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Abstract: The identification of harmonic generating loads and the assignation of responsibility for 
harmonic pollution is an important first step for harmonic control in modern power systems. In this 
paper, a previously introduced power multivector is examined as a possible tool for the 
identification of such loads. This representation of power is based on the mathematical framework 
of Geometric Algebra (GA). Components of the power multivector derived at the point of 
connection of a load are grouped into a single quantity, which is a bivector in GA and is 
characterized by a magnitude, direction and sense. The magnitude of this bivector can serve as an 
indicator of the distortion at the terminals of the load. Furthermore, in contrast to indices based 
solely on magnitude, such as components derived from any apparent power equation, the proposed 
bivectorial representation can differentiate between loads that enhance distortion and those with a 
mitigating effect. Its conservative nature permits an association between the distortion at specific 
load terminals and the common point of connection. When several loads connected along a 
distribution line are considered, then an evaluation of the impact of each one of these loads on the 
distortion at a specific point is possible. Simulation results confirm that information included in the 
proposed bivector can provide helpful guidance when quantities derived from apparent power 
equations deliver ambiguous results. 

Keywords: power theory; power system harmonics; distorting load identification 
 

Nomenclature: u(t): Voltage time function [V]; i(t): Current time function [A]; U: Voltage rms 
value [V]; I: Current rms value [A]; Ui: Rms value of i-th voltage harmonic [V]; Ii: Rms value of 
i-th current harmonic [A]; αi: Phase angle of i-th voltage harmonic; βi: Phase angle of i-th current 
harmonic; φi: Phase difference of i-th harmonic voltage and current; u: Voltage vector [V]; i: 
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Current vector [A]; S: Apparent power [VA]; P: Active power [W]; Q: Reactive power [Var]; DB: 
Budeanu’s distortion power [VA]; QB: Budeanu’s reactive power [VA]; QF: Fryze’s reactive power 
[VA]; SQ: Sharon’s quadrature reactive power [VA]; SI: Fundamental apparent power [VA]; DI: 
Current distortion power [VA]; DV: Voltage distortion power [VA]; SH: Harmonic apparent power 
[VA]; S: Power multivector [VA]; Pii: Active power of i-th harmonic [W]; Qii: Reactive power of 
i-th harmonic [Var]; Q: Reactive power bivector [Var]; Qii: Reactive power bivector of i-th 
harmonic [Var]; PM: Nonactive power bivector associated with in-phase current components [VA]; 
QM: Nonactive power bivector associated with quadrature current components [VA]; PMij: 
Nonactive power bivector associated with i-th harmonic voltage and j-th harmonic current 
component in phase with its respective voltage harmonic [VA]; PMij: Magnitude of PMij [VA]; QMij: 
Nonactive power bivector associated with i-th harmonic voltage and j-th harmonic current 
component in quadrature with its respective voltage harmonic [VA]; QMij: Magnitude of QMij [VA]; 
BM: Generalized Mutual Coupling (GMC) bivector [VA]; BMh: Component of BM associated with 
harmonics up to the 50th order [VA]; BMsh: Component of BM associated with supraharmonics [VA]; 
ux(t): Voltage of load x time function [V]; ix(t): Current of load x time function [A]; αx,i: Phase angle 
of i-th voltage harmonic of load x; βx,i: Phase angle of i-th current harmonic of load x; φx,i: Phase 
difference of i-th harmonic voltage and current of load x; θx,i: Phase difference between the voltage 
at a common point of connection and the voltage of load x; Ux,i: Rms value of i-th voltage harmonic 
of load x [V]; Ix,i: Rms value of i-th current harmonic of load x [A]; ux: Voltage vector of load x [V]; 
ix: Current vector of load x [A]; Sx: Power multivector of load x [VA]; Px,ii: Active power of i-th 
harmonic of load x [W]; Qx,ii: Reactive power of i-th harmonic of load x [Var]; PMx,ij: Magnitude of 
nonactive power bivector of load x associated with i-th harmonic voltage and j-th harmonic current 
component in phase with its respective voltage harmonic [W]; QMx,ij: Magnitude of nonactive power 
bivector of load x associated with i-th harmonic voltage and j-th harmonic current component in 
quadrature with its respective voltage harmonic [Var]; BMx: GMC bivector of load x [VA]; BMxp: 
Component of BMx parallel to the GMC bivector BM at a common point of connection [VA]; BMxr: 
Component of BMx orthogonal to the GMC bivector BM at a common point of connection [VA]; bMx, 
bMhx, bMshx: Coefficients of contribution of load x to BM, BMh and BMsh respectively 

1. Introduction 

1.1. Motivation and incitement 

Power quality is one of the most prominent topics in modern power engineering literature. 
Among the numerous problems classified as power quality disturbances, power system harmonics 
are a serious concern for utilities and consumers alike. The growing awareness regarding the 
environmental impact of fossil fuel consumption as well as their impending depletion has given rise 
to a quest for more energy-efficient electronic equipment in industrial, commercial and residential 
installations. Nonlinear loads such as LED lamps, industrial converters, electronic power supplies 
and battery chargers are becoming increasingly common. The integration of renewable energy 
systems into utility grids is also rapidly growing, with photovoltaic (PV) systems emerging as major 
contributors to energy generation. In addition to large scale photovoltaic power plants, small scale 
PV installations on rooftops connected to the low voltage utility grid are practically commonplace. 
Furthermore, new kinds of equipment incorporating power electronic converters, such as electric 
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vehicle (EV) battery chargers are expected to proliferate in the future. All these devices tend to 
inject harmonics into the grid at the point of their connection. The harmonic currents generated by 
these devices cause a corresponding voltage drop on the distribution line impedance resulting in a 
distorted voltage supply for all loads.  

Waveform distortion in power systems can result in increased losses and heating in 
transformers and motors. It can also cause interference with communication circuits and malfunction 
of electronic equipment. The identification of harmonic generating customers is an important first 
step in controlling harmonic levels in the grid. By identifying harmonic emitting loads, appropriate 
mitigation solutions can be considered [1–3]. 

