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estimate Pacific hake (Merluccius
productus) biomass-at-age
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John Wallace3, Jim Hastie3‡, Julia Clemons2‡

and Lorenzo Ciannelli 1,4‡

1Cooperative Institute for Marine Ecosystem and Resources Studies, Oregon State University,
Newport, OR, United States, 2Fishery Resource Analysis and Monitoring Division, Northwest Fisheries
Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration,
Newport, OR, United States, 3Fisheries Research Analysis and Monitoring Division, Northwest Fisheries
Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration,
Seattle, WA, United States, 4College of Earth, Ocean, and Atmospheric Studies, Oregon State
University, Corvallis, OR, United States
Generating biomass-at-age indices for fisheries stock assessments with acoustic

data collected by uncrewed surface vessels (USVs) has been hampered by the

need to resolve acoustic backscatter with contemporaneous biological (e.g.,

age) composition data. To address this limitation, Pacific hake (Merluccius

productus; “hake”) acoustic data were gathered from a USV survey (in 2019)

and acoustic-trawl survey (ATS; 2019 and eight previous years), and biological

data were gathered from fishery-dependent and non-target (i.e., not specifically

targeting hake) fishery-independent sources (2019 and eight previous years). To

overcome the lack of contemporaneous biological sampling in the USV survey,

age class compositions were estimated from a generalized linear mixed spatio-

temporal model (STM) fit to the fishery-dependent and non-target fishery-

independent data. The validity of the STM age composition estimation

procedure was assessed by comparing estimates to age compositions from

the ATS in each year. Hake biomass-at-age was estimated from all combinations

of acoustics (USV or ATS in 2019, ATS only in other years) and age composition

information (STM or ATS in all years). Across the survey area, proportional age

class compositions derived from the best STM differed from ATS observations by

0.09 on average in 2019 (median relative error (MRE): 19.45%) and 0.14 across all

years (MRE: 79.03%). In data-rich areas (i.e., areas with regular fishery operations),

proportional age class compositions from the STM differed from ATS

observations by 0.03 on average in 2019 (MRE: 11.46%) and 0.09 across years

(MRE: 54.96%). On average, total biomass estimates derived using STM age

compositions differed from ATS age composition-based estimates by

approximately 7% across the study period (~ 3% in 2019) given the same

source of acoustic data. When biomass estimates from different sources of
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acoustic data (USV or ATS) were compared given the same source of age

composition data, differences were nearly ten-fold greater (22% or 27%,

depending on if ATS or STM age compositions were used). STMs fit to non-

contemporaneous data may provide suitable information for assigning

population structure to acoustic backscatter in data-rich areas, but

advancements in acoustic data processing (e.g., automated echo classification)

may be needed to generate viable USV-based estimates of biomass-at-age.
KEYWORDS

USV, acoustic-trawl survey, spatio-temporal model, VAST, Pacific hake, biomass
estimation, fishery-independent survey, age composition
1 Introduction

Autonomous vessels have shown great promise for enhancing

ocean observation programs. Uncrewed surface vessels (USVs) are

particularly useful for missions of long duration in harsh

environments (Liu et al., 2016; Mordy et al., 2017; Meinig et al.,

2019), and are well suited to carry out survey operations in

circumstances that would limit or prevent the operation of crewed

surveys (e.g., De Robertis et al., 2021). Therefore, USVs have been

used to understand physical oceanography (Wills et al., 2021;

Nickford et al., 2022; Zhang et al., 2022), animal distribution and

behavior (De Robertis et al., 2019b; Verfuss et al., 2019; Levine et al.,

2021), and collect data in service of fishery resource survey programs

(Chu et al., 2019; De Robertis et al., 2021; Sepp et al., 2022).

Incorporating USVs into fishery-independent survey programs is of

particular interest given their potential to increase the efficiency of

ship-based survey effort and mitigate the effects of unexpected

circumstances (e.g., funding shortfalls, vessel unavailability).

Fishery-independent survey programs that generate indices

for stock assessment typically rely on two types of data: (1)

abundance or biomass and (2) composition (e.g., age, length,

species composition). One gear can provide both types of data

in some situations (e.g., trawls, stereo-video), but many survey

programs employ multiple gears to collect sufficient data of each

type. One of the most common combinations of gears is an

acoustic-trawl survey (Simmonds and MacLennan, 2005), where

trawls provide the much more broadly sampled acoustic

backscatter with point samples of composition data that are

extrapolated to estimate the biomass-at-age of target species.

USVs can collect acoustic data in support of fishery resource

survey programs but are ill-equipped to collect composition data,

which has thus far limited their operational use. The study of De

Robertis et al. (2021), which used an empirically derived

relationship between acoustic backscatter and biomass

to estimate the total biomass of Walleye Pollock (Gadus

chalcogrammus) in Alaska, was a significant advancement

towards providing data for stock assessments with USV surveys.

However, as most modern stock assessments are age- or length-
02
structured, providing a biomass index with a USV survey that is

equivalent to one generated with a survey vessel requires biomass

estimates to be resolved by age or length.

Spatio-temporal models (STMs) are statistical models that

make highly resolved predictions based on spatial, temporal, and

spatio-temporal effects. Accordingly, they may be suitable for

estimating composition data for acoustic surveys when

contemporaneous biological sampling is not possible. One type of

STM, the vector autoregressive spatio-temporal (VAST) model, is

particularly well-suited for integrating data from multiple sources,

multi-variate applications, and generating robust indices in a variety

of situations (Grüss and Thorson, 2019; Thorson, 2019; Brodie

et al., 2020). Therefore, VAST models are commonly used to

generate indices of biomass or abundance distribution (Thorson

and Barnett, 2017; Godefroid et al., 2019; Thorson et al., 2021) and

estimate diet and age-length-sex composition (Thorson and

Haltuch, 2019; Grüss et al., 2020; O’Leary et al., 2020). If

estimates of composition data derived from STMs such as VAST

can be applied to acoustic data collected by USVs, the utility of

USVs would be greatly expanded. Adding USV data collection

could facilitate a higher level of spatial and temporal resolution in

fishery resource surveys than adding additional crewed data

collection given the same operational constraints (e.g., funding,

person hours). The additional high-resolution data would support

the next generation of spatially-resolved stock assessment and

management strategies (Berger et al., 2017).

