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Menopause marks the end of the reproductive phase of life. Based on

epidemiological studies, abnormal age at natural menopause (ANM) is thought

to contribute to a number of adverse outcomes, such as osteoporosis,

cardiovascular disease, and cancer. However, the causality of these

associations remains unclear. A powerful epidemiological method known as

Mendelian randomization (MR) can be used to clarify the causality between ANM

and other diseases or traits. The present review describes MR studies that

included ANM as an exposure, outcome and mediator. The findings of MR

analyses on ANM have revealed that higher body mass index, poor educational

level, early age at menarche, early age at first live birth, early age at first sexual

intercourse, and autoimmune thyroid disease appear to be involved in early ANM

etiology. The etiology of late ANM appears to be influenced by higher free

thyroxine 4 and methylene tetrahydrofolate reductase gene mutations.

Furthermore, early ANM has been found to be causally associated with an

increased risk of osteoporosis, fracture, type 2 diabetes mellitus, glycosylated

hemoglobin, and the homeostasis model of insulin resistance level. In addition,

late ANM has been found to be causally associated with an increased systolic

blood pressure, higher risk of breast cancer, endometrial cancer, endometrioid

ovarian carcinoma, lung cancer, longevity, airflow obstruction, and lower risk of

Parkinson’s disease. ANM is also a mediator for breast cancer caused by birth

weight and childhood body size. However, due to the different instrumental

variables used, some results of studies are inconsistent. Future studies with more

valid genetic variants are needed for traits with discrepancies between MRs or

between MR and other types of epidemiological studies.
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1 Introduction

The definition of menopause, 12 months of amenorrhea, marks

the end of the reproductive phase of life (1). Menopause typically

occurs between the ages of 49 and 52 years old (2). Early menopause

(EM) occurs between the ages of 40 and 45. Late menopause (LM)

occurs after the age of 55 (3). Primary ovarian insufficiency (POI) is

considered to be present when a woman who is less than 40 years

old has had amenorrhea for 4 months or more, with two serum

follicle-stimulating hormone levels (obtained at least 1 month

apart) in the menopausal range, which was previously referred to

as premature menopause or premature ovarian failure (4). It has

been reported that 11% of women experience POI or LM (5).

Certain epidemiological studies have reported that women who

experience POI or EM have an increased risk of morbidity and

mortality in later life, including cardiovascular disease (6),

osteoporosis (7), depressive symptoms (8), and type 2 diabetes

(9). However, women who experience LM are more likely to have

hyperlipidemia (10), hypertension (11), cerebrovascular disease

(12), breast cancer (13), ovarian cancer (14), and endometrial

carcinoma (15). Thus, abnormal age at natural menopause

(ANM) (16), the cessation of menses for 12 months without any

medical interventions, is a significant issue for a woman’s quality of

life and health. To improve the care of women with this condition, it

is essential to have a thorough understanding of the risk factors

(causes) and the adverse outcomes (consequences) of ANM.

Although randomized controlled trials (RCTs) are the gold

standard for determining a causal relationship between disease and

treatment, observational studies are frequently chosen to due to

RCT’s frequently high cost, time requirements, relatively small

sample size, high failure rate and limited studies phenotypes (17).

Although observational studies can provide information regarding

the relationship between disease exposure and outcome, it is

frequently challenging to prevent the influence of confounding

factors and reverse causality and these studies therefore cannot

prove causality (18). To limit the constraints of RCT and

observational research, Mendelian randomization (MR), which is

based on the results of genome-wide association studies (GWAS),

has been extensively utilized to examine the causality between

exposures and outcomes. The goal of MR research is to identify

genomic locus variations linked to complex traits in the population,

in particular, to identify the associations between single nucleotide

polymorphisms (SNPs) and common diseases (19). There are two

features that make MR advantageous for this type of study. Firstly,

alleles are allotted at random during meiosis, and are frequently

unaffected by environmental or lifestyle influences. Secondly, genetic

variation can typically be detected and reported properly due to the

ongoing advancements in sequencing and analysis technologies (20).

The use of MR is based on the following three premises: (1)

genetic instrumental variables (IVs) are consistently related to the

relevant risk factors; (2) genetic variants are not related to

confounders of the risk factor-outcome association; and (3)

genetic variants only influence the outcome through the relevant

risk factor (Figure 1A). Current MR methods can be divided into

one-sample, two-sample, mediation and multivariable MR. One-
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sample and two-sample MRs assess the causal relationship between

exposure and outcome by using one or two independent cohorts

(21). Two-sample MR results are more conservative and have a

lower false-positive rate than one-sample MR since there is no bias

due to weak instrumental variables (22). Mediation analysis can

identify factors (mediators) that affect the relationship between

exposure and outcome (21) (Figure 1B), while multivariable

Mendelian randomization (MVMR) can simultaneously analyze

the direct causal effects of each of the correlated exposures in a

single analysis (23). MVMR can also simultaneously quantify the

direct effects of exposure trait and potential mediator on the

outcome (Figure 1C).

Although previous epidemiological research has identified a

wide range of causes and consequences related to EM and LM,

causality remains largely undefined. Numerous recent MR studies

with an emphasis on ANM have been conducted and have

challenged the results of some previous epidemiological studies.

Thus, it is crucial to monitor research developments and highlight

the quality and effectiveness of MR. In the present review, the

published MR studies involving ANM are summarized. Several

studies examined ANM as the outcome (Supplementary Table 1),

while others examined ANM as the exposure (Supplementary

Table 2). Certain studies also demonstrated that ANM can be a

mediator (Figure 2).
2 Search strategy and selection
criteria

Original studies published before March 1, 2023 were identified

by searching for relevant articles in the PubMed andWeb of Science

databases. The following search criteria were used, with no

restriction on subheadings: “mendelian randomization” or

“genetic instrumental variable” or a relayed term (e.g., “genetic

instrument”) and “premenopausal” or “early menopause” or

“perimenopausal” or “premature menopause” or “primary ovarian

insufficiency” or “menopause” or “late menopause” or “natural

menopause” or “postmenopause” or “age at menopause” or

“menopausal age”. All retrieved articles were checked for relevant

citations and studies not retrieved in the above electronic searches

were searched manually. Studies that assess the risk factors or

consequences of abnormal ANM using MR methods and IV

analysis were included. Two authors (XZ and ZH) independently

retrieved and reviewed studies using the search technique and

selection criteria. If necessary, a third author (SW) evaluated any

inconsistencies that arised. Ultimately, 31 articles were

identified (Figure 3).
3 ANM as an Outcome

Since some risk factors are adjustable, such as smoking,

education level, and obesity, identifying risk factors for ANM

offers hope for future prevention of abnormal ANM-

related diseases.
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3.1 Smoking

