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Nonparametric data segmentation in multivariate time series

via joint characteristic functions

Euan T. McGonigle1 and Haeran Cho2

June 5, 2023

Abstract

Modern time series data often exhibit complex dependence and structural changes

which are not easily characterised by shifts in the mean or model parameters. We propose

a nonparametric data segmentation methodology for multivariate time series termed NP-

MOJO. By considering joint characteristic functions between the time series and its lagged

values, NP-MOJO is able to detect change points in the marginal distribution, but also

those in possibly non-linear serial dependence, all without the need to pre-specify the type

of changes. We show the theoretical consistency of NP-MOJO in estimating the total

number and the locations of the change points, and demonstrate the good performance

of NP-MOJO against a variety of change point scenarios. We further demonstrate its

usefulness in applications to seismology and economic time series.

Keywords: change point detection, joint characteristic function, moving sum, multivariate

time series, nonparametric

1 Introduction

Change point analysis has been an active area of research for decades, dating back to Page

(1954). Literature on change point detection continues to expand rapidly due to its promi-

nence in numerous applications, including biology (Jewell et al., 2020), financial analysis

(Lavielle and Teyssiere, 2007) and environmental sciences (Carr et al., 2017). Considerable

efforts have been made for developing computationally and statistically efficient methods for

data segmentation, a.k.a. multiple change point detection, in the mean of univariate data

under independence (Killick et al., 2012; Frick et al., 2014; Fryzlewicz, 2014) and permitting

serial dependence (Tecuapetla-Gómez and Munk, 2017; Dette et al., 2020; Cho and Kirch,
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2022; Cho and Fryzlewicz, 2022). There also exist methods for detecting changes in the co-

variance (Aue et al., 2009; Wang et al., 2021), parameters under linear regression (Bai and

Perron, 1998; Xu et al., 2022a) or other models (Fryzlewicz and Subba Rao, 2014; Safikhani

and Shojaie, 2022) in fixed and high dimensions. For an overview, see Truong et al. (2020)

and Cho and Kirch (2023).

Any departure from distributional assumptions such as independence and Gaussianity

tends to result in poor performance of change point algorithms. Furthermore, it may not

be realistic to assume any knowledge of the type of change point that occurs, or to make

parametric assumptions on the data generating process, for time series that possess complex

structures and are observed over a long period. Searching for change points in one property

of the data (e.g. mean), when the time series instead undergoes changes in another (e.g.

variance), may lead to misleading conclusions and inference on such data. Therefore, it

is desirable to develop flexible, nonparametric change point detection techniques that are

applicable to detect general changes in the underlying distribution of serially dependent data.

There are several strategies for the nonparametric change point detection problem, such

as those based on the empirical cumulative distribution and density functions (Carlstein,

1988; Zou et al., 2014; Haynes et al., 2017; Padilla et al., 2021; Vanegas et al., 2022; Padilla

et al., 2022, 2023), kernel transforms of the data (Harchaoui et al., 2009; Celisse et al.,

2018; Arlot et al., 2019; Li et al., 2019) or U -statistics measuring the ‘energy’-based distance

between different distributions (Matteson and James, 2014; Chakraborty and Zhang, 2021;

Boniece et al., 2022). There also exist graph-based methods applicable to non-Euclidean data

(Chen and Zhang, 2015; Chu and Chen, 2019). All these methods can only detect changes

in the marginal distribution of the data and apart from Padilla et al. (2023), assume serial

independence. We also mention Cho and Fryzlewicz (2012), Preuß et al. (2015) and Korkas

and Fryzlewicz (2017) where the problem of detecting changes in the second-order structure

is addressed, but their methods do not have power against changes in non-linear dependence.

We propose NP-MOJO, a nonparametric moving sum (MOSUM) procedure for detecting

changes in the joint characteristic function, which detects multiple changes in serial, possibly

non-linear dependence as well as marginal distributions of a multivariate time series {Xt}nt=1.

We adopt a moving sum (MOSUM) procedure to scan the data for multiple change points. The

moving sum methodology has successfully been applied to a variety of change point testing

(Chu et al., 1995; Hušková and Slabỳ, 2001) and data segmentation problems (Eichinger and

Kirch, 2018). Here, we combine it with a detector statistic carefully designed to detect changes

in complex dependence structure beyond those detectable from considering the marginal

distribution only. Specifically, we utilise an energy-based distributional discrepancy that

measures any change in the joint characteristic function of the time series at some lag ℓ ≥ 0,

which allows for detecting changes in the joint distribution of (Xt, Xt+ℓ) beyond the changes in

their linear dependence. To the best of our knowledge, NP-MOJO is the first nonparametric
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methodology which is able to detect changes in non-linear serial dependence in multivariate

time series.

We establish that NP-MOJO achieves consistency in estimating the number and locations

of the change points for a given lag, and propose a methodology that extends this desirable

property of single-lag NP-MOJO to multiple lags. Combined with a dependent multiplier

bootstrapping procedure, NP-MOJO and its multi-lag extension perform well across a wide

range of change point scenarios in simulations and real data applications.

The remainder of the article is organised as follows. Section 2 introduces the piecewise

stationary time series model and describes the measure of change in serial dependence. In

Section 3, we propose the NP-MOJO procedure for detecting changes in the joint distribution

of (Xt, Xt+ℓ) at a given ℓ ≥ 0, as well as its multi-lag extension, and establish their consistency

in multiple change point detection. In Section 4, we discuss recommendations for the practical

implementation of the method, followed by simulation studies (Section 5) and applications

to seismology and economic data sets (Section 6). Accompanying R software implementing

NP-MOJO is available from https://github.com/EuanMcGonigle/CptNonPar.

2 Model and measure of discrepancy

We observe a multivariate time series {Xt}nt=1 of (finite) dimension p, where

Xt =

q∑
j=0

X
(j)
t · I{θj + 1 ≤ t ≤ θj+1} (1)

with Xt = (Xt1, . . . , Xtp)
⊤. For each sequence {X(j)

t : t ≥ 1}, j = 0, . . . , q, there exists

an Rp-valued measurable function g(j)(·) = (g
(j)
1 (·), . . . , g(j)p (·))⊤ such that X

(j)
t = g(j)(Ft)

with Ft = σ(εs : s ≤ t), and i.i.d. random elements εt. We assume that g(j−1) ̸= g(j) for

all j = 1, . . . , q, such that under the model (1), the time series undergoes q change points at

locations Θ = {θ1, . . . , θq}, with the notational convention that θ0 = 0 and θq+1 = n. That is,

{Xt}nt=1 consists of q+1 stationary segments where the j-th segment is represented in terms

of a segment-dependent ‘output’ g(j)(Ft), with the common ‘input’ Ft shared across segments

such that dependence across the segments is not ruled out. Each segment has a non-linear

Wold representation as defined by Wu (2005); this representation includes commonly adopted

time series models including ARMA and GARCH processes.

Denote the inner product of two vectors x and y by ⟨x, y⟩ = x⊤y and ı the imaginary unit

with ı2 = −1. At some integer ℓ, define the joint characteristic function of {X(j)
t }t∈Z at lag

ℓ, as

ϕ
(j)
ℓ (u, v) = E

[
exp

(
ı⟨u,X(j)

1 ⟩+ ı⟨v,X(j)
1+ℓ⟩

)]
, 0 ≤ j ≤ q.
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We propose to measure the size of changes between adjacent segments under (1), using an

‘energy-based’ distributional discrepancy given by

d
(j)
ℓ =

∫
Rp

∫
Rp

∣∣∣ϕ(j)
ℓ (u, v)− ϕ

(j−1)
ℓ (u, v)

∣∣∣2w(u, v)dudv, 1 ≤ j ≤ q, (2)

where w(u, v) is a positive weight function for which the above integral exists. For given lag

ℓ ≥ 0, the quantity d
(j)
ℓ measures the weighted L2-norm of the distance between the lag ℓ

joint characteristic functions of {X(j−1)
t }t∈Z and {X(j)

t }t∈Z. A discrepancy measure of this

form is a natural choice for nonparametric data segmentation, since:

Lemma 1. We have d
(j)
ℓ = 0 for all ℓ ≥ 0 if and only if g(j) = g(j−1).

Lemma 1 extends the observation made in Matteson and James (2014) about the corre-

spondence between the characteristic function and marginal distribution. It shows that by

considering the joint characteristic functions ϕ
(j)
ℓ (u, v) at multiple lags ℓ ≥ 0, the discrep-

ancy d
(j)
ℓ is able to capture changes in the serial dependence as well as those in the marginal

distribution of {Xt}nt=1.

Let ∥x∥ denote the Euclidean norm of a vector x. For some choices of the weight function

w(u, v), the discrepancy d
(j)
ℓ is associated with the expectations of the kernel-based transforms

of Y
(j)
t = (X

(j)
t , X

(j)
t+ℓ) and Ỹ

(j)
t = (X̃

(j)
t , X̃

(j)
t+ℓ), where X̃

(j)
t = g(j)(F̃t) with F̃t = σ(ε̃s : s ≤ t)

and ε̃t is an independent copy of εt.

Lemma 2. (i) For any β > 0, suppose that d
(j)
ℓ in (2) is obtained with respect to the

following weight function:

w1(u, v) = C1(β, p)
−2 exp

(
− 1

2β2

(
∥u∥2 + ∥v∥2

))
with C1(β, p) = (2π)p/2βp.

Then, the function h1 : R2p×R2p → [0, 1] defined as h1(x, y) = exp(−β2∥x− y∥2/2) for
x, y ∈ R2p, satisfies

d
(j)
ℓ = E

[
h1

(
Y

(j)
1 , Ỹ

(j)
1

)]
+ E

[
h1

(
Y

(j−1)
1 , Ỹ

(j−1)
1

)]
− 2E

[
h1

(
Ỹ

(j)
1 , Y

(j−1)
1

)]
.

(ii) For any δ > 0, suppose that d
(j)
ℓ is obtained with

w2(u, v) = C2(δ, p)
−2

p∏
s=1

u2sv
2
s exp

(
−δ
(
u2s + v2s

))
with C2(δ, p) =

πp/2

2pδ3p/2
.

Then, the function h2 : R2p × R2p → [−2e−2/3, 1] defined as

h2(x, y) =

2p∏
r=1

(
2δ − (xr − yr)

2
)
exp

(
− 1

4δ (xr − yr)
2
)

2δ

4



for x = (x1, . . . , x2p)
⊤ and y = (y1, . . . , y2p)

⊤, satisfies

d
(j)
ℓ = E

[
h2

(
Y

(j)
1 , Ỹ

(j)
1

)]
+ E

[
h2

(
Y

(j−1)
1 , Ỹ

(j−1)
1

)]
− 2E

[
h2

(
Ỹ

(j)
1 , Y

(j−1)
1

)]
.

The weight function w1 is commonly referred to as the Gaussian weight function. Both

w1 and w2 are unit integrable and separable in their arguments, such that d
(j)
ℓ is well-defined

due to the boundedeness of the characteristic function. We provide an alternative weight

function in Appendix A.2 and also refer to Fan et al. (2017) for other suitable choices.

Remark 1. From Lemma 2, d
(j)
ℓ can be viewed as the squared maximum mean discrepancy

(MMD) on a suitably defined reproducing kernel Hilbert space with the associated kernel

function; see Lemma 6 of Gretton et al. (2012) and Section 2.6 of Celisse et al. (2018). We

also note the literature on the (auto)distance correlation for measuring and testing dependence

in multivariate (Székely et al., 2007) and time series (Zhou, 2012; Fokianos and Pitsillou, 2017;

Davis et al., 2018) settings.

3 Methodology

3.1 NP-MOJO: nonparametric MOSUM procedure for detecting changes

in the joint characteristic function

The identities given in Lemma 2 allow for the efficient computation of the statistics approxi-

mating d
(j)
ℓ and their weighted sums, which forms the basis for the NP-MOJO procedure for

detecting multiple change points from a multivariate time series {Xt}nt=1 under the model (1).

Throughout, we present the procedure with a generic kernel h associated with some weight

function w. We first introduce NP-MOJO for the problem of detecting changes in the joint

distribution of Yt = (Xt, Xt+ℓ) at a given lag ℓ ≥ 0, and extend it to the multi-lag problem

in Section 3.3.

For fixed bandwidth G ∈ N, NP-MOJO scans the data using a detector statistic computed

on neighbouring moving windows of length G, which approximates the discrepancy between

the local joint characteristic functions of the corresponding windows measured analogously

as in (2). Specifically, the detector statistic at location k is given by the following two-sample

V -statistic:

Tℓ(G, k) =
1

(G− ℓ)2

 k−ℓ∑
s,t=k−G+1

h(Ys, Yt) +

k+G−ℓ∑
s,t=k+1

h(Ys, Yt)− 2

k−ℓ∑
s=k−G+1

k+G−ℓ∑
t=k+1

h(Ys, Yt)


for k = G, . . . , n−G, as an estimator of the local discrepancy measure

Dℓ(G, k) =

q∑
j=0

(
G− ℓ− |k − θj |

G− ℓ

)2

d
(j)
ℓ · I{|k − θj | ≤ G− ℓ}. (3)
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Figure 1: Top: time series of length n = 1000 with change points θ1 = 300 and θ2 = 650
(vertical dashed lines), see Example 1. Bottom: corresponding detector statistics Tℓ(G, k)
computed at lags ℓ = 0 (dashed) and ℓ = 1 (solid).

We have Dℓ(G, k) = 0 when the section of the data {Xt, |t − k| ≤ G − ℓ} does not undergo

a change and accordingly, Tℓ(G, k) is expected to be close to zero. On the other hand, if

|k− θj | < G− ℓ, then Dℓ(G, k) increases and then decreases around θj with a local maximum

at k = θj , and Tℓ(G, k) is expected to behave similarly. We illustrate this using the following

example.

Example 1. A univariate time series {Xt}nt=1 of length n = 1000 is generated as Xt = µt+εt,

where µt = 0.7 · I{t > θ1} and εt = ε
(1)
t · I{t < θ2} + ε

(2)
t · I{t ≥ θ2}, with θ1 = 300 and

θ2 = 650. Each ε
(j)
t is an autoregressive (AR) process of order 1: ε

(1)
t = 0.5ε

(1)
t−1 + Wt and

ε
(2)
t = −0.5ε(2)t−1 + Wt, where {Wt}t∈Z is a white noise process with Var(Wt) =

√
1− 0.52.

This choice leads to Var(Xt) = 1 for all t, see the top panel of Figure 1 for a realisation.

Then, the mean shift at θ1 is detectable at all lags while the autocorrelation change at θ2 is

detectable at odd lags only, i.e. d
(2)
ℓ = 0 for even ℓ ≥ 0. The bottom panel of Figure 1 plots

Tℓ(G, k), G ≤ k ≤ n − G, computed using kernel h2 in Lemma 2 (ii) with G = 166. At lag

ℓ = 0, the detector statistic forms a prominent peak around θ1 but it is flat around θ2; at lag

ℓ = 1, the statistic T1(G, k) forms local maxima around both θj , j = 1, 2.

Based on these observations, it is reasonable to detect and locate the change points in

the joint distribution of (Xt, Xt+ℓ) as significant local maximisers of Tℓ(G, k). We adopt the

selection criterion, first considered by Eichinger and Kirch (2018) in the context of detect-

ing mean shifts from univariate time series, for simultaneous estimation of multiple change

points. For some fixed constant η ∈ (0, 1) and a threshold ζℓ(n,G) > 0, we identify any local

maximiser of Tℓ(G, k), say θ̂, which satisfies

Tℓ(G, θ̂) > ζℓ(n,G) and θ̂ = argmax
k: |k−θ̂|≤ηG

Tℓ(G, k). (4)
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We denote the set of such estimators fulfilling (4) by Θ̂ℓ with q̂ℓ = |Θ̂ℓ|. The choice of ζℓ(n,G)

is discussed in Section 3.4.

