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DeepNet model empowered
cuckoo search algorithm for the
effective identification of lung
cancer nodules
Grace John M* and Baskar S

Department of Electronics and Communication, Karpagam Academy of Higher Education, Coimbatore,
India

Introduction: Globally, lung cancer is a highly harmful type of cancer. An efficient
diagnosis system can enable pathologists to recognize the type and nature of lung
nodules and the mode of therapy to increase the patient’s chance of survival.
Hence, implementing an automatic and reliable system to segment lung nodules
from a computed tomography (CT) image is useful in the medical industry.
Methods: This study develops a novel fully convolutional deep neural network
(hereafter called DeepNet) model for segmenting lung nodules from CT scans.
This model includes an encoder/decoder network that achieves pixel-wise image
segmentation. The encoder network exploits a Visual Geometry Group (VGG-19)
model as a base architecture, while the decoder network exploits 16 upsampling
and deconvolution modules. The encoder used in this model has a very flexible
structural design that can be modified and trained for any resolution based on the
size of input scans. The decoder network upsamples and maps the low-
resolution attributes of the encoder. Thus, there is a considerable drop in the
number of variables used for the learning process as the network recycles the
pooling indices of the encoder for segmentation. The Thresholding method and
the cuckoo search algorithm determines the most useful features when
categorizing cancer nodules.
Results and discussion: The effectiveness of the intended DeepNet model is
cautiously assessed on the real-world database known as The Cancer Imaging
Archive (TCIA) dataset and its effectiveness is demonstrated by comparing its
representation with some other modern segmentation models in terms of selected
performance measures. The empirical analysis reveals that DeepNet significantly
outperforms other prevalent segmentation algorithms with 0.962 ± 0.023%
of volume error, 0.968 ± 0.011 of dice similarity coefficient, 0.856 ± 0.011 of
Jaccard similarity index, and 0.045 ± 0.005s average processing time.
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1. Introduction

Lung cancer is the most lethal cancer affecting men and women, leading to 18.4% of

cancer mortality globally in 2018 (1). Current oncology breakthroughs including tyrosine

kinase inhibitors and immune checkpoint inhibitors provide considerably larger survival

improvements for cancer patients. But, much work is still to be carried out in computer-

aided diagnosis systems, particularly in medical screening and timely lung cancer

diagnosis. Automatic segmentation and classification would directly impact the workflow

of medical practice in radiation oncology, one of the most widely used treatment methods

for lung cancer (2).
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fmedt.2023.1157919&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fmedt.2023.1157919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1157919/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1157919/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1157919/full
https://www.frontiersin.org/articles/10.3389/fmedt.2023.1157919/full
https://www.frontiersin.org/journals/medical-technology
https://doi.org/10.3389/fmedt.2023.1157919
https://www.frontiersin.org/journals/medical-technology
https://www.frontiersin.org/


M and S 10.3389/fmedt.2023.1157919
Lung cancer radio therapeutics exploit medical imaging to find

the exact location of nodules and electron densities to estimate the

dosage at any point in the patient for disease management (3).

Effective isolation of the lung nodules is indispensable as

inaccuracies might cause under- or over-radiation of the

malignant and benign cells. It is projected that a 1 mm variation

of the nodule isolation could result in the radiation therapy

dosage estimations by up to 15% (4). Hence, automatic and

precise isolation can considerably decrease the time required for

oncologists to plan effective therapy and re-plan adaptive therapy

based on the variations in the nodules.

Manual segmentation of the lung nodules from CT scans is an

error-prone and challenging task. As the correctness of the cancer

diagnostic system depends on the severity of cancer and the

oncologist’s knowledge based on experience and decision, it leads

to an inaccurate assessment (4). Due to lung nodules’ very

complex biological, molecular, and structural features, the

analysis of these scans is hard in clinical pathology.

Simultaneously, these confusing aspects encouraged numerous

investigators to design new screening methods and analytic data

to support the early detection of liver cancer, which can classify

cancer cells with better accuracy and enhance clinical results.

Besides, lung nodules’ automatic screening will be faster than

manual segmentation.

In conjunction with advances in storing and the quality of

clinical scans, the current innovation of machine learning

approaches has powered rigorous exploration in the domain of

artificial intelligence (AI) for analyzing clinical images. Deep

learning (DL) approaches are a section of AI-based neural

networks that are effectively employed to resolve problems of

image segmentation or classification at remarkable speeds

without degrading accuracy (5). Many effective automatic

diagnostic models have been established to solve these clinical

imaging problems (6, 7). However, the main obstacle in

designing a fully automatic tool is the inhomogeneity of the

databases that can be used for any CT, particularly when

collected from various medical organizations (8). CT images with

various findings or reconstruction elements make the structure of

the lung region different. The approaches found in the present

literature frequently need powerful preprocessing methods. The

data synchronization problem remains to be resolved by a data-

oriented method, demanding large databases signifying all

features of this heterogeneity.

The convolutional neural network (CNN) mimics the human

visual system and is recognized to be the best image

segmentation approach (9). Deep convolutional neural (DCNN)

networks have recently been used to design an automated system

for identifying and classifying lung cancer through medical

imaging (10). This approach enables promising results,

particularly in lung cancer segmentation. The usefulness of this

approach on lung nodule segmentation has been evaluated

against other machine learning methods recently (4, 7). Also,

some researchers explored the benefits of exploiting deep

convolutional networks for nodule segmentation against

pathologists (11, 12). The decoder network makes use of 16 up

sampling and deconvolution modules, the encoder network is
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predicated on a VGG model. This model employs an encoder

with a highly adaptable architectural construction that can be

learned to produce images of arbitrary resolutions, independent

of the size of their input scans. In order to improve the

encoder’s low-resolution features, the decoder network up

samples and maps them. The thresholding method removes

redundant groups by isolating the particular lung regions and

nodules of interest that the cuckoo search algorithm may

conclusively identify. At the feature extraction stage, the surface

highlighting for the specific nodule is unaffected by the instances

from similar neighborhoods. DCNN outperforms oncologists’

decisions in nodule detection.

The main contribution of this paper:

i) This work proposes a fully convolutional deep neural network

(DeepNet) model for segmenting lung nodules from CT scans.

ii) DeepNet model includes an encoder-decoder network to

achieve pixel-wise image segmentation.

iii) The cuckoo search algorithm separates the lung nodule in the

dataset images in the form of segmentation

iv) The encoder module exploits a VGG-19 model as a base

architecture, whereas the decoder module exploits 16

upsampling and deconvolution modules.

v) The encoder has a flexible structural design that can be

modified and trained for any resolution and size of input scans.

vi) The decoder module upsamples and maps the low-resolution

attributes of the encoder. Thus, there is a considerable drop

in the number of variables used for the learning process as

the network reuses the pooling parameters of the encoder

for segmentation.

vii) The DeepNet has been evaluated in terms of error rate, dice

similarity coefficient, Jaccard similarity index, and average

processing time.

