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Abstract
Online shopping using virtual try-on technology is becoming popular and widely
used for digital transformation because of sustainably sourced materials and en-
hancing customers’ experience. For practical applicability, the process is required
for two main factors: (1) accuracy and reliability, and (2) the processing time. To
meet the above requirements, we propose a state-of-the-art technique for gener-
ating a user’s visualization of model costumes using only a single user portrait and
basic anthropometrics. To start, this research would summarize different meth-
ods of most virtual try-on clothes approaches, including (1) Interactive simulation
between the 3D models, and (2) 2D Photorealistic Generation. In spite of success-
fully creating the visualization and feasibility, these approaches have to face issues
of their efficiency and performance. Furthermore, the complexity of input require-
ments and the users’ experiments are leading to difficulties in practical application
and future scalability. In this regard, our study combines (1) a head-swapping tech-
nique using a face alignment model for determining, segmenting, and swapping
heads with only a pair of a source and a target image as inputs (2) a photorealistic
body reshape pipeline for direct resizing user visualization, and (3) an adaptive skin
color models for changing user’s skin, which ensures remaining the face structure
and natural. The proposed technique was evaluated quantitatively and qualita-
tively using three types of datasets which include: (1) VoxCeleb2, (2) Datasets
from Viettel collection, and (3) Users Testing to demonstrate its feasibility and
efficiency when used in real-world applications.

Keywords: Adaptive Skin Color, Body Reshaping, Head Swapping, Photorealistic,
Virtual Try-on.

Received: 28 July 2023
Accepted: 31 August 2023
Online: 11 September 2023

Published: 20 December 2023

1 Introduction

Due to the global impact of Coronavirus disease
(Covid-19) and environmental pollution, the fashion
industry is changing quickly to adopt the requirement
in driving consumers and sustainable fashion. Offline
retailers and department stores had already seen
massive declines in sales and met huge pressure in
inventory during the lockdown period. As a result,
Online purchase is widely booming and numerous
apparel companies are leveraging digital transforma-
tion to boost their sales. However, it is not easy for
consumers to see and feel their actual appearance if
they can not physically try products. Generally, there
are two main approaches to creating a reality and im-
mersive shopping experience: (1) Using 3D Interactive
Simulation, (2) Using 2D Photorealistic Generation.
The first method produces 3D models with collisions
in virtual space. It could generate an acceptable
shape and interact with stable performance, but it
requires the preparation for input requirements and
the ability to scalable both in horizontal and vertical

directions. For the second approach, the speed and
input requirement are the main strong points, but,
this method meets a big issue in controlling outcomes,
which prevents it from being widely adopted around
the world. In general, most methods face three main
challenges: (1) The complexity to process and manage
the input resource data, (2) the accuracy and reality
of virtual try-on with clothes, and (3) Maintaining the
system’s high stability and reliability.

To address these issues, two start-up companies:
Zeekit1 and 3D Look2 have been developed with their
patented technology. Zeekit was founded by Yael Vizel,
Nir Appleboim, and Alon Kristal in 2014. Zeekit di-
vides a person’s image into thousands of parts using
its patented real-time image processing technology. A
similar process is applied to clothing, and the analo-
gous points from the two simulations are re-mapped to
create the final simulation. The final product depicts
a virtual representation of a person wearing clothing

1https://zeekit.me/
2https://3dlook.ai/
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that takes into account their body type, fit, and fabric.
Meanwhile, the body shape is changed by 3D look al-
gorithms’ creation of a geometrically accurate virtual
try-on. The segmentation map of the subject is altered
by the semantic generation module, which then warps
the clothing mask to cover the appropriate portion of
the body.
The main contributions of this research are listed be-

low: (1) Proposing a unique and fully automatic archi-
tecture system applied for virtual try-on clothes that
combines facial feature models with body reshaping,
(2) A state-of-the-art technique is presented with high
accuracy, stable and ease to integrate and deploy in a
cloud server. This research is divided into four main
parts: Section 2 summarizes previous works on virtual
try-on clothes; the proposed method is provided in Sec-
tion 3; Section 4 contains a detailed description of the
dataset used for evaluating and results in quantitative
and qualitative to prove the method‘s efficiency; sec-
tion 5 concludes the paper and opens future works.

2 Related work

Recent research has shown a significant improvement
in reconstructing 3D human models based on multiple
approaches. In this part, two main methods including
(1) Interactive simulation between the 3D models, and
(2) 2D Photorealistic Generation are introduced and
analyzed in terms of their upsides and downsides.

2.1 3D interactive simulation

2.1.1 Physics-based simulation

A physics-based simulation of clothing basically in-
volves three main processes: Calculation of internal
forces, collision detection, and collision reaction forces;
the total simulation cost is the result of combining the
effects of the three processes. Bender et al.[1] pro-
vides a survey to analyze the trade-off between accu-
racy and cost simulation. Approximation methods for
video game applications are reasonable, but they can-
not transfer the realistic material behavior required for
virtual fitting. Another approach by Fratarcangeli et
al. [6] is to improve the efficiency of computing forces
and collision constraints using GPU-based while main-
taining the simulation accuracy. These approaches pro-
vide very well-controllable results with a physics-based
model. However, the high computational cost and the
performance are big fences for application and scala-
bility.

2.1.2 Network-based

Li et al. [8] introduces a mesh-based network, named
N-cloth. The main purpose of the method is to predict
the 3D Cloth Deformation between cloth mesh and the
target obstacle mesh for various scenes. The main ad-
vantages are an end-to-end neural network, high per-
formance (30-45 fps with up to 100.000 triangles), and
acceptable accuracy. This work inherits, and extends

the encoder-decoder architecture [11] and creates a fu-
sion network to deal with the deformation mesh from
the input clothes and multi-type of obstacle meshes for
improving the overall accuracy. However, preprocess-
ing training data using a physics-based simulator is a
time-consuming procedure. Besides, the training pro-
cess must be re-done if the mesh topology of clothes is
changed.

Santesteban et al. [14] proposes a learning-based
clothing animation with two major steps: (1) Prepro-
cess Data: using a physics-based simulation to gener-
ate multiple animated human bodies wearing the same
garment, (2) Process: Combining a global fit to a fixed
body shape with local garment wrinkles. This research
provides an efficient way to generate cloth simulation
with high speed but struggles for processing input data
and remaining completeness of clothes.