We aimed to determine if a combination of acoustic data from

USVs and age compositions derived from a STM could generate

viable estimates of Pacific hake (Merluccius productus; “hake”)

biomass-at-age. Hake are the most abundant groundfish in the

California Current Large Marine Ecosystem and support one of the

largest fisheries on the U.S. West Coast south of Alaska (Hamel

et al., 2015; NOAA, 2015; Johnson et al., 2021). Hake undertake a

seasonal northward migration in the spring, where the extent of the

migration is determined in part by age, size, and oceanographic

conditions (Dorn, 1995; Hamel et al., 2015; Malick et al., 2020). The

Joint U.S.-Canada Integrated Ecosystem and Pacific Hake Acoustic

Trawl Survey (ATS) is conducted biennially in the summer months
frontiersin.or
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to estimate the biomass-at-age of the entire stock, which is managed

and surveyed jointly by the U.S. and Canada. In 2019, a USV

(Saildrone) acoustic survey was conducted in conjunction with the

hake survey (de Blois, 2020).

The specific objectives of the present study were the following:

(1) estimate hake age class composition with STMs fit to a

combination of fishery-dependent and non-target fishery-

independent age data, (2) estimate hake biomass-at-age from all

combinations of acoustic (USV or ATS) and age composition

information (STM or ATS), (3) compare the age compositions

estimated in objective 1 with those of the ATS to evaluate the

validity of age compositions estimated with STMs, and (4) compare

total biomass estimates derived in objective 2 to determine the

relative effects of differing sources of age composition and acoustic

data on total biomass estimates. We completed these objectives with

data from 2019, when the USV and ATS sampled the survey area in

tandem, and for eight previous survey years (ATS vessel acoustics

only) to examine if the performance of generating age compositions

using STMs was reasonable and stationary under different

conditions. If USV surveys are to be useful for age-resolved

indices of abundance for stock assessment, there needs to be an

understanding of the benefits, limitations, and efficiencies available

to best leverage this technology and inform management decisions.
2 Methods

2.1 Study domain

This study took place in waters off the U.S. West Coast from

34.4 to 55.5° latitude and -135.5 to -120.6° longitude (Figure 1).

Some datasets employed in this study covered this entire area, while

others covered smaller portions of the survey domain. (Figure 1;

described in greater detail below). For spatio-temporal modelling,

we modified the spatial grid used to generate kriged biomass

estimates from data collected in the ATS by Northwest Fisheries

Science Center (National Marine Fisheries Service – National

Oceanic and Atmospheric Administration; NWFSC) personnel

(Chu et al., 2017). This grid was clipped to match the latitudinal

extents of the U.S. West Coast and reached the 1500 m isobath or 35

nmi offshore, whichever was furthest offshore (Chu et al., 2017; de

Blois, 2020). Grid cells were generally 21.4 km2 except in areas

where they conformed to the coastline or shelf contour. In some

analyses, we made comparisons between predictions in geographic

strata defined by the International Pacific Fisheries Council

(INPFC), which are shown in Figure 1.

While 2019 was the focal year of this study as it was the year in

which the USV survey was conducted in tandem with the ATS, we

also analyzed data from previous years in which the ATS was

conducted using modern protocols (i.e., protocols that closely

resemble current protocols; 2003, 2007, 2009, 2011, 2012, 2013,

2015, and 2017). We did this to examine the performance of our

method for generating estimates of hake age composition with a

STM fit to non-contemporaneous biological sampling data under

different stock population structures (age composition, size/status,

and distribution).
Frontiers in Marine Science 03
2.2 Acoustic trawl survey
and data processing

The U.S. portion of the 2019 ATS began near Point Conception,

California and proceeded north along the west coast of the United
FIGURE 1

Study area with International Pacific Fisheries Commission
Geographic Strata (0-4), type of data generally available in each
stratum, and number of tows by strata for 2019. A-SHOP refers to
at-sea hake observer program data, shoreside refers to the hake
fishery in which catches are processed on shore, and bottom trawl
refers to the NOAA Northwest Fisheries Science Center fishery-
independent bottom trawl survey. We note that while the figure
depicts the general lack of shoreside data in stratum 2, 4 shoreside
tows were conducted in stratum 2 across years and included in this
study.
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States to the Canadian border. Acoustic transects were oriented

east-west and ranged from the 50 m isobath to either the 1,500 m

isobath or a location 35 nmi west of the inshore waypoint. Transects

were spaced 10 nmi apart. Transects were traversed sequentially and

were surveyed acoustically between sunrise and sunset when hake

form identifiable aggregations. A Simrad scientific echosounder

system collected raw acoustic data from up to five split-beam

transducers operating at 18, 38, 70, 120, and 200 kHz (pulse

duration: 1 ms; ping rate: 1-4 per second depending on bottom

depth). Echosounder calibrations were performed pre- and post-

survey according to standard procedures (Demer et al., 2015). Data

from the 38 kHz echosounder (the primary frequency used for

generating biomass estimates) were post-processed for hake based

on scattering properties and behavioral cues (e.g., school

morphology; see Supplementary Material S1 and Chu et al. (2017)

for further details on echogram scrutiny). Daytime trawling was

used to classify observed backscatter layers to species and size

composition and to collect specimens of hake and other

organisms (see Supplementary Material S1 and Chu et al. (2017)

for further details on calculation of hake backscatter in mixed

aggregations). The number and locations of trawls were not pre-

determined, but instead depended on the occurrence and pattern of

backscattering layers observed at the time of the survey. Highest

priority for trawling was given to sampling distinct layers of intense

backscatter that are indicative of high densities of hake. While

southern and offshore extents, transect spacing, and acoustic

frequencies employed (namely, the inclusion of 18 kHz) varied

moderately over the study period (2003-2019), the purpose of the

ATS (generating a biomass index for the hake stock) and core

methodology remained constant. Notably, the ATS biomass

estimates did not include INPFC stratum 0 in 2003-2011, and no

biological data were collected in stratum 0 in 2003-2007.
2.3 Saildrone (USV) survey
and data processing

The U.S. portion of the 2019 ATS was conducted on the fishery

survey vessel (FSV) Bell M. Shimada and ran from June 15 to

August 21, with concurrent survey operations by four to five USVs

(Saildrones from Saildrone, Inc.) operating from June 17 to August

25. The USVs were equipped with the company’s standard package

of oceanographic and atmospheric sensors, including Simrad

scientific echosounders mounted in the USV’s keelpod. The

echosounder system consisted of an EK80 Wide Band Transceiver

Mini with a 38 kHz split beam transducer and a 200 kHz single

beam transducer (ES38-18/200-18C; pulse length: 1.024 ms; ping

rate: 1 per two seconds). Echosounder calibrations were performed

pre- and post-mission (June 10 and September 27, respectively) off

the Saildrone, Inc. dock in Alameda, CA according to standard

procedures (Demer et al., 2015).

At-sea operations of the USVs were governed in two ways. Pre-

mission planning of sampling protocols established mission

parameters at the outset (for example, only surveying acoustically

from sunrise to sunset). In-field decisions based on navigation and

weather data delivered via a graphical user interface (the mission
Frontiers in Marine Science 04
portal), were operationalized through near real-time satellite-driven

command and control of the vessel’s navigation. USV operators –

all pilots and engineers employed by Saildrone, Inc. – piloted the

vessels in collaboration with NWFSC scientists aboard the research

vessel monitoring the USVs through a web-based mission portal.

