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Introduction: Continuous glucose monitoring (CGM) devices capture

longitudinal data on interstitial glucose levels and are increasingly used to

show the dynamics of diabetes metabolism. Given the complexity of CGM

data, it is crucial to extract important patterns hidden in these data through

efficient visualization and statistical analysis techniques.

Methods: In this paper, we adopted the concept of glucodensity, and using a

subset of data from an ongoing clinical trial in pediatric individuals and young

adults with new-onset type 1 diabetes, we performed a cluster analysis of

glucodensities. We assessed the differences among the identified clusters

using analysis of variance (ANOVA) with respect to residual pancreatic beta-

cell function and some standard CGM-derived parameters such as time in range,

time above range, and time below range.

Results: Distinct CGM data patterns were identified using cluster analysis based

on glucodensities. Statistically significant differences were shown among the

clusters with respect to baseline levels of pancreatic beta-cell function surrogate

(C-peptide) and with respect to time in range and time above range.

Discussion: Our findings provide supportive evidence for the value of

glucodensity in the analysis of CGM data. Some challenges in the modeling of

CGM data include unbalanced data structure, missing observations, and many

known and unknown confounders, which speaks to the importance of–and

provides opportunities for–taking an approach integrating clinical, statistical, and

data science expertise in the analysis of these data.
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1 Introduction

Type 1 diabetes (T1D) is a life-threatening autoimmune disease

with no cure (1). Insulin replacement is lifesaving and treats

symptoms of T1D, but does not alter disease progression.

Glycated hemoglobin A1c (HbA1c) is an established glycemic

physiological biomarker, which is widely used for diagnosing,

monitoring, and informing treatment decisions in the

management of T1D. However, HbA1c measurements may exhibit

high variability and can be affected by various biological and

analytic factors, which may complicate an accurate assessment of

blood glucose and glycemic control in T1D (2).

Continuous glucose monitoring (CGM) is a technology

increasingly used to capture the dynamics of metabolism in T1D

(3). CGM provides a more complete assessment of glycemia than what

is possible with intermittent evaluations by standard home blood

glucose monitoring or HbA1c-based approaches. Modern CGM

systems are wearable devices that can transmit glucose readings

every 1 min–15 min to connected technologies, such as a

smartphone, portable reading device, computer, thereby enabling

patients, caregivers, and physicians to monitor glucose levels over

time and make informed decisions in diabetes management. CGM is

also an integral component of artificial pancreas systems—more

advanced technologies that provide the means for an automatic

insulin delivery at the right dose and at the appropriate times for

the individual patient (4). The use of dashboard systems—software

technologies integrating relevant clinical information, including CGM

data into a unified display—hold promise for improving population-

level management of T1D, especially in pediatric patients (5).

The structure of CGM data is complex. CGMmeasurements per

individual represent high-frequency time series data capturing the

dynamics of interstitial glucose concentrations. Although these data

(in addition to HbA1c measurements and other relevant

biomarkers) can provide important information on diabetes

metabolism, they require careful preprocessing and are

challenging to analyze statistically (6, 7). As CGM data are

frequently acquired under free-living conditions, they are subject

to various sources of variability and confounding effects (8).

Traditional statistical methods may not adequately capture the

dynamic nature of the CGM data and the underlying patterns.

Functional data analysis may provide a potentially useful alternative

approach (9, 10). By considering the entire individual glucose

trajectory as a functional unit and incorporating appropriate

statistical models, functional data analysis may help researchers to

characterize and compare glucose profiles, identify temporal

patterns, and assess the impact of various factors on glucose

dynamics (11, 12). Recently, Matabuena et al. (13) introduced a

new functional representation of CGM data, termed “glucodensity”,

with the corresponding statistical toolkit for analyzing

glucodensities. They gave several important examples from both

clinical practice and biomedical research, where the concept of

glucodensity may be promising and provide a more accurate

characterization of glucose metabolism than the more standard

approaches. The predictive potential of glucodensity was also

validated in the AEGIS study of long-term changes in glucose

levels (14). Furthermore, the distributional presentation and
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analysis of high-frequency biomedical data can be useful in other

areas of clinical research. For example, Matabuena et al. (15)

showed the utility of this approach by deriving clinical

phenotypes of older adults based on their accelerometry data and

demonstrating the value of such phenotyping in predicting 5-year

mortality and survival.

