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The development of smart grids has revolutionized modern energy markets,
enabling users to participate in demand response (DR) programs and maintain
a balance between power generation and demand. However, users’ decreased
awareness poses a challenge in responding to signals from DR programs. To
address this issue, energy management controllers (EMCs) have emerged as
automated solutions for energy management problems using DR signals. This
study introduces a novel hybrid algorithm called the hybrid genetic bacteria
foraging optimization algorithm (HGBFOA), which combines the desirable
features of the genetic algorithm (GA) and bacteria foraging optimization
algorithm (BFOA) in its design and implementation. The proposed HGBFOA-
based EMC effectively solves energy management problems for four
categories of residential loads: time elastic, power elastic, critical, and hybrid.
By leveraging the characteristics of GA and BFOA, the HGBFOA algorithm achieves
an efficient appliance scheduling mechanism, reduced energy consumption,
minimized peak-to-average ratio (PAR), cost optimization, and improved user
comfort level. To evaluate the performance of HGBFOA, comparisons were made
with other well-known algorithms, including the particle swarm optimization
algorithm (PSO), GA, BFOA, and hybrid genetic particle optimization algorithm
(HGPO). The results demonstrate that the HGBFOA algorithm outperforms
existing algorithms in terms of scheduling, energy consumption, power costs,
PAR, and user comfort.
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1 Introduction

Over the last decade, the energy needs of consumers have risen at an exponential rate
(Hafeez et al., 2019; Alzahrani et al., 2023). The development of technology, substantial use
in industry, and introduction of electric vehicles on the road have led to an increased demand
for electricity. It will continue to rise exponentially. Energy consumption from buildings
accounts for approximately one-third of the energy that is generated worldwide (Gul and
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Sandhya, 2015). The United States Department of Energy projects
that energy use will increase by 56% in 2040 (United States
Department of Energy, 1225). Traditional power grids cannot
cope with the current world’s needs because of the enormous
increase in energy demand. The concept of smart grids has been
developed as a result of reduced effectiveness, environmental
concerns (Yu et al., 2023), distributed economic dispatch (Li
et al., 2022), distributed grounding layout (Xiao et al., 2022),
harmonic power flow (Xie and Sun, 2022), diverse maintenance
needs, and reliability issues in the traditional power network (Li
et al., 2022). Conventional networks have become a smart grid due
to advances in communication technologies and their integration
into the electricity infrastructure. Passive customers have become
active consumers because of the smart grid. Due to the elastic nature
of loads, the success of smart grids lies in the availability of resources
like distributed generation (Ribeiro et al., 2020). Figure 1 represents
a model of a smart grid.

Offering incentives in the form of prices revolutionized the
traditional power grid and enabled utility companies to change
the behavior of consumers in terms of energy consumption (Ma
et al., 2016). With the emergence of liberality in the electricity
market, efficiency is improved due to better economic solutions
provided by the power companies (Ribeiro et al., 2018). Due to
smart grids, electric utility companies (EUCs) are able to dispatch
price signals to consumers using day-ahead pricing (DAP)
signals, time of use (TOU), and real-time pricing (RTP)
signals. Therefore, users can modify the load at their own
pace. This increases the possibility for electricity consumers to
alter their load patterns in accordance with tariffs. However, an
intelligent optimization mechanism is extremely necessary in
order to prevent peak formation during low hours of the day
(Hafeez et al., 2020a). Thus, optimization methods are developed
to address various aspects like distribution generation effective
utilization (Chen et al., 2022; Sun et al., 2022), reliability
improvement (Ma et al., 2021), energy consumption
minimization (Min et al., 2023), and industrial applications

(Lv et al., 2022). However, electricity theft is a challenge while
implementing optimization methods (Yan and Wen, 2021). Load
demand management can ensure that consumers’ electricity
needs are met. The mechanism for managing the demand
mainly consists of demand response (DR) and demand side
management (DSM) in particular. A DSM shall be designed
with the primary aim of planning consumer load, taking into
account the price information provided by the energy companies
that use DR. The DSM is a key contributor to the development of
various strategies for ensuring grid stability by scheduling
electricity generation and the use of renewable resources
during periods when peak loads occur in order to balance the
load on smart grids. The DSM, through the flexible and diverse
development of plans, plays an essential role in ensuring
electricity grid stability. In order to reduce the load on the
primary grid and prevent the collapse of the whole power
system during maximum demand hours, DR encourages
consumers to shift their load from peak to off-peak hours
(Imran et al., 2020). The DSM’s primary strategy is to move
loads through a DR program. Consumers are encouraged to cut
their energy consumption at peak times and move loads into
cheaper periods of the day through the DSM strategy, which
reduces electricity costs and PAR (Gelazanskas and
KelumGamage, 2014; Hafeez et al., 2020b). It can be achieved
only when bi-directional communication exists between the
electricity grid and the energy consumer. Smart meters (SMs),
advanced metering infrastructure (AMI), automatically operated
appliances (AOAs), energy management controllers (EMC), and
renewable energy sources are required for this. The AMI will
assist in the exchange of data between a power grid and the
consumer’s SM (LiHui and Ho, 2014). Price signals along with
time are shared with the consumers so that they can easily adjust
their AOAs according to the time slot which suits them. The price
changes according to the consumers’ load curve (Barbato and
Capone, 2014). DSM must serve many residential, commercial,
and industrial consumers to cater to the energy crisis.
Nonetheless, residential buildings consume a large amount of
energy, so this is a highly preferred research area.

Several techniques and mathematical models have been
developed for scheduling residential loads, which helped reduce
energy costs and PAR. In order to solve energy problems,
optimization techniques such as linear, nonlinear, and mixed-
integer programming (MIP) are in use (Huang et al., 2019;
Elazab et al., 2021). More efficient solutions for cost reduction
are a number of developed mathematical models and other
techniques. However, the mathematical model does not seem to
be an effective way of scheduling appliances as it demonstrates poor
efficiency in solving problems having multiple objectives.
Furthermore, taking on a large number of devices that have to be
scheduled increases computational time (Albogamy et al., 2022). For
instance, to reduce PAR and solve appliance scheduling problems,
game theoretic techniques, such as Nash and Stackelberg, are
developed. Stackelberg’s method helps smooth out the load curve
and fulfill the energy needs of consumers by trading electricity
among utility companies (Yu and Ho, 2016; Srinivasan et al., 2017).
To address issues of gaming models, control techniques are
developed (Wang et al., 2022). For example, an adaptive dynamic
control with disturbance observers is developed by Zhang et al.

