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H I G H L I G H T S  

• Propose a multi-horizon IGDT-based model for the resilient operation of a distribution network against wildfires. 
• Utilize a proficient multi-objective optimization method to solve the multi-horizon IGDT-based model. 
• Obtain a set of evenly distributed Pareto optimal solutions for a specific conservatism level. 
• Find the best solution among a set of Pareto optimal solutions using a posteriori out-of-sample analysis. 
• Introduce a novel resilience index to find the optimum crisis management budget.  
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A B S T R A C T   

Extreme events may trigger cascading outages of different components in power systems and cause a substantial 
loss of load. Forest wildfires, as a common type of extreme events, may damage transmission/distribution lines 
across the forest and disconnect a large number of consumers from the electric network. Hence, this paper 
presents a robust scheduling model based on the notion of information-gap decision theory (IGDT) to enhance 
the resilience of a distribution network exposed to wildfires. Since the thermal rating of a transmission/distri
bution line is a function of its temperature and current, it is assumed that the tie-line connecting the distribution 
network to the main grid is equipped with a dynamic thermal rating (DTR) system aiming at accurately eval
uating the impact of a wildfire on the ampacity of the tie-line. The proposed approach as a multi-horizon IGDT- 
based optimization problem finds a robust operation plan protected against the uncertainty of wind power, solar 
power, load, and ampacity of tie-lines under a specific uncertainty budget (UB). Since all uncertain parameters 
compete to maximize their robust regions under a specific uncertainty budget, the proposed multi-horizon IGDT- 
based model is solved by the augmented normalized normal constraint (ANNC) method as an effective multi- 
objective optimization approach. Moreover, a posteriori out-of-sample analysis is used to find (i) the best so
lution among the set of Pareto optimal solutions obtained from the ANNC method given a specific uncertainty 
budget, and (ii) the best resiliency level by varying the uncertainty budget and finding the optimal uncertainty 
budget. The proposed approach is tested on a 33-bus distribution network under different circumstances. The 
case study under different conditions verifies the effectiveness of the proposed operation planning model to 
enhance the resilience of a distribution network under a close wildfire.   
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Nomenclature 

A. Acronyms 
AC Alternative Current 
ACSR Aluminum Conductor Steel-Reinforced 
ANNC Augmented Normalized Normal Constraint 
DER Distributed Energy Resources 
DNRO Distribution Network Resilient Operation 
DR Demand Response 
DSO Distribution System Operator 
DTR Dynamic Thermal Rating 
ESS Energy Storage System 
IGDT Information Gap-Decision Theory 
MISOCP Mixed-Integer Second-Order Conic Programming 
MOMP Multi-Objective Mathematical Programming 
MT Micro Turbine 
MUFS Model of Urban Fire Spread 
NNC Normalized Normal Constraint 
OPF Optimal Power Flow 
PMT Portable Micro Turbine 
PV Photovoltaic 
SOCP Second-Order Conic Programming 
WT Wind Turbine 

B. Functions 
F k(ϑ) The kth objective function of the MOMP problem. 
F n

k(ϑ) The kth normalized objective function of the MOMP 
problem. 

F bst
k
(
ϑbst

k
)

Best value in the kth column of the payoff matrix (i.e., 
optimal value of the kth objective function). 

F wst
k
(
ϑbst

k
)

Worst value of the kth column in the payoff matrix. 
OF Objective function. 

C. Indices, Sets, and Symbols 
ij Index of the line connecting buses i and j. 
h, i, j Index of buses (1 to NB). 
k,z Index of objective functions in MOMP (1 to m). 
l Index of utopia hyper-plane points (or division points). 
lk Index of weighting parameter related to lth utopia hyper- 

plane point and kth objective function in MOMP. 
s Index of scenario vectors (1 to NS). 
t, τ Index of hours (1 to NT). 
u Index of each member of ΩUB. 
Γ∘ Robust region of the uncertainty source ∘. 
ΞD Feasible space of the D-DNRO model. 
ΞIGDT Feasible space of the IGDT-DNRO problem. 
ΞMOMP Feasible space of the MOMP problem. 
ΩUB Set of allowed values for the budget of uncertainty. 
|∘| Magnitude of variable ∘. 
‖∘‖ Euclidian norm of vector ∘. 
∘̊, ∘ Upper and lower bounds ∘. 
〈a,b〉 Inner multiplication between two vectors a and b. 

D. Matrices and Vectors 
APk Anchor point of the kth objective function. 
APn

k The kth normalized anchor point. 
F n A point in m-dimensional normalized objective space. 
L

n
km Normalized increment of Λn

km. 
UWT/PV/D/l Vector of certain values for pWT

i,t /pPV
i,t /pD

i,t/l DTR
12,t . 

Ũ
WT/PV/D/l

Vector of uncertain values for p̃WT
i,t /p̃PV

i,t /p̃D
i,t/l̃

DTR
12,t . 

UPl The lth utopia hyper-plane point. 
X Vector of decision variables of the D-DNRO model. 
Λn

km Normalized utopia hyper-plane vectors related to APk. 

Π Payoff matrix. 
ϑ Vector of decision variables of the MOMP problem. 

E. Parameters 
AF Adjusting factor. 
B Stefan-Boltzmann constant [W/(m2K4)]. 
bi Shunt susceptance of the line connected to bus i [p.u.]. 
cMT

i Marginal cost of the MT/PMT units connected to bus i 
[$/MWh]. 

cUP
t Price of buying/selling electrical energy from/to the 

upstream network at hour t [$/MWh]. 
cSU

i /cSD
i Start-up/shutdown cost of the MT/PMT units connected to 

bus i [$]. 
cPMT

i Renting cost of the PMT units connected to bus i [$]. 
Dij Outside diameter of the line conductor between buses i and 

j [m]. 
EST− ini

i Initial stored energy of unit i at the beginning of the entire 
scheduling horizon [p.u.]. 

gi Shunt conductance of the line connected to bus i [p.u.]. 
ICk The importance coefficient for F k(ϑ). 
ka Thermal conductivity of air [W/m◦C]. 
kc

ij Conductor absorption coefficient for the line connecting 
buses i and j. 

kf Solar absorptivity [kg/m3]. 
Lf Flame length [m]. 
l DTR

ij,t Squared dynamic current (squared dynamic ampacity) of 

the line connecting buses i and j at hour t where l DTR
ij,t =

(
IDTR
ij,t

)2 
[p.u.]. 

m Number of objective functions in MOMP. 
mCp Total heat capacity of conductor [J/m◦C]. 
NB Number of buses. 
NS Number of a posteriori out-of-sample scenarios. 
NT Number of hours [h]. 
pD

i,t/qD
i,t Active/reactive load demand connected to bus i at hour 

[p.u.]. 
Rij
(
THigh) AC resistance of the line connecting buses i and j at Thigh 

[Ω/m]. 
Rij
(
TLow) AC resistance of the line connecting buses i and j at Tlow 

[Ω/m]. 
rij Resistance of the line connecting buses i and j [p.u.]. 
⃒
⃒̄sUP

⃒
⃒ Limit of apparent power exchange with the upstream 

network [p.u.]. 
Tf Flame zone temperature [◦K]. 
THigh High average temperate of the line conductor to calculate 

its AC resistance [◦C]. 
TLow Low average temperature of the line conductor to calculate 

its AC resistance [◦C]. 
UB Uncertainty budget. 
UBopt Optimal uncertainty budget. 
UBu Member u of ΩUB. 
¯|Vi| Maximum allowable voltage magnitude of bus i [p.u.]. 
|Vi| Minimum allowable voltage magnitude of bus i [p.u.]. 
voll Value of lost load [$/MWh]. 
xij Reactance of the line connecting buses i and j[p.u.]. 
Ψkm Pre-specified set-point indicating the number of division 

points on Λn
km. 

γf Flame tilt angle [◦]. 
Δt Duration of time intervals [h]. 
ε Conductor emissivity (0.23 to 0.91). 
εf Flame zone emissivity. 
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1. Introduction 

1.1. Motivation and background 

In practice, electrical distribution networks are subject to different 
catastrophic events (e.g., earthquakes, floods, ice storms, windstorms, 
wildfires, terroristic attacks, and military actions) [1]. Specifically, the 

resilience of power systems refers to the capability of the electrical 
networks to survive low-probability high-impact extreme events effi
ciently with minimum unserved electricity demand while providing fast 
restoration to the normal operation state [2,3]. In recent years, 
numerous studies have focused on evaluating and enhancing the resil
ience of electrical distribution networks. These research works can be 
categorized into (1) long-term hardening-related models with reventive 

ηST
i Conversion efficiency of the ESS unit connected to bus i. 

μa Absolute (dynamic) viscosity of air [kg/m.s]. 
ρa Air density [kg/m3]. 
ρb Fuel bulk density [kg/m3]. 
τ Dimensionless atmospheric transmissivity. 
ωlk Weighting parameter related to lth utopia hyper-plane 

point and the kth objective function of the MOMP problem. 