1.2. Literature review 

Various approaches for distorting load identification have been presented in the literature [4–11]. 
They are usually classified into multipoint and single-point methods. The former involve multiple 
measurement points and synchronous distributed measurements. Their superior accuracy is offset by 
the complexity of the required equipment and the amount of data involved. The latter involve a single 
measurement point at the cross-section between the grid and the load under consideration. They are 
less accurate but more easily applied. 

Some of the single-point methods that have been proposed involve the construction of a 
Thevenin or Norton equivalent circuit in order to determine the dominant harmonic source. An 
important requirement is the accurate estimation of the utility side and customer side equivalent 
impedances or admittances. A traditional single-point method is based on the determination of the 
direction of the harmonic active power flow with respect to the fundamental active power at the 
point of connection of a load. By measuring harmonic voltage and current rms values and phase 
difference angles at the point of connection, the signs of individual harmonic active powers are 
derived. A bidirectional active power flow indicates that the load generates harmonics. However, it 
has been demonstrated that in certain situations a bidirectional flow will not occur even though the 
load is nonlinear [12]. This approach may also fail to reveal a nonlinear load simply because the 
values of harmonic active (and reactive) components are very low, as it is often the case in real 
scenarios. Due to these considerations, more recent methods focus on non-active components of 
previously defined apparent power equations [8–11]. More specifically, the proposed distorting load 
identification criteria are based on some kind of distortion power. This distortion power is defined as 
one of the components of an apparent power equation. A common characteristic of such expressions 
is the fact that the conservation principle does not apply to them. 

In [8], Budeanu’s distortion power is used in order to determine whether a load is nonlinear. 
This power quantity is defined as 

2 2 2
B BD S P Q= − −                                                             (1) 

where S is the apparent power and P is the active power. Also QB is defined as 

sinB i i i
i

Q U I ϕ=∑                                                                (2) 
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where Ui, Ii are the rms values of the i-th harmonic voltage and current respectively and φi their 
phase difference. 

Power quantities defined in IEEE Std. 1459 [13] have also been considered for the 
identification of distorting loads [9,10]. The apparent power equation suggested by IEEE Std. 1459 
is the following. 

( ) ( ) ( ) ( )2 2 2 22 2 2 2 2 2 2
1 1 1 1 1 1H H H H I V HS U I U I U I U I S D D S S D= + + + = + + + = +         (3) 

where SI = U1I1 is the fundamental apparent power, DI = U1IH is the current distortion power, DV = 
UHI1 is the voltage distortion power and SH = UHIH is the harmonic apparent power. Furthermore, if 
U, I are the rms values of the voltage and current, then 

2 2 2 2
1

1
H h

h
U U U U

≠

= − =∑                                                            (4) 

and 

2 2 2 2
1

1
H h

h
I I I I

≠

= − =∑                                                                (5) 

In [11], an approach was presented based on the comparison of three different nonactive 
powers found in the literature. The three quantities are the fundamental reactive power, i.e., 

11 1 1 1sinQ U I ϕ=                                                                      (6) 

Fryze’s reactive power, defined as 

2 2
FQ S P= −                                                                       (7) 

and Sharon’s quadrature reactive power, defined as 

2 2sinQ i i
i

S U I ϕ= ∑                                                             (8) 

The fundamental reactive power Q11 is considered as a minimum reference value, since it will 
usually be nonzero, even in the absence of harmonics. QF is the nonactive power written as a single 
entity and equals Q11 in the sinusoidal case. SQ assumes an intermediate value between Q11 and QF. 
If the value of SQ is closer to Q11 than to QF, then the source of harmonic pollution is assumed to be 
upstream from the metering point, otherwise the source of harmonic pollution is assumed to be 
downstream from the metering point. 

1.3. Contribution and paper organization 

Distorting load identification based on power components calculated at the load terminals is 
one of the incentives for the development of a power theory for circuits with periodic, nonsinusoidal 
waveforms. For decades, the proposed approaches were mainly focused on providing a 
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decomposition of the apparent power based on various criteria and this is still the norm [13]. 
However, any apparent power equation can only provide limited information, due to the fact that its 
terms are squared and often aggregated [14]. This can be an issue even for the sinusoidal case. The 
apparent power equation S2 = P2 + Q2 needs to be accompanied by an expression such as 
capacitive/inductive for the reactive power. On the other hand, the complex power S = P + jQ fully 
describes power related phenomena at a cross-section between a source and a linear time invariant 
passive load of any complexity. Its magnitude is equal to the apparent power and its direction and 
sense are defined by its components on the two axes of the complex plane.  

The multidimensionality of voltages and currents under nonsinusoidal conditions does not 
permit the representation of power by means of complex algebra. Even though current and voltage 
calculations can be performed using phasor representations for each individual frequency based on 
the superposition principle, the same principle cannot be applied in power calculations. In [14,15] a 
novel energy flow model to describe all power components at a cross-section between a source and 
a load under nonsinusoidal conditions was introduced. An interpretation of the power components in 
association with an equivalent circuit was presented. For the representation of power, the proposed 
model was based on the Geometric Algebra (GA) framework [16]. More specifically, a power 
multivector was introduced, which is fully capable of providing all the necessary information to 
determine the power components. The apparent power S can be derived as the magnitude of the 
multivector. The aim of this paper is to investigate the information that can be derived from the 
components of this power multivector regarding the impact of a load on the distortion at a point of 
interest. 

This paper is organized as follows. The multivectorial representation of power that will be 
utilized in the proposed approach is briefly outlined in Section 2 and an index for distorting load 
identification based on this representation is introduced. The determination of the role of a specific 
load in the distortion at a common point of connection based on this index is presented in Section 3. 
Simulations using the proposed approach are presented in Section 4. The results are discussed in 
Section 5. The conclusions are presented in Section 6. 

2. Geometric Algebra representation of power 

2.1. Formulation of a power multivector 

For the following analysis it will be assumed that the voltage and the current contain the same 
harmonic orders. However, the approach proposed in [14,15] can handle any situation, including the 
case of harmonics only present in the voltage or the current. 