3.2 Theoretical properties

For some finite integer ℓ ≥ 0, we define the index set of the change points detectable at lag ℓ

as Iℓ = {1 ≤ j ≤ q : d
(j)
ℓ ̸= 0}, and denote its cardinality by qℓ = |Iℓ| ≤ q. Not all change

points are detectable at all lags, see Example 1 where we have I0 = {1} and I1 = {1, 2}.
In this section, we show that the single-lag NP-MOJO described in Section 3.1 consistently

estimates the total number qℓ and the locations {θj , j ∈ Iℓ} of the change points detectable

at lag ℓ, by Θ̂ℓ.

Writing gti(·) =
∑q

j=0 g
(j)
i (·) · I{θj + 1 ≤ t ≤ θj+1}, define Xti,{t−s} = gti(Ft,{t−s}), where

Ft,{t−s} = σ(. . . , εt−s−1, ε̃t−s, εt−s+1, . . . , εt) is a coupled version of Ft with εt−s replaced

by its independent copy ε̃t−s. For a random variable Z and ν > 0, let ∥Z∥ν = (E(|Z|ν))1/ν .
Analogously as in Xu et al. (2022a), we define the element-wise functional dependence measure

and its cumulative version as

δs,ν,i = sup
t∈Z
∥Xti −Xti,{t−s}∥ν and ∆m,ν = max

1≤i≤p

∞∑
s=m

δs,ν,i, m ∈ Z. (5)

Then, we make the following assumptions on the degree of serial dependence in {Xt}nt=1.

Assumption 1. There exist some constants CF , CX ∈ (0,∞) and γ1 ∈ (0, 2) such that

sup
m≥0

exp(CFm
γ1)∆m,2 ≤ CX .

Assumption 2. The time series {Xt}nt=1 is continuous and β-mixing with β(m) ≤ Cβm
−γ2

for some constants Cβ ∈ (0,∞) and γ2 ≥ 1, where

β(m) = sup
t∈Z

(
sup

1

2

R∑
r=1

S∑
s=1

|P(Ar ∩Bs)− P(Ar)P(Bs)|

)
.

Here, the inner supremum is taken over all pairs of finite partitions {A1, . . . , AR} of Ft =

σ(εu, u ≤ t) and {B1, . . . , BS} of σ(εu, u ≥ t+m).

Assumptions 1 and 2 require the serial dependence in {Xt}nt=1, measured by ∆m,2 and

β(m), to decay exponentially, and both are met by a range of linear and non-linear processes

(Wu, 2005; Mokkadem, 1988). Under Assumption 1, we have ∥Xit∥2 < ∞ for all i and

t. Assumption 1 is required for bounding Tℓ(G, k) − E[Tℓ(G, k)] uniformly over k, while

Assumption 2 is used for controlling the bias E[Tℓ(G, k)] − Dℓ(G, k) which is attributed to

serial dependence. A condition similar to Assumption 2 is often found in the time series
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literature making use of distance correlations, see e.g. Davis et al. (2018) and Yousuf and

Feng (2022).

Assumption 3. The kernel function h is symmetric and bounded, and can be written as

h(x, y) = h0(x− y) for some function h0 : R2p → R that is Lipschitz continuous with respect

to ∥ · ∥ with Lipschitz constant Ch ∈ (0,∞).

Assumption 3 on the kernel function h is met by h1 and h2 introduced in Lemma 2, with

constants Ch bounded by βe−1/2 and 2
√
2p3/2δ−1/2, respectively.

Assumption 4. (i) G = Gn satisfiesG−1 log(n)→ 0 as n→∞, and min0≤j≤q(θj+1−θj) ≥
2G.

(ii)
√
G/ log(n)minj∈Iℓ d

(j)
ℓ →∞.

Recall that Iℓ denotes the index set of detectable change points at lag ℓ, i.e. d
(j)
ℓ > 0 iff

j ∈ Iℓ. However, this definition of detectability is too weak to ensure that all θj , j ∈ Iℓ,
are detected by NP-MOJO with high probability at lag ℓ, since we do not rule out the case

of local changes where d
(j)
ℓ → 0. Consider Example 1: the change in the autocorrelations

results in d
(2)
ℓ > 0 for all odd ℓ but the size of change is expected to decay exponentially fast

as ℓ increases. Assumption 4 allows for local changes provided that
√

G/ log(n)d
(j)
ℓ diverges

sufficiently fast. Assumption 4 (i) on the minimum spacing of change points, is commonly

imposed in the literature on change point detection using moving window-based procedures.

Assumption 4 does not rule out G/n → 0 and permits the number of change points q to

increase in n. We discuss the selection of bandwidth in Section 4.

Theorem 1. Let Assumptions 1, 2, 3 and 4 hold and ℓ ≥ 0 be a finite integer, and set the

threshold as ζℓ(n,G) = cζ
√

log(n)/G for some constant cζ > 0. Then, there exists c0 > 0,

depending only on CF , CX , γ1, Cβ and γ2, such that as n→∞,

P

(
q̂ℓ = qℓ, max

j∈Iℓ
min
θ̂∈Θ̂ℓ

d
(j)
ℓ |θ̂ − θj | ≤ c0

√
G log(n)

)
→ 1.

Theorem 1 establishes that, for given ℓ, NP-MOJO correctly estimates the total number

and the locations of the change points detectable at lag ℓ. In particular, by Assumption 4,

the change point estimators satisfy

min
θ̂∈Θ̂ℓ

|θ̂ − θj | = OP ((d
(j)
ℓ )−1

√
G log(n)) = oP (min(θj − θj−1, θj+1 − θj)) for all j ∈ Iℓ,

i.e. the change point estimators converge to the true change point locations in the rescaled

time. Further, the rate of estimation is inversely proportional to the size of change d
(j)
ℓ , such

that the change points associated with larger d
(j)
ℓ are estimated with better accuracy. Also
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making use of the energy-based distributional discrepancy, Matteson and James (2014) estab-

lish the consistency of their proposed E-Divisive method for detecting changes in (marginal)

distribution under independence. In addition to detection consistency, we further derive the

rate of estimation for NP-MOJO which is applicable to detect changes in complex time series

dependence besides those in marginal distribution, in broader situations permitting serial

dependence.

3.3 Multi-lag extension of NP-MOJO

In this section, we address the problem of combining the results of the NP-MOJO procedure

when it is applied with multiple lags. Let L ⊂ N0 = {0, 1, . . .} denote a (finite) set of non-

negative integers. Recall that given ℓ ∈ L, NP-MOJO returns a set of change points estimators

Θ̂ℓ. Denote the union of change point estimators over all lags L by Θ̃ =
⋃

ℓ∈L Θ̂ℓ = {θ̃j , 1 ≤
j ≤ Q : θ̃1 < . . . , < θ̃Q}, and denote by T(θ̃) = maxℓ∈L Tℓ(G, θ̃) the maximum detector

statistic at θ̃ across all ℓ ∈ L. We propose to find a set of the final change point estimators

Θ̂ ⊂ Θ̃ by taking the following steps; we refer to this procedure as multi-lag NP-MOJO.

Step 0. Set Θ̂ = ∅ and select a constant c ∈ (0, 2].

Step 1. Set Θ̃1 = Θ̃ and m = 1. Iterate Steps 2–4 for m = 1, 2, . . ., while Θ̃m ̸= ∅.

Step 2. Let θ̃m = min Θ̃m and identify Cm = {θ̃ ∈ Θ̃m : θ̃ − θ̃m < cG}.

Step 3. Identify θ̂m = argmax
θ̃∈Cm T(θ̃); if there is a tie, we arbitrarily break it.

Step 4. Add θ̂m to Θ̂ and update m← m+ 1 and Θ̃m = Θ̃m−1 \ Cm−1.

At iteration m of the multi-lag NP-MOJO, Step 2 identifies the minimal element from the

current set of candidate change point estimators Θ̃m, and a cluster of estimators Cm whose

elements are expected to detect the identical change points from multiple lags. Then, Step 3

finds an estimator θ̂ ∈ Cm, which is associated with the largest detector statistic at some lag,

and it is added to the set of final estimators. This choice is motivated by Theorem 1, which

shows each θj is estimated with better accuracy at the lag associated with the largest change

in the lagged dependence (measured by d
(j)
ℓ ). Iterating these steps until all the elements of

Θ̃ are either added to Θ̂ or discarded, we obtain the set of final change point estimators.

We define a subset of L containing the lags at which the j-th change point is detectable,

as L(j) = {ℓ ∈ L : d
(j)
ℓ ̸= 0}. Re-visiting Example 1, when we set L = {0, 1}, it follows that

L(1) = {0, 1} and L(2) = {1}. To establish the consistency of the multi-lag NP-MOJO, we

formally assume that all changes points are detectable at some lag ℓ ∈ L.

Assumption 5. For L ⊂ N0 with L = |L| <∞, we have ∪ℓ∈LIℓ = {1, . . . , q}. Equivalently,

L(j) ̸= ∅ for all j = 1, . . . , q.
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Under Assumptions 1–5, the consistency of the multi-lag NP-MOJO procedure is largely a

consequence of Theorem 1. Assumption 4 (ii) requires that at any lag ℓ ∈ L and a given change

point θj , we have either j ∈ Iℓ with d
(j)
ℓ large enough (in the sense that

√
G/ log(n)d

(j)
ℓ →∞),

or j /∈ Iℓ such that d
(j)
ℓ = 0. Such a dyadic classification of the change points rules out the

possibility that for some j, we have d
(j)
ℓ > 0 but d

(j)
ℓ = O(

√
log(n)/G), in which case θj may

escape detection by NP-MOJO at lag ℓ. We therefore consider the following alternative:

Assumption 6. (i) G = Gn satisfiesG−1 log(n)→ 0 as n→∞, and min0≤j≤q(θj+1−θj) ≥
4G.

(ii)
√
G/ log(n)min1≤j≤q maxℓ∈L(j) d

(j)
ℓ →∞.

Compared to Assumption 4, Assumption 6 requires that the change points are further

apart from one another relative to G by the multiplicative factor of two. At the same time,

the latter only requires that for each j = 1, . . . , q, there exists at least one lag ℓ ∈ L at which

d
(j)
ℓ is large enough to guarantee the detection of θj by NP-MOJO with large probability.

Theorem 2 establishes the consistency of multi-lag NP-MOJO under either Assumption 4

or 6.

Theorem 2. Suppose that Assumptions 1, 2, 3 and 5 hold and at each ℓ ∈ L, we set

ζℓ(n,G) = cζ,ℓ
√
log(n)/G with some constants cζ,ℓ > 0. Let Θ̂ = {θ̂j , 1 ≤ j ≤ q̂ : θ̂1 < . . . θ̂q̂}

denote the set of estimators returned by multi-lag NP-MOJO with tuning parameter c.

(i) If Assumption 4 holds for all ℓ ∈ L and c = 2η with η ∈ (0, 1/2], then with c0 in

Theorem 1,

P

(
q̂ = q, max

1≤j≤q
max
ℓ∈L(j)

d
(j)
ℓ

∣∣∣θ̂j − θj

∣∣∣ ≤ c0
√

G log(n)

)
→ 1 as n→∞.

(ii) If Assumption 6 holds and c = 2, then the conclusion of (i) holds.

Under Assumption 6 (ii), which is weaker than Assumption 4 (ii), we may encounter a

situation where
√

G/ log(n)d
(j)
ℓ = O(1) while d

(j)
ℓ > 0 at some lag ℓ ∈ L. Then, we cannot

guarantee that such θj is detected by NP-MOJO at lag ℓ and, even so, we can only show that

its estimator θ̃ ∈ Θ̃ℓ satisfies |θ̃ − θj | = O(G). This requires setting the tuning parameter

c maximally for the clustering in Step 2 of multi-lag NP-MOJO, see Theorem 2 (ii). At

the same time, there exists a lag well-suited for the localisation of each change point and

Step 3 identifies an estimator detected at such lag, and the final estimator inherits the rate

of estimation attained at the favourable lag.

3.4 Threshold selection via dependent wild bootstrap

Theorem 1 gives the choice of the threshold ζℓ(n,G) = cζ
√
log(n)/G which guarantees the

consistency of NP-MOJO in multiple change point estimation. The choice of cζ influences
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the finite sample performance of NP-MOJO but it depends on many unknown quantities

involved in specifying the degree of serial dependence in {Xt}nt=1 (see Assumptions 1 and 2),

which makes the theoretical choice of little practical use. Resampling is popularly adopted

for the calibration of change point detection methods including threshold selection. How-

ever, due to the presence of serial dependence, permutation-based approaches such as that

adopted in Matteson and James (2014) or sample splitting adopted in Padilla et al. (2021)

are inappropriate.

We propose to adopt the dependent wild bootstrap procedure proposed in Leucht and

Neumann (2013), in order to approximate the quantiles of maxG≤k≤n−G Tℓ(G, k) in the ab-

sence of any change point, from which we select ζℓ(n,G).

Let {W [r]
t }

n−G
t=1 denote a bootstrap sequence generated as a Gaussian AR(1) process with

Var(W
[r]
t ) = 1 and the AR coefficient exp(−1/bn), where the sequence {bn} is chosen such

that bn = o(n) and limn→∞ bn = ∞. We construct bootstrap replicates using {W [r]
t }

n−G
t=1 as

T
[r]
ℓ = maxG≤k≤n−G T

[r]
ℓ (G, k), where

T
[r]
ℓ (G, k) =

1

(G− ℓ)2

 k−ℓ∑
s,t=k−G+1

W̄
[r]
s,kW̄

[r]
t,kh(Ys, Yt) +

k+G−ℓ∑
s,t=k+1

W̄
[r]
s−G,kW̄

[r]
t−G,kh(Ys, Yt)

−2
k−ℓ∑

s=k−G+1

k+G−ℓ∑
t=k+1

W̄
[r]
s,kW̄

[r]
t−G,kh(Ys, Yt)

)
,

with W̄
[r]
t,k = W

[r]
t − (G − ℓ)−1

∑k−ℓ
u=k−G+1W

[r]
u . Independently generating {W [r]

t }
n−G
t=1 for

r = 1, . . . , R (R denoting the number of bootstrap replications), we store T
[r]
ℓ and select the

threshold as ζℓ(n,G) = q1−α({T [r]
ℓ }

R
r=1), the (1− α)-quantile of {T [r]

ℓ }
R
r=1 for the chosen level

α ∈ (0, 1]. Additionally, we can compute the importance score for each θ̂ ∈ Θ̂ℓ as

s(θ̂) =

∣∣∣{1 ≤ r ≤ R : Tℓ(G, θ̂) ≥ T
[r]
ℓ,r

}∣∣∣
R+ 1

. (6)

Taking a value between 0 and 1, the larger s(θ̂) is, the more likely that there exists a change

point close to θ̂ empirically. The bootstrap procedure generalises to the multi-lag NP-MOJO

straightforwardly. In practice, we observe that setting θ̂j = argmaxθ̃∈Cj s(θ̃) (with some

misuse of the notation, s(·) is computed at the relevant lag for each θ̃) works well in Step 3

of multi-lag NP-MOJO. This is attributed to the fact that this score inherently takes into

account the varying scale of the detector statistics at multiple lags and ‘standardises’ the

importance of each estimator. In all numerical experiments, our implementation of multi-lag

NP-MOJO is based on this choice of θ̂j . We provide the algorithmic descriptions of NP-MOJO

and its multi-lag extension in Algorithms 1 and 2 in Appendix A.3.
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4 Implementation of NP-MOJO

In this section, we discuss the computational aspects of NP-MOJO and provide recommen-

dations for the choice of tuning parameters based on extensive numerical results.