The remaining parts of this manuscript are arranged as follows: We

explore the related works about DCNN-based nodule isolation

methods in section 2. Section 3 discusses the segmentation

network and explores how every phase operates. Section 4

discusses the experimental procedure used in this work. Finally,

we conclude Section 5.

2. Related work

Recently, numerous DL methods have been developed to solve

the segmentation problem. In this section, we have studied some

DL methods for handling lung cancer isolation. Mukherjee et al.

developed an isolation approach using DL to localize the lung

cancer and retain the nodules’ structural characteristics through

the graph cut technique (13). The outcome of isolation approach

is77.67% of DSC and ASD of 0.24. The proposed model is not

trained for comprehensive dataset and need to investigate how

increasing the model’s network complexity can impact its

effectiveness.

Wang et al. developed a multiple-view convolutional network

to segment lung cancer by collecting axial, sagittal, and coronal

observations about the cancer voxel (14). The outcome of

multiple-view convolutional network is77.67% of DSC and ASD
frontiersin.org
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of 0.24. The proposed model is not trained for comprehensive

dataset and need to investigate how increasing the model’s

network complexity can impact its effectiveness.

Roy et al. proposed a technique to integrate a level set and DL

for isolating the affected regions in the lung (15). Since the lung is a

three-dimensional (3D) structure, we need to review 3D DL models

for segmenting lung nodules. More accuracy is produced for the

proposed method. The segmentation of lung nodule is the major

drawback.

Hossain et al. proposed a novel dilated hybrid-3D CNN

structure for nodule segmentation (3D LungNet). It can exploit

the 3D data existing within image volumes. First, a binary

classification algorithm selects images that may include slices of a

nodule (16). To isolate the nodules, the designated images are fed

to the DL algorithm for segmentation which selects attribute

vectors from every 2D slice through dilated CNN and then

combines the pooled vectors using 3D convolutional operations

by integrating the morphological features in the CT image. The

automated pipeline for lung tumor detection outperforms all

segmentation network. Plans for the future include simultaneously

developing a binary classifier and segmentation system, as well as

training the pipeline with thicker stacks of segments.

Badrinarayanan et al. proposed a new deep CNN structure for

semantic element-wise isolation called SegNet (17). This primary

isolation model contains an encoding module, an equivalent

decoding module, and an element-wise classifier. The role of the

decoder module is to relate the lower-resolution attribute vector

of the encoding module to the high-resolution input attribute

vector for element-wise analysis. The innovation of this model

lies in how the decoding module unspools its distorted input

attribute vector. Especially the decoding module exploits pooling

parameters calculated in the corresponding upsampling phase to

achieve non-linear unspooling. This removes the training

predictability of unspooling operations. SegNet has competitive

performance on big and datasets, including strong scores for

roadway scene interpretation. The end-to-end learning of deep

division structures deserves more research effort because it is a

more difficult topic.

Chen et al. propose a new 3D DL model for lung nodule

isolation from CT scans, called multiple-attention U-Net (MAU-

Net) (18). This model first uses a dual attention unit at the

restriction of the U-Net that defines the definite relationship

between channel and spatial attributes. The multiple-attention unit

is then used to dynamically compute and combine multiresolution

attributes from the dual attention unit from the encoding module.

ResNet exploits different residual convolutional modules to extract

the CT scans’ significant attributes effectively. The attributes from

all levels of the ResNet were combined into a single output. This

simple architecture realized a combination of shallow appearance

attributes and deep semantic attributes to produce dense pixel

outputs. The lung cancer segmentation by existing dual attention

methods is well explained. The proposed methods fail to

investigate its performance in various medical imaging tasks.

Zhao et al. developed a contextual CNN using 3D U-Net to

isolate and categorize nodules automatically and help oncologists

interpret CT scans (19). The skip connections in conventional
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U-Net cause distortion in selected input attributes. On the other

hand, the higher-resolution attributes selected by this model

generally do not comprise sufficient higher-level boundary

statistics of the image, causing distress in the decisions of the

model significantly. Finally, in order to decrease the number of

false positive candidate nodules, a contextual CNN is utilized to

categorize nodules as malignant or benign. The main advantage

is that contextual information of nodule is considered for the

prediction process. The proposed method need to be considered

for small dataset.

Seo et al. developed a Modified U-Net (mU-Net) for

segmenting lung cancer from CT scans (20). This model exploits

a residual unit with de-convolutional and activation functions

using dropout connections to resolve the issues due to low-

resolution attributes in conventional U-Net architecture. U-Net is

a widely recognized CNN model for isolating lung nodules. The

U-Net structure contains two parts; a shrinking phase to collect

background information and a symmetric growing phase to

achieve precise localization. The shrinking phase comprises

successive convolution and max-pooling layers. It is employed to

select features while limiting the size of the feature vector. The

growing phase contains convolution layers and achieves up-

conversion to obtain the attribute’s dimension related to the loss

of morphological features. Besides, the localization data is

exchanged between the shrinking and the growing module using

dropout units. These connections are operated autonomously and

permit information to be communicated from one module to

another within the network without adding any processing

overhead. Finally, this research introduces a more powerful deep

learning network for segmentation, which, depending on the

specifics of the situation, may provide better outcomes than

competing networks in the segmentation of liver and tumor

areas, where the border is not evident and the target item is tiny.

Jalali et al. proposed an adapted U-Net where the encoding

module is substituted by a learned ResNet-34 model (21). This

network uses a bidirectional convolutional long short-term

memory to integrate the selected attribute vector of the

equivalent shrinking phase into the earlier growth of the up-

convolution module. Then, a densely connected convolution

module is used for the shrinking phase. Several abovementioned

models have accomplished their goals effectively. However, their

segmentation performance in terms of volume error, dice

similarity coefficient, Jaccard similarity score, and average

segmentation time is often not the best. Therefore, a novel model

called DeepNet is developed for segmenting lung nodules with

improved performance. The problem of a large number of false

positives has also been addressed by the proposed strategy. The

proposed strategy has also overcome the problem of removing

nodules that have become connected to the lung wall. A further

possibility for future efforts is the use of several deep learning-

based systems to classify medical pictures.

Li et al. used liquid biopsy to provide a novel method for early

screening, diagnosis, and management of lung cancer, particularly

when tissue samples are unavailable (22). The use of circulation

biomarkers and liquid biopsies in lung cancer allows for

assessing the immediate molecular, genetic, and epigenetic profile
frontiersin.org
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of cancerous cells identified as drug-resistant clones from earlier

therapy. Liquid biopsies are helpful because they are non-

invasive, simple to collect, represent the overall condition of

cancer, and provide real-time surveillance. Before liquid biopsy

can be broadly employed in clinical practise, it needs to be

improved through the employment of more cutting-edge

molecular biological detection techniques in order to increase its

validity and applicability.