2.2 2D Photorealistic Generation

Xiang et al. [20] presents a photorealistic and ani-
mated clothing approach by using neural rendering to
physically-simulated garments. There are three mod-
ules in this method: (1) Base body avatar: predicts
body geometry and texture, (2) Cloth simulator: sim-
ulates and creates clothing deformation from body ge-
ometry, (3) Clothing appearance model: predicts pho-
torealistic clothing texture. This approach is much bet-
ter than prior work, however, there are still issues in
dealing with: (1) data process: The clothing appear-
ance model requires real captured data with the regis-
tered body, and clothing geometry (2) the clothes with
losing form or multi-layer clothing.

Yang et al. [22] proposes a method named: Adap-
tive Content Generating and Preserving Network
(ACGPN). It generates a photorealistic try-on com-
posing of three main parts: (1) Semantic Generation:
separate target clothing region and segments the body
parts, (2) Clothes Warping: warps the target clothing
image to predicted segmentation layout, (3) Content
Fusion: Renders the results by utilizing the target
clothing image, original clothing mask and body part
image. Outcomes are acceptable, but ACGPN has
trouble with various kinds of human poses and handles
the texture of clothing input.

Another approach is proposed by Sarkar et al. [16],
called: StylePoseGan for generating a photorealistic
multi-view of users from a single input image with ex-
plicit control over pose and per-body-part appearance.
This method, which is basically an end-to-end model
trained with image reconstruction loss and adversarial
loss, applies multi-purpose such as garment transfer,
head swap, and image interpolation. Due to its archi-
tecture, this method has a difficulty in reconstructing
images/text in the clothes.

DeepFaceLab (DFL) [10] focuses on photorealistic
face-swapping using the fundamentals of GAN and
StylGan. It would consist of three main phases: (1)
Extraction: use face detection, alignment, and segmen-
tation to extract a face from given data (2) Training:
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Figure 1: System diagram of the proposed method.

A structure named LIAE is proposed to achieve the
generalization of src and dst (abbreviation of source
and destination), through the shared Encoder and In-
ter and inherit fully information such as lighting (3)
Conversion: An Encoder is used to blend and sharp
for face generation and re-alignment. These results are
quite well in the wild; however, only face regions are
swapped and hairstyle, skin tones, and face shapes do
not remain.

Shu et al. [17] presents a method named: Head
Swapper (HeSer) with the main contribution is to pro-
duce photorealistic head swapping on different scenes
using two parts: (1) Head2Head aligner: is used to
migrate expression and position from target to source
head, (2) Head2Scene Blender: is used to custom and
edit the facial skin color and background texture un-
matches. Qualitative and quantitative results prove
its efficient approach, but it only focuses on head-
swapping and does not mention body re-shape. Fur-
thermore, there are several issues during processing
with long-hair users and huge demand for input data.

3 Methodology

3.1 Overview

The system diagram of the proposed method is illus-
trated in Fig. 1. Our framework begins with data
pre-processing, which produces two database: Sample
Head-Pose Images and Sample Head-Pose Key-points.
In the main process, the target image and measurement
are operated with the pre-processed data through three
main modules: body reshaping, skin and facial feature
matching, and head swapping. While the body reshap-
ing module resize the source image body to fit the tar-
get measurement, the skin and facial feature matching
module take the target image facial properties to apply
to the source image. Finally, after the source body and
facial features are visually suitable with the target, the
head swapping module is executed to place the target
head on the right acceptable of source body’s neck.

Figure 2: 68 face landmarks of the Sample Head-Pose
Key points.

3.2 Pre-Process

The preprocess module generates a database for chang-
ing the head pose algorithm in the head-swap module:
Sample Head-Pose Images and Sample Head-Pose Key-
points. Sample Head-Pose Images contain multi-head
images of one person that cover almost the natural po-
sition of the head. To ensure the reality of the change
head pose process, the rotation angle of the head in
three axes is limited in range [−45◦, 45◦]. And for the
sake of simplicity, the rotation angle is uniformly sam-
pled in a limited range with a 5◦ division. The Sample
Head-Pose Key-points are 68 face landmarks extracted
from Sample Head-Pose Images as shown on Fig. 2.

The landmarks are normalized based on the area of
the human face. In order to reduce facial distortion
in photos captured by short focal length lens cameras,
Sample Head-Pose Images are utilized to change the
users’ faces from “near pose” to “far pose”. Sample
Head-Pose Images are split into two sets: near and far
depending on the capture distance from the camera to
the user’s face, which is defined as 30cm and 90cm. For
each “near” image, there is a head-angle corresponding
“far” image and the image pair having the closest head
angle to the user’s face is used for the pose-changing
task with DaGAN [7] implemented.
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Figure 3: System diagram of the Body Reshape module.

3.3 Body Reshape

3.3.1 Generate 2D Triangle Mesh

Firstly, a 3D human parametric model is fitted to hu-
man images. The fitting process follows SMPLify-X by
Pavlakos et al.[9]. The following is a short introduc-
tion, and more details are described in [9]. SMPL-X
model is fitted to the human body in an image using
2D key points and an iterative optimization approach.
The total objective is:

E(θ, β, ψ) = EJ (θ, β,K, Jest ) + λθbEθb + λθfEθf

+ λmh
Emh

+ λαEα + λβEβ + λεEε

+ λweightEweight + λheightEheight

(1)

Where:

• λθb , λθf , λmh
, λα, λβ , λweight, λheight are scalar

weights.

• θ, β, ψ are the pose, shape, and facial expressions
of SMPL-X model.

• θb, θf ,mh are the pose vectors for the body, face,
and two hands, respectively.

• K, Jest are the camera parameters and 2D de-
tected key-points.

• EJ penalty 2D euclidean distance between pro-
jected SMPL-X joints and Jest.Emh

, Eθf , Eβ , Eε

are simple L2 priors for the hand pose, facial pose,
body shape, and facial expressions, penalizing de-
viation from the neutral state.

• Eα is a simple prior penalizing extreme bending
only for elbows and knees. Eθb is a VAE-based
body pose prior. The interpenetration error term
is removed due to making the fitting process very
slow and having a little contribution to fitting per-
formance.

