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Abstract: Equivalent circulation density (ECD)  is one of the most important parameters that should 

be considered while designing drilling programs. With increasing the wells’ deep, offshore 

hydrocarbon extraction, the costly daily rate of downhole measurements, operating restrictions, and 

the fluctuations in the global market prices, it is necessary to reduce the non-productive time and costs 

associated with hole problems resulting from ignoring and incorrect evaluation of ECD. Therefore, 

optimizing ECD and selecting the best drilling parameters are curial tasks in such operations. The main 

objective of this work is to predict ECD using three machine learning algorithms: an artificial neural 

network (ANN) with a Levenberg-Marquardt backpropagation algorithm, a K neighbors regressor (knn), 

and a passive aggressive regressor (par). These models are based on 14 critical operation parameters 

that have been provided by downhole sensors during drilling operations such as annular pressure, 

annular temperature, and rate of penetration, etc. In the study, 4663 data points were selected and 

included, where 80% to 85% of the data set has been used for training and validation according to the 

algorithm, and the remaining data points were reserved for testing. In addition, several statistical tests 

were used to evaluate the accuracy of the models, including root mean square error (RMSE), correlation 

coefficient (R2), and mean squared error (MSE). The results of the developed models show various 

consistencies and accuracy, while the ANN shows a high accuracy with an R2 of nearly 0.999 for the 

training, validation, and testing, as well as the overall of them. The RMSE is 0.000211, 0.000253, 0.00293, 

and 0.00315 for overall, training, validation, and testing, respectively. This work expands the use of 

artificial intelligence in the gas and oil industry. The developed ANN model is more flexible in 

response to challenges, reduces dependence on humans, and thus, reduces the chance of human 
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omission, as well as increasing the efficiency of operations. 

Keywords: Equivalent circulation density (ECD); artificial intelligence (AI); drilling wells; artificial 

neural networks (ANN); real-time data 

 

Abbreviations: AARE: absolute average relative error; AI: artificial intelligence; ANFIS: adaptive 

network-based fuzzy interference system; ANN: artificial neural networks; ARE: average relative error; 

ECD: equivalent circulation density; EM: equivalent mud weight; FIS: fuzzy inference system; GA: 

genetic algorithm; LLSVM: least square support vector machine; Mw: mud weight; PSO: particle 

swarm optimization; PV: plastic viscosity; Q: mud flow rate; R2: correlation coefficient; RD: relative 

deviation; RMSE: root-mean-squared error; ROP: rate of penetration; RPM: total downhole rotating 

speed in revolutions per minute; SD: standard deviation; SPP: standpipe pressure; TFA: total flow area; 

TVD: true vertical depth; WOB: weight on bit; YP: yield point 

1. Introduction  

Nowadays, the process of exploring, drilling, producing, and managing reservoirs for gas and oil 

is a complex task due to the fact that traditional sources of these resources have already been identified 

and utilized for numerous years. Petroleum engineers are currently striving to adopt sophisticated 

technologies like machine learning to make informed decisions that minimize unproductive periods 

and expenses. Machine learning (ML) has been applied to various studies,  primarily from 1993 by 

Hansen  [1], where they used artificial neural networks (ANN) to successfully identify primary 

reflections from seismic data.  In 2007, Kononov et al. [2] developed ANNs to compute travel times 

for a complete 3D volume model, and petrophysical and geomechanical properties of shale reservoirs. 

Fahd Syed et al. [3] presented a comprehensive review of artificial intelligence (AI) and ML 

applications in modeling such properties, as well as a systematic publication count that reflected the 

increasing interest in this subject. 

ML has been utilized in drilling engineering for a long time.  In 1990, Arehart [4] used ANNs to 

determine the grade (state of wear) of a drill bit while drilling.  ANNs were applied by Moran  [5] to 

predict the rate of penetration (ROP) in drilling operations, enabling a more accurate estimation of 

drilling time.     ,In 2022  Sprunger et al.. [6] discussed the benefits of implementing machines in 

hydraulic fracturing operations in shale gas reservoirs. This study covered the design, interpretation, 

real-time prediction, and re-frac selection of hydraulic fracturing and concluded that machine learning 

is an accurate method for dealing with a large amount of fracturing data. 

Additionally, ML has been previously applied in petroleum production engineering. Denney [7] 

utilized ANNs to pinpoint the potential restimulation locations for fractures based on the experience 

gained from the Red Oak oilfield. This paper [8] detailed the use of AI and ML for artificial lift 

selection and maintenance, equ ent malfunction detection. Additionally, it explained the workflow and 

effectiveness of each application. 

There are many applications of ML in reservoir engineering. For example, in 1996, Yang and Kim [9] 

developed ANNs to find rock properties. Kohli & Arora [10] developed an ANN model to predict 

permeability from well logs. Fahd Syed et al. [11] discussed recent developments in the production 

performance estimation of shale gas in North America using machine learning, including key input 
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parameters and methodology comparisons of different algorithms. In [12], the performance of shale 

gas reservoirs was evaluated, alongside understanding how artificial intelligence (AI) and machine 

learning (ML) were used for this purpose. The text also explained different ML approaches such as 

supervised and unsupervised methods, random forest, support vector machine, boosting techniques, 

clustering methods, and artificial network-based architecture.  Moreover, Taha et al. [13–15] efficiently 

used ML algorithms to detect and remove noise from the shale gas production data without removing 

the main trends of the data profile. The results of these works helped improve the forecasting of the 

production, and can be applied to any other data. 

Equivalent circulation density (ECD) is the total  hydrostatic pressure of the mud in dynamic 

conditions. It displays the annular losses in a mud column [16]. ECD is one of the most important 

parameters for drilling operations monitoring, particularly for the little window between the formation and 

the fracture  pressure [17]. Three crucial drilling fluid densities include the equivalent mud weight (EMW), 

ECD, and equivalent drilling fluid static density (ESD), with the first two being particularly significant. 

