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Recent years have seen a rapid increase in digital medicine research in an attempt
to transform traditional healthcare systems to their modern, intelligent, and
versatile equivalents that are adequately equipped to tackle contemporary
challenges. This has led to a wave of applications that utilise AI technologies;
first and foremost in the fields of medical imaging, but also in the use of
wearables and other intelligent sensors. In comparison, computer audition can
be seen to be lagging behind, at least in terms of commercial interest. Yet,
audition has long been a staple assistant for medical practitioners, with the
stethoscope being the quintessential sign of doctors around the world.
Transforming this traditional technology with the use of AI entails a set of
unique challenges. We categorise the advances needed in four key pillars: Hear,
corresponding to the cornerstone technologies needed to analyse auditory
signals in real-life conditions; Earlier, for the advances needed in computational
and data efficiency; Attentively, for accounting to individual differences and
handling the longitudinal nature of medical data; and, finally, Responsibly, for
ensuring compliance to the ethical standards accorded to the field of medicine.
Thus, we provide an overview and perspective of HEAR4Health: the sketch of a
modern, ubiquitous sensing system that can bring computer audition on par
with other AI technologies in the strive for improved healthcare systems.
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1. Introduction

Following the rapid advancements in artificial intelligence (AI), and in particular those

related to deep learning (DL) (1), digital health applications making use of those

technologies are accordingly on the rise. Most of them are focused on diagnosis: from

computer vision techniques applied to digital imaging (2) to wearable devices monitoring

a variety of signals (3, 4), AI tools are being increasingly used to provide medical

practitioners with a more comprehensive view of their patients—a trend which has been
01 frontiersin.org
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accelerating in the aftermath of the COVID-19 pandemic (5).

Computer audition complements this assortment of tools by

providing access to the audio generated by a patient’s body. Most

often, this corresponds to speech produced by the patients—

sometimes natural, mostly prompted (6–8). However, there exists

a plethora of auditory signals emanating from the human body,

all of which are potential carriers of information relating to disease.

These biosignals can be analysed either through specialised

instruments or, more interestingly, through the use of off-the-

shelf microphones embedded in everyday devices, such as

smartphones, which are already being widely used by healthcare

professionals in their day-to-day jobs (9). As such, they are

poised to be an indispensable tool to assist doctors in making

better decisions and acquiring a more holistic understanding of

their patients. While AI monitoring systems could, theoretically,

be deployed as standalone applications and make decisions

without supervision, we envision the components of our system

to assist doctors in their decision making processes, rather than

substitute them.

Acquiring auditory biosignals is the first, crucial step in a

computer audition pipeline. Oftentimes, this must be done in

noisy environments where audio engineers have little to no

control, e.g., in a busy hospital room or the patient’s home. This

results in noisy, uncurated signals which must be pre-processed

in order to become usable, a process which is extremely

laborious if done manually. Automating this process becomes the

domain of the first of four outlined pillars, (I) Hear, which is

responsible for denoising, segmenting, and altogether preparing

the data for further processing by the downstream algorithms.

Those algorithms typically comprise learnable components, i.e.,

functions whose parameters are going to be learnt from the

consumed data; in the current generation of computer audition

systems, the backbone of those algorithms consists of DL models.

These models, in turn, are typically very data “hungry,” and

require an enormous amount of computational resources and

experimentation to train successfully. However, in the case of

healthcare applications, such data might not exist, either due to

privacy regulations which prohibit their open circulation, or, as

in the case of rare or novel diseases, simply because this data

does not exist. Yet doctors, and subsequently the tools they use,

are commonly required to operate in such low-data regimes.

Therefore, it is imperative to make these algorithms operational

(II) Earlier than what is currently possible; this can be done, for

example, by transferring knowledge from domains where data is

widely available to data-sparse healthcare applications.

The first two pillars are of a more “engineering” nature; the

third one requires more theoretical advances. Statistical learning

theory, which forms the foundation of DL, is based on the core

assumption that data are independent and identically distributed

(10). In the healthcare domain, this translates to the hypothesis

that the population of training patients is representative of the

entire population—an assumption that often does not hold in

practice. Instead, patients come from different backgrounds and

are typically organised in sub-populations. Oftentimes, the level

of analysis reaches all the way down to the individual; in this

case, every patient is considered “unique.” Furthermore, the
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larger upside of using AI in medicine lies in providing more

fine-grained information in the form of longitudinal

observations. Handling the need for individualised analysis with

multiple observations over time requires algorithms to operate

(III) Attentively to individual—often changing—needs.

The last pillar corresponds to the translation of the mandate

enshrined in the Hippocratic oath to computer audition, and

more generally AI: any developed technologies must be

developed and be able to operate (IV) Responsibly. The

responsibility lies with the developers and users of the

technology and is targeted towards the patients who become its

objects. This informs a set of guidelines and their accompanying

technological innovations on how data needs to be sourced, how

algorithms must meet certain fairness requirements, and,

ultimately, on “doing good” for mankind.