Computational complexity. Owing to the MOSUM-based approach, the cost of se-

quentially computing Tℓ(G, k) from Tℓ(G, k−1) is O(G), giving the overall cost of computing

Tℓ(G, k), G ≤ k ≤ n − G, as O(nG). Exact details of the sequential update are given in

Appendix A.1. The bootstrap procedure described in Section 3.4 is performed once per lag

for simultaneously detecting multiple change points, in contrast with E-Divisive (Matteson

and James, 2014) that requires the permutation-based testing to be performed for detecting

each change point. With R bootstrap replications, the total computational cost is O(|L|RnG)

for multi-lag NP-MOJO using the set of lags L and bootstrapping, as opposed to O(Rqn2)

for E-Divisive.

Kernel function. Based on empirical performance, we recommend the use of the kernel

function h2 in Lemma 2 (ii) with δ set using the ‘median trick’, a common heuristic used in

kernel-based methods (Li et al., 2019). Specifically, we set δ to be a half the the median of

all ∥Ys − Yt∥2 involved in the calculation of Tℓ(G, k). For p-variate i.i.d. Gaussian data with

common variance σ2, this corresponds to δ ≈ σp as the dimension p increases (Ramdas et al.,

2015).

Bandwidth. Due to the nonparametric nature of NP-MOJO, it is advised to use a

larger bandwidth than that shown to work well for the MOSUM procedure for univariate

mean change detection (Eichinger and Kirch, 2018). In practice, the practitioner may have

prior knowledge that aids the choice of G. In our simulation studies and data applications,

we set G = ⌊n/6⌋. It is often found that using multiple bandwidths and merging the results

improves the adaptivity of moving window-based procedures, such as the ‘bottom-up’ merging

proposed by Messer et al. (2014) or the localised pruning of (Cho and Kirch, 2022). We leave

investigation into the multiscale extension of NP-MOJO for future research.

Parameters for change point estimation. We set η = 0.4 in (4) following the recom-

mendation in Meier et al. (2021). For multi-lag NP-MOJO, we set c = 1 for clustering the

estimators from multiple lags, a choice that lies between those recommended in Theorem 2 (i)

and (ii), since we do not know whether Assumptions 4 or 6 hold in practice. To further guard

against spurious estimators, we only accept those θ̂ that lie in intervals of length greater than

⌊0.02G⌋ where the corresponding Tℓ(G, k) exceeds ζℓ(n,G).

Parameters for the bootstrap procedure. The choice of bn sets the level of de-

pendence in the multiplier bootstrap sequences. Leucht and Neumann (2013) show that a

necessary condition is that limn→∞(b−1
n + bnn

−1) = 0, giving a large freedom for choice of bn.

We recommend bn = 1.5n1/3, which works well in practice. In all numerical experiments, we

use R = 499 bootstrap replications with α = 0.1.
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Set of lags L. The choice of L depends on the practitioner’s interest and domain knowl-

edge, a problem commonly faced by general-purpose change point detection methods, such as

the choice of the quantile level in Vanegas et al. (2022), the parameter of interest in Zhao et al.

(2022) and the estimating equation in Kirch and Reckruehm (2022). For example, for monthly

data, using L = {0, 3, 12} allows for detecting changes in the quarterly and yearly seasonality.

Even when the interest lies in detecting changes in the marginal distribution only, it helps

to jointly consider multiple lags, since any marginal distributional change is likely to result

in changes in the joint distribution of (Xt, Xt+ℓ). In simulations, we use L = {0, 1, 2} which
works well not only for detecting changes in the mean and the second-order structure, but

also for detecting changes in (non-linear) serial dependence and higher-order characteristics.

5 Simulation study

We conduct extensive simulation studies with varying change point scenarios (18 where q ≥ 1,

7 with q = 0). We provide complete descriptions of the simulation studies in Appendix B

where, for comparison, we consider not only nonparametric but also parametric data segmen-

tation procedures well-suited to detect the types of changes in consideration, which include

changes in the mean, second-order and higher-order moments and serial dependence. In this

section, we briefly discuss a selection of the results and compare both single-lag and multi-lag

NP-MOJO (denoted by NP-MOJO-ℓ and NP-MOJO-L respectively), with the nonparametric

competitors: E-Divisive (Matteson and James, 2014), NWBS (Padilla et al., 2021), KCPA

(Celisse et al., 2018; Arlot et al., 2019) and cpt.np (Haynes et al., 2017). E-Divisive and

KCPA are applicable to multivariate data segmentation whilst NWBS and cpt.np are not.

The scenarios are (all with n = 1000):

(B5) Xt =
∑3

j=0Σ
1/2
j I{θj + 1 ≤ t ≤ θj+1} · εt, where εt = (ε1t, ε2t)

⊤ with εit ∼i.i.d. t5,

(θ1, θ2, θ3) = (250, 500, 750), Σ0 = Σ2 = ( 1 0
0 1 ) and Σ1 = Σ3 = ( 1 0.9

0.9 1 ).

(C1) Xt = X
(j)
t = ajX

(j)
t−1 + εt for θj + 1 ≤ t ≤ θj+1, where q = 2, (θ1, θ2) = (333, 667) and

(a0, a1, a2) = (−0.8, 0.8,−0.8).

(C3) Xt = X
(j)
t = σ

(j)
t εt with (σ

(j)
t )2 = ωj + αj(X

(j)
t−1)

2 + βj(σ
(j)
t−1)

2 for θj + 1 ≤ t ≤ θj+1,

where q = 1, θ1 = 500, (ω0, α0, β0) = (0.01, 0.7, 0.2) and (ω1, α1, β1) = (0.01, 0.2, 0.7).

(D3) Xt = 0.4Xt−1 + εt where εt ∼i.i.d. N (0, 0.52) for t ≤ θ1 and t ≥ θ2 + 1, and εt ∼i.i.d.

Exponential(0.5)− 0.5 for θ1 + 1 ≤ t ≤ θ2, with q = 2 and (θ1, θ2) = (333, 667).

The above scenarios consider: changes in the covariance of bivariate, non-Gaussian random

vectors in (B5), changes in the autocorrelation (while the variance stays unchanged) in (C1), a

change in the parameters of an ARCH(1, 1) process in (C3), and changes in higher moments

of serially dependent observations in (D3). For further discussions of these scenarios, see
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Appendix B.2. Table 1 reports the distribution of the estimated number of change points and

the average covering metric (CM) and V-measure (VM) over 1000 realisations. Taking values

between [0, 1], CM and VM close to 1 indicates better accuracy in change point location

estimation, see Appendix B.2 for their definitions. In the case of (C1), qℓ = 0 except for

q1 = 2, and thus we report q̂ℓ − qℓ for single-lag NP-MOJO. Across all scenarios, NP-MOJO-

L shows good detection and estimation accuracy and demonstrates the efficacy of considering

multiple lags, see (C3) and (D3) in particular. As the competitors are calibrated for the

independent setting, they tend to either over- or under-detect the number of change points

in the presence of serial dependence in (C1), (C3) and (D3). In Appendix B.2, we compare

NP-MOJO against change point methods proposed for time series data where it similarly

performs well.

Table 1: Distribution of the estimated number of change points and the average CM and VM over

1000 realisations. The modal value of q̂ − q in each row is given in bold. Also, the best performance

for each metric is underlined for each scenario.

q̂ − q / q̂ℓ − qℓ

Model Method ≤ −2 −1 0 1 ≥ 2 CM VM

(B5) NP-MOJO-0 0.000 0.001 0.997 0.002 0.000 0.974 0.959

NP-MOJO-1 0.005 0.121 0.867 0.007 0.000 0.931 0.927

NP-MOJO-2 0.006 0.103 0.884 0.007 0.000 0.935 0.929

NP-MOJO-L 0.000 0.001 0.999 0.000 0.000 0.973 0.958

E-Divisive 0.670 0.189 0.101 0.032 0.008 0.431 0.335

KCPA 0.322 0.000 0.662 0.015 0.001 0.775 0.725

(C1) NP-MOJO-0 – – 0.851 0.140 0.009 – –

NP-MOJO-1 0.000 0.002 0.956 0.042 0.000 0.978 0.961

NP-MOJO-2 – – 0.836 0.149 0.015 – –

NP-MOJO-L 0.000 0.002 0.986 0.012 0.000 0.980 0.963

E-Divisive 0.001 0.001 0.012 0.035 0.951 0.685 0.686

KCPA 0.792 0.002 0.065 0.025 0.116 0.399 0.132

NWBS 0.013 0.001 0.007 0.015 0.964 0.398 0.558

cpt.np 0.000 0.000 0.002 0.003 0.995 0.593 0.647

(C3) NP-MOJO-0 – 0.409 0.533 0.056 0.002 0.744 0.484

NP-MOJO-1 – 0.236 0.682 0.081 0.001 0.819 0.633

NP-MOJO-2 – 0.299 0.626 0.073 0.002 0.787 0.571

NP-MOJO-L – 0.210 0.727 0.062 0.001 0.823 0.645

E-Divisive – 0.032 0.327 0.211 0.430 0.742 0.602

KCPA – 0.418 0.262 0.171 0.149 0.667 0.370

NWBS – 0.895 0.048 0.020 0.037 0.525 0.069

cpt.np – 0.000 0.013 0.047 0.940 0.634 0.554
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Figure 2: Heat map of standardised sensor data. Change points detected by multi-lag NP-
MOJO are shown in vertical dashed lines, and the time of the earthquake is given by solid
vertical line.

(D3) NP-MOJO-0 0.003 0.139 0.809 0.049 0.000 0.899 0.872

NP-MOJO-1 0.006 0.155 0.792 0.047 0.000 0.892 0.864

NP-MOJO-2 0.021 0.248 0.685 0.045 0.001 0.848 0.819

NP-MOJO-L 0.002 0.082 0.914 0.002 0.000 0.917 0.884

E-Divisive 0.005 0.002 0.072 0.118 0.803 0.681 0.707

KCPA 0.441 0.012 0.481 0.052 0.014 0.667 0.500

NWBS 0.047 0.015 0.139 0.124 0.675 0.680 0.676

cpt.np 0.000 0.000 0.045 0.055 0.900 0.726 0.756

6 Data applications

6.1 California seismology measurements data set

We analyse a data set from the High Resolution Seismic Network, operated by the Berkeley

Seismological Laboratory. Ground motion sensor measurements were recorded in three mu-

tually perpendicular directions at 13 stations near Parkfield, California, USA for 740 seconds

from 2am on December 23rd 2004. The data has previously been analysed in Xie et al. (2019)

and Chen et al. (2022). Chen et al. (2022) pre-process the data by removing a linear trend and

down-sampling, and the processed data is available in the ocd R package (Chen et al., 2020).

According to the Northern California Earthquake Catalog, an earthquake of magnitude 1:47

Md hit near Atascadero, California (50 km away from Parkfield) at 02:09:54.01.

We analyse time series of dimension p = 39 and length n = 2000 by taking a portion

of the data set between 544 and 672 seconds after 2am, which covers the time at which the

earthquake occurred (594 seconds after). We apply the multi-lag NP-MOJO with tuning

parameters selected as in Section 4, using G = 333 and set of lags L = {0, . . . , 4}. We

detect two changes at all lags; the first occurs at between 603.712 and 603.968 seconds after
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Figure 3: Sample correlations from the three segments defined by the change point estimators.

2am and may be attributed to the earthquake. As noted in Chen et al. (2022), P waves,

which are the primary preliminary wave and arrive first after an earthquake, travel at up

to 6km/s in the Earth’s crust. This is consistent with the delay of approximately 9 seconds

between the occurrence of the earthquake and the first change point detected by multi-lag

NP-MOJO. We also note that performing online change point analysis, Xie et al. (2019)

and Chen et al. (2022) report a change at 603.584 and 603.84 seconds after the earthquake,

respectively. The second change is detected at between 626.176 and 626.496 seconds after 2am.

It may correspond to the ending of the effect of the earthquake, as sensors return to ‘baseline’

behaviour. Figure 2 plots the heat map of the data with each series standardised for ease of

visualisation, along with the onset of the earthquake and the two change points detected by

the multi-lag NP-MOJO. It suggests, amongst other possible distributional changes, the time

series undergoes mean shifts as found in Chen et al. (2022). We also examine the sample

correlations computed on each of the three segments, see Figure 3 where the data exhibit a

greater degree of correlation in segment 2 compared to the other two segments. Recalling

that each station is equipped with three sensors, we notice that pairwise correlations from

the sensors located at the same stations undergo greater changes in correlations. A similar

observation is made about the sensors located at nearby stations.

6.2 US recession data

We analyse the US recession indicator data set. Recorded quarterly between 1855 and 2021

(n = 667), Xt is recorded as a 1 if any month in the quarter is in a recession (as identified

by the Business Cycle Dating Committee of the National Bureau of Economic Research),

and 0 otherwise. The data has previously been examined for change points under piecewise

stationary autoregressive models for integer-valued time series in Hudecová (2013) and Diop

and Kengne (2021). We apply the multi-lag NP-MOJO with G = 111 and L = {0, . . . , 4}. All
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Figure 4: Left: quarterly US recession indicator series. A change point detected by multi-lag
NP-MOJO is shown in vertical dashed lines and the sample means over the two segments in
solid line. Right: Tℓ(G, k), G ≤ k ≤ n−G for lags ℓ ∈ L, after standardisation by respective
thresholds.

tuning parameters are set as recommended in Section 4 with one exception, δ for the kernel

h2. We select δ = 1 for lag 0 and 2 otherwise, since pairwise distances for binary data are

either 0 or 1 when ℓ = 0 such that the median heuristic would not work as desired.

At all lags, we detect a single change point located between 1933:Q1 and 1938:Q2. Multi-

lag NP-MOJO estimates the change point at 1933:Q1, which is comparable to the previous

analyses: Hudecová (2013) report a change at 1933:Q1 and Diop and Kengne (2021) at

1932:Q4. The change coincides with the ending of the Great Depression and beginning of

World War II. The left panel of Figure 4 plots the detected change along with the sample av-

erage of Xt over the two segments (superimposed on {Xt}nt=1), showing that the frequency of

recession is substantially lower after the change. The right panel plots the detector statistics

Tℓ(G, k) at lags ℓ ∈ L, divided by the respective threshold ζℓ(n,G) obtained from the boot-

strap procedure. The thus-standardised T4(G, k), shown in solid line, displays the change

point with the most clarity, attaining the largest value over the widest interval above the

threshold (standardised to be one). At lag 4, the detector statistic has the interpretation of

measuring any discrepancy in the joint distribution of the recession indicator series and its

yearly lagged values.
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Appendices

A Additional discussions about NP-MOJO

A.1 Computational complexity

As briefly discussed in Section 4, we can perform a sequential update of Tℓ(G, k) to enable

efficient computation. By symmetry of the kernel h, we only need to calculate h(Ys, Yt) for

(s, t) satisfying 1 ≤ t ≤ s ≤ n and |s − t| ≤ 2G − ℓ, giving O(nG) total computations for

evaluating h(Ys, Yt) for such s and t. Then, writing

Tℓ(G, k) =
1

(G− ℓ)2

 k−ℓ∑
s,t=k−G+1

h(Ys, Yt) +
k+G−ℓ∑
s,t=k+1

h(Ys, Yt)− 2
k−ℓ∑

s=k−G+1

k+G−ℓ∑
t=k+1

h(Ys, Yt)


=: T

(1)
ℓ (G, k) + T

(1)
ℓ (G, k +G)− 2T

(2)
ℓ (G, k),

we can sequentially update T
(1)
ℓ (G, k) and T

(2)
ℓ (G, k). For example,

T
(1)
ℓ (G, k + 1) =T

(1)
ℓ (G, k)− 2

k−ℓ∑
s=k−G+1

h(Ys, Yk−G+1) + 2
k−ℓ+1∑

s=k−G+2

h(Ys, Yk−G+2)

+ h(Yk−G+1, Yk−G+1)− h(Yk−G+2, Yk−G+2),

and a similar updating equation is available for T
(2)
ℓ (G, k). This update can be performed

efficiently by pre-computing
∑k−ℓ

s=k−G+1 h(Ys, Yk−G+u) for all k and u = 1, 2, which requires

O(n) computations. In a similar fashion, the bootstrap replicates T
[r]
ℓ , 1 ≤ ℓ ≤ R, can also

be computed using sequential updates in O(nG) computational cost, giving the total cost for

multi-lag NP-MOJO using the set of lags L as O(|L|RnG).

