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Review Article

Protective Immunity and Immunopathology 
in Ehrlichiosis
Nahed Ismail1,*, Aditya Sharma1, Lynn Soong2,3 and David H. Walker3

INTRODUCTION

Human monocytic ehrlichiosis (HME) is a 
tick-borne disease caused by the obligately 
intracellular Gram-negative bacterium 
Ehrlichia chaffeensis [1-4]. Clinical manifes-
tations of HME range from non-specific 
influenza-like illness to severe and poten-
tially life-threatening disease. The severe 
form of HME is commonly marked by 
acute liver damage followed by multi-organ 

failure and toxic shock-like syndrome 
[5-9]. Clinical and laboratory diagnosis of 
HME at early stages of disease is problem-
atic because of non-specific symptoms and 
challenges regarding the accuracy of the 
current diagnostic testing. Doxycycline is 
the drug of choice for the treatment of 
HME; however, a recent cross-sectional 
study has determined that late administra-
tion of doxycycline is a key factor associated 
with the development of severe ehrlichiosis 
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Abstract

Human monocytic ehrlichiosis, a tick transmitted infection, ranges in severity 
from apparently subclinical to fatal toxic shock-like disease. Models in 
immunocompetent mice range from abortive to uniformly lethal infection, 
depending on the Ehrlichia species, inoculum dose, and inoculation route. 
Effective immunity is mediated by CD4+ T lymphocytes and gamma interferon. 
Lethal infection occurs with early overproduction of proinflammatory 
cytokines and overproduction of TNF alpha and IL-10 by CD8+ T lymphocytes. 
Furthermore, fatal ehrlichiosis is associated with TLR 9/MyD88 signaling, 
upregulation of several inflammasome complexes, and secretion of IL-1 beta, 
IL-1 alpha, and IL-18 by hepatic mononuclear cells, thus suggesting activation 
of canonical and noncanonical inflammasome pathways, a deleterious role 
of IL-18, and a protective role of caspase 1. Autophagy promotes ehrlichial 
infection, whereas MyD88 signaling hinders ehrlichial infection by inhibiting 
autophagy induction and flux. During infection of hepatocytes by the lethal 
ehrlichial species, after interferon alpha receptor signaling, the activation of 
caspase 11 results in the production of inflammasome-dependent IL-1 beta, 
extracellular secretion of HMGB1, and pyroptosis. HMGB1 has high levels 
in lethal ehrlichiosis, thereby suggesting a role in toxic shock. Studies of 
primary bone marrow-derived macrophages infected by highly avirulent or 
mildly avirulent ehrlichiae have revealed divergent M1 and M2 macrophage 
polarization associated with the generation of pathogenic CD8 T cells and 
neutrophils, and excessive inflammation, or with strong expansion of protective 
Th1 and NKT cells, resolution of inflammation, and clearance of infection, 
respectively.
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[9-11]. Notably, a history of tick exposure is associated with 
a decreased rate of admission of patients to intensive care 
units because effective treatment is given promptly in those 
cases. Notably, some patients treated in late stages of infec-
tion develop a severe disease mimicking hemophagocytic 
lymphohistiocytosis syndrome, a pathologic hyperactivation 
of macrophages that occurs in association with infection 
[12,13]. These findings suggest that multi-system disease and 
tissue damage in HME are due to immunopathology. This 
conclusion is further supported by findings in murine mod-
els of mild/non-fatal and severe/fatal ehrlichiosis. These 
findings have suggested that innate and adaptive immune 
responses against Ehrlichia act as a “double-edged sword” in 
fatal ehrlichiosis [5,14,15], wherein protective immunity is 
mediated by CD4+ Th1 and NKT cells, and the pathogenic 
response is attributed to activated neutrophils and TNF-α-
producing CD8+ T cells [5,16].

Recent studies have highlighted the essential roles of 
inflammasomes and autophagy as part of the innate immune 
responses against several pathogens, thus leading to path-
ogenic or protective outcomes. Herein, we discuss the 
cell-specific innate immune responses during ehrlichiosis 
involving the regulation of autophagy and inflammasomes, 
the associated signaling pathways, and how these events 
affect the innate and adaptive immune responses against 
Ehrlichia. Understanding these mechanisms is critical for 
rational development of novel diagnostic, therapeutic, and 
preventive countermeasures against ehrlichiosis.

Methods

Articles on Ehrlichia and HME were selected by searching 
relevant publications from multiple sources. The search was 
performed via PubMed-Medline. Studies were identified 
by searching for Ehrlichia as well as multiple mechanisms 
of immunity and pathogenesis during mild and fatal ehrli-
chiosis. For example, studies on the roles of inflammasomes 
and autophagy in ehrlichiosis were identified by search-
ing for “Ehrlichia and inflammasome,” “Ehrlichia and auto-
phagy,” “Ehrlichia and adaptive immunity,” and “Ehrlichia 
and immune evasion.” We included reports from the past 
10 years that are most relevant to the topic of this review.

Ehrlichiosis, a potentially life-threatening 
infectious disease
HME is a potentially life-threatening tick-borne zoonotic 
disease increasingly observed in North America. HME is 
among the most prevalent tick-borne rickettsial diseases, 
which include spotted fever rickettsiosis and anaplasmo-
sis, caused by spotted fever group Rickettsia and Anaplasma, 
respectively [2,4,17,18]. According to the manually com-
pleted case report forms (CRFs) and the National Notifiable 
Diseases Surveillance System, during 2008–2012, people 
older than 55 years of age had the highest incidence rate 
among all age groups, although CRFs were highest among 
children younger than 5 years of age (4%), followed by peo-
ple older than 70 years of age (3%). Among confirmed cases, 

CRFs among people older than 70 years of age increased to 
53%, whereas CRFs among children younger than 5 years 
of age increased to 14% [10,19,20]. These findings have 
been partially due to a significantly higher prevalence of 
immunosuppressive conditions among older age groups. 
The median age of patients with immunosuppressive con-
ditions was 60 years. The risk of severe outcomes in immu-
nosuppressive cases was associated with higher rates of 
hospitalization, presence of life-threatening conditions, and 
death [21-24]. In contrast, ehrlichiosis cases are believed to 
be under-reported because patients either are asymptomatic 
or have mild illnesses not prompting medical consultation, 
whereas reported cases are believed to over-represent infec-
tions with more severe clinical manifestations. Therefore, 
compared with the younger population, people over 
55 years of age are expected to have a higher probability of 
more severe ehrlichiosis outcomes, owing to age-associated 
systemic inflammatory responses.