Finally, we would be amiss not to mention the potential

applications that can benefit from the introduction of computer

audition in healthcare. This becomes the central component

which permeates all aspects of the four pillars: they exist insofar

as they serve the overarching goal of providing medical

practitioners with novel tools that can help them understand,

analyse, diagnose, and monitor their patients’ Health.

An overview of the four pillars, as well as their interconnections

are shown in Figure 1. In the following sections, we begin with an

overview of the particular diseases in which we expect computer

audition to make a decisive contribution, which lays the setting

for the four pillars. We then proceed to analyse each of our four

pillars in more detail and end with a discussion of how all four

of them can be integrated in a practical architecture. Thus, we

present HEAR4Health: an overview of recent advances and a

blueprint for what needs to be done for audition to assume its

rightful place in the toolkit of AI technologies that are rapidly

revolutionising healthcare systems around the world.

Our work aims to go beyond existing surveys, which only

concern themselves with the different technical aspects of

computer audition, and link those aspects to the pragmatic

requirements of the digital health setting. Therefore, instead of

diving deep into technical details, we provide a broad, holistic

coverage of the different components that are needed. Our work

represents a roadmap and a blueprint for healthcare researchers

and practitioners aiming to utilise computer audition to tackle a

diverse set of challenges.
2. Healthcare applications

Naturally, any advances in computer audition targeted towards

healthcare applications are inextricably tied to the specific medical

conditions that lend themselves to modelling via audio; the

necessary pre-requisite is that these conditions manifest

themselves, at least to some extent, in auditory biomarkers

emanating from the patients’ bodies. Historically, a significantly

higher emphasis has been placed on vocalisations compared to

other body acoustics such as heart sounds (6). Accordingly, this

choice has shaped most of the existing approaches and, thus, also

becomes the central point of our review. Table 1 shows the main
frontiersin.org
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FIGURE 1

Overview of the four pillars for computer audition in healthcare. HEAR is tasked with capturing, identifying, and enhancing the target signal. EARLIER
accounts for the need to deploy models at the edge to facilitate ubiquitous monitoring, as well as adapt to novel diseases using transfer learning and
synthetic data generation. ATTENTIVELY incorporates personal information in the decision-making process, either using patient metadata or
longitudinal observations, while assimilating doctor decisions in a human-in-the-loop framework. RESPONSIBLY ensures that developed models
adhere to ethical requirements by safeguarding privacy, promoting fairness, and adding a layer of explainability.
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ICD-111 categories on which previous research has focused, as well

as the specific diseases that previous studies have focused on and

the auditory signals and symptoms used for acoustic disease

monitoring and characterisation. In the following sections, we

proceed to analyse each of those categories, presenting prior

computer audition works that have focused on specific diseases,

and discussing the impact that our HEAR4Health framework can

have on them.
2.1. Infectious or parasitic diseases

This broad category covers several communicable diseases,

from bacterial, gastrointestinal infections, to sexually

transmitted diseases and viral infections, the majority of which

do not manifest in auditory biomarkers; the ones that do,

however, number several auditory symptoms such as

(persistent) coughing or having a sore throat. The ones

predominantly appearing in computer audition literature are:

(respiratory) tuberculosis (1B10) (11–14); pertussis (1C12) (15,

16); and influenza(1E) (17). Existing works have predominantly
1https://icd.who.int/

Frontiers in Digital Health 03
focused on detecting and analysing coughs; in particular, the

onset of DL and the increase in available data have unveiled the

potential of detecting coughs and subsequently categorising

them as pathological or not.
2.2. Mental, behavioural, or
neurodevelopmental disorders

Disorders belonging to this category are described by the WHO

as “syndromes characterised by clinically significant disturbance in

an individual’s cognition, emotional regulation, or behaviour that

reflects a dysfunction in the psychological, biological, or

developmental processes that underlie mental and behavioural

functioning.” The wide variety of symptoms of these diseases,

often manifesting as speech and language pathologies, along with

their widespread prevalence, have made them prime targets for

the computer audition community (7, 18–20). Typical disorders

are: (developmental) aphasia (6A01.20) (21, 22); schizophrenia

(6A20) (23–25); autism (6A02) (26–30); mood disorders (6A60;

6A70), of which depression is the most commonly researched

(31–33); and anxiety or fear-related disorders (6B) (34, 35). For

example, aphasia has been linked to mispronunciation errors and

increased effort (21, 22); schizophrenia manifests in slower

response times in conversations (24); and blunted affect (23–25);

depression results in a flatter tone (lower mean F0 values and
frontiersin.org
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TABLE 1 Overview of diseases per ICD-11 category that are frequently
investigated in the computer audition literature, as well as a list of
auditory symptoms and signals used for their monitoring.