A.2 Alternative weight function

The following lemma describes the use of an additional weight function and kernel pair,

supplementing Lemma 2 in the main text.

Lemma A.1. For any γ ∈ (0, 2), suppose that d
(j)
ℓ is obtained with

w3(u, v) = C3(γ, p)
−1
(
∥u∥2 + ∥v∥2

)−(γ+2p)/2
with C3(γ, p) =

2πp/2Γ(1− γ/2)

γ2γΓ((p+ γ)/2)
.

If max0≤j≤q max1≤i≤p E(|X(j)
1i |γ) ≤ C <∞, then the function h3 : R2p×R2p → [0,∞) defined

as h3(x, y) = ∥x− y∥γ for x, y ∈ R2p, satisfies

d
(j)
ℓ = 2E

[
h3

(
Ỹ

(j)
1 , Y

(j−1)
1

)]
− E

[
h3

(
Y

(j)
1 , Ỹ

(j)
1

)]
− E

[
h3

(
Y

(j−1)
1 , Ỹ

(j−1)
1

)]
.

23



The weight function w3 was previously used in Bakirov et al. (2006) in the context of

independence testing and in Matteson and James (2014) for measuring changes in the marginal

distribution of independent data (with ℓ = 0). In contrast to w1 and w2 given in Lemma 2,

w3 is non-separable and non-integrable, and does not fulfil Assumption 3. As a consequence,

we require an additional condition on the moments of Xt for d
(j)
ℓ to be well-defined as well as

for the consistency of NP-MOJO when it is applied with the kernel h3.

A.3 Algorithms

The algorithmic descriptions of the NP-MOJO procedure is summarised in Algorithms 1

and 2, corresponding to the single lag and multi-lag versions respectively.

Algorithm 1: Single-lag NP-MOJO algorithm

Input: Multivariate time series {Xt}nt=1, bandwidth G, lag ℓ, kernel h, selection
parameter η, threshold level α, bootstrap parameters bn and R

for k ∈ {G, . . . , n−G} do
Compute Tℓ(G, k)

for r ∈ {1, ..., R} do
Compute T

[r]
ℓ

ζℓ(n,G)← q1−α({T [r]
ℓ }

R
r=1)

Θ̂ℓ ← Set of change point estimators obtained with bandwidth G and threshold
ζℓ(n,G) according to (4)

for θ̂ ∈ Θ̂ℓ do

Compute s(θ̂) according to Equation (6)

Output: Estimated change locations Θ̂ℓ, change scores {s(θ̂) : θ̂ ∈ Θ̂ℓ}
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Algorithm 2: Multi-lag NP-MOJO algorithm

Input: Multivariate time series {Xt}nt=1, bandwidth G, set of lags L, kernel h,
selection parameter η, threshold level α, bootstrap parameters bn and R,
merge parameter c

Initialise Θ̂← ∅
for ℓ ∈ L do

{Θ̂ℓ, {s(θ̂) : θ̂ ∈ Θ̂ℓ}} ← NP-MOJO({Xt}nt=1, G, ℓ, h, η, α, bn, R)

Θ̃←
⋃

ℓ∈L Θ̂ℓ

Θ̃1 ← Θ̃, j ← 1

while Θ̃j ̸= ∅ do

θ̂ ← min Θ̃j

Cj ← {θ̃ ∈ Θ̃j : θ̃ − θ̂ < cG}
θ̂j ← argmaxθ̃∈Cj s(θ̃)

Θ̂← Θ̂ ∪ {θ̂j}
Θ̃j+1 ← Θ̃j \ Cj
j ← j + 1

Output: Estimated change locations Θ̂, estimated number of changes q̂ = |Θ̂|
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B Complete simulation study

We examine the performance of NP-MOJO via a wide-ranging simulation study. For all

experiments we simulate 1000 replications. All tuning parameters are set as described in

Section 4. We report the results from both single-lag and multi-lag NP-MOJO with the set

of lags L = {0, 1, 2}, which are denoted by NP-MOJO-ℓ and NP-MOJO-L, respectively.
Where appropriate, we compare with competing methods for which R implementations

are readily available. In particular, we consider parametric methods which are designed

specifically for detecting the particular types of changes we introduce in data generation, and

their performance serve as a benchmark. Information about their implementation is given in

the relevant sections.

For nonparametric methods, we consider the E-Divisive approach of Matteson and James

(2014) (R package ecp, James and Matteson (2015)), the Kolmogorov-Smirnov-based CUSUM

procedure (NWBS) of Padilla et al. (2021) implemented in the changepoints R package (Xu

et al., 2022b), the kernel-based method (KCPA) of Celisse et al. (2018) and Arlot et al. (2019)

(KernSeg, Rigaill and Marot (2018)), and the computationally efficient extension of Zou

et al. (2014) proposed by Haynes et al. (2017) (changepoint.np, Haynes and Killick (2021)),

referred to as cpt.np. In their implementation, we mostly follow the settings recommended by

the authors. For E-Divisive and cpt.np, we set the minimum segment length to be 30 and for

the former, we use the same settings as NP-MOJO for the number of bootstrap replications R

and level α. For cpt.np, we use the MBIC penalty for declaring change points and 10 quantiles

at which to estimate the cdf. For KCPA, we use the Gaussian kernel with bandwidth given by

the standard deviation, and calculate the penalty using the slope heuristic as recommended

in Arlot et al. (2019). We note that all four methods are developed for detecting changes in

the marginal distribution from independent data. NWBS and cpt.np are univariate methods

so their performance is not considered in the multivariate scenarios. Throughout, 0 denotes

a vector of zeros and I an identity matrix, whose dimensions are determined by the context.

B.1 Size comparison

We assess the performance of NP-MOJO and nonparametric change point methods when

there does not exist any change point in the time series. Unless stated otherwise, the time

series is univariate (p = 1) and εt ∼i.i.d. N (0, σ2
ε) with σε = 1. In all scenarios, we set

n = 1000.

(N1) Xt = εt.

(N2) Xt = εt where εt are i.i.d. t5-distributed random variables.

(N3) Xt = 0.7Xt−1 + εt.

(N4) Xt = εt + 0.9εt−1 + 0.8εt−2 + 0.7εt−3 + 0.6εt−4.
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(N5) Xt = σtεt where σ2
t = 0.5 + 0.4X2

t−1.

(N6) Xt = AXt−1 + εt with p = 2 where εt ∼i.i.d. N2(0, I) and A = [Aii′ ] ∈ R2×2 has

A11 = A22 = 0.4, A12 = A21 = −0.2.

(N7) Xt = AXt−1 + εt with p = 5 where εt ∼i.i.d. N5(0, I) and A = [Aii′ ] ∈ R5×5 has

Aii′ = 0.3|i−i′|.

Table B.1 reports the proportion of realisations where change points are falsely detected.

The single-lag NP-MOJO controls the size well across all scenarios. As expected, the multi-

lag extension tends to return more spurious estimators but it shows reasonably good size

performance. KCPA does not tend to return spurious estimators even when {Xt}nt=1 is serially

correlated. On the other hand, E-Divisive, NWBS and cpt.np suffer from the presence of

temporal dependence as they are calibrated for independent data. In the case of cpt.np, it

tends to return spurious estimators even when the data is independently generated.

Table B.1: Size comparison: we report the size, the proportion of realisations where change points are

falsely detected when q = 0 out of 1000 realisations.

Size Model

Method (N1) (N2) (N3) (N4) (N5) (N6) (N7)

NP-MOJO-0 0.043 0.050 0.123 0.104 0.064 0.045 0.021

NP-MOJO-1 0.061 0.058 0.116 0.100 0.043 0.053 0.016

NP-MOJO-2 0.059 0.065 0.138 0.116 0.082 0.064 0.026

NP-MOJO-L 0.114 0.114 0.172 0.140 0.125 0.089 0.033

E-Divisive 0.109 0.112 1.000 1.000 0.167 0.631 0.999

KCPA 0.005 0.005 0.055 0.011 0.005 0.003 0.000

NWBS 0.049 0.037 0.841 0.791 0.103 – –

cpt.np 0.286 0.313 1.000 1.000 0.695 – –

B.2 Detection comparison

We investigate NP-MOJO in its change point detection performance in a variety of change

point scenarios. Where relevant, we compare NP-MOJO with the relevant parametric change

point detection methods, in addition to the nonparametric ones considered in Section B.1,

and their performance serves as a benchmark.

For each scenario, we report the distribution of the error in estimating the number of

change points. For single lag NP-MOJO, this refers to the distribution of q̂ℓ − qℓ (recall the

definition of qℓ given in Section 3.2) over the 1000 realisations, while for the multi-lag NP-

MOJO and other methods, the distribution of q̂ − q is reported. We also report the covering

metric (CM, Arbelaez et al., 2010) and V-measure (VM, Rosenberg and Hirschberg, 2007) of

the segmentation defined by the set of estimated change points. Let P = {Aj}q+1
j=1 denote the
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partition of {1, . . . , n} defined by the true change locations {θj}qj=1, i.e.Aj = {θj−1+1, . . . , θj}.
Similarly we denote by P̂ = {Âj}q̂+1

j=1 the partition defined by a set of estimated change points.

Then, CM is defined as

CM(P̂,P) = 1

n

∑
A∈P
|A|max

Â∈P̂

{
|A ∩ Â|
|A ∪ Â|

}
,

and advocated as an evaluation metric for comparing change point detection algorithms

(van den Burg and Williams, 2020). VM is similarly calculated using the conditional en-

tropy of the resulting segmentation. Both the CM and VM take values between 0 and 1, with

a value of 1 indicating a perfect segmentation. For each measure, we report its average over

the 1000 realisations.

B.2.1 Changes in mean

We generate time series under the model

Xt =

q∑
j=0

µjI{θj + 1 ≤ t ≤ θj}+ εt, 1 ≤ t ≤ n, (B.1)

with n = 1000, q = 3, (θ1, θ2, θ3) = (250, 500, 750) and (µ0, µ1, µ2, µ3) = (0, 1, 0, 1). The error

sequence {εt}nt=1 is simulated according to models (N1)–(N4) from Section B.1, and then is

standardised such that Var(εt) = 1; we refer to the corresponding scenarios as (A1)–(A4).

To these scenarios, in addition to the nonparametric methods considered in Section B.1, we

apply the pruned exact linear time (PELT) method (Killick et al., 2012) implemented in the

changepoint R package (Killick and Eckley, 2014) and WCM.gSa (Cho and Fryzlewicz, 2021)

implemented in Anastasiou et al. (2022). While both detect multiple mean shifts in univariate

time series, PELT is proposed for independent data while WCM.gSa handles autocorrelations

under an AR model.

In addition, we consider a multivariate scenario:

(A5) Setting p = 10,Xt follows (B.1) with εt ∼i.i.d. N10(0, I) and (µ0, µ1, µ2, µ3) = (0,∆,0,∆),

where ∆ has its first 5 coordinates set to 0.5 and the rest to 0.

The results are reported in Table B.2. In general, NP-MOJO accurately detects the

number and locations of change points across all scenarios regardless of the choice of the lag,

as the changes in the mean are detectable at all lags. In the independent settings (A1) and

(A2), its performance is comparable to PELT while in the presence of serial dependence under

(A3) and (A4), it performs as well as WCM.gSa. Among the nonparametric methods, NP-

MOJO and KCPA outperform E-Divisive, NWBS and cpt.np and NP-MOJO tends to perform

better than KCPA, either marginally or significantly, particularly in the multivariate setting
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in (A5). As noted in Section B.1, E-Dvisive, NWBS and cpt.np suffer from the departure

from the independence assumption.

Table B.2: (A1)–(A5): we report the distribution of the estimated number of change points and the

average CM and VM over 1000 realisations. The modal value of q̂ − q in each row is given in bold.

Also, the best performance for each metric is underlined for each scenario.

q̂ − q

Model Method ≤ −2 −1 0 1 ≥ 2 CM VM

(A1) NP-MOJO-0 0.000 0.019 0.976 0.005 0.000 0.958 0.942

NP-MOJO-1 0.000 0.003 0.997 0.000 0.000 0.971 0.955

NP-MOJO-2 0.000 0.002 0.997 0.001 0.000 0.971 0.955

NP-MOJO-L 0.000 0.001 0.999 0.000 0.000 0.970 0.953

E-Divisive 0.000 0.000 0.912 0.070 0.018 0.975 0.965

KCPA 0.000 0.000 0.971 0.028 0.001 0.977 0.963

NWBS 0.000 0.000 0.955 0.028 0.017 0.971 0.956

cpt.np 0.000 0.000 0.788 0.184 0.028 0.964 0.955

PELT 0.000 0.000 1.000 0.000 0.000 0.983 0.970

WCM.gSa 0.000 0.000 0.972 0.021 0.007 0.980 0.969

(A2) NP-MOJO-0 0.000 0.002 0.998 0.000 0.000 0.974 0.958

NP-MOJO-1 0.000 0.000 1.000 0.000 0.000 0.977 0.962

NP-MOJO-2 0.000 0.000 0.999 0.001 0.000 0.976 0.961

NP-MOJO-L 0.000 0.000 1.000 0.000 0.000 0.976 0.961

E-Divisive 0.000 0.000 0.913 0.058 0.029 0.977 0.969

KCPA 0.000 0.000 0.978 0.021 0.001 0.983 0.972

NWBS 0.000 0.000 0.970 0.015 0.015 0.979 0.967

cpt.np 0.000 0.000 0.739 0.206 0.055 0.960 0.954

PELT 0.000 0.000 1.000 0.000 0.000 0.983 0.970

WCM.gSa 0.000 0.000 0.973 0.016 0.011 0.980 0.969

(A3) NP-MOJO-0 0.000 0.000 0.999 0.001 0.000 0.986 0.978

NP-MOJO-1 0.000 0.000 0.997 0.003 0.000 0.984 0.974

NP-MOJO-2 0.000 0.000 0.997 0.003 0.000 0.984 0.973

NP-MOJO-L 0.000 0.000 1.000 0.000 0.000 0.984 0.975

E-Divisive 0.000 0.000 0.001 0.000 0.999 0.413 0.675

KCPA 0.000 0.000 0.724 0.151 0.125 0.959 0.962

NWBS 0.000 0.000 0.000 0.000 1.000 0.438 0.662

cpt.np 0.000 0.000 0.002 0.009 0.989 0.655 0.779

PELT 0.000 0.000 0.233 0.244 0.523 0.885 0.914

WCM.gSa 0.000 0.000 0.949 0.027 0.024 0.985 0.981

(A4) NP-MOJO-0 0.000 0.000 0.996 0.004 0.000 0.980 0.969

NP-MOJO-1 0.000 0.000 0.997 0.003 0.000 0.978 0.966
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NP-MOJO-2 0.000 0.000 0.997 0.003 0.000 0.977 0.964

NP-MOJO-L 0.000 0.000 1.000 0.000 0.000 0.979 0.967

E-Divisive 0.000 0.000 0.000 0.000 1.000 0.416 0.674

KCPA 0.000 0.000 0.910 0.062 0.028 0.978 0.972

NWBS 0.000 0.000 0.001 0.000 0.999 0.437 0.658

cpt.np 0.000 0.000 0.000 0.006 0.994 0.642 0.769

PELT 0.000 0.000 0.309 0.272 0.419 0.905 0.923

WCM.gSa 0.000 0.000 0.987 0.010 0.003 0.985 0.977

(A5) NP-MOJO-0 0.001 0.013 0.986 0.006 0.000 0.971 0.957

NP-MOJO-1 0.000 0.005 0.995 0.000 0.000 0.976 0.962

NP-MOJO-2 0.000 0.004 0.996 0.000 0.000 0.976 0.961

NP-MOJO-L 0.000 0.003 0.997 0.000 0.000 0.975 0.961

E-Divisive 0.000 0.000 0.913 0.072 0.015 0.978 0.969

KCPA 1.000 0.000 0.000 0.000 0.000 0.250 0.000

B.2.2 Changes in second-order moments

We first consider the scenarios where Xt undergoes changes in variance or covariance which

are detectable at all lags, with n = 1000, q = 3 and (θ1, θ2, θ3) = (250, 500, 750).