Jiang et al. described the multimodality MRI-based radiomics

approach for predicting lung cancer (23). Radiomics characters

are derived using random forest techniques using the multimodal

MRI scan data. After collecting data from the initial cohort, the

randomized forest radiomics score varies depending on a

separate group of individuals. The accuracy of the predictions

was determined using a combination of the ROC curve, the

calibration curve, and the decision curve.

Ji et al. designed a encoder-decoder design approach to

normalize 3D point clouds by taking properties into account,

before building voxels to feed into the procedure for learning

(24). The suggested technique performs exceptionally well

overall, making a significant contribution to the multi-class

object identification from 3D tunnel clouds of points.

Amr Abdelraouf et al. modeled attention-based multi-encoder-

decoders (Att-MED) for estimating travel times (25). Short-term,

daily, and weekly traffic trends are only some of the input

sequences that are used by the model’s convolutional- Long

short-term memory (LSTM) to record the spatial-temporal link

between them. The model also uses an LSTM to progressively

predict outputs. In addition, an attention method is employed to

quantify the value of each traffic sequence’s input into the final

forecasts. When the suggested network architecture is trained

from beginning to end, it outperforms baseline models in terms

of forecasting accuracy.

Wei et al. examined the Lane Changing (LC) procedure and

recommends LC segmentation and sampling approach that

divides the procedure into four distinct phases (26). Using route

data from all four LC phases, we validate the optimum attention-

aided encoder-decoder model and subsequently use it to inform

the creation of a heuristic network model. While doing so, the

suggested heuristic network is linked to the Deep Neural

Network (DNN) to forecast vehicle kinematics data. Finally, a

combined cascade prediction model is formed by testing the

heuristic network and DNN in succession; this model may

execute a fine-grained LC specification on the basis of the

prediction outcomes. The experimental findings demonstrate that

the suggested cascade forecasting model can accurately anticipate

the trajectory, velocity, acceleration, and steering angle of a

vehicle over a long period of time and can provide a fine-grained

LC characterization. Further theoretical investigation intelligent

connected vehicles (ICVs) and connected autonomous vehicles

(CAVs).may benefit from the presented prediction model.

Wang et al. isolated distinct cell populations from single-cell

transcriptome profiles, a single-cell deep clustering model using a

dual denoising autoencoder with bipartite graph ensemble

clustering (scBGEDA) is presented (27). Data is first offered to

be projected into a low-dimensional place using a single-cell dual
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denoising autoencoder network, which can then learn feature

illustration through explicit simulation for denoising

reconstruction loss.

Yu et al. discussed regarding a single-cell model-based deep

graph embedding clustering (scTAG) technique uses a deep

graph convolutional structure to acquire cell-cell topological

descriptions and to identify cell clusters in real time (28). To

train the low-dimensional latent participation, scTAG

incorporates the zero-inflated negative binomial (ZINB) model

into a topological adaptive graph convolutional autoencoder.

Overall, several methods showed promise in lung nodule

identification and tracking. Detecting infrequently formalized

cancer from large and diverse volumes of lung CT scan images

with varying contour, size, and location, the existing method

accurately distinguishes between vascular, solitary, pleural, and

juxta-pleural adenomas, demonstrating rigorous methods and

techniques applicable across distinct datasets.

The suggested work utilizes a DeepNet model to automatically

extract the self-learned characteristics for lung cancer detection

based on their malignant untrustworthiness. Classification

accuracy, sensitivity, specificity, and fewer false positive rate are

improved. The methods, including the specific tools and data sets

used, are emphasized, and the findings are compared to previous

research in the field.
3. DeepNet model for segmenting lung
nodule

Segmentation of lung nodules on CT scans is imperative for

cancer disease management like analysis, radiation therapy, and

reaction calculation. This work presents a fully automatic

DL-based lung nodule segmentation model that can manage

different CT scans. The DeepNet includes an encoder/decoder

network that achieves pixel-wise image segmentation. The

encoder module contains a VGG-19 model as a base

architecture, while the decoding module exploits 16 upsampling

and deconvolution units. The encoder used in this model is

trained for any resolution and size of input scans. The decoding

network unspools and relates the lower-level attributes of the

encoder. Thus, there is a considerable drop in the number of

variables used for the learning process as the model reuses the

pooling parameters of the encoder for isolating the nodules in

the lung region. Before processing the CT scans we need to

apply preprocessing techniques to improve the quality of the

image. DeepNet model is evaluated based on a real-time database

by comparing its presentation with similar advanced models

concerning volume error, dice coefficient, Jaccard index, and speed.

It takes a significant amount of time and it is not always

accurate for doctors to confirm lung cancer using CT scans. With

the suggested technique, clinicians can detect lung nodules early

and analyze their interior structure. As part of the contribution to

various problems with diagnosing lung cancer, the Cuckoo search

algorithm extracts the area of interest with a unique segmentation

method that employs thresholding. Using the Cuckoo search
frontiersin.org
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algorithm, nodules of varying sizes and shapes may be precisely

separated with a small number of parameters.

As shown in Figure 1, the steps involved in the future diagnosis

of lung malignancy are as follows: (1) pre-processing to improve

contrast and reduce noise; (2) using a Cuckoo search algorithm to

separate the cancer cell from its surroundings; (3) feature

extraction based on regions of concern; (4) retrieval of descriptive

words from segmented lung lesions; and (5) using support vector

machines to determine whether the injury is abnormal or not.

Detailed explanations of these stages are provided below.
3.1. Image acquisition

It’s the first step towards doing anything important. The

technique involves retrieving and analyzing digital images from a

source. A wide variety of scanners, including x-ray, MRI, and CT

machines, are employed to get the final pictures. In this case, a

CT scanner is used to get the picture. This scanning technique

generates cross-sectional scans of each pixel. The obtained image

is given for the next stage of pre-processing.
FIGURE 1

The architecture of the DeepNet model.
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3.2. Data preprocessing

As the attributes are directly extracted from CT scans, it

displays various gray scales and intensities essential to using a

preprocessing strategy before such scans are fed to the

segmentation algorithm. Data preprocessing approaches include

normalization and standardization. This study employs a fast and

simple method called a min-max scalar to achieve normalization

as defined by Equation 1.