• Eweight , Eheight are added to the total objective
function to penalize the difference between the
predicted and real weight, and height of a human.

When the optimization process is done, the 3D hu-
man model with optimized parameters is projected to
2D sample source points. To ensure the smoothness
of the image warping process, the 2D sample source
points only take visible points which are detected by

using Ray Casting [12] method. Then, a 2D triangle
mesh is attached to the image to control image warp-
ing. The 2D triangle mesh is constructed based on
2D sample source points and the image bounding box
using Delaunay triangulation [13].

3.3.2 Generate target sample points

A simple model is constructed to predict SMPL-X
shape parameters from height and weight in this step.
The dataset for training is generated by registered
SMPL-X model to Vietnam human scan data (Viet-
tel dataset). This dataset includes more than 900 sam-
ples with different gender, occupation, region, pose and
body mass index to ensure the diversity of the popula-
tion in Vietnam.

The SMPL-X model has two important properties.
Firstly, body vertices of SMPL-X have a linear rela-
tion with shape space because SMPL-X model is con-
structed using Principal Component Analysis (PCA).
Secondly, the SMPL-X model explores the relationship
between the weight and volume of 900 registered sam-
ple data, and the linear relation between them is shown
in Fig. 4: the more heavy the body is, the more mas-
sive the body volume has. This linear relation between
weight and volume, combined with the linear relation
of body vertices of SMPL-X and shape space come
to a conclusion that the relationship between height,
weight, and shape space of SMPL-X model is assumed
to be linear. Therefore, a simple linear regressor is uti-
lized for the training process. The 2D target sample
points are obtained by using projections like 2D source
sample points.

3.3.3 Compute sample points deformation

The deformations of sample points are represented as
affine transformation matrices obtained by optimizing
the objective function below:

EA = ωpEp (JS , JT ) + ωsES (2)

Where:

• ωp, ωs are scalar weights.

• Ep (Jm, Ju) = ∥JT − Js∥2 penalty 2D euclidean
distance between 2D sample target points JT and
source points JS .ES =

∑
i

∑
j ∥Ai −Aj∥ the term
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Figure 4: The linear relationship between weight and volume.

enforces smooth surface deformation of 2D trian-
gle mesh.

• Ai, Aj are affine transformation matrices of two
vertices on an edge of triangles.

The final result after applying image pixels defor-
mation is shown in Fig. 5. For convenience, the im-
age pixel deformations are pre-computed for a sample
height, and weight. And the body in the image can be
changed in real-time by scaling the pixel deformations
via target height, and weight.

3.4 Head Swapping

The diagram of the HeadSwap module is illustrated in
Fig. 6. The preprocess data, combined with source
and target images, is utilized as the input data and
processed in the HeadSwap module. The input data
is processed in five stages: (1) Key point Extraction,
(2) Best-frame Finding, (3) Animated Head, (4) Head
Removal, and (5) Facial Landmark Transformation.

Two sets of 68 facial key points corresponding to
preprocess data are collected from the source image
and target image by implementing 2D Face Alignment
[2] in the key point Extraction stage. In total, there
are three key point sets belonging to the source image,
target image, and preprocess data.

Sample Head-Pose Images are generated from mul-
tiple face images with the same identity, various poses,
and expressions with the aim of representing the major-
ity of human facial poses. The more diverse the Sample
Head-Pose Images are, the more accurate the reference
key points detection task is. In the next stage, these
three key point sets are normalized by pupillary dis-
tance. Two key point sets from the source image and
target image are compared in sequence with Sample
Head-Pose key points to find the most identical frame
in Sample Head-Pose Images.

This technique performs improvement in creating
animated faces compared to other methods [7][3][24].
Animated Head images are created with only one

Figure 5: Results of body reshaping process with H
and W indicate height and weight, respectively.
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Figure 6: Diagram of the HeadSwap module.

source image and one destination image without the
need for a source video or a few shot images and a tar-
get image. Therefore, the processing time is shortened
with fewer images or frames.
DaGan [7] is integrated into the Animated Head

stage with the inputs including two sets of key points
and the source image and the output is the animated
source head with the angles of the target head. The
Animated Image and target image are fed into a seg-
mentation network to detect the head region in each
image. The head region in the target image is removed
and filled with colors of the surrounding region to avoid
blank space before being replaced with the head region
in the source image.

In the facial landmark transformation stage, the
transformation matrix is calculated from the key points
obtained in the key point Extraction stage and the im-
age distortion algorithm is utilized to transform the
image of the user’s face to match the model’s face in
the image. The matrix is calculated based on the spa-
tial matrix transformations as follows:

M =

[
scale. R cTu − scale. R.cTm

0 1

]
(3)

R =
(
U.(V)T

)T
(4)

U,Σ, (V)T = SVD
(
(lmkm)

T
. lmku

)
(5)

cu = mean (lmku) (6)

cm = mean (lmkm) (7)

∥lmkm∥ =
lm km − cm

std (lmkm − cm)
(8)

∥lmku∥ =
lm ku − cu

std (lmku − cu)
(9)

scale =
std (lmku − cu)

std (lmkm − cm)
(10)

Where:

• R is the rotation matrix.

• lmku and lmkm are the key point sets of the user
and model, respectively.

• mean is the average value of the dataset.

• std is the standard deviation value.

• SV D is the Singular Value Decomposition (SVD),
which is a factorization of a matrix into orthogonal
matrices and non-square diagonal matrices.

3.5 Skin and Facial Features Matching

In terms of output image natural enhancement, a skin-
changing technique is implemented in the pipeline to
make models’ skin correspond to users’ skin. The skin-
changing technique is split into 2 phases: skin tone
detection and skin changing as Fig. 7 and Fig. 8 show,
respectively.

In the first phase, the human skin tone is determined
by three color spaces: RGB (for red, green, and blue),
HSV (for hue, saturation, and value), and YCRCB.
The RGB color space is utilized for separating im-
ages into three channels: red, green, and blue. Three
threshold values, which represent the human skin color
range in different color spaces, are defined in the H
channel of HSV space and two channels of YCRCB
space to create three masks: one for HSV and two for
YCRCB.