CGM data are now frequently collected in T1D clinical trials,

commonly as a part of exploratory objectives and potentially as an

outcome measure (16–19). In contrast to self-measured glucose

using a fingerstick, CGM can provide continuous real-time

measurement of glucose levels in an ambulatory setting, with the

assessment of glycemic variability, comprehensive measurement of

hyperglycemic and hypoglycemic exposure, and safety alerts for

glycemic extremes. This extensive glycemic data should be of value

for clinical trials of diabetes pharmacotherapies or strategies

including nutrition and exercise. However, to date, the utility of

CGM data acquired during a clinical trial has been somewhat

limited, in part because the value of CGM-derived outcomes has

not yet been fully recognized by regulators (i.e., the US Food and

Drug Administration) or payers (i.e., insurance companies) as an

indicator of safety or effectiveness.

This report provides insights on important statistical analysis

issues with CGM data that arise in the context of randomized clinical

trials of new investigational drugs for T1D. We highlight some

challenges and outline ways to manage them using real data from

an ongoing randomized, placebo-controlled phase 2a proof-of-

concept study of an investigational medicinal product (IMP) in

pediatric individuals and young adults with new-onset T1D. This

study aimed to advance valuable approaches for clinical investigators,

statisticians, and data scientists involved in the design and analysis of

clinical trials collecting CGMdata; however, the paper is not meant to

provide comprehensive solutions.
2 Background and research questions

Consider a clinical research study with CGMdata collection. As the

actual IMP itself is not relevant to the CGMdata, and because the study

is ongoing, details of the IMP are not discussed. In brief, the trial is a

non-confirmatory, randomized 2:1, placebo-controlled, investigator-

and subject-blinded, parallel-arm, phase 2a trial to assess safety,

tolerability, pharmacokinetics (PK), and the early efficacy of the IMP

on the preservation of residual pancreatic beta-cell function in new-

onset T1D in pediatric and young adult subjects. Eligible participants

(newly diagnosed T1D patients, 12–21 years of age weighing between

30 kg and 125 kg) are enrolled into the trial within 8 weeks of the time

of diagnosis based on the results of both screening and baseline visits

[ClinicalTrials.gov Identifier: NCT04129528].

In this study, CGM data are collected as an exploratory

objective for describing the dynamics of T1D metabolism. Study

participants are provided with CGM devices (Dexcom G6) and

supplies and asked to wear a CGM device for at least 3 consecutive

days (10 days are preferred and feasible with the single sensor) at

baseline prior to the first dose, at day 1 after receiving the first dose

of the study drug, and at months 3, 6, 9, and 12 during the 1 year of

treatment. Sufficient supplies are provided for continuous wear,
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which is encouraged. The acquired CGM data evaluate glycemic

parameters, such as the mean glucose level, variability, time in the

glycemic range, hyper and hypoglycemia, and duration, on the

assessment days (20).

In this context, several important questions warrant investigation:
Fron
1. How can one perform an informative visualization of the

longitudinal CGM data that would also be appealing from

the clinician’s perspective? This is important as current

visualizations are generally snapshots of 10 days to 14 days

of data.

2. Based on the CGM data, can clinically meaningful subgroups

be identified through the clustering of study participants?

3. Using the CGM data before and after randomization (i.e.,

“pretreatment” and “posttreatment”), can the treatment

effect within a subject be quantified and can its

significance be tested statistically (e.g., using an analog of

a paired t-test)?