The USVs surveyed the same parallel transects as the ATS in the

same direction along the U.S. west coast, from south to north. Each

transect was either surveyed entirely by one USV, or by a pair of

USVs operating in conjunction to cover either the inshore or

offshore halves. This practice of using multiple USVs for a single

transect helped mitigate the difference in operational speed between

the USVs and the research vessel. In the 2019 mission, the USVs

matched the FSV in completing 85 transects over their 70

operational days. USV survey speeds varied across the five

vehicles, depending on weather, currents, and operational

idiosyncrasies inherent to each vehicle. In general, the speed-

over-ground for the USVs ranged from 0 knots when becalmed,

to nearly 5 knots when transecting in 20 plus knots of wind from

favorable directions. In the three instances where the ATS protocol

extended a transect to follow suspected hake backscatter (hake

designation methodology briefly explained below, and in further

detail in Supplementary Material S1 and Chu et al. (2017)), the

USVs likewise extended. Operationally, 68% of the USV transects

were within +/- 3 days of the ATS transects, while 84% were

within +/- 5 days.

The post-cruise judging team for the USV transects used

Echoview 11 (a commercial software developed by Echoview

Software Pty.; https://echoview.com). The team was organized to

minimize initial recollection bias from any FSV echograms they

might have viewed in the previous cruise legs. This was done by

tasking two analysts to judge those USV transects where they

themselves had not also been on board the ATS when the ship

sampled those particular lines. Furthermore, these analysts did not

review the archived trawl or processed acoustic data from these ATS

transects prior to reviewing the ATS collections in their charge.

Lastly, a procedural, final review of all echograms by the survey’s

chief scientist, though conducted for the ATS echograms, was

withheld from the USV echograms.

Insofar as possible, given the lack of validating trawl data and

the reduced number of acoustic frequencies available for the USVs

versus the ATS (38 and 200 kHz versus the 18, 38, 70, 120, and 200

kHz), acoustic data review was done in a similar fashion to that of

the ATS judging. The “Impulse Removal” and “Background Noise

Removal” processing modules within Echoview software were used

for the 38 and 200 kHz echograms, to better account for signal

attenuation from inclement weather. The 38 and 200 kHz

echograms were scrutinized simultaneously, with identifying

regions drawn around suggestive backscatter in the 38 kHz

echogram. Regions drawn in one echogram automatically appear

in all others, allowing comparisons. In drawing regions, analysts

relied on morphometric cues (shape, size of the aggregations),

behavioral cues (depth, relative positioning to other schools,

proximity to the 200-meter shelf break), and frequency response

(when possible), to make their determinations.

Regions were drawn tightly around areas judged as likely to be

“hake” (i.e., 100% hake), “CPS” (i.e., coastal pelagic species),
frontiersin.org
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“zooplankton,” or “unclassified.” Unlike with ATS judging, no

species mixes or biological information was linked for these

regions. In most instances determined to be hake, judges relied

on the evidence offered by the 38 kHz alone, as hake typically occurs

at depths greater than range of good data from the 200 kHz. Lastly,

the two USV reviewers met after all assigned transects were

completed to hold their own procedural review. Each EV file was

jointly scrutinized so as to make a shared, consistent decision about

the shape and assignation of each backscatter region within.

Supplementary Material S1 and Chu et al. (2017) provide further

detail on echogram scrutiny.
2.4 Biological data for
spatio-temporal models

STMs were fit to data from three sources: the NWFSC’s Pacific

Coast Groundfish Bottom Trawl Survey (hereafter ‘bottom trawl’),

the At-Sea Hake Observer Program (‘A-SHOP’), and observer data

from each state’s shoreside hake fishery (i.e., fishery in which

catches are processed on shore; ‘shoreside’). We describe these

data briefly below.

Bottom trawl data were available across the study area from

May-October in each year of the study, and were collected at

random sites across the U.S. West Coast at depths from 55-1,280

m from chartered fishing vessels (Keller et al., 2017). There were 164

tows in 2019 and 2,140 tows across all years that were retained for

analysis. Sites were selected via a stratified random grid-based

design in which percentages of sampling effort were allocated to

each INPFC geographic stratum (Keller et al., 2017). Tows

were conducted on trawlable habitat within the selected grid

cell for 15 minutes (plus liftoff lag, Wallace and West, 2006) and

catch weights were recorded for each species caught. A subsample of

hake in each trawl was weighed, measured, and later aged. We

allocated total hake weight by age class for each haul based on the

age class proportions recorded in the haul’s subsample and overall

median weight-at-age-class from all hauls across the survey area.

A-SHOP data were available in INPFC strata 2-4 (Figure 1) in

each year in May, June, September, October, and November,

although some years had data from July and August as well (n =

284 tows in July and August across years). There were 775 tows in

2019 and 5,323 tows across all years that were retained for analysis.

These data were recorded by National Marine Fisheries Service

(NMFS) observers aboard at-sea processing vessels (catcher-

processors and motherships) that generally fish offshore of

Oregon and Washington but occasionally set nets in Northern

California (catcher motherships only). Observers recorded the haul

weight for each species observed and a subsample of hake in each

trawl was weighed, measured, and then later aged by shore-based

personnel (NWFSC, 2022). In the same manner as the bottom trawl

data, we allocated total hake weight by age class for each haul based

on the age class proportions recorded in the haul’s subsample and

overall median weight-at-age-class from all hauls across the

survey area.

Shoreside data were generally available in INPFC strata 3-4

(Figure 1) in each year of the study from May-October, and were
Frontiers in Marine Science 05
recorded by NMFS observers aboard fishing vessels that deliver

their catch to shore-based processing plants. Only a very small

number of tows (n = 4 across years) were conducted south of

stratum 3 (i.e., in stratum 2). There were 69 shoreside tows in 2019

and 476 tows across all years that were retained for analysis.

