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Abstract

Malaria is a deadly disease that affects the health of hundreds of millions of 
people annually. Five Plasmodium parasite species naturally infect humans: 
Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium 
ovale, and Plasmodium knowlesi. These parasites can also infect various non-
human primates. Parasites mainly infecting monkeys, such as Plasmodium 
cynomolgi and P. knowlesi, the latter of which was considered to be a monkey 
parasite for years, can also be transmitted to human hosts. Recently, many 
new Plasmodium species have been discovered in African apes, some of which 
may be transmitted to humans in the future. Here, we searched PubMed and 
the internet via Google and selected articles on the zoonotic transmission and 
evolution of selected malaria parasite species. We review current advances in 
the relevant topics, emphasizing the transmission of malaria parasites between 
humans and non-human primates. We also briefly discuss the transmission of 
some avian malaria parasites between wild birds and domestic fowls. Zoonotic 
malaria transmission is widespread, thus posing a threat to public health. 
More studies on parasite species, including their identification in non-human 
primates, transmission, and evolution, are needed to decrease or prevent the 
transmission of malaria parasites from non-human primates to humans.
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INTRODUCTION: MALARIA 
PARASITES AND LIFE CYCLES

Malaria remains a serious public health 
burden worldwide: approximately 229 mil-
lion clinical cases and 368,000 deaths were 
reported in 87 malaria endemic countries 
in 2019 [1]. Nearly 300 Plasmodium spe-
cies have been characterized, infecting 
mammals, rodents, birds, lizards, bats, and 
ungulates; at least 29 species have been 
found to infect non-human primates 
[2–4] (https://en.wikipedia.org/wiki/
List_of_Plasmodium_species). Human 
malaria is caused by five Plasmodium spe-
cies: Plasmodium falciparum, Plasmodium 

vivax, Plasmodium malariae, Plasmodium 
ovale, and Plasmodium knowlesi. P. falci-
parum is the deadliest, whereas P. vivax is 
the most widespread. Malaria parasites 
infecting a group of related vertebrate 
species generally have relatively strict host 
specificity. Plasmodium berghei, Plasmodium 
chabaudi, and Plasmodium yoelii, initially 
isolated from African thicket rats, infect 
only rodent hosts, such as mice and rats; 
in contrast, Plasmodium gallinaceum and 
Plasmodium relictum infect avian hosts [5,6]. 
The rodent or avian parasites do not infect 
humans and do not pose a threat to public 
health. However, they may have economic 
impacts; avian parasites infecting wild birds 
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may be transmitted to domestic fowls and kill host animals 
kept in zoos or raised for food [7,8].

Many Plasmodium species can be transmitted between 
humans and non-human primates. For example, human 
infections of the New World monkey parasites Plasmodium 
simium and Plasmodium brasilianum have been widely 
reported [9]. P. simium is closely associated with P. vivax, and 
P. brasilianum is almost identical to P. malariae, thus suggesting 
transmission of these parasites between humans and New 
World monkeys. Recently, many potential new Plasmodium 
species were discovered in African apes [10–15]. Whether 
these parasites might infect humans, either currently or 
in the future, remains to be determined. Human activities 
expanding deeper into jungles, together with the continuing 
evolution of Plasmodium parasites, increases the likelihood of 
non-human primate parasites jumping to humans. Threats 
of infection of humans or domestic animals by parasites in 
wild animals still exist, and additional investigation on par-
asite evolution, adaptation, and prevention of cross-species 
transmission is needed.

Malaria parasites have a complex life cycle involving two 
hosts: female mosquitoes (Anopheles for most malaria par-
asites) and humans or other vertebrates as secondary hosts 
(Fig  1). The life cycle starts with a bite from an infected 
mosquito, which injects sporozoites into the skin of a verte-
brate host. The sporozoites migrate within blood vesicles to 