4. Is there a way to perform a statistical significance test

comparing treatment effects (IMP vs. placebo) with

respect to the CGM data, possibly accounting for some

important covariates [e.g., an analog of a two-sample t-test

or an analysis of covariance (ANCOVA)]?
To address the first two questions, we performed exploratory

data analysis using a subset of data from the described phase 2a trial.

These results are based on blinded data (i.e., the individual

randomized treatment group information is unavailable), and

they are presented in Section 4. To address the last two questions,

some additional information on the individual treatment

assignments and treatment periods is required. At this point, this

information is unavailable because the study is still ongoing.

Therefore, we present only the relevant data analysis strategy as

part of the discussion in Section 5.
3 Materials and methods

Table 1 below shows an example of the CGM data structure.

The first column corresponds to the subject ID, the second column
tiers in Clinical Diabetes and Healthcare 03
refers to the time at which the glucose levels were recorded, and the

third column contains the values of the glucose levels (mg/dL). In

our example, the glucose levels are recorded every 5 min. In all

conducted analyses, we used all available valid CGM observations

(i.e., observations not flagged as erroneous in the dataset) from the

study participants, without the knowledge of their treatment

assignments and without the knowledge of treatment periods

within the subjects. Therefore, our analyses can be viewed as

unsupervised learning.
3.1 Data visualization

Visualization of CGM data is of great importance to provide

accessibility for the comprehension of the information in large

datasets. Broll et al. (21) provided a comprehensive list of CGM-

based metrics and an R package, iglu, for visualization purposes. We

used the iglu package to obtain lasagna plots of average glucose

levels per subject over the 24-h period. Also, we created plots of the

available individual raw CGM data over 24 h, along with the mean

ambulatory glucose profiles (AGPs) per subject. To visualize

dynamic changes of glycemia within subjects, we created plots of

individual time-in-range values compared with the study day.
3.2 Clustering using glucodensities

We adopt the concept of glucodensity (13) and demonstrate

how one could benefit from a cluster analysis based on estimated

glucodensities. The glucodensity is a probability density function

describing the distribution of glucose levels over time. Formally, let

Y(t) denote the glucose level measured by wearable devices at time

t ∈ ½0,T�. The glucodensity f (s) is defined as follows (13):

f (s)   =  
∂

∂ s
F(s),  where F(s)   =  

1
T

Z T

0
Ι(Y(t)  ≤  s)dt : (1)

In Equation 1, Ι( · ) stands for the indicator function. This

formulation implicitly assumes that the glucose level Y(t) has a

common density f (s) for all t ∈ ½0,T� (22). A kernel density

estimator (KDE) is applied for estimating f (s). Let yi, i   =   1, :   :   :,m
TABLE 1 Example of a CGM data structure.

Subject ID Time Glucose level (mg/dL)

Subject 00000001 2022-01-01 10:55:00 UTC 155

Subject 00000001 2022-01-01 11:00:00 UTC 147

Subject 00000001 2022-01-01 11:05:00 UTC 138

Subject 00000002 2022-05-01 15:55:00 UTC 89

Subject 00000002 2022-05-01 16:00:00 UTC 97

Subject 00000002 2022-05-01 16:05:00 UTC 98

· · · · · · · · ·
The first column corresponds to the subject’s ID, the second column refers to the time at which the glucose levels were recorded, and the third column contains the values of the glucose
levels (mg/dL).
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be the realizations of Y(t) at time points t1, :   :   :, tm   and Kh( · ) be a

kernel with bandwidth h. Then f (s) is estimated by:

f̂ (s)   =  
1
mo

m
i  =  1Kh(s  −   yi) : (2)

Note that the measurements yi in Equation 2 are not

independent. Theoretical justifications of the KDE for dependent

data can be found in Hall et al. (23) and Bosq (22). Furthermore,

Matabuena et al. (13) showed how the concept of the 2-Wasserstein

distance (24) and energy-based methods (25, 26) can be applied to

cluster-estimated glucodensities. We used the R package

biosensors.usc, provided by Matabuena et al. (13), to estimate

individual glucodensities and perform the corresponding

cluster analysis.