HME can present as a mild influenza-like illness or severe 
disease characterized by initial lymphopenia, thrombocyto-
penia, and elevated liver enzymes [25]. If untreated, or when 
treatment with the appropriate antibiotic (doxycycline) 
is delayed because of misdiagnosis, patients with HME 
develop complications including meningoencephalitis, adult 
respiratory distress syndrome, sepsis, and multi-organ fail-
ure. HME is an increasingly important public health con-
cern with a high hospitalization rate ranging from 53% to 
72%, and a case fatality rate of approximately 1%. The liver 
is the main site of Ehrlichia infection and pathology [26-30]. 
Most patients with HME have mild-to-moderate increases 
in serum levels of liver transaminases; some cases show 
marked cholestasis and progressive hepatosplenomegaly. 
Histopathologic examination of liver biopsy samples from 
patients with HME reveals diffuse activation of monocytes 
and tissue-resident macrophages, as well as lymphocyte 
infiltration in the hepatic sinusoids; multifocal inflammatory 
lesions with hepatocellular death that appears to be apop-
totic; and nonspecific hepatocyte (HC) swelling and steato-
sis [29,31,32]. The activation of monocytes and Kupffer cells 
(liver-resident macrophages) has been observed with and 
without E. chaffeensis infection of host cells, thereby con-
firming that hepatic injury is not directly associated with 
ehrlichial burden, but is secondary to the host inflammatory 
and immune responses.

E. chaffeensis, the causative agent of HME, is an obligately 
intracellular Gram-negative bacterium that lacks lipopoly-
saccharide (LPS) and peptidoglycan [8,33]. Other Ehrlichia 
species that cause HME in the United States and worldwide 
include E. canis, Ixodes ovatus Ehrlichia (Ehrlichia HF strain) 
often abbreviated as IOE, which has recently been culti-
vated and named E. japonica/IOE, E. ewingii, and E. muris 
eauclairensis [34]. IOE/E. japonica (the focus of the studies 
described below) has been detected in Ixodes ovatus ticks 
throughout Japan, Ixodes apronophorus ticks in Romania, and 
Ixodes ricinus ticks in France and Serbia [35,36]. Analyses of 
genome sequences of cultured IOE/E. japonica have indi-
cated that this Ehrlichia species has a single double-stranded 
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circular chromosome of 1,148,904 bp, which encodes 
866 proteins with similar metabolic functions to those of 
E. chaffeensis [37]. IOE/E. japonica encodes homologs of sev-
eral virulence factors identified in E. chaffeensis, such as the 
type IV secretion system apparatus and effector proteins, the 
P28/OMP-1 family of outer membrane proteins, tandem 
repeat proteins, and ankyrin-repeat proteins.

How E. chaffeensis or other Ehrlichia species cause a spec-
trum of diseases in humans ranging from mild-to-severe and 
potentially fatal toxic shock-like syndrome remains elusive. 
However, as suggested by genome sequence arrangement 
as well as DNA-DNA hybridization, each of these Ehrlichia 
species has subspecies and strains that vary in virulence [38]. 
For example, comparative genomic analysis of the Wakulla, 
Arkansas, and Liberty circulating strains of E. chaffeensis, 
and the disease that they cause in immune-deficient mice, 
has indicated that those strains have distinct genotypes and 
phenotypes that define their virulence in immune-deficient 
mice, in the order of Wakulla, Arkansas, and Liberty from 
highest to lowest [28,39,40]. The livers of mice infected 
with the Wakulla and Arkansas strains have more severe dif-
fuse inflammation and granulomatous inflammation than 
those of mice infected with the Liberty strain.

Animal models of ehrlichiosis
An ideal animal model of human ehrlichiosis should 
have several criteria that mimic human disease such as: 
1)  transmission via natural infection, i.e., tick transmission; 
2) utilization of major Ehrlichia pathogens that cause human 
ehrlichiosis, such as E. chaffeensis, E. canis, and E. ewingii; 4) a 
range of disease manifestations and outcomes, varying from 
mild/non-fatal to severe/fatal in immunocompetent hosts; 5) 
clinical and pathologic manifestations of mild and severe ehr-
lichiosis in infected mice similar to those in humans, as well 
as laboratory findings that recapitulate the findings in HME; 
6) infection outcomes dependent on the dose of infectious 
inoculum, genetic background, and route of transmission, 
which are key variables affecting the outcomes of infections 
with most bacterial and viral pathogens; 7) a model that ena-
bles mechanistic studies for which reagents and knockout 
animals lacking specific genes are available. Although several 
animal models fulfill one or two of the criteria described 
above, no single model currently fulfills all these criteria. For 
example, infections with E. chaffeensis, the main pathogen 
causing HME, trigger mild, self-limited infection in immu-
nocompetent hosts, but cause severe and potentially fatal dis-
ease in immunocompromised hosts [41,42]. Utilization of 
this model in the analysis of adaptive immune responses to 
Ehrlichia is limited, and thus may not be optimal for under-
standing adaptive immunity and pathogenesis during fatal 
ehrlichiosis. Animal studies of ehrlichial infections in the 
natural hosts, such as E. canis in dogs [43-45], E. chaffeensis in 
white-tailed deer [46-48], and E. ruminantium in ruminants 
[49-51], have revealed a disease that mimics the pathology 
and defined pathophysiology of the human disease. However, 
analysis of immunity and pathogenesis through mechanis-
tic approaches is challenging, owing to the outbred nature 

of the hosts, and the lack of availability of canine or rumi-
nant reagents for examining immune responses. Because of 
these limitations, an alternative animal model of ehrlichiosis 
has been developed, which mimics human disease in sev-
eral aspects. Although data generated from murine models of 
ehrlichiosis used in analyzing the immunity and pathogen-
esis of HME, as described below, are intriguing, the ability 
to translate results from murine experiments to humans and 
clinical diseases remains limited.