Disease
group

Diseases Symptoms Relevant
biosignals

Infectious or
parasitic
diseases

Tuberculosis Coughing Coughing

Pertussis Sore throat Speech

Influenza

Mental,
behavioural, or
neurological
disorders

Aphasia Flatter tone Speech

Schizophrenia Pauses

Autism Strained articulation

Depression

Sleep-wake
disorders

Apnoeas Snoring Breathing

Snoring

Diseases of the
nervous system

Parkinson’s Articulation problems Speech

Alzheimer’s Phonation problems Sustained vowels

Multiple sclerosis

ALS

Cerebral palsy

Diseases of the
circulatory
system

Arrythmias Irregular heartbeat Heartbeat

Diseases of the
respiratory
system

Asthma Coughing Breathing

Bronchitis Articulation problems Coughing

COPD Phonation problems Speech

COVID-19 Sustained vowels

Pneumonia

Developmental
anomalies

Angelman syndrome Abnormal sounds Baby sounds

Fragile X syndrome Abnormal speech Speech

Rett syndrome

Triantafyllopoulos et al. 10.3389/fdgth.2023.1196079
range) with more pauses (32), and an increase in jitter and

shimmer, indicative of more strained articulation.
2.3. Sleep-wake disorders

Research in sleep-wake disorders has been typically targeted to

breathing-disorders—mainly apnoeas (36, 37), while some research

has been focused on the detection of the resulting sleepiness (38).

Apnoeas, on the one hand, mostly manifest as very loud snoring,

which is caused by a prolonged obstruction of the airways and

subsequent “explosive” inspirations. These signals can be

automatically detected and analysed using auditory machine

learning (ML) systems (39). Daytime sleepiness, on the other

hand, has been mostly studied as a speech and language disorder;

it manifests in lower speaking rates and irregular phonation (40).
2.4. Diseases of the nervous system

This family of diseases has adverse effects on memory, motor

control, and cognitive performance. Its most widely studied sub-

categories from a speech pathology perspective are Parkinson’s

(8A00.0) (41, 42); Alzheimer’s (8A20) (43–45); multiple sclerosis

(8A40) (46); amyotrophic lateral sclerosis (8B60) (47); and

cerebral palsy (8D) (48). These manifest primarily in the speech

signal, with dysarthria and dysphonia being the most common

symptoms. For example, studies find that Parkinson’s shows up
Frontiers in Digital Health 04
as increased roughness, breathiness and dysphonia, and higher

F0 values (41, 42), Alzheimer’s results in more hesitation (43),

multiple sclerosis leads to slower and more imprecise

articulation, pitch and loudness instability, longer and more

frequent pauses (46), and cerebral palsy shows up as dysarthria,

hypernasality, and imprecise articulation of consonants (48).
2.5. Diseases of the circulatory system

Auscultation has been a mainstay of a medical examination

since the invention of the stethoscope by Renë Laennec in 1816,

by now a trademark of medical practitioners around the world

(49). It is particularly useful when listening to the sounds of the

heart or the lungs of a patient. Accordingly, its digital equivalent

can be immensely useful in detecting pathologies of the

circulatory system, such as arrhythmias or congenital heart

diseases. Analysing those signals has become the topic of

multiple PhysioNet challenges (50) was also featured in the 2018

version of the ComParE series (51), with computer audition

systems being developed to detect and classify abnormal events

(“murmurs”) in phonocardiograms (52, 53).
2.6. Diseases of the respiratory system

These diseases can be broadly taxonomised as being related to the

upper or lower respiratory tract. Prominent examples are bronchitis

(CA20) (16); chronic obstructive pulmonary disease (COPD; CA22)

(54, 55); asthma (CA23) (56); pneumonia (CA40) (57); and

COVID-19 (RA01; designated under “codes for special purposes”

due to the pandemic emergency) (58, 59). By nature of their

symptomatology, these diseases are prototypical examples of ones

that manifest in auditory biomarkers. Thus, different signals have

been used to detect their presence, such as speech (60), breathing

and coughing (61, 62), or sustained vowels (63). The most

exemplary of those is COVID-19, whose devastating impact was felt

around the world since its emergence in late 2019 and has led to a

wave of renewed interest in computer audition for healthcare

applications. In general, these diseases lead to more coughs,

irregular breathing, phonation and articulation, and constrained

airflow resulting in less loud and more strained vocalisations.
2.7. Developmental anomalies

Developmental disorders, such as the Angelman syndrome

(LD90.0), Rett syndrome (LD90.4), and fragile X syndrome

(LD55) manifest in divergent vocalisation and speech

development patterns from an early age (29, 64–66). Infants with

specific developmental disorders produce abnormal cooing

sounds and less person-directed vocalisations, and their

vocalisations are found to be of lower complexity as compared to

typically developing infants. From a signal perspective, these

anomalies manifest in speech, first in pre-linguistic sounds and

later on in linguistic vocalisations of young children. As the
frontiersin.org
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emphasis is on children and young adults, they present an

additional challenge to data collection, on the one hand due to

ethical and privacy reasons, and on the other due to a potentially

reduced compliance of children with recording requirements.
3. Hear

A cornerstone of computer audition applications for healthcare is

the ability to Hear: that is, the set of steps required to capture and pre-

process audio waves and transform them into a clear, useful, and high-

quality signal. This is all the more true in the healthcare domain, where

recordings are often made in hospital rooms bustling with activity or

conducted at home by the non-expert users themselves. Therefore,

the first fundamental step in an application is to extract only the

necessary components of a waveform.

