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A novel analytical solution to the neutron diffusion equation is proposed in this
study using the residual power series approach for both spherical and
hemispherical fissile material reactors. Various boundary conditions are
investigated, including zero flux on the boundary, zero flux on the extrapolated
boundary distance, and the radiation boundary condition (RBC). The study also
shows how two hemispheres with opposing flat faces interact. We give numerical
results for the same energy neutrons diffused in pure 239Pu. By qualitative
comparison with the homotopy perturbation method and Bessel function-
based solutions, the residual power series method (RPSM) presents accurate
series solutions that converge to the exact solutions, as shown in this study.
Moreover, numerical results were shown to be improved by the computer
implementation of the analytic solutions.
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1 Introduction

Modern physics is taken into consideration after classical physics failed to explain
various phenomena, and many branches of modern physics developed, including nuclear
physics. To perform nuclear fission in a nuclear reactor, it is essential to have a neutron in the
thermal state to break through the nucleus, as each fission produces more than one neutron,
leading to a new reaction where a chain reaction is created [1].

The continuity equation, known as the time-dependent transfer equation, expresses the
distribution of neutrons in the reactor, which is given as

1
v

∂ϕ r, t( )
∂t

� s r, t( ) − Σa r( )ϕ r, t( ) − ∇.J r, t( ),

where υ is the neutron velocity, ϕ(r, t) is the neutron flux, s(r, t) is the neutron source term,
Σa is an absorption macroscopic cross section, and r is the position vector at the time t.

The continuity equation involves both neutron current J(r, t) and neutron flux ϕ(r, t),
where the relationship between current and the flux can be shown using Fick’s law, which is
given in the following mathematical equation:

J r, t( ) � −D∇ϕ r, t( ),
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where D is the diffusion coefficient.
By applying Fick’s law, the time-dependent transport equation

can be simplified to the following time-dependent neutron diffusion
equation:

1
v

∂ϕ r, t( )
∂t

� s r, t( ) − Σa r( )ϕ r, t( ) +D∇2ϕ r, t( ),

whose solution is considered very important in studying the
behavior of neutrons in reactors [2, 3].

The stability of the nuclear reactor has been studied in detail in
the past [4]. The condition of criticality in a nuclear reactor is
essential to ensure its stability, as the number of neutrons in the
reactor must be constant at any time. The flow in the critical state
must be time-independent, which can be mathematically expressed
using a time-independent diffusion equation as follows:

D∇2ϕ r, θ( ) + υ∑
f
−∑

a
( )ϕ r, θ( ) � 0. (1)

Various techniques, analytical and numerical, have been
employed to solve the neutron diffusion equation throughout
the past few decades, such as the homotopy perturbation method,
the Laplace transform process, and the Galerkin method with
B-splines [5–21]. To the best of our knowledge, the residual
power series method (RPSM) [21–29], an analytical technique,
has never been used to handle issues relating to the neutron
diffusion equation.

RPSM is a relatively new technique that provides exact and
approximate analytical solutions in the series form to many
differential and integrodifferential equations of integer and
fractional orders [21–29]. The idea of the RPSM is based on
using the residual function and the derivative operator concepts
in determining the coefficients of the solution, which is assumed
to be in a power series form. In RPSM, it is usual to use a
classical derivative operator to determine the coefficients of a
power series solution if the differential equation is of integer
order. However, a fractional derivative operator is used to
determine the coefficients if the differential equation is of
fractional order.

Later, we will rewrite Eq. 1 using spherical coordinates in
spherical and hemispherical reactors, which gives rise to single
equations. This work aims to adapt and modify RPSM to solve
Eq. 1 after being formulated in spherical coordinates. This
modification is a regeneration of RPSM and is presented for the
first time in this work. This modification relies on using a fractional
derivative operator, such as the Caputo fractional derivative (CFD)
[30, 31] or the conformable fractional derivative [21, 32], in
differential equations of the integer order. Since the equations to
be solved are singular, we impose the solution in a Frobenius series
form. Therefore, the new modified method can be considered an
alternative method to the Frobenius method in determining the
power series solution coefficients.

In fact, several types of fractional derivative operators can be
used in our hypothetical modification of the RPSM, such as the
CFD operator, the Riemann–Liouville fractional derivative
operator [33], and the conformable fractional derivative
operator. The CFD is employed in the modified method
without bias or preference to determine the Frobenius series

coefficients. The CFD operator is defined using the following
formula:

Dδ
t f t( ) �

1
Γ m − δ( )∫t

0
t − ζ( )m−δ−1f m( ) ζ( )dζ , m − 1< δ <m, 0≤ ζ < t,

f m( ) t( ), δ � m,

⎧⎪⎪⎨⎪⎪⎩
(2)

where δ ∈(m,m − 1],Dδ
t is the CFD operator and Γ(·) is the gamma

function.
Moreover, the numerical results in this study are contrasted using

pure 239Pu for the first time in studying spherical and hemispherical
neutron diffusion equations, whereas the previous works in history
studied pure 238U.