FIGURE 1
Smart grid overview.
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(2022) for energy balancing of a hybrid energy system. Likewise,
model predictive control (Wang et al., 2022), distributed power
sharing control (Zhao et al., 2022), and finite convergence control
(Wang J. et al., 2022) are introduced to solve microgrids’ energy
balancing problems. However, battery life prediction, battery
utilization for RES, battery charging/discharging scheduling, etc.,
are ignored (Dang et al., 2023; Gu et al., 2023). Batteries are utilized
in renewable energy systems (Cai et al., 2022) to smooth out
renewable power generation, and storage technology is cascaded
with an energy hub system (Jiang et al., 2022), storage technology-
based photovoltaics (Zhang et al., 2022), and solar system
development (Huang et al., 2023) for distribution network
expansion. However, solar cell-based generation is uncertain and
intermittent (Huang et al., 2023). In contrast, grid-connected
inverters and composite circuits have power quality issues
(Chung et al., 2022; Lin et al., 2022). A methodology for EV tour
scheduling in a traffic environment is developed by Zhang et al.
(2022). To address such limitations, heuristic algorithms, namely,
particle swarm optimization (PSO) along with the genetic algorithm
(GA) and bacteria foraging optimization algorithm (BFOA),
emerged to resolve the issue of the single-objective optimization
problem (Rehman et al., 2021). However, the multi-objective
optimization aspect of the energy management problem is
ignored (Cao et al., 2020a; Cao et al., 2020b). The authors
developed a multi-objective optimization model to decide on the
placement of PMU in the power grid (Cao et al., 2022). Likewise, a
multi-objective optimization model is developed by Zhang et al.
(2023) for a carbon-capturing facility in microgrids. A DSM model
is solved using the BFA algorithm by Priya Esther et al. (2016).
Similarly, the energy management problem is solved using GA for
smart grid cost optimization. However, GA has the relevant
characteristics of exploration but is limited only to the local best
solution. On the other hand, BFA is more suited to exploitation but
has drawbacks of obtaining a personal best solution. We used a
hybrid bacteria foraging and genetic algorithm, the HGBFOA,
which allows us to achieve a global best solution for multi-
objective optimization problems by combining GA and BFA
(Sarker et al., 2021).

So far, sufficient research has been carried out to improve energy
efficiency in the smart grid. There are also some limits to most of the
methods under discussion, which have certain prominent features.
The authors were able to solve a lot of objectives with the help of
mathematical models in many research works. However, in the case
of loads that are spontaneous and have a non-linear effect, it is not
possible to use mathematical techniques. Moreover, the techniques
are, in essence, complicated and require a long period of time to
arrive at an optimum solution. Compared to this, some of the
algorithms have suffered from early convergence that leads to the
loss of a number of algorithm features such as parameter
substitution, population diversity, and ending criteria. However,
the aforementioned techniques either cater to PAR, energy cost, user
comfort maximization, or scheduling problems, but none of the
aforementioned methods catered to all the objectives at the same
time. In our research work, a hybrid algorithm (HGBFOA) that
addresses all the aforementioned features simultaneously is
considered.

The research work is setup in the following manner: Section 2
presents the related work, Section 3 shows the research methodology

along with system modeling, and Section 4 presents details of the
existing and suggested system models. Simulation and results are
discussed in Section 5, while Section 6 provides an idea about future
extensions.

2 Literature review

In the smart grid field, research is conducted to obtain better
energy management by scheduling AOAs. In the study by Samadi
et al. (2010), plug-in hybrid electric vehicles are introduced. The
demand for energy from consumers is rising as a result of
introduction of new and up-to-date electrical equipment with
high power demand, leading to interruptions in the entire power
system. Two easy ways of meeting users’ requirements are present,
i.e., the electricity generation companies must increase generation by
building new plants or scheduling consumer appliances for efficient
energy management. The foremost method is costlier because to
increase generation, we have to construct new power plants along
with the current power plants, which needs considerable funding.
This will also lead to complexity in power transmission and
distribution. In comparison, the second technique will have to
manage the current requirement by introducing various pricing
techniques for 24 h. A direct load control (DLC) method is
presented by Abdollahi et al. (2011). Using the DLC method, the
utility can manage the power consumption and demand by
providing incentives to consumers for decreasing power usage
during high-demand hours while shifting load to low-demand
hours. However, an inclining block rate (IBR) with RPT and
TOU is initiated to avoid a peak in off-peak hours (Zhao et al.,
2013; Rastegar et al., 2016). The home energy management system
(HEMS) algorithm is proposed by Abushnaf et al. (2016), which
minimizes the electricity cost and power usage through appliance
scheduling using TOU pricing criteria. The AOAs are monitored,
controlled, and scheduled using HEMS (Zhou et al., 2016). In order
to reduce PAR, HEMSs provide timeslots for each device. During
these timeframes, automated equipment is scheduled according to
various price signals from power companies. However, in many
publications, the time allotted to each device is long enough, which
some devices, such as kettles, juicers, and blenders, cannot achieve.
Ma et al. (2016) considered the drawbacks of large timeframes, but
user comfort is already compromised. User comfort is formulated by
Zhou et al. (2016) by considering latency minimization and device
energy consumption. In the study by Hafeez et al. (2020a), extensive
research was conducted, and some exact algorithms were discussed.
However, the issue of user convenience is also present if you want to
reduce power consumption. One of the major drawbacks of this
research is the lack of integration of renewable energy sources into
the smart grid. There is no conceivable energy system that does not
integrate renewable energy sources (Zafar et al., 2013). In the study
by Adika and Wang (2014), MINLP is explained using RTP, which
reduces energy consumption by scheduling thermal and electrical
devices to minimize energy costs and maximize user comfort.
Performance is very effective on different models. However, the
computational complexity of this technique is a drawback. The
authors addressed user-initiated changes in device scheduling
(Jovanovic et al., 2016). However, the specified changes had to be
fulfilled the next day, increasing consumer dissatisfaction. Hafeez
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et al. (2019) solved this problem by allowing the consumer to turn
off one device and turn on another at the user’s request. Adika and
Wang (2014) considered an energy storage system that reduces
electricity costs and peak loads by almost a factor of five through
scheduling through linear programming. The evolutionary
algorithm (EA) in the study by Azar and Jacobsen (2016) was
used to address the three goals of reducing power costs,
maximizing power demand, and reducing carbon emissions.
Elkazaz et al. (2016) used distributed generation (DG) to enable
the bidirectional current flow, effectively reducing device latency
and minimizing energy costs. However, installation, maintenance,
and operating costs were completely ignored. Lokeshgupta and
Sivasubramani (2019) and Muhsen et al. (2019) worked on
reducing electricity costs and peak demand using linear
programming (LP) and EA, respectively.