Although numerous studies have found that smoking is a risk

factor for POI and EM (24, 25), and although some underlying

mechanisms have been identified (26), for example, increased

oocyte apoptosis, increased estrogen clearance, or increased

adrenalin androgen secretion, no statistically significant

association between current smoking habit and EM was detected

in the MR analysis by Ding et al. (b=0.26, se=1.46, p>0.05) (27). A
plausible explanation for these opposing results may be that the risk

of EM in smokers is dose- and duration-dependent. As one study

demonstrated, only individuals who smoked for >26 years or who
Frontiers in Endocrinology 03
smoked at least 10 cigarettes a day showed a significant increased

risk of EM (28). However, since the SNPs included in the MR

analysis were not classified according to the duration and dose of

smoking, the statistical significance of the pooled-effect estimate

may have been diminished (28). Therefore, a more comprehensive

MR analysis should be performed, including other smoking

indicators such as previous smoking and/or number of cigarettes

smoked per day (28, 29). Furthermore, mediation MR could be

utilized to explore the mediators that may play a bridging role

between smoking and ANM, to improve understanding of the

relationship between smoking and EM.
3.2 Education

In epidemiological studies, there is a debate concerning the

relationship between educational attainment and ANM. Certain

studies have revealed that women with more years of schooling have

a later menopause (2, 30), while others revealed the opposite (31,

32). However, one study found that there was no relationship

between educational attainment and ANM (33). The discrepancy

between these findings may be due to a number of methodological

factors, including the likelihood of bias, insufficient adjustment for

confounding factors, and small sample size. A two-sample MR

study by Ding et al. demonstrated that a lower educational level was

causally associated with EM, indicating that EM was less common

in individuals with a genetic predisposition for longer education
FIGURE 2

Relationship with evidence of causation identified in mediation MR
studies. AAM, age at menarche; ANM, age at natural menopause; (+)
indicates a positive relationship; (–) indicates a negative relationship;
solid arrow indicates the presence of association; dot arrow
indicates the absence of association; the color of arrows, lines, and
symbols is consistent with that for maternal-specific birthweight,
fetal-specific birthweight, and childhood body size.
B

C

A

FIGURE 1

Methods of Mendelian randomization (MR). (A) One-sample/Two-sample MR; (B) Mediation MR; (C) Multivariable MR. SNPs, single nucleotide
polymorphisms.
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(27). This finding supported a causal relationship between lower

education level and EM, based on eliminating the potential bias of

confounding factors, such as a high-earning job, wealth, high social

status, and awareness of healthy habits, present in traditional

observational studies. Thus, new evidence was provided for

further research on the mechanism of education level or brain

cognition on ANM. The biological plausibility of an association

between educational level and menopause might be hidden in the

complex mechanisms of how the brain functions, which warrants

further investigation (34).
3.3 Obesity

Based on the results of both observational and MR studies, the

impact of obesity on ANM remains inconclusive. A large

prospective study found that women who were underweight

(body mass index, BMI<18.5 kg/m2) had an increased risk of EM,

while women who were overweight (BMI 25-29.9 kg/m2) or obese

(BMI≥30 kg/m2) tended to experience LM (35). This effect was not

only observed for adult weight, but also for childhood weight (36).

This suggested that obesity has a protective effect on EM, possibly

through the higher production of estrone in adipose tissue (30, 37).

However, other studies support the opposite conclusion (38).

Moreover, the association between body weight and ANM is not

significant when adjusting for reproductive factors or smoking (38,

39). Nonetheless, self-reported BMI, moderate heterogeneity

between studies, and potential confounders, such as smoking,

may have an impact on these findings.

By contrast, the genetic risk score (GRS) for adult BMI

increasing variants with BMI profiles from early to late adulthood

showed that this association was highest in women with EM (40).

Higher BMI was linked to a higher risk of EM in an MR study

conducted by Ding et al, but lipid level, including total cholesterol

and low-density lipoprotein, had no significant effect on ANM (41).

This suggested that the adipose tissue of obese women may cause

EM through a different mechanism (27). However, Ardissino et al.

did not find any evidence of an association between BMI and ANM
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(41). In addition, bidirectional MR analysis did not find any

evidence of abnormal ANM causing abnormal BMI or percentage

body fat, clarifying the direction of causation (41–45). These

contradictory findings are likely the result of different SNP

selections and different sample sizes. Given the possible complex

link between adipose tissue and hormones, the effect of obesity or

emaciation on ANM needs further study.
3.4 Female reproductive factors

The reproductive life course of a woman includes the age at

menarche (AAM), ANM, the age at which she starts and stops

having children, and the number of children she has, as well as the

age she first has sexual intercourse and the number of sexual

partners she has during her lifetime. These factors are often

intertwined and influence each other. Some studies have reported

that early AAM (<11 years of age) is significantly associated with

EM, while later AAM (>13 years of age) leads to an increased risk of

LM (30, 46). In addition, early menarche without childbearing

further increases the risk of EM (~2-fold) and POI (5-fold) (47).

Furthermore, age at first birth (AFB), a late first birth, more induced

abortions, and longer breastfeeding are inversely associated with

POI and/or EM (30, 48).

In 2015, Day et al. identified a genetic correlation between AAM

and ANM (42). SNPs related to AAM and ANM are located in or

near genes axis such as CHD7, FGFR1, SOX10, KISS1 and TAC3,

indicating that both reproductive milestones are at least partially

governed by shared biological mechanisms (42, 49). In addition, a

positive genetic correlation between AAM, AFB or age at first sexual

intercourse (AFS) and ANM has also been confirmed by MR studies,

independent of childhood body size (27, 50, 51). However, other

female reproductive factors, including lifetime number of sexual

partners, ever being parous, number of live births, and age at last

birth are not associated with ANM (50). This might be the result of

numerous interactions between reproductive factors spaced widely

apart over time, which might be mediated by other reproductive

events in between. However, reverse MR analysis demonstrated that
FIGURE 3

Study selection of literature search. ANM, age at natural menopause.
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ANM did not significantly affect other reproductive factors,

indicating the direction of causality (50).

The reason why earlier AAM results in earlier subsequent

reproductive events, including ANM, may be explained by the life

history theory. According to this theory, life history strategies can

be divided into “fast” or “slow” (52, 53). A “fast” life history strategy

puts more effort into reproduction, resulting in earlier puberty and

sexual activity, an early AFB, and an increased number of births (52,

53). A “fast” life history may result in a younger AAM due to the

allocation of resources towards earlier reproductive endeavors, and

a higher number of children, leading to the completion of

reproduction at a younger age. Another explanation is that the

factors, like maternal smoking during pregnancy or low protein

intake reported during childhood, that cause early AAM could

influence the oocyte pool (54). These factors could also affect follicle

quantity and quality, and the rate of follicle decline after birth,

which results in a decrease in the follicle pool, ultimately leading to

the early onset of menopausal events (36).
3.5 Thyroid function

Normal thyroid function plays a significant role in normal

sexual function (55). Previous studies have found that Hashimoto’s

thyroiditis (or thyroid autoimmune disease) was closely related to

ANM (56). To clarify whether thyroid function, including the

function of thyroid stimulating hormone (TSH), free thyroxine 4

(fT4), hypothyroidism and hyperthyroidism is causally associated

with sex hormones and sexual function, including ANM,

Kjaergaard et al. conducted an MR analysis (57). It was

determined that TSH-related SNPs, which are associated with

autoimmune thyroid disease (AITD), were associated with EM. It

was also found that the GRS for fT4 was associated with LM.