The following section presents the methodology of the RPSM and
its application to spheres and hemispheres. The radiation boundary
condition is also covered in depth to set the stage for the computations.
Section 3 presents numerical results for the flux distribution in the
studied nuclear reactors and critical radius calculations. The associated
technical problems encountered throughout the computations are
presented, along with the corresponding solutions.

2 Theory

2.1 The basic idea of the RPSM

RPSM is a technique to find the power series solution
coefficients without having a recurrence relation. Indeed, the
coefficients of the power series are calculated by the concept of
residual error through a sequence of algebraic equations, and in the
end, a truncated series solution (approximate solution) is obtained.
The major merit of RPSM is that it can be implemented to the
problem directly without linearization, perturbation, or
discretization and without any transformation by selecting
appropriate initial conditions.

Most of the problems resolved using RPSM were to provide
series solutions about regular points and did not address
situations where there are singular points. In this work, we
introduce a simple modification to the construction of the
RPSM to be able to solve issues containing these types of points.

The basic definition in addition to the basic theories of
RPSM and its applicability to different types of differential
equations is given in [21–29]. For the convenience of the reader,
we will introduce a review of the RPSM by clarifying the
following algorithm on an ordinary differential equation:

(1) Express the nth-order ordinary differential equation in the
following general form:

x − x0( )nϕ n( ) x( ) � Nx ϕ[ ], (3)
subject to the initial conditions

ϕ k( ) x0( ) � λk, k � 0, 1, 2, . . . , n − 1, (4)
where ϕ is an unknown function of x on an open interval I
containing x0 and Nx is a nonlinear differential operator of
order j≤ n − 1, and its coefficients are polynomials.
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(2) If x0 is a regular point for Eq. 3, assume the solution has a power
series expansion:

ϕ x( ) � ∑∞
k�0

ck x − x0( )k, (5)

whereas if x0 is a singular point for Eq. 3, assume the solution has the
following expansion (this is the new case that the RPSM did not
address):

ϕ x( ) � ∑∞
i�0
ck x − x0( )k+δ , c0 ≠ 0. (6)

(3) Define the residual functions as follows:

Res x( ) � x − x0( )nϕ n( ) x( ) −Nx ϕ[ ]. (7)
Indeed, Res(x) � 0, for every x ∈ I and so

dj

dxj
Res(x) � 0, j � 0, 1, 2, . . . at every interior point of I.

(4) Substitute the expansions (5) and (6) of ϕ(x) into Eq. 7 to
obtain, respectively, the following expansions:

Res x( ) � ∑∞
k�n

ckk!

k − n( )! x − x0( )k −Nx ∑∞
k�0

ck x − x0( )k⎡⎣ ⎤⎦, (8)

Res x( ) � ∑∞
k�0

ckΓ k + δ + 1( )
Γ k + δ − n + 1( ) x − x0( )k+δ −Nx ∑∞

k�0
ck x − x0( )k⎡⎣ ⎤⎦,

(9)
where Γ is the gamma function.

(5) In the singular point case, we need to find the value of δ ≥ 0.
Therefore, we find the CFD of order δ for the residual function
in Eq. 9 as follows:

Dδ
x0
Res x( ) � ∑∞

k�0

ck Γ k + δ + 1( )( )2
Γ k + δ − n + 1( )k! x − x0( )k

−Dδ
x0
Nx ∑∞

k�0
ck x − x0( )k⎡⎣ ⎤⎦, (10)

where Dδ
x0

is the CFD of order δ ≥ 0, which has the following two
properties: 1) Dδ

x0
(a) � 0,a is a constant 2) Dδ

x0
(x−x0)γ � Γ(γ+1)

Γ(γ−δ+1)(x−x0)γ−δ .

(6) Since the CFD of a constant is 0, the value of δ is the solution of
the following indicial equation:

Dδ
x0
Res x0( ) � 0. (11)

Since Res(x) � 0 andDδ
x0
Res(x) � 0 for all x in the interior of I,

the following equations are true:

di

dxi
Res x( ) � 0, i � 0, 1, 2, . . . , (12)

di

dxi
Dδ

x0
Res x( ) � 0, i � 0, 1, 2, . . . . (13)

(7) If x0 is a regular point for Eq. 3, then
ck � λk, k � 0, 1, 2, . . . , n − 1, and ck for k � n, n + 1, n +
2, . . . , can be determined by solving the following algebraic
equations, sequentially:

dk−n

dxk−n Res x0( ) � 0, k � n, n + 1, n + 2, . . . , (14)

whereas if x0 is a singular point for Eq. 3, then c0 ≠ 0 is arbitrary and
can be determined later by the given initial conditions, and ck for
k � 1, 2, 3, . . . can be specified by solving the following algebraic
equations, sequentially:

dk

dxk
Dδ

x0
Res x0( ) � 0, k � 1, 2, 3, . . . . (15)

(8) Replace the values obtained for ck, k � 0, 1, 2, . . .m with their
place in the expanded series of ϕ(x) to obtain the mth
approximate solution to Eq. 3.