The aforementioned model is a valuable source of literature
suitable for energy management. Few models are efficient for some
specific goals and restraints. For example, one model considered
PAR, another considered energy cost, whereas some techniques
combined PAR and energy cost. However, other models took into
consideration CO2 emissions and user comfort in relation to price.
The model described previously does not take advantage of the
beneficial aspects of smart grids that simultaneously consider PAR,
energy costs, user comfort, and energy consumption. Moreover,
coordination between devices has been neglected in most studies,
and adding renewable resources and other targets to already
installed infrastructure has not been considered in the
aforementioned literature. Therefore, we need a system model
that integrates renewable energy sources and implements inter-
device coordination to simultaneously consider PAR, energy costs,

user comfort, and power consumption. With this motivation, an
efficient and effective technique is proposed in our research paper.
Renewable energy is added to the smart grids for energy
management optimization and DR. Considering RES along with
other goals of this study allows us to model efficient and cost-
effective systems that can meet today’s world’s energy demands.

3 Proposed methodology

The suggested HGBFOA-based HEMS model consists of the
main components discussed in the following sections. The functions
and possible uses of all the components are described in following
headings.

3.1 Proposed system model

The proposed residential energy management system is
presented in this section. The energy management scheduling
problem is solved with AMI. The EMS consists of the EMC,
smart meter, intelligent devices, in-home display (IHD), home
area network (HAN), and power company, along with the power
station, as presented in Figure 2.

Smart energy meters collect device energy usage data from the
energy management controller. Communication between smart
meters and EMC is enabled by HAN. AMI can be considered the
backbone of a smart grid. The AMI, present between the SM and the
power company, can send price signals from the power company,
and accordingly, the consumer can accordingly schedule their smart

FIGURE 2
Proposed system model.
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devices. The consumers’ demand data collected by the smart meter is
sent to the power company via AMI (Shirazi and Jadid, 2015). In
response, a real-time DR signal from the power company is sent to
the smart meter. The IHD helps schedule appliances within EMC,
according to the utility company’s demand response signals. Our
hybrid algorithm, i.e., HGBFOA, is implemented in EMC to
schedule appliance operations according to the power rating and
type. This EMC, based on HGBFOA, responds to energy price data,
taking into account device operating time, device power rating, and
user preferences for device operation.

3.2 Inputs for the system

The inputs to the presented EMS are grid power, the pattern of
power consumption with a power rating of AOAs, and the demand
response. However, sharing generation and consumption
information in advance may create a security issue (Lv and Song,
2019; Lv et al., 2020a; Lv et al., 2020b; Cao et al., 2020c). Detailed
description of the system input is as follows.

3.3 Smart appliances

The residential load is classified into four types, i.e., flexible
power appliances, time flexible/elastic appliances, hybrid appliances,
and critical appliances. The time of operation of various residential
loads is given by Eq. 1.

Oi t( ) � 1 if t ∈ τi, i ∈ App
0 else

{ }. (1)

The time interval during which appliances are in operation is
represented by τi. App shows the set of residential appliances. The
explanation along with mathematical modeling of the
aforementioned four categories of appliances is given in the
following paragraphs:

3.3.1 Flexible power appliances
As the name suggests, devices that operate 24/7 and consume

power between the maximum and minimum ranges are power-
flexible appliances. For the user’s comfort, delayed operation of these
devices is not possible. Instead, these devices always work. Heating,
ventilation, and air conditioning (HVAC), electric water heaters
(EWHs), and refrigerators (Ref) are examples of energy-flexible
appliances considered in this study. The following equations are
used to model HVAC, EWHs, and Ref. Modeling of these loads is
necessary because they consume power between the minimum and
maximum values.

T min ≤Treq ≤T max, ∀t ∈ τ i i ∈ AC,WH,Ref{ }. (2)

Equation. 2 proves that the temperature of the power-flexible
appliances is in the specified range.

Oi 1( ) � 1, if Ti 0( )>Ti i( ) i ∈ AC,WH,Ref{ },
0, if Ti 0( )>Ti i( ) i ∈ AC,WH,Ref{ }.{ (3)

To check whether the appliance should be turned on/off, the
temperature is determined to see whether it exceeds the

consumer’s desired range of when the device will power on. If
the temperature is below the required range, the appliance will
power off for the initial interval described by Eq. 5.
Mathematically, various energy flexible appliances are detailed
in the following paragraphs.

HVAC: This equation takes into account the indoor–outdoor
temperature differences, activity levels, and occupancy to provide a
mathematical model for HVAC systems to maintain temperatures
within specified limits.

Tfinal t( ) � Tini t − 1( ) + μ Tout t( ) − Tin t( )( ) + μ β t( ) + ζ( )
+μOi t( ) ∀t � τ & i � AC. (4)

Here, Tini represents the initial temperature, whereas Tout and
Tin show the outside and inside temperatures, respectively. The
temperature variation effect, occupants’ number, and the level of
activity are denoted by μ. Cooling in the operation mode is given by β.

Electric water heater: Water heater is used at different times of
the day. For maximum user comfort, the water temperature should
be kept within certain limits. Usage patterns change depending on
the weather and the weekdays. The EWH operating limits are given
by Eq. 5.

Twh t( ) � Twh t − 1( ) + vwh Tcold − Thot( ) + ϕOi i( ) − Vcoldωwh[ ]. (5)
The temperature of the water heater is expressed by the variation

between the initial and hot water temperatures, water usage pattern,
the room temperature, and the ON/OFF state of the EWH.

3.3.2 Time-flexible appliances or time elastic
appliances

An appliance that is in operation only for certain time intervals is a
time-stretchable or time elastic appliance. These appliances should be in
operation during low demand or mid-peak hours. We can also slow
down the operation of these devices to reduce the consumer’s energy
costs and PAR of the utility. Appliances that can be flexible with time
are washing machines, dryers, and vacuum cleaners.

Dishwasher, washing machine, and dryer: The constraints of
such appliances are shown in Eq. 6:

∑
t�τi

Oi t( ) � OPi( ) max, ∀t ∈τi. (6)

These are time-flexible devices and should be operated at the
most reasonable time according to the user’s demands. Unlike other
household appliances, washers and dryers must operate in a specific
order, i.e., the dryer should be run after the washing machine run
stage. It shall not turn on before the washing machine run stage. Eqs
7, 8 represent the model equations as follows.