Shoreside vessels generally fish offshore of Oregon and

Washington but often at closer distances to shore than at-sea

vessels (Saelens and Jesse, 2007). Observers recorded the haul

weight of each species observed and a subsample of hake from

each trip was weighed, measured, and later aged. Because hake were

subsampled onshore after trips were completed, and more than one

haul was conducted on some trips, it was necessary to assign age

class compositions to the centroid of the broader area that was

fished on a given trip by a given vessel. After this was done, we

allocated total hake weight by age class for each haul based on the

age class proportions recorded in the haul’s subsample and overall

median weight-at-age-class from all hauls across the survey area in

the same manner as the other data sources.
2.5 STM specifications and
age class proportions

Spatially and temporally resolved estimates of hake biomass-at-

age class, which were subsequently converted to proportions of

biomass at age class, were derived from STMs built with the VAST R

package (ver. 3.7.1; Thorson and Barnett, 2017) in the R Studio

environment (R ver. 4.04). We provide an overview of our VAST-

based STMs here but refer the reader to Thorson (2019) for

additional details about VAST models in general. Our STMs were

configured to make predictions over three groups of months: May-

June, July-August, and September-November. These delineations

were made based on data availability and to capture the seasonal

northward migration of hake (Hamel et al., 2015). For 2019, we

employed a 3x3 factorial design with three age class configurations

(three, four, and five age classes; Table 1) and three configurations

for spatial and spatio-temporal terms (independent, identically

distributed factors (IID), single-factor, multi-factor; Table 2). For

the other study years, we employed a 3x1 factorial design and tested

the three model term configurations with the age class configuration

that performed best in 2019. Age class configurations were chosen

based on hake life history (e.g., differences in weight-at-age, scale of

migration between ages), available data, and the distribution of

samples in 2019. Candidate age class configurations differed in the

resolution of older adult (age 4 and older) ages (Table 1), which was

limited given that data availability declined with age. Model term

configurations were chosen to represent situations in which the

spatio-temporal biomass distribution of age classes (1) varied
TABLE 1 Candidate STM age class configurations.

Name Age classes

5 age class 2, 3, 4-6, 7-9, 10+

4 age class 2, 3, 4-6, 7+

3 age class 2, 3, 4+
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independently from one another (IID configuration), (2) was

affected by the same spatial and spatio-temporal variables (single-

factor configuration), or (3) was affected by multiple spatial and

spatio-temporal variables at different levels of impact between age

classes (multi-factor configuration) (Table 2).

Specifically, STMs fit in the VAST R package were developed

using a delta generalized mixed model framework. We describe the

models by starting with the basic formulation of temporal, spatial,

and spatio-temporal effects and building to the incorporation of a

spatially-varying catchability term and the alternative incorporation

of effects via model term configurations. Linear predictors for

encounter/non-encounter (p1) and biomass conditional on

encounter (p2) for age class   ci, month group ti, and spatial knot

si were each defined as follows:

Eq. 1,

p(i) =   b(ci, ti) +  w(si, ci) +   ϵ(si, ci, ti)

where b is a fixed effect for temporal variation (month group).

Spatial (w) and spatio-temporal (ϵ) variation were modelled as

random effects with a first-order autoregressive correlation

structure between month groups. Since we fit the model to a

combination of fishery-dependent and fishery-independent data,

it was necessary to add a catchability ratio to the model to account

for differences in fishing power between datasets (Thorson et al.,

2012; Grüss et al., 2023). We specified the catchability ratio as a

spatially-varying effect because spatial domain and selectivity at age

can vary between fishery-independent and fishery-dependent data

(Grüss et al., 2023; Thorson et al., 2023). Additionally, hake spatial

distribution is known to vary with age (Hamel et al., 2015). With the

addition of a spatially-varying catchability ratio in each linear

predictor, the formulation becomes:

Eq. 2,

p(i) =   b(ci, ti) +  w(si, ci) +   ϵ(si, ci, ti) +o nm
m=1

x(si,m)M(i,  m)

where x(si,m) is is the additive, spatially-varying impact of data

source m at location si. This impact is set to 0 for the fishery-

dependent data and is estimated for the fishery-independent

data as a random effect following a multivariate normal

(MVN) distribution:

Eq. 3 z (i) ∼ MVN(l1,s 2
l (m)R(k))

where l1 is a matrix of fixed effects (average log-ratio between

fishery-dependent and fishery-independent data), s 2
l is the

estimated pointwise variance of the spatially varying response to

fishery-dependent data m, and R is a matrix of spatial correlations

given an estimated decorrelation distance k. Because the spatially-
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varying data source effect is set to 0 for the fishery-dependent data,

it then follows that the specified spatially-varying data source effect

on expected catch rates enables the estimation of a fishing-power

ratio for the fishery-independent data relative to the fishery-

dependent data. Fishery-dependent data were set as the ‘reference’

data because of (1) relative similarity in fishing practices between

the fishery and ATS when compared to the non-target fishery-

independent bottom trawl data and (2) richness (i.e., number of

observations, spatial and temporal coverage) of the fishery-

dependent data relative to the non-target fishery-independent

bottom trawl data.

Eq. 2 was the final formulation for the ‘IID’ model term

configuration, in which the distribution of hake within age classes

varies independently from other age classes. In the ‘single-factor’

model configuration, we included loading vectors L to add the

correlation of single spatial and spatio-temporal effects between

age classes:

Eq. 4,

p(i) = b(ci, ti) + Lw (ci)w(si) +Lϵ(ci)ϵ(si, ti) + o nm
m=1

x(si,m)M(i, m)

In the ‘multi-factor’ model configuration, we must sum across

multiple spatial and spatio-temporal random factors f to capture the

aggregate spatial and spatio-temporal effects, and the loading vector

L becomes a matrix with dimensions nc × nf :

Eq. 5,

p(i) =   b(ci, ti) +  o nw
f=1

Lw (ci, f )w(si, f ) +o nϵ
f=1

Lϵ(ci, f )ϵ(si, f , ti)

+o nm
m=1

x(si,m)M(i,  m)

In some cases, the variance or effect of spatial and spatio-

temporal terms approached zero. These terms were iteratively

removed such that the final models contained only terms with

quantifiable, non-zero effects and variances. In the multi-factor

configuration, the number of factors nf in the initial model was set

equal to the number of categories   nc. To ensure that only

influential predictors were retained in the final model, models

were re-fit iteratively after removing factors with proportions of

explained variance, as estimated in the loadings matrix, lower

than 10%.

In all models, a gamma distribution was specified for the error

of the second linear predictor. All models employed 500 spatial

knots, which provided a suitable balance between resolution and

run times based on preliminary analyses. It was not possible to

directly include an effort offset due to incomplete recording of effort
TABLE 2 Candidate STM term configurations.

Name STM Term Configuration

IID Spatial and spatio-temporal variation specified as independent, identically distributed random effects among age classes

Single-factor One random effect each for spatial and spatio-temporal variation across all age classes.

Multi-factor 1< n< g random effects for spatial and spatio-temporal variation across age classes, where n is the number of spatial or spatio-temporal terms and g is
the number of age classes in the model. The magnitude of the effect of spatial and spatio-temporal terms differs between age classes.
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metrics across datasets. For this stock, it is common practice to

assume biological sampling effort from at-sea vessels (tows) and

shoreside vessels (trip) are approximately equivalent (Berger

et al., 2023).