However, TSH, fT4 restricted to the DIO1 and DIO2 genes,

subclinical hypothyroidism, subclinical hyperthyroidism, and

overt hypothyroidism had no significant correlation with ANM.

This result was consistent with previous observational research

findings (56, 58).

It is thought that 4-30% of occurrences of EM are caused by

autoimmune-related diseases (59), and thyroid-related disorders

rank first among these diseases (60). Therefore, the link between

thyroid diseases and abnormal ANM is likely due to an abnormal

immune system. Studies concerning patients who were either

positive for thyroid peroxidase antibody or anti-thyroglobulin

antibodies determined a genetic correlation between serum anti-

müllerian hormone (AMH) and TSH levels. In thyroid-related

autoimmune diseases, autoantibodies may attack ovarian tissue,

exacerbating the loss of ovarian reserve and leading to EM or even

POI (61). Therefore, women with EM or POI should be considered

for thyroid function and thyroid antibody testing to be alert for the

presence of AITD. Women with autoimmune diseases, including

AITD, should also be actively treated to prevent the occurrence of

EM and its subsequent complications. Although the causal

relationship between thyroid function and ANM in this MR study

conducted by Kjaergaard et al. was not very robust, genetically
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predicted thyroid function was highly correlated with sex hormone

concentrations, including sex hormone-binding globulin (SHBG)

and testosterone (57). Therefore, thyroid dysfunction may also

regulate ANM by altering the levels of other sex hormones. For

example, thyroid hormones can increase SHBG concentration or

interfere with the connection between the hypothalamic-pituitary-

thyroid and the hypothalamic-pituitary-gonadal axes through

prolactin (55, 62).
3.6 Serum homocysteine concentration
and methylene tetrahydrofolate reductase
gene mutation

Homocysteine (Hcy) is a chemical in the blood, which is formed

when the amino acid methionine is naturally broken down to be

excreted in the urine (63). Certain observational studies have

identified a link between elevated plasma Hcy concentration and

reduced female fertility (phases of menstrual cycle and menopause)

(64, 65), while other studies have found no such connection (66,

67). To investigate whether genetically elevated plasma Hcy is

related to fertility, including ANM, Kjaergaard et al. conducted a

two-sample MR study based on a large meta-GWAS dataset (68). It

was found that only the functional variant, methylene

tetrahydrofolate reductase (MTHFR) rs1801133, was associated

with 7.45 months ANM delay, of the 18 genetic variants

associated with Hcy or related diseases. This causal association

was no longer significant after the addition of other related SNPs,

which implies that there is no association between genetically

elevated Hcy and ANM. In the process of biological metabolism,

the MTHFR gene is significantly related to Hcy concentration, but

the interference of MTHFR gene variants on ANM may not be

achieved by affecting the Hcy pathway (67). Further studies using

independent samples on a larger scale and with different ethnicities

are required to comprehend the links between theMTHFR gene and

the onset of menopause.
3.7 Psychiatric disorders

There may be a complicated link between reproductive behavior

and psychiatric disorders. Patients with psychiatric disorders and

their relatives may be more likely to engage in risk-taking and

impulsive behaviors, which may lead to early pregnancy and

childbirth, or these patients may have poor social skills, which

may delay important reproductive transitions such as marriage,

pregnancy, and childbirth, resulting in the occurrence of abnormal

ANM (69, 70). However, the MR study conducted by Ni et al. did

not find a potential causal relationship between ANM and some

psychiatric disorders (such as attention-deficit/hyperactivity

disorder, bipolar disorder, and schizophrenia) associated with

early reproductive events such as AFB and AFS (51). This may be

due to the underlying causal mutation of psychiatric disorders being

more likely to affect reproductive success than reproductive

ending events.
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4 ANM as an Exposure

To effectively counsel affected women in the avoidance of these

diseases, a thorough awareness of the genuine effects of EM and LM

is necessary.
4.1 Cardiovascular disease risk

The primary cause of morbidity and mortality in women is

cardiovascular disease (CVD) (71). Observational studies have

recently discovered that EM is associated with later life CVD in

women, especially in women who have undergone bilateral

oophorectomy but have not received hormone replacement

therapy (HRT) (72–74). The use of a weighted GRS (wGRS) also

confirmed that EM may significantly increase the risk of coronary

heart disease-related death (44). It has been postulated that this

effect is due to the cardioprotective effects of estrogen (75).

However, MR studies have not found evidence of a potential

causal relationship between EM and a number of cardiovascular

diseases, including atrial fibrillation, coronary artery disease, heart

failure, ischemic stroke, stroke and its subtypes (small vessel stroke,

large-artery atherosclerotic stroke, and cardioembolic stroke), as

well as some cardiovascular disease risk factors, such as cholesterol

levels, fasting glucose, glycosylated hemoglobin A1c, C reactive

protein and apolipoprotein levels (41, 76–78). There are several

plausible explanations for these differences in results between

studies using different methods. The discrepancy between the

wGRS and MR findings may be due to collider bias, a bias

associated with the genetic variant and the outcome through

confounders, or the small sample size of the wGRS study (79).

Differences between observational studies and MR analyses may

also be related to residual confounders (age or long-term HRT) or

survivor bias in GWAS (the presence of women who died from

cardiovascular events before menopause) (80). Therefore, ANM

may not have a causal relationship with CVDs, or variants

associated with both ANM and CVDs might not have been found

yet. In addition, the GWAS study on ANM did not include women

with POI, but most observational studies and meta-analyses did

include these women, and the results indicated that POI is

associated with both fatal and non-fatal coronary heart disease

and CVDs (42, 43, 81, 82). Therefore, it may be POI rather than EM

that increases the risk of CVDs. Furthermore, reverse causation

could be a potential problem in observational studies. Although the

majority of researchers believe that EM increases the risk of CVDs,

the association can also be observed due to a poor cardiovascular

risk profile or accelerated vascular aging causing EM. A previous

study demonstrated that women who have CVDs before the age of

35 years old experience accelerated menopause (80). However, no

reverse association of CVDs or dyslipidemia with an increased risk

of EM was found in observational or MR studies (76, 83). Given the

inconsistencies in the current findings, a stratified analysis of ANM

data from a larger cohort, including patients with POI, is needed to

confirm whether a causal association between POI/EM and CVDs

exists, and the operability of HRT to reduce the risk of

postmenopausal CVDs.
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4.2 Hypertension

Hypertension is the primary modifiable risk factor for CVDs

and mortality (84). Currently, studies have demonstrated an

inconsistent correlation between ANM and blood pressure traits.