(9) If there is a pattern in the coefficients of the series in terms of some
well-known elementary functions, then we have the exact solution
ϕ(x).

2.2 Bare sphere

First, the application of RPSM in spherical reactors is studied.
We consider first the rather simple example of a bare spherical
reactor of radius a. The spherical symmetry of the system implies
that the flux is a function of r only. The time-independent diffusion
Eq. 1 can thus be written as

∇2ϕ r( ) + B2ϕ r( ) � 0, (16)
where

B2 � υ∑f −∑a

D
(17)

is the buckling of the reactor. Substituting the Laplacian in spherical
coordinates and using x � Br, we obtain

x2d
2ϕ x( )
dx2

+ 2x
dϕ x( )
dx

+ x2ϕ x( ) � 0. (18)

To solve Eq. 18 using RPSM, we assume that the solution has a
fractional power series representation at x � 0 as follows:

ϕ x( ) � ∑∞
n�0

cnx
n+δ , c0 ≠ 0. (19)
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Define the residual function of Eq. 18 as

Res x( ) � x2d
2ϕ x( )
dx2

+ 2x
dϕ x( )
dx

+ x2ϕ x( ). (20)

Substitute Eq. 19 into the residual function (20), we obtain the
following series:

Res x( ) � ∑∞
n�0

n + δ( ) n + δ − 1( )cnxn+δ +∑∞
n�0

2 n + δ( )cnxn+δ

+∑∞
n�0

cnx
n+δ+2. (21)

According to Eq. 10, the CFD of the residual function in Eq. 21
will be as

Dδ
x0
Res x( ) � ∑∞

n�0
n + δ( ) n + δ − 1( ) Γ n + δ + 1( )

n!
cnx

n

+∑∞
n�0

2 n + δ( ) Γ n + δ + 1( )
n!

cnx
n

+∑∞
n�0

Γ n + δ + 3( )
n + 2( )! cnx

n+2. (22)

The solution of the indicial equationsDδ
x0
Res(0) � 0 gives δ � 0.

Thus, Eq. 22 becomes

Dδ
x0
Res x( ) � Res x( ) � ∑∞

n�0
n n − 1( )cnxn +∑∞

n�0
2ncnx

n +∑∞
n�0

cnx
n+2.

(23)
Thus, the jth derivative of the residual function Res(x) has the

following general form:

djRes x( )
dxj

�

∑∞
n�1

n2 n − 1( )cnxn−1 +∑∞
n�1

2n2cnx
n−1 +∑∞

n�0
n + 2( )cnxn+1 , j � 1,

∑∞
n�2

n2 n − 1( )2cnxn−2 +∑∞
n�2

2n2 n − 1( )cnxn−2 +∑∞
n�0

n + 2( ) n + 1( )cnxn, j � 2,

∑∞
n�j

n n − 1( )n!
n − j( )! cnx

n−j +∑∞
n�j

2n n!( )
n − j( )!cnxn−j +∑∞

n�j−2

n + 2( )!cn
n − j + 2( )!xn−j+2 , j � 3, 4, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(24)

According to step (9) in Subsection 2.1, the solution of the
algebraic equations

djRes x( )
dxj

∣∣∣∣∣∣∣∣x�0 � 0, j � 1, 2, . . . (25)

can be summarized in Table 1.
If we continue in the same manner, then we conclude that the

general form of the coefficients in series (19) will be in the following
form:

cn �
−1( ) n

2c0
n + 1( )!, n � 0, 2, 4, 6, . . . ,

0, n � 1, 3, 5, . . . .

⎧⎪⎪⎨⎪⎪⎩ (26)

Therefore, the solution for Eq. 18 has the following exact
solution:

ϕ x( ) � ∑∞
n�0

−1( )nc0
2n + 1( )!x

2n � c0
x
sin x. (27)

Consequently, the final solution for Eq. 16, in a closed form, is
given by

ϕ Br( ) � c0 sin Br( )
Br

. (28)

This flux must satisfy the relevant boundary conditions.

2.3 Hemispherical reactor

In this subsection, we will consider the hemispherical
reactor. This case is more complicated because the flux is a
function in two variables r and θ. Therefore, the time-
independent diffusion Eq. 1 can be expressed, by writing the
Laplacian in the spherical coordinates and using μ � cos θ, as
follows:

r2
∂2ϕ r, μ( )

∂r2
+ 2r

∂ϕ r, μ( )
∂r

+ ∂
∂μ

1 − μ2( ) ∂ϕ r, μ( )
∂μ

( ) + B2ϕ r, μ( ) � 0,

(29)
where the buckling B2 is again given by Eq. 17.