Estimating automated or real-time EMW during drilling allows for a quick evaluation for ECD, as well 

as the volume of the cuttings transported by the drilling fluid, which makes the drilling crew able to 

track and assess the effectiveness of hole cleaning in real-time. Hole cleaning in drilling operations 

must be optimized to increase the rate of penetration (ROP) and reduce hole issues. However, 

achieving optimal hole cleaning needs continuous and proper controlling and development, which are 

difficult to maintain. Poor hole cleaning can result in stuck pipes, reduced circulation, lower ROP, and 

increased torque and drag. The duration of the operations may be significantly impacted by these 

factors, which will ultimately raise the overall cost of drilling operations [18].  

Drilling mud can detect the hydrostatic column pressure at any drilled depth. Mud density can 

either balance or unbalance the section of the wellbore. If the used drilling mud weight and ECD were 

high, overbalanced drilling occurs, which can significantly improve the control during operation [19]. 

On the other hand, several problems are associated with overbalanced drilling, such as a poor drilling 

rate, generating irregular differential pressure between both EMW and ECD with the formation, which 

elevates the potential for differential sticking, and increased mud chemical additions resulting in costs 

increments [19]. In addition, it can induce formation damage, particularly in the reservoir area. Hence, 

there are various advantages for calculating the desired mud weight and ECD overbalance throughout 

the drilling hole section. The best way to prevent these issues, besides achieving safe well drilling, 

maximizing drilling efficiency, and improving drilling performance, is understanding drilling fluid 

density, ECD, drilling fluid treatment, and chemical additives, in addition to continuously monitoring 

hole cleaning. 

Marsh [20] described the idea and concept of drilling fluid properties, such as mechanical analysis, 

weight, consistency, characteristics of desired drilling fluid, treatment of drilling fluid, and chemical 

factors or additives. It has been found that the annular pressure losses, wellbore geometry, mud 

characteristics (density and viscosity), mud pumping rate, downhole pressure and temperature, and 

cuttings concentration have a significant effect on the ECD during the drilling operations [21,22].  

Ataga and Ogbonna [23] mentioned that the ECD and drilling pressure can be obtained through a 

mathematical model estimation, prediction utilizing artificial intelligence (AI) approaches, and by 

employing downhole sensors while drilling. 

Erge et al. [24] and Rommetveit et al. [25]  showed that  although the downhole measurement is 

thought to be reliable and precise for ECD values, its application is uncommon due to the costly daily 

rate and operating restrictions, such as downhole pressure and temperature, that lead to tool failures. 
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There are several mathematical models for estimating the ECD in the literature, each with a 

different fluid type and set of input parameters. In the traditional models, numerous values and 

restrictions have been assumed for the downhole pressure, temperature, and mud types. The material 

balance calculation has been used to estimate ECD for the mud compositional study [26,27]. Bybee [28] 

presented a mathematical equation for determining ECD with the mud static density and other mud-

related characteristics. The model also takes the effect of solids concentration in the annulus into 

account. 

The mathematical correlations that have been created are restricted to a few features and disregard 

many other input variables that affect the ECD. These variables include geometry, fluid rheological 

characteristics, drill string rotation, downhole pressure, temperature, cuttings dispersion, hole cleaning, 

swab, and the surge of drill pipe movements in the well; other factors have been neglected, but have 

an impact on the mud density [29,30].  Ignoring these factors will have an impact on ECD prediction, 

resulting in incorrect evaluation of ECD, and causing well control issues while drilling [31].              

The limitations of the ECD downhole device and the inadequate performance of mathematical 

correlations have prompted the emergence of a new approach for predicting equivalent circulating 

density (ECD) from drilling data in the petroleum industry. This approach involves the utilization of 

ANNs, which comprise the interconnected units or nodes, referred to as artificial neurons. These 

artificial neurons are designed to receive inputs and generate outputs based on their predetermined 

activation functions through a preconfigured network, which mimics the neurons found in the 

biological brain. ANNs have been recognized as one of the most successful artificial intelligence 

systems to date. The underlying principle of ANNs is rooted in their ability to emulate the learning 

capability of the nervous system, where the input data or signals received are utilized to generalize 

findings.  

Baranthol et al. [32] performed field sampling measurements and validated their measurements 

using computer models. In [33], a correlation using AI and an ANN was created to estimate mud 

density as a function of the drilling fluid type, various pressures, and different temperatures. In [34], a 

study was conducted on the ECD under extreme heat and pressure to assess the ECD during drilling, 

in which a temperature profile was created using the CrankNicolson numerical discretizing scheme in 

the DD-Simulator, which is used to simulate the circulation of the wellbore.  Ahmed et al. [30] created 

a model to predict how drill-string rotation will affect ECD. They discovered that the ECD would be 

more effective with a greater rotation and pump flow rates. 

Elzenary et al. [35] used AI technologies, such as adaptive neuro-fuzzy inference systems (ANFIS) 

and ANNs, to find a relationship to predict the ECD while drilling and to compare the measured 

outcomes with these predictions. Ahmadi [36] used the ANFIS, enhanced particle swarm optimization 

ANFIS (PSO-ANFIS), and least square support vector machine (LLSVM) algorithms to calculate the 

ECD using only the mud's initial density, temperature, and pressure. Using the initial mud density, 

pressure, and temperature data, Ahmadi et al.. [37] investigated the prediction of ECD using PSO-

ANN, fuzzy inference system (FIS), and a hybrid of genetic algorithm (GA) and FIS (GA-FIS). In 

terms of the R2 and average absolute percentage error between the actual and projected values of ECD, 

the PSO-ANN model demonstrated a good level of prediction ability. 

