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Mathematical models of polyelectrolyte gels are often simplified by assuming the gel is

electrically neutral. The rationale behind this assumption is that the thickness of the

electric double layer (EDL) at the free surface of the gel is small compared to the size of

the gel. Hence, the thin-EDL limit is taken, in which the thickness of the EDL is set to

zero. Despite the widespread use of the thin-EDL limit, the solutions in the EDL are rarely

computed and shown to match to the solutions for the electrically neutral bulk. The aims

of this paper are to study the structure of the EDL and establish the validity of the thin-

EDL limit. The model for the gel accounts for phase separation, which gives rise to diffuse

interfaces with a thickness described by the Kuhn length. We show that the solutions in

the EDL can only be asymptotically matched to the solutions for an electrically neutral

bulk, in general, when the Debye length is much smaller than the Kuhn length. If the

Debye length is similar to or larger than the Kuhn length, then phase separation can be

initiated in the EDL. This phase separation spreads into the bulk of the gel and gives rise

to electrically charged layers with different degrees of swelling. Thus, the thin-EDL limit

and the assumption of electroneutrality only generally apply when the Debye length is

much smaller than the Kuhn length.
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1 Introduction

Polyelectrolyte gels are soft, electro-active materials that are used in a wealth of ap-

plications including smart materials [8, 26], fuel cells [17], gel diodes [32], regenerative

medicine [19], and drug-delivery systems [20]. A polyelectrolyte gel consists of a de-

formable network of polymers that is swollen with fluid. The polymers carry a fixed

electric charge and can therefore electrostatically interact with ions that are dissolved
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in the imbibing fluid. Typically, polyelectrolyte gels are surrounded by a salt bath com-

posed of a solvent, such as water, and dissolved ions. Solvent and ion exchange across

the gel-bath interface occurs until an equilibrium is established. The degree of swelling

and hence the gel volume are set by this equilibrium, which can be controlled through

a number of factors such as temperature and electric fields, as well as the pH and salt

content of the surrounding bath [1]. Slight alterations in these environmental parame-

ters can trigger enormous changes in the gel volume. In some cases, the volume of the

gel will undergo a discontinuous change, a phenomenon that is called a volume phase

transition [7, 22]. Environmental stimuli can also induce phase separation, whereby a

homogeneous gel spontaneously separates into co-existing phases with different compo-

sitions [18, 27]. Phase separation has been proposed as a facile means of self-assembling

nanostructures in polyelectrolyte gels [30, 31].

When a polyelectrolyte gel is surrounded by a salt solution, ions from the solution

will migrate to the free surface of the gel in order to screen the electric charges on the

polymers. The accumulation of ions leads to a diffuse layer of electric charge that is

known as the electric double layer (EDL). The thickness of the EDL is described by the

Debye length and is often on the order of tens of nanometers. An interesting feature

of polyelectrolyte gels is that the EDL is diffuse on both sides of the gel-bath interface

due to the mobile ions in the gel migrating to counter the accumulation of charge in the

surrounding bath. Similar doubly-diffuse EDLs also appear in immiscible liquid drops

that are suspended in a different ion-carrying liquid [24]. Outside of the EDL, the gel

and the bath are electrically neutral to a very good approximation.

Despite the intricate structure of the EDL, it is generally believed to play a passive

role in the gel dynamics. Moreover, due to the smallness of the Debye length (tens

of nanometers) relative to the typical dimensions of a polyelectrolyte gel (microns to

centimeters), any impact of the EDL on the gel dynamics is assumed to be confined

to an extremely thin region near the free surface. Thus, the EDL is often neglected in

studies that involve modelling polyelectrolyte gels [9, 10, 35, 15, 14, 34, 23]. The few

exceptions include the works by Hong et al. [13, 29], who compute solutions in the

EDL for a limited range of parameters. Hill [12] accounts for internal EDLs that form

in polyelectrolyte gels with liquid inclusions, neglecting the elasticity of the polymer

network and solvent-polymer interactions.

Neglecting the EDL due to its thinness is called the thin-EDL limit. The singular

nature of the thin-EDL limit means there are two components to it. The first involves

computing an outer solution that is valid in regions away from the EDL where the bath

and gel are approximately electrically neutral. The second involves computing an inner

solution that is valid within the EDL. Although the thin-EDL limit is used extensively

when modelling polyelectrolyte gels, very little attention is paid to computing the inner

solution and checking that it can, in fact, be asymptotically matched to the outer solution.

For instance, Mori et al. [21] used matched asymptotic expansions to derive a model for

an electrically neutral polyelectrolyte gel, but did not compute solutions in the inner and

outer regions nor did they explore the structure of the EDL in detail.

The aims of this paper are to use matched asymptotic expansions to: (i) revisit the

assumption that the EDL plays a passive role in the dynamics of polyelectrolyte gels and

(ii) ascertain the validity of the thin-EDL limit. In particular, we explore when the outer
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solutions which govern the electrically neutral bulk can be asymptotically matched to

the inner solutions in the EDL.

The main result of our work is that asymptotic matching of solutions cannot always

be carried out because the EDL can trigger a mode of phase separation that leads to a

breakdown of electroneutrality across the entire gel. In this case, the charge density in

the gel oscillates in space, corresponding to the formation of alternating layers of positive

and negative charge. Similar oscillations have been observed in ionic liquids in contact

with a charged surface, where they are attributed to the finite size of ions and their

short-range interactions [6, 11].

Our asymptotic analysis of the EDL builds on that of Yariv [33] by accounting for the

nonlinear electro-chemo-mechanics of the gel. A crucial feature of our analysis is that it

is based on a thermodynamically consistent phase-field model of a polyelectrolyte gel.

The phase-field model introduces an additional length scale into the problem, the Kuhn

length, which is proportional to the thickness of the diffuse, internal interfaces that form

within the gel if it undergoes phase separation. The governing equations are fourth order

in space and capture the energy cost of mixing ions with finite volume, which is similar

to continuum models for the layering of ionic liquids [2]. Most models for polyelectrolyte

gels do not account for phase separation and take the Kuhn length to be zero. However,

we find that the thin-EDL limit is only asymptotically consistent, in general, when the

Kuhn length greatly exceeds the Debye length. Thus, we argue that particular care must

be taken when using the thin-EDL limit to describe the behaviour of polyelectrolyte gels.

The paper is organised as follows. In Sec. 2, the governing equations for a cylindrical

polyelectrolyte gel that is in equilibrium with a salt solution are presented. In Sec. 3, we

carry out the asymptotic analysis of the EDL assuming the Kuhn length is much larger

than the Debye length. In Sec. 4, we discuss how the analysis differs if the Kuhn length

is zero, which is more typical across the literature. The asymptotic framework is then

used to investigate the structure of the EDL in Sec. 5. The paper concludes in Sec. 6.

2 Mathematical model

We consider a cylindrical polyelectrolyte gel that is in equilibrium with a stationary salt

bath, as shown in Fig. 1. Motivated by the experiments of Horkay et al. [14], we assume

the gel can freely swell in the radial and orthoradial directions but is confined in the axial

direction. The gel is composed of a deformable network of polymers that carry electric

charges of the same sign. The bath consists of a solvent and a dissolved binary salt such

as NaCl or CaCl2. We assume that the system remains axisymmetric and that the gel

remains cylindrical; that is, we do not allow for instabilities along the axial or orthoradial

directions.