F. Variables 
CMB Crisis management budget [$]. 
DCCUC Deterministic commitment-related costs [$]. 
DDCED Deterministic dispatch-related costs [$]. 
DOC Deterministic total operation cost [$]. 
DOCs Deterministic total operation cost for scenario vector s [$]. 
EST

i Stored electrical energy of the ESS unit connected to bus i 
[p.u.]. 

EOC Expected value of total operation cost [$]. 
EOCu Expected value of total operation cost related to member u 

of ΩUB [$]. 
Iij,t Current of the line connecting buses i and j at hour t [p.u.]. 
IDTR
ij,t Maximum dynamic current capacity (maximum dynamic 

ampacity) of the line connecting buses i and j at hour t 
[p.u.]. 

KAngle
ij,t Wind direction factor for the line connecting buses i and j 

at hour t. 
l ij,t Auxiliary variable indicating the squared current value for 

the line connecting buses i and j at hour t [p.u.]. 

l̃
DTR
12,t Uncertain l DTR

12,t [p.u.]. 
NRe

ij,t Dimensionless Reynolds number for the line connecting 
buses i and j at hour t. 

pInject
i,t /qInject

i,t Net active/reactive power injection at bus i at hour t 
[p.u.]. 

pL
ij,t/qL

ij,t Active/reactive power flow of the line connecting buses i 
and j at hour t [p.u.]. 

pMT/WT/PV
i,t Active power generation of (MT, PMT)/WT/PV units 

connected to bus i at hour t [p.u.]. 
pShed

i,t /qShed
i,t Active/reactive power shedding at bus i at hour t [p.u.]. 

pSTC/STD
i,t Charging/discharging active power of the ESS unit 

connected to bus i at hour t [p.u.]. 
pUP

t /qUP
t Active/reactive power exchange with the upstream 

network at hour t [p.u.]. 
pUPB

t /pUPS
t Active power to buy/sell from/to the upstream network at 

hour t [p.u.]. 
p̃D

i,t Uncertain pD
i,t [p.u.]. 

p̃PV/WT
i,t Uncertain pPV/WT

i,t [p.u.]. 
qc

ij,t Convection heat loss rate of the line connecting buses i and 
j at hour t [W/m]. 

qf
ij,t Heat gain rate from fire of the line connecting buses i and j 

at hour t [W/m]. 
qMT

i,t Reactive power generation of the MT/PMT units connected 
to bus i at hour t [p.u.]. 

qr
ij,t Radiated heat loss rate of the line between buses i and j at 

hour t [W/m]. 
qs

ij,t Heat gain rate from sun of the line connecting buses i and j 
at hour t [W/m]. 

qST
i,t Reactive power of the ESS unit connected to bus i at hour t 

[p.u.]. 
Rij,t AC resistance of the line conductor connecting buses i and j 

at hour t [Ω/m]. 
RCCUC Robust total commitment-related costs [$]. 
RDCED Robust total dispatch-related costs [$]. 
RI Resiliency index. 
RImax Maximum RI. 
RIu Resiliency index related to member u of ΩUB. 
ROC Robust total operational cost [$]. 
rf
ij,t Distance of fire from the line connecting buses i and j at 

hour t [m]. 
ruPMT

i Continuous variable calculating the renting cost of the 
PMT units connected to bus i [$]. 

suMT
i,t /sdMT

i,t Continuous variables calculating the start-up/shutdown 
cost of the MT/PMT units connected to bus i at hour t [$]. 

svk The kth slack variable. 
Tij,t Temperature of the line conductor connecting buses i and j 

at hour t [◦C]. 
Ta

t Ambient air temperature at hour t [◦C]. 
TLu Total load during the wildfire for member u of ΩUB [p.u.]. 
TLSu Total load shedding during the wildfire for member u of 

ΩUB [p.u.]. 
uMT

i,t Binary variable indicating the status of the MG unit 
connected to bus i at hour t. 

uST
i,t Binary variable indicating the charging/discharging status 

of the ESS unit connected bus i at hour t. 
uUP

t Binary variable indicating the status of the distribution 
network in buying/selling electrical energy from/to the 
upstream system at hour t. 

Vf
t Speed of fire spread at hour t [m/s]. 

vi,t Auxiliary variable indicating the squared value for voltage 
magnitude of bus i at hour t [p.u.]. 

wt Wind speed at hour t[m/s]. 
αWT/PV/D/l Envelope bound for the robust region of the uncertain 

parameter pWT
i,t /pPV

i,t /pD
i,t/l DTR

12,t [p.u.]. 

δf
ij,t Angle of view between the flame and the line conductor 

connecting buses i and j [rad]. 
ϑbst

k The value of the decision variables optimizing the kth 

objective function of the MOMP problem as a single 
objective optimization. 

φf
ij,t Radiative heat flux emitted from the fire on the line 

conductor connecting buses i and j at hour t [W/m2]. 
φs

ij,t Solar radiation on the line conductor connecting buses i 
and j at hour t [W/m2]. 

φw
ij,t Angle between the wind direction and the axis of the line 

conductor connecting buses i and j at hour t [rad].  
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actions (e.g., utilizing underground distribution lines, upgrading/rein
forcing distribution poles/lines with robust materials, and changing the 
route of distribution lines to secure regions); (2) short-term operation- 
related models with preventive/corrective actions (e.g., utilizing 
decentralized control strategies, operating the distribution systems as 
microgrids, and employing wide-area protection) [4,5]. Although 
wildfire is a natural catastrophic event frequently occurring in different 
areas across the world (e.g., recent disastrous wildfires in Australia, 
Canada, and United States [6]) and seriously threatening the normal 
operation of power systems, limited investigations have focused on 
evaluating and enhancing the resilience of the electrical networks 
against wildfires through hardening-related [7] or operation-related 
[8–14] approaches as summarized in Table 1. 

In [7], the impact of forest wildfire on the failure probability of 
transmission lines, and consequently, on the resilience and reliability of 
the electrical network, has been evaluated by using the dynamic thermal 
balance equation of transmission lines. Case studies in [7] demonstrate 
that forest wildfire can significantly affect the resilience and reliability 
of the electrical network as a function of wildfire, wind speed, and load 
demand characteristics. In [8], the effect of urban wildfires on the 
resilience of a distribution network has been evaluated by the Model of 
Urban Fire Spread (MUFS) software package simulating urban wildfires 
under different assumptions and conditions. Also, the Dijkstra’s algo
rithm has been used to increase the resilience of the distribution network 
by finding the optimal switching sequence of normally-open switches for 
rerouting power along a minimum impedance path. In [9], the proposed 
model in [8] has been extended to improve the resilience of coupled 
water and power networks in urban areas during a wildfire. In [10,11], 
the resilience of the distribution network under a wildfire has been 
assessed and enhanced by utilizing microgrids, demand response (DR), 
and distributed energy resources (DERs), all minimizing the amount of 
load shedding during a wildfire. Both models in [10,11] are formulated 
as a two-stage stochastic optimization problem. The first-stage decisions 
find the optimal values of commitment variables, which are not a 
function of the uncertain parameter (i.e., the fire hazard), while the 
second-stage decisions find the optimal dispatch variables, which are a 
function of the uncertain parameter. In addition, to enhance the trac
tability of the problem, the non-linear optimization problem in [10] is 
recast as a quadratic optimization problem in [11]. In [12], the resil
ience of a transmission network with dynamic thermal rating (DTR) 
systems has been evaluated. Also, the resilience has been increased in 
[12] by minimizing the total operational costs and unserved demands 
during a natural fire spread. 

Since the uncertain nature of wind speed/direction can significantly 
affect the characteristics of a wildfire spread, a non-deterministic model 
based on a probabilistic optimal power flow (OPF) has been presented in 

[13] to enhance the resilience of a DTR-equipped power system during a 
wildfire through optimal reserve allocation and power production of 
generation units. In [14], a stochastic optimization model incorporating 
a multi-period OPF has been utilized to analyze and increase the resil
ience of distribution networks with DTR systems during a natural fire 
spread wherein the uncertainties of solar/wind power generations have 
been characterized by different scenarios. Although the previous 
research works have addressed several issues related to the resilience of 
power systems during a wildfire spread across an electrical network, 
these models have proposed either deterministic approaches neglecting 
the relevant uncertainties or probabilistic approaches modeling uncer
tain parameters through probability distributions. In recent years, 
different types of uncertain parameters have been mainly quantified by 
either probability distributions or bounded intervals [15,16]. Since it 
may be hard to obtain the exact probability distributions of uncertain 
parameters in practical applications, particularly in electrical networks 
with limited historical data, information-gap decision theory (IGDT) as a 
robust distribution-free method has been used in the power system 
literature to develop uncertainty-aware models for different investment 
[17] and operation planning problems [18,19]. In [17], the IGDT 
method has been utilized to find a robust plan for investment in trans
mission lines under the uncertainty of capital costs and electricity de
mands. In [18], a bidirectional decision-making framework has been 
introduced based on the notion of the IGDT method to obtain risk-averse 
and risk-seeker offering strategies for virtual power plants. In [19], a bi- 
level IGDT-based model has been proposed to obtain robust operational 
schedules immunized against uncertainties of wind power and DR. In 
recent years, several resilience-oriented investment/integration plan
ning models based on the notion of IGDT have been presented in the 
literature. In [20], the IGDT method has been utilized to determine the 
resilient integration plan for distributed series reactors under extreme 
events. In [21], a tri-level IGDT-based model has been introduced for 
investment planning in integrated electric power and natural gas net
works to ensure the resilience of coupled energy systems under any 
disastrous event. In [22], the proposed model in [21] has been extended 
to find the resilient investment plan in integrated electric power and 
natural gas networks under both low-frequency high-impact and high- 
frequency low-impact uncertainties. However, to the best of the au
thors’ knowledge, there is no uncertainty-aware IGDT-based model for 
the resilient operation of a distribution network under a wildfire spread. 
Additionally, the AC power flow equations in the previous models have 
been approximated by inexact linear/quadratic models [11,14], which 
may result in inaccuracy or infeasibility of the optimal solution in 
practical applications. Accordingly, it is essential to develop a proficient 
non-deterministic approach with low computational complexity and 
high modeling accuracy for the resilient operation of renewable- 

Table 1 
Power systems resiliency studies against wildfire.  