2.3.1 Solution by the separation of variables and
residual power series method

Applying the separation of variables, we obtain

ϕ r, μ( ) � R r( )ψ μ( ). (30)
We obtain the eigenvalue equations as follows:

r2
d2R r( )
dr2

+ 2r
dR r( )
dr

+ B2r2 −m m + 1( )( )R r( ) � 0, (31)
d

dμ
1 − μ2( ) dψ μ( )

dμ
( ) +m m + 1( )ψ μ( ) � 0. (32)

To solve the radial part using RPSM, we first, for simplicity,
consider x � Br and rewrite Eq. 31 as

TABLE 1 Some values of the coefficients of the expansion (19).

j djRes(x)
dxj |x�0 � 0 cj

1 2c1 � 0 c1 � 0

2 12c2 + 2c0 � 0 c2 � −c0
3(2!)

3 72c3 + 6c1 � 0 c3 � 0

4 20c4 + c2 � 0 c4 � c0
5(4!)

TABLE 2 Some values of the coefficients of the expansion (34).

j djRes(x)
dxj |x�0 � 0 cj

1 2(m + 1)c1 � 0 c1 � 0

2 2(2m + 3)c2 + c0 � 0 c2 � −c0
2(2m+3)

3 3(2m + 4)c3 + c1 � 0 c3 � 0

4 4(2m + 5)c4 + c2 � 0 c4 � c0
2(4)(2m+3)(2m+5)
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x2d
2R x( )
dx2

+ 2x
dR x( )
dx

+ x2 −m m + 1( )( )R x( ) � 0, (33)

and we assume the solution has a power series representation
at x � 0,

R x( ) � ∑∞
n�0

cnx
n+δ . (34)

The residual function of Eq. 33 has the following form:

Res x( ) � x2d
2R x( )
dx2

+ 2x
dR x( )
dx

+ x2R x( ) −m m + 1( )R x( ). (35)

If we substitute Eq. 34 into the residual function (35), then we
obtain the following series function:

Res x( ) � ∑∞
n�0

n + δ( ) n + δ − 1( )cnxn+δ +∑∞
n�0

2 n + δ( )cnxn+δ

+∑∞
n�2

cn−2xn+δ −m m + 1( )∑∞
n�0

cnx
n+δ , (36)

and so, the CFD of the residual function of order δ in Eq. 36 has the
following expansion:

Dδ
x0
Res x( ) � ∑∞

n�0
n + δ( ) n + δ − 1( ) Γ n + δ + 1( )

n!
cnx

n

+∑∞
n�0

2 n + δ( )cnΓ n + δ + 1( )
n!

xn

+∑∞
n�2

Γ n + δ + 1( )
n!

cn−2xn

−m m + 1( )∑∞
n�0

Γ n + δ + 1( )
n!

cnx
n. (37)

Substituting x � 0 in Eq. 37 gives the indicial equation of series
(34), whose solution is δ � m. Hence, the residual function in Eq. 37
can be rewritten as

Dm
x0
Res x( ) � ∑∞

n�0
n +m( ) n +m − 1( ) n +m( )!

n!
cnx

n

+∑∞
n�0

2 n +m( ) n +m( )!
n!

cnx
n +∑∞

n�2

n +m( )!
n!

cn−2xn

−m m + 1( )∑∞
n�0

n +m( )!
n!

cnx
n.

(38)
Following the same manner as in Section 2.2, if we apply the

sequential operator dj

dxi, j � 1, 2, 3, . . . on both sides of Eq. 38, we
obtain

djDm
x0
Res x( )

dxj
�

∑∞
n�1

n +m( )!
n − 1( )! n 2m + n + 1( )( )cnxn−1 +∑∞

n�2

n +m( )!
n − 1( )! cn−2x

n−1, j � 1,

∑∞
n�2

n +m( )!
n − 2( )! n 2m + n + 1( )cn + cn−2[ ]xn−2, j � 2,

∑∞
n�j

n +m( )!
n − j( )! n 2m + n + 1( )cn + cn−2[ ]xn−j, j � 3, 4, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(39)

Consequently, the first few coefficients of the series in Eq. 34 are
given in Table 2.

It is clear that there is a pattern in the coefficients of our series.
So, the nth coefficient, cn, has a general form as follows:

cn �
−1( ) n

2c0
2 4( ) . . . n( ) 2m + 3( ) 2m + 5( ) . . . 2m + n + 1( ), n � 0, 2, 4, 6, . . . ,

0, n � 1, 3, 5, . . . ,

⎧⎪⎪⎨⎪⎪⎩
(40)

which can be reformulated as follows:

cn � c0
−1( )n 2m + 1( )! m + n( )!
m!n! 2m + 2n + 1( )! , m ∈ 0, 1, 2, 3, . . .{ }, n

� 0, 1, 2, 3, . . . . (41)

TABLE 3 Some values of the coefficients of expansion (44).

j djRes(x)
dxj |x�0 � 0 cj

0 2c2 +m(m + 1)c0 � 0 c2 � −m(m+1)c0
2!

1 6c3 + (m − 1)(m + 2)c1 � 0 c3 � −(m−1)(m+2)c1
3!

2 12c4 + (m − 2)(m + 3)c2 � 0 c4 � (m−2)(m+3)m(m+1)c0
4!