In general, this falls under a category of problems commonly

referred to as source separation and diarisation (67, 68): the

separation part corresponds to the extraction of a signal coming

from a particular source amongst a mixture of potentially

overlapping sources, whereas diarisation corresponds to the

identification of temporal start and end times of components

assigned to specific subjects. In healthcare applications, these

target components are the relevant sounds; this can include

vocalisations (both verbal and non-verbal) but also other bodily

sounds that can be captured by specialised auditory sensors

attached to their body, or general ones that are monitoring the

environment. These sounds need to be separated from all other

sources; these may include a medical practitioner’s own body

sounds (e.g., their voice in doctor-patient conversations) or

background environmental noise (e.g., babble noise in a

hospital). Accordingly, successful preparation entails a) the

ability to recognise which sounds belong to the target subject, b)

the ability to detect their precise start and end times, and c) the

ability to remove all other signals that co-occur during that time

from the waveform.

Traditionally, these steps are tackled by specialised pipelines,

which include learnable components that are optimised in

supervised fashion (68). For example, the ability to recognise

which sounds belong to the target subject is generally referred to

as speaker identification (69). While this term is usually reserved

for applications where speech is the sound of interest, it can also

be generalised to other bodily sounds (70). Similarly, separation

is typically done in a supervised way (68). During the training

phase, clean audio signals are mixed with different noises, and a

network is trained to predict the original, clean signal from the

noisy mixture. As generalisability to new types of noise sources is

a necessary pre-requisite, researchers often experiment with test-

time adaptation methods, which adaptively configure a

separation model to a particular source (71).

The crucial role of the Hear pillar becomes evident when

considering data collection. There are three main data collection

paradigms employed in healthcare applications: (a) the (semi-)

structured doctor-patient interview, (b) ecological momentary

assessments (EMAs) based on prompts (72), and, (c) passive,

continual monitoring (73). All of them require very robust
Frontiers in Digital Health 05
patient identification and diarisation capabilities. However, each

comes with its own set of unique challenges that can be tackled

by the Hear pillar. Structured interviews are often conducted in

relatively quiet environments (e.g. a doctor’s office or laboratory);

the challenge mainly relies in the use of far-field microphones

that make the processing more complicated (e.g. resulting in

reverberation) (74). The need for a robust Hear pillar is

punctuated by the fact that response rates and speaking times

during interviews are often very informative features for these

types of diseases; their accurate estimation is only possible

following a reliable diarisation step.

EMAs further complicate processing as they may take place in

different environments, not necessarily quiet ones, as the patient

can choose to conduct them in any environment of their

choosing. Thus, denoising becomes a crucial factor for removing

the unwanted interference from background noise. Passive

monitoring represents the most challenging form of data

collection. The auditory signals are potentially embedded in

several, high-varying sources; detection then becomes the first

crucial step. Voice activity detection is more mature than the

detection of other types of bodily acoustics; still, even that suffers

from robustness issues and is often a crucial bottleneck for

successful applications (75). This is followed by a source

separation step which attempts to extract the useful signals from

any other sources, a feat which becomes more challenging for

non-speech signals such as coughing, as this requires general

source separation. For such symptoms, a major contribution of

the Hear pillar would be to improve the detection of coughs in

naturalistic environments; this would pave the way for

continuous monitoring using smart wearables or smartphones to

monitor (prospective) patients over time and detect a change in

their frequency of their coughing over time.

Moreover, the audio processing can be formulated as a single,

unified task of target audio extraction. The gold standard for digital

health applications is not defined by human listening studies as in

traditional source separation, but rather from the performance of

downstream processing modules, with the goal being to increase

their performance and robustness to noise. Overall, the aim of

pre-processing is to reduce the uncertainty in real-life recordings

by adapting to different environmental situations. Hence, it helps

to provide a more robust interface that enables digital health

applications. Finally, some techniques based on speech

enhancement and source separation, such as signal-to-noise ratio

(SNR) estimation, can be used to make a decision on whether a

specific audio signal is suitable for further audio-based medical

diagnosis, depending on the quality of the original recording and

the processed audio.
4. Earlier

The major promise of digital health applications is their

ubiquitous presence, allowing for a much more fine-grained

monitoring of patients than was possible in the past. This

requires the systems to work on mobile devices in an energy-

efficient way. Additionally, these systems must be versatile, and
frontiersin.org
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easy to update in the case of new diseases, such as COVID-19. This

requires them to generalise well while being trained on very scarce

data. However, training state-of-the-art DL models is a non-trivial

process, in many cases requiring weeks or even months, and is

furthermore notoriously data intensive. Moreover, the technology

required, such as high-end GPUs, is often expensive and has

exceptionally high energy consumption (76).

There have consequently been increasing efforts to develop

AutoML approaches that optimise a large network until it is

executable on a low-resource device (77, 78). Many of these

approaches focus on reducing the memory footprint and the

computational complexity of a network while preserving its

accuracy. These techniques have shown promise across a range of

different learning tasks, however, their potential has not yet been

realised for audio-based digital health applications.