Study Type Resilience Enhancement Technique Network DTR 
Modeling 

Wildfire 
Type 

Optimization 
Type 

Uncertain 
Parameters 
Considered 

Uncertainty 
Handling 
Technique 

Ref. 

Hardening 
Oriented 

Providing the maintenance team with the 
information of damaged components to 
quickly identify/restore damaged 
components 

1T T-Lines Forest 
wildfire 

3DO – – [7] 

Operation 
Oriented 

Line switching and network 
reconfiguration 

2D – Urban 
wildfire 

DO – – [8,9] 

Microgrids, DR, DERs, and optimal load 
shedding 

D D-Lines Natural 
wildfire 

4NO Fire Hazard Probabilistic [10,11] 

Optimal load shedding T T-Lines Natural 
wildfire 

DO – – [12] 

Optimal reserve allocation and power 
production of generation units 

D T-Lines Natural 
wildfire 

NO Wind speed/ 
direction 

Probabilistic [13] 

DERs, ESSs, and optimal load shedding D Tie-Line Forest 
wildfire 

NO Wind/solar power 
generation 

Probabilistic [14] 

Note. 1T: Transmission, 2D: Distribution, 3DO: Deterministic Optimization, 4NO: Non-Deterministic Optimization. 
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integrated distribution networks during the wildfire spread. Against the 
previous works, this paper presents a resilience-oriented model for the 
optimal operation of a DTR-equipped distribution network during a 
wildfire wherein the uncertain load demands and renewable power 
productions are characterized by the IGDT method and the non-linear/ 
non-convex power flow equations are convexified by a second-order 
conic transformation. 

1.2. Contributions 

The main contributions of this paper can be summarized as follows: 

• Proposing a multi-horizon IGDT-based model for the resilient oper
ation of a distribution network against unexpected forest wildfires 
under multifold uncertainties (i.e., wind productions, solar pro
ductions, load demands, and ampacity of the DTR-equipped line 
connecting the distribution network to the bulk electric network). In 
addition, the proposed model optimizes the renting schedule of 
portable micro turbines (PMTs), along with other resources, to 
enhance the resilience of the distribution network against wildfires. 
To the best of the authors’ knowledge, this is a unique feature of the 
proposed resilient model, which has not been presented in the pre
vious works.  

• Utilizing an augmented version of the normalized normal constraint 
(ANNC) method as a proficient multi-objective optimization 
approach to solve the proposed multi-horizon IGDT-based model and 
to obtain a set of evenly distributed Pareto optimal solutions for a 
specific uncertainty budget (UB). The conservatism level of the 
optimal solution can be controlled by using UB.  

• Finding the best solution among a set of Pareto optimal solutions for 
a particular value of UB by taking a posteriori out-of-sample analysis 
simulating the operational performance of the distribution network 
under different realizations of uncertain parameters. The proposed 
analysis includes various wildfire-severity scenarios to evaluate the 
out-of-sample performance of Pareto optimal solutions effectively. 

• Introducing a new resilience index to find the optimum crisis man
agement budget (CMB) (i.e., the optimum budget of uncertainty), 
offering the maximum resilience level. The proposed resilience index 
concurrently evaluates the operation cost increment, imposed by a 
wildfire, and load shedding ratio. 

1.3. Paper organization 

The rest of this paper is organized as follows. The description of the 
problem and main modeling assumptions are provided in Section 2. In 
Section 3, the deterministic formulation of the proposed model is pre
sented for resilient operation planning in DTR-equipped distribution 
networks during a wildfire spread. In Section 4, first, the non- 
deterministic formulation of the proposed multi-horizon IGDT-based 
model is introduced as a multi-objective optimization problem to 
characterize different uncertainty sources. Subsequently, the ANNC 
method is utilized to solve the proposed multi-objective model and to 
find a set of Pareto optimal solutions for a particular UB value. After
ward, a posteriori out-of-sample analysis is briefly presented to find the 
best solution among the set of Pareto optimal solutions. In Section 5, the 
network resilience assessment is outlined to find the optimum CMB of
fering the maximum resilience level. In Section 6, the proposed deter
ministic and non-deterministic models are tested on a 33-bus 
distribution network under different operation conditions to evaluate 
the performance of the proposed models in enhancing the resilience of 
the network under a wildfire spread. Finally, Section 7 concludes the 
paper. 

2. Problem description and assumptions 

This paper presents a multi-horizon IGDT-based model as a multi- 
objective optimization problem for the distribution network resilient 
operation (DNRO) encountering unexpected forest wildfires. In general, 
a forest wildfire may affect a distribution network through (1) damaging 
the network’s components (caused by a wildfire in direct contact with 
the network) and (2) increasing conductors’ temperature (caused by a 
wildfire nearby and not in direct contact with the network) [10]. The 
wildfire heat can be transferred via convection and radiation [14]. Since 
heat transfer through convection may increase conductors’ temperature 
when the wildfire is directly under overhead lines, this type of heat 
transfer is ignored in this paper, similar to [14]. In summary, the main 
modeling assumptions of this paper are:  

• A radial distribution network is considered. 
• It is assumed that the distribution network is connected to the up

stream network (i.e., the bulk electric network) at the first hour of 
the scheduling horizon. However, the distribution network may be 
disconnected from the upstream network at a later hour due to the 
spread of the wildfire.  

• Only the influence of the wildfire spread on a DTR-equipped line 
connecting the distribution network to the upstream network is 
considered in this paper, similar to [10,14].  

• It is assumed that damaged components of the distribution network 
cannot be repaired, replaced, or restored during the wildfire spread. 
However, PMTs can be rented for increasing the network resiliency 
[23].  

• The wildfire-associated uncertainties are neglected in this paper, 
such as uncertainties of wind speed and wind direction, similar to 
[10,14]. Moreover, in line with previous research works in the 
literature, such as [15,19], characteristic curves of wind turbine 
(WT) units are used to translate uncertainties of wind speed/direc
tion into uncertainties of power generations of WT units.  

• It is assumed that all renewable units are operated at a unity power 
factor [24].  

• The distribution system operator (DSO) is a non-profit organization, 
and all revenues from selling electricity to consumers belong to re
tailers [14]. 

3. Deterministic DNRO model 

In this section, the mathematical formulation of the deterministic 
DNRO (D-DNRO) model is introduced for the resilient operation of a 
DTR-equipped distribution network under the wildfire spread. Also, the 
mathematical formulations for the wildfire spread and the dynamic 
thermal rating for the line connecting the distribution network to the 
upstream network are presented in the Appendix (i.e., Section 8). The D- 
DNRO model, including the objective function (1.a), the economic 
constraints (1.b)-(1.f), and the technical constraints (1.g)-(1.cc), can be 
written as follows: 

minDOC = min(DCCUC + DDCED) (1.a) 

The objective function of the D-DNRO problem in (1.a) includes total 
commitment-related and total dispatch-related costs, denoted by DCCUC 

and DDCED, respectively. 
subject to: 
Commitment-Related Costs: 

DCCUC =
∑NT

t=1

∑NB

i=1

(
suMT

i,t + sdMT
i,t + ruPMT

i

)
(1.b) 
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The commitment-related costs DCCUC in (1.b) consists of total start- 
up and shut-down costs for the MT/PMT units as well as the renting costs 
of PMT units. 

Dispatch-Related Costs: 

DDCED =
∑NT

t=1

∑NB

i=1
voll⋅pShed

i,t +
∑NT

t=1

∑NB

i=1
cMT

i ⋅pMT
i,t +

∑NT

t=1
cUP

t ⋅
(
pUPB

t − pUPS
t

)

(1.c) 

The dispatch-related costs in (1.c) consist of total costs of load 
shedding, total generation costs for the MT/PMT units, and total costs/ 
revenues of buying/selling electrical energy from/to the upstream 
network. Also, without loss of generality, the generation cost of each 
MT/PMT unit is modeled by a linear function [14]. 