3 20c4 + (m − 3)(m + 4)c3 � 0 c5 � (m−3)(m+4)(m−1)(m+2)c1
5!

TABLE 4 Pure 239Pu cross sections.

ʋ Σf Σs Σγ

2.84 0.0816 b 0.225216 b 0.019584 b

TABLE 5 Critical radius ac (in cm) for pure 239Pu for a sphere and hemisphere
using different boundary conditions: ZFBC, EBC, and RBC.

BC Sphere %Error Hemisphere %Error

ZFBC 8.7864 35.1 12.5674 38.2

EBC 6.9138 6.3 10.5249 15.7

RBC 6.5021 - 9.0956 -
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Therefore, the eigensolutions to the Sturm–Liouville equation in
Eq. 31 appear in the following series:

Rm Br( ) � ∑∞
n�0

Cmn
−1( )n 2m + 1( )! m + n( )!
m!n! 2m + 2n + 1( )! Br( )2n+m . (42)

Now, to solve the angular part, which is a Legendre equation, we
construct the residual function of Eq. 32 as

Res μ( ) � d2ψ μ( )
dμ2

− μ2
d2ψ μ( )
dμ2

− 2μ
dψ μ( )
dμ

+m m + 1( )ψ μ( ), (43)

and since μ � 0 is a regular point of Eq. 32, we assume the solution of
the following expansion:

ψ μ( ) � ∑∞
n�0

cnμ
n. (44)

Substitute Eq. 44 into Eq. 43, and we obtain

Res μ( ) � ∑∞
n�2

n n − 1( )cnμn−2 −∑∞
n�2

n n − 1( )cnμn −∑∞
n�1

2ncnμ
n

+m m + 1( )∑∞
n�0

cnμ
n. (45)

Applying the differential operator dj

dxi, j � 0, 1, 2, 3, . . . on both
sides of Eq. 45 gives

djRes x( )
dxj

�

∑∞
n�0

n + 2( ) n + 1( )cn+2 +m m + 1( )cn[ ]μn −∑∞
n�2

n n − 1( )cnμn −∑∞
n�1

2ncnμ
n, j � 0,

∑∞
n�1

n n + 2( ) n + 1( )cn+2 + m m + 1( ) − 2n( )cn[ ]μn−1 −∑∞
n�2

n2 n − 1( )cnμn−1 , j � 1,

∑∞
n�2

n n − 1( ) n + 2( ) n + 1( )cn+2 + m − n( ) m + n + 1( )cn[ ]μn−2 , j � 2,

∑∞
n�j

n!

n − j( )! n + 2( ) n + 1( )cn+2 + m − n( ) m + n + 1( )cn[ ]μn−j , j � 3, 4, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(46)

Thus, the first few coefficients of the series in Eq. 44 are given in
Table 3.

Note that there are two linearly independent solutions one of
them is an infinite series and the other is a polynomial of degreem. If
m is an even number, then the solution that contains terms of even
exponents will be the polynomial whereas the solution that contains
terms of odd exponents will be infinite series and vice versa ifm is an
odd number. Anyway, we can keep track of the pattern in the
coefficients and write the solutions as follows:

ψm0 μ( ) � cm0 1 +
m
2 !( )2
m!

∑m2
n�1

−1( )n m + 2n( )!μ2n
m
2 − n( )! m

2 + n( )! 2n( )!
⎛⎝ ⎞⎠, m

� 2, 4, 6, . . . ,

ψm1 μ( ) � cm1 x +
m−1
2 !( )2
m!

∑m−1
2

n�1

−1( )n m + 2n( )!μ2n+1
m−1
2 − n( )! m−1

2 + n( )! 2n + 1( )!
⎛⎝ ⎞⎠, m

� 1, 3, 5, . . . .

(47)
Legendre was able to combine both solutions in a single

format, regardless of whether the number m was odd or even as

ψm μ( ) � cmPm μ( ) � cm
1
2m

∑m/2[ ]

n�0

−1( )n 2m − 2n( )!μm−2n

n! m − n( )! m − 2n( )!
⎛⎝ ⎞⎠. (48)

By using Rodrigues’s formula for the Legendre polynomials, the
solution can be expressed as follows:

ψm μ( ) � cmPm μ( ) � cm
1

2mm!

dm

dμm
μ2 − 1( )m. (49)

Therefore, the general solution for Eq. 29 can be expressed as

ϕ r, μ( ) � ∑∞
m�0

ϕm r, μ( ) � ∑∞
m�0

AmRm r( )Pm μ( ). (50)

2.4 The radiation boundary condition

Although the choice of suitable boundary conditions in solving
the neutron diffusion equation is at the core of the nuclear reactor
physicist mission, here, we will apply three boundary conditions,

TABLE 6 Convergence of the critical radius ac (in cm) for the hemisphere
using RBC.