A thermodynamically consistent model of a polyelectrolyte gel surrounded by a viscous

bath has been derived by Celora et al. [5]. We employ this model here but specialise it to

a steady, cylindrical configuration. For brevity, we only present the non-dimensional form

of the governing equations in the main text; however, the dimensional model is provided

in Appendix A. In the equations below, the subscript m is used to represent quantities

associated with the solvent (s), cation (+), or the anion (−). The set M = {s,+,−}
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Figure 1. A swollen polyelectrolyte gel surrounded by a bath. The bath consists of a

solvent and a dissolved binary salt. The polymers of the gel carry an electric charge,

which is assumed to be positive. An electric double layer of thickness O(ε) forms near

the gel-bath interface, located at r = a, where charge neutrality is violated. The non-

dimensional Debye length ε is defined in (2.1).

contains all of the mobile species that move into and out of the polymer network. We let

I = {+,−} denote the ionic species.

In non-dimensionalising the model, spatial variables are scaled with a0, the radius of

the gel in its unswollen (dry) state. The chemical potentials of the mobile species, µm,

are written as µm = µ0
m + kBTµ

′
m, where µ0

m is a reference chemical potential, kB is

Boltzmann’s constant, and T is the absolute temperature. Primes are used to denote

dimensionless quantities. The electric potential in the bath and the gel is scaled with

the thermal voltage and written as Φ = (kBT/e)Φ
′, where e is the elementary charge.

The stresses and pressure in the gel are non-dimensionalised using the shear modulus of

the polymer network, G, as a scale. In the bath, the pressure is non-dimensionalised as

p = [εbath(kBT/e)
2/a2

0]p′, with εbath denoting the electrical permittivity of the bath. The

pressure scaling for the bath can be motivated by the condition of mechanical equilibrium

for a motionless fluid, which demands that the fluid pressure balances the Maxwell stress,

as these are the only two forces at play. Due to the diluteness of the ions, the electric

permittivity of the gel and the bath, εgel and εbath, respectively, are treated as constants.

However, the composition dependence of the electric permittivity has been shown to

impact the swelling of polyelectrolyte gels [16].

This scaling introduces three key dimensionless parameters given by

G =
νG

kBT
, ω =

LK
a0

, ε =
LD
a0

, (2.1)

where ν is the volume of solvent molecule, LK is the Kuhn length of a polymer chain, and

LD = (νεgelkBT )1/2/e is the Debye length. The parameter G characterises the energetic

cost of elastically deforming the gel relative to the energy that is released upon insertion

of a solvent molecule into the polymer network. The parameters ω and ε describe the

thickness of diffuse internal interfaces and the EDL relative to the size of the gel, respec-

tively. Alternatively, ω can be related to the energetic cost of gradients in the solvent

concentration; see Celora et al. [5] for details. The magnitudes of these numbers will be

estimated in Sec. 2.4.
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2.1 Governing equations for the gel

The equations for the gel are formulated in terms of Eulerian coordinates x = rer(θ)+zez
associated with the current state of the system, where r, θ, and z denote the radial,

angular, and axial coordinates, repectively, and er, eθ, and ez are the corresponding

cylindrical basis vectors. An Eulerian coordinate system enables the equations to be

written in a physically intuitive way and it facilitates coupling the gel and bath models

via boundary conditions. A detailed account of Eulerian-based hydrogel modelling is

provided by Bertrand et al. [3]. We let X = R(r)ER(θ)+Z(z)EZ denote the Lagrangian

coordinates associated with the stress-free reference configuration, which we assume is

a dry gel. Here, R, Θ = θ, and Z represent the radial, angular, and axial Lagrangian

coordinates, and ER, EΘ, and EZ are the basis vectors.

The deformation gradient tensor F describes the distortion of material elements relative

to the dry state of the gel. For an axisymmetric geometry which remains cylindrical, the

deformation gradient tensor can be written as F = λr er⊗ER+λθ eθ⊗EΘ +λzez⊗EZ ,

where

λr =

(
dR

dr

)−1

, λθ =
r

R
, λz =

(
dZ

dz

)−1

(2.2)

denote the radial, orthoradial, and axial stretches, respectively. The axial stretch λz is

imposed, whereas the radial and orthoradial stretches λr and λθ are unknown and must

be solved for. The determinant J = detF = λrλθλz characterises volumetric changes in

material elements. Both the polymers and the imbibed salt solution are assumed to be

incompressible. As a result, any volumetric change in a solid element must be due to a

variation in the amount of fluid contained within that element. This leads to the so-called

molecular incompressibility condition

J =

(
1−

∑
m∈M

φm

)−1

, (2.3)

where φk represent the volume fraction of species k. Since J describes the volume of

swollen material elements relative to their dry volume, we also refer to it as the swelling

ratio. It will be convenient to formulate the incompressibility condition as

R
dR

dr
=
λzr

J
, (2.4)

where J is given by (2.3).

The chemical potentials of the mobile species, µm, can be written as

µs = Πs + Gp− ω2

r

d

dr

(
r

dφs
dr

)
, (2.5 a)

µ± = Π± + Gp+ z±Φ, (2.5 b)

where z± is the valence of the ions, p is the mechanical pressure in the gel, and Πm are

osmotic pressures defined as

Πs = log φs + χJ−1(1− φs) + J−1, (2.6 a)

Π± = log φ± + J−1(1− χφs). (2.6 b)
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Here, χ is the Flory interaction parameter, which describes (unfavourable) enthalpic

interactions between the solvent molecules and the polymers. Due to our assumption

that the system is in equilibrium, the chemical potentials are spatially uniform. Hence,

µm are constants that will be specified below.

The electric potential satisfies Poisson’s equation

−ε
2

r

d

dr

(
r

dΦ

dr

)
= z+φ+ + z−φ− +

zfϕf
J

, (2.7)

where ϕf is the nominal volume fraction of fixed charges on the polymer network and zf
denotes the valence of these charges. We will focus on cationic gels with positive fixed

charges, zf > 0.

The conservation of linear momentum in the gel leads to

dTrr
dr

+
Trr − Tθθ

r
= 0, (2.8)

where Trr and Tθθ are the radial and orthoradial components of the Cauchy stress tensor.

These stresses can be expressed as

Trr = Te,rr + TK,rr + TM,rr − p, (2.9 a)

Tθθ = Te,θθ + TK,θθ + TM,θθ − p. (2.9 b)

The first contributions, Te,rr and Te,θθ, represent elastic stresses, which are calculated

by assuming the polymer network behaves as a neo-Hookean material. This leads to

Te,rr = J−1(λ2
r − 1), (2.10 a)

Te,θθ = J−1(λ2
θ − 1). (2.10 b)

The second and third contributions to the Cauchy stresses in (2.9) correspond to Ko-

rteweg (TK) and Maxwell (TM ) stresses, respectively, which capture the forces generated

within the bulk of the gel due to internal interfaces and electric fields. The radial and

orthoradial components of these stresses are given by

TK,rr = G−1ω2

[
φs
r

d

dr

(
r

dφs
dr

)
− 1

2

(
dφs
dr

)2
]
, (2.11 a)

TK,θθ = G−1ω2

[
φs
r

d

dr

(
r

dφs
dr

)
+

1

2

(
dφs
dr

)2
]
, (2.11 b)

TM,rr =
1

2
G−1ε2

(
dΦ

dr

)2

, (2.11 c)

TM,θθ = −1

2
G−1ε2

(
dΦ

dr

)2

. (2.11 d)

The final contribution to the Cauchy stresses represents the stress induced by the fluid

pressure.
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2.2 Governing equations for the bath

The spatially uniform chemical potentials of the solvent and ions are

µs = log φs + εrε
2p, (2.12 a)

µ± = log φ± + εrε
2p+ z±Φ, (2.12 b)

where εr = εbath/εgel. The electric potential satisfies

−εrε
2

r

d

dr

(
r

dΦ

dr

)
= z+φ+ + z−φ−. (2.13)

Conservation of linear momentum in the bath implies that

dTrr
dr

+
Trr − Tθθ

r
= 0, (2.14)

where the components of the Cauchy stress tensor are

Trr = TM,rr − p, (2.15 a)

Tθθ = TM,θθ − p. (2.15 b)

The Maxwell stresses are given by

TM,rr =
1

2

(
dΦ

dr

)2

, (2.16 a)

TM,θθ = −1

2

(
dΦ

dr

)2

. (2.16 b)

2.3 Boundary conditions

At the centre of the gel, we impose

R|r=0 = 0,
dΦ

dr

∣∣∣∣
r=0

= 0,
dφs
dr

∣∣∣∣
r=0

= 0. (2.17)

The first condition ensures that the origin in Lagrangian coordinates is mapped to the

origin in Eulerian coordinates. The second and third can be viewed as symmetry condi-

tions. The boundary condition on φs is needed due to the presence of a second derivative

in the expression for the chemical potential of solvent in the gel (2.5 a).