Several mouse strains have been used to examine the 
immunity, immunopathology, and pathogenesis of ehrlichio-
sis. These include C57BL/6, C3H/HeJ, C3H/HeN, BALB/c, 
AKR, C.B 17 SCID, and several knockout mice that lack dif-
ferent aspects of the innate and adaptive immune responses. 
In immunocompetent C57BL/6 mice, investigators have 
used several Ehrlichia agents to cause a spectrum of disease: E. 
chaffeensis causes self-limited infections, E. muris causes mild 
and persistent infections, and E. japonica causes severe and 
potentially fatal infections [5,52-54]. Notably, the outcomes 
of infection with E. japonica/IOE vary according to the route 
of infection and the infectious dose. For example, intraperi-
toneal (i.p.) infection with a high dose of E. japonica/IOE 
is lethal, whereas intradermal infection with the same dose 
results in sublethal infection and mild disease [55]. Similarly, 
i.p. or intravenous injection with E.  japonica/IOE causes 
dose-dependent lethality (higher dose) or sublethal persistent 
(lower dose) infection. Interestingly, mice infected i.p. with a 
high dose of E. muris survive and develop protective immu-
nity and long-term memory responses that are protective 
against not only homologous re-infection but also heterolo-
gous re-infection with IOE [56-58]. Recently a tick vector 
transmission model has been developed, which mimics the 
natural route of Ehrlichia infection as well as the pathology 
[59-62]. In this model, the Ixodes scapularis larvae were fed on 
mice infected with the human pathogen E. muris eauclairensis. 
After molting, the infected nymphs were placed on naive 
animals to transmit the pathogen. Mice were infected with 
Ehrlichia when they were infested by 90%–100% of feeding 
larvae. Many mice fed upon by infected nymphs had suble-
thal infection, whereas 27% of mice developed lethal disease. 
Like HME and other needle-transmission models, transmis-
sion of Ehrlichia via ticks resulted in bacterial dissemination 
to all tissues, with the highest bacterial burden in the spleen, 
lungs, liver, kidneys, lymph nodes, bone marrow, and brain. 
In addition, several foci of cellular infiltration, and death of 
parenchymal and non-parenchymal cells were observed in 
the liver.

Using murine models of mild and fatal ehrlichiosis 
caused by systemic infection with mildly and highly viru-
lent Ehrlichia species that mimic laboratory findings, as well 
as clinical and pathologic manifestations in HME, we have 
shown that the protective immunity during mild ehrlichial 
infection is due to the generation of both cell-mediated 
and humoral immunity, mediated by IFN-γ producing 
CD4+ Th1 cells and Ehrlichia-specific IgG antibodies, 
mainly of the IgG2a isotype [5,63-65]. In contrast, severe 
and fatal Ehrlichia-induced toxic shock-like syndrome is 
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characterized by the development of initial focal hepatic 
necrosis and apoptosis, increased serum levels of hepatic 
enzymes, substantial lymphopenia and leucopenia, apop-
tosis of myeloid cells and CD4+ T cells, and ultimately 
multi-organ failure and sepsis. Further analysis has indi-
cated that severe and fatal primary ehrlichiosis in animals 
is due to a cytokine and chemokine storm characterized 
by an early overproduction of pro-inflammatory cytokines 
(including IL-1, TNF-α, IL-18, and IL-12p40) and several 
chemokines (CCL5/RANTES, CCL3/MIP-1α, CCL4/
MIP-1β, CCL2/MCP-1, and IL-8), which is followed by 
excessive production of anti-inflammatory cytokines (IL-
10 and IL-13) during the course of infection [30,52,66]. 
Our studies have demonstrated that, in contrast to the 
mild murine ehrlichiosis caused by E. muris infection, 
wherein CD8 T cells play a protective role, CD8+ T cells 
play a pathogenic role in a murine model of fatal ehrli-
chiosis [67]. Fatal ehrlichial infections induce substantial 
expansion of cytotoxic CD8+ T cells producing TNF-α 
and IL-10. CD8+ T cell deficiency in mice infected with 
virulent Ehrlichia species restores the number of Th1 cells, 
attenuates the cytokine and chemokine storm, decreases 
tissue damage, and protects mice against fatal infection. We 
have also shown that innate cells such as NK cells and neu-
trophils have deleterious roles in the pathogenesis of ehr-
lichiosis, because they directly contribute to tissue damage 
as well as the development of cytokine storms and the 
expansion of pathogenic CD8+ T cells [66,68]. Although 
the roles of NK cells and neutrophils during mild ehrlichi-
osis have not been examined, we have observed differential 
spatial and temporal changes in NK cells and neutrophils 
during lethal infection compared with mild infection [66]. 
NK cells migrate to the liver in fatal ehrlichiosis during 
lethal infection, whereas they remain in the spleen or per-
itoneum during mild Ehrlichia infection [66]. Although 
mechanistic studies examining the roles of NK cells and 
neutrophils in mild ehrlichiosis have not been performed, 
we believe that NK and neutrophils play a protective role 
during mild/non-lethal Ehrlichia infection, owing to the 
absence of an excessive inflammatory environment trig-
gering overactivation of these cells and their polarization 
into a pathogenic phenotype, as seen in fatal ehrlichiosis. 
Together, these data suggest that NK cells, neutrophils, and 
CD8+ T cells mediate dysregulated inflammation and tis-
sue injury in fatal HME.

Inflammasomes: cytosolic receptors with key 
roles in intracellular surveillance
Inflammasomes are key components of the innate immune 
system and contribute to the initial host defense mech-
anism against pathogens. Inflammasomes recognize 
pathogen-derived molecules known as pathogen-associated 
molecular patterns (PAMPs) [69-71] as well as endogenous 
host-derived molecules, known as damage-associated mole-
cular patterns (DAMPs), that are released from dying cells 
during stress or infection [72-75]. Inflammasomes are cyto-
solic multi-protein complexes that consist of intracellular 

nucleotide-oligomerization domain (NOD)-like recep-
tor (NLR), nucleotide-binding domain, and leucine-rich 
repeat (LRR) containing proteins, or the absent in mel-
anoma 2 (AIM2)-like receptors (ALRs), the adaptor pro-
tein apoptosis-associated speck-like protein containing a 
caspase activation and recruitment domain (ASC), and pro-
caspases [76-79]. To date, four inflammasome complexes 
have been identified and well characterized: the NOD and 
LRR containing protein (NLR) family members NLRP1, 
NLRP3, and NLRC4, as well as AIM2. NLRP1 is acti-
vated by PAMPs such as muramyl dipeptide. NLRC4 is 
activated by PAMPs such as flagellin and the type II secre-
tion system, as well as by DAMPs such as neuronal apop-
tosis inhibitory protein family members. The NLRP3 
inflammasome is also activated by several DAMPs includ-
ing reactive oxygen species (ROS), mitochondrial DAMPs, 
and adenosine triphosphate, as well as fibrillar proteins (e.g., 
β-amyloid fibrils). AIM2 is activated by microbial or host 
double-stranded DNA. AIM2 also binds high mobility 
group box 1 (HMGB1), which promotes activation during 
oxidative stress [79].