Each linear predictor was transformed using a conventional

logit or exponential power link function to predict sample data

as follows:

Eq. 6,
r1(i) = logit−1(p1(i))

r2(i) = exp(p2(i))

where the subscripts 1 and 2 indicate encounter/non-encounter

and biomass conditional on encounter, respectively.

A probability density function to predict biomass density B was

specified as:

Eq. 7,

f (B =   bi) =   1−r1(i)                                                                 if  B=0
r1(i) ∗Gamma B=bijr2(i),s2

m(ci)f g           if  B>0
n

where bi is biomass density for sample i, s 2
m(ci) is the residual

variance in positive catch rates, and f (B =   bi) is the data

likelihood function.

Given the above, biomass density ( d(s, c, t)) was predicted for

each location, category, and time by transforming linear predictors

and removing terms that affect catchability:

Eq. 8,

d(s, c, t) = logit−1(b1(ci, ti) +o
nw1

f=1

Lw1(ci, f )w1(si, f ) + o
nnϵ1

f=1

Lϵ1

(ci, f )ϵ1(si, f , ti))

  ∗ exp(b2(ci, ti) +o
nwz

f=1

Lw2(ci, f )w2(si, f ) +o
nϵz

f=1

Lϵ2(ci, f )ϵ2(si, f , ti))

in all cases, biomass density estimates were corrected for

retransformation bias using the epsilon estimator (Thorson, 2019).

Proportions at age-class (i.e., age class compositions) were

calculated by dividing the biomass estimate for a given age class

by the overall biomass estimate across age classes at each location

and time point. We used this proportion at age class estimate as an

input to the standard ATS biomass estimation process (a

replacement for proportions at age measured with biological

sampling in the ATS), which also incorporates acoustic data and

is described in a subsequent section. Since STM biomass estimates

were not derived from acoustic data and were only used to calculate

proportion-at-age class, we did not draw any conclusions from the

STM biomass estimates themselves.
2.6 Comparisons between age
composition estimates

After proportional age class compositions were calculated from

STM biomass-at-age class predictions, they were compared with

observed proportional age class compositions from the ATS across

the study area, within INPFC geographic strata (Figure 1), and

across the area in which fishery-dependent data were available
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(INPFC strata 2-4). Comparisons were made in each of the study

years. Notably, the ATS did not sample INPFC stratum 0 in some

years (2003, 2007), so statistics reported for stratum 0 are based on

fewer years than statistics in other strata. The model configuration

that produced age class composition estimates that were most

similar to age class composition observations from the ATS in

2019 was selected for use in biomass estimation.

Differences in age class compositions were represented as both

the average absolute difference in proportion-at-age class (across

strata, age classes, or both) and median relative error, which was

calculated by

Eq. 9,

pATS − pSTM
pATS

� 100

Where pATS is the proportion at age class observed in the ATS

and pSTM is the proportion at age class estimated by the STM.

Relative error was represented with a median value rather than a

mean as infinite values were calculated when the ATS proportion-

at-age-class was zero.
2.7 Biomass estimation and comparisons

For biomass estimation, it was necessary to refine age class

compositions derived from STMs (Table 1) into exact age

compositions. For each stratum, the STM-estimated proportion at

age class was multiplied by the proportion of exact ages within that

age class, as calculated from the raw model input data (A-SHOP,

shoreside, and bottom trawl). Empirical weight-at-length and

weight-at-age relationships were also calculated from raw model

input data across the entire survey area for biomass calculations.

To be consistent with the standard ATS biomass estimates,

biomass estimates for age-2 and older hake were calculated using

standard procedures in the ATS (Chu et al., 2017), with three

notable exceptions: 1) biomass estimates were generated with

INPFC geographic strata instead of with strata developed within

the ATS procedure based on similarity in trawl composition, 2)

biomass was only estimated in U.S. waters (excluding Alaska; not

the full extent of the stock into Canadian waters), and 3) the ATS

age composition had age-1 hake removed prior to the biomass

calculation. Therefore the acoustic backscatter that would have been

converted to age-1 hake under standard protocols was instead

allocated to age-2 and older fish, since it was not possible to

differentiate age-1 hake from 2 and older hake in the USV dataset

due to the lack of contemporaneous biological sampling. Age-1

hake are treated in a multi-factor manner by the survey and

inclusion would confound the results.

Briefly, acoustic backscatter attributed to hake was apportioned

based on age composition data, scaled to biomass using the hake

target strength-length relationship (Traynor, 1996) and empirical

weight-length and weight-age relationships, then kriged over the

study area to generate a biomass estimate resolved by space and age

(Chu et al., 2017). We note that the biomass estimates presented in

this study differ from those used in the stock assessment for

management of hake due to the differences described above, and
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caution against the use of biomass estimates presented in this study

for anything other than a research purpose.

For all years, we estimated biomass-at-age with 38 kHz acoustic

data collected in the ATS paired with (1) age compositions from the

ATS, and (2) age composition estimates from a STM. Based on

preliminary observations of poor STM performance in stratum 0,

we also estimated biomass-at-age with age composition estimates

from the best STM for strata 1-4 paired with an average age

composition from the ATS in stratum 0 (across study years,

2009-2019, excluding the estimation year) as a sensitivity analysis.

Results for this sensitivity analysis were presented in Supplementary

Material S2. For 2019, we generated biomass estimates by pairing

the three sources of age composition data described above with two

sources of 38 kHz acoustic data: 1) the ATS, and 2) the USV. In the

main text, we report comparisons between total biomass estimates

derived from different combinations of data. We report biomass-at-

age estimates derived from each combination of data in

Supplementary Material S3.

Differences in total biomass estimates derived from STM age

composition estimates and observed ATS age composition data

were qualitatively examined to investigate the robustness of results

at different life-stages and population structures. This was a

qualitative analysis given the low number of study years and high

number of plausible influential factors.
2.8 Model evaluation

To further evaluate models fit to 2019 data, we conducted

simulation testing and k-fold cross-validation procedures. Here,

we note that although the operational product of the STMs was a

biomass-at-age class composition (proportion), the models

themselves predicted biomass-at-age class (from which we

subsequently calculated age class proportions). So, model

evaluations were conducted with biomass-at-age class estimates as

response variables, which have substantially higher dimensionality

than age class composition estimates. Given the indirect nature of

these evaluation procedures, we presented further details and results

in Supplementary Material S4.
3 Results

3.1 Comparisons between ATS and STM
age compositions

In 2019, The 5-age class model configuration (Table 1)

produced estimates of age class composition that were most

similar to observed age class compositions from the ATS (see

Supplementary Material S5 for results from other age class

configurations). Differences between model term configurations

were small in 2019. Across the study area, the average absolute

difference in proportion-at-age class was 0.09 (median relative

error: 19.45%) for the single-factor model configuration, and 0.11
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for the multi-factor and IID model configurations (median relative

errors: 26.50, 26.76%, respectively). In the areas where both fishery-

dependent and fishery-independent data were available (INPFC

strata 2-4), the average absolute difference in proportion-at-age

class was 0.03 (median relative error: 11.46%) for the single-factor

model configuration, 0.04 (median relative error: 15.77%) for the

multi-factor configuration, and 0.05 (median relative error: 15.85%)

for the IID configuration. The single-factor term configuration of

the 5-age class model was therefore selected for further examination

and biomass estimation. We refer to this model configuration as the

‘best STM’ hereafter. Proportion at age class values for other term

configurations of 2019 STMs and the 2019 ATS by strata were

reported in Supplementary Material S6.