Constraints on Commitment-Related Variables of MT/PMT 
Units: 

suMT
i,t ≥ 0, suMT

i,t ≥ cSU
i ⋅
(

uMT
i,t − uMT

i,t− 1

)
; ∀i, ∀t (1.d)  

sdMT
i,t ≥ 0, sdMT

i,t ≥ cSD
i ⋅
(

uMT
i,t− 1 − uMT

i,t

)
; ∀i,∀t (1.e)  

ruPMT
i ≥ 0, ruPMT

i ≥ cPMT
i ⋅

(
uMT

i,t − uMT
i,t− 1

)
; ∀i, ∀t (1.f) 

Constraints (1.d)-(1.f) calculate the start-up, shut-down, and renting 
costs, respectively. 

Constraints on Net Power Injection: 

pUP
t|i=1 + pMT

i,t + pWT
i,t + pPV

i,t + pSTD
i,t − pSTC

i,t − pD
i,t + pShed

i,t = pInject
i,t ; ∀i, ∀t (1.g)  

qUP
t|i=1 + qMT

i,t + qST
i,t − qD

i,t + qShed
i,t = qInject

i,t ; ∀i, ∀t (1.h) 

Constraints (1.g) and (1.h) represent the net active and reactive 
power injection at each bus during the scheduling horizon. It is assumed 
that i = 1 indicates the connection point to the upstream network. 

Constraints on Power Generations of MT, PMT, WT, and PV 
Units: 

pMT
i

⋅uMT
i,t ≤ pMT

i,t ≤ p̄MT
i ⋅uMT

i,t ; ∀i, ∀t (1.i)  

qMT
i

⋅uMT
i,t ≤ qMT

i,t ≤ q̄MT
i ⋅uMT

i,t ; ∀i, ∀t (1.j)  

0 ≤ pWT
i,t ≤ p̄WT

i ; ∀i,∀t (1.k)  

0 ≤ pPV
i,t ≤ pPV

i ; ∀i, ∀t (1.l) 

Constraints (1.i) and (1.j) limit the active and reactive power of the 
MT/PMT units, respectively, while constraints (1.k) and (1.l) limit the 
active power of the WT and photovoltaic (PV) units, respectively. 

Constraints on Line Flows: 

pInject
i,t =

∑NB

h=1

h∕=i

pL
ih,t −

∑NB

j=1

j∕=i

(
pL

ji,t − rij⋅l ji,t

)
+ gi⋅vi,t; ∀i, ∀t (1.m)  

qInject
i,t =

∑NB

h=1

h∕=i

qL
ih,t −

∑NB

j=1

j∕=i

(
qL

ji,t − xij⋅l ji,t

)
+ bi⋅vi,t; ∀i, ∀t (1.n)  

vi,t = vj,t − 2⋅
(

rij⋅pL
ji,t + xij⋅qL

ji,t

)
+
(

r2
ij + x2

ij

)
⋅l ji,t; ∀(i, j), ∀t (1.o)  

|Vi|
2
≤ vi,t ≤ |Vi|

2
; ∀i, ∀t (1.p)  

l ij,t ≥

(
pL

ij,t

)2
+
(

qL
ij,t

)2

vi,t
; ∀(i, j), ∀t (1.q) 

Constraints (1.m) and (1.n) denote the active and reactive power 
balance at each hour of the scheduling horizon. Also, constraint (1.o) 
finds the voltage drop between the connected buses of the distribution 
network, while constraint (1.p) bounds the voltage magnitudes at each 
bus. Constraint (1.q) represents the relationship between the current and 
voltage as well as the active and reactive powers for each line by a 
second-order conic relaxation [25]. 

Constraint on DTR of the Overhead Tie-Line: 

l t|ij=12 ≤ l DTR
t|ij=12; ∀t (1.r) 

Constraint (1.r) denotes the DTR limit for the overhead tie-line, be
tween bus i = 1 and bus j = 2, connecting the distribution network to 
the upstream grid. 

Constraints on Load Shedding: 

0 ≤ pShed
i,t ≤ pD

i,t; ∀i, ∀t (1.s)  

qShed
i,t = pShed

i,t ⋅
qD

i,t

pD
i,t
; ∀i,∀t (1.t) 

Constraint (1.s) bounds the value of load shedding at each bus and 
constraint (1.t) enforces a linear relation between active and reactive 
load shedding. 

Constraints on Charging/Discharging of ESS Units: 

∑NT

t=1

(

ηST
i ⋅pSTC

i,t −
pSTD

i,t

ηST
i

)

= 0; ∀i (1.u)  

EST
i ≤ EST − ini

i +
∑t

τ=1

(

ηST
i ⋅pSTC

i,τ −
pSTD

i,τ

ηST
i

)⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞
EST

i,t

≤ ĒST
i ;∀i, ∀t (1.v)  

0 ≤ pSTC
i,t ≤ p̄STC

i ⋅uST
i,t ; ∀i, ∀t (1.w)  

0 ≤ pSTD
i,t ≤ p̄STD

i ⋅
(

1 − uST
i,t

)
; ∀i,∀t (1.x)  

qST
i

≤ qST
i,t ≤ q̄ST

i ; ∀i, ∀t (1.y) 

Constraint (1.u) ensures that the stored energies of each energy 
storage system (ESS) at the initial and final hours of the scheduling 
horizon are equal. Also, constraint (1.v) limits the maximum and min
imum stored energy of each ESS unit during all scheduling hours. Con
straints (1.w) and (1.x) impose the charging and discharging limits of 
each ESS unit, respectively [26]. Furthermore, constraint (1.y) repre
sents the reactive power limitations of ESS units [14,27]. 

Constraints on Power Exchange with the Upstream Network: 

pUP
t = pUPB

t − pUPS
t ; ∀t (1.z)  

0 ≤ pUPB
t ≤

⃒
⃒sUP

⃒
⃒⋅uUP

t ; ∀t (1.aa)  

0 ≤ pUPS
t ≤

⃒
⃒sUP

⃒
⃒⋅
(
1 − uUP

t

)
; ∀t (1.bb)  

(
pUP

t

)2
+
(
qUP

t

)2
≤
⃒
⃒sUP

⃒
⃒2; ∀t (1.cc) 

Constraint (1.z) calculates the active power exchange with the up
stream network. Constraints (1.aa) and (1.bb) limit the capacity of 
buying/selling active power from/to the upstream network, respectively 
[14]. Also, (1.cc) bounds the apparent power exchange with the up
stream network. The D-DNRO model in (1.a)-(1.cc) as a mixed-integer 
second-order conic programming (MISOCP) problem can be rewritten 
in a compact form as given below: 
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min
X∈ΞD

OF
(

X, Ũ
WT

, Ũ
PV
, Ũ

D
, Ũ

l

)⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞

(2)  

where X refers to the vector of decision variables of the D-DNRO model, 

and ΞD(Ũ
WT

, Ũ
PV
, Ũ

D
, Ũ

l
) denotes the solution space of the D-DNRO 

problem constructed by constraints (1.b)-(1.cc). Note that vectors of 

uncertain parameters (i.e., Ũ
WT

, Ũ
PV

, Ũ
D
, and Ũ

l
) in D-DNRO as the 

deterministic model are fixed to their forecast values (i.e., Ũ
WT

= UWT , 

Ũ
PV

= UPV , Ũ
D
= UD, and Ũ

l
= Ul ). 

4. Robust DNRO model 

In this section, the IGDT-DNRO model is introduced as a multi- 
objective optimization problem to characterize the uncertainties per
taining to power generations of WT and PV units, load demands, and 
DTR of the tie-line connecting the distribution network to the upstream 
network. Then, the ANNC approach is utilized for solving the proposed 
multi-objective IGDT-DNRO formulation. 

4.1. The proposed IGDT-Based resilient operation formulation 

IGDT, as a distribution-free uncertainty-aware optimization model, 
finds optimal solutions immunized against any realization of uncertain 
parameters lying within bounded sets designated as robust regions. In 
general, the IGDT method can be utilized as a risk-averse or a risk-seeker 
framework. The risk-averse/seeker IGDT model employs a pessimistic/ 
optimistic criterion to maximize/minimize unfavorable/favorable de
viations of uncertain parameters from their forecast values [18]. 
Moreover, a single-horizon IGDT model only characterizes one uncer
tain parameter through a robust region while a multi-horizon IGDT 
model concurrently characterizes multiple uncertain parameters 
through multiple robust regions. In summary, the aim of a risk-averse 
strategy is to maximize robust regions of uncertain parameters where 
the objective function of the non-deterministic problem is bounded 
using a specific parameter named budget of uncertainty [28]. The main 
advantages of the IGDT method compared to other uncertainty charac
terization models are (i) needing limited historical data to obtain a 
robust solution and (ii) enforcing a low computational complexity due to 
needing a limited number of auxiliary variables/constraints to charac
terize uncertainties [17,18]. 