�m ¼ m� mmin

mmax � mmin
(1)

As shown in Equation 1 normalization has been expressed for the

segmentation process. Where �m is the normalized attribute value

retrieved from attribute space m, mmin is the minimum attribute

value, and mmax is the maximum attribute value. In this paper,

the input scans are preprocessed by eliminating noise and

artifacts in the CT scans. Preprocessing includes the following

phases: (i) the input scans are of various sizes and intensities.

The input image with different sizes and intensities are used in
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the initial stage. The next stage is edge detection stages and this is

obtained by grey scale images. The grey scale images are converted

into RGB format luma and chroma. Luma and chroma color space

is most significant for segmentation. Hence, all the scans have been

transformed into a regular size of 128 × 128 before applying the

segmentation algorithm; (ii) A filter with values ([−1, 0, −1], [0,
5, 0], [−1, 0, −1]) is used for finding edges of the nodules (iii)

the values of each picture element are computed by transforming

the red-green-blue (RGB) color to the luma and chroma (YUV)

color space. Luminance is more imperative than color for

segmentation. Hence, the resolution of V (red projection) and U

(blue projection) are decreased however Y is preserved at high-

resolution (iv) the intensity values of each picture element are

balanced by transforming the YUV color back to RGB color

space by flattening boundaries and intensity equalization. The

pre-processed image is given to the DeepNet Nodule

segmentation stage. In pre-processing stage the noise in image is

removed using weighted histogram equalization and the intensity

of equalization. From the pre-processed image edges are detected

and the color image of RGB format is obtained. RGB image is

transferred into YUV format. The above step is followed by

segmentation and filtration. The final output image is obtained as

RGB transformation as shown in Figure 2.
3.3. Nodule segmentation using DeepNet

This method seeks certain classes of pixels inside an image to

create a concentrated image object and checks their proximity to

one another. In medical imaging, segmenting the foreground

data from the backdrop is challenging. The segmentation
FIGURE 2

Pre-processed image and the output image as RGB transformation.
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method excels at recognizing or smearing front objects’

context information. Following the threshold collection

standard, this method takes advantage of the largest class

variation between the context and the target. The context

represents the complete left and right section of the lung,

whereas the target represent the affected region in the lung. It

divides the picture into the foreground and background parts

according to the tones of the grayscale. The separation

between the two zones will be greatest if the smallest possible

threshold is reached. Variance is a helpful measure, with a

bigger number indicating a greater gap between the two

regions. Separating the two is inadequate if the areas or

contexts are incorrectly divided. Therefore, if there is a lot of

variation across groups, the risk of making a mistake in

classifying the cancer cell is reduced to get more continuous

segmentation, as illustrated in Figure 3.

Figure 4 illustrates the architecture of DeepNet. It includes a

pixel-wise semantic segmentation model with an encoder/decoder

structure. The results obtained from the decoding module are

given to a vital segmentation layer, which provides final nodule

isolation. DeepNet uses the VGG-19 model as a base network.

The fully-connected layers are dropped to preserve the maximum

resolution attribute vector for the unspooling procedure in the

decoding module. Thus, the size of the resultant pixel-wise

encoding module is reduced related to other structures. In

DeepNet, each encoding unit has convolution and batch

normalization layers with a filter bank. These modules generate a

set of attribute vectors. Then, the exponential linear unit (ELU)

accelerates the training procedure.

The DeepNet model initiates with an input scan Si and

activation map ali. The input feeds data to the subsequent
frontiersin.org
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FIGURE 3

Path diagram of segmentation process.

FIGURE 4

Architecture of DeepNet for lung nodule segmentation.
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convolutional and pooling modules. From the attribute value

calculation, the channel calculation is obtained from softmax

segmentation. Finally, the decoding module is provided with an

isolation vector M(ali; wSeg), afterward applying the softmax

(where wSeg is the segmentation parameter). M(ali; wSeg), has the

front and background channels. These channels are defined as

Mb(ali; wSeg), and Mf (ali; wSeg), correspondingly.

min
wSeg

X
i

es(z
l
i , Mb(a

l
i; wSeg)) (2)
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As deliberated in Equation 2, front and background channels have

been described. Then, ELUs are used for activations to increase the

speed of the training procedure. ELU converges to the maximum

point at the end of the learning and validation procedures. The

operation of ELU can be described as given in Equations 3, 4.

f (i) ¼ i if i . 0
b(exp (i)� 1) otherwise

�
(3)

f 0(i) ¼ 1 if i . 0
f (i)þ b otherwise

�
(4)
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As found in Equations 3, 4 max-pooling function has been explored

from ELU operation. Where b . 0, the hyper-parameter is handled

for the saturation of deconvolution layer inputs. The max-pooling

modules are used with a stride rate of two and a 2 × 2 window.

These max-pooling parameters are generated in the encoder and

then unpooled in the decoding module. This approach keeps edge

information in the isolated nodules and reduces training variables.

The Batch Normalization (BN) module tests each convolutional

module. Batch normalization data are computed from the learning

procedure used for testing and skip sampling.

In DeepNet, a dropout method is used as an approximate

inference to do probabilistic implications over the isolation

process. The likelihood of dropout (ri) is optimized here. In our

intended structure, the normal likelihood of skipping a

connection is fixed at 50% (i.e., ri ¼ 0:5). The first encoding

module is provided with the equivalent (nearby) decoding unit

with red-green-blue color space. This is different from the other

encoder/decoder networks, which generate an equal number for

the channel and size attribute vector based on the inputs given

to the encoding module. As a final point, dense filter vectors are

transmitted for pixel-wise isolation. The segmentation procedure

is achieved using the softmax layer.

The fitness function of the DeepNet model is defined by

Equation 5, and i values are correlated with the max-pooling

function

z ¼
XN
j¼1

XM
i¼1

�o(i)j log s(i)j (5)

As obtained in Equation 5 fitness function of the DeepNet model

has been founded. Where N is the number of data samples and

M is the number of the labeled class used in this study;

o(i)j ¼ {0, . . . :0, 1, . . . 1, 0, . . . :0} denotes the anticipated

outcome vector; s(i)j is the measured output vector of the M -th

class. The classification (softmax) operation is given in Equation 6.

s(i)j ¼ efjPM
i¼1 e

f
j

(6)

As demonstrated in Equation 6 softmax operation has been

evaluated. Where efj is cross-entropy loss. Now, the function z

can be adapted by the weight penalty to add a x value to

preserve the weights from getting larger in the fitness function of

DSC, as given in Equation 7.

z ¼
XN
j¼1

XM
i¼1

�o(i)j log
efjPM
i¼1 e

f
j

 !
þ 1
2
x
X
K

X
L

c2
k,l (7)

As described in Equation 7 weights have been discussed.

o(i)j ¼ {0, . . . :0, 1, . . . 1, 0, . . . :0} denotes the anticipated

outcome. Where cl denotes the link weight; K and L are the

numbers of layers and connections in each layer, respectively. N

represent the number of data samples and M is the number of
Frontiers in Medical Technology 08
the labeled class, efj denote the cross-entropy loss, j, i denote the

number of outcomes efj represent the cross-entropy loss. N, M

represent the number of samples and labeled classes. CSA

follows the segmentation method.
3.4. Cuckoo search algorithm (CSA)

This method spreads the cuckoo generation function, reducing

the situation’s complications. During the search, the DeepNet

method can reach many nests. A new solution has been found,

which consists of discovering the position of the cuckoo egg. The

following is an outline of the stages involved in the search

operation. A cuckoo bird will lay one egg at a time in a nest that

has been selected at random. The parasite nests did not change

in any way, and the number of eggs inside them continued to

rise until they reached their maximum capacity. When the

cuckoo’s egg is discovered, the bird hosting seems to have the

option of either discarding the egg or destroying the nest and

starting over with a fresh one. Figure 5 expresses the cuckoo

search algorithm (CSA).