Sdryer + Swasher ≤ 1 ∀t ∈ τ i, (7)
Fi1 ≥Fi2 + τi. (8)

The first equation avoids running the washer and dryer in
parallel. The second equation ensures that the functions of these
devices remain in the correct order and that the dryer starts only
after the washer time has expired.

3.3.3 Critical load/appliances
Critical equipment have a short run time and need to start as

soon as the consumer wants them to start, so they cannot be delayed.
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These devices are only used for short periods of time. Examples of
this type of equipment include kettles, microwave ovens, juicers, and
blenders.

Kettles, ovens, and blenders: These appliances cannot be
interrupted during operation and have fixed power requirements.
Eq. 9 expresses it.

C.L � ∑A
i�1
Appi

Prate
× St. (9)

Critical load is represented by C.L, and Appi
Prate is the appliance

rated power. The appliance status is shown by St.

3.3.4 Hybrid load/appliances
Hybrid devices are a flexible device category in terms of both

performance and time. Hybrid devices consume power between the
maximum and minimum values, and their operation can also be
delayed until a timeslot convenient for consumers and utilities.
Examples of such devices are electric vehicles (EVs) and battery
storage systems (BSS). Mathematically, these devices are represented
as follows:

Electric vehicles and BSS: Due to technological advancement
and user convenience, every home consumer has some kind of
storage device (Mary and Rajarajeswari, 2014). To minimize the cost
and flatten the load curve, such devices charge during low-price
hours and discharge during high-demand hours. The batteries’
required initial charge is required to extend the life of the storage
system. Therefore, these storage devices must maintain a certain
level of energy before being fully discharged. The generalized model
for ESS is as follows:

Estor � Estor t − 1( ) + T Cch t( ) − Cdis t( )[ ] ∀t ∈ τ i, (10)
E min ≤ Εstor ≤ Ε max ∀t ∈ τi, (11)
∑
t�τi

Oi t( ) � OPi( ) max, ∀t ∈τi. (12)

Equation 10 describes the energy stored in the battery and
assumes a known charge–discharge interval. Equation 11 states
that the stored energy should be within a certain interval to
avoid overcharging or over discharging. This is necessary for the
storage system life. The EV and BSS energy storage is given by Eq. 12
and relies on the initial charge or discharge in that particular
timeslot.

DAP:DAP is a type of DRmethod. In this process, the electricity
supplier, the energy company, and the consumer agree to buy or sell
electricity prices 1 day in advance. Once an agreement is reached,
whether the actual price is lower or higher than the agreed price, it
cannot be changed for the day.

The EMC based on HGBFOA receives the DAP signal from the
power company to schedule the operation of residential appliances,
which is monitored using IHD.

3.4 Power-generating sources

Electricity is obtained from various resources, including
conventional and non-conventional resources. However, non-
conventional energy sources, such as solar PV, wind power, and
tidal/wave, along with fuel cells, are readily available. Among the

mentioned power sources, solar power is very important in today’s
world because it is free, widely available, and easy to install. Solar
power reduces carbon emissions, minimizes PAR, and helps reduce
overall energy costs. The energy produced from photovoltaics is
given by Eq. 13 (Zhongming et al., 2019; Dang et al., 2023).

Eg
Pv t( ) � ηPv × AreaPv × Irr t( ) × 1 − 5 × 10−3 Tempout t( ) − 25( )( ).

(13)
Eg

Pv shows the solar power generated each hour. However,
efficiency of solar PV is denoted by ηPv and the area of a PV
module in square meter is shown by AreaPv. Irr shows the solar
irradiation per hour, and Tempout shows the outdoor temperature.
For temperature correction, a constant number 0.005 is multiplied
with Tempout. The HGBFOA helps in scheduling appliances while
using power from solar PV during high-demand hours and charging
batteries when demand is low.

3.5 Battery storage system

The main purpose of battery storage systems is to provide an
alternative power source to minimize CO2 emissions and maximize
power reliability. The battery is installed together with the
photovoltaic system. During the day, the battery is charged when
the power generation is high and the consumption is low. During
peak hours and nights, this stored energy powers the load. Powering
loads during peak periods and charging during off-peak and mid-
peak periods help minimize energy costs (Gu et al., 2023). It also
helps maintain the grid stability by powering critical loads. Eq. 14
describes the battery charging and discharging mechanism.

ES t( ) � ES t − 1( ) + α.μESS.EECh t( ) − α.EEDch t( )( )
μESS

∀t. (14)

Energy stored in KWH at time t is presented by ES, and the
hourly duration is shown by α. μESS denotes the battery efficiency.
The battery charging rate is shown by EECh, whereas the discharging
rate is represented by EEDch, i.e., the power which turns on the load.
In order to operate the battery in certain limits to avoid extreme
charging and discharging, Eqs 15–17 represent the battery storage
and operation limits, while the high and low limits can be denoted by
EECh

UL and EEDch
LL , respectively.

EECh t( )≤EECh
UL, (15)

EEDch t( )≥EEDch
LL , (16)

ES t( )≥ESChUL. (17)
To optimize power usage, EMC receives the DAP signals from

the utility companies, power signals from PV, and consumer
priorities. Based on this, the efficient power usage pattern of the
house is determined.

3.6 System outputs

The EMC receives input in the form of appliance patterns and
generation sources. It processes this input and generates an output in
the form of an optimal power consumption pattern for the devices.
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Depending on the device’s efficient power plan, the results achieved
are lower energy costs, lower carbon emissions, minimized PAR, and
maximized user comfort. This coordination between appliances
helps maintain an optimized schedule for devices. The results are
discussed in the following sections.

Energy cost is the bill that the consumers have to pay for electricity
consumption. The power companywill send theDAP signal to the user,
and energy costs will be calculated based on the pricing signal. Research
shows that users who followed DR signals and set their devices at
different times of the day saw significant reductions in utility bills due to
peak hours, mid-peak hours, and off-peak hours. The utility will
calculate the DAP signal-related bill based on formula (18).

F1 � ∑24
t�1

∑N
a�1

EApp
c t( ) × St ×∂ t( )⎛⎝ ⎞⎠. (18)

Here, F1 denotes the less costly bill of the users. Energy
consumption of the appliance App is represented by EApp

c . St
indicates the on/off status of appliance at that time, and N shows
the number of appliances. This is obtained with the help of EMC
based on HGBFOA.

In this study, we examined various types of devices and their
energy consumption is mathematically represented in Eq. 19.

ETF
c t( ) � PTF

r × St. (19)
Time-flexible appliance’s energy consumption in each hour is

shown by ETF
c , whereas PTF

r denotes the highest power of that
appliance. Total power consumed by mentioned appliances in
24 h is shown in Eq. 20. Time-flexible appliances are denoted
by TF.