In this paper, a risk-averse multi-horizon IGDT strategy is proposed 
to evaluate the resilience of a distribution network considering wildfires 
under worst-case realizations of uncertain parameters. Furthermore, a 
set of different values for the budget of uncertainty is considered to 
evaluate the effect of varying the robustness level of the IGDT model on 
the distribution network resilience level as given below: 

ΩUB = {UBu|UBu = 0.40⋅u}; ∀u = 0, 1, 2, 3,⋯ (3) 

Also, the envelope-bound model is utilized to define robust regions 
characterizing the uncertainties of power generations of WT units (p̃WT

i,t ), 

power generations of PV units (p̃PV
i,t ), load demands (p̃D

i,t), and DTR of the 
tie-line connecting the distribution network to the upstream network 

(l̃
DTR
12,t ) as given below [17]: 

ΓWT
(

p̃WT
i,t , αWT

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p̃WT
i,t :

⃒
⃒
⃒
⃒
⃒
⃒

p̃WT
i,t − pWT

i,t

pWT
i,t

⃒
⃒
⃒
⃒
⃒
⃒
≤ αWT ,

αWT ≥ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

; ∀i, ∀t (4.a)  

ΓPV
(

p̃PV
i,t , αPV

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p̃PV
i,t :

⃒
⃒
⃒
⃒
⃒
⃒

p̃PV
i,t − pPV

i,t

pPV
i,t

⃒
⃒
⃒
⃒
⃒
⃒
≤ αPV ,

αPV ≥ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

; ∀i, ∀t (4.b)  

ΓD
(

p̃D
i,t, αD

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p̃D
i,t :

⃒
⃒
⃒
⃒
⃒
⃒

p̃D
i,t − pD

i,t

pD
i,t

⃒
⃒
⃒
⃒
⃒
⃒
≤ αD,

αD ≥ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

; ∀i, ∀t (4.c)  

Γl

(

l̃
DTR
12,t , αl

)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l̃
DTR
12,t :

⃒
⃒
⃒
⃒
⃒
⃒

l̃
DTR
12,t − l DTR

12,t

l DTR
12,t

⃒
⃒
⃒
⃒
⃒
⃒
≤ αl ,

αl ≥ 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

;∀i, ∀t (4.d)  

where the auxiliary variables αWT , αPV , αD, and αl bound the variation 

intervals of the uncertainties p̃WT
i,t , p̃PV

i,t , p̃D
i,t and l̃

DTR
12,t belonging to the 

robust regions ΓWT , ΓPV , ΓD, and Γl , respectively. According to the IGDT 
concept [29], the robust regions of uncertainties can be obtained by 
solving a risk-averse multi-objective optimization problem as follows: 

max
(
αWT ,αPV ,αD,αl

)
(5.a) 

subject to: 

ROC ≡ max
X,Ũ

WT
,Ũ

PV
,Ũ

D
,Ũ

l
OF

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

X,
Ũ

WT
,

Ũ
PV
,

Ũ
D
,

Ũ
l

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ DOC⋅(1 + UBu) (5.b)  

X ∈ ΞIGDT
(

Ũ
WT

, Ũ
PV
, Ũ

D
, Ũ

l

)

;

Ũ
WT

∈ ΓWT ;

Ũ
PV

∈ ΓPV ;

Ũ
D
∈ ΓD;

Ũ
l
∈ Γl ;

UBu ∈ ΩUB

(5.c) 

The objective function of the IGDT-DNRO problem in (5.a) maxi
mizes the envelope bounds αWT, αPV, αD and αl of the uncertain pa

rameters ̃pWT
i,t , ̃pPV

i,t , ̃pD
i,t and ̃l

DTR
12,t to maximize the solution robustness. Also, 

constraint (5.b) bounds the robust total operation cost (i.e., ROC) by 
means of the deterministic total operation cost (i.e., DOC), obtained 
from solving the D-DNRO problem in (1.a)-(1.cc), and the uncertainty 
budget (i.e., UBu). Moreover, constraint (5.c) presents the feasible space 
of the IGDT-DNRO problem. Since the robust total operation costs can be 
obtained by adopting worst-case realizations for all uncertain parame
ters, constraints (5.b) and (5.c) in the IGDT-DNRO model can be 
rewritten as follows: 

ROC ≡ max
X

OF

⎛

⎜
⎜
⎜
⎜
⎝

X,
UWT ⋅

(
1 − αWT),

UPV ⋅
(
1 − αPV),

UD⋅
(
1 + αD),

Ul ⋅
(
1 − αl

)

⎞

⎟
⎟
⎟
⎟
⎠

≤ DOC⋅(1 + UBu) (6)  

X ∈ ΞD

⎛

⎜
⎜
⎝

UWT ⋅
(
1 − αWT),

UPV ⋅
(
1 − αPV),

UD⋅
(
1 + αD),

Ul ⋅
(
1 − αl

)

⎞

⎟
⎟
⎠; UBu ∈ ΩUB (7) 

Therefore, considering (6) and (7), the extended form of the IGDT- 
DNRO model as a multi-objective optimization problem, including the 
objective function (8.a), the economic constraints (8.b)-(8.e) and (1.d)- 
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(1.f), and technical constraints (8.f)-(8.i), (1.i)-(1.q), and (1.t)-(1.cc), 
can be presented as given below: 

max
(
αWT ,αPV , αD, αl

)
(8.a) 

subject to: 

ROC ≤ DOC⋅(1 + UBu) (8.b)  

ROC = RDCUC +RCCED (8.c)  

RDCUC =
∑NT

t=1

∑NB

i=1

(
suMT

i,t + sdMT
i,t + ruPMT

i

)
(8.d)  

RCCED =
∑NT

t=1

∑NB

i=1
voll⋅pShed

i,t +
∑NT

t=1

∑NB

i=1
cMT

i ⋅pMT
i,t +

∑NT

t=1
cUP

t ⋅
(
pUPB

t − pUPS
t

)

(8.e)  

pUP
t|i=1 + pMT

i,t +
[
pWT

i,t ⋅
(
1 − αWT)

]
+
[
pPV

i,t ⋅
(
1 − αPV)

]
+ pSTD

i,t − pSTC
i,t

−
[
pD

i,t⋅
(
1 + αD)

]
+ pShed

i,t = pInject
i,t ; ∀i,∀t

(8.f)  

qUP
t|i=1 + qMT

i,t + qST
i,t −

[
qD

i,t⋅
(
1 + αD)

]
+ qShed

i,t = qInject
i,t ; ∀i,∀t (8.g)  

l t|ij=12 ≤ l DTR
t|ij=12

(
1 − αl

)
; ∀t (8.h)  

0 ≤ pShed
i,t ≤

[
pD

i,t⋅
(
1 + αD)

]
; ∀i, ∀t (8.i)   

(1.d)-(1.f), (1.i)-(1.q), (1.t)-(1.cc)                                                      (8.j) 

In this paper, the IGDT-DNRO model in (8.a)-(8.j), as a multi- 
objective MISOCP problem, is solved by the ANNC method to obtain 
the Pareto optimal solution, as described in the sequel. 

4.2. Augmented normalized normal constraint method 

The normalized normal constraint (NNC) method is a systematic 
multi-objective optimization method offering uniformly distributed 
Pareto optimal solutions for a multi-objective mathematical program
ming (MOMP) problem by reducing the feasible objective space [28]. In 
this paper, ANNC as the augmented version of the original NNC method 
is utilized. The main advantages of the ANNC method compared to other 
MOMP ones are (i) providing Pareto optimal solutions by dividing the 
objective space into feasible and infeasible spaces [30], (ii) finding non- 
dominated solutions [18], (iii) increasing the accuracy and tractability 
of the MOMP problem [31]. Without loss of generality, it is assumed that 
all objective functions of an MOMP problem should be maximized. Thus, 
an MOMP problem can be written as follows: 

max
ϑ∈ΞMOMP

{F1(ϑ),⋯,Fk(ϑ),⋯,Fm(ϑ) } (9)  

where (9) represents the general form of an MOMP problem. In the 
following, the ANNC method is summarized step by step. 

Step 1: Constructing the anchor points) Find the optimal value of 
the kth objective function as follows: 

Fbst
k

(
ϑbst

k

)
= max

ϑ∈ΞMOMP
{Fk(ϑ) }; ∀k ∈ {1,⋯,m} (10) 

Then, substitute the optimal decision vector ϑbst
k in the other m − 1 

objective functions (i.e., F z
(
ϑbst

k
)
∀z ∈ {1,⋯, k − 1, k+1,⋯,m}) to 

obtain the anchor point of the kth objective function, denoted as APk. 