Certain studies have shown that EMmay increase hypertension and

subsequent risk of CVDs in several populations, including

Caucasian, Korean, and Chinese people (6, 85–88), while another

study has demonstrated a positive association between LM and

hypertension (89). To clarify inconsistent results caused by the

influence of confounding factors and reverse causality in

observational studies, Roa-Diaz et al. (90) conducted an MR

analysis based on data from a CoLaus study (91) and a

Rotterdam study (92). It was found that a 1-year increase in

ANM was related to a 0.45 mmHg increase in systolic blood

pressure (SBP), based on the Rotterdam Study-III-1. However,

after the exclusion of women who reported using HRT, EM was

associated with lower SBP and diastolic blood pressure, as well as a

lower risk of hypertension. In addition, Roa-Diaz et al. (90) did not

find any evidence of a causal association between ANM and blood

traits in a one-sample MR regardless of whether antihypertensive

medication was adjusted, but a potential positive causal association

between ANM and SBP was observed in a two-sample MR analysis.

Considering that two-sample MR findings are more rigorous, Roa-

Diaz et al. believed that there is no notable correlation between

ANM and hypertension, but the relationship between ANM and

SBP is worth further investigation. More notably, as SNPs restricted

to DNA damage response (DDR) genes showed statistical

significance with SBP, Roa-Diaz et al. proposed that LM may

induce the development of high SBP through the DDR pathway.

The induction of this pathway may be long-term exposure to

estrogen or regulation by some of the stress hormones that are

affected by menopause (93, 94). However, this theory has not yet

been validated and, as DDR variants have not been linked to blood

pressure traits, the role of DNA repair in blood pressure is not well

understood. However, the results of the MR study conducted by

Roa-Diaz et al. (90) still provide a new direction for future research,

that is to evaluate the links between DDR pathways, sex hormone

and the ageing process, as well as their role in the onset of

menopause and progression of CVDs in women.
4.3 Type 2 diabetes mellitus

Type 2 diabetes mellitus (T2DM) is one of the primary causes of

death and CVDs in the world (95). At present, the correlation

between ANM and T2DM is controversial (96–99). The

inconsistencies in the results are possibly caused by variations in

variable adjustment, ethnicity diversity in the sample population, or

genetic traits. Additionally, due to the limitations of existing

knowledge, there are potential or unidentified confounding

factors, such as smoking, physical activity, and some social

factors, that cannot be adjusted for (100–102). To prevent the

interference of potential confounding factors and the impact of

reverse causality, several MR studies were conducted to elucidate

the possible causal association between ANM and T2DM. In these
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MR analyses, none of the studies found a causal association between

ANM and T2DM, fasting glucose, fasting insulin, or the

homeostasis model of B-cell function (76, 103, 104), except for a

recent GWAS of ANM that noted a link between the genetic risk for

EM and T2DM (43). Notably, the causal association between EM

and the levels of glycosylated hemoglobin A1c (HbA1c) is disputed

(76, 103), but a causality between EM and a higher homeostasis

model of insulin resistance (HOMA-IR) level has been confirmed

(104). These findings could also reflect the possibility of EM leading

to an abnormal elevation of IR, thus increasing the risk of T2DM.

This relationship is typically attributed to alterations in sex

hormone levels, primarily due to decreased estrogen levels after

menopause that diminish the protective effect to islet cells (105).

However, the exact pathogenetic mechanisms underlying the

association between EM and T2DM risk or increased IR cannot

be fully elucidated. A possible mechanism is a reduction in the role

of estrogen receptor a, which binds to b-cells to regulate insulin

biosynthesis and secretion and b-cells survival, due to the shortened
duration of estrogen exposure (106). In addition, estrogen

deficiency can cause glucose intolerance and body fat

redistribution, leading to increased central adiposity and

increased IR (107, 108). Furthermore, menopause-related changes

in serum concentrations of other steroid hormones, such as

testosterone, as well as SHBG, may also play a role in the

development of T2DM (109, 110). Despite all of this, whether the

insignificant effect of ANM on glucose metabolism is masked by a

compensatory increase in insulin or whether it is truly irrelevant

remains unclear, attention should still be paid to the influence of

EM on islet cells and blood glucose.
4.4 Breast cancer

Breast cancer (BC) is the most prevalent cancer among women

globally and the leading cause of cancer-related death in women

(111). Recently, the role of ANM in the incidence of BC has received

increasing attention, but the results are often contradictory (112–

114). According to the results of our literature search, a total of 7

included studies have verified the causal relationship between ANM

and BC by MR analysis (43, 78, 103, 115–118). However, the results

were not completely consistent as each study used different GWAS

data or selected a various number of SNPs. Chen et al. reported that

older ANM was significantly associated with an elevated risk of all

intrinsic subtypes of BC, including estrogen receptor (ER)+, ER-,

luminal A-like [ER+ and/or progesterone receptor (PR)+, human

epidermal growth factor receptor 2 (HER2)-, grade 1 and 2],

luminal B-like (ER+ and/or PR+, HER2+), HER2-enriched-like

(ER- and PR-, HER2+) BC, except triple-negative BC (ER-, PR-,

HER2-) (115). Jia et al. (117), Si et al. (118), Magnus et al. (103), and

Ruth et al. (43) also found a positive association between ANM and

BC. However, Escala-Garcia et al. (116) and Lankester et al. (78) did

not find any casual association between ANM and BC including ER

+ and ER- BC. After ruling out small SNPs available and

overlapping populations, Escala-Garcia et al. speculated no

causality was observed due to selection bias. This type of collider

bias can result in an under- or overidentification of genetic risk
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factors for BC survival due to a correlation between the genetic risk

factor in question and BC incidence (119).

Although the results of the MR studies were inconsistent, the

hypothesis that LM causes a higher risk of BC (except for triple-

negative BC) is still accepted by most scholars. The basic hypothesis

behind this consideration is that long-term exposure to estrogen

may affect the behavior of cells, which then develop into cancer cells

over time. Notably, there is evidence that ovariectomy (early

surgical menopause) can decrease the risk of breast cancer (120).

Therefore, women with LM should be advised to perform BC

screening tests earlier given the association of a higher risk of BC.

