Intercept residual effects correlation   -0.472 0.048 -0.484 0.047 -0.494 0.047 

𝜌𝑢1𝑣  Slope residual effects correlation       -0.111 0.076 

  Fit statistics 

 Deviance information criterion (DIC) 140803 139831 139796 139495 

Note. 

Est. and SE denote the posterior means and SDs of the parameter chains. 
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Table 2. 

Results for new school value-added models adjusting for student prior achievement, 

sociodemographic characteristics, and school characteristics. 

  Model 5 

Model 3 + student 

sociodemographic 

characteristics 

Model 6 

Model 5 + school 

characteristics 

  Est. SE Est. SE 

  Mean function 

𝛽0 Intercept -0.129 0.012 -0.235 0.017 

𝛽1 Age 11 score 0.634 0.003 0.632 0.003 

𝛽2 Summer born 0.045 0.005 0.044 0.005 

𝛽3 Girl 0.219 0.005 0.218 0.005 

𝛽4 Ethnicity: Black 0.015 0.006 0.014 0.007 

𝛽5 Ethnicity: Asian 0.152 0.008 0.150 0.008 

𝛽6 Ethnicity: Chinese 0.296 0.028 0.290 0.028 

𝛽7 Ethnicity: Mixed 0.001 0.009 0.000 0.009 

𝛽8 Ethnicity: Other 0.089 0.010 0.088 0.009 

𝛽9 First language not English 0.162 0.006 0.162 0.006 

𝛽10 Special educational needs (SEN) -0.276 0.008 -0.276 0.008 

𝛽11 Free school meal (FSM) -0.193 0.005 -0.192 0.005 

𝛽12 School type: Sponsored academy   0.055 0.025 

𝛽13 School type: Converter academy   0.082 0.020 

𝛽14 School type: Other   0.023 0.038 
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𝛽15 School admissions: Grammar   0.396 0.049 

𝛽16 School admissions: Secondary modern   -0.118 0.045 

𝛽17 School gender: Boys   0.053 0.032 

𝛽18 School gender: Girls   0.064 0.027 

𝛽19 School religious   0.139 0.022 

𝜎𝑢0
2  School intercept effect variance 0.050 0.004 0.037 0.003 

  Residual variance function 

𝛼0 Intercept -0.948 0.015 -0.889 0.024 

𝛼1 Age 11 score 0.077 0.006 0.081 0.006 

𝛼2 Summer born -0.044 0.012 -0.045 0.012 

𝛼3 Girl -0.059 0.012 -0.061 0.012 

𝛼4 Ethnicity: Black -0.154 0.016 -0.156 0.016 

𝛼5 Ethnicity: Asian -0.105 0.018 -0.106 0.018 

𝛼6 Ethnicity: Chinese -0.088 0.072 -0.080 0.069 

𝛼7 Ethnicity: Mixed -0.028 0.022 -0.035 0.021 

𝛼8 Ethnicity: Other -0.014 0.020 -0.015 0.021 

𝛼9 First language not English -0.002 0.013 -0.005 0.013 

𝛼10 Special educational needs (SEN) 0.204 0.016 0.203 0.016 

𝛼11 Free school meal (FSM) 0.103 0.012 0.099 0.012 

𝛼12 School type: Sponsored academy   0.011 0.028 

𝛼13 School type: Converter academy   -0.048 0.023 

𝛼14 School type: Other   0.053 0.042 

𝛼15 School admissions: Grammar   -0.280 0.052 

𝛼16 School admissions: Secondary modern   -0.068 0.044 
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𝛼17 School gender: Boys   0.002 0.034 

𝛼18 School gender: Girls   0.015 0.029 

𝛼19 School religious   -0.110 0.023 

𝜎𝑣
2 School intercept effect variance 0.032 0.003 0.026 0.003 

  Association between mean and variance 

function random effects 

𝜌𝑢0𝑣  Intercept residual effects correlation -0.409 0.050 -0.282 0.057 

  Fit statistics 

 Deviance information criterion (DIC) 132549 132539 

 

Note. 

Est. and SE denote the posterior means and SDs of the parameter chains. 

Student ethnicity reference group is White. 

School type reference group is standard. 

School admissions reference group is comprehensive. 

School gender reference group is mixed-sex school. 