the liver and infect hepatocytes [16,17]. A parasite can rep-
licate into thousands of merozoites inside a hepatocyte, and 
mature merozoites are released into the bloodstream and 
subsequently invade erythrocytes after rupture of infected 
hepatocytes. Within a red blood cell (RBC), a merozoite 
replicates again and develops from ring to trophozoite and 
schizont stages. The rupture of RBCs containing schizonts 
also releases metabolic by-products including hemozoin from 
parasite digestion of hemoglobin. The parasite products trig-
ger host immune responses and cause various clinical symp-
toms such as fever, chills, myalgia, headache, dizziness, and 
back pain [18]. For some patients, the infection may progress 
to severe malaria with coma (cerebral malaria), pulmonary 
edema, acidosis, hypoglycemia, acute renal failure, jaundice, 
severe anemia, and death [19–21]. Host responses, such as 
the release of metabolites and immune effectors, may also 
trigger some parasites to differentiate into male and female 
gametocytes [22,23]. When another mosquito consumes a 
bloodmeal from an infected host, the gametocytes differ-
entiate into male and female gametes that fertilize to form 
zygotes in the midgut. The zygotes then develop into motile 
ookinetes that penetrate the mosquito midgut wall and 
develop into oocysts. A mature oocyst contains thousands 
of sporozoites that migrate to salivary glands. When a mos-
quito bites a vertebrate host, sporozoites are injected into 
the skin, and a life cycle begins. All Plasmodium species have 
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FIGURE 1  |  Representative life cycle of malaria parasites. Injection of sporozoites into a vertebrate host by a mosquito bite initiates the 
infection and the parasite life cycle. The injected sporozoites travel through the bloodstream to the liver and invade hepatocytes, where the 
parasites replicate and produce thousands of merozoites. Mature merozoites are again released into the bloodstream, where they invade 
red blood cells (RBCs). Within an RBC, the parasite replicates, producing more merozoites that can invade new RBCs for another cycle. For 
unknown reasons, some merozoites may develop into male and female gametocytes that differentiate into male and female gametes in the 
mosquito midgut when another a mosquito takes a blood meal. The male and female gametes fertilize, forming zygotes that differentiate 
into motile ookinetes. The ookinetes penetrate the mosquito midgut and develop into oocysts outside the midgut wall. Each oocyst contains 
many sporozoites that travel to the mosquito salivary glands. When the mosquito bites another vertebrate host, the sporozoites are injected 
into the new host, thus starting another cycle.
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similar life cycles with different species of mosquito and 
vertebrate hosts, although the life cycle length can differ. 
For example, the erythrocytic cycle is approximately 24 h 
for P. knowlesi; 48 h for P. falciparum, P. vivax, and P. ovale; and 
72 h for P. malariae [19,24–27].

For this brief review, we searched PubMed and Google 
for selected parasite species (including P. falciparum, P. vivax, 
P. malariae, P. ovale, P. knowlesi, P. cynomolgi, P. simium, and 
P. brasilianum), together with phrases such as ‘zoonotic trans-
mission’, ‘molecular evolution’, ‘host switch’, and ‘monkey 
or non-human primate malaria’. Selected relevant refer-
ences cited in published articles were also reviewed and 
are discussed. The following section briefly describes the 
origins and zoonotic transmission of important malaria 
parasites that infect humans and non-human primates, as 

summarized in Fig  2. Examples of avian malaria parasites 
causing damage to birds in zoos and to domestic fowls are 
also briefly discussed.