Far from the bath, r → ∞, we set the electric potential to Φbath and the pressure

to zero. In addition, we assume that the volume fraction of cations has been fixed to

φbath
+ . Assuming electroneutrality then requires that the volume fraction of anions is

given by φbath
− = |z+/z−|φbath

+ . The far-field solvent fraction is then fixed at φbath
s =

1− (1 + |z+/z−|)φbath
+ . Consequently, the far-field chemical potentials are given by

µbath
m = log φbath

m + z±Φbath, (2.18 a)

The radius of the deformed gel, and hence the position of the gel-bath interface, is

denoted by a. We use the notation r → a± to describe approaching the interface from

the bath (+) and gel (−). Due to the formulation of the model in terms of Eulerian

coordinates, the deformed radius of the gel, a, is unknown. Since the undeformed radius
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of the gel has been scaled to unity, the deformed radius is implicitly determined by the

equation

R|r=a− = 1. (2.19)

At the gel-bath interface, r = a, thermodynamic equilibrium demands that the chem-

ical potentials are continuous. Moreover, since the chemical potentials must also be spa-

tially uniform, we have that

µm = µbath
m (2.20)

in both the gel and the bath. We also impose the condition

dφs
dr

∣∣∣∣
r=a−

= 0 (2.21)

at the gel surface, which is needed due to the second derivative in (2.5 a). From a physical

point of view, (2.21) implies that the solvent does not preferentially wet or dewet the

interface, both of which would lead to a localised gradient in the solvent composition.

The balance of radial stresses at the interface leads to

GTrr|r=a− = εrε
2Trr

∣∣
r=a+

. (2.22)

We assume there are no surface charges on the interface and therefore impose continuity

of the electric potential and electric displacement:

Φ|r=a− = Φ|r=a+ , (2.23 a)

dΦ

dr

∣∣∣∣
r=a−

= εr
dΦ

dr

∣∣∣∣
r=a+

. (2.23 b)

2.4 Parameter estimation

We assume that the molecular volume is ν ∼ 10−28 m3 [34], the system is held at a

temperature of T = 300 K, and dry radius of the gel is a0 ∼ 1 cm. Horkay et al. [14]

measured the shear moduli of polyelectrolyte gels to be around G ∼ 10 kPa, which leads

to G ∼ 10−4. Yu et al. [34] reported values of G ∼ 10−3. The Flory interaction parameter

χ is generally a function of the gel composition and temperature. However, we treat χ as

a constant, which is a common simplification in the literature. Yu et al. [34] use constant

values of χ that range from 0.1 to 1.6.

We assume that the electrical permittivity of the gel and the bath are approximately

the same as water due to the ions being dilute. Thus, we set εgel ' εbath ' 80 ε0, where ε0
is the permittivity of free space. Hence, εr = εgel/εbath ' 1. The non-dimensional width

of the EDL is then ε ∼ 10−8, corresponding to a dimensional value of 0.1 nm. However,

we will show in Sec. 5 that the value of ε underestimates the width of the EDL because

it is based on an imprecise estimate of the ionic volume fractions.

The dimensionless parameter ω is difficult to estimate due to uncertainties in the values

of the Kuhn length. Hua et al. [15] set LK = 0.9 nm in their modelling study. Similarly,

Wu et al. [31] take LK = 1 nm. Both values lead to an estimate of ω ∼ 10−7.
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3 Asymptotic analysis for large Kuhn lengths

Matched asymptotic expansions in the limit ε → 0 will now be used to formulate the

governing equations away from and within the EDL at the gel-bath interface. The analysis

in this section will focus on the case when the Kuhn length is much larger than the

Debye length, ε� ω. Thus, we will consider the limit ε→ 0 with ω fixed. Although our

estimates suggest that ω and ε are similar in magnitude and hence the limit ε→ 0 with

ω = O(ε) may be more physically accurate, we will show that the asymptotic solutions

cannot generally be matched in this case. Analysing the case when ε → 0 with ω fixed,

i.e. ε� ω, provides mathematical and physical insights into why the matching fails.

The asymptotic analysis is split into two parts. In Sec. 3.1, we derive the model in the

outer region away from the gel-bath interface. In Sec. 3.2, we formulate the problem in

the inner region near the gel-bath interface to resolve the EDL.

3.1 The outer problem

We now consider the limit ε → 0 with r = O(1). The outer variables are expanded as

f(r) = f (0)(r) +O(ε), where f is an arbitrary quantity.

3.1.1 Electroneutral equations for the bath

Taking ε→ 0 in (2.13) leads to the electroneutrality condition for the bath

z+φ
(0)
+ + z−φ

(0)
− = 0. (3.1)

The chemical potentials (2.12) reduce to

µbath
s = log φ(0)

s , (3.2 a)

µbath
± = log φ

(0)
± + z±Φ(0). (3.2 b)

Solving these four equations shows that the outer solution in the bath corresponds to a

homogeneous mixture with the same composition and voltage as the far field:

φ(0)
m (r) = φbath

m , Φ(0)(r) = Φbath. (3.3)

The radial stress balance (2.14) reduces to dp(0)/dξ = 0. Solving and matching to the

far field implies that

p(0)(r) = 0, T(0)
rr (r) = 0. (3.4)

Thus, the bath is stress free to leading order.

3.1.2 Electroneutral equations for the gel

Motivated by the constant outer solutions for the bath, as well as past works in the

literature [9, 10, 35, 15, 14, 34, 23], we assume that the outer solution for the gel represents

a homogeneous state. We therefore write the leading-order contributions to the outer

solution as f (0)(r) = fgel, where fgel is a constant, for all variables except the Lagrangian

radius R(0), which retains a dependence on r.
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The O(1) contributions to (2.7) lead to the electroneutrality condition for the gel,

z+φ
gel
+ + z−φ

gel
− = −zfϕf/Jgel. (3.5)

The solvent and ionic chemical potentials (2.5) are given by

Πgel
s + Gpgel = µbath

s , (3.6 a)

Πgel
± + Gpgel + z±Φgel = µbath

± , (3.6 b)

For a homogeneous gel that is free to swell in the radial and orthoradial directions,

the radial and orthoradial stretches are equal; thus, λgel
r = λgel

θ = (Jgel/λz)
1/2. The

leading-order contribution to the Lagrangian coordinate can then be obtained from (2.4)

as R(0)(r) = (λz/J
gel)1/2r. We define

Rgel ≡ R(0)(a−) = (λz/J
gel)1/2a, (3.7)

where Rgel must be determined by matching to the inner solution. The final quantity to

determine is the mechanical pressure in the gel. The radial stress balance (2.8) implies

that the radial Cauchy stress Tgel
rr must be a constant. Using asymptotic matching, we

will show that Tgel
rr = 0. Hence, from (2.9 a), we have that pgel = 1/λz − 1/Jgel.