On the issue of data efficiency, there has been a lot of research

on utilising transfer learning techniques for increasing

performance and decreasing the required amount of data. This is

usually done by transferring knowledge from other tasks (79, 80),

or even other modalities (81, 82). However, in the case of audio

in particular, an extra challenge is presented by the mismatch

between the pre-training and downstream domains (83).

Recently, large models pre-trained in self-supervised fashion have

reached exceptional performance on a variety of different

downstream tasks, including the modelling of respiratory diseases

(54), while showing more desirable robustness and fairness

properties (84).

The implementation details of the Earlier pillar largely depend

on the biomarkers related to the specific medical condition of

interest. For example, in terms of mental disorders, which mostly

manifest as pathologies of speech and language, it is mostly tied

to generalisation across different languages. On the one hand,

linguistic content itself is a crucial biomarker; on the other hand,

it serves to constrain the function of acoustic features; thus, there

is a need to learn multi-lingual representations that translate well

to low-resource languages. For diseases manifesting in sounds

other than speech signals, the Earlier pillar would then improve

the data efficiency of their categorisation. For example, contrary

to speech signals, for which large, pre-trained models are readily

available (85), there is a lack of similar models trained on cough

data; a lack partially attributable to the dearth of available data.

This can be overcome, on the one hand, through the use of

semi-supervised methods that crawl data from public sources

(86), and, on the other hand, by pursuing (deep) representation

learning methods tailored to cough sound characteristics.

When COVID-19 took the world by storm in early 2020, it

represented a new, previously unseen threat for which no data

was available. However, COVID-19 is “merely” a coronavirus

targeting the upper and lower respiratory tracts, thus sharing

common characteristics with other diseases in the same family

(87). Transferring prior knowledge from those diseases, while

rapidly adapting to the individual characteristics of COVID-19,

can be another crucial factor when deploying auditory screening

tools in the face of a pandemic.

Nevertheless, even after using transfer learning techniques, the

problem of data sparsity still remains. In the audio domain,
Frontiers in Digital Health 06
acquisition of data representative of the variety of signals seen at

population level is time-consuming, costly and inefficient. A

potential remedy could be found in generating new data. Many

state-of-the-art, high-fidelity approaches for generating audio

computationally are being developed, and these could be used to

facilitate targeted data generation for handling underrepresented

diseases. Co-opting these approaches for the digital health

domain to generate (personalised) utterances of pathological

speech and use them to augment the training data holds a lot of

promise for mitigating the sparsity issue.
5. Attentively

Most contemporary digital health applications focus on the

identification of subject states in a static setting, where it is

assumed that subjects belong to a certain category or have an

attribute in a certain range. However, many conditions have

symptoms that manifest gradually (88), which makes their

detection and monitoring over time a key proposition for future

digital health applications. Furthermore, disease emergence and

progression over time can vary between individuals (89–91). For

example, the age at onset and the progression rate of age-related

cognitive decline varies between individuals (89), while there is

substantial heterogeneity in the manifestation and development

of (chronic) cough across different patients (92). Focusing on

these aspects of digital health by adapting to changes in

distributions and developing personalised approaches can

drastically improve performance.

Recent deep neural network (DNN)-based methods for

personalised ML (30) and speaker adaptation (93) already pave

the way for creating individualised models for different patients.

However, these methods are still in their nascent stage in

healthcare (94). Personalised ML is a paradigm which attempts

to jointly learn from data coming from several individuals while

accounting for differences between them. Advancing this

paradigm for speech in digital health by utilising longitudinal

data from several patients for learning to track changes in vocal

and overall behaviour over time is a necessary precondition for

the digital health systems of the future. This means that time-

dependent, individualised distributions are taken into account for

each patient, by that requiring the development of novel

techniques better suited to the nature of this problem; in

particular, developing versatile DL architectures consisting of

global components that jointly learn from all subjects, and

specialised ones which adapt to particular patients (95, 96). This

novel framing will also enable faster adaptation to new patients

by introducing and adapting new models for those patients alone.

On the other hand, speaker adaptation corresponds to

disentangling speaker effects from biomarkers related to specific

speaker states. This will be achieved by breaking down the input

audio signal to a set of independent factors, enabling factors

unrelated to the task at hand to be disregarded, such as speaker

characteristics or speaker traits. The novel framework of causal

representation learning (97), where deep neural networks are

trained to disentangle independent factors, has yet to be utilised
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in the healthcare domain. Accordingly, DL architectures must be

developed that can utilise this implicit factorisation to

differentiate between speaker-specific factors and disease

biomarkers.

Finally, a major proposition of computer audition is to

supplement clinical evaluations and doctor visits, which are

resource-intensive procedures, with cost-efficient AI-driven

measurements, remotely collected in advance of the appointment

with finer temporal resolution. In addition to potential research

applications, in clinical practice, this detailed, objective record

will provide insights to clinicians and enable more timely

diagnostic investigations; for example, by using change point

detection to identify changes in the patient’s state. The feedback

from expert examinations, which is collected in more infrequent

intervals, can then be incorporated using reinforcement learning.