Number of terms Critical radius ac

4 9.0913604

6 9.0955147

8 9.0955608

10 9.0955676

12 9.0955673

18 9.0955655

22 9.0955651

32 9.0955652

38 9.0955657

42 9.0955664

TABLE 7 Variation in the critical radius ac with the interaction parameter g.
N � 10 (22 terms).

g Critical radius ac

0 6.50206

0.1 6.96796

0.2 7.3793148

0.3 7.7345081

0.4 8.0369619

0.5 8.2927704

0.6 8.5088470

0.7 8.6918102

0.8 8.8474778

0.9 8.9807312

1 9.0955651
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namely, zero flux boundary condition (ZFBC), extrapolated
boundary condition (EBC), and radiation boundary condition
(RBC). These boundary conditions will be applied on both
spherical and hemispherical reactors.

ZFBC cures about the point at the surface of the reactor ac that
the flux is 0, and for more reality, the flux will vanish at a point less
than that point which is called extrapolated distance ac + 2D. To be
more accurate, especially for the hemisphere, the mixed boundary
condition gives the closest results when comparing to the
benchmark; this boundary condition is called
RBC [n.∇ϕ(r, μ) � g(r)ϕ(r, μ)].

The use of the application of RBC on the solution of the
hemispherical reactor using RPSM based on the separation of
variable techniques can be performed as follows:

n.∇ϕ r, μ( ) � g r( )ϕ r, μ( ), (51)
where g(r) varies over the surface, and this RBC is reported in
previous works [34, 35].

The RBC on the curved surface where r � a will be

∂ϕ r, μ( )
∂x r�a � −g1ϕ a, μ( ). (52)

TABLE 8 Flux variation across the critical hemisphere at θ � π/4

r/a 4 terms 12 terms 22 terms 46 terms 62 terms 86 terms

0 0.96477 0.96477 0.96477 0.96477 0.96477 0.96477

0.1 1.2457 1.24559 1.24559 1.2456 1.2456 1.2456

0.2 1.46942 1.46905 1.46907 1.46908 1.46908 1.46908

0.3 1.62184 1.62128 1.62131 1.62133 1.62133 1.62133

0.4 1.69395 1.69346 1.69351 1.69353 1.69353 1.69353

0.5 1.68238 1.68249 1.68255 1.68258 1.68258 1.68258

0.6 1.58968 1.59113 1.5912 1.59123 1.59124 1.59124

0.7 1.424 1.42773 1.42781 1.42784 1.42784 1.42785

0.8 1.19841 1.20548 1.20556 1.20559 1.20559 1.20559

0.9 0.929833 0.941299 0.941365 0.941394 0.941397 0.941399

1 0.63763 0.654469 0.654514 0.654539 0.654542 0.654544

FIGURE 1
Angular distribution over the curved surface.
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However, RBC on the flat surface will be

∂ϕ r, μ( )
∂x μ�0 � −g2ϕ r, 0( ), (53)

where g1 � 1
2D, g2 � g(a/b)

2D , where the values of g change from 0 to 1,
and the reactor geometry changes from spherical (g � 0) to
hemispherical (g � 1) geometry as mentioned in [34, 35].

Applying RBC on the flat surface in Eq. 50 yields

1
r
∑AmRm Br( )P′

m 0( ) � g2 ∑AmRm Br( )Pm 0( ). (54)

Using the following recurrence relationships of Rn(Br):

R2m+1 Br( )
r

� BR2m+2 Br( )
4m + 5( ) 4m + 3( ) + BR2m Br( ), m + 1

Br
Rm Br( )

+ R′
m Br( )
B

� 2m + 1( )Rm−1 Br( ), (55)
and some Legendre polynomials properties, we obtain the following
relationship:

B 2m + 1( )A2m+1 − 2mB

4m + 1( ) 4m − 1( )A2m−1 � g2

2m + 1
A2n. (56)

We can use the previous result to write the odd term amplitude
in terms of the even term amplitude as

FIGURE 2
Flux distribution across the core of a bare hemisphere at different angles N � 10 (22 terms)

TABLE 9 Flux variation across the critical hemisphere at different values of θ. N � 10 (22 terms).

r/ac θ � 0 θ � 10 θ � 20 θ � 30 θ � 40 θ � 50 θ � 60 θ � 70 θ � 80 θ � 90

0.0 0.96477 0.96477 0.96477 0.96477 0.96477 0.96477 0.96477 0.96477 0.96477 0.96477

0.1 1.36213 1.35615 1.33834 1.30914 1.26925 1.21967 1.16165 1.09673 1.02666 0.953433

0.2 1.68061 1.66984 1.63774 1.5849 1.51233 1.42146 1.31418 1.19284 1.06031 0.919961

0.3 1.9031 1.88886 1.84635 1.77616 1.67931 1.55727 1.41201 1.24608 1.06271 0.865935

0.4 2.01926 2.00290 1.95399 1.87304 1.76091 1.61886 1.44854 1.25217 1.03266 0.793886

0.5 2.02617 2.00899 1.9576 1.87237 1.75396 1.60326 1.42144 1.20999 0.970913 0.707143