In 2019, the best STM produced age class compositions that

were most similar to observed age class compositions in the ATS in

stratum 2 (Figure 2). Predicted proportions at age class in strata 1, 2,

3, and 4 were all within 0.07 (median relative errors: 52.79, 6.03,

12.02, 19.45%, respectively) of proportions in the ATS across age

classes, while differences in proportions across age classes in

stratum 0 exceeded 0.3 (median relative error: 546.29%)

(Figure 2). The high magnitude of differences in stratum 0 were

driven by proportions of age-2 hake in the ATS data that exceeded

0.9, which no model configuration was able to predict (Figures 2,

S4.2; S4.3).

Across study years,the single-factor 5-age class model produced

estimates of age composition that were slightly more similar to ATS

observations than other term configurations (Supplementary

Material S7), validating our designation of the single-factor 5-age

class model as the best STM. Detailed comparisons in individual

years other than 2019 for all term configurations were presented in

Supplementary Material S8. Across the entire study area and time

period, the average difference in proportion-at-age class between the

best STM and the ATS was 0.14 (median relative error: 79.03%;

Figure 3). In the area where both fishery-dependent and fishery-

independent data were available (INPFC strata 2-4), the average

difference was 0.09 (median relative error: 54.96%; Figure 4). Relative

error in proportion-at-age class estimates were highest and most

variable for older age classes (7-9, 10+, Figures 3, 4), likely due in

part to low relative abundance magnifying slight deviations in

proportion-at-age estimates. On average, the best STM produced

estimates of age class composition that were most similar to

observed age class compositions in the ATS in strata 3 and 4 (0.08

average absolute difference; median relative errors: 61.1, 44.1%,

respectively). The average absolute difference in proportion at age

class across age classes and years was 0.11 (median relative error:

68.84%) in stratum 2, 0.16 (median relative error: 79.55%) in stratum

1, and 0.26 (median relative error: 510.27%) in stratum 0. Similar to

results in 2019, the high magnitude of differences in stratum 0 across

years was driven by high proportions of age-2 hake in ATS data – in

some years representing 100% of the catch – which no model

configuration was able to replicate. We note that the ATS did not

collect biological samples in stratum 0 in 2003 and 2007, so results

presented above for stratum 0 are based on fewer years than

other strata.
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3.2 Comparisons between
biomass estimates

For 2019, changing the source of acoustic data (ATS or USV) used

for biomass estimation had a nearly ten-fold higher impact on biomass

estimates than changing the source of age composition data (ATS or

STM) (Table 3). Total biomass estimates were not substantially

impacted if ATS average age compositions were substituted for STM

predictions in stratum 0 (Supplementary Material S2). For 2019,

holding the source of age composition constant and changing the

source of acoustic data for biomass estimates yielded differences in

biomass of 22.4% (when STM age compositions were used in both

cases) and 26.8% (when ATS age compositions were used in both

cases), while holding the source of acoustic data constant and varying
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the source of age composition data yielded differences in biomass of

2.6% (when USV acoustic data were used in both cases) and 3.2%

(when ATS acoustic data were used in both cases) (Table 3).

Overall, the average difference between biomass estimates derived

from ATS and STM age composition data was 5.6% (7.2% absolute

difference). Differences between biomass estimates derived from ATS

and STM age composition data were least pronounced in 2003, 2013,

and 2019 (-3.9%, 2.4%, and -3.4%, respectively; Figure 5). Differences

were between 7.2% and 11.1% in 2007-2012, 2015, and 2017

(Figure 5). From 2007-2017, biomass estimates derived from STM

age composition estimates exceeded estimates derived from the

observed ATS age composition data, while less biomass was

estimated in 2003 and 2019 (Figure 5). Differences between biomass

estimates derived from STM age composition estimates and observed
B C

D E

A

FIGURE 2

Age class composition in 2019 from the best spatio-temporal model (STM) predictions and hake acoustic-trawl survey (ATS) data in (A) INPFC
stratum 0, (B) stratum 1, (C) stratum 2, (D) stratum 3, and (E) stratum 4. Avg. abs. difference refers to the average absolute value of differences
between STM and ATS age compositions across age classes.
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ATS age composition data appeared to be qualitatively associated with

population structure (i.e., total biomass and the proportion of young,

maturing age-2 and 3 hake in the ATS biological sampling; Figure 5).

With notable exceptions, biomass estimates derived from STM age

composition estimates were most comparable to those derived from

observed ATS age composition data when the proportion of age-2 and

3 hake were low and total hake biomass was high (Figure 5).
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4 Discussion

The inability of USVs to collect biological composition data

(e.g., age, length) has thus far hampered their use in fishery resource

survey programs. We developed an approach that utilizes non-

contemporaneous biological sampling data (a combination of

fishery-dependent and non-target fishery-independent data) fit to
B C

A

FIGURE 3

(A) Proportion at age class from the best spatio-temporal model (STM) model predictions and the hake acoustic trawl survey (ATS) data from 2003-
2019, (B) Average relative error of STM proportion at age class predictions by age class from 2003-2019, and (C) Average relative error of STM
proportion at age class predictions by strata from 2003-2019-. Bars indicate the standard deviation of the quantity plotted. Avg. abs. difference refers
to the average absolute value of differences between STM and ATS age compositions across age classes.
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B

A

FIGURE 4

(A) Proportion at age class from the best spatio-temporal model (STM) model predictions and the hake acoustic trawl survey (ATS) data from 2003-
2019 in strata 2-4, and (B) Average relative error of STM proportion at age class predictions by age class from 2003-2019 in strata 2-4. Bars indicate
the standard deviation of the quantity plotted. Avg. abs. difference refers to the average absolute value of differences between STM and ATS age
compositions across age classes.
TABLE 3 Total hake biomass estimates (kilotonnes; kt) derived from different sources of data in 2019.