Reinforcement learning remains underutilised in the audio

domain, largely because of the lack of an interactive environment

where sparse rewards are available. However, digital health

applications are ripe with sparse signals from medical

practitioners in conjunction with asynchronous audio recordings

that can be used to actively learn from sequences of observations

in a constantly changing environment. Some of the audio

recordings are collected in regular intervals, e.g. using

smartphone apps or phone prompts, and are only supplemented

by self-report measures when appropriate (96). However, such

measures can only serve as a proxy to the target at hand; clinical

evaluations, sometimes including specialised tests, are the gold

standard in health state assessment. These more costly

interventions are carried out infrequently compared to the

remotely collected data, based on the decisions of medical

practitioners. The asynchronous relationship between data

recordings and targets present a fundamental problem for digital

health applications. Tackling this challenge will become possible

by developing a reinforcement learning framework for audio,

where patient recordings will constitute the observations and

clinical evaluations the “reward” from which the model will learn.

Adapting to individual characteristics is also of paramount

importance. The Attentively pillar can become a cornerstone of

future applications for monitoring mental health. Applications

are already re-orienting towards longitudinal monitoring; this

serves to provide more insight to a patient’s mental state over

time, and lends itself well to personalised modelling. This will

additionally help elucidate differences within this family of

diseases; as discussed above, symptoms are often similar across

different mood disorders, making their differentiation difficult.

This obstacle can be overcome by contextualising a model to

individual characteristics, such as patient histories or

demographics, resulting in a hybrid AI system, comprising both

data-driven and knowledge-based components. To the best of

our knowledge this has not been utilised in computational

research for digital health—presenting a prime opportunity for

the Attentively pillar.

Naturally, the requirement for personal data raises serious

technical and ethical challenges. Firstly, this information might

not be available to the same extent for each patient. Furthermore,

there is an explicit trade-off between personalisation and privacy;
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the more individual-level that is needed by a system, the more

privacy-infringing it becomes. It is therefore necessary that any

personalisation methods are optional; their use should be turned

on or off depending on whether the data is available and the

patient agrees to its use. Most methods already support this level

of controllability as they can be trained in a multi-condition

scenario with different combinations of available/missing data. By

selectively dropping out personal information during training,

the system can learn to generalise in situations where this

information is not available during deployment.
6. Responsibly

The development of responsible digital health technology is a

key pillar of future healthcare applications. This ensures

trustworthiness and encourages the adherence of users to

monitoring protocols. Consequently, addressing crucial factors

and technology-related consequences in automated disease

detection concerning human subjects in a real-world context is

of paramount importance (98).

This pillar intersects with all previous ones and informs their

design, adhering to an ‘ethical-by-design’ principle which is

fundamental for healthcare applications. Naturally, a first

requirement that applies to all pillars is one of evaluation: all

components of a healthcare application need to be

comprehensively evaluated with respect to all sub-populations

and sensitive attributes. This holds true for all components of a

computer audition system: from extracting the target audio signal

(Hear) to generating efficient representations (Earlier) and

adapting to individual characteristics (Attentively), any developed

methods should perform equally for different sub-populations.

The evaluation could be complemented by explainability

methods, which explicitly search for biases in model decisions (99).

Aside from comprehensively evaluating all methods with

respect to fairness, explicit steps must be taken to improve on

those (100). To this end, adversarial (101) and constraint-based

methods (102) have been proposed to learn fair representations.

In adversarial debiasing, the main predictive network learns to

perform its task while an adversary pushes it toward

representations which obfuscate the protected characteristics.

Constraint-based methods instead solve the main prediction task

subject to fairness constraints (such as equality of opportunity);

these methods rely on convex relaxation or game-theoretic

optimisation to efficiently optimise the constrained loss function.

The second requirement placed on the three other pillars is

privacy. For example, the Hear pillar could be co-opted to

remove private information (e.g., via using keyword spotting to

remove sensitive linguistic information). The Earlier pillar would

then take the extracted signal and remove any paralinguistic

information unrelated to the task; this could be achieved by

targeted voice conversion that preserves any required signal

characteristics but changes the patient’s voice to be

unrecognisable (103).

A popular method to protect the privacy of an individual when

analysing and releasing data is differential privacy (DP) (104). DP
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tries to prevent “attackers” from being able to determine whether a

certain individual is included in the dataset or not, i.e., the

contribution of an individual in the dataset to the data or query

output is obscured (105). This is achieved by adding controlled

noise or randomness to the data or query results. In this

connection, a parameter e is applied to determine the strength of

protection provided by a differential privacy mechanism, at

which smaller values of e may lead to better privacy but less data

utility. Therefore, the non-trivial choice of e depends on the

specific privacy requirements, risk tolerance, and the data

sensitivity in order to best deal with this tradeoff between privacy

and utility. However, the personal information embedded in

audio signals is not needed for a successful prediction and can

be removed prior to storing the data thus safeguarding the

privacy of individual patients irrespective of failsafe mechanisms

that protect the collected datasets, which may prove insufficient

against future, more competent attackers.