To facilitate a clinical interpretation of the identified clusters, we

performed the statistical comparisons of the clusters using analysis

of variance (ANOVA) with respect to the baseline level of the C-

peptide (an established biomarker of pancreatic beta-cell function)

and with respect to conventional CGM-derived parameters such as

the time in range (TIR), time above range, and time below range.
4 Results

4.1 Analysis dataset

Our analysis dataset included 30 subjects and 760,510 valid

records in total. During the data preprocessing step, device error

values were identified and flagged in the database (they represented

< 5% of the observations) and discarded from the analysis. An

assessment of potential bias due to temporary loss of data capture is

outside the scope of the present paper. The overall time range from

the first to the last observation for the 30 subjects was 4 days to 518

days, with a mean of 158.9 days and a median of 115.5 days. We

defined the metric coverage as the number of days with valid

observations covering at least 70% of each day, in line with the

International Consensus on the Use of Continuous Glucose

Monitoring (19, 20) , which supports a minimum of

approximately 70% of possible CGM readings over 14 days to

enable an optimal glycemic assessment for real-time decision-

making. Larger gaps in a 24-h period are generally considered

insufficient for describing a daily profile. We note that our analysis

differed in that we were assessing prespecified glycemic observation

intervals to estimate glycemia over a broader interval of time, but we

employed the same standard for a minimal definition of a complete

day capture. In our data, the CGM coverage achieved by the 30

subjects ranged from 3 days to 468 days, with a mean of 84.7 days, a

median of 45.5 days, a first quartile of 16.3 days, and a third quartile

of 120 days.
4.2 Data visualization

Figure 1 displays a lasagna plot (27) of the average glucose level

per subject over the 24-h period (i.e., for any given hour in the 0- to

24-h range, what is displayed is the average over the study days
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corresponding to that hour for that subject). One can observe some

differences, both between subjects and within subjects, as

highlighted by different colors in the heatmap. For example, some

subjects have predominantly green profiles corresponding to

glucose levels between ≈ 100 mg/dL and 180 mg/dL, whereas

others have yellow profiles corresponding to glucose levels > 200

mg/dL. Also, one can see that some subjects have alternating

patterns, for example periods of green and yellow and sometimes

red, which correspond to low blood glucose levels, that is, roughly <

70 mg/dL. One limitation of the lasagna plot is that it reflects the

average values only and not the variability of the measurements.

Furthermore, it does not account for the fact that some participants

may have more data than others, for example, because of the

different length of time in the study or the different patterns of

wearing the CGM devices. Finally, the lasagna plots do not

demonstrate improving or worsening glycemic trends over time

for the individual, rather the plots demonstrate glycemic averages

for a given time of day.

Figure 2 displays all available CGM data for 30 subjects in the

study. In each panel, the x-axis represents hours within the 0- to 24-h

interval, and the y-axis refers to the glucose levels (mg/dL). Within a

panel, the blue curves correspond to the raw CGM data acquired

from a subject on different study days, and a red curve represents the

mean AGP, obtained using smoothing techniques (28). The black

dashed lines represent the target range of 70 mg/dL to 180mg/dL (3.9

mmol/L–10 mmol/L). One can see from Figure 2 that there is

different amount of data per subject, reflecting the fact that some

participants have been longer in the study or been wearing the CGM

device for more days, and contributed more CGM data than others.