The CSA has been enhanced as a result of the Levy flight

theory. CSA determines a suitable threshold for removing the

lung nodule.The method that has been suggested for making the

optimal selection (Algorithm 1) makes use of the analogy that is

presented below:

The new answer, which illustrates the subcategory of

thresholds, is represented by an egg of a cuckoo. Additionally,

CSA is exploited in the process of segmenting the lung nodule.

The quality of the eggs each hosting nest produces is either 0 or

1, representing the threshold partition used in the segmentation

technique. Pa is the likelihood that a cuckoo egg will be found

by the bird serving as the host. Q has a threshold that has been

established. This shows eliminating the boundary groupings that

are least important to the overall study and deleting these

threshold levels from further consideration.

The initial stage of the CSA algorithm is initiated with the

input values m, Q&N. m is the number of hosting nests, Q is the

likelihood of discovery of an alien, and N represents the highest

amount of iterations. The generation of the initial host is given

as ms
i ¼ Nþ. Then the for loop is executed for the j = 0

conditions. The evaluation of E is obtained from E ¼ (m js). A

new resolution is created for the resolution

msþ1
j ¼ ms

j þ s� lev0x(d) Where the symbol � is entry-wise

multiplication, d . 0 indicates the step size, Lev

x(d) ¼ h�d(1 , d � 3). Evaluate E (msþ1
j ). Select a nest mi

Randomly. If (ms
j ) . (msþ1

j ) then replace ms
j with msþ1

j .

Confiscate a worse nest with q. Create a new nest using Levy

flights. Retain the best resolutions. From the segmented section

of the cancer cell, the features are extracted in the following section.
3.5. Feature extraction

The original purpose of the LBP operator intended pattern

detection. The operators label each pixel by thresholding the
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FIGURE 5

Path diagram of cuckoo search algorithm (CSA).
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picture using the average pixel value and obtaining the resulting

binary number. Attributes extraction consists of the following

steps in the paragraphs below.

Make a grid on the window viewing through and combine all

the pixels in a cell with their neighbors.
Algorithm 1 CSA to divide up cancer

Input: m, Q&N

Output: ms
j

If Q ¼ 1;

Return E

Else

ms
i ¼ N þ 1

End

For ( j = 0; j > 0; j++)

E ¼ (m js)

End

If msþ1
j ¼ ms

j þ s� lev0x(d)

Return x(d) ¼ h�d

Else

E ¼ (msþ1
j )

Choose mi

End

If (ms
j ) . (msþ1

j )

Then

replace ms
j ¼ msþ1

j

else

ms
j

End
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• At initial stage the value of “1” is assigned if the central pixel’s

value exceeds the adjacent pixel’s and “0” otherwise.

• Then the binary integer may be generated by comparing each

pixel with other pixels.

• Final stage is the histogram calculation for the whole cell

• The phrase allows one to determine an LBP value. Where v

stands for uniform pattern and y and x are two numbers that

have LBPvy,x .

• Identify the surrounding area.
LBPy,x ¼
Pn�1

0
t(qt � qd)2t

t(s) ¼ 1 s � 0
0 s , 0

�
9>>=
>>; (8)

As shown in Equation 8, the texture image has been deliberated.

Where qd is the central pixel’s grey value, qt is the modulation

index of the position pixels (t ¼ 0, 1, . . . . . . t � 1), and n is the

pixel in the picture where O is greater than zero forming a

locally-oriented neighborhood set. y, x are the numbers that

covers an LBP value. The textured image is defined by creating a

t(s) histogram after distinguishing each pixel in a photograph.

The extracted characters are given to the classification stage for

accurate classification.
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3.6. Classification of lung images

DeepNet model recognition of lung cancer is the capstone of

this study. A deep learning neural network does not manually

extract the features for training; it may be used to prepare images

for the classification process. Instead, deep learning uses the

collected lung CT image or separated image to recognize the

edges present in the picture and significant characteristics

employed in the neural network training using a huge quantity

of data. Due to the large dimensionality of the information, the

network typically employs 150 hidden layers.

To forecast the manually extracted characteristics associated with

lung cancer, the learned features are maintained in a database as a

template. The procedure of classification involves self-training and

categorization of the spectral characteristics that were manually

collected. The network examines the lung characteristics and uses

the extracted features in a manner consistent with the

unstructured classification stage to the hidden node it has

included. Particular network and weighting values are used to

generalize the network and reduce the number of unnecessary

characteristics required for classification. Since the network bias

value is set to 1 during training, input nodes with moreover one

of the total number of training features in the feature space are

used. The relative importance of the connections in a network and

the error reduction is represented here

Z ji ¼
�1 for yj ¼ 0
þ1 for yj ¼ 0

Oþ t � 1 for j ¼ mþ 1

8<
: (9)

In Equation 9, O stands for the radius generalization, and t

represents the hammering strength. The weight value from the
FIGURE 6

The flow chart of DeepNet model.
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hidden to output nodes is then specified as either �1 or 1,

indicating that the feature is extracted from the lungs and is

utilized to predict whether or not the features are a cancerous or

noncancerous stage. At last, the value is disguised as output. The

results of the training procedure are then characterized as follows,

x ¼ 1 if
P

yj � 0
0 if

P
yj , 0

�
(10)

The obtained value has been compared to characteristics gathered

and taught using deep learning for cancer classification. The

classification of cancer cells is based on yj Characters as 0 and

1. The double-time comparison procedure increases identification

accuracy and effectively decreases the false classification rate. The

complete flow chart of the proposed system is shown in Figure 6.