ATS age
composition
data

STM age
composition
data

Difference between biomass estimates (age com-
position data difference)

ATS acoustic data 1523.59 kt 1473.91 kt -3.2%

USV acoustic data 1114.88 kt 1143.80 kt +2.6%

Difference between biomass estimates
(acoustic data difference)

-26.8% -22.4%
F
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a STM to address this limitation. In the areas where fishery-

dependent data were available (INPFC strata 2-4; Figure 1), this

approach produced estimates of proportional age class composition

that were on average within 0.03 of proportional age class

compositions observed in the hake ATS in the study focal year of

2019 (median relative error: 11.46%), and 0.09 on average across the

study period (2003-2019; median relative error: 54.96%) (Figures 2,

3). While the magnitude of differences between modelled and

observed age compositions was greater across the entire study

area (0.09 difference on average in 2019, median relative error:

19.45%; 0.14 difference on average across all years over the entire

survey area, median relative error: 79.03%), total biomass estimates

that were derived from STM age composition estimates were within

approximately 7% of those derived from ATS composition data

given the same source of acoustic data across study years (~ 3% in

2019; Table 3). These levels of change in the overall survey biomass

estimate are well below the total variability (coefficient of variation

of 36%) associated with the ATS in recent stock assessments (Berger

et al., 2023). While differences between STM- and ATS-produced

age compositions did not translate into large discrepancies in total

biomass, accurate estimates of age structure remain particularly

important for management operations. In particular, age-2 and 3

compositions in the most recent survey provide a critical first
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observation related to recent recruitment levels for the stock

assessment, and recent recruitment estimates considerably impact

current and near-term harvest specifications for Pacific Hake.

Future work should evaluate how alternative survey protocols

ultimately influence existing management procedures (e.g., stock

assessment formulation and harvest policy) by integrating specific

results from this work into the existing Pacific Hake management

strategy evaluation tool (Jacobsen et al., 2021).

When biomass was estimated from USV (Saildrone) acoustic

data, estimates differed from those derived from ATS acoustic data

by more than 22%, regardless of whether STM or ATS age

composition information was used (Table 3). Thus, the primary

limitation for operationalizing USV data for hake biomass-at-age

estimation appears to be rectifying discrepancies between USV and

ATS acoustic data, whereas the lack of contemporaneous age

composition sampling associated with USV surveys appears

secondary. There are several explanations for the differences

between acoustic backscatter recorded by USVs and the acoustic

backscatter recorded by the ATS in this study. The most prominent

of those include signal attenuation due to bubble injection

(Simmonds and MacLennan, 2005; Shabangu et al., 2014; Ryan

et al., 2015), other effects of inclement weather, which are more

pronounced for USVs (Jech et al., 2021), calibration uncertainty
B

C

A

FIGURE 5

Differences in total biomass estimates derived from the best spatio-temporal model (STM) age composition estimates and observed hake acoustic
trawl survey (ATS) age composition data across years. (A) Percentage difference in biomass estimates (bars) and total age-2 and older hake biomass
(line). Percentages reflect differences in biomass estimates derived from ATS only (age composition and acoustic) and STM predictions (age
composition) paired with ATS acoustics relative to ATS biomass estimates. (B) Same as A, but with the proportion of age-2 and 3 hake sampled in
the ATS (line). (C) Same as A, but years are color coded according to different population structure conditions: high or low total biomass and
biomass of young, maturing (age 2 and 3) fish. Low and high were demarcated by the overall average (biomass: 1256.93 kt; age 2 and 3 proportion:
0.53).
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(Demer et al., 2015; De Robertis et al., 2019a), differences in vessel

response (De Robertis and Handegard, 2013; De Robertis et al.,

2019b), and differences in the ability of analysts to identify hake

from other species in acoustic data. The final consideration is one of

the most plausible source of the observed differences in backscatter,

as while there are well-established procedures for identifying hake

in acoustic data, analysts of USV data made most determinations

based on 38 kHz data alone (or with limited information from 200

kHz) rather than based on several frequencies (18, 38, 70, 120, 200

kHz) and in conjunction with trawl data.

Biological sampling is crucial for ground-truthing acoustic

surveys. While we showed that reasonable age compositions can

be estimated for hake without it in some areas, contemporaneous

biological sampling remains the most viable method for validating

estimated species compositions in the ATS. The lack of biological

data for analysts to verify species classifications in the acoustic data

and the limited suite of acoustic frequencies available led to more

subjective designations by analysts. Results indicated that the

increased subjectivity led to analysts taking a precautionary

approach to apportioning backscatter to hake. The high relative

importance of biological sampling and multiple frequencies in the

ATS echogram judging procedures may be reflected by comparing

our findings with others who compared research vessel and USV

data. We observed substantially less hake backscatter in USV data

relative to research vessels, while others observed more backscatter

in USV data (Swart et al., 2016; Chu et al., 2019; De Robertis et al.,

2019b). Given the performance of STMs for estimating age

compositions and the capability for other USVs to be equipped

with a suite of echosounders that are more comparable (or exactly

the same) to the research vessel suite, reliably classifying acoustic

backscatter by species is the most significant obstacle to using USV

data to produce viable biomass-at-age estimates. It is possible that

STMs fit to fishery and non-target fishery-independent data could

be useful in overcoming this obstacle. However, automated

methods for species classification in acoustic data (e.g., artificial

intelligence/machine learning, Sarr et al., 2021; inversion methods,

Urmy et al., 2023) and analysis of frequency modulated (i.e.,

broadband) acoustic data are likely to have the most utility.

Using STMs to provide age composition data worked

reasonably well because of an important property of the data we

used to fit our models and hake survey protocols. In general, fishers

target larger, older individuals (Birkeland and Dayton, 2005).

However, the boom-and-bust nature of hake recruitment results

in the stock being supported primarily by two-to-four strong age

classes in any given year (Horne and Smith, 1997; Hamel et al.,

2015; Johnson et al., 2021). As a result, hake fishers target the larger

and older hake less than they would if fishing a species with more

constant recruitment. This means that differences in selectivity at

age between fishery-dependent and fishery-independent data are

not pronounced – at least for hake older than three (Figure S9.1;

Berger et al., 2023). Further, the ATS does not trawl randomly along

survey transects and instead targets suspected aggregations of hake.

Thus, trawling locations in the ATS are decided using criteria that

are largely similar to those the fishery uses, although the diffuse

aggregations of hake are likely targeted more frequently in the ATS
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than fishery. Accordingly, the approach of the present study may

work similarly well for fishes with similar patterns of recruitment

and survey practices (e.g., clupeids, gadoids), but perhaps not as

well for fishes with different recruitment patterns and survey

practices (e.g., serranids, Sebastes spp.). Additional research on a

diversity of species will be necessary to determine the applicability

of the approach described in this study beyond hake.