A model for ECD prediction utilizing the two AI techniques, ANN and ANFIS, was presented by 

Abdelgawad et al. [22]. While the ANFIS model was created using five membership functions with a 

gaussian membership function (gaussmf) as the input membership function and a linear type as the 
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output membership function, the study provided an ECD-ANN model with one hidden layer with 20 

neurons.  

The radial basis function was used by Rahmati and Tatar [38] to create an ECD prediction model 

that demonstrated a strong prediction performance with an R2 of 0.98 and an AAPE of 0.22. They used 

three different machine learning algorithms to predict the ECD while drilling horizontal sections using 

surface drilling data. 

In  Alkinani et al. [39], drilling parameters were used in addition to the hydraulics and mud 

properties, such as mud pumping rate, rheology of the mud (density, plastic viscosity, and yield point), 

total flow area (TFA) for the bit nozzles, revolutions per minute (RPM) for the drill pipe, and weight 

on bit (WOB), to predict the ECD using an ANN model that had just one hidden layer with 12 neurons.  

Alsaihati et al. [40] developed a model using seven drilling parameters as inputs, where the SVM, 

RF, and FN were used to generate the model. The accuracy of the model that was created varied from 

an R2 of 0.95 to 0.99 and the root mean square error (RMSE) ranged from 0.23 to 0.42. The author of 

this study did not create any machine learning-free ECD equations that could be employed. Gamal et 

al. [17] used only mechanical drilling parameters, such as mud pumping rate (GPM), ROP, drill string 

speed in RPM, stand-pipe pressure (SPP), WOB, and drilling torque, to predict the ECD using machine 

learning approaches such as ANNs and ANFISs, with an R2 of 0.98 and an average absolute percentage 

error (AAPE) of 0.3% for the ANN, while the ANFIS recorded an R2 of 0.96 and an AAPE of 0.7. 

These outcomes demonstrated that ANN outperformed the other techniques. The literature makes 

it obvious that the AI models improved the ECD prediction; however, the models differ in terms of the 

input parameters, the data fed into the models, and the ECD prediction approaches. One of the issues 

with multiple studies in the literature is the need to utilizedownhole pressure and temperature as inputs 

to the prediction models. From an operational perspective, downhole sensors are needed to obtain these 

parameters with high accuracy for a better ECD prediction, and this will increase operational costs and 

time for the data collection. 

The present study introduces a novel approach in which machine learning algorithms are 

primarily reliant on real-time drilling parameters from downhole sensor tools, including inclination 

angle, true vertical depth (TVD), annular temperature, mud flow rate (Q), mud weight (Mw), plastic 

viscosity (PV), yield point (YP), gel strength (0/10; referring to measurements taken after 10 seconds 

and 10 minutes, respectively), total flow area (TFA), annular pressure, standpipe pressure (SPP), rate 

of penetration (ROP), and total downhole revolutions per minute (RPM). To this end, a total of 4663 

data points, obtained through measurement-while-drilling (MWD) from an offshore deviated well in 

Norway, were filtered and utilized to develop models for predicting ECD. The performance of these 

models was compared against each other, and the model demonstrating the highest accuracy underwent 

several statistical tests and was compared with other developed models [36]. 

2. Data description, cleaning, and filtration 

The study used actual drilling data that were collected by downhole sensors from a deviated 

section well during a drilling phase in Norway. The strategy that was followed while conducting this 

study is depicted in Figure 1. The input data selected based on experts' are shown in Figure 2, which 

represents inclination angle, annular temperature, annular pressure, TVD, Q, MW, PV, YP, gel (0/10), 

TFA, SPP, ROP, and RPM. 
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Figure 1. Strategy of the study. 

 

Figure 2. Input parameters. 

Key performance indicators (KPIs) have been determined by correlation analysis, as shown in 

Figure 3 and Table 1. To verify collinearity between the variables, scatterplots of each independent 

variable were  created. According to the heat map, it is clear that some factors such as SSP, TFA, mud 

flow, and Mw have  a  variable direct correlation with the ECD, while some of the other parameters (PV, 

gel 10, inclination, annular pressure, gel 0, hole depth and, RPM) show an inverse correlation with the 

ECD; alternatively, annular temperature, YP, and ROP show a weak correlation with ECD. 

Cleaning and filtering the data produces high-quality input parameters for the model. Therefore, 

a lot of effort has been done to clean the data, develop the AI model's training procedure, and maximize 

the correctness of the model results using the trained algorithm. If the accuracy is poor, then a process 

of retraining should be carried out in order to improve the accuracy and obtain the ideal model 

parameters for the ECD prediction's performance. Data cleaning is the process of locating and fixing 

problems with the data, such as data losses, corruptions, and errors, through employing statistical 

techniques like outlier detection and imputation. One of the cleaning processes that the model applied 

is the exclusion of the point if all the input parameters do not exist. Figures 4 and 5 show the 

preprocessed (filtration and removing) data for the inclination angle versus TVD depth before and after 

processing as an example of the cleaning process which has been done for the input parameters. 
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Table 1. Correlations between parameters. 

Parameters  ECD 

Inclination –0.506 

Annular Temp. –0.059 

Mud Flow 0.823 

Hole Depth –0.51 

PV (CP) –0.688 

Yp (Pa) –0.057 

Gel 0 (Pa) –0.335 

Gel 10 (Pa) –0.585 

Annular Press. –0.361 

SSP 0.795 

ROP 0.096 

RPM –0.256 

ECD 1 

Mw (Sgr) 0.477 

TFA(in^2) 0.894 

 

Figure 3. Heatmap correlations. 
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Figure 4. Inclination angle before processing.  