ETF
T � ∑24

t�1
∑N
TF�1

ETF
c t( ) ∀TFε App⎛⎝ ⎞⎠. (20)

Equation 21 shows the energy consumption of power-flexible
appliances for a timeslot.

EPF
c t( ) � PPF

r × St. (21)

The energy consumed by power-flexible appliances in 24 h is
given in Eq. 22.

EPF
T � ∑24

t�1
∑N
PF�1

EPF
c t( ) ∀PFε App⎛⎝ ⎞⎠. (22)

Here, PF represents power-elastic devices, and the energy in
KWH consumed by such appliances is denoted by EPF

c .
The power usage of critical appliances is presented in Eq. 23. The

energy and power consumed by these appliances is denoted by ECr
c

and PCr
r , respectively.

ECr
c t( ) � PCr

r × St. (23)

The overall hours of consumption of critical appliances is shown
in Eq. 24.

ECr
T � ∑24

t�1
∑N
Cr�1

ECr
c t( ) ∀Cr ε App⎛⎝ ⎞⎠. (24)

Equation 25 gives the energy consumption of hybrid appliances,
and energy consumption of these appliances is represented by EH

c .
PH
r shows the highest power of hybrid appliances, while the status of

appliance is shown by St.

EH
c t( ) � PH

r × St. (25)
The 24 h energy consumption of hybrid appliances is shown in

Eq. 26.

EH
T � ∑24

t�1
∑N
H�1

EH
c t( ) ∀Hε App⎛⎝ ⎞⎠. (26)

The total 24 h consumption of all appliances is formulated in
Eq. 27.

F2 � Eta
T � ETF

T + EPF
T + ECr

T + EH
c . (27)

Here, Eta
T shows the overall energy consumption of appliances as

a whole. Overall energy consumption by time-flexible/elastic
appliances, power-flexible/elastic appliances, critical load, and
hybrid devices is denoted by ETF

T , EPF
T , ECr

T , and EH
c , respectively.

PARmeans the peak to average energy consumption ratio over a
specified period. DR shifts loads from peak to off-peak hours by
encouraging consumer compliance. As a result, the energy supplier’s
load curve is smoothed and peak-free. For this reason, energy
providers do not need additional power plants to operate during
this time. This greatly reduces the user’s electricity bill. Equation 28
shows the mathematical formula for PAR, where F2 determines
PAR, which is one of the goals of this research work, ensuring
network stability and robustness. ET denotes the overall power used
by the consumer during the whole day.

F3 � max ETF
c t( ), EPF

c t( ), ECr
c t( )( )

ET
( ) × 24. (28)

Consumer comfort is an objective that is computed by device
operation delay, indoor/outdoor temperature variation, lighting, etc.
(Cai et al., 2022). This work computes comfort using device latency
and operation hours with/without scheduling. Correspondingly, if
PAR reduction is desired, the load should be shifted to off-peak
hours as it reduces user comfort. User comfort and energy costs are
two competing goals. To reduce their electricity bills, consumers
have to accept that their devices will run a little slower. At the same
time, users have to pay higher electricity bills if they want to start
using their devices immediately. User comfort, especially waiting
time, is calculated by the formula shown in Eq. 29.

Wa �
∑T
t�1

∑n
a�1

T0,unsch
a,t − T0,sch

a,t( )∣∣∣∣∣ ∣∣∣∣∣
Top
a

. (29)

The waiting time of an appliance a due to scheduling is shown by
‘Wa’. The pre- and post-scheduling status of an appliance is denoted
by T0,unsch

a,t and T0,sch
a,t , respectively. The operation time of such

appliance is represented by Top
a . EMC has the property of

shifting a device to low-peak hours of a day with respect to the
DAP signal. The maximum operational delay of a device can be
formulated as follows:

Wd
a � Tt

a − Top
a . (30)
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The maximum operational delay due to shifting of an appliance
to low-demand hours can be represented by Wd

a , while T
t
a denotes

the total time interval. The discomfort of the user can be calculated
by the following formula in Eq. 31:

F3 � Wa

Wd
a

× 100. (31)

3.7 Problem formulation

The aforementioned system outputs are the objective functions
of this work, which are separately modeled in the previous
subsection. Now, all these objectives are modeled combined in
the optimization problem, which is modeled as the minimization
problem as follows:

Min F( ) � Min F1φ1+F2φ2+F3φ3+F4φ4( ), (32)
∑

i∈App
pisi t( ) � Plim t( ) ∀t ∈ τ & i ∈ App. (33)

The objective functions in question, namely, energy cost,
energy consumption, PAR, and user comfort, are represented by
F1, F2, F3, and F4, respectively. The associated weighting factors
for these functions are denoted as φ1, φ2, φ3, and φ4. These
weights play a crucial role in determining which objective to
prioritize, providing a sense of interest and motivation. The
multi-objective function seeks to address multiple optimization
problems simultaneously, taking into account user priorities and
preferences. Eq. 33 shows the allowable power range for device
operation so that the power limit must not be exceeded for a
period of time. This helps avoid spikes, which are very important
to utility company operations. Based on this, EMC designs the
best power plan for the operation of the device. Devices are
classified into four main categories based on uptime, power
consumption, and schedule.

4 Proposed hybrid algorithm

Heuristic algorithms have been proposed to solve the energy
management problem. Existing techniques for solving the
scheduling problem cannot achieve effective energy management.
Most of these algorithms require a computationally intensive
solution for the scheduling problem of appliances, and the
algorithms’ efficiency decreases as the number of devices
increases. In order to obtain efficient energy management when
resolving scheduling problems, HGBFOA is proposed, which
addresses the limitations explained previously.

4.1 A hybrid genetic bacteria foraging
optimization algorithm

Genetic algorithm and bacteria foraging algorithm are good
optimization methods and have efficient exploration ability. The

search steps of the aforementioned optimization methods are
divided into two parts: local and global searching ability.

BFOA focuses on local scope searches, whereas genetic algorithms
have better global search capabilities. In addition to the benefits of these
two techniques, they also have some drawbacks. For example,
convergence problems exist in GA due to the maximum number of
iterations and large search space requirements. At the same time, the
BFOA elimination and dispersal stepsmay hinder the search for optimal
solutions. The HGBFOA, with qualities of both GA and BFOA, is
proposed to overcome the aforementioned limitations.