Satisfying this requirement, however, is particularly challenging

for the Attentively pillar, as there is a natural privacy-

personalisation trade-off: the more private information is removed,

the less context remains to be utilised for the target patient. The

main solution to this obstacle is the use of federated learning

(106): to ensure that sensitive information cannot be derived from

central models, differential privacy methods have been proposed,

such as differentially private stochastic gradient descent (107) and

a private aggregation of teacher ensembles (108). These methods

would update the global model backbone discussed in Section V,

which is shared among all “clients,” while any personalised

components would remain local—and thus under the protection

of safety mechanisms implemented by the client institutions.

Finally, researchers need to focus on intersections between the

investigated technology, the healthcare professional, and the

patient. Understanding how and why a particular decision was

made is critical for all stakeholders in the medical ecosystem.

First and foremost, patients are entitled to an explanation for a

particular diagnosis or proposed treatment plan (109, 110). These

decisions will ultimately be made by doctors who utilise AI

models as tools, and thus, they need to understand the outputs

and workings of those models themselves. Finally, model

developers can benefit from a better understanding of how their

model works in order to improve it in future iterations.

Explainable AI (XAI) provides a clear understanding of how an

algorithm works and why it makes specific decisions. This

information helps medical professionals trust and interpret the

AI’s outputs, and it also makes it easier for them to explain the

AI’s decisions to their patients. Expectedly, the community has

recently engaged in substantial research efforts to mitigate this

problem, leading to a wave of novel XAI techniques (111–114).

XAI methods can be broadly categorised into two main

categories: model-based (global) and instance-based (local) (115).

Model-based methods, such as surrogate models or layer

visualisation techniques, attempt to understand the inner

mechanisms of a particular model. These methods give an

understanding of how a model makes decisions over multiple

instances. In contrast, instance-based methods focus on why a

particular decision was made for each particular instance. These
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that specific instance. Finally, a particularly pertinent

explainability method for healthcare applications is

counterfactional explainability (116), which provide a natural

interface for doctors to evaluate alternative outcomes through the

language of counterfactuals (“what would the decision have been

if feature X had a different value?”). Ultimately, the goal of a

comprehensive system should be to combine an assortment of

different XAI methods and provide a well-rounded

understanding of how auditory models work and why they make

specific decisions.

In addition to these by now established XAI methods, recent

advances in generative AI have paved the way for a more natural

presentation of explanations to the end-user. For instance, the

recent success in mapping different modalities to text by aligning

the learnt representation spaces of large multimodal foundation

models has enabled the provision of textual explanations, which

can be seen as a form of captioning (117), with the difference

that the must conform to XAI requirements (i.e., fidelity and

correctness). For auditory models in particular, a more natural

way to present explanations would be the sonification of

explanatory information (118). In a nutshell, sonification entails

the generation of audio that conveys information in an easily

digestible way. At a basic level, this might simply correspond to

identifying those constituents of an auditory signal which were

most relevant for a particular decision and playing them back to

the user (a method often used in biofeedback for training (119)),

though with the advent of generative audio models, more

advanced explanations will become possible.

Finally, like Earlier, low-resource languages become the subject

of the Responsibly pillar as well; the majority of studies has been

performed on English data, due to their wider availability.

However, due to the widespread nature of mood disorders, it is

imperative to extend the applicability of computer audition

algorithms to a wider gamut of languages (and cultures). There is

an equal lack of work on fairness aspects relating to cough

detection and categorisation; in particular, we expect age to play

a crucial work both in the frequency, and the acoustic properties

of cough signals; this would fall under the auspices of the

Responsibly pillar, which should be tasked first with

understanding, and subsequently mitigating, differences in

performance across different populations. Similar to

explainability, these aspects of fairness could be embedded in a

counterfactual framework (120) which would allow medical

practitioners to examine alternative scenarios for algorithmic

predictions (“what would the decision be if the patient was

female instead of male?”).
7. HEAR4Health: a blueprint for future
auditory digital health

Early diagnosis, ideally even before symptoms become obvious

to individuals in their daily lives, allows very early interventions,

maximising the likelihood of successful treatments and a positive

outcome, and optimising public health expenditures. While early
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diagnosis will not enable a curative treatment of all diseases in all

cases, it provides the greatest chance of preventing irreversible

pathological changes in the organ, skeletal, or nervous system, as

well as reducing chronic pain and psychological stress. In some

cases, early intervention can prevent the emergence of related

long-term consequences. From a public health perspective, early

detection is also an effective way to minimise the spread of

contagious diseases—as became evident during the COVID-19

pandemic.

Audio signals are well suited to such a non-invasive early

diagnosis strategy, as they can be easily acquired anywhere and

anytime using ubiquitous smart devices. A key differentiating

factor of audition, as opposed to other modalities, is the nature

of the signals that are used for monitoring patients. This can be

audio recordings of the voice (e.g. sustained vowels, social

interactions and interviews), body sounds (e.g. heartbeat,

breathing, coughing, and snoring sounds), and audio recordings

of an individual’s acoustic environment (e.g. extracting

information about frequency of communicative acts and

emotional states during interactions, or noise exposure) with the

aim of developing tools and methods to support the earlier

diagnosis of acute and chronic diseases. The nature of those

signals presents new challenges, and new opportunities, for

future healthcare systems. In the present section, we attempt to

sketch out a blueprint for bringing existing and upcoming

advances of computer audition technologies out of the lab and

into the real world of contemporary medicine.