Step 2: Constructing the payoff matrix) Place all anchor points (i. 
e., APk, ∀k ∈ {1,⋯,m}) in a column array to construct the payoff matrix 
Π, as denoted by (11): 

Π≜

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

AP1
⋮

APk
⋮

APm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F
bst
1

(
ϑbst

1

)
⋯ F k

(
ϑbst

1

)
⋯ F m

(
ϑbst

1

)

⋮ ⋱ ⋮ ⋮ ⋮
F 1
(
ϑbst

k

)
⋯ F

bst
k

(
ϑbst

k

)
⋯ F m

(
ϑbst

k

)

⋮ ⋮ ⋮ ⋱ ⋮
F 1
(
ϑbst

m

)
⋯ F k

(
ϑbst

m

)
⋯ F

bst
m

(
ϑbst

m

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(11) 

Step 3: Normalizing all objective functions of MOMP) All objec
tive functions need to be normalized within the interval [0,1]. For this 
purpose, find the best, i.e., F

bst
k
(
ϑbst

k
)
, and the worst, i.e., F

wst
k
(
ϑbst

k
)
, 

values of the kth column in the payoff matrix. Then, normalize the 
objective functions as follows: 

F
n
k(ϑ) =

F k(ϑ) − F
wst
k

(
ϑbst

k

)

F
bst
k (ϑbst

k ) − F
wst
k (ϑbst

k )
; ∀k ∈ {1,⋯,m} (12) 

Step 4: Generating normalized utopia hyper-plane vectors) 
Connect all anchor points to construct the utopia hyper-plane. Then, 
generate the normalized utopia hyper-plane vectors (Λn

km) as below: 

Λn
km = APn

m − APn
k ; ∀k ∈ {1,⋯,m − 1} (13) 

Step 5: Obtaining the normalized incremental utopia hyper- 
plane vectors) The normalized incremental utopia hyper-plane vec
tors (L n

km) are added to utopia hyper-plane points in the path of each 
utopia hyper-plane vector to obtain the next utopia hyper-plane point. 
Determine each normalized increment utopia hyper-plane vector as 
follows: 

Ln
km =

‖Λn
km‖

Ψkm − 1
; ∀k ∈ {1,⋯,m − 1} (14.a)  

where Ψkm denotes the number of utopia hyper-plane points on Λn
km. 

Then, to uniformly distribute the utopia hyper-plane points on Λn
km, 

relate all values of Ψkm to each other as given below: 

Ψkm =
Ψ1m‖Λn

km‖

‖Λn
1m‖

; ∀k ∈ {1,⋯,m − 1} (14.b) 

Based on (14.b), the number of utopia hyper-plane points related to 
Λn

km depends on its Euclidian norm (i.e., ‖Λn
km‖) and Ψ1m (a pre-specified 

set-point). 
Step 6: Generating utopia hyper-plane points) Calculate the lth 

utopia hyper-plane point (UPl) based on the weighted linear combina
tion of the normalized anchor points as follows: 

UPl =
∑m

k=1
ωlk⋅APn

k (15.a)  

where 

0 ≤ ωlk ≤ 1 (15.b)  

∑m

k=1
ωlk = 1 v(15.c) 

To calculate each UPl, the weighting parameters (i.e., ωlk) need to be 
changed within the interval [0, 1]. In this paper, the MOMP has four 
objectives (i.e., m = 4). Also, it is assumed Ψkm = 5. Therefore, the set of 
ωlk values, according to (15.b) and (15.c), can be obtained as given 
below: 
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Step 7: Producing a Pareto solution for each utopia hyper-plane 
point) Generate a Pareto solution for each UPl through solving the 
following optimization problem: 

max
ϑ∈ΞMOMP

Fm(ϑ) + AF⋅
∑m− 1

k=1

(
ICk

ICm

)

⋅svk (16.a)  

s.t.

〈Fn − UPl,Λn
km〉 + svk = 0;

svk ≥ 0; ∀k ∈ {1,⋯,m − 1}
(16.b) 

Note that the objective function of the ANNC model in (16.a) in
cludes the slack variables (i.e., svk) weighted by importance coefficients 
(i.e., ICk) where ICk denotes the importance coefficient of F k. Thus, ICk/

ICm represents the relative importance coefficient of F k with respect to 
F m. In other words, the ANNC method maximizes a single objective 
function with the slack variables based on the relative importance co
efficients. If the values of the slack variables increase, the dot products 
〈Fn − UPl,Λn

km〉 with negative values in (16.b) take higher absolute 
values, meaning the angles between vector F n − UPl and Λn

km increase. 
The adjusting factor AF in (16.a) is utilized to enhance the flexibility of 
the proposed ANNC method. Also, F

n is a point in the normalized 
objective space. According to (16.b), the feasible space is reduced to a 
subspace enclosed by the normal hyper-planes where each normal 
hyper-plane is perpendicular to a utopia hyper-plane vector. It is note
worthy to mention that the constraints (16.b) are added to the initial 
constraints of the MOMP problem. Thus, ΞMOMP = ΞIGDT including (8.b)- 
(8.j) in addition to the constraints of the objective space in (16.b). 

The MOMP problem of the IGDT-DNRO model presented in (8.a)-(8. 
j) with four objective functions can be solved by the aforementioned 
ANNC method. In this work, a posteriori out-of-sample analysis is pre
sented for determining the best solution among the set of Pareto solu
tions generated by the ANNC method for all allowed values of the budget 
of uncertainty in ΩUB. 

4.3. A posteriori Out-of-Sample analysis 

In this paper, a posteriori out-of-sample analysis including scenarios 
with diverse wildfire severities for the ampacity of the tie-line is un
dertaken to obtain the best solution among the set of Pareto optimal 
solutions for the resilient operation of the distribution network under 
wildfire spread. Evaluation of each Pareto optimal solution (which is 
found by solving the multi-objective IGDT-DNRO model for a specific 
budget of uncertainty) by a posteriori out-of-sample analysis can be 
summarized as below [28]: 

Step 1) Set s = 0 and fix all binary variables to the optimal values 
obtained from solving the IGDT-DNRO problem for a specific 
UBu ∈ ΩUB. Therefore, IGDT-DNRO as an MISOCP problem boils down 
into a second-order conic programming (SOCP) problem. 

Step 2) Identify the total number of scenarios (i.e., NS). Then, define 
NS wildfire severity scenarios. 

Step 3) Solve the SOCP optimization problem of each scenario s to 
obtain its DOC (i.e., DOCs). 

Step 4) If s < NS, return to Step 3. Otherwise, obtain and report 

EOC =

∑NS

s=1
DOCs

NS . 
It is noteworthy to mention that a posteriori out-of-sample analysis 

needs to be run for all Pareto optimal solutions to obtain the best solu
tion offering the minimum expected operation cost (EOC) for each 
specific UBu ∈ ΩUB. 

5. Resilience assessment with optimal crisis management 
budget 

5.1. Proposed resilience index 

There are several indices for resilience assessment of power systems, 
which have been thoroughly reviewed and discussed in [2,32]. In this 
paper, the resilience assessment of a distribution network is investigated 
during a wildfire event. It is a common approach in the literature to 
quantify the resilience of the network based on the amount of loss of 
load under extreme events [2,33]. It is noteworthy to mention that 
different quantities and measures can be considered for evaluating the 
resilience level of the network, such as loss of load, expected operation 
cost, and the maximum DTR level for all lines of the network. The 
maximum DTR level for all lines of the network depends on the 
importance of each line while the importance of lines can change 
dynamically due to continuous changes in loading conditions of the 
network [34]. Furthermore, the maximum DTR level can implicitly 
affect the loss of load and the expected operation cost. Therefore, a new 
resiliency index is proposed in this research work, which concurrently 
considers both loss of load and expected operation cost, encountering a 
wildfire: 

TLu =
∑NT

t=1

∑NB

i=1
pD

i,t⋅
(
1 + αD); ∀u (17.a)  

TLSu =
∑NT

t=1

∑NB

i=1
pShed

i,t ; ∀u (17.b)  

RIu =
TLu

1 + TLSu
×

1
EOCu

; ∀u (17.c)  

where, (17.a) and (17.b) denote the total load and total load shedding 
during the wildfire for member u of ΩUB, respectively. Also, (17.c) 
represents the proposed resiliency index (RI) for member u of ΩUB. As 
depicted in (17.c), the resilience index is calculated using the ratio of the 
total load (i.e., TLu) to the total load shedding (i.e., TLSu) and the inverse 
of the expected operation cost (i.e., EOCu) for member u of ΩUB. The 
number one in the denominator 1+TLSu is to avoid the adverse effects of 
load shedding values close to zero. Based on the proposed resiliency 

(ωl1,ωl2,ωl3,ωl4) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1.00, 0.00, 0.00, 0.00), (0.75, 0.25, 0.00, 0.00), (0.75, 0.00, 0.25, 0.00), (0.75, 0.00, 0.00, 0.25), (0.50, 0.50, 0.00, 0.00),
(0.50, 0.25, 0.25, 0.00), (0.50, 0.25, 0.00, 0.25), (0.50, 0.00, 0.50, 0.00), (0.50, 0.00, 0.25, 0.25), (0.50, 0.00, 0.00, 0.50),
(0.25, 0.75, 0.00, 0.00), (0.25, 0.50, 0.25, 0.00), (0.25, 0.50, 0.00, 0.25), (0.25, 0.25, 0.50, 0.00), (0.25, 0.25, 0.25, 0.25),
(0.25, 0.25, 0.00, 0.50), (0.25, 0.00, 0.75, 0.00), (0.25, 0.00, 0.50, 0.25), (0.25, 0.00, 0.25, 0.50), (0.25, 0.00, 0.00, 1.00),
(0.00, 1.00, 0.00, 0.00), (0.00, 0.75, 0.25, 0.00), (0.00, 0.75, 0.00, 0.25), (0.00, 0.50, 0.50, 0.00), (0.00, 0.50, 0.25, 0.25),
(0.00, 0.50, 0.00, 0.50), (0.00, 0.25, 0.75, 0.00), (0.00, 0.25, 0.50, 0.25), (0.00, 0.25, 0.25, 0.50), (0.00, 0.25, 0.00, 0.75),
(0.00, 0.00, 1.00, 0.00), (0.00, 0.00, 0.75, 0.25), (0.00, 0.00, 0.50, 0.50), (0.00, 0.00, 0.25, 0.75), (0.00, 0.00, 0.00, 1.00)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Fig. 1. Proposed framework for DNRO model.  
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index, a solution with a lower load shedding ratio and lower incremental 
operation cost, encountering wildfire scenarios, will have higher resil
iency. The theoretical range of the proposed resiliency index is [0, + ∞); 
however, its practical range depends on the technical and operational 
characteristics of the distribution network. In this paper, the value of the 
resilience index is used to find the optimal CMB as discussed in the 
sequel. 