3.2 The inner problem

The inner problem is formulated by introducing the change of variable r = a+ εξ, where

ξ is a radial coordinate that is localised to the free surface of the gel. By definition,

ξ > 0 corresponds to the regions in the bath whereas ξ < 0 corresponds to regions

in the gel. Tildes are used to denote dependent variables in the inner region, which are

generally expanded as f̃ = f̃ (0)+εf̃ (1)+O(ε2), where f̃ is an arbitrary quantity. However,

additional rescaling is required in some cases; this will be made explicit in the proceeding

discussion. Near the interface, the outer solutions for the bath and gel are expanded in

terms of inner variables, respectively, as

f(a+ εξ) = f (0)(a+) +O(ε) = fbath +O(ε), (3.8 a)

f(a+ εξ) = f (0)(a−) +O(ε) = fgel +O(ε), (3.8 b)

which will be used for asymptotic matching.

3.2.1 Inner problem for the bath

Mechanics

After changing variables, we anticipate that the Maxwell stresses (2.16) scale as TM =

O(ε−2) because the electric potential Φ should remain O(1) in size across the EDL. More-

over, we expect that the pressure will scale like the Maxwell stress so that p = O(ε−2);

the rationale behind this choice is discussed in the introduction of Sec. 2. Therefore, we

write TM = ε−2T̃M and p = ε−2p̃. Consequently, the Cauchy stresses must also be scaled

as T = ε−2T̃. Expanding T̃rr and T̃M,rr in powers of ε and matching to the far field leads

to the stress-free condition T̃
(0)
rr → 0 as ξ → ∞. The leading-order contribution to the

radial stress balance in the bath (2.14) leads to dT̃
(0)
rr /dξ = 0. Integrating and imposing
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the far-field condition leads to the conclusion that T̃
(0)
rr = 0. In terms of the original

scaling, this means that, in the EDL, the total stress in the bath must be O(ε−1) in size.

The pressure can be obtained from (2.15 a) and is found to be

p̃(0) =
1

2

(
∂Φ̃(0)

∂ξ

)2

= T̃
(0)
M,rr. (3.9)

Thus, as expected, the pressure in the bath balances the Maxwell stresses.

Chemical equilibrium

Expanding the chemical potentials (2.12) gives, to leading order,

log φ̃(0)
s + εrp̃

(0) = µbath
s , (3.10 a)

log φ̃
(0)
± + εrp̃

(0) + z±Φ̃(0) = µbath
± . (3.10 b)

Equating (3.10) with (2.18 a) and using (3.9) to eliminate the pressure leads to an ex-

pression for the ion fractions in the EDL,

φ̃
(0)
± = φbath

± exp

z±(Φbath − Φ̃(0))− εr
2

(
dΦ̃(0)

dξ

)2
 . (3.11)

This is a modification of the Boltzmann distribution for the ions, which arises from

accounting for the pressure dependence of the ionic chemical potentials.

Electrostatics

The leading-order electrical problem is obtained by combining (2.13) with the ionic vol-

ume fractions (3.11) to obtain a modified Poisson–Boltzmann equation given by

−εr
d2Φ̃(0)

dξ2
= exp

−εr
2

(
dΦ̃(0)

dξ

)2
∑
i∈I

ziφ
bath
i exp

(
zi(Φ

bath − Φ̃(0))
)
. (3.12)

Equation (3.12) can be integrated once and the conditions dΦ̃(0)/dξ → 0 and Φ̃(0) →
Φbath as ξ →∞ used to obtain

dΦ̃(0)

dξ
= ∓

√√√√ 2

εr
log

{
1 +

∑
i∈I

φbath
i

[
exp

(
zi(Φbath − Φ̃(0))

)
− 1
]}
. (3.13)

The minus sign is taken if Φgel − Φbath > 0, which will generally be the case if the fixed

charges on the polymer chains are positive, as assumed here.
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3.2.2 Inner problem for the gel

Chemical equilibrium

The chemical potential of solvent (2.5 a) can be expanded as

µbath
s = Π̃(0)

s + Gp̃(0) − ε−2ω2

[
d2

dξ2

(
φ̃(0)
s + εφ̃(1)

s + ε2φ̃(2)
s

)
+
ε

a

d

dξ

(
φ̃(0)
s + εφ̃(1)

s

)
− ε2 ξ

a2

dφ̃
(0)
s

dξ

]
+O(ε). (3.14)

Similarly, the boundary condition at the gel-bath interface (2.21) can be expanded to

give dφ̃
(n)
s /dξ = 0 at ξ = 0 for n = 0, 1, 2. The O(ε−2) and O(ε−1) contributions to (3.14)

along with the boundary and matching conditions show that the solvent concentration

is uniform to leading and next order,

φ̃(0)
s (ξ) = φgel

s , φ̃(1)
s (ξ) = φ(1)

s , (3.15)

which is a distinguishing feature of the asymptotic limit in which ε → 0 with ω fixed.

Physically, this result is a consequence of gradients in the solvent concentration having

a high energy cost when the Kuhn length is large. The ionic chemical potentials (2.5 b)

can be expanded as

µbath
± = log φ̃

(0)
± +

1

J̃ (0)
(1− χφgel

s ) + Gp̃(0) + z±Φ̃(0). (3.16)

By combining (3.16) and (2.18 a) and using (3.15) we find that

φ̃
(0)
± = φbath

± exp

[
z±(Φbath − Φ̃(0))− Gp̃(0) − 1

J̃ (0)
(1− χφgel

s )

]
. (3.17)

Although (3.17) appears to be a closed-form expression for the volume fraction of ions,

it is important to recall that the swelling ratio J̃ (0) also depends on the these quantities;

see (2.3).

Kinematics and incompressibility

The O(ε−1) part of the incompressibility condition (2.4) implies that dR̃(0)/dξ = 0.

Imposing the boundary condition R̃(0)(0) = 1 leads to R̃(0) = 1. Matching the inner and

outer solutions leads to the condition Rgel = 1, which can be used in combination with

(3.7) to find that the radius of the deformed gel is given by

a = (Jgel/λz)
1/2. (3.18)

The O(1) part of (2.4) gives dR̃(1)/dξ = λza/J̃
(0). The leading-order radial stretch can

then be found by expanding (2.2) to find that λ̃
(0)
r = (λzJ

gel)−1/2J̃ (0). Similarly, the

leading-order orthoradial stretch is given by λ̃
(0)
θ = (Jgel/λz)

1/2.

Mechanics

The leading-order part of the stress balance in the gel (2.8) is dT̃
(0)
rr /dξ = 0. Hence,

the total stress in the gel is constant across the EDL. Imposing stress continuity at the
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interface (2.22) and using the fact that the stress in the bath is O(ε−1) shows that the gel

is stress free to leading order, T̃
(0)
rr = 0. Matching to the outer solution leads to Tgel

rr = 0,

as previously claimed.

The mechanical pressure can be obtained from (2.9 a) as

p̃(0) = T̃(0)
e,rr + T̃

(0)
K,rr + T̃

(0)
M,rr. (3.19)

The leading-order radial components of the elastic, Korteweg, and Maxwell stresses can

be obtained from (2.10 a), (2.11 a), and (2.11 c) as

T̃(0)
e,rr =

1

λz

J̃ (0)

Jgel
− 1

J̃ (0)
, (3.20 a)

T̃
(0)
K,rr =

ω2

G
φgel
s

d2φ̃
(2)
s

dξ2
, (3.20 b)

T̃
(0)
M,rr =

1

2G

(
dΦ̃(0)

dξ

)2

. (3.20 c)

In order to evaluate the Korteweg stresses without explicitly solving for φ̃
(2)
s , the O(1)

contributions to the solvent chemical potential (3.14) can be used in (3.20 b) to obtain

T̃
(0)
K,rr =

φgel
s

G

(
Π̃(0)
s + Gp̃(0) − µbath

s

)
. (3.21)

Note that setting ω = 0 leads to Π̃
(0)
s +Gp̃(0)−µbath

s = 0 from (3.14) and hence T̃
(0)
K,rr = 0.