The input image is pre-processed, segmented and filtered. The

filtered sample is given to Cuckoo search algorithm which is

implemented in the testing phase. The training phase includes the

DeepNet which is used for classifying the data sample as normal

and abnormal. The treatment is implemented according to

classification stages.
4. Empirical analysis

To demonstrate the effectiveness of DeepNet, a comprehensive

experimental study is carried out on a 3.6 GHz Intel Core i7-4790

processor with 16GB memory and a Windows 10 operating system.

The effectiveness of the DeepNet model is assessed by relating the

results with six related classification models, viz. 3D LungNet (16),

3D U-Net (19), mU-Net (20), 3D-Segnet (17), MAU-Net (18),

ResNet (21). All these networks including our DeepNet exploit
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deep learning algorithms for segmentation and are trained using

the same training configuration. The comparison is illustrated in

Root Mean Square error, F1-score Ratio, Efficiency ratio.
4.1. Dataset acquisition

To evaluate the effectiveness of any DL algorithm, we

require a huge database that produces a better solution. This

work uses a corpus of labeled lung CT scans from the TCIA

database collected from the National Cancer Institute of

Cancer Analysis Consortium Lung Cohort (29). The collected

samples are related to proteomic, genomic, and medical

statistics. The gathered scans are kept in the form of DICOM

(digital imaging and communications in medicine) with
FIGURE 7

(A) the training phase of DeepNet. (B) The Testing Phase of DeepNet.
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definite labels including imaging, gender, date of birth, study

dates, etc. 5,043 scans are used for segmenting lung cancer

from various cases with 48 sequences. In this study, we

purposefully divide the available database into 70% of

instances (i.e., 3,530 images) for training and 30% (i.e., 1,513

images) of instances for testing.

Moreover, since we employed 10-fold cross-validation

(10-FCV), the total data samples are divided into 10 parts (each

of 10%). Now, one fold (10%) is applied for testing, while the

residual samples (90%) are split for validation and training.

Using 10-FCV guarantees that each sample in the data gets to be

in a test. 10-FCV is considered for five samples, and the

confusion matrix for each sample is illustrated in Figure 7.

Dataset Description: DeepNet model aimed to develop a

machine learning and deep learning (CNN) system to identify
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lung cancer. The main aim is to gather all information for quick

and straightforward picture classification.
4.2. Performance measure

The performance measurement of DeepNet in the form of a

confusion matrix is shown in Figures 7A,B. The calculation for

both the testing and training phases of the confusion matrix is

calculated for each samples. The sample data description is

divided into 10 parts as five samples.

The performance of the DeepNet model is quantitatively

assessed using some selected evaluation metrics like the volume

error (VE), dice similarity coefficient (DSC), Jaccard similarity

index, and average processing time. These metrics are computed

by calculating the variation between the segmentation outcomes

and a manually marked ground truth. The volume error is

calculated using Equation 11.

VE ¼ 2� (S� G)
(Sþ G)

(11)

where G is the ground truth (i.e., standard gold image) and S is the

segmentation result obtained by DeepNet. For a medical practice,

VE , 5% is more likely acceptable (25). The Dice similarity

score is generally employed to define the representation of the

segmentation process on the input CT scan. DSC is a similarity

index between two pixels. It refers to the fitness degree between

the original and segmented images. The value of DSC is always

in [0, 1] and is measured using Equation 12.

DSC ¼ 2� jG> Sj
jGj þ jSj (12)

The Jaccard similarity score (JSS) is an assessment measure

employed to assess the effectiveness of any isolation method.

Given a dataset, the JSS measure provides the similarity between

the target scan and the ground truth. It is defined by Equation 10.

JSS ¼ jG> Sj
jG< Sj (13)

As explored in Equation 10 JSS has been demonstrated. This study

considers the average processing time as the performance measure.
TABLE 1 The results obtained by DeepNet from the TCIA dataset.

Model Criteria VE (%) DS
3D Lung Net Mean ± std 4.871 ± 0.047 0.656 ±

3D Seg Net Mean ± std 3.671 ± 0.041 0.786 ±

3D U-Net Mean ± std 2.325 ± 0.059 0.843 ±

mU-Net Mean ± std 1.347 ± 0.049 0.854 ±

MAU-Net Mean ± std 1.145 ± 0.015 0.866 ±

ResNet Mean ± std 0.345 ± 0.016 0.953 ±

DeepNet Mean ± std 0.962 ± 0.023 0.968 ±
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4.3. Empirical results

The DeepNet segmentation model is implemented using the

deep learning toolbox in MATLAB R2018b software. The

comprehensive outcomes obtained from the DeepNet

segmentation model are given in Table 1. To realize more

precise solutions, the 10-FCV technique is used. Consequently,

the whole database is divided into 10 parts. For each trial, one

part is applied for testing, and the other parts are used for

training the classifier. Now the mean value of all ten tests is

considered for evaluation. A comprehensive analysis of our

results discloses the potential and weakness of our DeepNet

approach. Generally, irrespective of the dimension of the

standard gold image, the DeepNet model segments the nodules

effectively. Figure 8 shows sample input images used for

experimentation, segmented images obtained by DeepNet, and

their corresponding ground truth images. Though the nodules

are in different random localities within the lung and appear in

various sizes, the segmented nodules coincide almost perfectly.

In classification process Tþ denotes the true positive,

T� indicates the true negative, Fþ express the false positive,

F� is examines the false negative.

Table 1 shows the isolation results obtained by the DeepNet

model. The conventional 3D LungNet architecture provides

4.871 ± 0.047% volume error and 0.656 ± 0.154 DSC. 3D LungNet

can exploit the 3D statistics present within CT scan volumes

effectively. Therefore, this model can achieve a 0.687 ± 0.014 dice

similarity coefficient and 1.457 ± 0.002 Jaccard similarity index.

The average computational time per case of the 3D LungNet

model is 1.457 ± 0.002 s. SegNet is more effective in terms of

performance measures since it keeps the upsampling parameters

of the attribute vector and employs them in its decoding module

to realize better results than the 3D LungNet model. It provides

a 3.671 ± 0.041 mean volume error, 0.786 ± 0.014 dice similarity

index, and 0.660 ± 0.012 Jaccard similarity score. This model

takes 0.083 ± 0.001 s for segmenting nodules.

The 3D U-Net approach achieves improved results compared

to 3D LungNet and 3D SegNet models by concurrently applying

the concept of context data and global position. Also, it

guarantees the preservation of the entire quality of the input

scans. Hence it achieves a relatively lower volume error (2.325 ±

0.059) and a higher dice coefficient (0.843 ± 0.179) as well as a

higher Jaccard similarity index (0.711 ± 0.011). Moreover, it takes

reduced mean processing time per case (0.160 ± 0.001 s).