The flowchart of HGBFOA is shown in Figure 3 and explained step-
by-step. First, the required parameters are initialized. HGBFOA
performs BFOA step-by-step, as described in the flowchart.
Furthermore, there is a difference between dispersal and elimination.
The BFOA’s elimination and dispersal steps have changed forHGBFOA.
BFOA randomly removes and distributes the remaining bacteria after
the reproductive stage. In HGBFOA, the elimination and propagation
steps are performed through crossover and mutation. Then, GA is
started up to amaximumnumber of iterations. Ultimately, an optimized
schedule for devices is achieved by minimizing energy consumption,
reducing costs, and lowering PAR values.

FIGURE 3
Flowchart diagram of HGBFOA.
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5 Simulations and discussions

The simulation of the given model was conducted considering
three different scenarios. In Scenario I, the simulation was
performed using power solely from the grid. In Scenario II, the
simulation incorporated both power from the grid and PV power.
Finally, Scenario III involved simulations with the combination of
the grid, PV power, and ESS. All simulations are performed in
MATLAB, and results are obtained with comparisons to other
methods, i.e., PSO, GA, HGPO, mixed PSO and GA, BFO
algorithms, and HGBFOA and GA and BFO hybrid algorithms.
We used these algorithms because they are similar. Comparisons are
made between existing and proposed algorithms in terms of cost
savings, power consumption, better peak reduction (PAR), and time
delay.

Table 1 gives us an idea of six appliances with their power ratings
used in this research, (taken from the work of Jiang et al., 2022).

The following diagram contains details of the basic data required
to initialize the result. Figure 4A shows the day-ahead price signal
(DAP) (from the study by Li et al., 2022).

Time in hours is measured horizontally, and the vertical value
gives the energy price per unit in cents. In day-ahead pricing, an
hourly energy price is agreed between the energy supplier and the
consumer 1 day in advance. There are no additional costs for such
pricing. Unit prices are cheaper at night due to off-peak hours and
higher during peak hours. Therefore, the consumers schedule time
flexibly and set up their hybrid devices at times when costs are lower.

Figure 4B shows the daily solar irradiance. The times shown on
the graph start at 1:00 a.m., and there is no Sun until 6:00 a.m. As the
Sun rises after 6 a.m., solar radiation increases exponentially,
reaching a peak by 3 p.m. Therefore, PV power generation is
currently at its maximum and starts to decrease after this time
period as solar radiation decreases. Solar radiation continues to
decrease sharply, reaching zero after 7 p.m. After that, no
generations occur until the next day and the operation continues.
The load consumes the maximum amount of power produced
during maximum demand hours of the day. At present, green
energy is being produced and used, resulting in lower carbon
emissions from fossil fuel power plants.

TABLE 1 Different appliances with their power ratings.

Appliance Power rating Appliance Power rating

Air conditioner 70–130 W Electric vehicles 200 W

Washing machine 100 W Battery storage 50–120 W

Cloth dryer 100 W Iron 250 W

FIGURE 4
Day-ahead pricing signal is presented in (A). Solar irradiance (B) and ambient temperature (C).
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Figure 4C shows ambient temperature over 24 h, and the
temperature has a negative impact on the solar panel efficacy.
Environmental temperature and photovoltaic efficiency are
inversely proportional. The higher the temperature, the lower the
PV yield. The efficiency of solar modules is maximized under STC,
i.e., 25°C and 1,000 W/m2. According to the graph, the temperature
initially cools down at night and warms up again as the Sun rises.
Temperatures are highest between 1:00 and 3:00 p.m. and decrease
in the evening.

Figure 5A shows the battery charge status. The battery is initially
assumed to be zero and starts charging during the day when solar
power begins. The battery level increases hourly and is finally fully
charged in the afternoon. According to the figure, the maximum

storage capacity is 280 Ah, reaching around 7 p.m. The battery stays
in this state until morning and starts charging again when PV starts
generation. The battery status is displayed in Ampere hours (Ah).
This graph is only for battery charging and does not show the battery
discharge status.

Estimated renewable energy production and the excess
renewable energy production after charging the ESS are given
in Figure 5B. The Y-axis shows renewable energy production in
Watt-hours, and the X-axis shows timeframes in hours.
Renewable power generation is estimated to be up to 107 Wh
after the 11th timeslot and continues to increase until 3:00 p.m.
After that, renewable energy production decreases and
approaches zero upon reaching 7:00 p.m. The red graph shows
the leftover renewable energy production after charging the ESS.
Excess generated power is dispatched directly to the appliances,
thus reducing power consumption from the power grid. The
battery starts charging after 6:00 a.m. and is fully charged after 7:
00 p.m.

The original load curves for all three unplanned cases are shown
in Figure 6. This curve shows that the load is unevenly distributed
before optimization. In some cases, load power consumption is
higher during peak hours, making it more costly than during off-
peak hours.

5.1 Scenario I: Appliance scheduling while
using grid power only

In this case, we have considered only power from the grid,
while other sources like PV and ESS have not been used.
Scheduling is obtained for appliances in such a manner that
there is minimum load during peak hours, while the maximum
load is shifted to off-peak hours of the day, during which the
energy price is lower. The existing and HGBFOA algorithms are
simulated in MATLAB. The result of our hybrid algorithm is

FIGURE 5
(A) Battery charging level is shown, and renewal generation along with remaining RG after charging is presented by (B).

FIGURE 6
Load curve without scheduling.
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presented in a graph against the existing algorithms. The main
goal of our research, i.e., energy consumption, energy cost, PAR,
and scheduling, is compared with existing algorithms and our
hybrid algorithm for grid power.

5.1.1 Energy usage
Figure 7A represents the energy consumption patterns of different

devices at arbitrary times of the day. Comparisons are made between
different algorithms. The graph shows that PSO has a maximum energy
consumption of 500Wh, while GA and BFOA have a maximum energy
consumption of 760Wh and 740Wh, respectively. HGPO has a
maximum power of 415Wh, and HGBFOA has a maximum power
of 800Wh, which is the off-peak time with the lowest energy rates.
However, on average, the energy utilization of HGBFOA is more
efficient than that of the existing algorithms. From the graph, it can
be seen that for 15 h, i.e., 6 a.m. to 9 p.m., the energy consumption is kept
below 100Wh by our proposed algorithm. This shows the efficacy of
HGBFOA. These algorithms have gained an optimized power schedule
for different kinds of appliances, and power is held within its specified
limits (maximum during off-peak and minimum during peak hours).