THE ORIGIN OF P. FALCIPARUM AND ITS 
TRANSMISSION BETWEEN HUMANS AND 
APES

With the development of DNA sequencing and genotyp-
ing tools, the origins and evolutionary histories of malaria 
parasites have become topics of interest, and debates are 
ongoing regarding the origins and times of divergence 
from the common ancestors of P. falciparum and P. vivax 
[28,29]. Analysis of small-subunit ribosomal RNA genes 
initially suggested that P. falciparum and avian parasites share 
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FIGURE 2  |  Potential transmission of malaria parasites between humans and non-human primates. Arrows indicate the direction of potential 
transmission of malaria parasites. The cartoons of non-human primates were created with Biorender (https://biorender.com) for illustration 
purposes only; they might not accurately reflect the characteristics of the species.
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a relatively recent progenitor [30]. The chimpanzee parasite 
Plasmodium reichenowi has long been considered the closest 
species to P. falciparum, because both parasites have high-AT 
content genomes and share a high degree of genome simi-
larity [31]. According to one longstanding hypothesis, P. falci-
parum and P. reichenowi evolved from a P. falciparum-like com-
mon ancestor, then co-evolved with their respective hosts 
for millions of years [32]. Recent discoveries of a multitude 
of Plasmodium spp. in chimpanzees and gorillas suggest that 
P. falciparum probably arose from recent cross-species trans-
mission of parasites from African apes [14,15,29,33,34]. In 
one study, DNA sequences in nearly 3,000 fecal samples 
collected from wild-living apes (chimpanzees and gorillas) 
were amplified and sequenced [14]. Analysis of more than 
1,100 mitochondrial, apicoplast, and nuclear gene sequences 
from the animals grouped most of the sequences within one 
of six chimpanzee- or gorilla-specific lineages represent-
ing distinct Plasmodium  species, including three not previ-
ously reported. Nine sequences were also associated with 
another group of human parasites with higher GC con-
tent (P. malariae, P. ovale, or P. vivax). These studies indicated 
the presence of many Plasmodium species belonging to the 
Laverania subgenus in the apes: P.  gaboni, P. billcollinsi, and 
P reichenowi in chimpanzees; and P. praefalciparum, P. black-
loci, and P. adleri in gorillas [14,35]. Additionally, Plasmodium 
lomamiensis was later identified in bonobos [15]. P. falciparum 
is also a member of the Laverania group and is the only par-
asite that has successfully adapted to humans after a poten-
tial transfer from gorillas to humans [14,35]. P. falciparum 
has been proposed to have arisen from a single transfer of 
P. praefalciparum into humans [36]. Indeed, P.  falciparum is 
closely associated with P. praefalciparum, with an estimated 
divergence time of 40,000–60,000 years, and signals have 
indicated significant gene flow between these two parasite 
species after their initial divergence [35]. The jump of para-
sites from African apes to humans was probably due to adap-
tion and mutations in a limited number of parasite genes 
involved in the invasion of RBCs and host-parasite inter-
actions [35,37]. Parasites infecting different primate hosts 
appear to have various genes that are involved in either inva-
sion or pathogenesis and have been fixed in the genomes 
[35]. For example, the interaction of the P. falciparum ligand 
EBA-175 with its erythrocyte sialoglycoprotein receptor, 
glycophorin A (GPA), plays a role in parasite invasion of 
RBCs [38]. Ape GPA sialic acid residues contain predomi-
nantly N-glycolylneuraminic acid (Neu5Gc), whereas those 
of humans have N-aceytlneuraminic acid (Neu5Ac). The 
difference in Neu5Ac and Neu5Gc determines the recep-
tor-ligand specificity: P. falciparum EBA-175 cannot bind 
chimpanzee GPA, whereas the P. reichenowi homolog of 
EBA-175 cannot bind human GPA [39].

Although P. falciparum is known to naturally infect only 
humans, several splenectomized non-human primates have 
been shown to support P. falciparum growth and have been 
explored as animal models for studies of vaccine devel-
opment and genetic crosses. Aotus infulatus (owl) mon-
keys, both intact and splenectomized, can be infected with 

P.  falciparum  [40,41]. Animals with intact spleens have low 
parasitemia but develop complications such as severe ane-
mia, whereas splenectomized monkeys have substantial para-
sitemia without major complications. Similarly, spleen-intact 
and splenectomized saimiri monkeys can also be infected 
with the Indochina 1/CDC and Uganda Palo FUP strains 
of P. falciparum; however, the animals recover without devel-
oping severe disease [42]. Additionally, P.  falciparum strains 
can be adapted to grow in splenectomized chimpanzees, 
which have been used as hosts for genetic crosses [43–45]. 
The parasites in the apes are changing and evolving, and 
additional parasites might potentially jump from African 
apes to humans, thus resulting in new human malaria para-
site species in the future.