Two inflammasome pathways are triggered after sensing of 
a microbial or host ligand: the canonical and non-canonical 
inflammasome pathways. The canonical inflammasome 
pathway involves signaling by the NLRP3 complex, after 
recognition of PAPMs or DAMPs, via the adaptor molecule 
ASC; consequently, activation of caspase-1 causes cleavage 
of pro-IL-1β and pro-IL-18, and the release of biologi-
cally active IL-1β and IL-18 [80-83]. In the non-canonical 
inflammasome pathway, cytosolic LPS triggers activation of 
caspase-11, which in turn activates caspase-1 and promotes 
secretion of IL-18, IL-1β, and HMGB1, as well as inflamma-
tory cell death, known as pyroptosis [84-88]. The gasdermin 
D protein is essential for caspase-11-dependent pyroptosis 
[88-91]. Caspase-11 cleaves gasdermin D, thereby promot-
ing both pyroptosis and NLRP3-dependent activation of 
caspase-1. Although inflammasomes are critical for defense 
against pathogens and danger signals, their excessive activa-
tion can promote immunopathology and tissue injury. For 
example, dysregulation of inflammasomes is associated with 
multiple neurodegenerative diseases, such as Alzheimer dis-
ease, Parkinson disease, multiple sclerosis, and amyotrophic 
lateral sclerosis [92,93]. The ligands causing activation of 
inflammasomes in these diseases are not completely under-
stood. However, the accumulation of amyloid-beta plaques 
in the cerebrum in patients with Alzheimer disease has been 
suggested to be a potential DAMP that triggers NLRP3 
inflammasome activation. Activation of NLRP3 has also 
been widely studied in liver diseases [94-97]. NLRP3-
mediated secretion of IL-1β after LPS-TLR signals results 
in the production of multiple inflammatory cytokines and 
chemokines, and an excessive inflammatory response. IL-1β 
in liver diseases recruits inflammatory cells, which in turn 
activate hepatic stellate cells (HSCs)— key contributors to 
liver fibrosis [98-101]. IL-1β also triggers triglyceride accu-
mulation in HCs and causes HC cell death mediated by 
TNF-α.
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Roles of canonical and non-canonical 
inflammasomes in the development and 
progression of severe ehrlichiosis
Ehrlichia is an obligate intracellular bacterium that resides 
within specialized membrane-bound inclusions that have 
early endosome-like characteristics; however, the inclusions 
lack late endosomal or lysosomal markers [102-104]. Unlike 
other intracellular bacterial pathogens that access the cyto-
sol, such as Rickettsia and Listeria, Ehrlichia do not escape 
from phagosomes to the cytosol. However, virulent IOE/E. 
japonica triggers deleterious inflammasome activation. 
Compared with mild ehrlichiosis in mice, fatal ehrlichiosis 
is associated with significant upregulation of several inflam-
masome complexes, including NLRP3, NLRP1, NLRC4, 
NLRP12, and AIM2; activation of caspase 1 and caspase 
11; and secretion of IL-1β, IL-1α, and IL-18 by liver 
mononuclear cells, including Kupffer cells and infiltrating 
inflammatory monocytes [63,84,105]. Fatal Ehrlichia infec-
tion has been found to trigger the activation of canonical 
and non-canonical inflammasome pathways. Interestingly, 
our data have demonstrated a deleterious role of IL-18 in 
the host response to Ehrlichia. Mice deficient in the IL-18 
receptor (IL-18R-/-) are more resistant to fatal ehrlichio-
sis caused by i.p. infection with E. japonica/IOE than wild-
type mice. Moreover, infected IL-18R-/- mice have a lower 
bacterial burden, minimal tissue injury, attenuated inflam-
mation, and greater expansion of protective CD4+ Th1 
cells [65]. Notably, protective immunity in IL-18R-/- mice 
results from diminished expansion of pathogenic CD8+ T 
cells, thus suggesting that inflammasome activation leads to 
induction and an increased number of pathogenic CD8+ T 
cells that cause liver injury [14,65].

Notably, Casp1-/- mice infected with highly virulent IOE 
are markedly susceptible to fatal ehrlichiosis: they develop 
overwhelming infection and extensive tissue injury, and suc-
cumb to infection at earlier time points after infection than 
do wild-type controls [14,84]. Therefore, the deleterious 
inflammasome activation in ehrlichiosis does not appear to 
be due to the canonical inflammasome pathway. In fact, data 
suggest that caspase 1 may play a protective role in ehrlichi-
osis, in agreement with the function of caspase 1 in other 
infection model systems. Recent studies have suggested that 
active caspase 1 is hepatoprotective, because deficiency in 
caspase 1 has been associated with the death of HCs and 
liver injury in a hemorrhagic shock model [106,107]. Thus, 
the greater susceptibility of caspase 1-/- mice to fatal ehr-
lichiosis might be due to altered survival of HCs. Unlike 
caspase 1-/- mice, mice deficient in NLRP3 (Nlrp3-/- mice) 
effectively clear ehrlichiae on day 7 post infection; however, 
these mice still exhibit acute mortality and develop liver 
injury similarly to wild-type mice [84,85]. Notably, the sus-
ceptibility of wild-type, caspase 1-/- and NLRP3-/- mice, 
and the development of liver damage, are associated with 
higher expression of active caspase 11 in the liver in these 
mice than in wild type mice. Therefore, activation of the 
non-canonical inflammasome pathway may play a key role 
as a mediator of tissue injury during severe ehrlichiosis.