5.1.2 Analysis of energy cost
As price per unit is very important for the consumers, our

objective is to reduce the energy consumption during the

high-price hours of the day. The energy cost for all existing
algorithms and our proposed algorithm has been compared in
Figure 7B. Only a nominal load is turned on during peak hours.
The maximum energy cost during 24 h for PSO, GA, HGPO, and
BFOA in cents is 105 cents, 215 cents, 83 cents, and 100 cents,
respectively. In contrast, the maximum energy consumption of
HGBFOA is 165 cents. These 165 cents are only for 3 h during
low-demand hours, where the price signal is low, so we have
turned on max appliances during these hours. For almost 16 h,
the energy price is under 30 cents, and the average energy cost for
HGBFOA during 24 h is less than 40 cents, which is lower than
that of the other existing algorithms.

5.1.3 Analysis of PAR
Figure 7C shows the PAR of PSO, GA, HGPO, BFOA, and

HGBFOA. If PAR is lower, then the peaks will be lower, which
means that the power is consumed efficiently. The PAR is the
maximum for GA and HGPO, which is 5.9 and 5.8, respectively.
A comparison between HGBFOA and other existing algorithms
is shown in Table 2. In the first two columns, algorithms are
taken along with their PAR value. The third column shows the
difference in the existing algorithms from our hybrid algorithm.
The last column presents the percentage difference between
HGBFOA and the other algorithms. In terms of percentage,

FIGURE 7
Energy consumption, energy cost, and PAR using power from the grid are shown in (A–C), respectively.
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HGBFOA shows better performance and is 43.18% more
efficient than PSO, 49.15% more efficient than GA, 48.27%
more effective than HGPO, and 16.66% better than BFOA.

5.2 Scenario II: Appliance operation
scheduling utilizing power from both PV and
the grid

For scenario II, we considered two power sources, i.e., power
from the grid and solar PV. During daytime, the renewable energy
from PV is used to operate load or in combination with the grid
when PV generation is insufficient. During nighttime, only grid
power is in use. In this study, simulations are conducted to analyze

the reduction of PAR, minimization of energy bills, and power
consumption using the proposed HGBFOA and other algorithms.
The results of these simulations and their comparison are described
in the following paragraphs.

5.2.1 Power consumption and utility bill analysis
Figure 8 shows the power consumption, usage time, energy cost,

and PAR of the existing algorithms and HGBFOA. The scheduling is
designed to reduce overall power consumption and energy costs,
especially during maximum-demand hours. During peak hours,
HGBFOA showed better performance than other algorithms in
terms of energy consumption and price. From Figure 8A, it is
clear that minimum energy consumption is maintained during
peak hours, i.e., during daytime. For comparison, we have

TABLE 2 PAR comparison for the grid.

Scheduling algorithm PAR Variation from HGBFOA Difference from HGBFOA (%)

PSO 5.3 2.3 43.18

GA 5.9 2.9 49.15

HGPO 5.8 2.8 48.27

BFOA 3.6 0.3 16.66

HGBFOA 3 Note: for other algorithms, HGBFOA is taken as the reference.

FIGURE 8
Energy consumption, energy cost, and PAR considering power from PV and the grid are shown in (A–C), respectively.
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considered 6 to 21 timeslots. The energy consumption of different
appliances can be seen, which is below 100 Wh, which results in a
lower average energy cost of only 15 cents for HGBFOA. The reason
for the energy cost reduction is renewable power from PV during the
daytime and the load being operated on this source along with
the grid.

In Figure 8A, energy consumption (Watt-hours) is plotted on
the Y-axis, and time in hours is plotted on the X-axis. In the sixth
slot, the appliance with PSO consumes 406 Wh, that with GA
consumes 495 Wh, that with BFOA consumes 406 Wh, and those
with HGPO and HGBFOA consume 203 Wh and 105 Wh,

respectively. Comparing the power costs in Figure 8B for the
same sixth-hour slot, we get the following prices: energy cost for
PSO is 85 cents, and the cost for GA and BFOA is 50 and 83 cents,
respectively. Nevertheless, the utility bills for HGBFOA and HGPO
are 20 cents and 45 cents, respectively. Thus, HGBFOA results in
lower peak energy consumption, leading to a lower net utility bill
compared to the existing techniques. Energy consumption and costs
have been effectively reduced, specifically during peak time,
i.e., timeslots from 6 to 20. In addition, EMC’s HGBFOA-based
energy consumption follows a regular pattern, mostly keeping
energy costs at a low level.

TABLE 3 PAR evaluation with PV and the grid.

Technique PAR Variation from HGBFOA Variance from HGBFOA (%)

PSO 4.74 2.09 44.1

GA 4.7 2.05 43.6

HGPO 3.4 0.75 22.05

BFOA 3.24 0.59 18.2

HGBFOA 2.65 Note: for other algorithms, HGBFOA is taken as the reference.

FIGURE 9
Energy consumption, energy cost, and PAR considering power from PV, the grid, and ESS are shown in (A–C), respectively.
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5.2.2 Evaluation of PAR
A quick comparison between HGBFOA and other algorithms is

shown in Figure 8C. The PAR scores for PSO, GA, HGPO, BFOA,
and HGBFOA are 4.74, 4.7, 3.4, 3.24, and 2.65, respectively. As
shown in Table 3, HGBFOA outperformed PSO by 44.1%, GA by
43.6%, HGPO by 22.05%, and BFOA by 18.2%. Effective scheduling
reduced the peaks in different timeframes, and HGBFOA shows
better performance than other algorithms regarding PAR
minimization.

5.3 Scenario III: Appliance operation
scheduling utilizing power from PV, ESS, and
the power grid

In Scenario III, power is utilized from three different sources,
namely, the grid, renewable energy systems, and energy storage
systems. During daytime, PV and the grid together operate the load,
and excess power from PV is used to charge the batteries. Our hybrid
and other existing algorithms are applied. A comparison for power
consumption, energy cost, PAR and user comfort is made. Further
details are as follows.

5.3.1 Energy consumption and energy cost analysis
Figure 9 shows energy consumption, energy cost, and PAR using

the algorithm described previously. Our main goal is to reduce

energy consumption by scheduling devices during low energy-cost
timeslots. This can be attained by lowering energy consumption
during peak hours and shifting loads to low-peak hours. On average,
the energy consumption of HGBFOA is relatively lower than the
other aforementioned algorithms. For simplicity, we examine the
energy consumption of the appliances during timeslot no. 10 using
the algorithm described previously. The power consumption of the
10th slot for PSO, GA, and BFOA is 180 Wh, 170 Wh, and 110 Wh,
respectively, whereas the power consumption while using HGPO is
260 Wh and that of HGBFOA is 50 Wh. This indicates a clear
difference in the power consumption of the proposed algorithms.