For some subjects, there is evidence that the AGP is within the desired

range, whereas for others it is crossing the upper limit of 180 mg/dL

over the 24-h period. Notably, we observed some periodicity of AGPs

over the day for some individuals. One should be mindful that the

results depend on the amount of data, and the findings for an

individual subject may change as more data for this subject are
FIGURE 1

Lasagna plot of 30 subjects in the study. For any given subject, at
any given time point in the 0- to 24-h range, the average glucose
level over study days corresponding to that time point for that
subject is displayed.
frontiersin.org

https://doi.org/10.3389/fcdhc.2023.1244613
https://www.frontiersin.org/journals/clinical-diabetes-and-healthcare
https://www.frontiersin.org


Cui et al. 10.3389/fcdhc.2023.1244613
acquired during the study. Similarly to lasagna plots, these plots do

not demonstrate improvement or worsening glycemic trends over

time for the individual, rather they show glycemic averages for a given

time of day.

Figure 3 visualizes the TIR (i.e., percentage of CGM glucose

readings in the target range of 70 mg/dL to 180 mg/dL) for 30 study

participants. In each panel, the x-axis represents the study day, and

the y-axis represents the TIR (proportion, measured on a scale of 0 to

1). Note that the x-axis range is different across the subjects, as it

reflects the different number of days a given participant contributed

CGMdata in the study. The y-axis range is also displayed in a subject-

specific manner, as there was a substantial variation in the TIR values

across the subjects. Within a panel, the blue curve represents

individual TIR values, the red curve is a modeled mean profile

obtained using smoothing techniques, and the gray area quantifies

uncertainty around the mean (28). The value of the TIR ≥ 70% is

consistent with the clinically desirable target, as suggested by the

American Diabetes Association (29, 30). From Figure 3, one can get

some useful insights into the individual glycemic control over time.

Some subjects have relatively stable patterns (e.g., subject 7), whereas
Frontiers in Clinical Diabetes and Healthcare 05
for others there is evidence of fluctuation—increasing or decreasing

the TIR values (e.g., subject 11)—indicating improved or worsened

glycemic control over time. Clearly, the results depend on the amount

of CGM data per subject, with more data enabling a more robust

exploratory assessment. Importantly, these plots demonstrate the

variability of the TIR across the duration of CGM use.
4.3 Clustering using glucodensities

Figure 4 shows the estimated and clustered glucodensities (left

three panels) and the corresponding cumulative distribution

functions (right three panels) for our dataset. Each glucodensity

curve in a cluster corresponds to an individual subject, and they

were constructed based on pooled CGM data from the individual.

There are three identified clusters: red (six subjects), with the

highest average and most variable levels of blood glucose; blue

(11 subjects), with the somewhat better glycemic control; and, green

(13 subjects), with the lowest average and least variable levels of

blood glucose.
FIGURE 2

Ambulatory glucose profile (AGP) plots of 30 subjects in the study. Within each subject panel, the blue curves correspond to the raw CGM data
acquired from the subject on different study days, and a red curve represents the mean AGP. The black dashed lines represent the range of 70 mg/
dL to 180 mg/dL.
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Figure 5 shows boxplots of individual values and the results of non-

parametric ANOVA comparing three clusters with respect to the

baseline C-peptide levels (top left plot), TIR (the proportion of CGM

measurements in the range of 70 mg/dL to 180 mg/dL; top right plot),

time above range (the proportion of CGMmeasurements > 180 mg/dL;

bottom left plot), and time below range (the proportion of CGM

measurements< 70 mg/dL; bottom right plot).

From Figure 5 (top left plot), there is evidence of an overall

difference among the three clusters with respect to the baseline C-

peptide levels (Kruskal–Wallis p = 0.042), with the difference being

pronounced between clusters 1 and 3 (the red and green clusters, p

= 0.024) and clusters 2 and 3 (the blue and green clusters, p = 0.065),

but not between clusters 1 and 2 (the red and blue clusters, p = 0.52).