Regulation of inflammasomes by type I 
interferon and MyD88 signaling
Type I interferons (IFN-I) include IFN-α and IFN-β 
cytokines, which are critical components of the innate 
immune response against viruses [108,109]. However, the 
role of IFN-I in host responses to bacterial pathogens is 
dependent on the pathogen. For example, the replication 
and survival of many cytosolic bacterial pathogens including 
Listeria monocytogenes, Rickettsia species, and Francisella novi-
cida are restricted by IFN-I signaling [110]. In contrast, we 
and others have shown that IFN-I contributes to the devel-
opment of immunopathology during infection with viru-
lent Ehrlichia [63,84,85,111]. IFN-I receptor knockout mice 
(Ifnar1-/-) are markedly more resistant to fatal disease than 
wild-type mice, as evidenced by attenuated liver pathology, 
lower bacterial burden in the liver and spleen, and pro-
longed survival. The resistance of Ifnar1-/- mice to fatal ehr-
lichiosis is associated with the expansion of IFNγ-producing 
CD4+ Th1 cells, which otherwise undergo apoptosis during 
IOE infection, and a lower number of IL-10 producing T 
cells with immunosuppressive functions [84]. The protec-
tion against lethal infection in Ifnar1-/- mice correlates with 
attenuated activation of the non-canonical inflammasome 
pathway, as evidenced by less activation of caspase-11 and 
lower levels of splenic and hepatic IL-1β than observed 
in wild type mice. Notably, IFN-I mediated activation of 
caspase-11 leads to cell death via pyroptosis, a rapid inflam-
matory cell death that enables exit of intracellular ehrlichiae 
into the extracellular space, infection of other cells, and bac-
terial dissemination to peripheral organs (Fig 1).

The molecular and cellular mechanisms through which 
IFN-I leads to activation of caspase-11 during Ehrlichia 
infection remain elusive. However, autocrine or paracrine 
signaling by IFN-I during infection with LPS-containing 
Gram-negative bacteria leads to upregulation of genes 
encoding guanylate binding proteins, thereby enabling the 
release of LPS into the cytosol. Cytosolic LPS acts as a 
PAMP that triggers cleavage of pro-caspase 11 into active 
caspase 11 [94,112,113]. Thus, IFNAR signaling during fatal 
Ehrlichia infection might possibly induce the production of 
guanylate binding proteins, which then disrupt vesicles con-
taining ehrlichiae and enable the escape of PAMPs to the 
cytosol and the activation of caspase-11. Because Ehrlichia 
lack LPS, the IFN-I-caspase 11 axis is unlikely to be trig-
gered by LPS-like molecules. Our recent studies have sug-
gested that mitochondrial DAMPS might be the ligands that 
trigger activation of caspase 11 during fatal ehrlichiosis after 
IFNAR signaling. Infection of macrophages, the main tar-
get cells of Ehrlichia, with E. japonica triggers TLR9/MYD88 
signaling, thus leading to activation of the metabolic check-
point kinase mammalian target of rapamycin complex 1 
(mTORC1), a negative regulator of autophagy. MyD88-
dependent mTORC1 activation inhibits autophagy induc-
tion and flux, and blocks mitophagy (i.e., the elimination of 
damaged mitochondria via autophagy after binding of mito-
chondria to autolysosomes) [105]. The MyD88-mediated 
blocking of of autophagy and mitophagy then leads to 



6� Ismail et al.

accumulation of damaged mitochondria, thereby resulting in 
the release of mitochondrial DNA or other mitochondrial 
DAMPs (e.g., ROS). Other studies have shown that infection 
of macrophages with E. chaffeensis, the Ehrlichia species caus-
ing severe and potentially fatal disease in humans, inhibits 
mitochondrial metabolism [114-116].

Similarly to our studies, studies by Macnamara et al. have 
shown that IFNα/β promote a lethal, shock-like pathology 
in mice infected with IOE/E. japonica [111]. However, the 
mechanism through which type I interferon signaling causes 
fatal ehrlichiosis has been attributed to IFNAR-mediated 
hemopoietic dysfunction. IFAR signaling triggers severe 
bone marrow loss, abrogates myelopoiesis during infection, 
and decreases the number of hematopoietic stem and pro-
genitor cells (HSC/HSPCs) [117]. Deficiency in IFNAR 
signaling restores the bone marrow and splenic hemato-
poiesis. Mechanistically, this deleterious effect of type I IFN 
on HSC/HSPCs is due to caspase 8/RIPK1-mediated inhi-
bition of HSC/HSPC proliferation and increasing HSPC 
death. Combination RIPK1 antagonist (Necrostatin-1s) and 
antibiotic therapy in IOE-infected mice has been found to 
restore HSPC and HSC numbers during infection [117]. 
Together, these studies suggest that the pathogenic role of 
type I IFN signaling involves multiple mechanisms that are 
not restricted to deleterious inflammasome activation (as 
shown in our study) but also include hematopoietic dys-
function mediated by IFNAR-mediated HSPC cell death 
as well as HSC quiescence.

In contrast to the deleterious role of IFN-I in fatal ehrlichi-
osis, recent studies in other infection models, i.e., Plasmodium 
yoelii (causative agent of malaria) and Rickettsia parkeri (caus-
ative agent of spotted fever rickettsiosis), have shown that 
the IFN-I response during these infections is protective and 
negatively regulated by inflammasomes [118,119]. In both 
infection models, inflammasomes appear to be involved in 
a non-protective response by inhibiting IFN-β production. 
Mechanistically, in the malaria model, negative regulation 
of IFN-β by inflammasomes appears to be mediated by 
IL-1β-mediated SOCS1 upregulation, which in turn inhib-
its MyD88-IRF7-mediated-IFN-I signaling and cytokine 
production in plasmacytoid dendritic cells. However, in the 
Rickettsia model, inhibition of IFN-β by the non-canoni-
cal caspase 11-mediated inflammasome pathway is due to 
inflammatory cell death (pyroptosis), which antagonizes 
IFN-I. Although we have not examined the cross regula-
tion of type I IFN by inflammasomes in our murine model 
of fatal ehrlichiosis, temporal and spatial dynamics during 
infection might potentially contribute to cross-regulation 
between inflammasomes and IFN-I signaling. In contrast to 
the protective role of IFN-β in macrophages during infec-
tion with Rickettsia and Plasmodium species, as indicated 
above, our studies have demonstrated a pathogenic role 
of IFN-β during fatal ehrlichiosis. This discrepancy might 
be due to pathogen- or cell-specific differences between 
these pathogens. Alternatively, low level of IFN-I cytokines 
might be protective, whereas high levels of IFN-β might be 
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detrimental, as suggested by other studies. In support of this 
possibility, we have found that mild ehrlichial infection and 
protective immunity are associated with low levels of IFN-β.