One important limitation of our approach to providing age

composition estimates is the paucity of small, young hake in the

fishery-dependent and non-target fishery-independent data. The

ATS generates a biomass index for age-1 hake and their biomass is

removed from age-2 and older biomass estimates in the estimation

procedure. Since we did not have enough data to include age-1 hake

in our STMs, records of age-1 hake were removed from ATS

biological data to avoid confounding biomass comparisons. While

this was reasonable in a research context, age-1 hake must be

represented in assessment and management contexts. For age-2 and

older hake, the influence of differences in the relative abundance of

small, young hake between the ATS and STM predictions was

reflected in biomass estimates. Biomass estimates derived from

STM age composition data were generally higher than those

derived with ATS age composition data, which was likely due to

lower relative abundance of age-2 and 3 hake in STM predictions.

When the same amount of acoustic backscatter is attributed to

larger (older) fish, more biomass is estimated. This limitation and

finding underscore the importance of targeted fishery-independent

sampling for scarce size and age classes to supplement ancillary data

in similar applications, and to fishery-independent survey

programs generally.

In general, STM age composition-derived biomass estimates

were most similar to those derived from ATS age compositions

when total biomass was above average (Figure 5). The combination

of above average biomass and above average proportions of age-2

and 3 hake in the ATS was associated with the smallest difference in

biomass estimates, although this condition only occurred once in

the study period so the magnitude of difference could be

coincidental (Figure 5). In other years in which the difference in

biomass estimates was below average, the proportion of age-2 and 3

hake was also below average (Figure 5). Fishery selectivity of age-2

and 3 hake is relatively low in a typical year (Figure S9.2; Berger

et al., 2023) and age-2 and 3 hake were more relatively abundant in

strata 0 and 1, where our dataset was most sparse. Despite the

qualitative associations described above, population structure did

not appear to completely explain differences in biomass estimates.

Other phenomena that plausibly contribute to explaining why our

approach for modelling age composition data worked better in

some years than others include variability in oceanographic

conditions (e.g., temperature at depth and subsurface flow;

Agostini et al., 2006; Hamel et al., 2015; Malick et al., 2020) and

ecological dynamics (e.g., Humboldt squid and krill distributions;

Litz et al., 2011; Thomas et al., 2011; Phillips et al., 2022) that

affected hake distribution at age, fishing practices in the hake

fishery, and uncertainty in the hake survey.

Hake conduct a seasonal northward migration, and their

distribution patterns have been explained by variation in water
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temperature (Dorn, 1995; Hamel et al., 2015; Malick et al., 2020),

sub-surface flow and bottom depth (Smith, 1990; Agostini et al.,

2006; Agostini et al., 2008), and age (Beamish and McFarlane, 1985;

Dorn, 1995, Hamel et al., 2015). We did not include distinct

environmental or ecological covariates in our models, and instead

used latent spatial and spatio-temporal variables to predict variation

in biomass distribution over space and time. The ‘single-factor’

configuration of the 5-age class model produced age composition

estimates that were most similar to those observed in the acoustic

trawl survey in 2019, but it only performed marginally better than

other configurations (Supplementary Material S6-8). Interpreting

the ecological effects of latent variables in spatio-temporal models

can be challenging. Future work should integrate the hypothesis-

driven work cited above into expanded STM frameworks (e.g.,

mechanistic species distribution models) to advance the predictive

capabilities necessary to plan for emerging challenges (e.g.,

climate change).

In future work, it would be advantageous to directly model

composition data (e.g., Thorson and Haltuch, 2019; Grüss et al.,

2020; Thorson et al., 2022) so that the product of models could be

evaluated directly with commonly used statistical procedures (e.g.,

k-fold cross validation). The dimensionality of biomass estimates is

significantly higher than the age compositions (proportion)

calculated posthoc. Differences in preferential sampling between

fishery-dependent and independent data, which can be impactful in

STMs (Conn et al., 2017; Alglave et al., 2022), likely also had a

greater influence on biomass estimates than on proportional age

class compositions. These influences likely contributed to our

finding of generally unfavorable statistical evaluations of biomass-

at-age class predictions (Supplementary Material S4) despite

generally favorable comparisons between observed and estimated

age compositions. In essence, however, the goal of statistical

evaluation procedures is to test if an approach produces

reasonable predictions in different scenarios for the underlying

data. We treated analysis of data in years prior to 2019 as a

‘practical’ evaluation method, and since total biomass and age

class distribution and strength varied substantially between years,

we were confident that our approach produced reasonable estimates

of age-class composition in areas where sufficient data were present.

The disparate performance of STMs between areas where the

fishery operates and areas where it does not operate illuminates

important considerations for future sampling designs involving

USVs. Our non-target fishery-independent bottom trawl data

captured age compositions that were far more static than ATS

midwater trawl age compositions across the survey area. Fishery-

independent midwater trawls appear uniquely equipped to capture

the high relative abundance of small, young hake in the southern

extent of their range (e.g., INPFC stratum 0). While truly

contemporaneous collection of age composition data may not be

necessary for species such as hake in most areas, it may be necessary

to pair USV acoustic surveys with regional chartered fishing vessel

surveys in areas such as INPFC stratum 0, where only sparse non-

target fishery-independent data were available. Such a protocol

could be an important bridge between entirely FSV based surveys

and USV-only surveys while platform and species classification
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issues are addressed. Though more resource-intensive than a USV-

only design, USV-chartered vessel or USV-research vessel surveys

could be considerably less resource-intensive than research vessel

only surveys and could facilitate expansions of survey spatio-

temporal coverage with lower monetary and operational burden.

Fitting STMs to a combination of fishery-dependent and

-independent data produced estimates of hake age-class

composition that were largely comparable to those observed in

the ATS in areas where the fishery operates. While further research

is necessary before data from USVs like Saildrones are incorporated

into biomass-at-age estimates that are suitable for the hake stock

assessment, using our approach to provide age composition data

appears to be largely viable where data are abundant. This research

opens the door for the use of acoustic data without

contemporaneously-collected age composition data – provided

that differences in acoustic data between platforms are

understood quantitatively, age data from other sources are

available, and selectivity differences between datasets are well

described. Given other successful USV surveys of fish stocks (e.g.,

De Robertis et al., 2021), we believe that platform issues (e.g.,

differences in echosounder configurations) will be relatively

straightforward to overcome. Species classification remains the

primary obstacle that impedes the use of non-ground-truthed

acoustic data in generating indices for stock assessment. Looking

to the future, we believe that broadband acoustic data, machine

learning, and inversion methods will be increasingly useful for naïve

species classification, and pairing such analyses with STMs of

species and age composition could eventually be a viable

approach for generating biomass-at-age estimates that are suitable

for many stock assessments with acoustic data collected by USVs.
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