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Abstract

Human infections with H7N9 avian influenza virus were first reported in 
the early spring of 2013, in the Yangtze-delta region of China. This virus 
subsequently caused five successive epidemic waves from 2013 to 2018 with 
highest reported cases in the last wave making this strain the most successful 
zoonosis influenza virus in humans in recent decades. No H7N9 human 
infections have been reported since 2019, probably because of the extensive 
vaccination of poultry. Although zoonoses of H7N9 and other subtypes of 
avian influenza viral infections remain rare, the virus could acquire sufficient 
mammalian adaptive mutations to allow it to cause a future influenza 
pandemic. Here, we summarize the main findings on viral and host factors 
affecting the interspecies transmission of the H7N9 avian influenza virus.
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BACKGROUND

The influenza A virus (IAV) has been 
detected in a wide range of host species, 
thus making it a prototype for emerging 
viruses with pandemic potential. Wild 
aquatic birds are the natural reservoirs of 
diverse influenza A viruses, and the cor-
responding infections are usually mild or 
asymptomatic. Avian influenza viruses 
(AIVs) can be transmitted to other species, 
such as domestic poultry, swine, and horses. 
Cross-species transmission of avian IAV to 
humans is rare. In the past decades, sporadic 
human infections with AIVs, including 
the H5N1, H5N6, H6N1, H7N2, H7N3, 
H7N4, H7N7, H7N9, H9N2, H10N7, 
H10N8, H5N8, and H10N3 subtypes, 
have been reported [1–3]. Many of these 
zoonoses are “dead end”: no subsequent 
transmission has been observed, and only a 

small number of cases have been reported. 
However, H7N9 IAV has been respon-
sible for the major zoonosis in recent 
decades (Fig 1). The first laboratory-con-
firmed H7N9 human case was identified 
in eastern China in early spring, 2013 [4]. 
Recent exposure to poultry or visitation 
of live poultry markets (LPMs), where 
AIV can be maintained and amplified, are 
the main risk factors for human infection 
[5]. Fortunately, LPM closures effectively 
decreased the incidence of human infec-
tions [6]. This virus caused five continuous 
epidemic waves with a total of 1,568 cases 
and 616 deaths (case fatality rate of 39%). 
No human H7N9 cases have been reported 
after March 2019, probably because of 
the massive vaccination efforts in poultry 
after September 2017 in China [7]. The 
H7N9 influenza virus causes severe or 
fatal outcomes in humans but shows low 
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pathogenicity in poultry, thus enabling “silent” evolution 
and transmission to humans. However, the emergence of 
the highly pathogenic H7N9 avian influenza (HPAI H7N9) 
in poultry, with increased virulence and an expanded host 
range to ducks, posed a new threat not only to poultry but 
also to public health [8, 9]. Although no new human cases 
have been reported since 2019, the potential for sporadic 
human infections cannot be ignored, because H7N9 influ-
enza viruses have continually been detected in poultry and 
related environments. 

H7N9 IAVs undergo “genetic tuning” through reas-
sortment, acquiring mutations in viral proteins that ena-
ble cross-species transmission from poultry to humans. 
However, human infections with the H7N9 virus remain 
rare, and limited human-to-human transmission has been 
reported; therefore, host genetic factors might also contrib-
ute to susceptibility to the H7N9 virus. Here, we summa-
rize current findings regarding the viral and host factors that 
contribute to H7N9 IAV interspecies transmission.

ACQUIRED FEATURES OF VIRAL PROTEINS 
FOR ADAPTION TO MAMMALIAN HOSTS

H7N9 IAV is a triple-reassortant virus with two surface 
genes from different H7 and N9 viral subtypes, and all six 
internal genes from the H9N2 virus [4]. The early reas-
sortment probably occurred in wild birds, and the second 
reassortment probably took place in domestic birds in east 
China in 2012, through exchange of internal genes from 
H9N2 viruses [10]. Those early strains underwent contin-
ual reassortment, and acquired amino acid substitutions 
in their viral proteins and features required for adaptation 
to mammalian hosts, such as greater binding affinity to 

“human-type” receptors. However, interspecies transmis-
sion from poultry to humans is not determined solely by the 
enhanced receptor binding ability in the cell-attachment 
process but is also associated with other altered viral-protein 
molecular markers, which might affect the transmission and 
replication of H7N9 influenza viruses.