Tables S1 and S2 present definitions and summary statistics of all student and school 

characteristics. 
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Figures 

 

Figure 1. 

Model 2 scatterplot of school means of student progress scores against school variances of 

student progress scores. The London average values are shown by horizontal and vertical 

reference lines. Marker size is proportional to school size. 

  



 

39 

Figure 2. 

Model 2 caterpillar plots for school means (left) and school variances right) of student 

progress presented in rank order. Posterior means with 95% credible intervals. 
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Figure 3. 

Model 3 and 4 school regression lines of predicted age 16 scores against age 11 scores for 

random-intercept model (left) and random-slope model (right). 
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Figure 4. 

Model 5 against Model 3 scatterplots of school means of student progress (top left), school 

variances of student progress (top right), ranks of school means of student progress 9bottom 

left), and ranks of school variances of student progress (bottom right). 
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Supplemental information 

S1. Supplemental tables 

Table S1. 

Summary statistics for the student characteristics (𝑛 = 71,321). 

 n % 

Age   

  Not summer born 52,957 74.3 

  Summer born 18,364 25.8 

Gender   

  Boy 35,338 49.6 

  Girl 35,983 40.5 

Ethnicity   

  White 28,070 39.4 

  Black 15,633 21.9 

  Asian 14,987 21.0 

  Chinese 447 0.6 

  Mixed 5,795 8.1 

  Other 6,389 9.0 

Language   

  English 42,789 60.0 

  Not English 28,532 40.0 

Special educational needs (SEN)   

  Not SEN 61,189 85.8 

  SEN 10,132 14.2 

Free school meal (FSM   



 

43 

  Not FSM 46,500 65.2 

  FSM 24,821 34.8 

 

Note. 

Summer born is defined as those born in June, July, or August. 

FSM is defined as eligibility for Free School Meals (FSM) in any of the previous six years. 
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Table S2. 

Summary statistics for the school characteristics (𝑛 = 465). 

 n % 

Type   

  Standard 151 32.5 

  Sponsored academy 93 20.0 

  Converter academy 184 39.6 

  Other 37 8.0 

Admissions   

  Comprehensive 425 91.4 

  Grammar 19 4.1 

  Secondary modern 21 4.5 

School gender   

  Mixed 340 73.1 

  Boys 50 10.8 

  Girls 75 16.1 

Religious   

  No 349 75.1 

  Yes 116 25.0 

 

Note. 

A range of school types operate in London and we have categorised these into four groups. 

Standard school type encompasses community, foundation, voluntary aided, voluntary 

controlled, and city technology colleges. In contrast to standard school types, academies 

receive their funding directly from the government rather than through local authorities 
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(school districts). There are two types of academies. Sponsored academies are mostly 

underperforming schools which have been changed to academy status and run by sponsors. 

Converter academies are schools deemed to be performing well that have converted to 

academy status. Other school type encompasses free, studio, university technology colleges 

(UTCS), and further education colleges. These are more technically or vocationally oriented 

schools. 

 A minority of local authorities in London operates selective admissions. In these local 

authorities grammar school select students based on high performance in entrance 

examinations and so by definition have high mean age 11 scores and tend also to be 

educationally advantaged and homogenous in terms of student sociodemographic 

characteristics. Secondary modern schools take those students not admitted to grammar 

schools. 
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S2. Supplemental figures 

 

Figure S1. 

Histogram of student age 16 scores. 
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Figure S2. 

Histogram of student age 11 scores. 
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Figure S3. 

Scatterplot of student age 16 scores against age 11 scores. 
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Figure S4. 

Model 1 histograms of predicted school random intercept effects (top left) and student 

residuals (bottom right), each with superimposed normal curves (solid) and kernel density 

curves (dashed). 
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Figure S5. 

Model 2 histograms of predicted school random intercept effects (top left), school random 

residual variance effects (bottom left), and student residuals (bottom right), each with 

superimposed normal curves (solid) and kernel density curves (dashed). 
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Figure S6. 

Model 4 histograms of predicted school random intercept effects (top left), school random 

slope effects (top right), school residual variance effects (bottom left), and student residuals 

(bottom right), each with superimposed normal curves (solid) and kernel density curves 

(dashed). 