Conversely, higher-level attributes selected by this model often
C JSS Average processing time (s)
0.154 0.687 ± 0.014 1.457 ± 0.002

0.014 0.660 ± 0.012 0.083 ± 0.001

0.179 0.711 ± 0.011 0.160 ± 0.001

0.183 0.758 ± 0.008 0.178 ± 0.002

0.133 0.804 ± 0.010 0.199 ± 0.003

0.014 0.814 ± 0.009 1.168 ± 0.004

0.011 0.856 ± 0.011 0.045 ± 0.005
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FIGURE 9

Performance of various segmentation models in terms of mean values.

FIGURE 10

Performance of various segmentation models in terms of mean values.

FIGURE 8

Segmentation results.
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do not comprise sufficient higher-resolution boundary statistics of

the input, leading to increased indecision where higher-resolution

boundaries mainly impact the final decisions including the lung

nodule segmentation.

The modified U-Net contains a residual block with de-

convolutional and activation functions to the dropout unit to

avoid distorted attributes’ repetition. For small object inputs,

attributes in the dropout units are not integrated with attributes

in the residual block. Also, the recommended model has

supplementary convolutional modules in the dropping out of a

unit to select higher-resolution attributes of minor object inputs

and higher-level attributes of higher-level boundary data of big

object inputs. Hence, this network provides better performance

for lung nodule segmentation in terms of dice similarity index

(0.854 ± 0.183), the volume of error (1.347 ± 0.049%), and the

Jaccard coefficient (0.758 ± 0.008). For effective nodule

segmentation it consumes 0.178 ± 0.002 s for each sample.

By applying a 3D encoder/decoder-based CNN structure,

MAU-Net realizes good performance for precisely isolating lung

nodules from volumetric CT images. This model achieves

performances of 1.145 ± 0.015%, 0.866 ± 0.133, 0.804 ± 0.010, and

0.199 ± 0.003 in volume error, dice coefficient, Jaccard similarity

index, and average processing time, respectively. By applying the

concept of dropout connections ResNet delivers 0.345 ± 0.016%

of volume error, 0.953 ± 0.014 of dice similarity index, 0.814 ±

0.009 of Jaccard score, and 1.168 ± 0.004 s of average processing.

The DeepNet model outperforms all other network models in

terms of metrics selected for performance evaluation. DeepNet

emphasizes that the attribute pooling function of DeepNet

guarantees a less computationally expensive structure related to

other segmentation models. It achieves performance measures of

0.962 ± 0.023, 0.968 ± 0.011, 0.856 ± 0.011, and 0.045 ± 0.005 in

volume error, dice coefficient, Jaccard similarity index, and

average processing time, respectively shown in Figures 9, 10.

Accuracy, loss, and computation time are all useful effective

assessment characteristics that may be used to assess a medical

image’s efficacy. Regarding measuring the model’s effectiveness,

accuracy is a crucial metric. It returns the fraction of an image’s

pixels that have been properly labeled.

The neural network’s error, or Loss, may be anticipated using

the Loss function’s computations. It’s a key network performance

metric. Computational Time is the amount of time it takes for a

process to compute or carry out its actions. Time spent
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processing is reduced if the process is straightforward, whereas

more time is needed for complicated procedures.
4.3.1. Accuracy ratio (%) and loss curve
CT scans in DICOM format represent a total of 1,018

instances. Since it is challenging to train high-size pictures in

DeepNet, the images were preprocessed to reduce the size to

512 × 512. Table 2 and Figures 11A,B show the epoch, loss, and

accuracy results from the CT image dataset experiments.

The loss and accuracy of the DeepNet for each epoch is shown

in Figures 11A,B with the loss of 0.0008 and accuracy of 99.3. As

shown in Equation 14, the classification accuracy rate is calculated

Y ¼ s
m

� 100 (14)
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TABLE 2 Epoch, verses loss, and accuracy results.

Epoch Loss Accuracy (%)
1 0.71 76.5

13 0.032 85.3

25 0.012 88.9

38 0.0045 90.1

50 0.0052 90.5

63 0.0033 91.5

75 0.0041 92

88 0.0025 92.5

100 0.0019 93

113 0.0026 93.5

125 0.0023 94

138 0.0015 94.5

150 0.0013 95

163 0.0016 95.6

175 0.0008 96

188 0.0056 97

200 0.0031 98

213 0.0013 98.5

225 0.0013 98.7

238 0.0013 99.1

250 0.0008 99.3

M and S 10.3389/fmedt.2023.1157919
The total number of observations (m) is based on the particular

number of accurate classifications (s). Training and testing

images are separated into distinct categories in evaluating the

network’s efficiency in distinguishing cancer and non-cancerous

pictures. The photos from the provided dataset are fed into the

DeepNet model during training, with 90% of the images serving

as examples. Table 3 and Figures 11C,D provide iteration, loss,

and accuracy statistics from experiments performed on the CT

image dataset.

The loss and accuracy of the DeepNet for each Iteration is

shown in Figures 11C,D with the loss of 0.0007 and accuracy of

99.5. After the training phase is complete, 10% of the same

dataset’s testing images are used to assess the model’s

performance. Here, the samples of photos are fed into a network

model for cancer/non-cancer image classification.
FIGURE 11

(A) Epoch vs. accuracy and (B) epoch vs. loss. (C) Iteration vs. Loss and
(D) iteration vs. accuracy.
4.3.2. Computation time (%)
The experimental study on the CT image collection includes

measurements of computation time, losses, and accuracy. In

addition to explaining lung cancer, the DeepNet model is

evaluated using the Kaggle dataset for training and testing

reasons for cancer segmentation and classification in MATLAB.

In this case, samples of photographs are fed into a network

model trained to detect cancer in pictures (both malignant and

benign). Table 4 and Figures 12A,B show the outcomes of

experimental research on a CT scan image collection for

computation time, loss, and accuracy.

The loss and accuracy of the DeepNet for Computation

time is shown in Figures 12A,B with the loss of 0.0007 and
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TABLE 3 Iteration vs. Loss and Accuracy Outcomes.

Iteration Loss Accuracy (%)
1 0.71 73.5

50 0.022 82.3

100 0.021 87.9

150 0.0032 90.2

200 0.0044 91.6

250 0.0011 92.3

300 0.0021 92

350 0.0055 92.5

400 0.0029 94

450 0.0024 94.5

500 0.0026 94.8

550 0.0011 94.9

600 0.0012 95

650 0.0013 95.1

700 0.0007 95.8

750 0.0036 96

800 0.0031 96.4

850 0.0043 97.5

900 0.0033 97.7

950 0.0023 98.1

1,000 0.0009 99.5

TABLE 4 Computation time verses loss and accuracy.