H7N9 IAV enhanced “human-type” receptor 
binding properties
Host-cell attachment is the initial host-species barrier that 
can control or limit infection. The hemagglutinin (HA) pro-
tein, expressed on the surfaces of influenza viruses, binds 
terminal sialic acids (SAs), which are associated with the 
larger glycans on the surfaces of host cells, thus enabling 
viral internalization. In humans, α2,6-linked SAs are abun-
dantly expressed in the upper respiratory tract (i.e. the naso-
pharynx), whereas a mixture of α2,3- and α2,6-linked SAs 
are present in the lower respiratory tract (i.e., the lungs and 
bronchi) [11,12]. Acquisition of a binding preference for 
α2,6-linked SA (the “human-type” receptor) in the HA 
protein is believed to be a fundamental feature underlying 
the adaptation of AIVs to mammalian hosts. As previously 
reported in various influenza viruses subtypes [13–15], the 
G186V and Q226L mutations (H3 numbering) in the HA 
receptor-binding site have been detected in H7N9 influ-
enza viruses, and contribute to its enhanced “human-type” 
receptor binding preference [16]. Furthermore, substitutions 
of both G186V and Q226L, or G186V alone, have been 
detected in the HPAI H7N9 virus [17,18].

Neuraminidase is a sialidase protein that cleaves SA from 
infected cell surfaces, thus enabling the release of progeny 
virions for viral spreading [19]. The N9 of H7N9 viruses 
bears a short-stalk with a deletion of 5 amino acids at 
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Figure 1 | Human infections with avian influenza viruses in recent decades.
The cumulative number of cases of human infection with different avian influenza virus subtypes since the first reported year or the year of 
a well-known epidemic (H7N7). The size of the circle represents different cumulative numbers of cases: the smallest circle represents one 
reported case.
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positions 69–73, which is commonly observed in terrestrial 
poultry [20]. Furthermore, N9 shows inefficient cleavage of 
α2,6-linked SA receptors, thus potentially compromising 
aerosol transmission in ferrets [21]. However, a recent study 
has indicated that N9 also has receptor binding properties 
mediated by a hemadsorption site in addition to an enzy-
matic site with enhanced binding to “human-type” recep-
tors [22].

Therefore, the overall increase in α2,6-linked 
SA-receptor binding properties due to mutations in the 
HA protein as well as the additional neuraminidase-bind-
ing feature are possible advantages that may facilitate H7N9 
influenza virus infection in human cells and mammalian 
hosts. Unlike H5N1 IAV, which has a binding prefer-
ence for α2,3-linked SA (the “avian-type” receptor) and 
has only rarely cased human infections since 1997, H7N9 
influenza virus has an enhanced α2,6-linked SA binding 
specificity, which might partially explain the larger number 
of human cases caused by this novel avian influenza virus 
[16]. H7N9 influenza viruses have acquired an ability to 
bind “human-type” receptors. However, they have retained 
their ability to bind α2,3-linked SA [23]. Furthermore, N9 
shows poor cleavage activity toward α2,6-linked SA recep-
tors, thus potentially limiting viral spread and release from 
human cell surfaces for further replication. These charac-
teristics may explain why only limited human-to-human 
transmission has been reported [5, 24, 25] and why effi-
cient airborne transmission of the H7N9 virus has not been 
observed in ferret models [26].