5.2. Finding optimal CMB with maximum resilience level 

After the occurrence of catastrophic events, network resources and 
facilities need to be optimally utilized in order to reduce potential 
consequences and recover the initial state as rapidly as possible. In this 
paper, the term CMB refers to a specific budget of uncertainty, as a 
member of the set of allowed values for the budget of uncertainty (i.e., 
UBu ∈ ΩUB), which results in the maximum resilience index. The pro
posed framework for determining the optimal CMB is outlined in Fig. 1. 
According to Fig. 1, the optimal CMB can be determined by means of a 
four-layer framework including: (1) data processing, (2) DNRO model, 
(3) resilience assessment, and (4) optimal CMB determination, where all 
layers consist of 15 steps, indicated by numbers within circles. 

First Layer (Data Processing): In the first layer (steps 1–5), the 
required data can be prepared by utilizing fire data (flame and fuel 
characterization) and weather data (wind data), as discussed in Section 
8.1. Furthermore, DTR data (i.e., the tie-line ampacity) can be prepared 
by utilizing weather data (i.e., wind, solar, and temperature data) as 
well as network data (outside diameter of the line conductors), as dis
cussed in Section 8.2. 

Second Layer (DNRO Model): The second layer (steps 6–12) in
cludes the proposed DNRO framework consisting of D-DNRO and IGDT- 
DNRO models. The input data of these models are network parameters 
as well as DTR data. The D-DNRO model, including the total load 
shedding of the distribution network at each hour of the scheduling 
horizon, is optimized to calculate DOC, as described in Section 3. The 
optimal solution of the D-DNRO model is then utilized by the proposed 
framework to solve the IGDT-DNRO model for a specific UBu ∈ ΩUB, as 
discussed in Section 4.1. The IGDT-DNRO model, as a multi-objective 
optimization problem, is solved using the ANNC method to find a set 
of Pareto optimal solutions for each member of ΩUB, as explained in 
Section 4.2. Additionally, a posteriori out-of-sample analysis is used to 
obtain the best solution among the set of Pareto optimal solutions for the 
IGDT-DNRO model, as presented in Section 4.3. 

Third Layer (Resilience Assessment): In the third layer (step 13), the 
resilience index at the uth iteration (i.e., RIu) is calculated using the ratio 
of total load value to total load shedding value and expected operation 
cost value for member u of ΩUB, as discussed in Section 5.1. 

Fourth Layer (Optimal CMB Determination): In the fourth layer 
(steps 14–15), if all values for the budget of uncertainty are evaluated, 
the optimal budget of uncertainty offering the maximum resilience level 

(RImax) is identified and reported as the optimal CMB (CMB = UBopt). 
Otherwise, the entire procedure needs to be repeated until evaluating all 
values of the budget of uncertainty. 

6. Case study and results 

6.1. Test network and simulation data 

In this study, the proposed D-DNRO and IGDT-DNRO models have 
been tested on the modified 33-bus distribution network under different 
conditions [35]. The MISOCP and SOCP problems have been solved by 
CPLEXD solver in General Algebraic Modeling System (GAMS) [36] on a 
laptop computer with 4096 MB of RAM and Intel® core™ i3 processors 
clocking at 2.3 GHz. The relative optimality criterion for solving the 
MISOCP/SOCP problems is set to 10− 3. Moreover, MATLAB R2008a has 
been used to calculate the DTR of the tie-line connecting the distribution 
network to the main grid. The computation time of the proposed 
resiliency-oriented operational scheduling model outlined in Fig. 1 is 
only about 11 min on average for all case studies reported in the paper, 
which shows low computation burden of the proposed model. In order to 
report applicable and reproducible results, the characteristics of the 
distribution network, wildlife spread, environmental condition, and 
DERs (i.e., numbers, capacities, and prices) are chosen in this paper, 
similar to the previous research works in the literature [14,37], as 
further discussed and clarified below. 

The 33-bus distribution network includes 32 feeders and 32 load 
points [35] as depicted in Fig. 2. The locations of MT, WT, PV, and ESS 
units are shown in this figure. Also, the possible locations for installing 
rented PMT units are indicated by dotted line in this figure. The active 
peak load and the maximum apparent power exchange with the up
stream network are 15.62 МW and 15.50 MVA, respectively [14]. Also, 
it is assumed that the network is operated under a balanced condition. 
The minimum and maximum values of voltage magnitudes are 0.95 and 
1.05p.u., respectively. Moreover, the base apparent power is 100 МVA 
[38]. The characteristics of the DERs and the ESSs are presented in 
Table 2 and Table 3, respectively [14,37]. The profiles of wind and solar 
generations are given in Fig. 3. The energy exchange price [39], MT/ 

Fig. 2. Single line diagram of the 33-bus distribution network against forest wildfire.  

Table 2 
Location and parameters of DERs [37].  

Type of DERs Bus pi,t(MW) pi,t(MW) qi,t(MVAr) qi,t(MVAr)

MTs 8/13/16/25 3 0.21 2.1 − 2.1 
PMTs 9/12/17/24 2.5 0.20 2 − 2 
WTs 14/16/31 0.8 0 – – 
PV 11 0.5 0 – – 
ESSs 19/26 0.5 0 0.3 − 0.3  

M. Izadi et al.                                                                                                                                                                                                                                   



Applied Energy 334 (2023) 120536

12

PMT generation cost [28], PMT renting cost [40], MT/PMT startup/ 
shutdown cost and voll [41] are given in Table 4. In this paper, data sets 
of a summer day are considered to more realistically characterize the 
propagation of a wildfire. Moreover, the hourly profiles of energy ex
change price with the upstream network [39], wind speed [42], wind 
direction [14], solar radiation [14], ambient temperature [7], and load 
factor [38] are presented in Table 5. The parameters used for modeling 
the wildfire [12,14] and the DTR [11,43] are presented in Table 6 and 
Table 7, respectively. In this study, the conductor type of the tie-line 
connecting the distribution network to the main grid is aluminum 
conductor steel-reinforced (ACSR) [43]. It is assumed that a sudden 
forest wildfire affects the tie-line connecting the distribution network to 
the main grid (i.e., the tie-line between buses 1 and 2, indicated by red 
dashed line in Fig. 2) during the scheduling day. In this study, the initial 
distance between the wildfire and the tie-line is rf

12,1 = 1000 m. 
The lost heat by convection, the lost heat by radiation, and the 

absorbed heat by solar radiation for the tie-line can be calculated as 
outlined in the first layer of Fig. 1 (i.e., the data processing layer). Its 
results are illustrated in Fig. 4. It can be observed that the convection 
heat loss has the major effect on the conductor’s heat due to high wind 
speed values during the scheduling horizon. Moreover, the convection 
heat loss increases significantly between hours 7:00–8:00 and between 
hours 17:00–20:00 because of substantial changes in the wind direction 

(Table 5). Furthermore, the radiative heat loss is negligible due to a very 
low difference between the ambient and conductor temperatures. Be
sides, the absorbed heat by solar radiation in the middle of the day is 
proportional to the amount of solar radiation (Table 5), which is more 
than other hours of around the clock. In Fig. 5, the distance between the 
tie-line and the wildfire and the conductor’s absorbed heat rate from the 
wildfire are illustrated. The wildfire approaches the tie-line until hour 
21:00, which results in the disconnection of the distribution network 
from the main grid at this hour. It is observed that the conductor’s 
absorbed heat rate from the wildfire increases significantly when the 
distance of the wildfire from the tie-line becomes less than 200 m. 

Table 3 
Parameters of ESSs [14,37].  

Parameters Value 

pSTC/STD(MW) 0.5 

qST(MVAr) 0.3 
qST(MVAr) − 0.3 

ηST
i 0.9 

EST
i (MWh) 1.5 

EST
i (MWh) 0 

EST− ini
i (MWh) 30%× EST

i  

Fig. 3. Wind generations at buses 14, 16 & 31 and solar generation at bus 11.  