Also, one can see statically significant evidence of the difference

between the three clusters with respect to the TIR (Figure 5, top

right plot) and time above range (Figure 5, bottom left plot). In

regard to the time below the range (Figure 5, bottom right plot), the

overall difference among the three clusters is not statistically

significant (Kruskal–Wallis p = 0.11); however, there is some
Frontiers in Clinical Diabetes and Healthcare 06
evidence of difference between clusters 2 and 3 (blue and green

clusters, p = 0.047).
5 Discussion

5.1 CGM data provides important
information on T1D metabolism

CGM data collection is increasingly common in diabetes

research (6, 21, 31–33). Recently, many statistical software

packages have been developed to facilitate CGM data

visualization and analysis. Table 2 provides a summary of some

of these packages. The iglu package (21) was useful for obtaining

visual displays (e.g., lasagna plots) of individual CGM-derived

metrics over a 24-h period. However, such plots reflect an overall

measurement, but not the dynamics of individual glycemic

parameters over time. We propose displaying relevant CGM

metrics, such as the TIR versus the study day, to capture the
FIGURE 3

Dynamic time-in-range plots of 30 subjects in the study. Within each subject panel, the blue curve represents the individual time-in-range value on
a given study day, the red curve is a modeled mean profile, and the gray area represents the uncertainty around the mean. The x-axis range is
different across the subjects, as it reflects the different number of days of CGM data per subject. The y-axis range is displayed in a subject-specific
manner because there was a substantial variation in the time-in-range values across the subjects.
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dynamics of glycemic control and variability of the selected CGM

parameters over time and simultaneously display the fact that some

subjects contributed more CGM data in the study than others.

In the present work, we evaluated glucodensity (13) and performed

a cluster analysis of estimated glucodensities based on the blinded

CGM data of 30 participants from an ongoing study. Our analysis

indicates that a clinically meaningful clustering using glucodensities is

possible.We identified three clusters of patientswith different shapes of

glucodensities indicating different levels of blood glucose control. We

found evidence of a statistically significant difference among the

clusters with respect to some established biomarkers of T1D, such as

residual pancreatic beta-cell function (C-peptide levels) at baseline,

thereby indicating a potential grouping of patients with different

severities of T1D. We also found evidence of cluster differences with

respect to conventional CGM-derived parameters such as the TIR and

time above range. Overall, the added value of statistical comparisons of

the identified clusters using ANOVA, with respect to established

biomarkers of pancreatic beta-cell function, is that it aids the clinical

interpretation of the clusters. Although our findings are limited by the

small sample size and the exploratory nature of the analysis, they are

promising to characterize pancreatic function in stage 3 recent-onset

T1D. Further analyses to validate these results are warranted once the

study achieves the final database lock.
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In our analysis, we focused only on the estimation and

clustering of individual glucodensities. We did not attempt to

estimate an average glucodensity curve for each cluster and the

corresponding uncertainty. The estimation of “average

glucodensity” from a sample of individual glucodensities and

quantifying the associated uncertainty requires applying more

advanced functional data analysis techniques such as the 2-

Wasserstein distance and the Fréchet mean-of-the-density

functions (13, 39). In addition, as the estimated glucodensities

can be used as a basis for deriving CGM parameters (e.g., mean,

standard deviation, coefficient of variation, TIR), another important

problem is establishing a statistical agreement between empirical

(i.e., obtained directly from the CGM data) and glucodensity-based

CGM parameters. These additional questions require further

careful investigation, and we defer them to future work.
5.2 Next step: quantifying treatment effects
and treatment contrasts

An important objective of a randomized controlled trial in T1D

is to compare treatment effects (IMP vs. placebo) by applying a

statistical test on some clinically meaningful outcome measure. For
FIGURE 4

Clustering based on estimated glucodensities.
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this purpose, one can consider different CGM-derived metrics, such

as the TIR, which is defined as either the percentage of CGM

glucose values or the number of hours spent in the range of 70 mg/

dL to 180 mg/dL during the measurement period (20, 40). One

recent study found that 14 days of CGM data correlated well with 3

months of CGM data, and, within these, 14 days of at least 70% of

CGM wear should provide robust data for deriving the TIR (41).
Frontiers in Clinical Diabetes and Healthcare 08
In the final analysis of our T1D clinical trial, for each trial

participant, one can derive the baseline (pretreatment) TIR value

and the TIR after 1 year of treatment, by taking their difference and

then testing the significance of this difference (separately for the

subjects in the IMP group and subjects in the placebo group) using a

paired t-test. Furthermore, to assess treatment contrast (IMP vs.