Substitution of (3.21) into (3.19) gives an algebraic relation for the pressure p̃(0).

Electrostatics

The leading-order electrical problem in the gel is given by

−d2Φ̃(0)

dξ2
= z+φ̃

(0)
+ + z−φ̃

(0)
− +

zfϕf

J̃ (0)
, (3.22)

which is coupled to the algebraic equations for the volume fractions of ions (3.17) and

the mechanical pressure (3.19). The electrical problems for the bath and gel can be

decoupled by combining the first integral for the electric potential in the bath (3.13)

with the electrostatic boundary conditions (2.23) to obtain

dΦ̃(0)

dξ

∣∣∣∣∣
ξ=0−

= ∓

√√√√2εr log

{
1 +

∑
i∈I

φbath
i

[
exp

(
zi(Φbath − Φ̃(0))

)
− 1
]}∣∣∣∣∣∣

ξ=0−

, (3.23 a)

which acts as a boundary condition for (3.22). The electrical problem in the gel is closed

by imposing the matching condition

Φ̃(0) → Φgel, ξ → −∞. (3.23 b)

3.3 Summary

The asymptotic analysis has produced a closed system of algebraic equations that deter-

mines the outer solution in the gel. The inner problems for the gel and the bath decouple.
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In the case of the gel, the inner problem can be condensed into a nonlinear system of

differential-algebraic equations; this system will be presented in Sec. 5. The inner prob-

lem for the bath has been solved in terms of the electric potential; this can be obtained

by integrating (3.13) once the electric potential at the gel surface has been determined

by solving the inner problem for the gel.

4 Asymptotic analysis for Kuhn lengths of zero

We now briefly mention how the asymptotic analysis of the inner region is carried out

when the dimensionless Kuhn length, ω, is naively set to zero. Mathematical models

of polyelectrolyte gels in the zero-Kuhn-length limit (ω = 0) are common throughout

the literature. Analysing the inner region when ω = 0 will serve as a useful point of

comparison. However, the zero-Kuhn-length limit is only valid when phase separation

does not occur. The terms that are proportional to ω2 in the governing equations provide

a regularisation that ensures the problem remains well posed when the system undergoes

phase separation. As we will show in Sec. 5, the EDL can trigger phase separation which

then spreads into the bulk of the gel. Hence, setting ω = 0 is not trivial and may render

the model ill posed.

Assuming that phase separation does not occur, we can set ω = 0 in (3.14), in which

case the leading-order contribution (in ε) to the solvent chemical potential in the EDL

becomes

Π̃(0)
s + Gp̃(0) = µbath

s , (4.1 a)

The osmotic pressure Π̃
(0)
s is given by (2.6 a). The mechanical pressure p̃(0) can be cal-

culated directly from (3.19) after neglecting the Korteweg stresses. Thus, (4.1 a) can be

interpreted as a nonlinear algebraic equation for the solvent fraction φ̃
(0)
s , which can now

be a function of ξ and hence vary across the EDL. The corresponding ion fractions are

given by

φ̃
(0)
± = φbath

± exp

[
z±(Φbath − Φ̃(0))− Gp̃(0) − 1

J̃ (0)

(
1− χφ̃(0)

s

)]
. (4.1 b)

5 Case studies

We now use our formulation to study the structure of the EDL by computing numerical

solutions to the inner and outer problems. We restrict our attention to monovalent salts

with z± = ±1. The cation fraction in the bath, φbath
+ , is treated as a control parameter.

In Sec. 5.1, the outer problem in the gel is formulated. This consists of a system of

nonlinear algebraic equations for homogeneously swollen states that are in equilibrium

with the bath. In Sec. 5.2, the corresponding inner problems are formulated when ω = 0

and ω � ε. The inner solution are used to explore the structure of the EDL in Sec. 5.3.

5.1 Solution of the outer problem for the gel

In the outer region of the gel, the volume fraction of solvent and ions, as well as the

electric potential, are determined from (3.5)–(3.6). This nonlinear algebraic system can
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(a) (b)

Figure 2. (a) Equilibrium swelling ratio Jgel as a function of cation fraction in the bath

φbath
+ showing swollen and collapsed branches. (b) The swelling ratio along the collapsed

branch. Solid lines correspond to solutions of (5.1). Dashed lines represent solutions to

the reduced equation (B 4) for a dilute concentration of cations. The parameter values

are G = 5× 10−4, χ = 1.2, ϕf = 0.05 z± = ±1, zf = 1.

be formulated as

log φgel
s +

1

Jgel
+
χ(1− φgel

s )

Jgel
+ G

(
1

λz
− 1

Jgel

)
= log(1− 2φbath

+ ), (5.1 a)

φgel
± = φbath

+ exp

[
±(Φbath − Φgel)− G

(
1

λz
− 1

Jgel

)
− 1

Jgel

(
1− χφgel

s

)]
, (5.1 b)

2φbath
+ sinh(Φbath − Φgel) = −zfϕf

Jgel
exp

[
G
(

1

λz
− 1

Jgel

)
+

1

Jgel

(
1− χφgel

s

)]
, (5.1 c)

where Jgel is given by (2.3). When the cation fraction in the bath is small, φbath
+ � 1, the

nonlinear system (5.1) can be reduced to a single equation, as described in Appendix B.

We numerically solve (5.1) over a range of values of φbath
+ using pseudo-arclength

continuation. Three values of λz ≤ 1 are considered, corresponding to gels in axial com-

pression. The equilibrium swelling ratios Jgel computed from the solutions of (5.1) are

shown as solid curves in Fig. 2. The dashed black lines represents numerical solutions

to the reduced model derived in Appendix B. The figure shows that for each value of

λz there are three branches of solutions, two of which intersect and then vanish as the

salt fraction in the bath φbath
+ increases beyond a critical value. The loss of equilibrium

solutions at this critical point indicates that a volume phase transition can occur, as the

gel volume will undergo a discontinuous decrease as the salt content of the bath is in-

creased. For a given value of λz, the branch of solutions corresponding to the largest and

smallest values of Jgel are referred to as the swollen and collapsed branches, respectively.

The branch of solutions corresponding to intermediate values of Jgel is unstable [4] and

will not be considered further.

For a fixed value of the salt fraction, increasing the axial compression reduces the degree

of swelling that occurs. Moreover, increasing the axial compression also decreases the

critical salt fraction at which the volume phase transition occurs. Both of these findings
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are in agreement with experimental observations [14]. Due to the incompressibility of

the gel, imposing an axial compression results in a radial stretch. The elastic energy

cost of inserting a molecule into a pre-stretched gel is greater than for an unstretched

gel. Hence, the balance between the mixing and elastic energies is established at smaller

concentrations, resulting in the equilibrium swelling ratio Jgel decreasing with the axial

stretch λz.