  



 

52 

S3. Stata and R software syntax and simulated data for fitting the models 

In this section, we describe Stata and R syntax to fit the models explored in this article. To 

support readers, we provide script files and data to replicate the presented analysis. 

 

Example model 

For simplicity, we focus on the two-level random-intercept model with a random residual 

variance function presented in Sections 3.1 and 4.1. To illustrate the syntax as simply as 

possible, we consider a version of this model with only one student characteristic (student 

prior achievement). This model can be written as 

 

 𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝑢𝑗 + 𝑒𝑖𝑗 (S1) 

ln(𝜎𝑒,𝑖𝑗
2 ) = 𝛼0 + 𝛼1𝑥𝑖𝑗 + 𝑣𝑗 

(
𝑢𝑗

𝑣𝑗
) ~𝑁 {(

0
0

) , (
𝜎𝑢

2

𝜎𝑢𝑣 𝜎𝑣
2
)} 

 

This model is the same as Model 3 presented in the article. Model 1 presented in the article 

can be viewed as a constrained version of this model (where the residual variance is assumed 

constant across all students and schools). Models 2, 5, and 6 vary in the covariates included 

in both the mean and residual variance functions. Model 4 is a random-slope version of this 

model (where a random slope is added to prior attainment). 

 

Simulated data 

As we cannot share the data analysed in the article, we analyse here simulated data where we 

use the above model as the data generating model. We simulate a single dataset with 100 

schools and 25 students per school We simulate 𝑥𝑖𝑗 as standard normal variate with intraclass 
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correlation of 0.2. We specify the true parameter values as 𝛽0 = 0, 𝛽1 = 0.7, 𝜎𝑢
2 = 0.05, 

𝛼0 = −0.8, 𝛼1 = 0.05, 𝜎𝑣
2 = 0.05, 𝜎𝑢𝑣 = 0.025. The resulting data can be found in data.dta. 

 

Stata: The bayesmh command 

We focus on the bayesmh Stata command (StataCorp, 2021). The bayesmh command 

implements an adaptive Metropolis-Hastings MCMC algorithm. We present the simplest 

possible syntax noting that mixing can be improved via model reparameterization (e.g., 

hierarchical centring) and by specifying various estimation options (initial values, blocking) 

and we encourage readers to consult the documentation for further details. The syntax is as 

follows. 

 

. bayesmh y x U[school], /// 

    likelihood(normal(exp({lnsigma2e:x,xb} + {V[school]}))) /// 

    prior({y:}, normal(0, 10000)) /// 

    prior({lnsigma2e:}, normal(0, 10000)) /// 

    prior({U} {V}, mvnormal(2, 0, 0, {SIGMAUV, matrix})) /// 

    prior({SIGMAUV, matrix}, iwishart(2, 3, S)) 

 

Line 1 of the syntax specifies the mean function. Line 2 specifies the normal response 

distribution and the residual variance function. The intercept is included in both functions by 

default. Lines 3 and 4 specify diffuse normal priors for the regression coefficients in each 

function with means of 0 and variances of 10000. Line 5 specifies the random effects to be 

bivariate normally distributed with zero means and a constant covariance matrix. Line 6 

specifies a minimally informative inverse Wishart distribution for this covariance matrix 

(where S is pre-specified matrix such as an identity matrix). 
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The associated model output is as follows 

 

Burn-in 2500 aaaaaaaaa1000aaaaaaaaa2000aaaaa done 

Simulation 10000 

.........1000.........2000.........3000.........4000.........5000.........6000.....

. 

> ...7000.........8000.........9000.........10000 done 

 

Model summary 

------------------------------------------------------------------------------ 

Likelihood:  

  y ~ normal(xb_y,exp({lnsigma2e:x,xb} + {V[school]})) 

 

Prior:  

  {y:x _cons} ~ normal(0,10000)                                            (1) 

 

Hyperpriors:  

    {lnsigma2e:x _cons} ~ normal(0,10000) 

  {U[school] V[school]} ~ mvnormal(2,0,0,{SIGMAUV,m}) 

            {SIGMAUV,m} ~ iwishart(2,3,S) 

------------------------------------------------------------------------------ 

(1) Parameters are elements of the linear form xb_y. 