THE ORIGIN OF P. VIVAX AND ITS 
TRANSMISSION BETWEEN HUMANS AND 
NON-HUMAN PRIMATES

P. vivax is another important human malaria parasite that 
is endemic to Asia, Oceania, and Central/South America, 
but is rare in sub-Saharan Africa because of the absence of 
Duffy antigen on the RBCs in human populations in Africa 
[46]. The ongoing debate concerning the origin of P. vivax 
is interesting, given that data support both Asian and African 
origins. Several earlier studies have suggested that P.  vivax 
might have arisen from the cross-species transmission of 
parasites between humans and macaques in Southeast 
Asia [47–50]. However, the hypothesis of Asian origin has 
recently been challenged after the characterization of many 
additional Plasmodium parasites from African apes [29]. 
Additional sequences from wild chimpanzees and gorillas 
throughout central Africa have shown that these animals 
were endemically infected with parasites closely associ-
ated with P. vivax, thus suggesting that P. vivax might have 
emerged in Africa [51]. Phylogenetic relationships derived 
from apicoplast genome sequences of several Asian primate 
parasites, Plasmodium cynomolgi, P. knowlesi, Plasmodium fragile, 
Plasmodium fieldi, Plasmodium simiovale, Plasmodium hylobati, 
Plasmodium inui, and P. gonderi also support an African ori-
gin of P. vivax [52]. However, recent analyses of genomic 
variation in 447 human P. vivax strains and 19 ape P. vivax-
like strains collected worldwide have indicated that P. vivax 
might have arisen from a single area in Asia through serial 
founder effects [53]. P. vivax has been shown to be a sis-
ter group rather than a sublineage of P. vivax-like parasites, 
and a strong bottleneck in the lineage leading to P. vivax 
may explain the richer genetic diversity in the P. vivax-like 
groups [53]. Notably, before these recent analyses of large 
numbers of parasite isolates and genomic datasets, Richard 
Carter provided some potential answers to the debates on 
P. vivax origin, on the basis of changes in historical conti-
nental landmasses, climate, the distribution of primates over 
time, and malaria parasite selection on the human genome 
(Duffy negative) in the Old World [54,55]. Carter has spec-
ulated that P. vivax could have diverged ~2 million years ago 
from a group of malaria parasites that are now endemic in 
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monkeys and apes in southern Asia, and all P. vivax today 
might be descended from parasites that infected human 
populations in the Mediterranean region and sub-Saharan 
Africa [55]. This hypothesis might explain the discrepant 
signals found in parasite sequences collected from Asian and 
Africa. Nonetheless, although the debate on the origin of P. 
vivax is expected to continue, these studies clearly illustrate 
the zoonotic nature of P. falciparum and P. vivax parasites.

EMERGENCE OF P. VIVAX IN AFRICA AND THE 
INVASION OF DUFFY NEGATIVE RBCS

An African origin of P. vivax is supported by the lack of 
Duffy antigen expression in African human populations 
and the requirement of Duffy antigen/chemokine receptor 
(DARC) for parasite invasion of RBCs [46,55]. The P. vivax 
parasite invades reticulocytes mainly through binding of 
P. vivax Duffy binding protein (PvDBP) to DARC [56–58]. 
For many years, Duffy-negative individuals were thought to 
be fully resistant to vivax malaria, as an example of selection 
of a genetic trait by an infectious disease [59]. An amino acid 
substitution in the GATA-1 transcription factor binding site 
of the gene encoding the Duffy blood group, Fy, causes an 
absence of DARC expression [60]. However, P. vivax has 
since been reported in Duffy-negative human populations 
[61–66]. Duplication of the PvDBP genes and low-level 
expression of the gene (which was previously undetectable) 
encoding DARC (Fy) might have contributed to the obser-
vations of P. vivax in Duffy-negative individuals [67–71]. 
Additionally, African great apes may act as Duffy-positive 
reservoirs of P. vivax in regions where P. vivax parasites 
(or P. vivax–like parasites) have been found in the blood of 
these great apes [72,73]. These observations show that new 
infections may occur after mutations in both host and para-
site genomes, thereby leading to new transmission. However, 
no significant difference in PvDBP copy number has been 
observed in parasites infecting Duffy-null heterozygotes and 
Duffy-positive homozygotes/heterozygotes [74]. The mole-
cular mechanism of infection in Duffy-negative individuals 
requires further investigation.