Let us consider the circuit in Figure 1, where a load is supplied by a periodic, nonsinusoidal 
voltage source. The voltage at the cross-section x-x΄ is 

1 1( ) 2 cos( ) 2 cos( )k ku t U t U k tω α ω α= + + +                                (9) 

where U1, Uk are the rms values of the fundamental and the k-th harmonic voltage component 
respectively and α1, αk are the phase angles. 
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Figure 1. Nonsinusoidal voltage source supplying a load.  

The load current will consist of harmonic components of the same order, with rms values I1, Ik 
and phase angles β1, βk respectively. If φi = αi – βi, for i = 1, k then the current can be decomposed 
into subcomponents in phase and in quadrature with the corresponding harmonic voltage component, 
as follows. 

1 1 1

1 1 1 1 1 1

( ) 2 cos( ) 2 cos( )

2 cos cos( ) 2 sin sin( )

2 cos cos( ) 2 sin sin( )

k k k

k k k k k k

i t I t I k t

I t I t

I k t I k t

ω α ϕ ω α ϕ

ϕ ω α ϕ ω α

ϕ ω α ϕ ω α

= + − + + −

= + + +

+ + + +

                      (10) 

Functions u(t) and i(t) are expressed as linear combinations of the four orthonormal basis 

functions ( ){ 12cos tω α+ , ( )12sin tω α+ , ( )2cos kk tω α+ , ( )}2sin kk tω α+ . They can also be 

represented by vectors u and i in a 4-dimensional vector space V4 spanned by 4 orthonormal basis 
vectors {e1, e2, e3, e4}, which have a one-to-one correspondence with the basis functions, as follows. 

1 1 3kU U= +u e e                                                             (11) 

and 

1 1 1 1 1 2 3 4cos sin cos sink k k kI I I Iϕ ϕ ϕ ϕ= + +i e e + e e                               (12) 

The vectors of V4 generate a larger linear space, the geometric algebra G4 of V4 which is 
spanned by {1, e1, e2, e3, e4, e12, e13, e14, e23, e24, e34, e123, e124, e134, e234, e1234}. In this basis, 1 is a 
scalar, e1, e2, e3, e4 are unit vectors, e12, e13, e14, e23, e24, e34 are unit bivectors, e123, e124, e134, e234 are 
unit 3-vectors and e1234 is a unit 4-vector. 

Power can be expressed as a multivector S in G4 generated by the geometric product of the 
voltage and current vectors, i.e.,  

=S ui                                                                     (13) 

The power multivector S can be calculated by using (11), (12) and (13), along with the 
following rules: 

1) The geometric product of two basis vectors generates a basis bivector, for example e1e2 = e12. 
2) A basis vector squares to +1, for example e1e1 = 1. 
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The power multivector S at the cross-section x-x′ can be written as follows: 

( ) ( )11 11 12 1 13 1 14 34 1 31 1 32M k M k kk kk Mk MkP Q P Q P Q P Q= + + + + + + +S e e e e e e          (14) 

where Pii = UiIicosφi, Qii = UiIisinφi, PMij = UiIjcosφj, QMij = UiIjsinφj, i = 1, k and j = 1, k. 
By grouping together terms of the same nature it can be written that  

( ) ( ) ( ) ( )11 11 12 34 1 13 1 31 1 14 1 32kk kk M k Mk M k MkP P Q Q P P Q Q= + + + + + + +S e e e e e e                 (15) 

Power is therefore represented by a multivector that consists of a scalar part corresponding to 
average power and a bivector part corresponding to nonactive power. The bivector part is expressed 
as a linear combination of basis bivectors. All components are defined through their magnitude, 
direction and sense. More specifically, there are scalar terms Pii associated with active power in each 
harmonic. Also, there are bivectorial, nonactive power terms, uselessly contributing to the increase 
of the apparent power. Bivectorial terms are associated with current components that are either in 
phase or in quadrature with a voltage component. The symbol P is used to designate the former and 
the symbol Q is used to designate the latter. Bivectorial terms with magnitude Qii correspond to the 
reactive power in each harmonic. The remaining terms with magnitudes of the form PMij and QMij 
can be associated with a mutual coupling effect attributed to the difference in frequency between the 
currents i1(t) and ik(t) [15]. It should be noted that at the terminals of purely reactive elements PMij 
terms are zero. A predominantly capacitive element, such as a compensation capacitor, can thus 
readily be identified. 

It was shown in [14] that the power multivector in its analytic form (14) can successfully 
demonstrate the bidirectional active power flow that occurs when a nonlinear/time-varying load is 
supplied by a sinusoidal voltage source with internal impedance. When a bidirectional active power 
flow is detected, then the presence of a harmonic source in the load side is confirmed. However, as it 
was demonstrated in [12], when the source voltage is non-sinusoidal, then, in the case of harmonics 
produced in the load side that are also present in the source voltage, the direction of active power is 
affected by the relative phase angle between the two harmonic sources. This means that even when 
harmonic active powers at the metering point turn out to be positive it cannot be safely assumed that 
there is no harmonic source in the load side. Therefore, in this paper, another part of the power 
multivector will be utilized in the identification of distorting loads. 

By using bold notation to denote individual bivectorial terms, it can be written that 

( ) ( ) ( ) ( )11 11 1 1 1 1kk kk M k Mk M k MkP P= + + + + + + +S Q Q P P Q Q                  (16) 

or, more concisely, 

M MP= + + +S Q P Q                                                    (17) 

where 

ii
i

P P=∑                                                                       (18) 
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ii
i

=∑Q Q                                                                     (19) 

,
M Mij

i j
i j≠

=∑P P                                                                  (20) 

,
M Mij

i j
i j≠

=∑Q Q                                                                 (21) 

Furthermore, it can be observed that terms PM1k = PM1ke13 and PMk1 = PMk1e31 have the same 
direction and opposite sense, due to the fact that e13 = –e31. In the case of i = 1, k and j = 1, k, the 
power multivector S can thus be rewritten in the compact form 

( ) ( )11 1 1 13 11 12 34 1 14 1 32kk M k Mk kk M k MkP P P P Q Q Q Q= + + − + + + +S e e e e e                     (22) 

In a more general situation including multiple harmonics, the terms of PM can be grouped into 
pairs of identical direction but opposite sense, as follows. 