Toll-like receptors (TLRs) are transmembrane proteins 
located in both plasma membranes and endosomal mem-
branes, which survey the extracellular and intracellular envi-
ronment and thus function as pattern recognition receptors 
(PRRs). TLRs play key roles in the innate immune responses 
against intracellular pathogens [120]. Surface TLRs such as 
TLR2 and TLR4 recognize several bacterial ligands. For 
example, TLR2 recognizes peptidoglycan, lipoteicoic acid, 
lipopeptides, and lipoprotein, whereas TLR4 recognizes 
LPS of Gram-negative bacteria [121,122]. Endosomal 
TLRs include TLR9, which recognizes double-stranded 
DNA and CpG-containing single-stranded DNA, as well as 
TLR7, which detects single-stranded RNA. Binding of all 
TLRs to their respective ligands triggers signals via an adap-
tor complex consisting of MyD88 [123]. In addition, ligand 
binding to TLR4 and TLR3 triggers signals via Toll/IL-1R 
domain-containing adapter-inducing interferon-β (TRIF) 
[113,124]. Signaling via MyD88 results in transcription and 
activation of NF-κΒ- and AP-1-dependent genes, whereas 
signaling via TRIF results in transcription and activation 
of not only NF-κΒ and AP-1-dependent genes, but also 
induction of IRF3-genes and IFN-I.

We have recently found that virulent Ehrlichia triggers 
activation or signaling via TLR9/MyD88, thus contribut-
ing to the activation of both canonical and non-canonical 
inflammasome pathways and tissue injury during fatal ehrli-
chiosis [105]. MyD88-/- mice infected with E. japonica/IOE 
show attenuated inflammasome activation and minimal liver 
injury, and are more resistant to lethal infection than wild 
type mice. Notably, TLR9-/- and MyD88-/- show ineffective 
bacterial clearance and protective immunity, as indicated by 
an elevated bacterial burden in the liver. These data are con-
sistent with earlier findings indicating that Ehrlichia-induced 
liver damage and toxic shock are due not to overwhelm-
ing infection but to immunopathology. Although MyD88 
deficient mice have diminished inflammasome activation, as 
evidenced by depressed serum levels of IL-1β and IL-1α, 
this response is partial, thus suggesting a potential role of 
MyD88-independent pathways such as TRIF during fatal 
E. japonica/IOE infection. In support of a potential role of 
TRIF, the lack of TLR9 in macrophages, which signal via 
both MyD88 and TRIF, completely abrogates secretion of 
IL-1β and IL-1α, and activation of caspase 1/11, thus sug-
gesting that the TLR9-MyD88-TRIF axis is critical for the 
activation of both canonical and non-canonical inflammas-
ome pathways. In vivo studies using TLR9 deficient mice 
have also highlighted a key role of TLR9 as a major endo-
somal PRR in the development of liver damage and fatal 
toxic shock after lethal Ehrlichia infection [105].

Potential PAMPs that trigger inflammasome 
activation in Ehrlichia-infected cells
Ehrlichia membranes differ from other Gram-negative bac-
teria in that they lack LPS, including lipid A, peptidoglycan, 

and cholesterol—major PAMPS that trigger inflammasome 
activation during infection with these pathogens [125-127]. 
Although Ehrlichia lack genes for cholesterol biosynthesis in 
their cell walls, Ehrlichia hijack host membrane phospholip-
ids from host cells and depend on host-derived cholesterol 
for survival and infection [128-130]. Genomic analysis has 
revealed that the E. Chaffeensis genome does not encode 
phosphatidylcholine or cholesterol, but encodes enzymes 
responsible for phosphatidylethanolamine biosynthesis. 
Indeed, a recent study has demonstrated that host membrane 
phospholipids and cholesterol traffic in a unidirectional 
manner to ehrlichiae inclusions in infected cells [130,131]. 
This translocation of host-cell membranes and molecules 
to Ehrlichia inclusions is dependent on autophagy as well 
as host endocytosis, and is mediated by the effector protein 
Ehrlichia translocated factor-1 (Etf-1). This protein translo-
cates from the phagosomal compartment where Ehrlichia 
reside to the host cytoplasm through a type IV secretion sys-
tem [129,130,132]. Key components of the type IV secre-
tion system include genes encoding VirB and VirD proteins, 
which are associated with the inner membrane channel and 
ATPase. Mechanistically, ehrlichial Etf-1 binds RAB5, the 
autophagy-initiating class III PtdIns3K complex, PIK3C3/
VPS34, and BECN1, which are proteins involved in early 
autophagosome formation [102,103]. Through Etf-1, ehr-
lichiae induce autophagy to obtain nutrients/amino acids 
for growth and replication through RAB5 and class III 
PtdIns3K, while avoiding autolysosomal killing. Whether 
the ehrlichial membranes containing cholesterol and type 
IV secreted proteins, such as ETF-1, trigger inflammasome 
activation in infected cells remains elusive. However, these 
PAMPS are known inflammasome ligands, thus suggesting 
that Ehrlichia may exploit cholesterol and the type IV secre-
tion system effector to induce inflammasome activation and 
cell death, thus allowing dissemination to other cells and 
organs.

The E. chaffeensis genome contains several other genes 
involved in host-pathogen interactions. Of particular inter-
est are the genes that encode tandem repeat proteins (TRPs) 
and ankyrin (Ank) repeat containing proteins [133,134], 
because these proteins are secreted into the cytosol and 
can interact with inflammasome complexes. E. chaffeensis 
TRPs are secreted via a type 1 secretion system, which is 
commonly used by Gram-negative bacteria to secrete var-
ious exotoxins, adhesins, and enzymes. TRPs interact with 
various proteins, DNAs, RNAs, and small molecules, and 
consequently mediate several processes important for cell 
survival and function, such as cell adhesion, signal transduc-
tion, protein folding, immune responses, RNA processing, 
transcription regulation, intracellular transport, and cell 
death [135-137]. E. chaffeensis TRPs are immunogenic as 
well as immunoreactive, because they induce strong host 
antibody responses and are recognized by polyclonal anti-
bodies in the sera of patients with HME. Examples of TRPs 
are TRP32, TRP47, TRP75, and TRP120 [138-142]. Many 
E. chaffeensis TRPs and Ank repeats, such as TRP32, TRP47, 
TRP120, and Ank200, are considered nucleomodulins, 
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owing to their translocation and localization in the nucleus, 
and their ability to alter or modify gene expression through 
various mechanisms, including interaction with host pro-
teins, upregulation of genes associated with host cell survival 
or death, and direct binding to protein–DNA complexes 
[143,144]. Although the roles of these TRPs and Anks in 
inflammasome activation and autophagy regulation during 
fatal ehrlichiosis remain to be examined, their functions 
and cellular locations suggest that they may act as potential 
PAMPs for inflammasomes.