After that, these three masks are merged by “AND”
logical operators and applied to the input image. The
region of the input image covered in the merged mask
is considered as “skin region”. In “skin region”, the
human skin tone in RGB is collected by dividing re-
spectively three total values of red, blue, and green by
the total number of pixels. In the proposed method,
both user and model skin tones are calculated for the
next phase: skin changing.

In human faces, there are some non-skin regions such
as eyebrows, eyes, lips, glasses, etc. When applying
skin changes to these regions, there is a high risk for
the output images to become unnatural. Therefore, a
preprocessing stage is added before the color-changing
stage to filter out these non-skin regions by using lower
and upper thresholds of the human skin color range
in the skin-changing phase. After the preprocessing
stage, the remaining skin regions are altered to match
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Figure 7: Tone detection phase.

the models’ skin. Firstly, the disparity between two
skin tones is expressed in three ways as follows:

diff1 =
cref
cori

(11)

diff2 =
255− cref
255− cori

(12)

diff3 =
255(cref − cori)

255− cori
(13)

While diff1, diff2, and diff3 are three values to de-
fine the difference between two skin tones, cref and
cori refer to the reference and original color, respec-
tively. After that, the result image iout is created by
comparing with cori and processing the original image
iin with three values diff1, diff2, and diff3:

iout =

{
iin × diff1, if iin < cori

iin × diff2 + diff3, if iin ≥ cori
(14)

Notice that these formulas above are applied in a
single channel only. Therefore, the input needs to be
split into three channels: red, green, and blue to calcu-
late each channel’s iout and then compose three values
to get the complete output image.
Due to differences in light environment between

model and user pictures such as intensity, directions,
etc, inspired by Exchanging Latent Encodings with
GAN for Transferring Multiple Face Attributes (El-
eGANt) [21], there is an additional makeup transfer
module after skin changing phase to make the user im-
age match the light condition of the model image. In
the makeup transfer module, the skin-changed model
image and the user image are defined as reference and
source, respectively. Thanks to the makeup transfer
module, dark and light regions in the model face are
estimated and applied to the user’s face to create the
light effect in the user’s face equivalent to the model
body.

4 Results

This section would divide the results into three sepa-
rate parts: (1) Evaluate the quantitative in Head Swap,

Figure 8: Skin changing phase.

(2) Evaluate the quantitative in Reshaping module, (3)
Evaluate the quantitative and qualitative in the whole
process.

4.1 Datasets and hardware specification

To evaluate our proposed method, four datasets: two
self-collected and two sub-datasets from VoxCeleb2 [5]
are utilized. The first self-collected dataset is Vietnam
adult scan data (Viettel dataset), which contains scan
data of 156 males and 250 females aged from 18 to
60. Viettel dataset is used for body reshape error ratio
evaluation. The second dataset includes portraits and
full-body images of five men and ten women for qual-
itative assessment tasks. The other two sub-datasets
are extracted from VoxCeleb2 [5] dataset for quantita-
tive result collection tasks. VoxCelebs [5] is a collection
of short interview videos (which last less than five min-
utes) of celebrities around the world.

The first sub-dataset is accumulated with 13079
pairs of corresponding source and destination images
in VoxCeleb2 [5]. These image pairs are used for
calculating the Structural Similarity Index measure
(SSIM), the Learned Perceptual Image Patch Similar-
ity (LPIPS), and Peak Signal to Noise Ratio (PSNR) of
the output from our proposed method. Due to the fact
that the Pose Reconstruction Error (Ep) is only eval-
uated on the same person, another sub-dataset is col-
lected from these 13079 image pairs by sampling source
and destination images on each pair of frames of the
same video to create 228 new image pairs.

Our proposed method is developed and assessed us-
ing an Internet-connected workstation with an Intel
Xeon W-2245 CPU, 64GB of memory, and an Nvidia
Quadro RTX 8000 GPU running Windows 10 Pro for
Workstations with Pytorch, OpenCV, Numpy, and Py-
charm installed.

4.2 Head Swap

Our proposed method is compared to the previous
state-of-the-art models which included: (1) HeSer[17],
(2) FOMM[18], (3) LPD[3], (4) Siarohin et al.[19]. Four
popular metrics [15][3] are used to make the evaluation:
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Table 1: Quantitative comparison on Head Swapping

No. Method EP↓ SSIM↑ LPIPS↓ PSNR↑
1 FOMM[18] 0.275 0.76 0.18 30.92
2 LPD[3] 0.063 0.52 0.50 28.84
3 Siarohin et al.[19] 0.137 0.73 0.20 30.01
4 HeSer[17] 0.026 0.77 0.19 31.33
5 Ours 0.022 0.90 0.09 34.82

(1) Pose reconstruction Error (Ep): represents the dif-
ference head pose between synthesized and source im-
age using the facial key points, (2) Structural simi-
larity index measure (SSIM): Estimate the perceived
quality of images such as luminance masking, contrast
masking, hand contrast (3) Peak Signal-to-Noise Ratio
(PSNR): Measure the quality of reconstruction of loss
image compression codecs (4) Learned Perceptual Im-
age Patch Similarity (LPIPS): Measure the Semantic
perceptual similarity between 2 images via the AlexNet
[23].
The table gives information about the quantitative

results of every metric of five different methods. Over-
all, our approach outperforms other methods on ev-
ery metric. As can be seen from Table 1, Pose Error
and Structure similarity index are 0.022 and 0.9, bet-
ter than approximately 15% and 17% respectively com-
pared to “HerSer” model. The biggest difference comes
from LPIPS, the best result before is around 0.18 [18],
while ours is 0.094, nearly 48% higher.

4.3 Reshaping

To identify the accuracy of the reshaping module, a
measurement for quantitative via three ratios in the
leg, shoulder, and arm is conducted. OpenPose[4] is
used to detect 25 key points and formulas to calculate
the ratios are illustrated as follows:

legratio =
b

c
(15)

shoulderratio =
a2

a1 + a2 + a3
(16)

armratio =
a1 + a2 + a3

c
(17)

when a1, a2, a3, b, and c are the body part lengths
shown in Fig. 9.
The boxplots in Fig. 10 and Fig. 11 and Table 3 il-

lustrate the error ratio (%) by males and females which
includes leg, shoulder, and arm. Overall, the mean er-
ror in the whole ratio is around 5% and maintained the
same level for 406 samples. However, the maximum er-
rors of leg ratios are approximately 18% both in males
and females. As can be seen from Fig. 10 and Fig. 11,
the number of errors staying below 8% is much larger
than the values above.