( )
,

M Mij Mji
i j
i j<

= +∑P P P                                                      (23) 

In [14], it was demonstrated that the total apparent power S is the magnitude of the multivector 
S. Two apparent power equations can thus be derived. From the analytic form (14) it can be derived 
that 

( ) ( )2 2 2 2 2 2 2 2 2
11 11 1 1 1 1M k M k kk kk Mk MkS P Q P Q P Q P Q= + + + + + + +                  (24) 

or, in more general notation, 

2 2 2 2 2

, ,
ii ii Mij Mij

i i i j i j
i j i j

S P Q P Q

≠ ≠

= + + +∑ ∑ ∑ ∑                                       (25) 

From the compact form (22) it can be derived that 

( ) ( )2 22 2 2 22 11 1 111 1 1kk M k Mkkk M k MkS P P Q Q P P Q Q= + + + + − + +                     (26) 

or, in more general notation, 

2 22 2 2
M MS P Q P Q= + + +                                                   (27) 

where 
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2
2 ii

i
P P

 
=  
 
∑                                                                (28) 

22
ii

i
Q Q=∑                                                                     (29) 

( )22

,
Mij MjiM

i j
i j

P P P

<

= −∑                                                      (30) 

2 2

,
M Mij

i j
i j

Q Q

≠

=∑                                                                    (31) 

2.2. The generalized mutual coupling bivector 

It was demonstrated in [14] and [15] that apparent power equations proposed by other methods 
dealing with power theory can be extracted from (25) or (27). Components of these equations have 
been utilized in harmonic load identification [8–11]. However, apparent power equations do not 
include all the necessary information to describe the power components, which may lead to 
erroneous conclusions. 

In (17), the reactive power Q11 is not associated with the distortion. Harmonic reactive power 
components of the form Qii, 1i ≠ , are usually relatively small, so they will not be considered either. 
The remaining bivectorial components will be grouped into a bivector BM, as follows: 

( )1 1 13 1 14 1 32M M M M k Mk M k MkP P Q Q= + = − + +Β P Q e e e                                (32) 

Bivector BM will be henceforth referred to as the generalized mutual coupling (GMC) bivector 
due to the nature of the terms it comprises. The formulation of this bivector requires knowledge of 
the rms values of voltage and current and their phase difference, at every harmonic, at the load 
terminals. 

In a more realistic scenario, with multiple harmonics present, all possible harmonic pairs have 
to be taken into account in the formulation of bivector BM. More specifically, if there are H 
harmonics present in the circuit, including the fundamental, and N possible pairs of harmonics, then 
for harmonics of orders l and m ( l m≠ ), forming pair z, it can be written that 

( ), , , , ,Mx z Mx lm Mx ml ac Mx lm ad Mx ml cbP P Q Q= − + +B e e e                                (33) 

where ea, eb and ec, ed are pairs of basis vectors uniquely associated with harmonics l and m 
respectively, with { }1,3,5,..., 2 1a H∈ − , b = a + 1, { }1,3,5,..., 2 1c H∈ − , c a≠  and d = c + 1. 
Bivector BM can then be calculated as the sum of the N bivectors resulting from the N pairs of 
harmonics.  

Another grouping of bivectorial terms may also be useful, depending on the profile of harmonic 
pollution. More specifically, bivector BM can be decomposed into subcomponents involving 
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different groups of harmonics. For example, BMh may contain terms that only involve harmonics of 
order lower than 50 and BMsh may contain terms that involve at least one harmonic of order over 50. 
Then 

M Mh Msh= +B B Β                                                              (34) 

Harmonics of orders beyond the 50th are called supraharmonics. They have lately gained the 
attention of researchers due to the impact of supraharmonic sources on neighbouring loads and the 
fact that, despite their rising levels, there are no regulations in place for their mitigation [17–19]. 
Indeed, existing standards regarding harmonic limits consider harmonics up to the 50th (or 40th) 
order. Equipment manufacturers usually produce devices that comply with imposed limitations, but 
this is often accompanied by a simultaneous increase of the distortion at harmonic orders well 
beyond the 50th. As a result, significant supraharmonic content can be detected at the point of 
connection of PV inverters, EV battery chargers etc. Furthermore, even if the bivector BMsh at the 
common point of connection of a distribution line turns out to be low, interactions among individual 
loads may be significant enough to generate noticeable disturbances. The analysis proposed in this 
paper can provide valuable insight in this case. On the other hand, if enforcing compliance to 
existing limits is the only objective, then components beyond the 50th don’t have to be taken into 
account at all, and a single bivector including only harmonics up to the 50th order can be considered. 

3. Assessment of a distorting load impact 

3.1. GMC bivector at the terminals of a load 

In order to find the multivector Sx of a specific load x, the current at the cross-section between 
the load and the rest of the network has to be analysed into a component parallel to its respective 
voltage and a component orthogonal to it. This is also true for the multivector at any point along the 
network, such as the source terminals. However, in order to correlate the two multivectors, they 
need to be expressed using the same basis.  

The cross-section between the source and the rest of the network will be used as a reference, 
with a voltage given by (9) and a multivector given by (17). All functions referring to the load will 
then be expressed using the function basis chosen for the source. This means that every phase angle 
has to be expressed in terms of the phase angle of the respective harmonic of the reference voltage. 
Equivalently, all vector and multivector expressions corresponding to load x must be expressed 
using the corresponding geometric algebra basis. 

Let us assume that the voltage ux(t) of load x is of the form  

( ) ( ),1 ,1 , ,( ) 2 cos 2 cosx x x x k x ku t U t U k tω α ω α= + + +                      (35) 

where Ux,1, Ux,k are the rms values of the fundamental and the k-th harmonic voltage component 
respectively and αx,1, αx,k are the phase angles. Let θx,i = αi – αx,i,, for i = 1, k, then 

( ) ( ),1 1 ,1 , ,( ) 2 cos 2 cosx x x x k k x ku t U t U k tω α θ ω α θ= + − + + −                 (36) 



281 
 

 
AIMS Energy  Volume 11, Issue 2, 271–292. 