In addition, both observational and MR studies demonstrated that

ANM and SHBG had no significant association with triple-negative

BC (113, 115, 121). Therefore triple-negative BC may have a

different etiological profile than other BC subtypes, and the

prevention and intervention of triple-negative BC should not be

treated in accordance with other subtypes of BC.
4.5 Endometrial cancer

Endometrial cancer (EC) is the most prevalent invasive

gynecologic cancer in women living in developed countries, and is

also the most common type of uterine cancer (122). Some studies

have suggested a significant association between LM and an increased

risk of EC (123, 124), but the effect size in different studies was

variable, whereas no significant association was found in the other

studies (125, 126). In a study by Lankester et al., both observational

studies based on the Women’s Health Initiative (WHI) and the UK

Biobank (UKB), and a one-sample MR analysis based on the WHI

found that LM was associated with a higher risk of EC, but

the evidence was not very robust (78). The authors suggested that

the inconsistent results based on different databases may be due to the

fact that SNPs in the IV were not as well imputed in some datasets,

which could reduce the accuracy for these two-sampleMR replication

datasets and subsequently influence the statistical power. Therefore,

Lankester et al. still supported the hypothesis that LM may increase

the risk of EC (78). In addition, the impact of ANM on the 2 types of

EC (type 1 - estrogen-dependent, type 2 - estrogen-independent)

cannot be determined respectively as the EC subtypes were not

analyzed by stratified analysis. Considering that ANM is mainly

related to changes in sex hormones, ANM may only lead to an

increased risk of type 1 EC, and therefore may have no significant

association with type 2 EC. The use of an overall EC containing both

types may be the cause of inconsistent results. Therefore, future

studies should analyze the different types of EC separately, to better

determine the effects of ANMon different types of EC and to improve

the prevention of specific types of EC. In addition, two-sample MR or

MVMR with higher quality should be considered to explore the

association between ANM and EC.
4.6 Ovarian cancer

Ovarian cancer (OC) is the second most prevalent cancer of

female reproductive system and the primary cause of reproductive
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cancer-related death (127). Epithelial OC (90%) is the most prevalent

form of OC, which can be divided into serous, endometroid, clear cell,

mucinous and unspecified OC (128). Several studies have shown a

direct relationship between LM and the risk of OC (129, 130).

Women with a ANM >52 years of age have ~2-fold increased risk

of developing OC compared with women who experienced

menopause at ≤44 years old (131). The association between the

GRS for ANM and the risk of OC in UKB was also highlighted in the

recent GWAS of ANM (43). In studies by Yarmolinsky et al. (132)

and Si et al. (118), a positive association between endometrioid OC

and LM was found, but no causal relationship between ANM and

invasive epithelial OC or other subtypes, including high grade serous

OC, low grade serous OC, clear cell OC, and low malignant potential

OC, was found. These findings were consistent with another study

(133). In the study by Lankester et al., a 5-year increase in ANM was

associated with a greater risk of OC in observational analyses based

on the WHI and UKB combined data, but no causal association

between ANM and OC was discovered in MR analyses (78). These

results may be due to the authors using overall OC instead of

conducting a separate analysis for each OC subtype. Thus, it can be

seen that endometrioid OC may be more closely related to sex

hormones or other endocrine factors, and is therefore more easily

be affected by some reproductive factors. It is necessary to screen for

endometrioid OC in women with LM, and it is also important to

further explore the underlying mechanism between the two.
4.7 Colorectal cancer

Colorectal cancer (CRC) is the third most frequent cancer in the

world (134). Previous studies have found that women with an ANM

of >49 years old had a decreased risk of CRC mortality compared

with women who experienced menopause at ≤49 years old,

although this protective effect was not statistically significant

(135). However, in a large prospective cohort study with >214,000

postmenopausal women without a history of menopausal hormone

therapy (MHT) use, women with LM had a 1.5 times increased risk

of CRC compared with women with POI (136). Considering that

these inconsistent results may be influenced by confounding factors,

such as weight or HRT, Neumeyer et al. conducted an MR study

and did not find any evidence to support the causal association

between ANM or estrogen exposure and CRC (137). Additional

adjustment of the analysis by BMI, education, MHT usage,

smoking, family history of CRC, and regular aspirin use, did not

significantly alter the results. Certain studies speculated that the

effect of estrogen on CRC may vary depending on the ER-b
expression status in colorectal tissues, rather than simply on the

duration of estrogen exposure (138, 139). Therefore, larger studies

using data on ER-b expression in colorectal tissues are necessary to

assess the true impact of ANM or estrogen on CRC.
4.8 Lung cancer

Lung cancer (LC) ranks the second primary cause of cancer-

related death among women after BC, accounting for 13.8% of all
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cancer-related deaths in women in 2018 (140). Previous studies found

that EM can lead to an increased risk of LC in women who smoke,

and it mainly occurs in small cell histology, while in women who do

not smoke, LM was associated with an increased risk of LC (141,

142). However, other studies indicated that no association was

observed between ANM and LC risk (143, 144). The one-sample

MR study by Lankester et al. demonstrated that LM was causally

related to a higher risk of LC [odds ratio (OR)=1.35, 95%CI=1.06-

1.71], but this result was contrary to the results of their observational

analyses (78). This notable inconsistency suggested the observational

findings may have been influenced by many confounding factors,

including smoking, diet, exercise, and histological subtype (78, 141,

145), or the power of IVs in the one-sample MR may be weak.

Similar to other types of cancer, such as BC and EC, longer

estrogen exposure with a later ANM may promote the

transformation of lung cells or the development and progression of

existing subclinical primary lung tumors. This potential mechanism

has been demonstrated in both clinical and animal studies (146, 147).

However, a study has also suggested that the increased risk of LC

caused by EM may be due to an increased production of reactive

oxygen species owing to elevated iron levels after menopause (148).

Since the results of the observational and one-sample MR studies

were inconsistent and had their respective shortcomings, it is essential

to conduct a two-sample MR, an MVMR or a large RCT with higher

quality data to confirm a direct causal relationship between ANM and

LC. Additionally, considering that different histological types of LC

are not subject to the same effect of estrogen (149), future research is

also necessary to investigate the underlying molecular mechanisms

between exogenous and endogenous sex-hormones in the formation

of different histological types of LC.
4.9 Lung function

Even in non-smokers and individuals without signs of lung

illness, reduced lung function is a significant predictor of mortality

in adult females (150). Most observational studies found that post-

menopausal women had a decreased forced expiratory volume in

one second (FEV1) and forced vital capacity (FVC) compared with

pre-menopausal women, but that there was no difference in FEV1/

FVC or airflow obstruction (151–154). A large study in the UKB,

however, revealed that women with EM had a decreased FEV1 and

FVC as well as a higher risk of spirometric restriction (152). To

explore the effect of ANM on lung function, Van et al. conducted an

MR study (155). Whether ANM was classed as a categories variable

or a continuous variable, it was determined that LM was associated

with the lower FEV1 and FEV1/FVC, and a higher risk of airflow

obstruction. However, the protective effect of EM was diminished in

HRT-using and overweight women. In addition, no effect of ANM

was found for FVC or spirometric restriction (155). However, the

MR study conducted by Magnus et al. did not replicate this

conclusion due to differences in selected GWAS data (103).