4.4 Runtime and performance analysis

The average processing time of the head-swapping task
over 13079 image pairs is 4 seconds, and the response

Table 2: Qualitative results of the proposed method

Source Image Target Image Result Image

H: 1.70m H: 1.68m
W: 66kg W: 67kg

BMI: 22.84 BMI: 23.74

H: 1.70m H: 1.68m
W: 85kg W: 67kg

BMI: 29.41 BMI: 23.74

H: 1.70m H: 1.68m
W: 72kg W: 73kg

BMI: 24.91 BMI: 25.86

H: 1.45m H: 1.62m
W: 55kg W: 50kg

BMI: 26.20 BMI: 19.05

H: 1.50m H: 1.62m
W: 40kg W: 50kg

BMI: 17.80 BMI: 19.05

H: 1.60m H: 1.62m
W: 48kg W: 50kg

BMI: 18.80 BMI: 19.05
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Table 3: Body error ratio of males and females

Gender Leg error ratio (%) Shoulder error ratio (%) Arm error ratio (%) Mean (%)
Male 5.96 4.72 4.80 5.16
Female 5.68 4.77 4.75 5.07
Mean (%) 5.82 4.75 4.78 5.12

Figure 9: Body part length used in body reshaping
assessment.

time of the body-reshape module on the Viettel dataset
is 0.021 seconds, which almost achieves real-time speed.
Table 2 indicates the qualitative outcomes on different
body types both male and female. More information
and details are put in the Appendix B. Overall, the
images after processing express high fidelity to capture
the user’s characteristics with various body types while
maintaining the feature of target images.

Three body types of source and target are chosen
to verify the efficiency of the algorithm with a multi-
class of BMI: (1) Overweight: BMI > 25, (2) Nor-
mal weight: 18.5 < BMI < 25, (3) Underweight:
BMI < 18.5. The area in the neck and facial skin
color are generated naturally and consistent with the
whole body. Furthermore, our algorithm could han-
dle and perform very well on long hair cases. The ac-
curacy of segmentation and head swapping combined
with skin color present the best results with high pre-
cision. Besides, the features of target images such as
belly fat/thin or muscular chest,... are kept and per-
formed nicely while changing the outlook to fit based
on the measurement of users through the reshaping
model.

Figure 10: Male body error ratio.

Figure 11: Female body error ratio.

5 Discussions and future work

5.1 Discussions

In this research, we present a unique photorealistic
framework for virtual try-on applications that com-
bines: (1) Face swapping, (2) Body shape Reconstruc-
tion, and (3) Skin adaptive changing. Our approach
achieves high-fidelity in quantitative results comparing
others methods and ensures the visual appearance of
users on clothing after try-on processing. The average
runtime is around 5 seconds on a single thread and
there is no specific requirement in preparing data for
processing with an image size of 1280 x 720 when ap-
plying a new type of clothing. Besides that, the ease of
package modules brings our work a huge potential to
apply and integrate into a complete mobile application
and system. Our research is the first all-in-one pho-
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torealistic method that can handle complex clothing
details, facial features, skin tone, and different body
shapes with the quickest runtime and simple require-
ments.

5.2 Limitations

Our approach is sensitive to input the user’s portrait
image. Selfie photos from users could be an issue if the
distance is too close (less than 25cm from the face to
camera), the output when swapping faces could be un-
suitable with the target and cause an in-efficient visual.
Furthermore, the size of the package and hardware re-
quirements are not completely optimized for low-end
or mobile devices. Besides, the extreme body shapes
are not validated and verified with our solution.

5.3 Future work

Our current method should be to improve the head
swapping module by using two approaches: (1) re-
process the input data, (2) custom the layers, and (3)
re-organize the processing stream to combine modules
and reduce processing time. An optimization frame-
work with more lightweight models is being developed
for mobile devices like smartphones or low-end com-
puters. A deeper investigation into various body types
must be present in the future direction. It would be
interesting to add a feature that could reconstruct and
change body shape in real-time in the outcome. Fi-
nally, our approach needs to integrate with various ap-
plications corresponding to virtual try-on and evaluate
the performance of end-users.

Acknowledgement: The authors would like to thank
all members of the 3DR team for their contribution.
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Table 5: Female body error ratio