The load current will consist of two harmonic components with rms values Ix,1, Ix,k and phase 
angles βx,1, βx,k respectively. If φx,i = αx,i – βx,i = αi – θx,i – βx,i, for i = 1, k, then the current can be 
decomposed into subcomponents in phase and in quadrature with the corresponding harmonic 
voltage component of (36), as follows. 

( ) ( )
( ) ( )
( ) ( )

,1 1 ,1 ,1 , , ,

,1 ,1 1 ,1 ,1 1 1 ,1

, , , ,

( ) 2 cos 2 cos

2 cos cos 2 sin sin

2 cos cos 2 sin sin

x x x x x k k x k x k

x x x x x

x k k k x k x k k k x k

i t I t I k t

I t I t

I k t I k t

ω α θ ϕ ω α θ ϕ

ϕ ω α θ ϕ ω α θ

ϕ ω α θ ϕ ω α θ

= + − − + + − −

= + − + + −

+ + − + + −

           (37) 

Any function of the form 

( ) ( ) ( )1 1 1 1 1 12 cos 2 cos cos 2 sin sint y y t y tω α ω α ω α+ − = + + +             (38) 

can be represented by a vector that results from a rotation of the vector e1, which lies on the plain 
defined by the bivector e12, by an angle y1. This vector can be written as 

†
1 1 1 1 1 1 2cos siny y y y= +R e R e e                                               (39) 

where Ry1 = cos(y1/2) + e12sin(y1/2) represents the rotation and †
1yR  its reverse. Similarly, a function 

of the form 1 12 sin( )t a yω + −  corresponds to 

†
1 2 1 1 2 1 1cos siny y y y= −R e R e e                                           (40) 

Such representations can be derived for components of any harmonic order. Voltage and 
current vectors at the load terminals can thus be expressed as follows. 

† †
,1 ,1 1 ,1 , , 3 ,x x x x x k x k x kU Uθ θ θ θ= +u R e R R e R                                   (41) 

and 

† †
,1 ,1 ,1 1 ,1 ,1 ,1 ,1 2 ,1

† †
, , , 3 , , , , 4 ,

cos sin

cos sin
x x x x x x x x x

x k x k x k x k x k x k x k x k

I I

I I
θ θ θ θ

θ θ θ θ

ϕ ϕ

ϕ ϕ

= +

+ +

i R e R R e R

R e R R e R
                         (42) 

where 

,1 ,1 ,1 ,1†
,1 12 ,1 12

, , , ,†
, 34 , 34

cos sin ,   cos sin
2 2 2 2

cos sin ,  cos sin
2 2 2 2

x x x x
x x

x k x k x k x k
x k x k

θ θ

θ θ

θ θ θ θ

θ θ θ θ

= + = −

= + = −

R e R e

R e R e
                   (43) 

The power multivector at the load terminals can be calculated as the geometric product of (41) 
and (42), i.e., 



282 
 

 
AIMS Energy  Volume 11, Issue 2, 271–292. 

x x x=S u i                                                                         (44) 

This geometric product will contain the following terms.  

† †
,1 1 ,1 ,1 1 ,1 1x x x xθ θ θ θ =R e R R e R                                                          (45) 

† †
, 3 , , 3 , 1x k x k x k x kθ θ θ θ =R e R R e R                                                       (46) 

† † †
,1 1 ,1 ,1 2 ,1 ,1 1 2 ,1 12x x x x x xθ θ θ θ θ θ= =R e R R e R R e e R e                            (47) 

† †
, 3 , , 4 , 34x k x k x k x kθ θ θ θ =R e R R e R e                                                   (48) 

( ) ( )
( )( )

† †
,1 1 ,1 , 3 , 1 ,1 ,1 12 3 , , 34

13 ,1 ,1 12 , , 34

13

cos sin cos sin

cos sin cos sin
x x x k x k x x x k x k

x x x k x k

x

θ θ θ θ θ θ θ θ

θ θ θ θ

= + +

= + +

=

R e R R e R e e e e

e e e

e R

                 (49) 

where  

,1 , ,1 , 34 ,1 , 12 ,1 , 1234cos cos cos sin sin cos sin sinx x x k x x k x x k x x kθ θ θ θ θ θ θ θ= + + +R e e e          (50) 

Similarly 

† †
, 3 , ,1 1 ,1 31x k x k x x xθ θ θ θ =R e R R e R e R                                                  (51) 

† †
,1 1 ,1 , 4 , 14x x x k x k xθ θ θ θ =R e R R e R e R                                                 (52) 

† †
, 3 , ,1 2 ,1 32x k x k x x xθ θ θ θ =R e R R e R e R                                                 (53) 

due to e3412 = e1234.  
Therefore, the power multivector of the load in the new basis can be written as 

( ),11 , ,11 12 , 34 ,1 , 1 13 ,1 14 , 1 32x x x kk x x kk Mx k Mx k x Mx k x Mx k xP P Q Q P P Q Q= + + + + − + +S e e e R e R e R            (54) 

where Px,ii = Ux,iIx,icosφx,i, Qx,ii = Ux,iIx,isinφx,i, PMx,ij = Ux,iIx,jcosφx,j, QMx,ij = Ux,iIx,jsinφx,j, i = 1, k and j 
= 1, k.  

It can thus be deduced that active and reactive power components of the form Px,ii and Qx,ii are 
not affected by the basis change. The remaining terms are grouped into the GMC bivector of the 
load BMx. The magnitude of this bivector is preserved in the new basis, but individual 
subcomponents are transformed as follows. 



283 
 

 
AIMS Energy  Volume 11, Issue 2, 271–292. 