Despite these inconsistencies, on the whole, the later a woman’s

menopause, the lower her lung function, and the more likely she is

to have airflow obstruction. At present, the biological mechanisms

that underlie the link between decreased lung function and
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menstruation cessation are not fully known, but it may be

influenced by changes in the level of circulating sex hormones

and elevated insulin resistance (156). Therefore, clinicians should be

alerted to the risk of poor lung function in women with LM.
4.10 Osteoporosis and fracture

Osteoporosis is a major clinical problem for both older men and

women. Almost all bones are at risk of fracture due to osteoporosis,

and osteoporotic fractures are associated with higher medical costs,

impaired quality of life, physical disability, and increased mortality

(157). A relationship between POI/EM and lower bone mineral

density (BMD) or osteoporotic fractures has been well established

from traditional observational studies (158, 159). Studies even

showed that women with POI are more likely to have low BMD

if they had more than 1 year delay in diagnosis, age of onset of

menstrual irregularity before age 20 years, and non-compliance for

HRT (160). MR analyses conducted by both Lankester et al. (78)

and Magnus et al. (103) also confirmed a causally harmful effect of

EM on osteoporosis and fracture. A recent GWAS of ANM also

revealed this connection (43). Although the MR study by

Trajanoska et al. did not find a statistically significant causal

relationship between EM and fracture risk, there may be bias due

to the fact that the outcome data used was not all from the European

population, and did not stratify outcome data by sex (161). As

estrogen deficiency adversely affects the basic multicellular units

responsible for bone remodeling, it is not hard to understand that

POI/EM can lead to a higher risk of fracture and osteoporosis (162).

Therefore, postmenopausal women, especially women with POI/

EM or abnormal menstrual cycle at a younger age, should be

screened for BMD to prevent osteoporotic fractures and, if

necessary, different MHTs should be selected for better

prevention based on age and fracture risk score (157, 163).
4.11 Osteoarthritis

Osteoarthritis (OA) is the most prevalent type of joint disease

worldwide (164) and has been ranked as the primary cause of

disability (165, 166). Certain studies have shown that OA is more

likely to occur in women who receive MHT than in women who do

not, suggesting that prolonged estrogen exposure may promote OA

development, possibly due to a higher BMD as a result of longer

estrogen exposure (167, 168). However, no causal association

between ANM and OA or two OA subtypes (hip OA and knee

OA) has been found byMR analysis (169). This may be because hand

OA is the OA most affected by ANM (170), but this MR study only

included knee and hip OA (169). Therefore, future studies should

further explore the relationship between ANM and hand OA.
4.12 Rheumatoid arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory

disease. Women frequently experience stiffness and symmetrical joint
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swelling, which, if ignored or improperly managed, can have disabling

outcomes and limit life expectancy (171). Some previous studies have

suggested a close relationship between POI/EM and RA. EM is related

to a 2-fold increased risk of RA (172, 173), and patients with juvenile

idiopathic arthritis are more likely to develop idiopathic POI (174).

However, Zhu et al. did not observe a connection between ANM and

RA before or after excluding SNPs linked to palindromic and

confounding factors or after adjusting for BMI and year of education

(175). They believed that the inconsistent results of observational and

MR studies may be due to confounding factors or the use of

instrumental variants that are not fully representative of reproductive

factors, or indeed that ANM does not have a significant impact on RA,

or the interference with reverse causality. However, this MR analysis

(175) only analyzed the causal association from ANM to RA, but not

the association from RA to ANM, and it was conducted utilizing

overall RA (a majority of which are seropositive RA, >85%) without

identifying disease subsets distinguished by the presence/absence of

anti-citrullinated peptide antibodies (ACPA) or rheumatic factors.

Moreover, different RA subgroups may be regulated by sex

hormones in different ways (176, 177). For example, certain studies

suggested that EM was associated with seropositivity in women with

early RA (176), and that MHT use could decrease the risk of ACPA+

RA in postmenopausal women >50 years of age, but not of ACPA- RA

(177). However, the biological mechanisms underlying hormonal

factors and the development of RA are still not fully understood,

which may involve a complex regulation of inflammatory pathways

and immune responses (178–180). Future research in this area should

be designed with a larger sample size and greater power.
4.13 Alzheimer’s disease

Alzheimer’s disease (AD), a neurodegenerative disease, is the

most common cause of dementia in the elderly population (181).

Epidemiological studies have suggested that decreased estrogen levels

during menopause may have a significant impact on the etiology of

AD and raise the risk of cognitive impairment in women (182, 183).

However, inconsistent estimates ranged from a slight increase in

dementia or AD risk with EM (182–185) to an inverse relationship

(186, 187) or a complete loss of statistical evidence (184, 188). To

ascertain whether endogenous estrogen exposure does have a causal

effect on AD susceptibility, Li et al. (45) and Lankester et al. (78)

performed MR analyses. Both of the studies found no association

between ANM and AD or cognitive performance (45, 78). However,

the observational analysis by Lankester et al. using theWHI and UKB

demonstrated that a 5-year increase in ANM was associated with a

lower rate of AD (78). Despite this, the interpretation of the MR

results is thought to be more reliable as all the women included from

the GWAS datasets linked to ANM experienced natural menopause,

excluding those who had undergone surgery, radiation, or HRT

before menopause. Additionally, to reduce type I error, the ANM-

related SNPs belonging to the apolipoprotein E locus were also

eliminated (45). Combined with the reverse-direction MR results,

ANM is neither a cause nor a consequence of AD, although the

beneficial effects of estrogens on the central nervous system are

biologically plausible (189–191).
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4.14 Parkinson’s disease

Parkinson’s disease (PD) is the second most prevalent form of

neurodegenerative disease worldwide, after AD (192). Similar to AD,

a decrease in the estrogen level is also thought to play a significant

role in the development of PD (193, 194). EM, POI and a short fertile

life length (<36 years) are related to a higher risk of PD, especially in

women with early artificial menopause (surgical or iatrogenic) (195–

197). Ultimately, the earlier the age of menopause, the higher the risk

of PD (197, 198). However, other studies have shown the reverse

effects (195, 199) or no association (200, 201). To avoid incorrect

results caused by biases, including residual confounding and

measurement error, Kusters et al. conducted an MR analysis, and

reported a negative causal association between ANM and PD risk

(202). In this study it was determined that each year of delay in ANM

was associated with a 7% decrease in PD risk. This may be related to

the neuroprotective effects of estrogen (203). For example, estrogen

therapy slows down the dopaminergic neurodegeneration of the

substantia nigra and restores dopaminergic transmission (204).