placebo), one can apply a two-sample t-test on the change from
TABLE 2 R packages for analyzing CGM data.

Package Reference Usage Remarks

Iglu Broll et al. (21) Exploratory data analysis Comprehensive and user-friendly for visualization; limited input size

CGManalyzer Zhang et al. (34) Exploratory data analysis Designed to read and organize the CGM data; no R Shiny available

cgmanalysis Vigers et al. (35) Exploratory data analysis Designed to read and organize the CGM data; no R Shiny available

biosensors.usc
(glucodensity)

Matabuena et al.
(13)

Density estimation and
cluster analysis

The first R shiny for modeling the CGM data; regression and clustering are available

fda Ramsay et al. (36) Functional data analysis A standard package for analyzing functional data; preprocessing is required for the CGM
data

Refund Kokoszka and
Reimherr (37)

Functional data analysis A standard package for analyzing functional data; preprocessing is required for the CGM
data

fdANOVA Górecki and Smaga
(38)

Functional data analysis Designed to perform functional ANOVAs for intensive longitudinal data; useful for
hypothesis testing with the CGM data
FIGURE 5

Boxplots of individual values and the results of a non-parametric analysis of variance (ANOVA) comparing three clusters with respect to the baseline
C-peptide level (top left plot), time in range (top right plot), time above range (bottom left plot), and time below range (bottom right plot).
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baseline values of the TIR. Alternatively, one can consider fitting an

ANCOVA model as follows:

TIR1,i   =  m   +  a · di   +   b · TIR0,i   +   ei, i = 1, :   :   :, n, (3)

where TIR1,i is the ith participant’s outcome after 1 year of

treatment and TIR0,i is the similar value at baseline, di   =   1 (or 0), if

the ith participant is assigned to the IMP (or the placebo), m is the

overall mean, a is the effect due to treatment (IMP), b is the effect

due to TIR at baseline, and ei’s are independent, normally distributed

measurement errors. By testing the hypothesis H0 :a   =   0 we can

address the following question: does the active treatment (IMP) have

a significant effect on the TIR compared with placebo after 1 year

of treatment?

Furthermore, extensions of the model (3) could be considered.

In our T1D study example, the CGM assessments are made every 3

months during the 1 year of treatment. Although the primary

interest is in the outcome at 12 months, the outcomes at earlier

time points may be of interest as well. In this case, one could

consider fitting a mixed-effects model with repeated measurements

(MMRM) (42).

The TIR is one CGM-based outcome measure that can be

analyzed using the approach described above. Other CGM-based

outcome measures, such as the average glucose level, glucose

measurement index, and glucose coefficient of variation (CV), can

be similarly analyzed. To obtain a more complete assessment of

the treatment effect, one can perform statistical analyses on

multiple clinically important CGM-based measures and present

the results (estimated treatment effects with corresponding

confidence intervals and p-values) in one table. However, a

limitation of such an approach is at least twofold. First,

different CGM metrics are likely to be correlated, but the

analyses of individual metrics do not account for such

correlations. In fact, proper statistical adjustments for

multiplicity are required to mitigate the risk of false-positive

findings. Second, by deriving these different metrics, some

important information may be lost. For example, the TIR does

not account for the dynamic nature of the CGM data, nor the

possibly unequal number of CGM data from individuals. This

prompts the consideration of more complex CGM-based objects,

such as glucodensities, for analyses.