 

Bayesian normal regression                       MCMC iterations  =     12,500 

Random-walk Metropolis–Hastings sampling         Burn-in          =      2,500 

                                                 MCMC sample size =     10,000 

                                                 Number of obs    =      2,500 

                                                 Acceptance rate  =       .196 

                                                 Efficiency:  min =    .002048 

                                                              avg =     .01894 

Log marginal-likelihood                                       max =     .04904 

  

------------------------------------------------------------------------------ 

             |                                                Equal-tailed 

             |      Mean   Std. dev.     MCSE     Median  [95% cred. interval] 

-------------+---------------------------------------------------------------- 

y            | 

           x |  .7005516   .0142504   .000858   .7005228   .6731723   .7301972 

       _cons | -.0282751   .0220327   .001753  -.0289124  -.0706135   .0183987 

-------------+---------------------------------------------------------------- 

lnsigma2e    | 

           x |  .0520455   .0299735   .001694   .0520977  -.0059208   .1090707 

       _cons | -.7796784   .0347738    .00157  -.7794015  -.8489381  -.7097778 

-------------+---------------------------------------------------------------- 

 SIGMAUV_1_1 |  .0340151   .0068176   .001046   .0338658   .0200429   .0490111 

 SIGMAUV_2_1 |  .0137237   .0077867   .001553   .0138888  -.0011668   .0284148 

 SIGMAUV_2_2 |  .0431452   .0209756   .004636   .0395217   .0092352   .0902076 

------------------------------------------------------------------------------ 

Note: There is a high autocorrelation after 500 lags. 

Note: Adaptation tolerance is not met in at least one of the blocks.  

 

The command ran one chain with 2500 burn-in iterations and 10000 monitoring iterations. 

The reader should note the warning messages at the end of the output. As noted above, 

mixing can be improved via model reparameterization and by specifying various estimation 

options. The results presented in tabular form are as follows 
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 Est. SE 

𝛽0 -0.028 0.022 

𝛽1 0.701 0.014 

𝜎𝑢
2 0.034 0.007 

𝛼0 -0.78 0.035 

𝛼1 0.052 0.030 

𝜎𝑣
2 0.043 0.021 

𝜎𝑢𝑣  0.014 0.008 

 

R: The brms package 

We focus on the brm function of the brms R package (Bürkner, 2017, 2018). The brms 

package calls the Stan software (Stan Development Team, 2021) which implements 

Hamiltonian Monte Carlo (HMC) and no-U-turn samplers (NUTS). We present the simplest 

possible syntax noting that mixing can be improved via model reparameterization and by 

specifying various estimation options and we encourage readers to consult the documentation 

for further details. The syntax is as follows 

 

brm(bf(y ~ 1 + x + (1 |s| school), 

       sigma ~ 1 + x + (1 |s| school)), 

    data = mydata, 

    family = gaussian() 

) 

where for further simplicity we use the default priors for all model parameters and random 

effects. These are normal priors for the regression coefficients, half-Cauchy priors for the 
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random effect standard deviations, and the LKJcorr prior for random effect correlation 

matrix.  

Line 1 of the brm function syntax specifies the mean function. Line 2 specifies the 

residual variance function, but parameterizes this in terms of the residual SD rather than the 

residual variance. The desired residual variance function regression coefficients and random 

effect values can be recovered by multiplying the estimated quantities by 2. Line 3 specifies 

the dataframe. Line 4 specifies the normal response distribution. 

The associated model output is as follows. 

 

Compiling Stan program... 

Start sampling 

 

SAMPLING FOR MODEL '93a90408567ae7343eea598de7d7e540' NOW (CHAIN 1). 

Chain 1:  

Chain 1: Gradient evaluation took 0.005 seconds 

Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 50 seconds. 

Chain 1: Adjust your expectations accordingly! 

Chain 1:  

Chain 1:  

Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup) 

Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup) 

Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup) 

Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup) 

Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup) 

Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup) 

Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling) 

Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling) 

Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling) 

Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling) 

Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling) 

Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling) 

Chain 1:  

Chain 1:  Elapsed Time: 41.769 seconds (Warm-up) 

Chain 1:                19.914 seconds (Sampling) 

Chain 1:                61.683 seconds (Total) 

Chain 1:  

 

SAMPLING FOR MODEL '93a90408567ae7343eea598de7d7e540' NOW (CHAIN 2). 