0.6 1.92837 1.91158 1.86129 1.77779 1.66151 1.51298 1.33281 1.12163 0.880147 0.60964

0.7 1.73734 1.72197 1.67592 1.59934 1.49252 1.3557 1.18902 0.992291 0.764828 0.505694

0.8 1.47049 1.45739 1.41804 1.35254 1.26105 1.14365 1.00017 0.829878 0.630908 0.399781

0.9 1.14958 1.13947 1.10858 1.05708 0.985075 0.89258 0.779318 0.644378 0.485381 0.296389

1.0 0.795468 0.792833 0.770963 0.735194 0.685056 0.620451 0.541452 0.447178 0.335593 0.200533
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A2m+1 � ∑n

k�0γmkA2k, (57)
where

γmk �
2m( )‼ 2k − 1( )!! 4k + 1( )‼
2k( )!! 2m + 1( )‼ 4m + 1( )‼

g2

B
, (58)

as reported in [ 36].
Similarly, applying the RBC on the curved surface, we

obtain

∑∞
m�0

AmR′ Ba( )Pm μ( ) � −g1∑∞
m�0

AmR Ba( )Pm μ( ), (59)

or it can be written as

∑∞
m�0

AmfmPm μ( ) � 0, (60)

where fm is given by

fm � m

a
+ g1( )Rm Ba( ) − B

2m + 3
Rm+1 Ba( ). (61)

Following [35], we obtain

∑∞
m�0

M̂mk A2m � 0, k � 0, 1, 2, 3 . . . , (62)

where

M̂mk � β 2m,k( ) f2m + ∑∞
l�m

β 2l+1,k( ) f2l+1γl,m, (63)

and

βmk � 2k + 1( )∫1

0
Pm μ( )Pk 2μ − 1( )dμ. (64)

The alternating method of βmk is

βmk � Pm μk( ), (65)
where μk � cos(kπ/2N), which is used in these calculations.

3 Numerical results

The numerical data of neutrons diffusing in pure 239Pu are taken
from [36], which are shown in Table 4.

The important diffusion constant and buckling are

D � 1

3 Σf + Σs + Σγ( ) � 1.021241834 cm, B �
��������������
ʋΣf − Σf + Σγ( )

D

√
� 0.357553294cm−1.

Depending on these data, to calculate the flux, applying
different boundary conditions, to find the critical radii, and to
study the flux distribution for both spherical and hemispherical
reactors,, this work has been compared with benchmark
calculations [34].

3.1 Critical radius calculations

The critical radius ac is the dimension of the reactor determined
as the flux vanished. The determination of the critical radius
depends on the boundary conditions, and the simplest way of
calculating it is by using ZFBC, where the flux vanishes. In real
reactors, an extrapolated distance must be considered (ac +2D) at
which the value of the flux is 0; this boundary condition is the EBC.

FIGURE 3
Flux distribution across the core of a bare hemisphere as a function of r and θ. N � 10(22 terms).
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The use of ZFBC and EBC is suitable for sphere, cylinder, and slab
reactors where there is high symmetry, but for more complicated
reactors like hemispherical and cone reactors, we need to use
the RBC.

The first case we will study is the spherical reactor. Here, the critical
radius using ZFBC and EBC is considered, and the results are compared
with RBC. A C++ computer code based on Eq. 28 has been written to
find the first root of Eq. 28. The value of r at which the flux is 0 is
ac,ZF � 8.7864 cm. Since the flux is assumed to converge at ac + 2D
using EBC, then ac,EBC � 8.7864. These results are tabulated in Table 5.

After taking the bare sphere, the hemispherical reactor is
considered, and the neutron flux using ZFBC will vanish on the
flat surface (µ = 0). Using the Legendre polynomial properties, the
even amplitudes must be equal to 0, and on the curved surface, we
need to find the first zero of the solution Rn (Br) of the radial part.
The unique available case is for m � 1. So Eq. 50 will reduce to the
following form:

ϕ r, μ( ) � A1R1 Br( )ψ1 μ( ) � ∑∞
m�0

cm −1( )n 3( )! m + 1( ) Br( )1+2m
3 + 2m( )! μ.

(66)
The critical radii in pure 239Pu that are calculated

using the C++ code depending on Eq. 59 are tabulated in
Table 5.

Unlike the spherical reactor, applying RBC is essential for the
hemispherical reactor.

The calculation of the critical dimension using RBC is illustrated
in the following equation, and the infinite summation in Eq. 62 will
be cut off to the value N, where the dimension of the matrix is finite,
and rewritten as

∑N
m�0

M̂mk A2m � 0, (67)

where

M̂mk � β 2m,k( ) f2m +∑N
l�n
β 2l+1,k( ) f2l+1γl,m . (68)

This simplification is an important numerical calculation to
make cut-off limit value N. Then, the flux in Eq. 50 will be
simplified to

ϕ r, μ( ) � ∑2N+1

m�0
ϕm r, μ( ) � ∑2N+1

m�0
AmRm r( )ψm μ( ). (69)

A third computer code has been used to calculate the critical
radius using RBC. The code calculates the determinant of M̂nk. The
value of a affects the determinant through the parameters fn (Eq.
61). As a increases, the value of the determinant will change its sign.
On the other hand, the calculated ac depends on the value of the
interaction parameter g through γnk (Eq. 58). Hence, the results for
the sphere and the infinitely separated hemispheres are obtained by
using g � 0 and g � 1, respectively.