5.2 Formulation of the inner problems

The inner problem for the gel can now be constructed using the results from the previous

sections. In particular, if ω = 0, then the governing equations for the gel can be condensed

into

Π̃(0)
s + Gp̃(0) = log(1− 2φbath

+ ), (5.2 a)

φ̃
(0)
± = φbath

+ exp

[
±(Φbath − Φ̃(0))− Gp̃(0) − 1

J̃ (0)

(
1− χφ̃(0)

s

)]
, (5.2 b)

−dΦ̃(0)

dξ
= φ̃

(0)
+ − φ̃

(0)
− +

zfϕf

J̃ (0)
, (5.2 c)

p̃(0) =
1

λz

J̃ (0)

Jgel
− 1

J̃ (0)
+

1

2G

(
dΦ̃(0)

dξ

)2

, (5.2 d)

J̃ (0) = (1− φ̃(0)
s − φ̃

(0)
+ − φ̃

(0)
− )−1, (5.2 e)

Π̃(0)
s = log φ̃(0)

s +
χ(1− φ̃(0)

s )

J̃ (0)
+

1

J̃ (0)
. (5.2 f )

In the case ω � ε, Eqn (5.2 a) is replaced with φ̃
(0)
s = φgel

s , resulting in the system

φ̃
(0)
± = φbath

+ exp

[
±(Φbath − Φ̃(0))− Gp̃(0) − 1

J̃ (0)

(
1− χφgel

s

)]
, (5.3 a)

−d2Φ̃(0)

dξ2
= φ̃

(0)
+ − φ̃

(0)
− +

zfϕf

J̃ (0)
, (5.3 b)

G(1− φgel
s )p̃(0) = G

(
1

λz

J̃ (0)

Jgel
− 1

J̃ (0)

)
+ φgel

s

(
Π̃(0)
s − µbath

s

)
+

1

2

(
dΦ̃(0)

dξ

)2

, (5.3 c)

J̃ (0) = (1− φgel
s − φ̃

(0)
+ − φ̃

(0)
− )−1, (5.3 d)

Π̃(0)
s = log φgel

s +
χ(1− φgel

s )

J̃ (0)
+

1

J̃ (0)
. (5.3 e)

In both cases, the boundary conditions for the electrical potential are given by (3.23).

The expression for the hoop stress in the gel is the same in both cases as well:

T̃
(0)
θθ =

1

λz

(
Jgel

J̃ (0)
− J̃ (0)

Jgel

)
− G−1

(
dΦ̃(0)

dξ

)2

. (5.4)

The first term represents the elastic contribution to the total hoop stress, which can

be compressive or tensile. The second term captures the contribution from the Maxwell

stresses, which is always compressive.
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5.3 The structure of the electric double layer

The systems (5.2) and (5.3) are discretised using finite differences and solved using New-

ton’s method. The asymptotic solution is validated against numerical solutions of the

full problem in Appendix C.

We consider the case where the axial stretch and salt content in the bath are set to

λz = 1 and φbath
+ = 10−5, with the remaining parameters being the same as those in

Fig. 2. There are three possible solutions to the outer problem. We are only concerned

with two of these, which correspond to the collapsed state (Jgel ' 1.447) and the swollen

state (Jgel ' 82).

In Fig. 3, we plot the inner solution when the outer solution corresponds to the col-

lapsed state (Jgel ' 1.447). The solid and dashed lines correspond to the cases ω � ε

and ω = 0, respectively. In both cases, we see that our non-dimensionalisation underesti-

mates the width of the double layer, which is about 10ε in the gel (or 1 nm) and 1000ε in

the bath (or 100 nm). For this parameter set, the value of ω does not lead to noticeable

changes in the electric potential and ion fractions; see Fig. 3 (a)–(b). However, substan-

tial differences arise in the gel pressure and the solvent fraction; see Fig. 3 (c)–(d). When

ω = 0, the gel pressure balances a large Maxwell stress. This large pressure causes a local

decrease in the solvent fraction and a slight volumetric contraction of the gel (Fig. 3 (d)),

which can be rationalised in terms of Eqn (4.1 a). At equilibrium, the osmotic pressure

Π̃s must balance the mechanical pressure p̃. To compensate for the increase in mechanical

pressure that arises from the Maxwell stress, the osmotic pressure must decrease, which

drives solvent out of the gel and causes it to shrink. When ω � ε, gradients in the solvent

fraction are energetically penalised; thus, the solvent fraction remains uniform across the

EDL. From a mechanical perspective, this penalisation occurs through the development

of a large Korteweg stress, which counters the effect of the Maxwell stress in order to

maintain a uniform solvent fraction. The mechanical contribution from the Korteweg

stress manifests as an increase in the gel pressure compared to the ω = 0 case, as seen

in Fig. 3 (c). Although the solvent fraction is constant across the EDL when ω � ε, the

swelling ratio still decreases relative to the bulk value (Fig. 3 (d)) due to the variation

in ionic content (Fig. 3 (b)).

The inset of Fig. 3 (c) shows the total hoop stress in the gel, which is the same in

both models owing to the strong similarities in the electric potential. Due to the large

Maxwell stress, the gel experiences a substantial compressive hoop stress, which leads to

the intriguing possibility of mechanical instabilities in the EDL.

In Fig. 4, we show the numerical solution of the inner problem with ω � ε when the

outer solution corresponds to the swollen state (Jgel ' 82). The qualitative features of

the inner solution are similar to those obtained when the outer solution corresponds to

the collapsed state (Fig. 3). However, an important difference is that the volume fraction

of anions has decreased by more than a factor of ten. This decrease is driven by the

reduction in the volume fraction of fixed charges on the polymers that occurs when the

gel is highly swollen; see Fig. 4 (b). Consequently, the EDL in the gel has increased in

thickness by a roughly factor of ten to approximately 250ε (or 25 nm). The gradient

in the electric potential in the gel is therefore ten times weaker, resulting in a 100-fold

reduction in the Maxwell stress and the total hoop stress; see Fig. 4 (c). Despite these
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(a) (b)

(c) (d)

Figure 3. Numerical solutions of the inner problems with far-field conditions correspond-

ing to the collapsed state. The regions of gel and bath are defined by ξ < 0 and ξ > 0,

respectively. Dashed lines represent the solution to (5.2) when ω = 0. Solid lines repre-

sent the solution to (5.3) when ω � ε. The parameter values are χ = 1.2, G = 5× 10−4,

ϕf = 0.05, φbath
+ = 10−5, λz = 1, εr = 1, z± = ±1, and zf = 1.

decreases, the pressure in the gel remains large because of the Korteweg stress. Due to

convergence issues, it was not possible to compute the corresponding inner solution when

ω = 0.

To understand the origin of these numerical difficulties, we consider an intermediate

asymptotic limit where ω = Ωε, with Ω = O(1) as ε → 0. By assuming that the gel

remains in a homogeneous, swollen state away from the EDL, the outer problem in

this limit is still given by (5.1). The corresponding inner problem can be formulated by

changing (3.14) or (4.1 a) to

Π̃(0)
s + Gp̃(0) + Ω2 d2φ̃

(0)
s

dξ2
= µbath

s . (5.5 a)
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(a) (b)

(c) (d)

Figure 4. Numerical solution of the inner problem with far-field conditions corresponding

to the swollen state when ω � ε. The regions of gel and bath are defined by ξ < 0 and

ξ > 0, respectively. The curves are obtained by solving (5.2). Parameter values are the

same as in Fig. 3: χ = 1.2, G = 5 × 10−4, ϕf = 0.05, φbath
+ = 10−5, λz = 1, εr = 1,

z± = ±1, and zf = 1.

The pressure (3.19) can be evaluated using a Korteweg stress given by

T̃
(0)
K,rr = G−1Ω2

φ̃(0)
s

∂2φ̃
(0)
s

∂ξ2
− 1

2

(
∂φ̃

(0)
s

∂ξ

)2
 . (5.5 b)

We solve the intermediate asymptotic model based on (5.5) by imposing the boundary

conditions dφ̃
(0)
s /dξ = 0 as ξ → −∞ and ξ → 0−. A second parameter set is used to

reduce the degree of swelling that occurs in the gel. This parameter set leads to the outer

problem having single branch of equilibrium solutions that does not fold back on itself.

Thus, the gel monotonically and continuously decreases in volume as the salt fraction in

the bath φbath
+ increases.