Having determined the energy consumption during 10th hour,
the energy cost for this timeslot is described in the next row. Energy
costs for PSO, GA, and BFOA are −04 cents, 50 cents, and 42 cents,
respectively. The energy cost for HGPO is 56 cents, whereas
HGBFOA has an energy cost of 23 cents. HGBFOA’s overall
performance is better than the other existing algorithms.

5.3.2 PAR analysis with PV, grid, and ESS
Minimization of PAR is an important objective of this study. It is

greatly facilitated by our proposed HGBFOA algorithm. PAR
comparison with different algorithms is shown in Figure 9C. The
PAR for PSO is 4.74, that of GA is 3.07, that of HGPO is 2.88, that of
BFOA is 2.65, and that of HGBFOA is 0.7. HGBFOA is 85% more
efficient than PSO, 77% better than GA, 75.6% better than HGPO,
and 73% finer than BFOA. This is presented in Table 4. The table
shows that the appliances are effectively shifted to low peak andmid-
peak timeslots, resulting in a significant reduction in the PAR value.

5.4 User comfort

Figure 10 determines the user comfort, which is the operational
delay of appliances, and the graph is explained in the following
paragraph.

For PSO, the air conditioner has a 0.4-h delay, the refrigerator
has a 1.72-h delay, the washing machine has a 1.1-h delay, the juicer
blender has a 0.2-h delay, and the vacuum cleaner has a 2-h delay.
There will be an hour delay in EV/ESS operations. Air conditioners,
juicers, vacuum cleaners, and electric cars have no operational
delays, while refrigerators and washing machines have delays of
0.85 and 1.72 h, respectively. HGPO lags by 0.72, 1.1, 0.78, 1.4, 1.28,
and 1.2 h for air conditioners, refrigerators, washing machines,
juicers, vacuum cleaners, and EV/ESS, respectively. When using
BFOA, the devices such as air conditioners, refrigerators, washing
machines, juicers, vacuum cleaners, and EV/ESS face delays of 0.4 h,

TABLE 4 PAR evaluation utilizing PV, ESS, and the power grid.

Technique PAR Variance from HGBFOA Difference from HGBFOA (%)

PSO 4.74 4.04 85

GA 3.07 2.37 77

HGPO 2.88 2.18 75.6

BFOA 2.65 1.95 73

HGBFOA 0.7 Note: for other algorithms, HGBFOA is taken as the reference.

FIGURE 10
User comfort comparison of the algorithms.
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1.42 h, 1.1 h, 0.2 h, 0 h, and 1 h, respectively. In the end, the
operating lags of air conditioners, refrigerators, washing
machines, juicers, vacuum cleaners, and EV/ESS with HGBFOA
are 2 h, 1.1 h, 1.55 h, 1.2 h, 2 h, and 1.24 h, respectively. There is a
slight delay when operating devices with HGBFOA. However, the
slight delay in operation is to reduce electricity bills, ensure efficient
energy management, and maintain minimum PAR values.

5.5 Possible trade-off

User comfort is somewhat limited to achieve important goals
such as optimal energy consumption, reduced energy costs,
reduced CO2 emissions, and minimum PAR values. Because
this research is based on a multi-goal problem, the achievement
of one goal depends on the achievement of another. Therefore,
there is a trade-off among user comfort, energy costs, and PAR
minimization. To avoid peaks, energy consumption costs, and
PAR values, a compromise must be made on delays in the
operation of some devices during peak hours. Appliances using
HGBFOA, especially air conditioners and vacuum cleaners, have a
slightly longer latency than those using other existing algorithms.
Furthermore, the operational delay of these appliances resulted in
lower power consumption, price, and PAR.

5.6 Conclusion

Although DR programs can obtain efficient energy utilization
and optimal power consumption, but their implementation is
complex because of insufficient user knowledge. To achieve this
goal, HGBFOA, which combines the GA and BFOA algorithms, was
developed. EMC has significantly improved the performance of the
DR program. EMC based on HGBFOA schedules home appliances
to operate automatically according to the DR signal, enabling
energy-efficient, cost-saving, and lower PAR and CO2 emission
schemes. Simulations and results show that EMC based on
HGBFOA outperforms other existing algorithms and can achieve
ongoing goals such as minimizing energy consumption and cost,
and reducing PAR while maximizing user comfort.

5.6.1 Future extension
This research work can be stretched in the following directions

in the future.

• For optimal energy management in smart grids, a fog and
cloud-based system can be used.

• Coordination of energy suppliers with consumers shall be
introduced in load planning to lower energy waste.

• Two-way power trade-off between the utility company and the
consumer shall be initiated, taking into account the “vehicle-
to-grid” and “grid-to-vehicle” energy optimization.

• For online and real-time energy optimization, a Lyapunov
optimization method can be established that considers field
demands from both energy suppliers and consumers.
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Nomenclature

Abbreviation Definition

AMI Advanced metering infrastructure

DSM Demand side management

DR Demand response

EMC Energy management controller

EUC Electricity utility company

DAP Day-ahead pricing

SM Smart meter

TOU Time of use

RTP Real-time pricing

PAR Peak-to-average ratio

AOA Automatically operated appliances

GA Genetic algorithm

PSO Particle swarm optimization

BFO Bacteria foraging optimization

HGBFOA Hybrid genetic bacteria foraging
optimization algorithm

HEMS Home energy management system

IHD In-home display

HAN Home area network

EWH Electric water heater

Ref Refrigerator

BPSO Binary particle swarm optimization

HGPO Hybrid genetic particle optimization

RG Renewable generation

DLC Direct load control

IBR Inclining block rate

ESS Energy storage system

Symbol Definition

Tt
a Time of operation of residential

appliances

F3 � Wa

Wd
a
× 100 Appliance operational interval

App Appliance

Min(F) � Min(F1φ1+F2φ2+F3φ3+F4φ4) Required temperature

∑
i∈App

pisi(t) � Plim(t)∀t ∈ τ & i ∈ App Initial temperature

φ1 Cooling due to on status

φ2 Rated power of the appliance

φ3 Appliance status

φ4 Stored energy

Oi(t) Solar PV generation

τi Solar PV efficiency

Treq Solar irradiance

Tini Efficiency of the battery

β Charging upper limit

AppiPrate
Discharging lower limit

St Charging rate

Estor Discharging rate

Eg
Pv Number of appliances

ηPv Energy consumed by time-flexible
appliances

Irr Energy consumed by critical appliances

μESS Energy consumed by hybrid appliances

EECh
UL

Energy consumed by power-flexible
appliances

EEDsh
LL

Appliance waiting time

EECh Pre-scheduled status of appliances

EEDch Appliance status after scheduling

N Maximum delay in appliance operation
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