No. Sample Leg (%) Shoulder (%) Arm (%) Mean (%) No. Sample Leg (%) Shoulder (%) Arm (%) Mean (%)
1 F10 2.3 4.9 3.8 3.7 67 F161 5 14.6 8.3 9.3
2 F100 8.1 5.4 7.5 7.0 68 F162 6.5 0.8 7.6 5.0
3 F101 14.2 0.9 0.6 5.2 69 F163 10.1 1.9 3.8 5.3
4 F102 1.3 0.2 3.2 1.6 70 F164 6.9 0.2 6.3 4.5
5 F103 5.8 1.9 6.6 4.8 71 F165 6.1 4.5 7.2 5.9
6 F104 3.5 8 1.1 4.2 72 F166 2.4 6.6 7.4 5.5
7 F105 3.7 8 8 6.6 73 F167 0.3 3 8.3 3.9
8 F106 16.5 5.4 6.4 9.4 74 F168 18.4 4.2 4.7 9.1
9 F107 2.7 2 9.4 4.7 75 F169 4 7.3 4.1 5.1
10 F108 3.8 4.6 4.7 4.4 76 F170 1.3 10.8 5.8 6.0
11 F109 4.9 8.6 5.1 6.2 77 F171 0.9 3 0.6 1.5
12 F11 4.9 0.7 8 4.5 78 F172 0.8 4.1 1.1 2.0
13 F110 9.5 6.1 6.3 7.3 79 F173 2 0.6 3.2 1.9
14 F111 3.4 0.4 2.9 2.2 80 F174 1.3 0.9 0.6 0.9
15 F112 10.8 6.8 3.9 7.2 81 F175 5.2 10.2 6.7 7.4
16 F113 4.6 6.1 4.7 5.1 82 F176 5.3 2.8 2 3.4
17 F114 12.9 2.5 6.6 7.3 83 F177 6.3 7.4 4.9 6.2
18 F115 1.3 5 11.4 5.9 84 F178 0.2 2.5 4.6 2.4
19 F116 10 2.7 3.8 5.5 85 F179 1.3 5.4 1 2.6
20 F117 14.3 5.5 1.5 7.1 86 F18 2 3.9 5.7 3.9
21 F118 5.6 13.9 1.4 7.0 87 F180 0.8 10.5 1.2 4.2
22 F119 0.1 0.3 6.7 2.4 88 F181 4.6 10.9 0.7 5.4
23 F12 7.2 4.8 7.7 6.6 89 F182 12 1.3 2.5 5.3
24 F120 7.8 2.1 10.4 6.8 90 F183 10.7 4.4 5.8 7.0
25 F121 7.4 3.7 8.5 6.5 91 F184 8.9 5.8 0.6 5.1
26 F122 9.4 5 11.4 8.6 92 F185 13 2.3 6.6 7.3
27 F123 1.7 5.8 6.3 4.6 93 F186 8.2 5.8 5.9 6.6
28 F124 0.9 7 4.3 4.1 94 F187 10.2 6.5 1.3 6.0
29 F125 6.5 9.8 7.8 8.0 95 F188 5.9 5.9 1.7 4.5
30 F126 5.9 18.6 4.8 9.8 96 F189 18.1 13.6 5.1 12.3
31 F127 5.1 6.8 13.6 8.5 97 F19 6.8 2 3.5 4.1
32 F128 0.1 8.7 8 5.6 98 F190 12.4 5.8 2.1 6.8
33 F129 0.6 4.6 8.6 4.6 99 F191 0.8 7.9 0.8 3.2
34 F13 4 5 0.7 3.2 100 F192 4 2.9 3.1 3.3
35 F131 4.7 4.3 5.2 4.7 101 F193 6.8 3.5 4.1 4.8
36 F132 12 2.6 6.1 6.9 102 F194 7.2 0.5 0.6 2.8
37 F133 3.1 14.5 2.3 6.6 103 F195 6.8 7.4 1.1 5.1
38 F134 12 8.2 4.1 8.1 104 F196 13.8 6.2 2.3 7.4
39 F135 13 13.5 10.8 12.4 105 F197 7.6 15.7 2.4 8.6
40 F136 10.6 8.7 1.3 6.9 106 F198 8.5 3.8 0.8 4.4
41 F137 9.4 0.4 1.2 3.7 107 F199 2.1 6.8 3.6 4.2
42 F138 5.7 1.5 6.7 4.6 108 F20 5.5 6.6 5.3 5.8
43 F139 4.1 7.6 11.5 7.7 109 F200 11 0.5 3.7 5.1
44 F14 8.9 1.5 2.2 4.2 110 F201 7.4 11.6 3.8 7.6
45 F140 8.5 0.3 3.2 4.0 111 F202 7.9 7.2 6.7 7.3
46 F141 13.7 2.2 6.9 7.6 112 F203 0.1 5.7 2.3 2.7
47 F142 1.2 7.8 7.4 5.5 113 F204 8.5 1.4 8.8 6.2
48 F143 6.4 2 8 5.5 114 F205 0.2 2.2 2.3 1.6
49 F144 9.7 7.2 6.3 7.7 115 F206 5.4 5.4 5.9 5.6
50 F145 2.6 3.3 4.1 3.3 116 F207 0.1 10.3 5.7 5.4
51 F146 15.5 5.6 5.9 9.0 117 F208 0.6 3.9 4.6 3.0
52 F147 9.1 8.2 11.1 9.5 118 F209 5.7 2.1 6.1 4.6
53 F148 2.7 4.2 9 5.3 119 F21 5.6 3.4 6.1 5.0
54 F149 9.2 2.9 2.6 4.9 120 F210 2 7.5 2.1 3.9
55 F150 0.1 9.1 1.9 3.7 121 F211 11.3 3.2 0.8 5.1
56 F151 0.4 1.9 7.4 3.2 122 F212 1.8 6.8 0.8 3.1
57 F152 1 10.3 8.8 6.7 123 F213 3.1 1.9 4.4 3.1
58 F153 9.4 0 10.1 6.5 124 F214 8.4 5.4 4.4 6.1
59 F154 15.2 1.6 7.6 8.1 125 F215 11 7.7 4.3 7.7
60 F155 13.4 4.9 7.6 8.6 126 F216 4.1 3.8 1.3 3.1
61 F156 4.2 2.9 12.2 6.4 127 F217 0.9 4.3 3.1 2.8
62 F157 2.1 0.5 9.5 4.0 128 F218 7.2 2.8 6.9 5.6
63 F158 12.6 2.6 9.6 8.3 129 F219 3.7 5.7 5 4.8
64 F159 13.2 0.4 14.8 9.5 130 F22 2.3 5.8 0.2 2.8