( ),1 , 1 13 ,1 14 , 1 32Mx Mx k Mx k Mx k Mx k xP P Q Q = − + + Β e e e R                              (55) 

The multivector Rx is associated with the phase angle difference between the voltage at the 
reference terminals and the voltage at the terminals of load x. When there are multiple harmonics 
present, then more of these multivectors have to be derived, one for each possible harmonics pair. 
More specifically, for harmonics of orders l and m ( l m≠ ), forming pair z, it can be written that 

( ), , , , , ,Mx z Mx lm Mx ml ac Mx lm ad Mx ml cb x zP P Q Q = − + + B e e e R                       (56) 

where 

, , , , , , , , ,cos cos cos sin sin cos sin sinx z x l x m x l x m cd x l x m ab x l x m abcdθ θ θ θ θ θ θ θ= + + +R e e e        (57) 

Then the GMC bivector of element x can be calculated as the sum of the N bivectors resulting 
from the N pairs of harmonics. It should be noted here that a different approach is possible. All 
voltage and current functions could have been expressed in terms of the orthonormal basis functions 
{ 2cos tω , 2sin tω , 2 cosk tω , 2sink tω }. Components Pii, Qii would not be affected, but the 
remaining bivectorial components would have no distinguishing characteristic. This could be 
counterintuitive when mitigation of such components with passive elements is an objective. 

3.2. Conservation of power multivector components 

According to Tellegen’s theorem the sum of the power of all circuit components is zero, or, 
equivalently, the power delivered to the network is equal to the power that is received. Every power 
quantity that results as a product of quantities that represent voltage and current and are subject to 
KVL and KCL constraints complies with this theorem. Voltage and current vectors are such 
quantities, and thus the power multivector S is conservative.  

For a network with various loads the multivector S at the cross-section between the source and 
the rest of the network can be written as 

n
n

=∑S S                                                                      (58) 

where Sn is the power multivector of load n. This subscript will be used to denote all quantities 
referring to this load. 

The scalar parts of the power multivectors represent active power components and their sum 
equals the active power of the source. More specifically, from (22) and (54) it can be deduced that 

( )11 ,11 ,kk n n kk
n

P P P P+ = +∑                                                 (59) 

Reactive power bivectors of the form Qii are independent from the rest of the multivector terms, 
as indicated by their respective basis bivectors in (22) and (54). Therefore, for every harmonic order, 
the sum of the reactive power bivectors of the loads equals the reactive power bivector of the source. 
More specifically, for the fundamental frequency it is  
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11 12 ,11 12n
n

Q Q=∑e e                                                         (60) 

and for the k-th harmonic order it is 

34 , 34kk n kk
n

Q Q=∑e e                                                       (61) 

The remaining power multivector components constitute BM. From (22), (54), (59)–(61), it can 
be deduced that  

M Mn
n

=∑B B                                                                (62) 

This equation is valid at the cross-section between the source and the rest of the network, 
regardless of the way the loads are connected. By associating BMx with BM the impact of load x on 
BM can be assessed. 

3.3. Contribution of a load to the GMC bivector at the supply terminals 

According to (62), the GMC bivector at the supply terminals equals the sum of the GMC 
bivectors of the loads. Each of the load bivectors in (62) has its own magnitude, direction and sense. 
They counteract each other in every other direction but the direction of BM. Each of them can thus 
be decomposed into a component parallel to BM and a component orthogonal to it. 

If bivector BMx of load x is decomposed into a parallel component BMxp and an orthogonal 
component BMxr, then the former will represent the part of BMx that participates in BM and the latter 
the remaining part of BMx. The sum of the parallel components of all load bivectors equals BM, 
whereas the sum of the orthogonal components equals zero. The parallel component can be 
associated with an energy exchange between the load and the source, whereas the orthogonal 
component with energy interactions of the loads, as perceived by the source. 

The parallel component BMxp can be expressed as  

Mxp Mx Mb=B B                                                                (63) 

where bMx is a signed scalar coefficient. Component BMxp has the same direction as BM and 
magnitude and sense given by bMxBM, where BM is the magnitude of BM. It can be calculated as a 
projection in GA, i.e., 

( ) 1
Mxp Mx M M

−= ⋅B B B B                                                  (64) 

where BM-1 is the inverse of BM and Mx M⋅B B  the inner product of the two bivectors. Furthermore, 

†
1

2
M

M
MB

− =
BB                                                                        (65) 
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where †
MB  is the reverse of BM. Due to the fact that BM is a bivector, the inner product can be 

calculated as the scalar part 0Mx MB B  of the geometric product BMxBM. Furthermore, the reverse 

can be calculated as follows. 

†
M M= −B B                                                                      (66) 

Therefore, 

††
0

2 20

Mx MM
Mxp Mx M M

M MB B
= =

B BBB B B B                                 (67) 

Coefficient bMx can thus be calculated as follows: 

†
0

2

Mx M
Mx

M
b

B
=

Β Β
                                                               (68) 

When all the loads are taken into account, then 

† †
0 0

2 2 1
Mn M M M

Mn
n n M M

b
B B

= = =∑ ∑
Β B B B

                               (69) 

Furthermore, if supraharmonics and lower order harmonics are examined separately and BM is 
decomposed into BMh and BMsh, then two distinct coefficients can be derived, i.e., bMhx and bMshx. 

4. Examples 

Let us consider the circuit in Figure 2, where a nonideal source is supplying two loads, one of 
which is nonlinear. 

 

Figure 2. Sinusoidal source with internal impedance supplying a linear and a nonlinear load. 

For the source: RS = 0.01 Ω, LS = 2 mH, for the loads: R1 = 9 Ω, L1 = 12 mH, R2 = 7 Ω, L2 = 30 
mH. The capacitor has C = 125 μF and is considered separately. Furthermore, 
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( ) 230 2 cos   (V)u t tω=                                                          (70) 

( ) 2 2 cos17   (A)j t tω=                                                           (71) 

The GMC bivectors of the circuit components are 

1 13 14 3275.3 450.9 31.5   (VA)M = − + +Β e e e                             (72) 

2 13 14 3240.1 4.9 54.3   (VA)M = − + +Β e e e                                (73) 

14 32530.1 31.2   (VA)MC = − −Β e e                                           (74) 

The GMC bivector at point s, which is considered to be the common point of connection of all 
loads, is 

13 14 32115.4 74.3 54.6   (VA)M = − − +Β e e e                                 (75) 

A summation of individual circuit element bivectors results in BM, as expected. However, from 
the viewpoint of s, the loads are responsible for the following: 

1 13 14 32122.2 78.7 57.7   (VA)M p = + −Β e e e                                     (76) 

2 13 14 3238.2 24.6 18.1   (VA)M p = − − +Β e e e                                    (77) 