P. VIVAX/P. SIMIUM IN HUMANS AND NEW 
WORLD MONKEYS

P. simium can infect neotropical platyrrhine monkeys and 
humans. Although how P. simium specifically arrived in the 
Americas remains disputed, most scientists studying the 
parasite agree that P. simium was established in New World 
monkeys after migrants brought the parasite (or P. vivax ini-
tially) either from Europe and Africa during the colonial era, 
or from Southeast Asia [75,76]. P. vivax and P. simium have 
nearly identical genomes, and parasites found in humans 
and simians can be transmitted by the same vectors in the 
Atlantic Forest of Brazil [77]. More recent phylogenetic 
analyses based on the whole genome sequences of P. simium 
isolates infecting humans and brown howler monkeys sup-
port the hypothesis that P. simium first infected non-human 

primates as a result of a host-switch from humans carrying 
P. vivax [78,79]. Additionally, signals of multiple independ-
ent host switches have been detected, thus suggesting that 
zoonotic infections occurred in humans, and non-human 
primate malaria parasites serve as reservoirs for potential 
human infectious [79]. Indeed, an outbreak of P. simium 
malaria in humans in the Atlantic Forest in Rio de Janeiro 
has been reported [80]. Transmission from non-human pri-
mates to humans must be considered in any malaria elimi-
nation attempts in the region.

P. OVALE AND POTENTIAL ZOONOTIC 
TRANSMISSION

P. ovale is a human malaria parasite producing oval shaped 
infected erythrocytes [25,81]. Similarly to P. vivax, the para-
sites invade primarily reticulocytes to initiate the erythrocytic 
cycle, and they can suspend their development as hypnozoites 
in the liver for months, thus leading to relapses [25]. The 
parasite is found mostly in sub-Saharan Africa; islands of the 
western Pacific, such as the Philippines and New Guinea; the 
Middle East; and Southeast Asia [82–90]. Recently, two non-
recombining species of P. ovale, P. ovale curtisi (classic type) and 
P. ovale wallikeri (variant type), have been recognized [91,92]. 
Phylogenetic analysis of the Plasmodium genus on the basis 
of genomic sequences has placed P. ovale curtisi and P. ovale 
wallikeri in a clade between those of P. vivax/P. cynomolgi and 
P. berghei/P. chabaudi [93]. The study also supports relatively 
ancient divergence of the two P. ovale species, as evidenced 
by their different pir repertoires [93].

Genetic evidence has indicated the presence of P. ovale 
parasites in African chimpanzees. In a study of partial mito-
chondrial cytochrome b (cytb) and cytochrome c oxidase 1 (cox1) 
and nuclear ldh sequences from 130 samples collected from 
chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) in 
Cameroon, P. olave sequences were detected in two chim-
panzees [90]. One chimpanzee was infected with parasites 
whose sequences were identical to those of the variant (wal-
likeri) P. ovale type, and the other was infected with parasites 
different from the two human P. ovale parasites. In a similar 
study, blood samples from 12 chimpanzees and two goril-
las from Cameroon and one lemur from Madagascar were 
examined for two parasite mitochondrial genes (cytb and 
cox1), one plastid gene (tufA), and ldh; P. ovale was found 
in the chimpanzees [94]. In another study, 16 wild West 
African chimpanzees in Taï National Park, Côte d’Ivoire, 
were found to be naturally infected with P. ovale, P. vivax, 
P. malariae, and three types of plasmodia rarely observed 
in humans in the region [95]. These observations suggest 
potential natural cross-species exchange in P. ovale between 
humans and chimpanzees.

HUMAN INFECTION OF P. MALARIAE AND 
P. BRASILIANUM

Simian P. brasilianum causes quartan fever in New World 
monkeys and resembles the human quartan parasite 
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P.  malariae under microscopic examination. P. brasilianum 
parasites from monkeys have been found to infect humans 
experimentally, and New World monkeys or chimpan-
zees can be experimentally infected with P. malariae from 
humans [96–99]. The two parasites are nearly genetically 
identical [9,93,100,101]. Typically, quartan malaria parasites 
were called P. brasilianum when identified in monkeys and 
P. malariae when detected in humans [101]. Analyses of par-
asite genes encoding the circumsporozoite protein (CSP) 
and the ribosomal small subunit (18S) from patients in 
remote Yanomami indigenous communities in Venezuela 
have identified 12 people harboring parasites 100% iden-
tical to P. brasilianum isolated from the monkeys, thus sug-
gesting naturally acquired human infections of P. brasilianum 
[101]. Monkeys living in the rainforest therefore can act as 
natural reservoirs for P. brasilianum/P. malariae malaria [100]. 
Some studies have shown that P. brasilianum strains appear to 
be more divergent than P. malariae parasites [9,102], thereby 
suggesting that P. malariae might be derived from P. brasilia-
num. However, the level of genetic variation was minimal, 
and the diversity could represent intraspecies variation.