It is important to point out that the intermediate asymptotic model based on (5.5) is

only fourth order in space. Therefore, it can be solved without explicitly imposing that its

solutions tend to the homogeneous and electrically neutral outer solutions determined
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(a) φbath
+ = 10−5 (b) φbath

+ = 6.6 × 10−4 (c) φbath
+ = 10−3

(d) φbath
+ = 10−5 (e) φbath

+ = 6.6 × 10−4 (f) φbath
+ = 10−3

Figure 5. Phase separation in the inner region. (a)–(c) The swelling ratio and (d)–(f)

total electric charge density for different salt fractions in the bath φbath
+ . The curves are

obtained by numerically solving the inner problem in the intermediate asymptotic limit

ω = O(ε) as ε → 0; see (5.5). We have taken ω = Ωε with Ω = 10−1. The remaining

parameters are χ = 0.7, G = 4× 10−3, ϕf = 0.04, z± = ±1, zf = 1, εr = 1, and λz = 1.

by (5.1). However, if the inner solutions tend to constants in the far field, then these

constants must satisfy (5.1) and hence a match with the outer solution will be obtained.

The inner problem in the intermediate asymptotic limit is solved at three specific

values of φbath
+ with Ω = 0.1. The swelling ratio J̃ (0) and total charge density Q̃(0) =

φ̃
(0)
+ − φ̃

(0)
− + zfϕf/J̃

(0) are computed and plotted in Fig. 5. In this case, decreasing

the salt fraction in the bath from φbath
+ = 10−3 triggers the onset of phase separation,

which gives rise to a periodic array of electrically charged phases that spans the entire

inner region. Charge neutrality is not recovered in the far field, even if the domain used

to numerically solve the inner problem is increased. Moreover, enforcing the boundary

condition φ̃
(0)
s → φgel

s as ξ → −∞ leads to convergence issues. Hence, the inner solution

cannot be matched to the homogeneous and electroneutral outer solutions computed

from (5.1). We therefore posit that homogeneous outer solutions do not always exist in

the thin-EDL limit ε→ 0 if ω = O(ε) or ω = 0.

To explore the hypothesis that the bulk of the gel may not be homogeneous and

electrically neutral at equilibrium, we solved the full steady problem in the regime ω =

O(ε) by setting ε = 10−2 and ω = 10−3. The salt fraction in the bath was set to

φbath
+ = 6.6× 10−4, corresponding to the parameters in Fig. 5 (b) and (e). The swelling

ratio J and the total charge density Q, which are shown in Fig. 6, reveal that phase

separation occurs throughout the entire gel and gives rise to a periodic arrangement of

electrically charged domains. Using numerical integration, we find that the total amount
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(a) (b)

Figure 6. Phase separation drives the breakdown of charge neutrality in the gel when

the Debye length is comparable to the Kuhn length. (a) The swelling ratio and (b)

the total electric charge density computed from the full steady problem in cylindrical

coordinates. The gel self-organises into a highly swollen, negatively charged core (dark

blue); a moderately swollen interior with alternating electric charge (blue), and a weakly

swollen, positively charged shell (light blue). We set ε = 10−2, ω = 10−3. The remaining

parameter values correspond to Fig. 5 (b) and (e) and are φbath
+ = 6.6 × 10−4, χ = 0.7,

G = 4× 10−3, ϕf = 0.04, z± = ±1, zf = 1, εr = 1, and λz = 1.

of electric charge contained within a pair of adjacent domains is on the order of 10−7.

Thus, the gel effectively separates into three distinct regions consisting of an electrically

negative, highly swollen core (0 < r < 0.073); a moderately swollen interior that is

electrically neutral on average (0.073 < r < 2.0); and a positively charged, collapsed

shell (2.0 < r < 2.1). Overall, the gel carries a net positive charge which exactly balances

the net negative charge in the bath to ensure that charge neutrality holds on a global

scale. The pointwise breakdown of charge neutrality across the gel indicates that it is

not always appropriate to decompose the problem into inner and outer regions that are

characterised by the local charge density of the gel.

6 Discussion and conclusion

Asymptotic and numerical methods are used to study the EDL that forms at the interface

between a polyelectrolyte gel and a salt bath. The gel is described using a phase-field

model, which introduces an additional length scale, the Kuhn length, into the problem.

The Kuhn length measures the thickness of diffuse internal interfaces that can form due

to phase separation within the gel. The ratio of the non-dimensional Kuhn and Debye

lengths, ω and ε, has a profound influence on the structure of equilibrium solutions.

When ω � ε, there is a high energy cost associated with forming gradients in the

solvent volume fraction in the gel. Therefore, the solvent volume fraction is spatially

uniform across the EDL and phase separation is suppressed. In this case, it is always

possible to match the inner solutions to electrically neutral, homogeneous outer solutions.

In contrast, when ω = 0, there is no energy penalty associated with forming gradients in
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the solvent fraction. In this case, the solvent fraction, which is set by a balance between

the osmotic and mechanical pressures, can vary across the EDL. However, it is not always

possible to compute a numerical solution to the inner problem when ω = 0.

Our preliminary investigation of the intermediate asymptotic limit where ε → 0 with

ω = O(ε) reveals that phase separation can result in heterogeneous gels consisting of

repeating pairs of positively and negatively charged domains. The breakdown of charge

neutrality means that the inner region effectively spans the entire gel. The difficulties in

numerically computing inner solutions with ω = 0 are attributed to the gel undergoing

phase separation and the loss of homogeneous, electrically neutral outer solutions.

The breakdown of electroneutrality due to phase separation can be rationalised as fol-

lows. Phase separation leads to the formation of diffuse interfaces that separate domains

with distinct compositions and electric potentials. The gradient in the electric potential

across the diffuse interface generates an electric field. When the Kuhn and Debye lengths

are commensurate, the electric field near the diffuse interface will be of sufficient mag-

nitude to trigger the formation of an EDL within the gel. If the Kuhn length greatly

exceeds the Debye length, then the electric field is too weak to generate an internal EDL

and hence the gel remains electrically neutral.

In Celora et al. [5], we used numerical continuation to track solutions of the full steady

problem as the salt fraction in the bath is varied in the regime when ω and ε are compa-

rable. We found that the breakdown of charge neutrality in the gel occurs via a cascade

of saddle-node bifurcations associated with a spatially localised mode of phase separa-

tion that originates from the EDL. A more in-depth analysis of the asymptotic limit

ε → 0 with ω = O(ε) can shed light on how phase separation is triggered near the free

surface of the gel and spreads into the bulk. Setting ε → 0 with ω = O(ε) is expected

to be mathematically interesting as it requires relaxing the assumption that the outer

solutions are homogeneous and it involves taking the limit in which the thickness of the

EDL and the thickness of diffuse internal interfaces simultaneously tend to zero.

Models of polyelectrolyte gels usually do not account for phase separation and thus

implicitly set ω = 0. Homogeneous and hence electrically neutral solutions that neglect

the EDL are often sought and compared against experimental data. However, our results

show that these homogeneous ‘solutions’ may be asymptotically inconsistent because

there is no inner solution that can be matched to them. Importantly, when ω = 0, the

bulk behaviour of the gel can be strongly coupled to the behaviour in the EDL and

thus the latter must be explicitly considered when constructing model solutions. The

extensive use of homogeneous, electroneutral solutions to characterise the response of

highly swollen polyelectrolyte gels is more consistent with the assumption that ω � ε,

as this limit enables the successful matching of inner and outer solutions and prohibits

the breakdown of electroneutrality in the bulk of the gel.

A useful extension of this work is to carry out the asymptotic analysis for a general

geometry to produce an asymptotically consistent electroneutral model in three dimen-

sions. Such a model would be a useful tool for designing polyelectrolyte gels that undergo

programmable shape changes driven by mechanical instabilities [28], phase transitions [4],

or imposed electric fields [25].
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Appendix A Summary of the governing equations in dimensional form

A.1 Bulk equations for the gel

The governing equations for the gel are formulated in terms of Eulerian coordinates.