Unifying the four pillars results in a working digital health

system which we name HEAR. Our system can be used to

supplement the decision-making of practitioners across a wide

facet of diseases. In general, we anticipate two distinct

functioning modes for it. On the one hand, it can be used as a

general-purpose screening tool to monitor healthy individuals

and provide early warning signs of a potential disease. This

hearing with “all ears open” mode takes a holistic approach, and

emphasises a wide coverage of symptoms and diseases, thus

functioning as an early alarm system that triggers a follow-up

investigation. Following that, it can be utilised to monitor the

state of patients after they have been diagnosed with a disease, or

for measuring the effect of an intervention. This second, more

constrained setting necessitates a ‘human-in-the-loop’ paradigm,

where the doctor isolates a narrower set of biomarkers for the

system to monitor—now with more focus and prior information

about the patient’s state—which is then reported back for each

new follow-up. Through this loop, HEAR provides vital

information of a high-resolution temporal scale, thus facilitating

more personalised interventions and helping strengthen the

doctor-patient link.

A key enabling factor for both operating modes will be the co-

opting of ubiquitous auditory sensors as medical screening devices:

the most obvious candidates would be smartphones, but also other

IoT devices with audio recording capabilities, such as

smartwatches. These would rely on active or passing auditory

monitoring to identify potential symptoms. In the case of passive

monitoring, the onus would be on the Hear pillar to detect

them: in the case of speech, utilising voice activity detection,
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identification, diarisation, and separation to extract the target

voice, while additionally performing audio event detection to

detect coughs, sneezes, snores, or other bodily sounds. Analysing

the frequency of symptoms (in the case of coughs or similar

sounds) could serve as the first indication of a disease. Further

exploring the nature of those symptoms would require the use of

other pillars, most notably the Attentively one to determine

whether the identified sounds represent a deviation from the

“norm” of a given subject; this would serve as another indication

of disease. In general, both systems would collaborate with the

Responsibly pillar to take into account subject demographics.

This would help contextualised detected patterns with respect to

the particular risks faced by the individual.

This early screening system would mostly serve to provide

warnings which trigger a subsequent medical evaluation. During

a visit to a medical professional, the subject would present an

account of their symptoms, which would be complemented by

intelligent analytics from the auditory monitoring system. This

highlights the need for the system to be explainable (a

component of the Responsibly pillar), as merely reporting

concerning findings without additional details or explanations

about the nature of the detected pathology would be of little help

to the practitioner.

Following a medical examination, the nature of which could

also entail the use of computer audition technologies as well, the

healthcare professional would prescribe an intervention (e.g. in

the form of medication or surgery) or highlight potential causes

of concern. The success of this intervention or the potential risks

require subsequent monitoring, entrusted (partially) to a similar

auditory monitoring system. This time, however, instead of a

“broad sweep” for different comorbidities, the monitoring would

be targeted to a particular disease, or at least a constrained set of

alternative diagnoses prescribed by the practitioner. A diagnosis

serves as a “primer” for all components of the HEAR system to

look for a particular disease: the Hear component would be more

sensitive to the biomarkers of choice, the Earlier pillar would

draw on existing knowledge for those biomarkers to enhance

their detection, Attentively would track changes according to the

initial states, Responsibly would provide the missing link to

patients and practitioners by interpreting those changes and

transforming them to features understandable by both

professionals and laymen.

In general, this second, more targeted phase would mean the

beginning of a human-machine loop, where a medical

practitioner prescribes interventions whose success the auditory

system helps to quantify, or identifies missing information that

the system needs to gather. Each time, a new prescription signals

a new configuration of the HEAR system: Hear looks for the

missing information, assisted by Earlier and Attentively, and their

findings are reported back with the help of Responsibly.

Each pillar may encompass different capabilities across the two

different operating modes. While all of them need to be active

during the initial screening phase, with the system hearing with

“all ears open,” there is an inherent trade-off in such a holistic

approach: the more targets the system is looking for, the bigger

the possibility of false alarms or confusions, and the greater the
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complexity of the overall system, with the accompanying increases

in energy consumption and computational resources. This

necessitates the presence of the second, more guided phase,

where the system is looking for a more constrained set of

biomarkers. In either case, there are stringent requirements for

reliability and explainability that can only be satisfied with the

use of prior knowledge, attention to the individual, and an

adherence to ethical principles. Ultimately, it is user trust that is

the deciding factor behind the adoption of a transformative

technology. The use of computer audition in healthcare

applications is currently in its nascent stages, with a vast

potential for improvement. Our blueprint, HEAR4Health,

incorporates the necessary design principles and pragmatic

considerations that need to be accounted for by the next wave of

research advances to turn audition into a cornerstone of future,

digitised healthcare systems.
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