Genome sequence and phylogenetic analyses have shown 
that P. malariae and P. malariae-like make up a clade at the 
root of clades consisting of P. vivax/knowlesi/cynomolgi, 
P.  ovale, and P. berghei/chabaudi [93]. Additionally, the cytb 
and ssrRNA sequences of P. malariae and P. malariae-like have 
been found in wild chimpanzees in tropical Africa [14,95], 
thus suggesting potential transmission of P. malariae or 
P. malariae-like parasites from chimpanzees to humans.

OUTBREAKS OF P. KNOWLESI INFECTIONS IN 
HUMAN POPULATIONS

P. knowlesi is a malaria parasite initially found in long-
tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) 
macaques, and human infections were thought to be rare 
until natural infections in many human individuals were 
reported in Sarawak, Malaysian Borneo, in 2004 [103,104]. 
The parasite was first observed in blood film from a long-
tailed macaque in the early 1930s [103]. Subsequently, 
blood passage of the parasite in its natural host, M. fascicu-
laris, was found to result in infection with low parasitemia 
[103]. Human natural infection was reported in a U.S. 
Army surveyor in Peninsular Malaysia more than 30 years 
later [105]. However, many human infections of P. knowlesi 
were likely to be misdiagnosed as P. malariae infections in 
routine microscopy, because the blood stages of P. know-
lesi and P. malariae are morphologically very similar [106]. 
More extensive human infections of P. knowlesi have been 
discovered in the past 15 years, particularly with the devel-
opment and application of PCR-based techniques, which 
have greatly improved the ability to detect P. knowlesi infec-
tion in humans and monkeys [104]. After the report of a 
large focus of human infections of P. knowlesi in Malaysian 
Borneo in 2004 [107,108], human cases of P. knowlesi infec-
tions have been reported in Malaysia [109–111] Thailand 
[112–114], Cambodia [115,116], Vietnam [117], Myanmar 

[118], the Philippines [119], Singapore [120,121], and 
Indonesia [122]. Importantly, the areas with natural human 
P. knowlesi infections overlap with the distribution of long-
tailed and/or pig-tail macaques. Therefore, P. knowlesi is 
now recognized as the fifth human malaria species, and 
zoonotic transmission plays a key role in human infections. 
The zoonotic transmission of P. knowlesi represents a chal-
lenge for malaria control and elimination in Southeast Asia 
[123]. Indeed, zoonotic P. knowlesi infection has become the 
major cause of malaria in Malaysia, particularly Malaysian 
Borneo [124].

HUMAN INFECTIONS WITH THE MONKEY 
MALARIA PARASITE P. CYNOMOLGI

P. cynomolgi is another malaria parasite that naturally infects 
Asian monkey species, including long-tailed and pig-tailed 
macaques [125]; however, this parasite may also occasionally 
infect humans [126]. Human infection has been reported in 
two staff members who became infected with vivax-type 
parasites when they inoculated monkeys with P. cynomolgi 
sporozoites [127]. Additional transmission of P.  cynomolgi 
from monkeys to humans or from among humans was 
reported shortly thereafter [128–131]. Naturally acquired 
human infection of P. cynomolgi was reported in a symp-
tomatic 39-year-old female nurse in peninsular Malaysia 
in 2014 [132]. In a more recent survey of malaria infec-
tions involving 14,732 individuals in 23 villages in Pailin 
and Battambang, western Cambodia, 1,361 people were 
asymptomatically infected with several species of malaria 
parasites, including 11 people infected with P. cynomolgi, 
8  people infected with P. knowlesi, and 2 people infected 
with both P. vivax and P. cynomolgi [116]. In Northern 
Sabah, Malaysia, two adult men were found to be infected 
with P. cynomolgi [110]. Additionally, 6 of 1,047 blood sam-
ples collected at Kapit Hospital in Kapit, Malaysia, were 
found to be co-infected with P. cynomolgi and P. knowlesi 
[111]. These reports suggest that P. cynomolgi can also infect 
humans naturally, although the prevalence of P. cynomolgi 
infection in humans may be lower than that of P. knowlesi. 
More outbreaks of P. cynomolgi infection might potentially 
be undetected or could occur in the future if the para-
sites acquire mutations in the key parasite genes involved in 
binding to host receptors.