H7N9 IAV enhances replication or virulence in 
mammalian hosts
The genomic replication of the avian influenza virus is poor 
in mammalian cells. However, multiple molecular viral pol-
ymerase mutations that overcome this major species barrier 
have been reported. Polymerase basic protein 2 (PB2) is a 
major host determinant, and T271A, Q591K, E627K, and 
D701N substitutions have been reported in most LPAI and 
HPAI human H7N9 isolates [18,20]. Those mutations are 
associated with greater polymerase activity in mammalian 
cells or enhanced virulence in mice. The E627K or D701N 
mutations in PB2 are critical for the adaptation of AIVs to 
mammalian hosts [27–29]. These mutations increase the 
polymerase activity and viral replication of H7N9 viruses in 
vitro and in vivo [30–32]. Although no human isolates with 
dual mutations in PB2 at positions 627 and 701 have been 
reported, these mutations have been discovered in a ferret 
transmission model and have also been found to confer 
enhanced fitness in mammalian cells and mice [33]. Another 
subunit of the polymerase basic protein PB1 has a poten-
tially biologically important I368V mutation [34,35], which 
is associated with acquired transmissibility of the H5N1 
avian influenza virus among ferrets [36]. The PB1 gene also 
encodes the full-length PB1-F2 protein of approximately 
89 amino acids. However, some H7N9 isolates encode only 
shorter-length PB1-F2 proteins, as also observed in other 
influenza A viruses [20]. This shorter length is associated 

with greater pathogenicity in mice, but its contribution to 
the virulence of H7N9 viruses remains unclear. Moreover, 
human-like signatures have been reported, including PA 
V100A, K356R, and S409N mutations [20].

HOST FACTORS CONTRIBUTING TO 
SUSCEPTIBILITY TO H7N9 INFECTION

Human genetic determinants of H7N9 avian 
influenza viral infections
Epidemiological investigations have revealed that expo-
sure to poultry is the most likely independent risk factor 
for human H7N9 infections. In one study, 73% (887/1220) 
of infected patients were found to have been exposed to 
infected poultry and/or contaminated environments, mainly 
LPMs, whereas only 7% (91/1220) of the confirmed cases 
were associated with occupational exposure to poultry [37]. 
Furthermore, serological surveys of poultry workers have 
indicated undetectable or limited neutralizing antibodies 
against the H7N9 virus (seropositivity rate of 0.11–0.93%) 
[38,39]. Additionally, in the general population, two sero-ep-
idemiologic surveys between 2013 and 2016 have reported 
zero or very low seropositivity rates for H7N9 influenza 
virus [38,40]. Because human infections with H7N9 viruses 
remain very rare, host genetic factors might also determine 
susceptibility to H7N9 infections.

Previous studies have shown that host genetic factors are 
important in the pathogenesis of, or susceptibility to, influenza 
viral infections [41]. Single-nucleotide variants (SNVs) of sev-
eral genes, including TMPRSS2, IFITM3, TLR3, and CD55, 
are associated with the severity of human infections with 
H7N9 viruses [42–44] (Table 1). The rs4820294/rs2899292 
haplotype GG of LGALS1 is associated with protection from 
H7N9 infections, possibly because of significantly higher 
LGALS1 mRNA and protein expression in lymphoblast 
cell lines [45]. However, little is known regarding genetic 
predisposition to H7N9 infection. In addition, most SNVs 
 identified in single-variant analyses have high minor-allele 
frequencies (MAF > 5%, gnomAD) in humans. Furthermore, 
with the development of next-generation sequencing, rare 
SNVs predisposing humans to H7N9 infection can be 
identified through human whole-genome sequencing. For 
example, a low-frequency variant of UBXN11 and three 
HLA alleles (DQB1*06:01, DQA1*05:05, and C*12:02) 
have been associated with H7N9 infection in human [46]. 
Moreover, our recent investigation of the contribution of rare 
mutations in poultry workers frequently exposed to H7N9 
viruses, compared with other populations, has identified 17 
defective SNVs in the myxovirus resistance 1 (MX1) locus 
in H7N9-infected patients, without sex differences, on the 
basis of whole-genome sequencing [47]. In vitro experiments 
also demonstrated that 14 of the 17 MxA protein variants, 
including H7N9, H7N7, and H5N1, had lost the ability 
to inhibit avian IAV replication. These results demonstrate 
the key role of MX1-based antiviral defense in controlling 
interspecies transmission. Additionally, previous studies have 
shown that human MxA inhibits influenza virus replication 
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by blocking the nuclear translocation of incoming viral rib-
onucleoproteins with the help of additional cofactors to 
achieve anti-influenza activity [48]. To verify the antiviral 
mechanism of human MxA and how missense mutations in 
different domains influence its antiviral effects, further stud-
ies are needed. Such studies would improve understanding of 
how AIVs cross species barriers.