Therefore, HRT after the abrupt decline of estrogens caused by EM

or artificial menopause may be beneficial. Future research should

investigate the complex changes in this period in depth.
4.15 Aneurysmal subarachnoid hemorrhage

Aneurysmal subarachnoid hemorrhage (aSAH) remains a

devastating disease with high mortality and morbidity (205). Studies

have found that a longer exposure to both endogenous and exogenous

estrogens is associated with a lower risk of aSAH (206, 207). However,

the MR analysis conducted by Molenberg et al. did not observe an

association between genetically determined ANM or estradiol levels

and the risk of aSAH but did observe an 18% increased aSAH risk

among women per 1-standard deviation increase in genetically

determined SHBG levels [OR=1.18, 95%confidence interval (CI)

=1.05-1.34], and a 27% decrease among women per 1-standard

deviation increase in bioavailable testosterone (208). Therefore, some

sex hormones with large fluctuations during menopause transition,

such as SHBG and bioavailable testosterone, but not ANM, may be the

true risk factors for aSAH. Certain previous studies believed that a high

level of SHBG had a protective effect on blood vessels (209, 210), but in

the MR analysis of Molenberg et al. (208), almost all SNPs included in

the univariate analyses on SHBG had secondary (opposite) impacts on

bioavailable testosterone levels. Thus, testosterone may act as a

mediator between SHBG and aSAH risk. However, more research is

required to fully understand the mechanisms underlying the impact of

various sex hormones on the development of aSAH.
4.16 Polycystic ovary syndrome

Polycystic ovary syndrome (PCOS), one of the most common

reproductive endocrine diseases, affects the living standard, fertility,

and long-term health of patients (211). Both case-controlled and MR

studies demonstrated a positive association between LM and PCOS

risk (212–215). A correlation between ANM-related SNPs with higher
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luteinizing hormone levels may partially explain this impact (213). In

addition, the newly discovered PCOS locus near RAD50 is involved in

the repair of DNA double-stranded breaks, and this mechanism is

consistent with the function of the ANM candidate loci, therefore

supporting the important role of ANM GWAS in the DNA repair

pathway and its correlation with PCOS (214, 216). However, due to

PCOS occurring more frequently in women of childbearing age, there

are still few studies on the relationship between PCOS and

menopause. Therefore, further research is still needed to determine

the specific interaction mechanisms among ANM and PCOS.
4.17 Biological aging rate

A relationship between LM and the biological aging rate has

been proposed. Delayed reproductive aging is more common in

individuals from families with a history of longevity (217). In anMR

analysis, one SNP (rs11668344) significantly associated with ANM

was highly correlated with epigenetic age acceleration, but no

significant correlation was found for another related SNP

(rs16991615) (218). Unfortunately, whether evidence for causal

inference can be found using the entire GWAS summary statistics

has not been addressed. Certain studies have suggested that the

relationship between LM and the biological aging rate may be

related to methylation in the blood, a marker of epigenetic aging

(218), or regulated by the DDR pathway (219, 220), but the specific

mechanism remains unclear and needs further investigation.
4.18 Other factors

In addition to the diseases and traits aforementioned,Magnus et al.

also analyzed the causal relationship between ANM and liver function

(alkaline phosphatase and alanine transaminase), kidney function

(creatinine and urea), low density lipoprotein, and coeliac disease

(103). However, a causal relationship was not found for any factor,

except for coeliac disease based on the UKB GWAS. Nevertheless,

these results were not as reliable as the negative results in the two-

sample MR analysis as it was a one-sample MR analysis. Although the

results demonstrated no correlation between ANM and these factors,

some observational studies have found that postmenopausal women

are more likely to develop hepatocellular carcinoma, non-alcoholic

fatty liver disease, chronic kidney disease, and kidney stones (221–224).

This is likely to be related to estrogen decline during menopause.

Therefore, the causal relationship between ANM and other diseases,

such as non-alcoholic fatty liver disease and kidney stones, remains to

be evaluated by new MR studies with higher quality data.
5 ANM as a Mediator

5.1 From childhood obesity to breast
cancer

A recent MR study found that ANM can mediate the protective

effect of larger childhood body size on BC, and this effect is
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independent of adult body size (225). This finding is similar to

certain observational studies and MR analyses (226–228). In

addition, IGF-1, SHBG, testosterone, and AAM have also been

found to be mediators of ANM (225). However, this MR study

merely identified a number of potential mediating components and

none of the evaluated traits were discovered to strongly mediate this

impact on its own. It is plausible that some related traits may work

together to contribute to the mediated impact, which should be

investigated in multi-mediator MVMR analyses in future research.
5.2 From birthweight to breast cancer

Based on a principle of mediation analysis, Zhang et al.

demonstrated that fetal-specific birthweight can indirectly affect

BC risk in adulthood via the AAM and subsequently the ANM

(229). This finding supported the findings of certain previous

studies to an extent (230, 231) and questioned the findings of

others (232, 233). It offers an unprecedented opportunity to

determine the link between birthweight and BC. However, due to

unavailability of relevant data, Zhang et al. did not further assess the

dose-response association between birthweight and BC and the

impact of birthweight on distinct subtypes of breast cancer. This

area therefore needs further research.
6 Conclusion and future perspective

Traditional observational studies have found a number of

connections between ANM and other diseases or traits.

Confounding factors, reverse causation, and other potential

biases, however, make it difficult to draw a causal relationship

from these relationships. Due to its effectiveness in minimizing

reverse causality and confounding variables as well as its ability to

evaluate some time- and money-consuming factors, MR has

gradually grown in importance as a tool in epidemiological

research. Since 2012, several GWAS have successively identified

susceptibility loci associated with ANM, and have identified

previously unpredicted genes and pathways, such as genes

implicated in DDR, immune function and mitochondrial

biogenesis (42, 43, 216, 234–237). A recent GWAS in over

200,000 women of European ancestry has identified 290 ANM

loci and also evaluated ANM loci of approximately 78,000 women

of East Asian ancestry (43). Utilizing SNPs as an IV to examine the

relationship between exposure and results is the key to MR analysis.

As a result, even when investigating the same exposure or outcome,

the results of an MR analysis may differ when different SNPs are

included, which may account for the inconsistent results

stated above.

Numerous MR studies have been conducted to clarify the

causality between ANM and other traits and diseases. As shown in

Figure 4, MR studies have suggested that poor educational level,

higher BMI, early AAM, early AFB, early AFS, and AITD appear to

play a causal role in EM etiology. Higher fT4 level andMTHFR gene

mutation appear to be involved in LM etiology. Furthermore, EM has

been found to be causally associated with an increased risk of
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osteoporosis, fracture, T2DM, HbA1c, and HOMA-IR, and LM has

been found to be causally associated with an increased SBP, higher

risk of BC, EC, endometrioid OC, and LC, airflow obstruction, PCOS,

longevity, and a lower risk of PD. In addition, ANM is also a mediator

for breast cancer caused by birth weight and childhood body size.