Roles of autophagy in the regulation of 
inflammasomes and host responses to Ehrlichia
Autophagy is a host homeostatic mechanism that is essential 
for innate host defense against several intracellular patho-
gens [14,145-148]. Recent studies have shown that auto-
phagy induction enhances the survival and/or replication 
of Ehrlichia. Pharmacologic blocking of autophagy induc-
tion with 3-MA treatment or knockdown of autophagy 
genes, such as atg5 or beclin-1, also impairs bacterial sur-
vival and replication [102,103,149,150]. Interestingly, as a 
host defense mechanism, MyD88 signaling after infection 
of mice with E. japonica/IOE impairs bacterial replication 
by inhibiting autophagy induction [105]. Inhibition of 
autophagy induction by MyD88 signaling occurs via acti-
vation of mTORC1. Notably, although MyD88 deficiency 
enhances autophagic flux (i.e., autophagosome-lysosomal 
fusion), this process does not effectively eliminate virulent 
E. japonica/IOE, because the bacteria do not colocalize with 
the LC3II/autophagosomes and lysosomes.

Several human and murine studies have reported nega-
tive regulation of inflammasomes by autophagy [151-154]. 
Inhibition of autophagy in macrophages leads to the accu-
mulation of DAMPs, such as damaged mitochondria, host 
DNA, ROS, mitochondrial DNA, and oxidized mitochon-
drial cardiolipin [154-156]. Generation of mitochondrial 
ROS or mitochondrial DNA, and their release into the 
cytosol cause activation of the cytosolic NLRP3 inflammas-
ome pathway. Mechanistically, MyD88-mediated mTORC1 
activation triggers inflammasome activation in macrophages 
after IOE/E. japonica infection via inhibition of autophagy 
and mitophagy [105], thus resulting in the accumulation of 
NLRP3 ligands such as mitochondrial DAMPs, as described 
above. Blocking mTORC1 signaling in vivo in infected WT 
mice, and in vitro in primary macrophages, enhances auto-
phagy and attenuates inflammasome activation [105].

Roles of hepatocytes and macrophages 
in Ehrlichia-induced immunopathology
The liver is a major site of pathology and infection in patients 
with Ehrlichia-induced sepsis [29]. The precise effects of 
inflammation caused by dysregulated inflammasomes and 
autophagy in different cell types remain unexplored in 
infections with Ehrlichia. Macrophages and monocytes are 
the major target cells for Ehrlichia; however, this bacterium 
can infect other cell types, such as HCs and endothelial cells, 
in mice and humans. Whether Ehrlichia infect other liver 

parenchymal cells, such as HSCs or bile duct cells, remains 
elusive and is an area of future research. However, we and 
other investigators have recently examined the effects of 
deleterious type I IFNs during fatal ehrlichial infection on 
hematopoietic and nonhematopoietic cells by using bone 
marrow chimeric mice. These studies have demonstrated 
that IFN-α receptor signaling in nonhematopoietic cells is 
important for the pathogenesis of Ehrlichia-induced sepsis. 
We have recently demonstrated that virulent E. japonica/
IOE infects and replicates in primary murine HCs in vitro, 
and that IFNAR signaling in HCs promotes bacterial rep-
lication and inflammation via the induction of autophagy 
and activation of the non-canonical inflammasome path-
way, respectively [85,157]. The activation of caspase-11 
(non-canonical inflammasome pathway) in E. japonica/IOE 
infected HCs after paracrine IFNAR signaling results in 
three key events; 1) production of the inflammasome-de-
pendent cytokine IL-1β; 2) cytosolic translocation of 
HMGB1 and extracellular secretion; and 3) pyroptotic cell 
death. Notably, fatal murine ehrlichiosis is associated with 
high serum levels of HMGB1, thus suggesting that HMGB1 
may contribute to Ehrlichia-induced liver injury and sepsis. 
HMGB1 is a nuclear protein that acts as a DAMP when 
translocated to the cytosol and is secreted actively or pas-
sively after cell death during many infectious and inflamma-
tory diseases. The mechanism through which HMGB1 con-
tributes to Ehrlichia-induced liver injury and sepsis remains 
elusive. However, as suggested by other studies, extracellu-
lar hepatic HMGB1 triggers caspase 1 activation and cell 
death via binding the receptor for advanced glycation end 
products (RAGE) on adjacent uninfected macrophages or 
HCs [158-161]. In contrast, intracellular HMGB1 has been 
found to induce autophagy through direct interaction with 
beclin-1 (a key protein that initiates autophagosome forma-
tion) [159,162,163]. This HMGB1–beclin1 complex is pos-
itively regulated by unc-51-like autophagy activating kinase 
1 (Ulk1) and mitogen-activated protein kinase (MAPK). 
As described above, Ehrlichia acquires amino acids, iron, 
and other essential nutrients through fusion of Ehrlichia-
containing inclusions with autophagosome and endo-
some pathways. Because ehrlichial replication is dependent 
on autophagy induction involving beclin-1, intracellular 
HMGB1-induced autophagy might possibly enhance bac-
terial survival and replication in target cells.

Unlike HCs, macrophages are innate immune cells that 
play key roles in the regulation of innate and adaptive 
immunity against several pathogens [164,165]. Macrophages 
are not only the initial immune cells that respond to infec-
tions with various pathogens but also function as antigen-
presenting cells that prime the adaptive immune response, 
drive inflammation and host defense against infections, and 
mediate tissue repair after the resolution of infection and 
inflammation. Two major lineages are currently known: the 
first lineage is cells that are derived from myeloid progeni-
tor cells in the bone marrow and give rise to blood-circu-
lating monocytes, and the second lineage is tissue-resident 
macrophages such as alveolar macrophages in the lung and 
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Kupffer cells in the liver [157,166,167]. After stimulation, 
macrophages differentiate or polarize into either classi-
cally activated macrophages (M1) or alternatively activated 
macrophages. M1 macrophages exhibit strong microbicidal 
function and thus contribute to host defense against several 
viral, bacterial, and protozoal pathogens; they also play roles 
in antitumor immunity via several mechanisms [168,169]. 
M1 cells are characterized by high expression of MHC class 
II and costimulatory molecules such as CD86 and CD40, 
but low expression or downregulation of mannose recep-
tor (CD206). At the functional level, M1 cells can phago-
cytose microorganisms; secrete pro-inflammatory and Th1-
promoting cytokines (e.g., IL-12, IL-1β, IL-6, and TNF-α) 
and chemokines; and produce multiple microbicidal mole-
cules such as nitric oxide and ROS. In contrast, M2 cells 
are marked by upregulation of CD206, arginase-1, IL-10, 
and TGF-β. M2 cells exhibit anti-inflammatory or immu-
nosuppressive phenotypes, and thus play roles in tissue repair 
and wound healing, as they phagocytose apoptotic bod-
ies and cellular debris. These M2 macrophages are strong 
inducers of T helper 2 (Th2) cells and/or regulatory T cells, 
where these cells are commonly associated with suppression 
of tumor microenvironment and thus tumor growth. M1 
polarization is enhanced by both IFN-γ and LPS, whereas 
M2 polarization is promoted via IL-4, IL-10, and IL-13.