 

Figure 5. Inclination angle after processing. 
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3. Statistical analysis for parameters  

The statistics features are crucial to the theoretical, practical, and long-term development of 

machine learning. These features can be used in problem framing, data comprehension, preparation, 

model evaluation, configuration, model selection, model presentation, and model predictions. Tables 2 

and 3 show the statistical parameters of the whole data set. The first and second rows show the 

maximums and minimums of the data set, which shows the range of the selected data. The standard 

deviation is a measurement of dispersion, or how the data are distributed around the mean. The degree 

to which the data deviates from the normal distribution is measured by skewness. Any skewness is 

generally undesirable in models since it leads to a variance in estimation. 

Table 2. Data statistical distribution. 

Table 3. Data statistical distribution. 

 Inclination 

dega 

Annular 

temperatures (℃) 

TVD 

(m) 

Mw  

(Sp.gr) 

PV  

(CP) 

Yp  

(Pa) 

Gel 0 

 (Pa) 

Gel 10 

(Pa) 

Maximum 85.74 99 2651.881 1.51 37 20.1 8.6 10 

Minimum  25.14 47 1333.353 1.39 22 6.7 3.3 3.8 

Skewness 0.7369 –0.7436 –0.1084 –4.105 –0.3435 –0.4195 –1.643 –0.7464 

Median 45.02 86 2122.542 1.51 32 13.9 7.6 8.6 

Average 49.801 84.472 2124.218 1.504 32.971 13.796 7.437 8.4449 

Kurtosis –0.5924 0.1373 –1.127 16.562 0.5800 6.6708 4.272 0.7163 

Range  60.6 52 1318.527 0.12 15 13.4 5.3 6.2 

Mode 45.08 94 ------- 1.51 37 13.9 8.1 10 

Standard deviation  18.434 10.713 385.349 0.0218 3.0250 1.6091 0.9310 1.317 

4. Models development 

Three models have been developed by using three machine learning algorithms. The first model used 

the passive aggressive regressor (par) algorithm. For the second model, the K neighbors regressor (knn) 

algorithm has been applied. The final model adopted the ANN with a Levenberg-Marquardt 

backpropagation algorithm. 

 

 TFA 

(in2) 

Annular Pressure 

 (kPa) 

SPP  

(kPa) 

ROP 

(m/h) 

RPM 

(rpm) 

Q  

(l/min) 

ECD 

(g/cm3) 

ECD 

(Ib/ft3) 

Maximum 1.51 35313.56 28702.32 54.649 186.14 4529.96 1.563 97.62 

Minimum  1.075 18022.89 11568.64 0.6797 2.75 2017.81 1.319 82.39 

Skewness –0.6749 –0.6538 –1.413 1.227 –4.657 –0.6883 –0.559 –0.559 

Median 1.51 30757.51 24239.07 16.867 160 4489.99 1.500 93.656 

Average 1.362 29893.45 24436.38 17.482 162.92 4116.84 1.447 90.376 

Kurtosis –1.537 –0.5951 5.396 2.751 28.273 –1.236 –1.630 –1.630 

Range  0.435 17290.67 17133.67 53.97 183.39 2512.15 0.2439 15.230 

Mode 1.51 34818.52 24015.06 16.867 159 4489.99 1.500 93.65 

Standard deviation  0.2053 4270.19 2544.86 7.445 15.178 499.26 0.0791 4.943 
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4.1. Passive aggressive regressor algorithm 

This model was developed using a Python code. The total data points have been split into 80% 

for training and validation and 20% for the testing model. The selected sets of data were changed in 

an alternating pattern ten times, and the result of these folds is shown in Table 4. 

Table 4. Results of folds for (Par). 

Figure 6 shows the amount of loss in the value of residuals between the predicted ECD and the 

actual value of ECD. Notice that the residual values between the real and expected values by this model 

are very large. In addition, the accuracy of this model is very weak and unreliable, with a flawed value 

for the R2, which is close to 25%, as shown in Figure 7. 

 

Figure 6. Residuals for passive-aggressive regressor. 

Fold MAE MSE RMSE R2 

0 0.0588 0.0045 0.0672 0.282 

1 0.0603 0.0047 0.0686 0.2814 

2 0.0585 0.0044 0.0662 0.2961 

3 0.0658 0.0054 0.0738 0.1051 

4 0.0649 0.0053 0.0729 0.1681 

5 0.0617 0.0049 0.0701 0.1705 

6 0.0521 0.0036 0.0596 0.4115 

7 0.0579 0.0044 0.0666 0.261 

8 0.0624 0.0049 0.0701 0.2253 

9 0.0739 0.0069 0.0831 –0.2551 

Mean 0.0616 0.0049 0.0698 0.1946 
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Figure 7. Prediction error for passive-aggressive regressor. 

4.2. K Neighbors regressor algorithm 

This model was also built using a Python script. The total data points have been divided into 80% 

for training and validation and 20% for testing. The selected sets of data were alternatively altered ten 

times, as shown in Table 5. 

Table 5. Results of folds for knn. 

Fold MAE MSE RMSE R2 

0 0.0015 0.0001 0.0088 0.9877 

1 0.0022 0.0001 0.0103 0.9839 

2 0.0009 0 0.0017 0.9995 

3 0.0015 0 0.0047 0.9963 

4 0.0013 0 0.003 0.9986 

5 0.0013 0 0.0041 0.9971 

6 0.0014 0 0.0039 0.9975 

7 0.0011 0 0.0028 0.9987 

8 0.0012 0 0.0024 0.9991 

9 0.0011 0 0.0031 0.9982 

Mean 0.0014 0 0.0045 0.9957 

According to Figure 8, it is clear that the residual values between the predicted and actual ECD 

is centered around the values ranges from 0.05 to –0.05 (i.e., very small), and that this model can be 

trusted in the prediction for ECD.  
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Figure 8. Residuals for K neighbors regressor. 

Additionally, Figure 9 shows a high value of the R2 for the values of ECD expected by this model. 