13 14 32199.4 128.4 94.2   (VA)MCp = − − +Β e e e                                 (78) 

The remaining components, indicating load interactions, are 

1 1 1 13 14 32197.5 372.2 89.2   (VA)M r M M p= − = − + +Β Β Β e e e               (79) 

2 2 2 13 14 321.9 29.5 36.2   (VA)M r M M p= − = − + +Β Β Β e e e                    (80) 

13 14 32199.4 401.7 125.4   (VA)MCr MC MCp= − = − −Β Β Β e e e                 (81) 

The magnitudes of the bivectors of the loads are BM1 = 458.2 VA, BM2 = 67.7 VA, BMC = 531.0 
VA. At first glance, the capacitor behaviour seems to be similar to that of the nonlinear load, or even 
more disruptive. However, the bivector components of the capacitor happen to counteract the 
respective components of the nonlinear load, i.e., when one circuit element delivers power the other 
receives. This observation would not be possible just by inspecting bivector magnitudes, or any 
index based on apparent power components. For example, the harmonic apparent power SH 
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according to IEEE Std. 1459 [13] is 0.1 VA for the linear load, 7.4 VA for the nonlinear load 
and 8.8 VA for the capacitor. 

Let us consider the circuit in Figure 3, where a nonideal source is supplying three loads, two of 
which are nonlinear. 

 

Figure 3. Sinusoidal source with internal impedance supplying a linear and two nonlinear loads. 

For the source: RS = 0.01 Ω, LS = 2 mH, for the loads: R1 = R3 = 9 Ω, L1 = L3 = 12 mH, R2 = 7 
Ω, L2 = 30 mH. Furthermore, 

( ) 230 2 cos 10 2 cos5   (V)u t t tω ω= +                                             (82) 

1( ) 5 2 cos5   (A)j t tω=                                                                (83) 

( )3( ) 5 2 cos 5   (A)j t tω γ= +                                                         (84) 

Various indices that have been proposed for load identification have been calculated and are 
presented in Table 1 for γ = 0o and in Table 2 for γ = 180o. The GMC bivector magnitudes and bM 
coefficients have also been included.  

In the case of Table 1, the Total Harmonic Distortion indices for the current and the voltage at 
the common point of connection s are ITHD = 12.2% and VTHD = 11.8% respectively. The two 
identical nonlinear loads equally contribute to the GMC bivector magnitude at point s. More 
specifically, they are each responsible for 0.451·2404.7 = 1084.5 VA of the total 2404.7 VA at point s. 

In the case of Table 2 the distortion at the supply terminals is radically reduced. More 
specifically, ITHD = 1.5% and VTHD = 3.6%. This is evident in the GMC bivector magnitude, as 
well as the rest of the indices calculated at point s. However, the participation of each harmonic 
source has to be determined. According to the harmonic apparent power SH defined in IEEE Std. 1459 
the two sources seem almost equally disruptive. The triplet of Q11, SQ and QF does not differentiate 
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the two loads either. According to Budeanu’s distortion power DB and the GMC bivector magnitude 
the two sources are somewhat differentiated, but important information is still missing. It should 
also be noted that there is no bidirectional active power flow at the point of connection of load 3. More 
specifically, the fundamental active power is 4093.5 W, the 5th harmonic active power is 38.1 W and 
they both have positive signs. Therefore, the harmonic active power flow direction does not provide 
helpful information. On the other hand, by examining the bM coefficients for the two loads it can be 
deduced that load 1 contributes 2.281·413.9 = 944.1 VA, whereas load 3 mitigates the disturbance 
by 1.583·413.9 = 655.2 VA, as indicated by the sign of its bM coefficient. 

Table 1. Various indices for the loads of Figure 3 when γ = 0o. 

Circuit terminals SH (VA) D (VA) DB (VA) Q11 (Var) SQ (VA) QF (VA) BM (VA) bM 
Load 1 93.9 957.4 1227.4 1714.7 1877.3 2039.1 1100.2 0.451 
Load 2 12.7 448.3 344.3 2961.3 2983.7 2993.7 438.9 0.098 
Load 3 93.9 957.4 1227.4 1714.7 1877.3 2039.1 1100.2 0.451 
Point s 175.6 2077.7 2798.1 6390.6 6578.6 6830.0 2404.7 1 

Table 2. Various indices for the loads of Figure 3 when γ = 180o. 

Circuit terminals SH (VA) D (VA) DB (VA) Q11 (Var) SQ (VA) QF (VA) BM (VA) bM 
Load 1 36.4 1030.9 1154.9 1714.7 1724.6 2072.5 1164.1 2.281 
Load 2 1.2 135.8 104.3 2961.3 2963.4 2964.3 133.0 0.303 
Load 3 38.2 1080.0 926.2 1714.7 1716.2 1947.5 923.5 −1.583 
Point s 6.4 471.5 309.0 6390.6 6396.9 6404.0 413.9 1 

Let us now consider the circuit in Figure 4.  

 

Figure 4. Nonsinusoidal source supplying a combination of linear and nonlinear loads.  

For the source: RS = 0.0002 Ω, LS = 0.06 mH, for the loads: R1 = 14 Ω, L1 = 16 mH, R2 = 12 Ω, 
L2 = 20 mH, R3 = 8 Ω, L3 = 25 mH, R4 = 15 Ω, L4 = 15 mH, R5 = 10 Ω, L5 = 14 mH, for the 
connecting line segments: Rl1 = 0.005 Ω, Ll1 = 0.05 mH, Rl2 = 0.01 Ω, Ll2 = 0.1 mH, Rl3 = 0.02 Ω, Ll3 
= 0.2 mH, Rl4 = 0.01 Ω, Ll4 = 0.1 mH. The capacitor has C = 120 μF and is considered separately. 
Furthermore, 

( ) 230 2 cos 20 2 cos5 10 2 cos 7   (V)u t t t tω ω ω= + +                         (85) 

1( ) 10 2 cos(5 210 ) 7 2 cos(7 250 ) 0.4 2 cos100   (A)j t t t tω ω ω= + ° + + ° +          (86) 
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2 ( ) 12 2 cos(5 190 ) 8 2 cos(7 50 ) 0.8 2 cos100   (A)j t t t tω ω ω= + ° + + ° +              (87) 

In this case, a one-by-one comparison of bivector terms is neither practical nor helpful. BMh, 
BMsh of all loads and bMh, bMsh coefficients are shown in Table 3.  