The determination of the critical dimension depends on the cut-
off value N, where the number of terms will be 2N + 2, and the value
of the critical dimension with the number of terms is given in Table 6.

The effect of the number of terms is clear; the value of the critical
radius is converged by increasing the number of terms. Now, the

effect of changing the interaction parameter g on determining the
critical radius is clarified in Table 7, where the cut-off value N � 10
and the number of terms (22) are considered.

The reactor is a sphere when the interaction parameter g � 0,
whereas it is a hemisphere when the interaction parameter g � 1,
where the values of the critical radii are shown in Table 4 and
Table 5, respectively.

3.2 Flux distribution

Now, the flux destruction inside the hemispherical reactor will
be considered. It is straightforward that the symmetry of the
spherical reactor makes the flux distribution a simple case study
in [35], so the flux in Eq. 69 will be written as

ϕ r, μ( ) � ∑2N+1

m�0
A2mR2m Br( )ψ2m μ( ) + A2m+1R2m+1 Br( )ψ2m+1 μ( )[ ].

(70)
For computational calculation purpose, this equation can be

expressed as

�ϕ r, μ( ) � ∑N
m�0

A2m R2m Br( )Pψ2m μ( ) + ∑N
l�m

γl,nR2m+1 Br( )ψ2m+1 μ( )⎡⎣ ⎤⎦.
(71)

The amplitudes A2m in Eq. 62 are needed to be written in the
form

∑N
n�0

M̂nk A2m � −M̂0kA0, (72)

where A1 has been normalized to unity. So A0 � 1
γ00
, and the flux

values are normalized to the averaged flux.

�ϕ � ∫a

0
∫1

0
r2ϕ r, μ( )dμdr∫a

0
∫1

0
r2dμdr

. (73)

The value of the average flux is

�ϕ � 3
a3
∫a

0
r2dr∫1

0
ϕ r, μ( )dμ. (74)

Based on these data, the averaged flux calculated using the C++

code was determined to be 0.756965. The variation in the flux at
θ � π/4 with r changes from zero, and the critical radius is given in
Table 8 for different values of N (different number of terms).

The convergence of the flux values is clearly given in Table 8.
As shown in Figure 1, the fast convergence of the flux on the

curved surface is obtained with the increasing number of terms (for
N � 1, 2, 3, 4, and 30).

It is important to clarify, from Figure 1, that the convergence is
stable and acceptable, and when the number of terms is 30, the angular
flux, which expresses the behavior of neutrons when they are diffusing
in pure 239Pu, is expected which is the same as in using the homotopy
perturbation method in solving the neutron diffusion equation where
neutrons diffuse in the 235U hemispherical reactor [35].

After studying the effect of the number of terms on the flux, it is
taken into consideration at a wide range of angle values in Figure 2.
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As shown in Figure 2, it is noted that the radial flux does not
decrease when r increases and the maximum value of the flux shifted
with the increase in the angle. One more time, the neutron
distribution is in the same manner as in previous work [35].

To clarify theflux behavior inmore detail, the flux values for different
angles and radii are tabulated in Table 9 and depicted in Figure 3.

Furthermore, a three-dimensional plot of the flux distribution across
the core of a bare hemisphere as a function of r and θ is shown in Figure 3.

The flux in Table 6 is represented graphically in Figure 3. The
data in Figure 1 and Figure 2 are merged in the same figure, where
the full neutron behavior is represented; however, this three-
dimensional flux representation is not figured out previously for
the hemispherical reactor.

Although the neutrons diffusing in pure 239Pu in this paper are
studied using RPSM for the first time and the neutrons diffusing in
235U were previously studied using the homotopy perturbation
method [35, 36], it is clear that their behavior is the same.

4 Conclusion

In this article, we introduced the application of RPSM in solving
the neutron diffusion equation in hemispherical symmetry. The
method is efficient and can present the solution in the form of a
rapid series that converge to the exact solution. Two important cases
are discussed: the spherical reactor and hemispherical reactor. The
results are presented in tables and illustrative figures using C + +
codes. To show the validity of the presented method, we made
qualitative comparisons between the obtained results using RPSM
and those computed using the homotopy perturbation method. The
used method and its computational implementation provide
superior results when applied to more complex and reflected
reactor geometries for one-group problems. It is recommended,
however, for future work to further investigate the methodology for
two- and multi-group problems.

In future work, we attend to solve more partial differential
equations with physical applications, using the proposed method
that showed its accuracy in handling similar problems, and further
investigation of the convergence-produced series should be the goal
of future specialized research [37–41].
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