 

Figure 9. Prediction error for K Neighbors Regressor. 

4.3. Artificial neural network (ANN) 

This model was created using a MATLAB script. A total of 4,663 points were obtained after data 

cleaning and filtering. The input data set is a function of the depth, which is a representation of the true 

vertical well depth. If either the input or output data for neural networks are very small, very large, or 

not normally distributed, data scaling should be performed [41,42]. Therefore, the input parameters 

were normalized using Eq 1 to be between 0 and 1, while the output parameter (ECD) was transferred 

according to Eq 2, for a faster and more efficient training process. 

        𝑋𝑖, 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑋𝑖−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
       (1) 
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where 𝑖 is the index number for each input parameter: inclination angle, annular temperature, annular 

pressure, TVD, Q, MW, PV, YP, gel (0/10), TFA, SPP, ROP, and RPM. 

         𝑌𝑡 =  log(𝑦 + 1)         (2) 

where, 𝑦  is the value of equivalent circulation density and 𝑌𝑡   is the transformed value of the 

equivalent circulation. 

4.3.1. Building the model 

The total dataset was randomly partitioned into three subsets: 70% for training, 15% for validation, 

and 15% for testing purposes. The training data were utilized to develop the ANN model, with the 

target output being used to adjust the weights of each input. The calibration of these weights was 

performed using the feedforward backpropagation algorithm, which utilizes error backpropagation 

through the network to adjust and fine-tune the weights. It should be noted that the occurrence of 

overtraining (either overfitting or underfitting) in the model can diminish its ability to provide accurate 

estimations when applied to diverse conditions. Therefore, the training process is halted when the 

network's generalization reaches a certain threshold, and the verification set (data not employed to 

construct the network) is employed to assess the model's generalization capabilities. Subsequently, the 

accuracy of the ANN model is evaluated using the testing set. The architecture of the ANN model is 

illustrated in Figure 10. 

 

Figure 10. ANN Architecture. 

A MATLAB script was created to go over 3,840 possible combinations of different parameters (transfer 

function, training algorithm, and the number of neurons in the hidden layer(s)) as shown in Table 6 for 

one hidden layer network, and developed for two hidden layer networks to reach more than 230,000 

possible combinations with different parameters, referred to in Table 7.  

The approach adopted in developing the model is depicted in Figure 11, which commences with 

a basic model comprising of a single hidden layer. The number of neurons is initially incremented, 

followed by the modification of the training algorithm, activation function of the hidden layer, and 

ultimately the activation function of the output layer. Subsequently, all possible combinations of the 

single hidden layer are explored, following which, the model is upgraded to two hidden layers, with 

modifications made to the number of neurons in the first hidden layer, the number of neurons in the 

second hidden layer, the training algorithm, activation function of the first hidden layer, the activation 

function of the second hidden layer, and the activation function of the output layer, in that order. Each 

combination is evaluated using the RMSE (Eq 3) and the R2 (Eq 4). The combination yielding the 
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lowest RMSE and highest R2 was selected. The model and algorithm were then constructed based on 

this process, with the evaluation continuing until a satisfactory level of RMSE and R2 was attained (i.e., 

R2 overall > 0.9995 and RMSE < 0.0005). The program is designed to minimize the time required to 

construct and train the model. 

Table 6. Different combinations of one hidden layer.  

Parameters Range 

Number of neurons 1–60 

 

 

Training algorithm 

Trainlm (Levenberg-Marquardt Backpropagation) 

Trainrp (Resilient Backpropagation) 

Traingdx (Gradient Descent with Momentum and Adaptive 

Learning Rate Backpropagation) 

Trainbr (Bayesian Regularization Backpropagation) 

Activation function of hidden layer Logsig-Purelin-Radbas-Tansig 

Activation function of output layer Logsig-Purelin-Radbas-Tansig 

Table 7. Different combinations of two hidden layers. 

Parameters Range 

Number of neurons of frist layer 1–30 

Number of neuron of second layer 1–30 

Training algorithm Trainlm-Trainrp-Traingdx-Trainbr 

Activation function of frist hidden layer Logsig-Purelin-Radbas-Tansig 

Activation function of second hidden layer Logsig-Purelin-Radbas-Tansig 

Activation function of output layer Logsig-Purelin-Radbas-Tansig 

 

Figure 11. The strategy following in developing the modeling. 

      𝑅𝑀𝑆𝐸 = (
1

𝑁
∗ ∑ (𝑁

𝑗=1 𝐸𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐸𝑎𝑐𝑡𝑢𝑎𝑙)2)
5

     (3) 
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       𝑅2  = {1 −
∑ (𝐸 𝑎𝑐𝑡𝑢𝑎𝑙 −𝐸 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)𝑁

𝑗=1

2

∑ ( 𝐸 𝑎𝑐𝑡𝑢𝑎𝑙 −𝐸 𝑚𝑒𝑎𝑛 𝑎𝑐𝑡𝑢𝑎𝑙)2𝑁
𝑗=1

}      (4) 

      loss Function = (
1

N
∑ (N

j=1 𝐸 𝑎𝑐𝑡𝑢𝑎𝑙 −  𝐸 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)2)   (5) 

where 𝑁 is the number of data points tested, 𝐸𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is the predicted equivalent circulation density, 

𝐸𝑎𝑐𝑡𝑢𝑎𝑙 is the corresponding to the actual ECD, and 𝐸 𝑚𝑒𝑎𝑛 𝑎𝑐𝑡𝑢𝑎𝑙  is the average of the actual ECD. 

4.3.2. Results and discussion 

The ANN model was created to predict the ECD according to Eq 6 with one hidden layer. The 

number of neurons in this hidden layer was optimized to be 34 according to Figures 12 and 13. The 

structure of this model is shown in Figure 14. The Levenberg-Marquardt backpropagation optimization 

was used as a training algorithm. TANSIG and LOGSIG were selected to be the hidden and output 

layers activation functions, respectively.  This model displayedhigh accuracy and certainty when 

compared with the other two developed models. 