(B1) Xt =
∑q

j=0 σjI{θj + 1 ≤ t ≤ θj+1} · εt where εt ∼i.i.d. N (0, 1) and (σ0, σ1, σ2, σ3) =

(0.5, 1, 0.5, 1).

(B2) Xt =
∑q

j=0 σjI{θj + 1 ≤ t ≤ θj+1} · εt with σj chosen as in (B1) where εt ∼i.i.d. t5.

(B3) Xt = 0.4Xt−1+
∑q

j=0 σjI{θj + 1 ≤ t ≤ θj+1}·εt where εt ∼i.i.d. N (0, 1) and (σ0, σ1, σ2, σ3) =

(1, 0.2, 1, 0.2).

(B4) Xt =
∑q

j=0Σ
1/2
j I{θj + 1 ≤ t ≤ θj+1} ·εt with p = 2, where εt ∼i.i.d. N2(0, I), Σ0 = Σ2 =

I and Σ1 = Σ3 = ( 1 0.9
0.9 1 ).

(B5) As in (B4) where εt = (ε1t, ε2t)
⊤ generated with εit ∼i.i.d. t5.

In addition to the nonparametric competitors, we consider the wavelet-based WBS ap-

proach (WBSTS) of Korkas and Fryzlewicz (2017), implemented in the R package wbsts

(Korkas and Fryzlewicz, 2020), when p = 1, and the sparsified binary segmentation (SBS)

(Cho and Fryzlewicz, 2015), implemetend in the R package hdbinseg (Cho and Fryzlewicz,

2018) when p > 1, both of which are developed for detecting changes in the second-order

structure of time series. The results are reported in Table B.3. NP-MOJO consistently out-

performs the competing nonparametric methods in all metrics. It is competitive with WBSTS

and SBS which specifically seek changes in the second-order structure and in fact, NP-MOJO

performs better in estimating q when the data is non-Gaussian in model (B2).
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Table B.3: (B1)–(B5): we report the distribution of the estimated number of change points and the

average CM and VM over 1000 realisations. The modal value of q̂ − q in each row is given in bold.

Also, the best performance for each metric is underlined for each scenario.

q̂ − q

Model Method ≤ −2 −1 0 1 ≥ 2 CM VM

(B1) NP-MOJO-0 0.000 0.052 0.930 0.017 0.001 0.942 0.928

NP-MOJO-1 0.000 0.008 0.986 0.006 0.000 0.965 0.949

NP-MOJO-2 0.000 0.008 0.988 0.004 0.000 0.966 0.949

NP-MOJO-L 0.000 0.006 0.994 0.000 0.000 0.965 0.948

E-Divisive 0.003 0.008 0.896 0.069 0.024 0.946 0.934

KCPA 0.007 0.000 0.955 0.033 0.005 0.965 0.949

NWBS 0.429 0.093 0.364 0.089 0.025 0.616 0.558

cpt.np 0.000 0.000 0.676 0.214 0.110 0.943 0.936

WBSTS 0.000 0.000 0.978 0.021 0.001 0.960 0.941

(B2) NP-MOJO-0 0.005 0.133 0.839 0.023 0.000 0.912 0.905

NP-MOJO-1 0.000 0.044 0.945 0.011 0.000 0.944 0.929

NP-MOJO-2 0.000 0.033 0.956 0.011 0.000 0.945 0.929

NP-MOJO-L 0.000 0.012 0.988 0.000 0.000 0.950 0.932

E-Divisive 0.035 0.039 0.814 0.096 0.016 0.910 0.902

KCPA 0.100 0.003 0.863 0.032 0.002 0.904 0.882

NWBS 0.559 0.136 0.212 0.064 0.029 0.510 0.423

cpt.np 0.001 0.000 0.615 0.269 0.115 0.924 0.915

WBSTS 0.000 0.002 0.693 0.230 0.075 0.905 0.894

(B3) NP-MOJO-0 0.025 0.121 0.840 0.014 0.000 0.905 0.899

NP-MOJO-1 0.000 0.024 0.962 0.014 0.000 0.953 0.937

NP-MOJO-2 0.000 0.035 0.953 0.012 0.000 0.949 0.934

NP-MOJO-L 0.000 0.013 0.987 0.000 0.000 0.953 0.936

E-Divisive 0.000 0.000 0.148 0.178 0.674 0.774 0.813

KCPA 0.163 0.004 0.739 0.071 0.023 0.858 0.833

NWBS 0.085 0.036 0.110 0.118 0.651 0.657 0.700

cpt.np 0.000 0.000 0.046 0.105 0.849 0.789 0.831

WBSTS 0.000 0.000 0.979 0.021 0.000 0.954 0.934

(B4) NP-MOJO-0 0.000 0.000 1.000 0.000 0.000 0.981 0.967

NP-MOJO-1 0.000 0.031 0.963 0.006 0.000 0.965 0.953

NP-MOJO-2 0.000 0.015 0.976 0.009 0.000 0.969 0.955

NP-MOJO-L 0.000 0.000 1.000 0.000 0.000 0.979 0.965

E-Divisive 0.529 0.168 0.256 0.032 0.015 0.557 0.506

KCPA 0.077 0.000 0.909 0.014 0.000 0.935 0.915

SBS 0.044 0.000 0.942 0.014 0.000 0.949 0.939
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(B5) NP-MOJO-0 0.000 0.001 0.997 0.002 0.000 0.974 0.959

NP-MOJO-1 0.005 0.121 0.867 0.007 0.000 0.931 0.927

NP-MOJO-2 0.006 0.103 0.884 0.007 0.000 0.935 0.929

NP-MOJO-L 0.000 0.001 0.999 0.000 0.000 0.973 0.958

E-Divisive 0.670 0.189 0.101 0.032 0.008 0.431 0.335

KCPA 0.322 0.000 0.662 0.015 0.001 0.775 0.725

SBS 0.614 0.003 0.377 0.006 0.000 0.653 0.660

B.2.3 Changes in temporal dependence

We consider the scenarios where the autocorrelations or the (conditional) variance of the data

change. Unless stated otherwise q = 2, (θ1, θ2) = (333, 667) and εt ∼i.i.d. N (0, 1).

(C1) Xt = X
(j)
t = ajX

(j)
t−1 + εt for θj + 1 ≤ t ≤ θj+1, where (a0, a1, a2) = (−0.8, 0.8,−0.8).

(C2) Xt = εt +
∑q

j=0 bjI{θj + 1 ≤ t ≤ θj+1} · εt−2, where (b0, b1, b2) = (−0.7, 0.7,−0.7).

(C3) Xt = X
(j)
t = σ

(j)
t εt with (σ

(j)
t )2 = ωj + αj(X

(j)
t−1)

2 + βj(σ
(j)
t−1)

2) for θj + 1 ≤ t ≤ θj+1,

q = 1, θ1 = 500, (ω0, α0, β0) = (0.01, 0.7, 0.2) and (ω1, α1, β1) = (0.01, 0.2, 0.7).

(C4) Xt = X
(j)
t = AjX

(j)
t−1 + εt for θj + 1 ≤ t ≤ θj+1, where A0 = A2 = ( 0.5 0.1

0.1 0.5 ) and

A1 =
(−0.5 0.1

0.1 −0.5

)
.

(C5) Xt = εt +
∑q

j=0BjI{θj + 1 ≤ t ≤ θj+1} · εt−1, where B0 = B2 = ( 1 0.1
0.1 1 ) and B1 =(−1 0.1

0.1 −1

)
.

Model (C1) was studied in Korkas and Fryzlewicz (2017), while models similar to (C4) and

(C5) were considered in Preuß et al. (2015). In all models, except (C3), changes are present

only in the joint distribution of Xt and its lagged values. Therefore, we exclude the non-

parametric methods considered in Section B.1 which have detection power against changes in

marginal distribution only. Specifically, (q0, q1, q2) = (0, 0, 2) in (C2) and (q0, q1, q2) = (0, 2, 0)

in (C4) and (C5). Accordingly, in reporting the results returned by NP-MOJO-ℓ for ℓ = 0, 1, 2,

we report the distribution of q̂ℓ−qℓ and report CM and VM for NP-MOJO-ℓ with qℓ = 2 only,

see Table B.4. We observe that NP-MOJO performs similarly or superior to the competing

method in both detection and estimation accuracy. As expected, we do not detect all q change

points from NP-MOJO-ℓ for which qℓ < q, but the multi-lag extension successfully aggregates

the estimators from multiple lags.
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Table B.4: (C1)–(C5): we report the distribution of the estimated number of change points and the

average CM and VM over 1000 realisations. The modal value of q̂ − q in each row is given in bold.

Also, the best performance for each metric is underlined for each scenario.

q̂ − q / q̂ℓ − qℓ

Model Method −2 −1 0 1 ≥ 2 CM VM

(C1) NP-MOJO-0 – – 0.851 0.140 0.009 – –

NP-MOJO-1 0.000 0.002 0.956 0.042 0.000 0.978 0.961

NP-MOJO-2 – – 0.836 0.149 0.015 – –

NP-MOJO-L 0.000 0.002 0.986 0.012 0.000 0.980 0.963

WBSTS 0.000 0.000 0.414 0.299 0.287 0.904 0.900

(C2) NP-MOJO-0 – – 0.952 0.047 0.001 – –

NP-MOJO-1 – – 0.930 0.068 0.002 – –

NP-MOJO-2 0.001 0.054 0.908 0.036 0.001 0.949 0.926

NP-MOJO-L 0.001 0.051 0.942 0.006 0.000 0.950 0.926

WBSTS 0.007 0.021 0.899 0.062 0.011 0.896 0.852

(C3) NP-MOJO-0 – 0.409 0.533 0.056 0.002 0.744 0.484

NP-MOJO-1 – 0.236 0.682 0.081 0.001 0.819 0.633

NP-MOJO-2 – 0.299 0.626 0.073 0.002 0.787 0.571

NP-MOJO-L – 0.210 0.727 0.062 0.001 0.823 0.645

WBSTS – 0.003 0.025 0.054 0.918 0.662 0.487

(C4) NP-MOJO-0 – – 0.904 0.090 0.006 – –

NP-MOJO-1 0.004 0.159 0.783 0.051 0.003 0.907 0.893

NP-MOJO-2 – – 0.888 0.107 0.005 – –

NP-MOJO-L 0.004 0.165 0.818 0.013 0.000 0.907 0.891

SBS 0.070 0.000 0.911 0.019 0.000 0.903 0.875

(C5) NP-MOJO-0 – – 0.939 0.058 0.003 – –

NP-MOJO-1 0.000 0.011 0.952 0.035 0.002 0.974 0.957

NP-MOJO-2 – – 0.926 0.073 0.001 – –

NP-MOJO-L 0.000 0.012 0.979 0.009 0.000 0.976 0.957

SBS 0.006 0.000 0.961 0.033 0.000 0.967 0.942

B.2.4 Changes in higher-order moments

We simulate scenarios where there are changes in stochastic properties beyond the first two

moments. In what follows, we have q = 2 and (θ1, θ2) = (333, 667).

(D1) Xt ∼i.i.d. N (0, 1) for t ≤ θ1 and t ≥ θ2 + 1, and Xt ∼ i.i.d. t2.5/
√
5 for θ1 + 1 ≤ t ≤ θ2.

(D2) Xt ∼ i.i.d. 0.5 + (χ2
1 − 1)/2

√
2 for t ≤ θ1 and t ≥ θ2 + 1, and Xt ∼ i.i.d. N (0.5, 0.52) for

θ1 + 1 ≤ t ≤ θ2.
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(D3) Xt = 0.4Xt−1 + εt where εt ∼i.i.d. N (0, 0.52) for t ≤ θ1 and t ≥ θ2 + 1, and εt ∼i.i.d.

Exponential(0.5)− 0.5 for θ1 + 1 ≤ t ≤ θ2.

Model (D1) is taken from Padilla et al. (2021), where E(Xt) = 0 and Var(Xt) = 1 for all

t and changes occur in the tail of the distribution. Model (D2) is a variation of a scenario

studied in Arlot et al. (2019), where E(Xt) = 0.5 and Var(Xt) = 0.25 for all t with changes

in the tail behaviour. Model (D3) considers changes in higher order moments but allows the

data to be serially correlated. The results are reported in Table B.5, from which we see that

the multi-lag NP-MOJO procedure gives the strongest overall performance, particularly in

the serially correlated model (D3). KCPA performs the best from the competing methods,

and NWBS tends to under-detect the change points while cpt.np over-detects them.

Table B.5: (D1)–(D3): we report the distribution of the estimated number of change points and the

average CM and VM over 1000 realisations. The modal value of q̂ − q in each row is given in bold.

Also, the best performance for each metric is underlined for each scenario.

q̂ − q

Model Method −2 −1 0 1 ≥ 2 CM VM

(D1) NP-MOJO-0 0.000 0.069 0.892 0.037 0.002 0.933 0.904

NP-MOJO-1 0.003 0.134 0.810 0.053 0.000 0.902 0.874

NP-MOJO-2 0.000 0.128 0.823 0.049 0.000 0.905 0.878

NP-MOJO-L 0.000 0.034 0.960 0.006 0.000 0.942 0.909

E-Divisive 0.113 0.086 0.699 0.079 0.023 0.832 0.770

KCPA 0.086 0.002 0.890 0.019 0.003 0.909 0.853

NWBS 0.496 0.070 0.339 0.076 0.019 0.582 0.394

cpt.np 0.006 0.004 0.592 0.276 0.122 0.896 0.864

(D2) NP-MOJO-0 0.000 0.005 0.981 0.014 0.000 0.970 0.944

NP-MOJO-1 0.000 0.126 0.824 0.049 0.001 0.904 0.874

NP-MOJO-2 0.001 0.105 0.831 0.060 0.003 0.909 0.879

NP-MOJO-L 0.000 0.003 0.993 0.004 0.000 0.964 0.934

E-Divisive 0.000 0.000 0.894 0.058 0.048 0.956 0.931

KCPA 0.104 0.001 0.880 0.014 0.001 0.897 0.835

NWBS 0.350 0.000 0.508 0.101 0.041 0.731 0.596

cpt.np 0.000 0.000 0.741 0.184 0.075 0.962 0.950

(D3) NP-MOJO-0 0.003 0.139 0.809 0.049 0.000 0.899 0.872

NP-MOJO-1 0.006 0.155 0.792 0.047 0.000 0.892 0.864

NP-MOJO-2 0.021 0.248 0.685 0.045 0.001 0.848 0.819

NP-MOJO-L 0.002 0.082 0.914 0.002 0.000 0.917 0.884

E-Divisive 0.005 0.002 0.072 0.118 0.803 0.681 0.707

KCPA 0.441 0.012 0.481 0.052 0.014 0.667 0.500

NWBS 0.047 0.015 0.139 0.124 0.675 0.680 0.676
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cpt.np 0.000 0.000 0.045 0.055 0.900 0.726 0.756
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C Proofs of main results

C.1 Proof of Lemma 1

If g(j)(·) = g(j−1)(·), then ϕ
(j)
ℓ (u, v) = ϕ

(j−1)
ℓ (u, v) for all (u, v), which implies that |ϕ(j)

ℓ (u, v)−
ϕ
(j−1)
ℓ (u, v)|2 ≡ 0, and hence d

(j)
ℓ = 0 in (2). Conversely, suppose that d

(j)
ℓ = 0 for all

ℓ ≥ 0. Then, ϕ
(j)
ℓ (u, v) − ϕ

(j−1)
ℓ (u, v) = 0 a.e. since w(u, v) > 0 for u, v ̸= 0, and hence

g(j)(·) = g(j−1)(·).