Recently, we have shown that infection of unprimed 
primary bone marrow-derived macrophages with highly 
virulent E. japonica/IOE (which causes fatal ehrlichiosis in 
mice) or mildly virulent E. muris (which causes mild and 
self-limited ehrlichiosis in mice) induces polarization of 
macrophages into M1 and M2 phenotypes, respectively 
[157,170]. IOE-induced polarization of macrophages into 
the M1 phenotype is interesting, because Ehrlichia species 
do not express LPS, an important M1 stimulus. Similarly, the 
polarization of M1 and M2 macrophages after E. japonica/
IOE and E. muris infection, respectively, is not associated 

with substantial production of M1- or M2-promoting 
cytokines, such as IFN-γ, IL-4, and IL-10. Using murine 
models of mild and fatal ehrlichiosis, we have further shown 
that Ehrlichia-induced liver damage and sepsis are associated 
with the accumulation of infiltrating pro-inflammatory M1 
macrophages/monocytes in the liver. This M1 expansion in 
the liver correlates with the generation of pathogenic CD8+ 
T cells and neutrophils, excessive inflammation, liver injury, 
and high bacterial burden. In contrast, expansion of M2 in 
the liver in E. muris-infected mice is associated with strong 
expansion of protective Th1 cells and NKT cells, resolution 
of inflammation, and clearance of infection. Mechanistically, 
polarization of M2 macrophages in E. muris-infected mice 
is due to enhanced autophagy induction, whereas block-
ing autophagy induction in mice infected with IOE/E. 
japonica induces polarization of M1 macrophages [157,170]. 
Blocking mTORC1 signaling in E. japonica/IOE-infected 
macrophages enhances autophagy and decreases polariza-
tion of M1 macrophages, thus suggesting that mTORC1 is 
a key regulator of M1 polarization during Ehrlichia-induced 
liver injury and toxic shock. The finding that mTORC1, 
metabolic sensor, is a key factor in macrophage polariza-
tion in ehrlichiosis suggests metabolic regulation of mac-
rophage polarization. Studies have shown that the activation 
of M1 macrophages correlates with aerobic glycolysis and 
the induction of a pentose phosphate pathway that provides 
NADPH to produce ROS, whereas M2 macrophages use 
fatty acid oxidation [171-175]. However, whether M1/M2 
polarization occurs in ehrlichiosis after infection with dif-
ferent Ehrlichia strains in humans remains elusive and is a 
topic of future investigation.

Conclusion and future perspectives

Although much progress has been made in recent years 
in the understanding of immunity and immunopatho-
genesis of Ehrlichia spp. infection, better understanding of 

TABLE 1  |  Proposed uses of inhibitors of specific detrimental pathways in fatal ehrlichiosis as potential immunotherapies.

Targets   Function in Ehrlichia pathogenesis   Inhibitors used

HMGB1   Fatal ehrlichiosis in mice is associated with high 
levels of HMGB1. HMGB1 has emerging roles in liver 
disease [157]. Studies have indicated that HMGB1 
contributes to Ehrlichia-induced liver injury [153-158].

  HMGB1-specific polyclonal and monoclonal 
antibodies, and glycyrrhizin can be used as inhibitors 
of HMGB1 [176]. 

IL-1β   IL-1β has proinflammatory effects in ehrlichiosis 
[28,50,64] and has been shown to contribute to liver 
fibrosis [95-98]. 

  Anakinra, rilonacept, and canakinumab are the 
target drugs developed by different pharmaceutical 
companies for blocking IL-1β [177]. These agents are 
known to target inflammation in a broad spectrum 
of disease.

Caspase 11   Ehrlichia infection has been shown to upregulate 
canonical and non-canonical inflammasome pathways 
[61,81,102].

  Scutellarian inhibits caspase 11 in macrophages [178].

  Wedelolactone [179] inhibits caspase-11, and 
prevents IL-1β maturation and apoptosis. 

Type I interferon   Type I interferon mediates inflammasome activation 
and HMGB-1 translocation [82,109], and also has 
important roles in other infectious diseases [108].

  Anifrolimab, a human monoclonal antibody to type I 
interferon receptor subunit 1, suppresses interferon 
gene expression and is used in treatment of systemic 
lupus erythematosus [180].
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intracellular bacterial infections and immunology is greatly 
needed in many important areas of research. The critical 
gaps in knowledge include: 1) defining the roles of inflam-
masome activation and autophagy in ehrlichiosis by using 
the natural model of infection (tick-transmitted infection); 
2) defining the PAMPs and DAMPs activating inflammas-
omes during Ehrlichia infection; 3) defining cell-specific 
responses to Ehrlichia infection, for not only immune cells 
but also parenchymal cells such as endothelial cells, HCs, and 
HSCs (given that HSCs have been shown to act as antigen-
presenting cells expressing PRR and thus modulate immune 
responses against pathogens); 4) defining crosstalk between 
macrophages and parenchymal cells in the pathogenesis of 
severe ehrlichiosis; 5) examining the early events that occur 
at points of entry in the skin and how they lead to bacterial 
dissemination in intradermal and tick-transmission models 
as well as in vitro models, such as liver and skin organoid and 
organ-on-a-chip models; 6) analyzing the potential of multi-
ple inhibitors of specific inflammasome genes or type I IFN 
signaling used to treat other diseases (Table 1) as immune 
based strategies in the treatment of severe ehrlichiosis. The 
results of these investigations will establish concepts that 
should also apply to other infectious diseases.
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