    𝐸 =  𝐸𝑥𝑝 [[∑ 𝑊2𝑗  𝑇𝐴𝑁𝑆𝐼𝐺 (∑ 𝑊1𝑘  ∗  𝑋𝐾  + 𝑏1𝑗
 𝐾
𝐾=1 )

 𝑗
𝑗=1 ] + 𝑏2]  − 1  (6) 

where 𝐸𝑥𝑝  is the exponential function, 𝑗  is the number  of  neurons in the hidden layer, 𝑊2𝑗   is the 

weight of the resulting layer, 𝑘  is the number of input parameters, 𝑊1 is the weight of the hidden 

layer, 𝑋𝑗 is the standard input parameters (inclination angle, TVD, annular temperature, Q, MW, PV, 

YP, gel (0/10), TFA, annular pressure, SPP, ROP, and RPM), 𝑏1 is the bias of the hidden layer, and 𝑏2 is 

the bias of the resulting layer. The weights and bias values are illustrated in Appendix A. 

 

Figure 12. Selecting number of neurons according RMSE. 
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Figure 13. Selecting number of neurons according to the R2. 

 

 

Figure 14. Structure of the model. 

The results showed a strong accuracy for the model in terms of R2, 𝑅𝑀𝑆, and loss function (Eq 5) 

for the training validation, testing, and overall, as shown in Table 8 and  Figures 15–17. 

Table 8. R2, RMSE and loss function results.  

 Training Validation Testing Overall 

Correlation coefficient (R2) 0.9999 0.9996 0.9999 0.9998 

Root mean square error (RMSE) 0.000253 0.00293 0.00315 0.000211 

Loss function 0.001981 0.009738 0.001611 0.003088 
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Figure 15. Correlation coefficient. 

 

Figure 16. Root mean square error. 

 

Figure 17. Loss function.  
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Figure 18 represents the cross-plots for the ANN model results for the model training, validation, 

testing, and overall processes for estimating ECD values. The plots reveal that there is no unacceptable 

overestimation or underestimation of the anticipated value. Furthermore, they demonstrated the 

models' remarkable accuracy performance of predictions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 18. Predict ECD with actual ECD (A) for training, (B) for overall, (C) for validation, 

(D) for testing. 

Figure 19 displays the agreement between the actual and predicted ECD values along the number 

of data points which have been used in the overall, training, validation, and testing of the ANN model. 
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Figure 19. (A) for training, (B) for testing, (C) for validation, (D) for overall. 

4.3.3. Statistical analysis for model results 

To test the model, several statistical comparisons between the actual and anticipated data have 

been made. The absolute average relative error (AARE), standard deviation (SD), average relative 

error (ARE), relative deviation (RD), and mean square error (MSE) are used to evaluate the model 

based on the following Eqs (7–11). Table 9 and Figures 20–24 show the corresponding values of those 

statistical features. 

        AARE = (
1

N
* ∑ |

𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −𝐸𝑎𝑐𝑡𝑢𝑎𝑙

Ej actual
|N

j=1 ) *100    (7) 

        SD = (
1

N-1
* ∑ (

EPredicted-Eactual

Eactual )2N
j=1 )

.5

      (8) 
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       𝐴𝑅𝐸 = (
1

𝑁
∗ ∑

𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −𝐸𝑎𝑐𝑡𝑢𝑎𝑙

𝐸 𝑎𝑐𝑡𝑢𝑎𝑙
𝑁
j=1 ) ∗ 100     (9) 

       RD = 
𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 −𝐸𝑎𝑐𝑡𝑢𝑎𝑙

𝐸 𝑎𝑐𝑡𝑢𝑎𝑙 ∗ 100            (10) 

       MSE = (
1

𝑁
∗ ∑ (𝑁

𝑗=1 𝐸𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐸𝑎𝑐𝑡𝑢𝑎𝑙)2)     (11) 

 
 

  

Figure 20. RD versus actual ECD for training, testing, validation, and overall. 
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Table 9. Statistical test of the model. 

 ARE AARE SD MSE 

Overall –0.0001286 0.027362 0.000631 0.003089 

Training –0.0002421 0.025952 0.000482 0.001981 

Validation 0.00369188 0.032496 0.001175 0.009738 

Testing –0.0034194 0.028814 0.000443 0.001610 

 

Figure 21. Standard deviation (SD) for overall, training, validation, and testing dataset.  

 

Figure 22. Mean square error (MSE) for overall, training, validation, and testing dataset. 
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Figure 23. Average relative error for overall, training, validation, and testing dataset. 

 

Figure 24. Absolute average relative error for overall, training, validation, and testing dataset. 

4.3.4. Comparison with other models  

When compared to the other models, the developed ANN model has promising results. The 

comparison was based on the input parameters feeding the models, the number of data points used for 

creating these models, and the sources of this data. Additionally, this comparison takes into account 

the types of ML algorithms that were used to develop models. Furthermore, the results of several 

statistical tests were used to evaluate the accuracy of models. The developed model shows a high 

accuracy when compared to other models. This comparison is shown in Table 10. 
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Table 10. Comparing between the developed ANN model and other models. 

5. Conclusions 

An ANN model was developed using MATLAB to predict the ECD based on a large dataset of 

data points obtained from downhole sensors during drilling operations. Preprocessing operations such 

as data cleaning, filtering, normalization, and transformation were carried out to prepare the data for 

training, validation, and testing of the model. Statistical tests were conducted to evaluate the 

performance of the developed model. 