Matabuena et al. (13) noted that glucodensity can be used

“to establish if there are statistically significant differences

between patients subjected to different interventions, for

example, in a clinical trial.” Furthermore, Matabuena et al.

(14, 15, 43) proposed methods and estimators for handling

missing data and exploring their potential values in analyzing

CGM data. In our considered setting, the main objects of

interest are probability density functions, and functional data

analysis techniques may be useful for statistical inference. For

the ith individual in the sample, we assume there exists a “true”

glucodensity f0i that describes the distribution of the individual’s

glucose levels at baseline. It is plausible to assume that the

individual glucodensity may change over time (e.g., due to

treatment intervention received in the study, environmental

factors, or disease progression). Let f1i denote the ith subject’s

glucodensity after 1 year of treatment. An important question is:
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how could we measure “similarity” of f0i and f1i? One could

consider the 2-Wasserstein distance (13):

dW2 (f0i, f1i)   =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0
F−1
0i (s)  −   F

−1
1i (s)

� �2
ds

s
; (4)

where F0i and F1i stand for the cumulative distribution

functions of the glucodensities f0i and f1i. Metric (4) has some

computational and modeling advantages, and it has a physical

interpretation in the theory of optimal transport.

In practice, the functions f0i and f1i are unknown, but they can

be consistently estimated from the CGM data of the ith individual

by f̂ 0i and f̂ 1i; see Equation (2). Then, the distance dW2 (f̂ 0i, f̂ 1i) can

be computed to quantify the difference between the ith subject’s

empirical glucodensities during pretreatment and posttreatment

periods. Note that the pretreatment and posttreatment CGM data

of an individual may be highly correlated. A statistical significance

test may be considered for testing:

H0i : f0i   =   f1i   for   i   =   1, :   :   :,   n : (5)

Furthermore, let m0(s) denote the “average” glucodensity in the

population of study subjects in the pretreatment period, and m1(s)

denote a similar object for the period after 1 year of treatment. A

research question is: are m0(s) and m1(s) different? In other words,

one may be interested in testing H0 :   m1(s)   =  m0(s) based on the

CGM data from the sample of study participants (separately for the

IMP group and the placebo group). This problem can be viewed as a

generalization of a paired t-test.

Taking a step further, for comparing treatment effects, one can

consider the Wasserstein–Fréchet regression model using 1-year

posttreatment glucodensity as the outcome, and treatment (IMP or

placebo) and other clinically relevant covariates as predictors (39).

This approach can be viewed as a generalization of an ANCOVA

model (3) to functional outcomes. Relevant technical details,

including estimation, statistical testing procedures, and

asymptotic results, are beyond the scope of the current work.

Petersen et al. (39) provided an example of applying functional

regression analysis to post-intracerebral hemorrhage hematoma

densities and found it promising in that context. We plan to

address similar research problems for the CGM data and

glucodensities in future work.
5.3 Conclusion and future work

This article outlined several research questions arising in the

context of randomized clinical trials in T1D with CGM data and

provided some preliminary ideas on how to tackle them in practice.

Efficient visualization of the CGM data and cluster analysis using

glucodensities are useful tools for exploratory analysis of the CGM

data. Future work is needed to evaluate additional important issues.

For instance, the estimand framework is increasingly useful in

biopharmaceutical product development (44). Defining estimands

based on glucodensities is a challenging but important and

necessary next step for rigorously addressing clinical research

questions concerning CGM data. Another important area of
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research is related to experimental design issues—sample size

determination, choice of data collection time windows and time

points, quantifying the amount of information from these data (e.g.,

Fisher’s information matrix)—and formulation of various optimal

design problems. Finally, we think that the CGM data analysis

provides an opportunity for a collaborative effort, integrating

clinical, statistical, data science, and pharmacometrics expertise.

Such a combination is increasingly viewed as being synergistic in

solving complex problems in biomedical research (45, 46).
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