MALARIA SPECIES IN BIRDS AND THEIR 
TRANSMISSION BETWEEN CAPTIVE/
DOMESTIC AND WILD BIRDS

Avian hosts are infected with many species of malaria par-
asites such as P. relictum, Plasmodium elongatum, Plasmodium 
juxtanucleare, and P. gallinaceum [6,133]. Although these par-
asites do not infect humans and are generally not of con-
cern to public health, transmission of parasites from wild 
birds to domestic fowls can inflict economic losses on the 
poultry industry. Transmission of many avian malaria spe-
cies is mediated by species of Culicidae mosquitoes in several 
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genera (Culex, Coquillettidia, Aedes, Mansonia, Culisetta, 
Anopheles, and Psorophora), instead of the Anopheles species 
for mammalian malaria parasites [134,135]. Many species 
of avian malaria parasites exist among wild birds, but stud-
ies on the disease severity and pathology in wild birds are 
limited [136,137]. Traditionally, wild birds infected with 
these parasites were generally considered to have mild 
disease. However, avian malaria has been shown to play a 
role in the ongoing decline of native New Zealand birds 
[138]. Diminished overwinter survival of both juvenile and 
adult house sparrows has been associated with the inten-
sity of Plasmodium infections [139]. Various clinical signs 
have been observed in domestic chickens after infection 
with P. gallinaceum, including depression, fever, anorexia, 
reduced weight gain, poor feed conversion, anemia, green 
feces, and even death [140]. Death of experimental passer-
ine birds due to marked organ damage has been reported 
after Plasmodium homocircumflexum infection [137]. Avian 
malaria, most commonly associated with P. relictum or 
P. elongatum, can also cause severe disease in penguins, 
with mortality rates as high as 50%–80% [141]. Vector and  
bird migration and vector introduction by human action 
into non-endemic habitats represents a risk of endanger-
ing species [142]. For example, P. relictum has recently been 
reported to expand its range, infecting two non-migratory 
passerines in North America [143]. Species of Plasmodium, 
Haemoproteus, and Leucocytozoon have been reported to 
infect cranes in the Beijing Zoo, particularly the juve-
nile birds that often die from infection by Plasmodium and 
Leucocytozoon parasites [144]. Therefore, the transmission of 
avian malaria parasites between wild birds and domestic or 
captive avian hosts can be considered examples of zoonotic 
transmission of malaria parasites.

CONCLUSION

The transmission of malaria parasites from non-human pri-
mates to humans and vice versa has occurred many times 
during the evolutionary histories of malaria parasites and 
their hosts. Moreover, some parasites have adapted to 
develop in both humans and non-human primates. All five 
malaria parasite species that infect humans have been found 
in non-human primates, which in turn can act as reser-
voirs for transmission to humans. Additionally, the malaria 
species currently infecting wild non-human primates 
may gain mutations that allow them to bind receptors in 
humans and subsequently jump to humans. Furthermore, 
many unknown species in wildlife hosts remain to be char-
acterized. One approach might be to collect fecal or tis-
sue (blood) samples from potential hosts such as bats, wild 
rodents, and non-human primates, and extract DNA/RNA 
for high throughput sequencing to reveal parasite genetic 
information for species characterization.

The risk of malaria parasite outbreaks is a frequent threat 
to public health when human activities lead to close con-
tact with non-human primates. Close surveillance and 
more studies on the biology and transmission of parasites 

circulating among non-human primates are of critical 
importance for preventing outbreaks of malaria due to 
zoonotic infection.
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