65 F16 11.7 7.6 1.8 7.0 131 F220 6.9 6 3.2 5.4
66 F160 12.6 6.1 0.8 6.5 132 F221 3.4 7 4.4 4.9
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No. Sample Leg (%) Shoulder (%) Arm (%) Mean (%) No. Sample Leg (%) Shoulder (%) Arm (%) Mean (%)
133 F222 2.3 6.2 6.3 4.9 192 F45 3.8 1.4 4 3.1
134 F223 8.2 17.1 3.4 9.6 193 F46 4.8 0.4 5.9 3.7
135 F224 3.7 6.5 3.5 4.6 194 F47 5.4 0.9 8.5 4.9
136 F225 1.9 1.4 6.6 3.3 195 F48 1.4 0.9 7 3.1
137 F226 1.1 0.6 5.3 2.3 196 F49 10.5 3.7 0.4 4.9
138 F227 8.5 0 4.3 4.3 197 F5 1.9 4.3 5 3.7
139 F228 0.3 4 4 2.8 198 F50 2.5 1.9 0.1 1.5
140 F229 1.5 2.8 6.4 3.6 199 F51 7.3 12.1 5.5 8.3
141 F23 9.7 1.4 0.2 3.8 200 F52 5.6 5.5 4.4 5.2
142 F230 0.7 6.5 1 2.7 201 F53 16.8 11.2 6.8 11.6
143 F231 6.4 2 4.6 4.3 202 F54 6.4 4.3 7.8 6.2
144 F232 0.5 5.8 3.4 3.2 203 F55 4.9 6.5 2.9 4.8
145 F233 2.8 1.6 0.6 1.7 204 F56 1 0.8 3.3 1.7
146 F234 7.5 5.4 11.8 8.2 205 F57 11 1.4 0.3 4.2
147 F235 4.6 1.1 4.5 3.4 206 F58 6.2 9.9 6.8 7.6
148 F236 6.1 2.7 0.6 3.1 207 F59 1.1 0.7 1.1 1.0
149 F237 5.1 3.9 6.7 5.2 208 F6 8.2 5 7.4 6.9
150 F238 1.7 0.2 6.6 2.8 209 F60 5.4 2.3 6.6 4.8
151 F239 1.1 2.8 5.8 3.2 210 F61 1.2 7.1 6.3 4.9
152 F24 2.6 1.8 5.2 3.2 211 F62 6.4 2.5 4.6 4.5
153 F240 11.2 0.7 2.5 4.8 212 F63 10.8 3.5 3.6 6.0
154 F241 4.1 2.1 0.1 2.1 213 F64 1.4 2.2 0.7 1.4
155 F242 2.7 1.1 5 2.9 214 F65 6.6 6.8 2.8 5.4
156 F243 6.6 7.8 0.1 4.8 215 F66 7.9 13.3 2.5 7.9
157 F244 3.5 10.4 6.8 6.9 216 F67 18 1.6 1.1 6.9
158 F245 10.1 4.1 1.1 5.1 217 F68 0.2 7.2 2.9 3.4
159 F246 9.1 2.5 6.8 6.1 218 F69 1.9 0.5 10.3 4.2
160 F247 2.3 2.4 7.9 4.2 219 F7 1.7 7.2 0.9 3.3
161 F248 10.6 0.1 3.3 4.7 220 F70 10.8 2.5 1.1 4.8
162 F249 1.3 1.3 0.4 1.0 221 F71 10.8 4.5 0.4 5.2
163 F25 6.5 3.7 5.8 5.3 222 F72 6.7 13.4 3.7 7.9
164 F250 9.8 0.3 7.9 6.0 223 F73 3.3 3.4 9.9 5.5
165 F252 8.1 1.7 7.3 5.7 224 F74 0.5 1.2 3.7 1.8
166 F253 10.7 6.1 7.5 8.1 225 F76 13 3.2 1 5.7
167 F254 5.6 8.2 5.9 6.6 226 F77 3.1 7.2 5.6 5.3
168 F255 10.4 8.4 8.9 9.2 227 F78 4.3 1.3 3 2.9
169 F256 10.3 11.5 1.5 7.8 228 F79 6.5 7.7 6.1 6.8
170 F257 12.8 3.3 1.4 5.8 229 F8 2.5 2.1 8.3 4.3
171 F258 2.3 1.8 5.3 3.1 230 F80 0.3 3.1 0.8 1.4
172 F259 9.5 10.4 6.5 8.8 231 F81 3 4.8 4.3 4.0
173 F26 3.9 9 3.3 5.4 232 F82 8.6 4.9 2.4 5.3
174 F27 5.8 1.1 1.5 2.8 233 F83 0.5 2 0.5 1.0
175 F28 1.6 4.4 1 2.3 234 F84 4.2 3.2 1.2 2.9
176 F29 3.7 4.1 6.7 4.8 235 F85 2.2 1 5.3 2.8
177 F3 0.4 4.8 7.7 4.3 236 F86 6.4 7.2 0.4 4.7
178 F30 7.8 3.2 2 4.3 237 F87 13.9 2.4 10.1 8.8
179 F31 6.3 4 0.4 3.6 238 F88 5.6 1.1 3.3 3.3
180 F32 8.7 1.1 1.5 3.8 239 F89 1.1 0.1 10.9 4.0
181 F34 5.3 4.2 1.2 3.6 240 F9 1.8 2.3 10.3 4.8
182 F35 6.8 1.2 7.5 5.2 241 F90 5.2 1.7 4.4 3.8
183 F36 4.2 6.6 1.8 4.2 242 F91 9.2 3.4 7 6.5
184 F37 6.6 12 6.4 8.3 243 F92 8.1 4.9 11.9 8.3
185 F38 6.2 5.2 3.8 5.1 244 F93 6.3 10.2 9.1 8.5
186 F39 3.1 1.2 3.2 2.5 245 F94 3.6 2.8 4.9 3.8
187 F4 2.7 9.3 6.7 6.2 246 F95 11 7.1 5 7.7
188 F41 13.4 4.4 9.2 9.0 247 F96 0.5 0 2.1 0.9
189 F42 1 2.8 4.6 2.8 248 F97 3.8 4.5 5 4.4
190 F43 6.8 1.8 3.2 3.9 249 F98 6.6 7.5 6.3 6.8
191 F44 6.7 1.7 6.3 4.9 250 F99 5 2.1 6.1 4.4
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Table 6: Male body error ratio