Male sex bias of H7N9 infection
Interestingly, men have consistently accounted for approxi-
mately 70% of all H7N9 infection cases in the past five epi-
demic waves [37]. Previously, differential healthcare-seek-
ing/access behavior between men and women was proposed 
to contribute to sex biases in the case distributions in sur-
veillance and diagnosis [49]. However, a modeling study has 
revealed that increased exposure time in LPMs does not 
increase the risk of H7N9 infections in older men, thus 
suggesting that underlying biological host factors between 
sexes may influence the susceptibility and severity differ-
ences in H7N9 infections [50]. Interestingly, a mouse model 
has indicated that female mice have greater weight loss and 
lower survival rates than male mice after H7N9 infection 
[51]. Although no sex-specific differences in viral titers 
have been observed in the lung, female mice show a greater 
inflammatory response than male mice. Similarly, observa-
tions regarding the currently circulating SARS-CoV-2 virus 
also indicate the importance of sex differences: male sex is 
a risk factor for hospitalization [52,53]. A recent study has 

also identified that perturbed sex-hormone metabolism 
might be a hallmark of critically ill men with Coronavirus 
disease 2019 [54]. In contrast to the pandemic of zoonotic 
SARS-CoV-2 infections, to which both sexes are suscepti-
ble, H7N9 infections show no or limited human-to-human 
transmission, but display a very apparent bias toward males. 
Hence, further investigation of the underlying mechanisms 
of sex-dependent disease outcomes of H7N9 infections is 
needed to guide patient-centered clinical management.

CONCLUSIONS

Studies have revealed mutations in viral proteins that over-
come the host barrier and host factors that increase the sus-
ceptibility to H7N9 infections in humans (Fig 2). Although 
no H7N9 human cases have been reported, this virus is still 
occasionally detected in poultry or contaminated environ-
ments. Further viral adaptations, such as stronger human- 
receptor binding ability, may still pose a threat for a future 
pandemic, and individuals with susceptible host genes may 
develop severe outcomes after infection. Many scientific 
questions remain to be addressed. For example, what are 
the underlying mechanisms of male-biased H7N9 infec-
tions? What are the potential mechanisms of discovered host 
genes, such as MX1? Understanding the mechanisms of 
viral adaptive changes and host susceptibility might provide 
new potential targets for better, more precise preparation for 
future zoonoses leading to epidemics or pandemics.

TABLE 1 | Host genes associated with human susceptibility to H7N9 infections.

Host gene  Single-nucleotide variant (rsID)  Variant class  Animal studies  Reference(s)

IFITM 3  rs12252  Common variants
(MAF >5%)

 +  [43,44]

TMPRSS2  rs2070788/rs383510  Common variants
(MAF >5%)

 +  [42]

LGALS1  rs4820294/rs2899292 haplotype GG Common variants
(MAF >5%)

 +  [45]

CD55  rs2564978  Common variants
(MAF >5%)

 -  [43]

UBXN11  rs189256251  Low-frequency variants
(0.5% < MAF <5%)

 -  [46]

MX1  c.88C>T
rs138644617
rs764277171
rs368357662
rs141166870
rs779947445
rs762946488
rs754725725
c.439C>A
c.757G>A
rs1172769444
rs370594768
c.1589T>G
c.1625T>C

 Rare variants
(MAF <0.5%)

 +  [47,55]

MAF, minor-allele frequency in East Asian individuals in the Genome Aggregation Database v2.2.2 (gnomAD); (+) validated 
and (-) not validated in mouse models.
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