These coordinates are associated with the current (or deformed) configuration of the gel.

The incompressibility condition is given by

J =

(
1−

∑
m∈M

φm

)−1

, (A 1)

where φm denotes the volume fraction of species m, i.e. solvent (s), cation (+), or anion

(-). The chemical potentials of solvent and ions can be written as

µs = µ0
s + ν(p+ Πs)−

kBTL
2
K

r

d

dr

(
r

dφs
dr

)
, (A 2 a)

µ± = µ0
± + ν(Π± + p) + z±eΦ, (A 2 b)

where T is temperature, kB is Boltzmann’s constant, ν is the volume of a molecule (as-

sumed to be the same for all mobile species), LK is the Kuhn length, p is the mechanical

pressure, Πm are osmotic pressures, χ is the Flory interaction parameter, Φ is the electric

potential, e is the elementary charge, and z± are the valence of the ions. The quantities

µ0
m are reference values of the chemical potential. The osmotic pressures are defined as

Πs =
kBT

ν

[
log(φs) +

χ(1− νφs)
J

+
1

J

]
, (A 3 a)

Π± =
kBT

ν

[
log(φ±) +

1

J
(1− χφs)

]
. (A 3 b)

The electric potential satisfies

−ε
gel

r

d

dr

(
r

dΦ

dr

)
= eν−1(z+φ+ + z−φ− + zfφf ) (A 4)

where εgel is the electrical permittivity of the gel and φf is the current volume fraction

of fixed charges.

The conservation of linear momentum in the gel reads as

dTrr
dr

+
Trr − Tθθ

r
= 0 (A 5)

where Trr and Tθθ are the radial and orthoradial components of the Cauchy stress tensor,

Trr = Te,rr + TK,rr + TM,rr − p, Tθθ = Te,θθ + TK,θθ + TM,θθ − p. (A 6)

The elastic components of the stress tensor Te,rr and Te,θθ are

Te,rr = GJ−1(λ2
r − 1), Te,θθ = GJ−1(λ2

θ − 1), (A 7)
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where G is the shear modulus of the polymer network and the stretches are defined in

(2.2). The Korteweg stresses are given by

TK,rr = kBTL
2
K

[
φs
r

d

dr

(
r

dφs
dr

)
− 1

2

(
dφs
dr

)2
]
, (A 8 a)

TK,θθ = kBTL
2
K

[
φs
r

d

dr

(
r

dφs
dr

)
+

1

2

(
dφs
dr

)2
]
. (A 8 b)

The Maxwell stresses are

TM,rr =
εgel

2

(
dΦ

dr

)2

, TM,θθ = −ε
gel

2

(
dΦ

dr

)2

. (A 9)

A.2 Governing equations for the bath

The chemical potentials are given by

µs = µ0
s + ν(Πs + p), (A 10 a)

µ± = µ0
± + ν(Π± + p) + z±eΦ, (A 10 b)

where

Πm =
kBT

ν
log(φm). (A 11)

The electric potential satisfies

−ε
bath

r

d

dr

(
r

dΦ

dr

)
= eν−1(z+φ+ + z−φ−). (A 12)

The radial stress balance in the bath is given by

dTrr
dr

+
Trr − Tθθ

r
= 0 (A 13)

where the radial and orthoradial stresses Trr and Tθθ are

Trr = TM,rr − p, Tθθ = TM,θθ − p. (A 14)

The Maxwell stresses are

TM,rr =
εbath

2

(
dΦ

dr

)2

, TM,θθ = −ε
bath

2

(
dΦ

dr

)2

. (A 15)

A.3 Boundary conditions

At the origin we impose

R(0) = 0,
dΦ

dr
= 0,

dφs
dr

= 0; r = 0. (A 16)

The boundary conditions at the free surface are given by

[µm]
r=a+

r=a− = 0, [Trr]
r=a+

r=a+ = 0, [Φ]r=a
+

r=a− = 0,

[
−εdΦ

dr

]r=a+
r=a−

= 0, (A 17)
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along with

dφs
dr

∣∣∣∣
r=a−

= 0. (A 18)

The far-field boundary conditions are

φm → φbath
m , p→ 0, Φ→ Φbath; r →∞. (A 19)

Appendix B Simplification of the outer problem for cylindrical gels

The nonlinear system for the outer solution (5.1) can be greatly simplified in the limit

of a dilute salt, φbath
+ � φf , where φf = ϕf/J . Balancing terms in the electroneutrality

condition (5.1 c) gives

Φgel − Φbath ∼ log

(
zfφf
φbath

+

)
+ G

(
1

λz
− 1

Jgel

)
+

1

Jgel
(1− χφgel

s ), (B 1)

where we have assumed that G/Jgel at most O(1) in size. The ion fractions in the gel are

approximately given by

φgel
+ ∼

(φbath
+ )2

zfφf
exp

[
−2G

(
1

λz
− 1

Jgel

)
− 2

Jgel
(1− χφgel

s )

]
, φgel

− ∼ zfφf , (B 2)

showing that the anions, to leading order in φbath
+ , balance the fixed charges on the

polymer chains. Since the cation fraction φgel
+ will be extremely small relative to the

anion fraction φgel
− , the swelling fraction reduces to

Jgel ∼ 1 + zfϕf

1− φgel
s

. (B 3)

The solvent fraction can then be obtained by solving

log φgel
s +

1− φgel
s

1 + zfϕf
+
χ(1− φgel

s )2

1 + zfϕf
+ G

(
1

λz
− 1− φgel

s

1 + zfϕf

)
= −2φbath

+ , (B 4)

and used to evaluate the swelling fraction, ion fractions, and jump in electric potential.

The black dashed lines in Fig. 2 represent solutions of (B 3)-(B 4), which are in very good

agreement with the full nonlinear system (5.1).

Appendix C Validation of the asymptotic solution to the inner problem

To validate the asymptotic approach, we numerically solve the full problem in axisym-

metric cylindrical coordinates using finite differences. To deal with the free boundary, we

use the change of variable r̂ = r/a and R̂ = R/a. The position of the free boundary can

now be determined as a = 1/R̂(r̂ = 1).

We consider the case where the axial stretch and salt content in the bath are set

to λz = 1 and φbath
+ = 10−5, with the remaining parameters being the same as those

in Fig. 2. Of the three possible solutions to the outer problem, we select the solution

corresponding to the collapsed state (Jgel ' 1.447). The non-dimensional Debye thickness

is set to ε = 10−3. Although this is higher than the estimate given in Sec. 2.4, it facilitates

numerically solving the full model.
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(a) (b) (c)

(d) (e) (f)

Figure C 1. Numerical solutions of the inner problem (lines) and the full steady problem

(circles) showing the structure of the EDL. Only the solution to the gel problem is shown.

The parameter values are χ = 1.2, G = 5×10−4, ϕf = 0.05, φbath
+ = 10−5, λz = 1, εr = 1,

z± = ±1, zf = 1, and ε = 10−3. Panels (a)–(c) correspond to the case when ω = 0; the

inner problem is defined by (5.2). Panels (d)–(f) correspond to the case when ω � ε with

ω = 0.5; the inner problem is defined by (5.3).

In Fig. C 1 (a)–(c), we compare the solutions of the full steady problem (circles) and the

inner problem (lines) when ω = 0. The solutions are found to be in excellent agreement.

The comparison between the inner and full solutions in the case of ω � ε is shown in

Fig. C 1 (d)–(f). To ensure a sufficient separation between the Debye length and the width

of diffuse interfaces, we have taken ω = 0.5 = 500ε. Overall, there is good agreement

between the solutions, with the main discrepancy occurring in the solvent fraction; see

Fig. C 1 (f).
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