C.2 Proof of Lemma 2

We first consider the integrand term in (2) involving the characteristic functions. We have

that ∣∣∣ϕ(j)
ℓ (u, v)− ϕ

(j−1)
ℓ (u, v)

∣∣∣2 = ϕ
(j)
ℓ (u, v)ϕ

(j)
ℓ (u, v) + ϕ

(j−1)
ℓ (u, v)ϕ

(j−1)
ℓ (u, v)

− ϕ
(j)
ℓ (u, v)ϕ

(j−1)
ℓ (u, v)− ϕ

(j)
ℓ (u, v)ϕ

(j−1)
ℓ (u, v)

=: A+B − C −D.

Then,

A = E
[
exp

(
ı⟨u,X(j)

1 ⟩+ ı⟨v,X(j)
1+ℓ⟩

)]
E
[
exp(−ı⟨u, X̃(j)

1 ⟩ − ı⟨v, X̃(j)
1+ℓ⟩)

]
= E

[
exp

(
ı⟨u,X(j)

1 − X̃
(j)
1 ⟩+ ı⟨v,X(j)

1+ℓ − X̃
(j)
1+ℓ⟩

)]
.

In a similar fashion,

B = E
[
exp

(
ı⟨u,X(j−1)

1 − X̃
(j−1)
1 ⟩+ ı⟨v,X(j−1)

1+ℓ − X̃
(j−1)
1+ℓ ⟩

)]
,

C = E
[
exp

(
ı⟨u, X̃(j)

1 −X
(j−1)
1 ⟩+ ı⟨v, X̃(j)

1+ℓ −X
(j−1)
1+ℓ ⟩

)]
,

D = E
[
exp

(
−ı⟨u, X̃(j)

1 −X
(j−1)
1 ⟩ − ı⟨v, X̃(j)

1+ℓ −X
(j−1)
1+ℓ ⟩

)]
.

Note that since d
(j)
ℓ is real, any term of the form exp(ız) with z ∈ R can be replaced by cos z.

Therefore, we have that C = D, and we can re-write the integral (2) in terms of cosines as

d
(j)
ℓ =

∫
Rp

∫
Rp

E(COS(u, v))w(u, v)dudv, where

COS(u, v) = cos(⟨u,X(j)
1 − X̃

(j)
1 ⟩) cos(⟨v,X

(j)
1+ℓ − X̃

(j)
1+ℓ⟩)

+ cos(⟨u,X(j−1)
1 − X̃

(j−1)
1 ⟩) cos(⟨v,X(j−1)

1+ℓ − X̃
(j−1)
1+ℓ ⟩)

− 2 cos(⟨u, X̃(j)
1 −X

(j−1)
1 ⟩) cos(⟨v, X̃(j)

1+ℓ −X
(j−1)
1+ℓ ⟩).

36



Under the assumptions of Lemma 2 (i), for weight w1 we obtain

d
(j)
ℓ =

∫
Rp

∫
Rp

E[COS(u, v)]w1(u, v)dudv

=

∫
Rp

∫
Rp

E
[
cos(⟨u,X(j)

1 − X̃
(j)
1 ⟩) cos(⟨v,X

(j)
1+ℓ − X̃

(j)
1+ℓ⟩)

]
w1(u, v)dudv

+

∫
Rp

∫
Rp

E
[
cos(⟨u,X(j−1)

1 − X̃
(j−1)
1 ⟩) cos(⟨v,X(j−1)

1+ℓ − X̃
(j−1)
1+ℓ ⟩)

]
w1(u, v)dudv

−
∫
Rp

∫
Rp

2E
[
cos(⟨u, X̃(j)

1 −X
(j−1)
1 ⟩) cos(⟨v, X̃(j)

1+ℓ −X
(j−1)
1+ℓ ⟩)

]
w1(u, v)dudv

= E
[
h1

(
Y

(j)
1 , Ỹ

(j)
1

)]
+ E

[
h1

(
Y

(j−1)
1 , Ỹ

(j−1)
1

)]
− 2E

[
h1

(
Ỹ

(j)
1 , Y

(j−1)
1

)]
.

The integral and expectation can be swapped by applying Fubini’s theorem, due to finiteness

of the expectation. The final line follows from an application of Lemma D.1. An analogous

argument for Lemma 2 (ii), using Lemma D.2, yields

d
(j)
ℓ = E

[
h2

(
Y

(j)
1 , Ỹ

(j)
1

)]
+ E

[
h2

(
Y

(j−1)
1 , Ỹ

(j−1)
1

)]
− 2E

[
h2

(
Ỹ

(j)
1 , Y

(j−1)
1

)]
for weight w2. To prove Lemma 2 A.1 for weight w3, we re-write the integral (2) to obtain

d
(j)
ℓ =

∫
Rp

∫
Rp

E[COS(u, v)]w3(u, v)dudv

=

∫
Rp

∫
Rp

2E
[
1− cos(⟨u, X̃(j)

1 −X
(j−1)
1 ⟩) cos(⟨v, X̃(j)

1+ℓ −X
(j−1)
1+ℓ ⟩)

]
w3(u, v)dudv

−
∫
Rp

∫
Rp

E
[
1− cos(⟨u,X(j)

1 − X̃
(j)
1 ⟩) cos(⟨v,X

(j)
1+ℓ − X̃

(j)
1+ℓ⟩)

]
w3(u, v)dudv

−
∫
Rp

∫
Rp

E
[
1− cos(⟨u,X(j−1)

1 − X̃
(j−1)
1 ⟩) cos(⟨v,X(j−1)

1+ℓ − X̃
(j−1)
1+ℓ ⟩)

]
w3(u, v)dudv

= 2E
[
h3

(
Ỹ

(j)
1 , Y

(j−1)
1

)]
− E

[
h3

(
Y

(j)
1 , Ỹ

(j)
1

)]
− E

[
h3

(
Y

(j−1)
1 , Ỹ

(j−1)
1

)]
.

The expectation can be swapped with the integral using Fubini’s theorem, since E(∥X(j)
1 ∥γ) <

∞. The final line follows from Lemma D.3.

C.3 Proof of Theorem 1

The proof proceeds in three steps. Step 1 derives a bound on maxG≤k≤n−G |Tℓ(G, k) −
Dℓ(G, k)|, with which Step 2 shows that exactly one change point is detected within (G− ℓ)

time points from each θj , j ∈ Iℓ, and no other estimator is detected. Then Step 3 derives the

rate of estimation.
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Step 1. For any G ≤ k ≤ n−G, we have

Tℓ(G, k)−Dℓ(G, k) = [Tℓ(G, k)− E(Tℓ(G, k))] + [E(Tℓ(G, k))−Dℓ(G, k)] .

Lemma D.4 shows that |E(Tℓ(G, k))−Dℓ(G, k)| = O(G−1/2). Combining this with Lemma D.6,

we have for any z ≥ 1/
√
G− ℓ,

P

(
max

G≤k≤n−G
|Tℓ(G, k)−Dℓ(G, k)| > O(G−1/2) + z

)
≤ 6nG2 exp (−c1zγGγ) + 12nG exp

(
−c2z2G

)
.

Therefore, we obtain P(Eℓ,n)→ 1 as n→∞, where

Eℓ,n =

{
max

G≤k≤n−G
|Tℓ(G, k)−Dℓ(G, k)| ≤ c0

2

√
log(n)

G

}
(C.1)

for large enough constant c0 >
√

2c′2.

In the following steps, all the arguments are conditional on Eℓ,n.

Step 2. Consider k satisfying minj∈Iℓ |k − θj | ≥ G − ℓ, for which Dℓ(G, k) = 0. Then

provided that cζ > c0/2, we have

max
k:minj∈Iℓ |k−θj |≥G−ℓ

Tℓ(G, k) ≤ max
G≤k≤n−G

|Tℓ(G, k)−Dℓ(G, k)| ≤ c0
2

√
log(n)

G
< ζℓ(n,G).

Therefore, no change point is detected more than (G− ℓ) time points away from of θj , j ∈ Iℓ,
i.e. max

θ̂∈Θ̂ℓ
|θ̂−θj | < G−ℓ. We now consider some θj , j ∈ Iℓ. By Lemma D.7 (i), we detect at

least one estimator within ⌈(1−η)G⌉ points from θj by having maxk: |k−θj |<(1−η)(G−ℓ) Tℓ(G, k) >

ζℓ(n,G), and none is detected outside this interval. Then Lemma D.7 (ii) shows that there

exists a unique local maximiser of Tℓ(G, k) within ⌊ηG⌋ time points from θj that meets the

criterion in (4). Since the lemma shows P(Sℓ,n)→ 1 and P(S̃ℓ,n)→ 1 (see the lemma for their

definitions), the above arguments hold for all j ∈ Iℓ, such that we have q̂ℓ = qℓ.

Step 3. For each j ∈ Iℓ, let θ̂j = argmin
θ̂∈Θ̂ℓ

|θ̂ − θj |. Then from Step 2, |θ̂j − θj | ≤ G− ℓ

such that

d
(j)
ℓ −

c0
2

√
log(n)

G
≤ Tℓ(G, θj) ≤ Tℓ(G, θ̂j) ≤

(
G− ℓ− |θ̂j − θj |

G− ℓ

)2

d
(j)
ℓ +

c0
2

√
log(n)

G
.
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From this, it follows that

d
(j)
ℓ

|θ̂j − θj |
G− ℓ

< d
(j)
ℓ

|θ̂j − θj |(2G− 2ℓ− |θ̂j − θj |)
(G− ℓ)2

≤ c0

√
log(n)

G
,

such that d
(j)
ℓ |θ̂j − θj | < c0

√
G log(n).

C.4 Proof of Theorem 2

Recall the definition of Eℓ,n in (C.1). In what follows, we condition our arguments on the

event En = ∩ℓ∈LEℓ,n which satisfies P(En) → 1 as n → ∞ for any fixed L. That is, in what

follows, all big-O and small-o terms can uniformly be replaced by OP and oP . Throughout,

we assume that there is a unique maximiser of d
(j)
ℓ with respect to ℓ ∈ L(j) for all j = 1, . . . , q.

In the case of ties, we arbitrary break them which does not alter the conclusion.

Proof of (i). By Step 2 in the proof of Theorem 1, we have for all ℓ ∈ L and large enough n:

(a) For all θ̃ ∈ Θ̂ℓ, there exists a unique index j ∈ Iℓ such that |θ̃ − θj | ≤ ηG, i.e. θ̃ is an

estimator of θj in view of Assumption 4 (i).

(b) Conversely, for all j ∈ Iℓ, there exists a unique element θ̃ ∈ Θ̂ℓ estimating θj such that

|θ̃ − θj | ≤ ηG.

Then by Assumption 5 and (a), in the first iteration of multi-lag NP-MOJO, we identify θ̃1

which detects θ1 and satisfies |θ̃1 − θ1| ≤ ηG. The set C1 contains the estimators of θ1 only.

To see this, for all θ̃ ∈ C1 and j > 1,

|θ̃ − θj | ≥ |θ2 − θ1| − |θ̃1 − θ1| − |θ̃ − θ̃1| > (2− c− η)G ≥ ηG

such that by (a), θ̃ cannot be an estimator of θj , j > 1. Besides, any estimator of θ1 is

contained in C1. To see this, if θ̃ /∈ C1,

|θ̃ − θ1| ≥ |θ̃ − θ̃1| − |θ̃1 − θ1| > (c− η)G ≥ ηG,

i.e. such θ̃ is not an estimator of θ1 by (a). From these and (b), for any θ̃ ∈ C1 ∩ Θ̂ℓ for some

lag ℓ ∈ L(1), we have d
(1)
ℓ |θ̃ − θ1| ≤ c0

√
G log(n) by Theorem 1 conditional on En. Then,

Tℓ(G, θ̃)

d
(1)
ℓ

=

(
G− ℓ− |θ̃ − θ1|

G− ℓ

)2

+O

(√
log(n)
√
Gd

(1)
ℓ

)

≥

(
1−

c0
√
G log(n)

d
(1)
ℓ (G− ℓ)

)2

+ o(1) = 1 + o(1), (C.2)
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where o(1) terms are due to Assumption 4 (ii). Therefore, for any distinct θ̃, θ̃′ ∈ C1 associated
with lags ℓ, ℓ′ ∈ L(1), respectively, we have

Tℓ(G, θ̃)

Tℓ′(G, θ̃′)
=

d
(1)
ℓ (1 + o(1))

d
(1)
ℓ′ (1 + o(1))

,

which implies that for n large enough, Step 3 of multi-lag NP-MOJO identifies θ̂1 ∈ C(1)∩Θ̂ℓ(1)

with ℓ(1) = argmaxℓ∈L(1) d
(1)
ℓ . This, combined with Theorem 1, establishes that

max
ℓ∈L(1)

d
(j)
ℓ |θ̂1 − θ1| ≤ c0

√
G log(n).

Step 4 of multi-lag NP-MOJO removes all estimators of θ1 from further consideration and

obtains Θ̃1, such that θ̃2 = min Θ̃2 is an estimator of θ2. Then iteratively applying the

above arguments, under Assumption 5 and (a)–(b), we obtain Θ̂ satisfying the claim of the

theorem.

Proof of (ii). The proof proceeds analogously as the proof of (i), with the following modifi-

cations of (a)–(b):

(a′) For all θ̃ ∈ Θ̂ℓ, ℓ ∈ L, there exists a unique index j ∈ Iℓ such that |θ̃ − θj | < G, i.e. θ̃ is

an estimator of θj in view of Assumption 6 (i).

(b′) For all j = 1, . . . , q, there exists at least one element θ̃ ∈ Θ̃ estimating θj such that

|θ̃ − θj | ≤ ηG. Among such θ̃, one is detected at lag ℓ(j) = maxℓ∈L(j) d
(j)
ℓ .

Then by (a′), in the first iteration of multi-lag NP-MOJO, we identify θ̃1 which detects θ1

and satisfies |θ̃1− θ1| < G. The set C1 contains the estimators of θ1 only, since for all θ̃ ∈ C1
and j > 1,

|θ̃ − θj | ≥ |θ2 − θ1| − |θ̃1 − θ1| − |θ̃ − θ̃1| > (3− c)G ≥ G,

such that by (a′), θ̃ cannot be an estimator of θj , j > 1. Besides, any estimator of θ1 is

contained in C1. To see this, if θ̃ /∈ C1,

|θ̃ − θ1| ≥ |θ̃ − θ̃1| − |θ̃1 − θ1| > (c− 1)G ≥ G.