The statistical tests conducted include R2, RMSE, ARE, AARE, SD, and MSE for the training, 

validation, testing, and overall datasets. The results of the tests indicate that the developed model does 

 ML 

algorithm 

Inputs  

parameters 

Number of 

data point  

Source of  

dataset  

R2 Statistical 

test 

Ahmadi et al.21 FIS initial density 

pressure 

temperature 

664   

 

from the literature 

0.7273 67.0907 

AARE 

PSO-ANN 0.9964 0.0001374 

AARE 

GA-FIS 0.9397 0.091 AARE 

Abdelgawad et 

al.[22] 

ANN drill pipe 

pressure 

mud weight 

rate of 

penetration 

2376  Surface 

measurements 

0.9982 0.2237 

AARE 

ANFIS 0.98 0.22 

AARE 

Rahmati & Tatar 

[38] 

radial basis 

function 

Temperature 

initial density 

type of mud 

pressure 

884   

from the literature 

0.99 0.00000166 

 

MSE 

 

 

 

Alsaihati et al. [40] 

functional 

network 
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flow rate 
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weight on bit 
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torque 

hook load 

standpipe 

pressure 

3567   

 

surface real-time 
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Random 

Forests 

0.99 0.42 RMSE 

 

Support 

Vector 

Machines 
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not suffer from neither underfitting nor overfitting. Moreover, the predicted ECD values from the 

developed model agrees well with the actual ECD values. 

To further evaluate the performance of the developed model, the trend of the predicted data and 

actual data points along the number of the datasets was also analyzed. Additionally, the overall model 

performance was compared to other models based on input parameters, type of machine learning 

algorithm, number of data points, and results of statistical tests used to evaluate these models. The 

developed model showed a higher accuracy in predicting the ECD than other models considered. 

In conclusion, the developed ANN model shows a promising solution for the optimization and 

automation of the drilling process by directly predicting the ECD. This can lead to minimizing hazards 

and reducing risks associated with drilling operations.  

6. Future work recomendation 

Future research should investigate the performance of the developed model on datasets from 

different wells in various regions to confirm its capability to accurately predict ECD under different 

circumstances. In case of any deficiencies in the model's predictive ability, the model can be updated 

by including data from multiple wells located in different places to improve the training process and 

enhance its predictive capability. 

Moreover, a parametric study can be conducted to examine the significance of each input element 

used to feed the model and to determine the effects of each input on the model's ability to predict the 

true value of ECD. This will help in understanding the relative importance of each input variable and 

may aid in improving the accuracy of the model predictions. 

Overall, these future investigations will further enhance our understanding of the developed 

model and enable its application to a wider range of drilling operations, leading to an improved 

optimization and automation of the drilling process with reduced hazards and risks . 
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Appendix 

Table S1. Weights and bias for Eq 5. 

W1k 

j K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 

1 –0.3162879 –0.2205999 –0.1534146 –0.8122943 0.27684096 0.05946083 0.7057737 0.71837888 

2 0.47074242 0.73567669 –0.1841122 0.1609439 –0.544297 –0.0361249 –0.6537549 0.3031463 

3 0.57633503 0.53445329 0.11806691 –0.1717782 0.59016485 0.19424577 0.48176406 –0.0461223 

4 –0.0723974 –0.7846182 0.69251662 0.5806464 0.3763547 –0.1862909 –0.6627106 0.34436077 

5 0.87507287 0.06187093 –0.8490168 –0.3597439 0.05914917 0.6146153 –0.284121 –0.7702518 

6 0.40072408 0.40108283 –0.6232822 0.16766818 –0.7951167 0.10796626 0.08864881 –0.3711264 

7 –0.3565583 –0.362438 –0.4915954 0.45567143 –0.1270272 0.71201101 0.16808018 –0.582408 

8 –0.4841982 –0.2587741 0.2097799 –0.6868848 –0.2181581 –0.386522 –0.819447 –0.0927483 

9 –0.5658372 0.22493358 0.44300055 0.62606126 0.03950263 0.74454768 0.32491909 –0.1755511 

10 –0.1525185 –0.1471221 0.15335513 1.66202992 –0.0257545 –0.1961542 –0.7738434 0.98744373 

11 0.75635418 –0.1192605 0.89637027 0.02366081 –0.0251318 –0.2480005 –0.6917067 –0.6878273 

12 –0.1907664 0.75014404 –0.547985 –0.7208037 –0.4015344 –0.8123173 –0.3796249 –0.6414277 

13 0.2753617 –0.2807452 0.05779137 0.53305334 0.38355258 0.43781204 0.47715008 0.25132789 

14 0.32609773 0.8282494 0.63751415 –0.3671818 0.43665158 –0.2433486 0.57235532 0.51912847 

15 –0.376222 –0.6754491 0.03837612 –1.0586986 –0.7997034 –0.3048866 0.39603667 –0.5164811 

16 –0.8784547 0.4117126 –0.0640326 2.0966004 1.57688111 0.09710967 –0.2008817 0.71642072 

17 0.62278114 –1.2958257 0.38730381 –0.2957597 –1.1229059 0.54408656 –0.0424252 –0.1548535 

18 –0.7949088 –0.4885607 0.763839 0.06843448 –0.1143591 0.45146181 0.51566339 –0.3727209 

19 –0.3384047 0.28692669 –0.3886945 –0.1566388 0.20261898 0.28846773 0.45120118 0.53359223 

20 –0.3055754 –0.5643252 0.00307304 –0.3453724 0.04010683 –0.2098721 0.05480218 0.99288825 

21 0.06691694 –0.1800266 –0.0600536 –0.8364574 –0.4739945 0.30177119 –0.4583955 0.54871822 

22 0.04089296 –0.3349337 0.8298507 0.62799788 –0.2536319 0.23980499 –0.7075206 0.28613335 

23 –0.4694525 0.39965768 –0.115026 –0.2003004 0.14254142 0.70132383 0.41762119 –0.7554541 