Chain 2:  

Chain 2: Gradient evaluation took 0.001 seconds 

Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 10 seconds. 

Chain 2: Adjust your expectations accordingly! 

Chain 2:  

Chain 2:  

Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup) 

Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup) 

Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup) 

Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup) 

Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup) 

Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup) 

Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling) 

Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling) 

Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling) 

Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling) 

Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling) 

Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling) 

Chain 2:  

Chain 2:  Elapsed Time: 49.423 seconds (Warm-up) 
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Chain 2:                21.946 seconds (Sampling) 

Chain 2:                71.369 seconds (Total) 

Chain 2:  

 

SAMPLING FOR MODEL '93a90408567ae7343eea598de7d7e540' NOW (CHAIN 3). 

Chain 3:  

Chain 3: Gradient evaluation took 0 seconds 

Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0 seconds. 

Chain 3: Adjust your expectations accordingly! 

Chain 3:  

Chain 3:  

Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup) 

Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup) 

Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup) 

Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup) 

Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup) 

Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup) 

Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling) 

Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling) 

Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling) 

Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling) 

Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling) 

Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling) 

Chain 3:  

Chain 3:  Elapsed Time: 44.674 seconds (Warm-up) 

Chain 3:                18.936 seconds (Sampling) 

Chain 3:                63.61 seconds (Total) 

Chain 3:  

 

SAMPLING FOR MODEL '93a90408567ae7343eea598de7d7e540' NOW (CHAIN 4). 

Chain 4:  

Chain 4: Gradient evaluation took 0.001 seconds 

Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 10 seconds. 

Chain 4: Adjust your expectations accordingly! 

Chain 4:  

Chain 4:  

Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup) 

Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup) 

Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup) 

Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup) 

Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup) 

Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup) 

Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling) 

Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling) 

Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling) 

Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling) 

Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling) 

Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling) 

Chain 4:  

Chain 4:  Elapsed Time: 54.744 seconds (Warm-up) 

Chain 4:                20.939 seconds (Sampling) 

Chain 4:                75.683 seconds (Total) 

Chain 4:  

 Family: gaussian  

  Links: mu = identity; sigma = log  

Formula: y ~ 1 + x + (1 | s | school)  

         sigma ~ 1 + x + (1 | s | school) 

   Data: mydata (Number of observations: 2500)  

  Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1; 

         total post-warmup draws = 4000 

 

Group-Level Effects:  

~school (Number of levels: 100)  

                               Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

sd(Intercept)                      0.19      0.02     0.15     0.24 1.00     1552     2474 

sd(sigma_Intercept)                0.11      0.02     0.06     0.16 1.01     1333     1396 

cor(Intercept,sigma_Intercept)     0.32      0.18    -0.04     0.67 1.00     2180     2381 

 

Population-Level Effects:  

                Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS 

Intercept          -0.03      0.02    -0.07     0.02 1.00     2188     2671 

sigma_Intercept    -0.39      0.02    -0.43    -0.36 1.00     3600     3190 

x                   0.70      0.01     0.67     0.73 1.00     6686     3234 

sigma_x             0.03      0.02    -0.00     0.05 1.00     5863     3170 

 

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS 

and Tail_ESS are effective sample size measures, and Rhat is the potential 



 

58 

scale reduction factor on split chains (at convergence, Rhat = 1). 

 

 

The model ran four chains each with 1000 warmup (burn-in) iterations and 1000 monitoring 

iterations. Recall that the residual variance function is specified in terms of the log of the 

residual SD, but that the desired regression coefficients can be easily recovered by 

multiplying the estimated quantities by 2. A second issue is that the elements of the random 

effect covariance matrix are presented as SDs and correlations rather than as variances and 

covariances. We can recover the random effect variances by squaring the random effect SDs. 

The random effect covariance can be recovered by multiplying the random effect correlation 

by the two random effect SDs. These calculations are best applied to the underlying chains 

rather than the means which are displayed in the output. Having carried out these steps, the 

results are as follows. 

 

 Est. SE 

𝛽0 -0.028 0.024 

𝛽1 0.701 0.014 

𝜎𝑢
2 0.038 0.008 

𝛼0 -0.784 0.037 

𝛼1 0.050 0.030 

𝜎𝑣
2 0.054 0.002 

𝜎𝑢𝑣  0.014 0.009 
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