From (b′), there exists θ̃ ∈ C1 detected at lag ℓ(1) such that analogously as in (C.2), we have

(d
(1)

ℓ(1)
)−1Tℓ(1)(G, θ̃) = 1 + o(1)
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conditional on En. At other θ̃′ ∈ C1 \ {θ̃} detected at some ℓ ∈ L(1) \ {ℓ(1)}, we have

Tℓ(G, θ̃′)

d
(1)
ℓ

≤ 1 +O

(√
log(n)
√
Gd

(1)
ℓ

)
= 1 + o(1), such that

Tℓ(G, θ̃′)

Tℓ(1)(G, θ̃)
≤

d
(1)
ℓ

d
(1)

ℓ(j)

(1 + o(1)) < 1

for large enough n. This implies that Step 3 of multi-lag NP-MOJO identifies θ̃ ∈ C(1) ∩ Θ̂ℓ(1)

as θ̂1. The rest of the proof is analogous to the proof of (i) and is omitted.

D Supporting lemmas

D.1 For Lemma 2

The proof of Lemma 2 requires the following lemmas for the weight functions w1, w2 and

w3. Lemmas D.1 and D.2 are stated without proof in Fan et al. (2017), whilst Lemma D.3 is

stated without proof in Bakirov et al. (2006). To the best of our knowledge, there is no proof

of these results in the related literature, so we provide proofs here for completeness.

Lemma D.1. For β > 0 and any x ∈ Rp,

I1(β, x) =

∫
Rp

cos(⟨t, x⟩) exp
(
− 1

2β2
∥t∥2

)
dt = C1(β, p) exp

(
−β2

2
∥x∥2

)
, (D.1)

where C1(β, p) = (2π)p/2βp.

Proof. First, consider the case where p = 1, from which the general case will follow. Recog-

nising I1(β, x) as the (scaled) characteristic function of N (0, β2), we have

I1(β, x) =
√
2πβ exp

(
−β2x2

2

)
.

For the general case, note that I(β, x) is invariant under orthogonal transformations H of x,

so that

I1(β, x) =

∫
Rp

cos (⟨Ht,Hx⟩) exp
(
− 1

2β2
∥Ht∥2

)
dt =

∫
Rp

cos(⟨t,Hx⟩) exp
(
− 1

2β2
∥t∥2

)
dt,

which follows since the inner product and Euclidean norm are invariant under orthogonal

transformations, and the transformation t 7→ Ht leaves the Lebesque measure dt unchanged.

Therefore, to evaluate I(β, x), we can replace x with ∥x∥(1, 0, . . . , 0). Letting t = (t1, . . . tp),

we obtain

I1(β, x) =

∫
Rp

cos(t1∥x∥) exp
(
− 1

2β2
∥t∥2

)
dt
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=

∫
R
cos(t1∥x∥) exp

(
− 1

2β2
t21

)
dt1

∫
Rp−1

exp

(
− 1

2β2

(
t22 + · · ·+ t2p

))
dt2 · · · dtp

=
√
2πβ exp

(
−β2

2
∥x∥2

) p∏
ℓ=2

∫
R
exp

(
−

t2ℓ
2β2

)
dtℓ

= (2π)p/2βp exp

(
−β2

2
∥x∥2

)
.

Lemma D.2. For δ > 0 and any x ∈ Rp,

I2(δ, x) =

∫
Rp

cos(⟨t, x⟩)
p∏

j=1

t2j exp(−δt2j )dt = C2(δ, x)

p∏
j=1

2δ − x2j
2δ

exp

(
− 1

4δ
x2j

)
, (D.2)

where C2(δ, p) = 2−1πp/2δ−3p/2.

Proof. We proceed by induction on the dimension p. First, consider the case where p = 1.

Then, repeatedly using integration by parts and Lemma D.1, we obtain

I2(δ, x) =

∫
R
cos(tx)t2 exp(−δt2)dt =

∫
R
[t cos(tx)]×

[
t exp(−δt2)

]
dt

=
1

2δ

∫
R
(cos(tx)− tx sin(tx)) exp

(
−δt2

)
dt

= 2−1√πδ−3/2 exp

(
− 1

4δ
x2
)
− x2

4δ2

∫
R
cos(tx) exp(−δt2)dt

= 2−1√πδ−3/2 exp

(
− 1

4δ
x2
)
−
√
πx2

4δ5/2
exp

(
− 1

4δ
x2
)

= 2−1√πδ−3/2 exp

(
− 1

4δ
x2
)(

2δ − x2

2δ

)
.

For general dimension p, assume the result is true for dimension p − 1 and proceed via

induction. Using the cosine summation formula, we have∫
Rp

cos(⟨t, x⟩)
p∏

j=1

t2j exp(−δt2j )dt

=

∫
Rp

cos
p−1∑

j=1

tjxj

 cos(tpxp)− sin

p−1∑
j=1

tjxj

 sin(tpxp)

 p∏
j=1

t2j exp(−δt2j )dt

=

∫
Rp−1

cos

p−1∑
j=1

tjxj

 p−1∏
j=1

t2j exp(−δt2j )dtj
∫
R
cos(tpxp)t

2
p exp(−δt2p)dtp

−
∫
Rp−1

sin

p−1∑
j=1

tjxj

 p−1∏
j=1

t2j exp(−δt2j )dtj
∫
R
sin(tpxp)t

2
p exp(−δt2p)dtp
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=

∫
Rp−1

cos

p−1∑
j=1

tjxj

 p−1∏
j=1

t2j exp(−δt2j )dtj
∫
R
cos(tpxp)t

2
p exp(−δt2p)dtp

=2−pπp/2δ−3p/2
p∏

j=1

2δ − x2j
2δ

exp

(
− 1

4δ
x2j

)
,

where the third line follows since the one-dimensional integral is the integral of an odd function

and integrates to 0, and the fourth line follows from the inductive assumption and the proof

in the case p = 1. Hence the result follows by induction.

Lemma D.3. For γ ∈ (0, 2) and any x, y ∈ Rp,

I3(γ, x, y) =

∫
Rp

∫
Rp

1− cos(⟨u, x⟩) cos(⟨v, y⟩)
(∥u∥2 + ∥v∥2)(γ+2p)/2

dudv = C3(γ, 2p)
(
∥x∥2 + ∥y∥2

)γ/2
, (D.3)

where C3(γ, p) =
2πp/2Γ(1− γ/2)

γ2γΓ((p+ γ)/2)
.

Proof. We first prove the case where p = 1, from which the general case will follow. First,

use the trigonometric identity 2 cos(a) cos(b) = cos(a+ b) + cos(a− b), to obtain

I3(γ, x, y) =
1

2

∫
R2

1− cos(ux+ vy)

(u2 + v2)(γ+2)/2
dudv +

1

2

∫
R2

1− cos(ux− vy)

(u2 + v2)(γ+2)/2
dudv =: A+B.

Considering the first term, make the transformation to polar coordinates u = r cos θ, v =

r sin θ, to obtain

A =
1

2

∫ 2π

0

∫ ∞

0

1− cos ((x cos θ + y sin θ) r)

|r|γ+1
drdθ.

Next, note that by Identity 3.032.2 of Gradshteyn and Ryzhik (2014) and since the integrand

is an even function with respect to r,

A =
1

2

∫ π

0

∫
R

1− cos
(
(
√
x2 + y2 cos θ)r

)
|r|γ+1

drdθ.

This term can be integrated with respect to r using Lemma 1 from Székely et al. (2007), to

yield

A =
1

2
C2(γ, 1)(x

2 + y2)γ/2
∫ π

0
| cos θ|γdθ.

Next, by elementary trigonometric integral identities, we obtain

A = C2(γ, 1)
(
x2 + y2

)γ/2 ∫ π/2

0
|cos θ|γ dθ = C2(γ, 1)

(
x2 + y2

)γ/2 √πΓ((γ + 1)/2)

2Γ(γ/2 + 1)
.
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A similar calculation shows that

B = C2(γ, 1)
(
x2 + y2

)γ/2 √πΓ((γ + 1)/2)

2Γ(γ/2 + 1)
.

Minor simplifications yield the required

I3(γ, x, y) = C2(γ, 2)
(
x2 + y2

)γ/2
.

For the general case, note that I(x, γ) is invariant under orthogonal transformations H of x

and y, so that∫
Rp

∫
Rp

1− cos(⟨u, x⟩) cos(⟨v, y⟩)
(∥u∥2 + ∥v∥2)(γ+2p)/2

dudv =

∫
Rp

∫
Rp

1− cos(⟨u,Hx⟩) cos(⟨v,Hy⟩)
(∥u∥2 + ∥v∥2)(γ+2p)/2

dudv,

which follows since the inner product and Euclidean norm are invariant under orthogonal

transformations. Therefore, to evaluate I(γ, x, y) we can replace x with ∥x∥(0, 0, . . . , 1), and
y with |y|2(0, 0, . . . , 1). Hence, letting u = (u1, . . . , up) and v = (v1, . . . , vp),

I3(γ, x, y) =

∫
Rp

∫
Rp

1− cos(up∥x∥) cos(vp∥y∥)
(∥u∥2 + ∥v∥2)(γ+2p)/2

dudv.

As in the p = 1 case, we split the integral into two parts to obtain

I3(γ, x, y) =
1

2

∫
Rp

∫
Rp

1− cos(up∥x∥+ vp∥y∥)
(∥u∥2 + ∥v∥2)(γ+2p)/2

dudv

+
1

2

∫
Rp

∫
Rp

1− cos(up∥x∥ − vp∥y∥)
(∥u∥2 + ∥v∥2)(γ+2p)/2

dudv = A+B.

Now, focusing on the the first term, make the transformation to 2p-dimensional spherical

coordinates, so that

u1 = r cos θ1, v1 = r sin θ1 cos θ2,

u2 = r sin θ1 sin θ2 cos θ3, v2 = r sin θ1 sin θ2 sin θ3 cos θ4,

...

up = r

2p−2∏
j=1

sin θj

 cos θ2p−1, vp = r

2p−2∏
j=1

sin θj

 sin θ2p−1,

where the (θ1, . . . , θ2p−2) range over D = [0, π]2p−2, and θ2p−1 ranges over [0, 2π). The

Jacobian of this transformation is given by

|J | = r2p−1dr

2p−2∏
j=1

sin2p−1−j(θj)dθj .
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Hence,

A =
1

2

∫
D

∫ 2π

0

∫ ∞

0

1− cos
(
r(∥x∥ cos θ2p−1 + ∥y∥ sin θ2p−1)

∏2p−2
j=1 sin θj

)
rγ+1

drdθ2p−1

×
2p−2∏
j=1

sin2p−1−j(θj)dθj

=
1

2
C2(γ, 1)(∥x∥2 + ∥y∥2)γ/2

∫ π

0
| cos θ2p−1|γdθ2p−1

2p−2∏
ℓ=1

∫ π

0
sin2p+γ−1−ℓ Iℓdθℓ

=
1

2
C2(γ, 1)(∥x∥2 + ∥y∥2)γ/2

√
πΓ((γ + 1)/2)

Γ(γ/2 + 1)

2p−2∏
ℓ=1

√
πΓ((2p+ γ − ℓ)/2)

Γ((2p+ γ − 1− ℓ)/2 + 1)

= (∥x∥2 + ∥y∥2)γ/2πΓ(1− γ/2)

Γ(1 + γ/2)
× πp−1Γ(1 + γ/2)

Γ((2p+ γ)/2)
=

πpΓ(1− γ/2)

γ2γΓ((2p+ γ)/2)
(∥x∥2 + ∥y∥2)γ/2.

The second line follows using Lemma 1 from Székely et al. (2007), and the third follows using

the fact that sin θi is nonnegative on [0, π], and the same trigonometric identities used in the

p = 1 case. The final line follows from cancellation in the numerator and denominator of

consecutive product terms. The term B can be dealt with in an identical manner to yield the

same expression. Therefore, we have that

I3(γ, x, y) =
2πpΓ(1− γ/2)

γ2γΓ((2p+ γ)/2)
(∥x∥2 + ∥y∥2)γ/2 = C2(γ, 2p)(∥x∥2 + ∥y∥2)γ/2.

D.2 For Theorem 1

Lemma D.4. Suppose that Assumptions 2, 3 and 4 (i) hold. Then, for Dℓ(G, k) defined in

Equation (3), we have that

max
G≤k≤n−G

|E(Tℓ(G, k))−Dℓ(G, k)| = O(G−1/2).

Proof. Firstly, from Assumption 2, since {Xt}t∈Z is β-mixing with algebraic decaying mixing

coefficients, then so too is {Yt}t∈Z with the same decay rate, since ℓ is fixed. Next, we have

Tℓ(G, k) =
1

(G− ℓ)2

 k−ℓ∑
s,t=k−G+1

h(Ys, Yt) +
k+G−ℓ∑
s,t=k+1

h(Ys, Yt)− 2
k−ℓ∑

s=k−G+1

k+G−ℓ∑
t=k+1

h(Ys, Yt)


=: T

(1)
ℓ (G, k) + T

(1)
ℓ (G, k +G)− 2T

(2)
ℓ (G, k).

Define the following notations, which are the nonstationary analogues of the standard quan-
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tities used in a Hoeffding decomposition of a V -statistic of order 2. When dealing with a

vector, let ≤ denote the inequality which is satisfied for all coordinates of the vector. Let

h1,G(y1) =

k−ℓ∑
t=k−G+1

∫
R2p

h(y1, y2)dFt(y2),

where Ft denotes the cdf of Yt. Next, let

V
(1)
ℓ (G, k) =

1

(G− ℓ)2

k−ℓ∑
s=k−G+1

∫
R2p

h1,G(y1)× d (I{Ys ≤ y1} − Fs(y1)) ,

V
(2)
ℓ (G, k) =

1

(G− ℓ)2

k−ℓ∑
s,t=k−G+1

∫
R2p

∫
R2p

h(y1, y2)× d (I{Ys ≤ y1} − Fs(y1)) d (I{Yt ≤ y2} − Ft(y2)) .

Further, define

µ
(1)
ℓ (G, k) =

1

(G− ℓ)2

k−ℓ∑
s,t=k−G+1

∫
R2p

∫
R2p

h(y1, y2)dFs(y1)dFt(y2)

=
1

(G− ℓ)2

k−ℓ∑
s,t=k−G+1

E(h(Ys, Ỹt)),

µ
(2)
ℓ (G, k) =

1

(G− ℓ)2

k−ℓ∑
s=k−G+1

k+G−ℓ∑
t=k+1

∫
R2p

∫
R2p

h(y1, y2)dFs(y1)dFt(y2)

=
1

(G− ℓ)2

k−ℓ∑
s=k−G+1

k+G−ℓ∑
t=k+1

E(h(Ys, Ỹt)),

where Ỹt denotes an independent copy of Yt. Then, following e.g. Harel and Puri (1989), by

the Hoeffding decomposition, we have that

T
(1)
ℓ (G, k) = µ

(1)
ℓ (G, k) + 2V

(1)
ℓ (G, k) + V

(2)
ℓ (G, k).

By Lemma 2.2 of Harel and Puri (1989), we have that E(V (r)(G, k)2) = O(G−1) for r = 1, 2,

from which it follows that∣∣∣E(T (1)
ℓ (G, k)

)
− µ

(1)
ℓ (G, k)

∣∣∣ = O(G−1/2).