No. Sample Leg (%) Shoulder (%) Arm (%) Mean (%) No. Sample Leg (%) Shoulder (%) Arm (%) Mean (%)
1 M100 1.7 4.8 11.9 6.1 74 M27 1 0.2 8 3.1
2 M101 9.9 1.8 0.2 4.0 75 M28 6.5 6.5 11 8.0
3 M102 6.9 3.7 3.4 4.7 76 M29 1.5 1.1 6.2 2.9
4 M103 7.5 6.9 9 7.8 77 M30 3.3 2.5 6.1 4.0
5 M104 2 2.3 0.3 1.5 78 M31 4.4 2.3 7 4.6
6 M106 0.7 3.3 5.5 3.2 79 M32 4.6 6.9 1.1 4.2
7 M107 6.3 0.8 7.8 5.0 80 M33 3.7 1.9 3 2.9
8 M108 12.1 0.8 6.5 6.5 81 M34 2.9 3.4 2.4 2.9
9 M109 9.9 8.5 1.2 6.5 82 M35 1 4.3 2 2.4
10 M110 4.8 2.9 0.8 2.8 83 M36 0.4 7.6 10.2 6.1
11 M111 15 6 4.5 8.5 84 M37 10.1 3.4 2.9 5.5
12 M112 9.5 0.9 1.5 4.0 85 M38 1.9 8.6 7.8 6.1
13 M113 14.7 1.5 2.7 6.3 86 M39 3 5.3 0.1 2.8
14 M114 7.3 3.3 6.8 5.8 87 M40 2.1 2.6 4 2.9
15 M115 10.6 5.6 4.7 7.0 88 M41 5.7 5.6 2.1 4.5
16 M116 8.2 4.1 4.6 5.6 89 M42 0.6 10.5 1.9 4.3
17 M117 12.3 7.5 0.7 6.8 90 M43 3.4 2 5.6 3.7
18 M118 11.3 0.8 4.4 5.5 91 M44 4.8 12.8 7.1 8.2
19 M119 8.4 9.5 0.4 6.1 92 M45 10.2 2.4 9.9 7.5
20 M120 8.4 2.3 2.2 4.3 93 M46 9.3 4.6 1.7 5.2
21 M121 10.5 10.2 2.1 7.6 94 M47 2.7 3.7 1.6 2.7
22 M122 9.6 7.1 2.4 6.4 95 M48 16.4 2.5 4.4 7.8
23 M123 8.9 4.3 6.2 6.5 96 M49 0 2.9 4.8 2.6
24 M124 11.9 11.1 2.6 8.5 97 M50 2.6 0.9 3.4 2.3
25 M125 10.6 3.4 9.3 7.8 98 M51 9.5 2.3 2.7 4.8
26 M126 8.8 8.3 0.4 5.8 99 M52 4.1 0.9 7 4.0
27 M127 9.7 5.1 3.2 6.0 100 M53 2.3 2.3 8.3 4.3
28 M128 5.4 4.5 0.4 3.4 101 M54 0.2 7.8 8.6 5.5
29 M129 9 9.1 0.7 6.3 102 M55 1.2 7.2 6.4 4.9
30 M130 9 9.3 7.7 8.7 103 M56 1.6 5.4 3.6 3.5
31 M131 12.1 13.4 2.9 9.5 104 M57 7.8 3 6.5 5.8
32 M132 11.4 12.6 3.9 9.3 105 M58 8.3 4.4 4.5 5.7
33 M133 5.7 14.2 0.6 6.8 106 M59 0.3 4.1 8.3 4.2
34 M134 1.3 11.6 1.7 4.9 107 M60 3.3 1.3 1.7 2.1
35 M135 4.6 4 0.9 3.2 108 M61 3.9 3.4 3.6 3.6
36 M136 10.5 4.5 5 6.7 109 M62 0.2 7.7 4.1 4.0
37 M137 5 4.5 7.1 5.5 110 M63 2.5 4.7 4 3.7
38 M138 8.7 4.3 1.6 4.9 111 M64 1 0.4 3.7 1.7
39 M139 0.4 9.7 6.3 5.5 112 M65 14.4 2.9 10.4 9.2
40 M14 4.6 0.2 1.2 2.0 113 M66 11.3 0.7 0.9 4.3
41 M140 3.4 0.8 0.5 1.6 114 M67 2.4 11.3 1.3 5.0
42 M141 1.7 2.7 2.9 2.4 115 M68 1 0.9 0.1 0.7
43 M143 0.1 1.3 8.3 3.2 116 M69 17.1 5.5 3.6 8.7
44 M144 1.9 2.7 4.6 3.1 117 M70 5.5 12.9 2.2 6.9
45 M145 0.5 2.6 6.4 3.2 118 M71 5.1 1.9 6.4 4.5
46 M146 9.6 13.4 0 7.7 119 M72 1.1 0.7 5.2 2.3
47 M147 4.2 13.5 6.6 8.1 120 M73 0.7 11 0.5 4.1
48 M148 0.5 2 4.5 2.3 121 M74 12.4 10.4 0.5 7.8
49 M149 1.3 0.9 4.6 2.3 122 M75 10.1 3 7.9 7.0
50 M15 3.7 2 3.3 3.0 123 M76 4.6 2.9 8 5.2
51 M150 2.4 9.2 6.9 6.2 124 M77 6.2 14.7 10.5 10.5
52 M151 2.3 8.2 6.8 5.8 125 M78 4.7 4.3 2.5 3.8
53 M152 10.7 2.7 3.1 5.5 126 M79 7.2 14.5 11 10.9
54 M153 8.2 0.8 5.1 4.7 127 M80 6.1 1.6 8.1 5.3
55 M154 1.4 3.5 6.6 3.8 128 M81 2 8.6 6.2 5.6
56 M155 9.7 6.8 0.5 5.7 129 M82 0.9 4.7 8.2 4.6
57 M157 5.6 0.3 3.8 3.2 130 M83 6.4 0.3 11.3 6.0
58 M158 10.7 0.7 4.5 5.3 131 M84 6.7 4 8.5 6.4
59 M159 4.1 0.3 0.5 1.6 132 M85 1.5 1.4 10.2 4.4
60 M16 0.6 2.2 3.3 2.0 133 M86 8.8 0.3 6 5.0
61 M160 2.7 7.1 3.8 4.5 134 M87 5.7 9.9 4.3 6.6
62 M161 4 4.9 3.7 4.2 135 M88 12.1 2.9 9.2 8.1
63 M162 4.3 8.3 1 4.5 136 M89 10.4 0.7 10.5 7.2
64 M163 7.2 3.9 5.7 5.6 137 M90 3.9 14.3 4.7 7.6
65 M17 0.7 3.7 6.1 3.5 138 M91 7.8 1.2 0.6 3.2
66 M18 0.8 4.5 4.1 3.1 139 M92 2.7 2 8.1 4.3
67 M19 1.2 1.2 5.8 2.7 140 M93 10.9 8.3 13.7 11.0
68 M20 11.8 4 4.6 6.8 141 M94 6.9 1 7.5 5.1
69 M21 2.9 6.7 3.5 4.4 142 M95 5.2 5.8 8.4 6.5
70 M23 1.8 10.5 3.6 5.3 143 M96 14.7 7 4.9 8.9
71 M24 13.4 3.3 8.3 8.3 144 M97 6.9 0.7 8.4 5.3
72 M25 9.7 0.2 6.5 5.5 145 M98 2 0.7 8.1 3.6
73 M26 10 12.4 3.8 8.7 146 M99 0.4 0.4 8.1 3.0
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