Computation Time (Sec) Loss Accuracy (%)
30 0.71 73.5

1,248 0.022 82.3

2,626 0.021 87.9

3,908 0.0032 90.2

4,930 0.0044 91.6

6,075 0.0011 92.3

7,142 0.0021 92

8,343 0.0055 92.5

9,689 0.0029 94

10,214 0.0024 94.5

11,692 0.0026 94.8

12,242 0.0011 94.9

13,743 0.0012 95

14,357 0.0013 95.1

15,820 0.0007 95.8

16,818 0.0036 96

17,965 0.0031 96.4

18,745 0.0043 97.5

19,810 0.0033 97.7

20,835 0.0023 98.1

21,870 0.0009 99.5

FIGURE 12

(A) computation time vs. loss and 1(B) computation time vs. accuracy.
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accuracy of 99.5. Compared to previous research articles,

DeepNet’s final result is the highest degree of accuracy

obtained: 99.6% with a calculation duration of 45,141 s on a

single-CPU workstation.

Figure 11 is a visual depiction of the accuracy percentages

from the several studies included in the literature review.

Figure 12 compares the computation time of the existing

method with DeepNet. This results in improved classification
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accuracy, less loss and computation time that exceeds that of

3D LungNet (16) SegNet (17) MAU-Net (18), ResNet-34

model (21).

4.3.3. Root mean square error (%)
The author presented a technique to categorize lung nodules

using CT scans. The lung segmentation would take place via

background subtraction and a cuckoo search algorithm, and the

image characteristics would then be retrieved. The collected

characteristics are given for different classifiers, such as DeepNet.

Afterward, the classifier determines and categorizes the photos as

either benign or malignant. To locate lung nodules, the author

suggests using the DeepNet classifier, which has an accuracy rate

of around 99.6%. Figure 13 deliberates the RMSE Rate with low

error based on the cuckoo search algorithm (CSA).

Imbalance CoefficienttL�R

¼ Tidal ventilationleft � Tidal ventilationright
Tidal ventilationleft þ Tidal ventilationright

(15)
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FIGURE 13

RMSE rate.
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This value is scaled such that it would fall somewhere between

+1 (where the left lung is ventilated; Tidal ventilationright ¼ 0) and

1 (where the right lung is ventilated; Tidal ventilationleft ¼ 0).

Acute respiratory injury and baseline values for the imbalance

coefficient Imbalance CoefficientL�R were determined for

each pixel within every location. This paper presents a

model for classifying lung cancer nodules from CT scans. The

model uses many classifiers to identify cancer, which

increases the model’s efficiency and, as a result, lowers the

error rate.
4.3.4. F1-score ratio (%)
Fusing deep learning concepts for lung nodule categorization is

proposed as a solution to the issues of the field, such as the lengthy

and difficult classification detection phase, low accuracy rate, and

high false positive rate. The model’s architecture is a

convolutional network model with 50 layers, and it reconstructs

the average global pooling layer, the FC layer, and the

classification algorithm.

F1� score ¼ Tþ

Tþþ 1
2
(FþþF�)

(16)

As the abovementioned equation shows the F1-score value and

Figure 14 when compared to other existing methods, DeepNet

achieves a high value with the help of CSA. Tþ represent the

total number of positive values, Fþ denote the false positive

values, F� represent the false negative values. The

experimental findings on the Kaggle dataset show that the
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DeepNet model outperforms the published results of all the

other methods, including the neural network models and a

typical ML algorithm, in terms of accuracy and F1 score.

Comparing the suggested technique to those of existing

classifiers, it emerges with the highest scores in terms of both

accuracy and F1-score.
4.3.5. Efficiency ratio (%)
The patient’s diagnosis is confirmed alongside the

formulation of a suitable treatment strategy when the nodule

information (density, shape, and texture traits) is analyzed for

the potential presence of malignancy. The process of

recognizing the nodules is a difficult one. Inadequate

professional expertise, distractions, or exhaustion when

recording scans, among other factors, may weaken nodule

detection, contributing to mischaracterizations of false positives

using the available data. The DeepNet model needs to be highly

sensitive while having a low number of false positives, a low

installation cost, a low cost of maintenance tasks, vulnerability

management assurance, and high levels of automation to

improve efficiency. The lung CT images are obtained from the

dataset. The image noise is removed using an approach called

weighted histogram equalization.

As illustrated in Figure 15, efficiency ratios are compared with

the existing methods. This successfully removed the noise from the

image, which improved the image quality. The cuckoo search

algorithm is utilized to segregate the affected region. Several

spectral characteristics may be extracted from the compressed

area. These are investigated using a DeepNet to diagnose lung

cancer.
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FIGURE 15

Efficiency ratio (%).

FIGURE 14

F1-score ratio (%).
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5. Conclusion

Lung cancer is the deadliest type of cancer. Developing an

automatic and reliable system to segment lung nodules from a CT

image is a very practical tool in the healthcare industry. The

DeepNet model detects and separates lung nodules in CT scans. The

DeepNet model employs an encoder/decoder network to accomplish

pixel-wise picture segmentation. With the help of 16 upsampling
Frontiers in Medical Technology 17
and deconvolution modules, the decoder network improves upon

the output of an encoder network that uses a Visual Geometry

Group (VGG-19) model as its foundational design. The structural

design of the decoder can be trained to produce outputs of arbitrary

resolution, depending on the size of the input scans. The encoder’s

fuzzy data is mapped and upsampled by the decoder’s network. As a

result, the network reuses the pooling indices of the encoder for

segmentation, drastically reducing the total number of variables
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required for training. The cuckoo search algorithm is used to find the

most relevant features. The DeepNet model is evaluated based on the

real-world database known as The Cancer Imaging Archive (TCIA)

dataset. It shows its efficacy by comparing its representation to other

contemporary segmentation methods along a few key performance

metrics. The empirical analysis shows that DeepNet significantly

outperforms other prevalent segmentation algorithms with 0.962 ±

0.023% of volume error, 0.968 ± 0.011 of dice similarity coefficient,

0.856 ± 0.011 of Jaccard similarity index, and 0.045 ± 0.005 s average

processing time. The accuracy ratio of our prosed method is 99.5%,

99.3%, and the loss is 0.008, 0.009 verses of epoch, iteration, and

computation time. The overall efficiency ratio of our method is

98.7%, the F1-score ratio of 96.2% and the RMSE value is 0.0016

compared to other existing methods. Because of GPU memory space

limitations, the pictures of this data were reduced to 120� 120

pixels before our training step. In the future, this method would like

to figure out what causes lung cancer in people and use that

information to predict cancer. The DeepNet has highest efficiency

ratio, F1-score with average processing time, less error rate. F1-Score

of DeepNet is high with less RMSE value and loss ratio. The

DeepNet method is compared with the loss and accuracy in terms of

epoch, iteration and computation time. The segmentation algorithm

gives better result in the form of volume error, dice similarity

coefficient.
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