An identical argument applies to the term T
(1)
ℓ (G, k + G). For T

(2)
ℓ (G, k), the Hoeffding

decomposition takes the following form:

T
(2)
ℓ (G, k) = µ

(2)
ℓ (G, k) + 2U

(1)
ℓ (G, k) + U

(2)
ℓ (G, k), where
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U
(1)
ℓ (G, k) =

1

(G− ℓ)2

k+G−ℓ∑
s=k+1

∫
R2p

h1,G(y1)× d (I{Ys ≤ y1} − Fs(y1)) ,

U
(2)
ℓ (G, k) =

1

(G− ℓ)2

k−ℓ∑
s=k−G+1

k+G−ℓ∑
t=k+1

∫
R2p

∫
R2p

h(y1, y2)

× d (I{Ys ≤ y1} − Fs(y1)) d (I{Yt ≤ y2} − Ft(y2)) ,

with E(U (1)
ℓ (G, k)) = 0. Analogously, we have from Equation (2.14) of Harel and Puri (1989)

that E(U (2)
ℓ (G, k)) = O(G−1), so that∣∣∣E(T (2)

ℓ (G, k)
)
− µ

(2)
ℓ (G, k)

∣∣∣ = O(G−1/2).

Therefore, we have that

|E(Tℓ(G, k))− µℓ(G, k)| = O(G−1/2), where (D.4)

µℓ(G, k) = µ
(1)
ℓ (G, k) + µ

(1)
ℓ (G, k +G)− 2µ

(2)
ℓ (G, k).

Next, we work out the form of µℓ(G, k), in order to express it in terms of the population

quantity d
(j)
ℓ . Firstly, consider the case where k ∈ {θj+G, . . . , θj+1−G} for some j = 0, . . . , q.

Then, by Assumption 4 (i), we have that

µ
(1)
ℓ (G, k) = µ

(1)
ℓ (G, k +G) = µ

(2)
ℓ (G, k) = E

(
h
(
Y

(j)
1 , Ỹ

(j)
1

))
,

so that µℓ(G, k) = 0. Now, consider k ∈ {θj − G + ℓ + 1, . . . , θj}. Denote h̃s,t = E(h(Ys, Ỹ)),
and let

A(1)
ℓ (G, k) = {(s, t) : k + 1 ≤ s, t ≤ k +G− ℓ, s or t ∈ {θj − ℓ+ 1, . . . , θj}},

A(2)
ℓ (G, k) = {(s, t) : k −G+ 1 ≤ s ≤ k − ℓ, θj − ℓ+ 1 ≤ t ≤ θj}.

Then, µℓ(G, k) is decomposed as

µℓ(G, k) =
1

(G− ℓ)2

 k−ℓ∑
s,t=k−G+1

h̃s,t +
k+G−ℓ∑
s,t=k+1

h̃s,t − 2
k−ℓ∑

s=k−G+1

k+G−ℓ∑
t=k+1

h̃s,t



=
1

(G− ℓ)2

 k−ℓ∑
s,t=k−G+1

h̃s,t +

θj−ℓ∑
s,t=k+1

h̃s,t + 2
k+G−ℓ∑
s=θj+1

θj−ℓ∑
t=k+1

h̃s,t +
k+G−l∑
s,t=θj+1

h̃s,t +
∑

s,t∈Θ(1)
ℓ (G,k)

h̃s,t


− 2

(G− ℓ)2

 θj−ℓ∑
s=k+1

k−ℓ∑
t=k−G+1

h̃s,t +
k−ℓ∑

s=k−G+1

k+G−ℓ∑
t=θj+1

h̃s,t + 2
∑

s,t∈Θ(2)
ℓ (G,k)

h̃s,t

 .

47



Let h(j) = E(h(Y (j)
1 , Ỹ

(j)
1 )) and analogously for h(j−1), and let h(j−1,j) = E(h(Y (j−1)

1 , Ỹ
(j)
1 )).

Noting that |A(1)
ℓ (G, k)| = O(2ℓG) and |A(2)

ℓ (G, k)| = O(ℓG), we have that terms involving

A(1)
ℓ (G, k) and A(2)

ℓ (G, k) are of order O(G−1), since h̃s,t is bounded by Assumption 3. Then,

rearranging terms and collecting remainder terms all of order O(G−1), we have that

µℓ(G, k) = h(j−1) +
(θj − ℓ− k)2

(G− ℓ)2
h(j−1) +

2(G− ℓ+ k − θj)(θj − ℓ− k)

(G− ℓ)2
h(j−1,j)

+
(G− ℓ+ k − θj)

2

(G− ℓ)2
h(j) − 2(G− ℓ)(θj − ℓ− k)

(G− ℓ)2
h(j−1)

− 2(G− ℓ)(G− ℓ+ k − θj)

(G− ℓ)2
h(j−1,j) +O(G−1)

=
(G− ℓ)2 + (θj − k − ℓ)2 − 2(G− ℓ)(θj − k − ℓ)

(G− ℓ)2
h(j−1) +

(G− ℓ+ k − θj)
2

(G− ℓ)2
h(j)

− 2
(G− ℓ)(G− ℓ+ k − θj)− (G− ℓ+ k − θj)(θj − k − ℓ)

(G− ℓ)2
h(j−1,j) +O(G−1)

=
(G− ℓ+ k − θj)

2 − ℓ2 + 2ℓ(G+ k − θj)

(G− ℓ)2
h(j−1) +

(G− ℓ+ k − θj)
2

(G− ℓ)2
h(j)

− 2
(G− ℓ+ k − θj)

2 − ℓ(G− ℓ+ k − θj)

(G− ℓ)2
h(j−1,j) +O(G−1)

=

(
G− ℓ+ k − θj

G− ℓ

)2 [
h(j−1) + h(j) − 2h(j−1,j)

]
+O(G−1)

=

(
G− ℓ+ k − θj

G− ℓ

)2

d
(j)
ℓ +O(G−1). (D.5)

A similar argument can be used in the case where k ∈ {θj + 1, . . . , θj +G− ℓ− 1}, to yield

µℓ(G, k) =

(
G− ℓ− k + θj

G− ℓ

)2

d
(j)
ℓ +O(G−1), (D.6)

Combining Equations (D.4), (D.5) and (D.6), we get that for any |k − θj | < G− ℓ,∣∣∣∣∣E(Tℓ(G, k))−
(
G− ℓ− |k − θj |

G− ℓ

)2

d
(j)
ℓ

∣∣∣∣∣ = O(G−1/2).

Lastly, when k ∈ {θj −G+ 1, . . . , θj −G+ ℓ} or k ∈ {θj +G− ℓ, . . . , θj −G− 1}, analogous
calculations show that µℓ(G, k) = O(G−1), so that E(Tℓ(G, k)) = O(G−1/2) for |k−θj | > G−ℓ,
yielding the desired result.

Lemma D.5 (Xu et al. (2022a), Theorem 4). Let {Zt}t∈Z be an R-valued, mean-zero, possibly

nonstationary process which admits the form Zt = gt(Ft), where gt is a measurable function
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and Ft = σ(εs, s ≤ t) with i.i.d. random elements {εs}s∈Z. Let the cumulative functional

dependence measure ∆m,2(Z) be defined as in Assumption 1. Assume that there exist absolute

constants γ1(Z), γ3(Z), CF, CZ > 0 such that

sup
m≥0

exp(CFm
γ1(Z))∆m,2(Z) ≤ CZ

and supt∈Z P(|Zt| > x) ≤ exp(1−xγ3(Z)), for any x > 0. Also suppose that γ(Z) = {1/γ1(Z)+

1/γ3(Z)}−1 < 1. Then, there exist absolute constants c1, c2 > 0 such that for any z ≥ 1 and

integer n ≥ 3,

P

(
1√
n

∣∣∣∣∣
n∑

t=1

Zt

∣∣∣∣∣ ≥ z

)
≤ n exp

(
−c1zγ(Z)nγ(Z)/2

)
+ 2 exp

(
−c2z2

)
.

Lemma D.6. Suppose that Assumptions 1, 3 and 4 (i) hold. Then, for any ℓ ≤ L with some

fixed L <∞, we have as n→∞,

P

(
max

G≤k≤n−G
|Tℓ(G, k)− E(Tℓ(G, k))| ≥ z +O(G−1)

)
≤ 6nG2 exp

(
−c′1zγGγ

)
+ 12nG exp

(
−c′2z2G

)
,

where c′1 and c′2 depend only on CF , CX , γ1, Ch, p and L.

Proof. By symmetry and boundedness of the kernel h, with |h| ≤ h̄ for some h̄ > 0, we can

re-write the test statistic Tℓ(G, k) as :

(G− ℓ)2Tℓ(G, k) =
k−ℓ∑

s,t=k−G+1

hs,t +
k+G−ℓ∑
s,t=k+1

hs,t − 2
k−ℓ∑

s=k−G+1

k+G−ℓ∑
t=k+1

hs,t

= −
k+G−ℓ∑

s,t=k−G+1

hs,t + 2

k−ℓ∑
s,t=k−G+1

hs,t + 2

k+G−ℓ∑
s,t=k+1

hs,t +O
(
ℓ(2G− ℓ)h̄

)
= −2

2G−ℓ−1∑
s=0

k+G−ℓ−s∑
t=k−G+1

ht,t+s + 4

G−ℓ−1∑
s=0

k−ℓ−s∑
t=k−G+1

ht,t+s + 4

G−ℓ−1∑
s=0

k+G−ℓ−s∑
t=k+1

ht,t+s +O(G)

= −2
2G−ℓ−3∑

s=0

k+G−ℓ−s∑
t=k−G+1

ht,t+s + 4
G−ℓ−3∑
s=0

k−ℓ−s∑
t=k−G+1

ht,t+s + 4
G−ℓ−3∑
s=0

k+G−ℓ−s∑
t=k+1

ht,t+s +O(G)

=: 2H1,k + 4H2,k + 4H3,k +O(G). (D.7)

Letting v(s) = 2G− ℓ− s, we have

P1,k = P

(
|H1,k − E(H1,k)| >

(2G− ℓ)2z

10

)
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≤
2G−ℓ−3∑

s=0

P

∣∣∣∣∣∣
k−G+v(s)∑
t=k−G+1

(ht,t+s − E(ht,t+s))

∣∣∣∣∣∣ > (2G− ℓ)z

10


︸ ︷︷ ︸

P1,k,s

.

For the sequence {ht,t+s}t∈Z, we consider its cumulative functional dependence measure (see

the definition in (5)):

δu,ν(h·,·+s) = sup
t∈Z

∥∥ht,t+s − ht,t+s,{t−u}
∥∥
ν
= sup

t∈Z

∥∥h(Yt, Yt+s)− h(Yt,{t−u}, Yt+s,{t−u})
∥∥
ν

= sup
t∈Z

∥∥h0(Yt − Yt+s)− h0(Yt,{t−u} − Yt+s,{t−u})
∥∥
ν

≤ Ch sup
t∈Z

(∥∥∥Yt − Yt,{t−u}∥
∥∥
ν
+
∥∥∥Yt+s − Yt+s,{t−u}∥

∥∥
ν

)
≤ Ch(2pCν)

1/ν

(
max
1≤i≤p

δu,ν,i + max
1≤i≤p

δu+s,ν,i

)
where Cν = 1 if 0 < ν ≤ 1 and Cν = 2ν−1 if ν > 1. The second equality and the first inequality

follow from Assumption 3 and Minkowski’s inequality, and the last inequality follows from Cr

inequality. Then,

∆m,ν(h·,·+s) =
∞∑

u=m

δu,ν(h·,·+s) ≤ 2Ch(2pCν)
1/ν∆m,ν ,

such that under Assumption 1, with CF , CX and γ1 defined therein,

sup
m≥0

exp(CFm
γ1)∆m,2(h·,·+s) ≤ 4Ch

√
pCX .

This allows us to apply Theorem 4 of Xu et al. (2022a) (stated as Lemma D.5 here) and

obtain

P1,k,s ≤ v(s) exp
(
−c′1zγGγ

)
+ 2 exp

(
−c′2v(s)−1z2G2

)
with γ = 2γ1/(2 + γ1) < 1, from the boundedness of the kernel assumed in Assumption 3.

where c′k, k = 1, 2, depend only on CF , CX , γ1, Ch, p and L. Then, we have

P1,k ≤
2G−ℓ−3∑

s=0

v(s) exp
(
−c′1zγGγ

)
+ 2

2G−ℓ−3∑
s=0

exp
(
−2c′2v(s)−1z2G2

)
≤ 2G2 exp

(
−c′1zγGγ

)
+ 4G exp

(
−c′2z2G

)
,

where the second inequality follows since
∑2G−ℓ−3

s=0 v(s) < 2G2 and v(s) = 2G − ℓ − s is
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decreasing in s. Then by Bonferroni correction,

P

(
max

G≤k≤n−G
|H1,k − E(H1,k)| >

(2G− ℓ)2z

10

)
≤ 2nG2 exp

(
−c′1zγGγ

)
+ 4nG exp

(
−c′2z2G

)
,

and we can similarly bound the deviations of H2,k and H3,k over k. Hence, the conclusion

follows.

Lemma D.7. Suppose that the assumptions of Theorem 1 hold.

(i) For any η ∈ (0, 1), we have P(Sℓ,n(j))→ 1 for any j ∈ Iℓ and P(Sℓ,n)→ 1, where

Sℓ,n(j) =
{
Tℓ(G, θj) ≥ max

(
max

k: |k−θj |>(1−η)(G−ℓ)
Tℓ(G, k), ζℓ(n,G)

)}
and Sℓ,n =

⋂
j∈Iℓ Sℓ,n(j).

(ii) For any η ∈ (0, 1), we have P(S̃ℓ,n(j))→ 1 for any j ∈ Iℓ and P(S̃ℓ,n)→ 1, where

S̃ℓ,n(j) =
⋂

0≤r≤⌈ 2
η
⌉−2

[{
Tℓ

(
G, θj +

⌊
rη(G− ℓ)

2

⌋)
≥ max

k:
(r+1)η(G−ℓ)

2
≤k−θj≤ (r+2)η(G−ℓ)

2

Tℓ(G, k)

}

⋂{
Tℓ

(
G, θj −

⌊
rη(G− ℓ)

2

⌋)
≥ max

k:
(r+1)η(G−ℓ)

2
≤θj−k≤ (r+2)η(G−ℓ)

2

Tℓ(G, k)

}]
,

and S̃ℓ,n =
⋂

j∈Iℓ S̃ℓ,n(j).

Proof. Recall the definition of Eℓ,n in Equation (C.1). Conditional on Eℓ,n, at change point

θj , j ∈ Iℓ, we have

Tℓ(G, θj) = d
(j)
ℓ +O

(√
log(n)

G

)
.

Then by Assumption 4 (ii), (log(n))−1/2
√
GTℓ(G, θj)→∞, so that Tℓ(G, θj) > ζℓ(n,G). Also

for any k such that |k − θj | > (1− η)(G− ℓ),

max
k: |k−θj |>(1−η)(G−ℓ)

Tℓ(G, k) = max
k: |k−θj |>(1−η)(G−ℓ)

(G− ℓ− |k − θj |)2

(G− ℓ)2
d
(j)
ℓ +O

(√
log(n)

G

)

≤ (G− ℓ− (1− η)(G− ℓ))2

(G− ℓ)2
d
(j)
ℓ +O

(√
log(n)

G

)
= η2d

(j)
ℓ +O

(√
log(n)

G

)

conditional on Eℓ,n, so that the assertion for Sℓ,n(j) follows. Since the above arguments hold

for any j ∈ Iℓ conditional on Eℓ,n, the assertion for Sℓ,n also holds. Analogous arguments

apply to the proof of (ii) and are omitted.
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