However, studies on BMI, diabetes, BC, and longevity continue to

have inconsistent results, which needs further exploration. In

addition, genetically predicted ANM was not causally associated

with current smoking status, dyslipidemia, lifetime number of

sexual partners, ever being parous, number of live births, age at last

birth, TSH, hypothyroidism, hyperthyroidism, elevated plasma Hcy

concentration, psychiatric disorders, atrial fibrillation, coronary

artery disease, heart failure, ischemic stroke, stroke, hypertension,

percentage body fat, dyslipidemia, C reactive protein, triple negative

BC, invasive epithelial OC, high grade serous OC, low grade serous

OC, clear cell OC, low malignant potential OC, CRC, FVC,

spirometric restriction, OA, AD, aSAH, OA, RA, fasting glucose,

fasting insulin, homeostasis model of B-cell function, alkaline

phosphatase, alanine transaminase, creatinine, urea, and coeliac

disease. According to the research that has been published to date,

the duration of estrogen exposure is a significant cause of these

diseases or traits, but most of the specific underlying mechanisms

remain unclear. Some sex hormones with large fluctuations during

menopause transition, such as SHBG and bioavailable testosterone,

may also be involved in menopausal related diseases. MR studies have

validated previous observational studies with inconsistent results,

whilst providing support for studies with the same results,

questioning studies with contradictory results, and providing new

directions for future research.

However, it is undeniable that MR research also has limitations.

Firstly, as it is challenging to completely rule out pleiotropy, MR

does not conclusively prove or disprove causation between an

exposure and an outcome, despite being free of reverse causation

and confounding factors that affect observational studies. To

mitigate this, many MR studies conduct sensitivity analyses,

which involve the use of methods like MR-Egger to detect

pleiotropy and/or the exclusion of instrument SNPs with

established relationships with possible confounders. When

repeated MR analyses in distinct cohorts provide similar findings,

a compelling case for causality (or absence of causality) can be

made. Of the 31 included studies, sensitivity analysis was not

performed in only 4 studies. In addition, some studies have

verified the results of 1-2 replication cohorts. Therefore, the

results of these MR analyses are highly credible. Secondly, it

should be noted that the indicated causal relationships have been

mostly found in cohorts of European descent and ANM-related

SNPs only account for a relatively modest percentage of the

estimated heritability of ANM. Thus, these results cannot be

extrapolated to other racial/ethnic populations as a result. A way

to counter this limitation while also increasing confidence to an MR

result is to conduct a trans-ancestry study whereby the same

exposure and outcome are tested in different populations using

population-specific GWAS data. Unfortunately, although Ruth et al.

(43) evaluated 290 ANM loci in approximately 78,000 women of

East Asian ancestry, no relevant MR studies on ANM in women of

East Asian ancestry have been reported due to substantial
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heterogeneity of effect sizes and allele frequencies. Thirdly, the data

used were based on researcher self-report, which could lead to

reporter recall bias and lower statistical power. Fourthly, it is

impossible to deeply explore the role of ANM in the development

of these diseases or traits due to the inability to stratify ANM

(premature, early, and late), diseases (mild, moderate, and severe),

and cancer stages due to the lack of epidemiological data. A GWAS

on EM, however, failed to identify any novel genetic variations and

demonstrated that EM and ANM have a common genetic origin.

Therefore, the same polygenic variants as ANM also account for

EM, at least in part (238).

Given the advantages of MR over observational studies,

investigators can explore the risk factors and the consequences of

abnormal ANM in the future using the results of large consortia that

measure various traits, particularly in cases where previous studies

produced ambiguous or contradictory results. In addition, more in-

depth and rigorous experiments, such as stratification analysis, are

needed to explain the inconsistencies found (e.g., in breast cancer

and T2DM), and more MR studies on ANM risk factors (e.g., diet,

vitamin D and calcium intake, and alcohol consumption) and
Frontiers in Endocrinology 12
outcomes (e.g., kidney stones and chronic kidney disease) should

be on the agenda. The results of MR studies will aid us in improving

the understanding of the development of abnormal reproductive

traits and counseling patients, with the ultimate goal of preventing

abnormal ANM in women at high risk and preventing adverse

consequences in those who already have abnormal ANM.
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FIGURE 4

Brief overview of Mendelian randomization (MR) studies in age at natural menopause. EM, early menopause; LM, late menopause; T2DM, type 2
diabetes mellitus; HbA1c, glycosylated hemoglobin A1c; HOMA-IR, homeostasis model of insulin resistance; AITD, autoimmune thyroid disease; BMI,
body mass index; AAM, age at menarche; AFS, age first had sexual intercourse; AFB, age at first birth; fT4, free thyroxine 4; MTHFR, methylene
tetrahydrofolate reductase; PD, Parkinson’s disease; LC, lung cancer; SBP, systolic blood pressure; BC, breast cancer; EC, endometrial cancer; OC,
ovarian cancer; AD, Alzheimer’s disease; ADHD, attention-deficit/hyperactivity disorder; BIP, bipolar disorder; SCZ, schizophrenia; TSH, thyroid
stimulating hormone; CHD, coronary heart disease; TC, total cholesterol; LDLC, low-density lipoprotein cholesterol; DBP, diastolic blood pressure;
ALB, age at last birth; NLB, number of live births; LNS, lifetime number of sexual partners; EPS, ever being parous; aSAH, aneurysmal subarachnoid
hemorrhage; AF, atrial fibrillation; CAD, coronary artery disease; HF, heart failure; IS, ischemic stroke; FI, fasting insulin; FPG, fasting plasma glucose;
HOMA-B, homeostasis model of B-cell function; CRP, C reactive protein; ALP, alkaline phosphatase; ALT, alanine transaminase; CRC, colorectal
cancer; OA, osteoarthritis; RA, rheumatoid arthritis; The red up arrow indicates a higher incidence or a higher degree, and green down arrow the
opposite; the question mark indicates that there are still inconsistencies in MR studies; * indicates ER+ BC ()?\ER- BC ()?\luminal A-like BC\luminal
B-like BC\HER2-enriched-like BC; ** indicates abnormal level of total cholesterol\high-density lipoprotein cholesterol\low-density lipoprotein
cholesterol\triglycerides\apolipoprotein A1\apolipoprotein B; *** indicates invasive epithelial OC, high grade serous OC, low grade serous OC, clear
cell OC, low malignant potential OC; **** indicates AAM\AFS\AFB\ALB\NLB\LNS\EPS.
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