24 –0.0109694 –0.1814243 0.7821351 –0.5992469 –0.0454298 0.28113596 –0.1445081 0.50279332 

25 –0.5191615 –0.5264875 –0.0983493 0.02037143 –0.771881 0.49064904 0.56669374 0.33009342 

26 0.02945113 0.76945086 0.69429051 –0.0484746 0.24434191 0.13584118 0.15775373 –0.297542 

27 0.37873374 –0.175608 0.25532596 1.56574329 0.65630888 –0.1292866 0.4695617 –0.9068194 

28 0.45529626 0.42168405 –0.1693115 –0.151697 –0.3223661 0.52806949 –0.2442731 0.60403059 

29 0.61868226 0.0877681 0.15734532 –0.2107422 0.67465835 –0.0321478 0.62465293 0.10003356 

30 0.63842067 0.42063418 0.12350438 –0.9856083 –0.0890697 0.34159343 –0.3233713 0.60799357 

31 0.59697932 0.04134443 0.2079904 –0.1645776 0.37573412 0.10818018 0.68644479 –0.1616589 

32 –0.4885499 0.56509531 –0.6121336 –0.2376948 –0.2009806 –0.3118941 0.79601477 –0.77041 

33 0.66641887 0.73621151 0.30987086 0.76136742 0.32619628 0.03254868 0.57595334 0.31551128 

34 0.32259532 –0.4036518 0.83293577 –0.3719892 –0.6168266 –0.5279925 0.18995618 –0.0639327 
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Table S2. Supplement  weights and bias for Eq 5. 

W1k    

j K = 9 K = 10 K = 11 K = 12 K = 13 K = 14 W2j b1j b2 

1 0.444576 0.228892 0.115168 –0.59008 0.365763 0.306 –0.855302 1.91280078 –0.1362576 

2 0.665774 –0.11296 –0.48544 0.734796 0.494432 –0.45338 –0.1072826 –1.8223261   

3 –0.37956 0.337142 –0.37756 –0.39069 0.277306 –0.35669 –0.0122904 –1.9480858   

4 –0.25055 0.446847 –0.25027 0.726612 –0.12881 0.200836 0.00112854 1.48904892   

5 0.488812 –0.06977 0.37861 0.315209 0.235882 –0.05906 0.26012078 –1.5324478   

6 –0.57338 0.377488 0.725849 –0.05323 0.056374 0.241381 –0.4420826 –1.5196056   

7 –1.00097 –0.63218 –0.15221 0.580496 0.182629 0.346311 –0.3132041 1.16872836   

8 –1.08034 –0.31026 0.040105 0.384844 –0.28442 0.02589 –0.3468976 1.05896888   

9 0.07828 0.593716 –0.45376 –0.0032 0.512764 –0.08888 0.27052089 1.00651785   

10 0.188522 –0.5075 –1.80733 –0.34945 0.085652 –0.46312 –1.1990717 1.01097797   

11 0.493513 –0.52638 0.283106 –0.36449 0.135945 –0.061 0.30775044 –0.9157728   

12 0.367344 –0.71684 0.463303 0.180616 –0.23133 –0.38203 0.80772526 –0.5568318   

13 –0.30468 0.329222 –1.16385 –0.44313 0.42754 –0.14355 –0.2288981 –0.5073333   

14 0.393266 0.857027 0.285484 –0.60618 0.046845 –0.11731 0.21328815 –0.2853488   

15 0.008057 –0.19876 2.335414 0.099667 –0.08183 0.287767 1.05414841 0.22572716   

16 0.335907 –0.38603 –2.41665 –0.08655 –0.0741 –0.35272 2.15735625 0.55374166   

17 –0.75494 –0.21653 –0.5382 –0.25327 0.335888 –0.65718 0.93083093 –0.6535756   

18 0.031721 0.341946 0.515567 –0.40836 0.593648 0.188823 0.0232836 0.07812335   

19 –0.37288 –1.19062 0.638179 0.257811 –0.27746 0.543206 –0.6433608 –0.2591042   

20 0.278492 0.413251 1.198806 –0.13147 0.270162 0.631891 1.00662778 0.21204428   

21 –0.70493 –0.34051 –0.40315 –0.36569 0.645062 0.483876 0.20386899 0.29928962   

22 –0.27857 0.820464 0.522807 0.415914 0.003446 –0.67671 –0.0980896 –0.4400881   

23 –0.64655 –0.26815 0.917162 –0.45081 –0.11074 –0.17491 –0.2582537 –0.6009535   

24 0.878195 –0.10783 –0.34463 0.447027 0.015446 –0.70335 0.21573361 –1.1874293   

25 0.132877 –0.02074 –0.6973 0.192938 0.601554 –0.15136 –0.1368108 –0.9032459   

26 –0.06464 0.959172 0.542966 0.551888 –0.44545 –0.21166 0.17658593 0.8048832   

27 0.276286 0.849763 –0.818 0.074856 0.132929 0.478235 –0.9751743 –0.7695462   

28 –1.09264 0.14061 –0.87705 –0.0679 0.1268 0.187739 0.79765868 1.18595977   

29 0.39855 1.128146 –0.20816 –0.08315 0.462093 0.777869 –0.5527538 1.29356814   

30 0.270055 –0.10548 0.760275 –0.85866 0.23381 0.637327 0.69111327 1.28966962   

31 0.167 0.882473 0.797602 0.080592 –0.21153 0.692714 –0.4571694 1.69406201   

32 0.047511 –0.44231 –0.45206 –0.59048 0.038518 0.137825 –0.1452332 –1.5819047   

33 –0.6309 0.201291 –0.32657 –0.6889 –0.13256 0.334145 –0.3605838 1.68747166   

34 –0.51563 0.036465 –0.60704 0.489215 –0.73146 –0.47758 0.094864 1.73944829   
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