Table 3. GMC bivector magnitudes and bM coefficients of all circuit components for 
harmonic and supraharmonic content. 

Circuit terminals BMh (VA) bMh BMsh (VA) bMsh 
Load 1 322.4 −0.044 4.3 0.054 
Load 2 2506.0 0.440 92.4 1.932 
Load 3 498.5 −0.043 5.6 −0.066 
Load 4 3111.8 0.557 203.2 4.602 
Load 5 477.7 −0.068 95.0 1.206 
Capacitor 1154.6 0.157 235.9 −4.611 
Line 1 128.9 −0.002 16.7 −0.228 
Line 2 134.5 0.002 41.5 0.562 
Line 3 190.0 0.000 185.4 −2.459 
Line 4 3.4 −0.000 0.7 0.009 
Point s 4297.1 1 41.8 1 

Table 3 indicates that the GMC bivector at point s is mainly affected by loads 2 and 4, as well 
as the capacitor. However, as indicated by bMhx, the actual impact of the capacitor on the bivector 
at point s is less critical. Furthermore, by examining the distortion associated with the 
supraharmonic (h = 100) in the current, it can be deduced that the capacitor has a mitigating effect. 
This could be detrimental to the capacitor, but that is beyond the scope of this paper. It should be 
noted that, in this case, there is no bidirectional active power flow at the point of connection of load 
2, so the harmonic active power flow direction does not provide helpful information.  

5. Discussion 

In the examples of Section 4, the GMC bivector was used in order to assess the impact of a 
load on the distortion at a common point of connection. Its unique feature is the fact that it contains 
information regarding not only magnitude, but also direction and sense. The magnitude can serve as 
an indicator of a distorting load just like other indices proposed by methods based on components of 
an apparent power equation, but the additional information included in the bivector can also reveal 
whether the load adds to the overall distortion or acts in a mitigating manner. Furthermore, its 
conservative nature permits an association between the distortion at the load terminals and a 
common point of connection where the distortion has to be assessed and regulated. This particular 
feature is missing from the apparent power, as well as any components derived from possible 
decompositions of that quantity. 

According to the proposed approach all loads can be viewed as black boxes. As long as the 
voltage and current phasors at every harmonic are available at the load terminals, either through 
measurements or calculations, then the proposed bivector can be derived. However, a common 
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concern with single-point methods is the fact that load current harmonics flowing through the supply 
system impedance cause a corresponding voltage drop that affects the voltage supply of every load 
in the circuit. As a result, nonlinear loads contribute to the harmonic pollution in the supply voltage, 
interfering with the harmonic current emissions of other loads and even causing harmonic emissions 
from linear loads. A severely distorted voltage can cause large linear loads to produce unexpectedly 
high harmonic currents. In such cases, linear loads can be mistaken for nonlinear ones, even though 
they are not to blame for the distortion. On the other hand, a moderate voltage distortion will also 
result in harmonic current injection from linear loads, but the associated BM magnitude will be low. 
Therefore, the presented approach is based on the assumption that voltage distortion is moderate. 
This assumption is common among single-point methods and is based on the observation that the 
control of the supply voltage harmonics is the responsibility of the utility and that normally the 
necessary measures to ensure compliance with standard limits will be taken.  

In the examples presented in Section 4 the circuits are assumed to be supplied by voltage 
sources with nonzero impedance. In addition, a distorted source voltage waveform was considered 
in the second circuit. The harmonic distortion of the load voltages is considerable. Due to this fact, 
the linear loads participate in the distortion at point s. However, their contribution is not comparable 
to that of nonlinear loads. On the other hand, in the circuit of Figure 4 the contribution of load 5 to 
the supraharmonic distortion at point s ended up being unexpectedly high, even though no 
supraharmonic was included in the source voltage. This is due to the supraharmonic currents 
injected by the nonlinear loads, which, at first glance, could be considered insignificant. However, 
these currents combined with the high impedance of the line in this frequency resulted in a 
considerable supraharmonic component in the voltage supply of the loads. The necessity for 
regulations dealing with consumers generating supraharmonics is evident. 

In the examples of Figure 2 and Figure 4 of Section 4 capacitors are included in the circuits. 
Depending on the order of the harmonics present in the system, capacitors appear to either enhance 
or mitigate the distortion. If the former is true, then the presence of the capacitor is causing a 
disturbance that needs to be addressed. Nevertheless, the impact of a capacitor should be 
differentiated from that of a nonlinear load. This information is inherent in the bivector, since 
bivector component PM results from components of the form PMij, which are all zero at the terminals 
of a capacitor. Therefore, a capacitor cannot be mistaken for a nonlinear load, even if its BM bivector 
magnitude turns out to be comparable to that of a nonlinear load. 

However, it should be noted that if the capacitor is considered to be part of a larger installation 
viewed as a black box and available measurements are strictly limited to the installation terminals, 
then the overall impact of this installation as a single entity can only be assessed. The proposed 
method cannot offer information regarding the exact nature of individual devices inside the black 
box and their interconnections. If the installation turns out to be exacerbating harmonic distortion, 
then the necessity for corrective measures will have to be examined. A more detailed study of the 
installation and its specific components utilizing optimization techniques can reveal the most 
effective measures for reducing the impact of this installation on harmonic distortion. 

6. Conclusions 

In this paper, components of a previously introduced power multivector were utilized in the 
identification of distorting loads. These components were grouped into a single quantity, the 
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generalized mutual coupling (GMC) bivector BM, with magnitude, direction and sense. In situations 
where the magnitude provides ambiguous information, an inspection of its other two attributes can 
provide useful guidance. When the distortion at a specific point of a network comprising various 
loads is examined, then the impact of individual loads can be evaluated by means of bM coefficients. 
These coefficients assign a part of the GMC bivector at the point of interest to each load. The 
remaining part of each load bivector is associated with load interactions and has no bearing on the 
bivector at the point of interest.  
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