Table 4 
Price parameters.  

Prices Value(s) Refs 

cUP
t Table 5 [39] 

cMT
i 72 ($/MWh)

[28] 
cPMT

i 4000 ($)
[40] 

cSU
i /cSD

i 150/15 ($)
[41] 

voll 1000 ($/MWh)

Table 5 
Hourly data.  

Hour cUP
t ($/MWh) wt(m/s) φw

ij,t(rad) φS
t (W/m2) Ta

t (◦C) Load 
Factor 

01:00  15.03  7.11  0.05 0  32.9  0.64 
02:00  10.97  7.23  0.17 0  32.1  0.60 
03:00  13.51  6.84  0.20 0  30.8  0.58 
04:00  15.36  7.08  0.13 0  31.1  0.56 
05:00  18.51  6.79  − 0.10 0  30.9  0.56 
06:00  21.80  6.68  − 0.20 30  31.2  0.58 
07:00  17.30  6.66  − 0.87 130  32.9  0.64 
08:00  22.83  6.74  0.30 320  34.3  0.76 
09:00  21.84  6.68  0.50 540  35.8  0.87 
10:00  27.09  6.92  0.60 730  37.6  0.95 
11:00  37.06  6.80  0.40 870  39.0  0.99 
12:00  68.95  7.23  0.09 930  39.6  1.00 
13:00  65.79  7.08  − 0.13 920  39.3  0.99 
14:00  66.57  6.86  − 0.39 840  39.8  1.00 
15:00  65.44  7.22  − 0.27 690  39.8  1.00 
16:00  79.79  7.56  − 0.33 500  40.1  0.97 
17:00  115.45  7.65  − 0.33 290  39.7  0.96 
18:00  110.28  6.90  − 0.12 120  39.1  0.96 
19:00  96.05  7.11  0.07 20  36.2  0.93 
20:00  90.53  7.44  0.20 0  35.6  0.92 
21:00  77.38  6.78  0.13 0  34.7  0.92 
22:00  70.95  6.75  0.10 0  33.6  0.93 
23:00  59.42  6.72  0.13 0  33.1  0.87 
24:00  56.68  7.05  0.15 0  33.0  0.72  

Table 6 
Data used for wildfire modeling [12,14].  

Parameter Value 

τ 1 
εf 0.5 
B 5.6704× 10− 8(W/m2K4)

Tf 1200 (◦K) 
Lf 10 (m) 
γf 20 (◦) 
kf 0.07 (kg/m3)

ρb 40 (kg/m3)

Table 7 
Data used for DTR modeling.  

Parameter Value Refs 

THigh 75 (◦C) 
[43] 

TLow 25 (◦C) 
R12
(
THigh) 8.688× 10− 5(Ω/m)

R12
(
TLow) 7.283× 10− 5(Ω/m)

ka 0.02945 (W/m◦ C) 
ρa 1.029 (kg/m3)

μa 2.043× 10− 5(kg/(m⋅s))
ε 0.5 
D12 28.1 (mm)

mCp 534 (J/m◦ C)
kc

12 0.5 
[11]  
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6.2. DNRO model against approaching forest wildfire 

In this section, the D-DNRO and IGDT-DNRO models are utilized to 
optimize the operation of the distribution network under normal and 
abnormal conditions. In the IGDT-DNRO model, as a multi-objective 
optimization problem, five division points are considered on each 
normalized utopia hyper-plane vector for a specific UB. Each of these 
vectors connects a pair of four anchor points pertaining to the envelope 
bounds (i.e., αWT, αPV , αD and αl ) of the four robust regions (i.e., p̃WT

i,t , 

p̃PV
i,t , p̃D

i,t, and l̃
DTR
12,t ). Therefore, 35 Pareto optimal solutions correspond

ing to 35 utopia hyper-plane points are produced using the procedure 
presented in (15.a)-(15.c). Furthermore, it is assumed that αWT ≤ 1, 
αPV ≤ 1, αD ≤ 0.5, and αl ≤ 1 to avoid extremely impractical deviations 
from forecast values of the uncertain parameters; αWT , αPV , and αl 

cannot be more than 1 because negative values for wind power, solar 
power and tie-line’s DTR are not practical; also, αD cannot be more than 
0.5 because more than 50 % load forecast error is not reasonable. In the 
ANNC method, the adjusting factor is considered as AF ≤ 1 [31], and the 
importance coefficients are IC1 = IC2 = IC3 = 0.2 and IC4 = 0.4. It is 
noteworthy to mention that a higher weight is considered for the 
ampacity of the tie-line because the uncertainty of the ampacity of the 

tie-line has a higher impact on the resilience of the system as compared 
to other uncertain parameters due to directly limiting a significant 
volume of the power exchange with the upstream network. 

6.2.1. D-DNRO model 
To evaluate the impact of the wildfire on the optimal operation of the 

distribution network, two different cases are considered as given below: 
Case I: optimal operation of the distribution network by solving the 

D-DNRO model under the normal condition without any wildfire. 
Case II: optimal operation of the distribution network by solving the 

D-DNRO model under the abnormal condition with the spread of the 
wildfire. 

The ampacity of the tie-line at each hour in both Case I and Case II is 
depicted in Fig. 6. In Case I, the convection heat loss dominates the solar 
absorbed heat. Therefore, the ampacity is increased/decreased based on 
increasing/decreasing variations of the convection heat loss. In Case II, 
the ampacity is decreased at most of the scheduling hours as the wildfire 
is approaching the tie-line, and the heat absorbed from the wildfire is 
increasing. It is noteworthy to mention that the ampacity is increased 
significantly between hours 7:00–8:00 because the heat lost by con
vection is increased extensively, as depicted in Fig. 4. The ampacity 
becomes zero at hour 13:00. In hours 13:00–20:00, the absorbed heat 

Fig. 4. Heat curves for tie-line.  

Fig. 5. Wildfire progressing.  Fig. 6. Tie-line’s ampacity in Case I and Case II.  
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rate (the heat absorbed from the solar irradiance and wildfire spread) is 
more than the lost heat rate (lost heat from convection and radiation). 
Finally, the wildfire disconnects the distribution network from the main 
grid at hour 21:00. 

The total active power generation and consumption at each hour in 
Case I and Case II are given in Fig. 7 and Fig. 8, respectively. According 
to Fig. 7 and Fig. 8, the total active power generation includes the active 
power generation of MT/PMT units, the active power received from the 
upstream network, the active power generation of WT units, the active 
power generation of PV units, and the active power discharge of ESS 
units. Also, load shedding is indicated in red in Fig. 7 and Fig. 8. 
Furthermore, the total active power consumption includes the active 
load of the distribution network, the active power charge of ESS units, 
and the active power loss of the distribution network. 

The power generation of the PMT units is zero in both Case I and II 
due to their high renting cost. The power generation of the MT units is 
increased in Case I and Case II when the price of power purchase from 
the main grid is higher than the marginal costs of the MT units or when 
the ampacity of the tie-line is zero. It is observed that the power pur
chase from the main grid in Case I and Case II is approximately similar 
during hours 0:00–12:00. In Case I, the ampacity of the tie-line, and 
consequently, the power received from the main grid is zero at hour 
14:00. However, in Case I, during hours 16:00–21:00, the power pur
chased from the upstream network is approximately zero as the price of 
power purchase from the main grid is higher than the marginal cost of 
the MT units in these hours. Finally, during hours 22:00–24:00, the 
power received from the main grid is increasing because the ampacity of 
the tie-line and the electricity price of the main grid are increasing and 
decreasing, respectively. In Case II, during hours 13:00–24:00, the 
power exchange with the main grid is zero because the tie-line ampacity 

becomes zero. According to Fig. 7 and Fig. 8, the hourly power gener
ation profiles for WT and PV units are identical in Case I and Case II. 
Furthermore, the hourly charging and discharging profiles for ESS units 
are relatively similar in Case I and Case II. It is observed that when the 
electricity price of the main grid is lower than the marginal cost of the 
MT units and the tie-line ampacity is not zero, the ESS units are operated 
in charging mode; otherwise, they are operated in discharging mode as 
depicted in Fig. 7 and Fig. 8. It is noteworthy to mention that the 
ampacity of the tie-line changes within a wide range even in Case I 
without any wildfire as illustrated in Fig. 6. In other words, it is assumed 
that the distribution network is under tension due to a high temperature 
in the summer day and specifically at hour 14:00 [7]. Hence, there is 
load shedding in both Case I and Case II due to inadequate capacity in 
the distribution network to supply the load. However, the amount of 
load shedding in Case II is significantly higher than that in Case I as the 
wildfire in Case II seriously impacts the tie-line ampacity in the second 
half of the day. Since the distribution network is connected to the up
stream grid and the ampacity of tie-line is approximately similar in Case 
I and Case II until hour 12:00, as depicted in Fig. 6, there is not any load 
shedding in Case I and Case II until hour 12:00 as shown in Fig. 7 and 
Fig. 8. After hour 12:00, in Case I, there is load shedding only at hour 
14:00 as the tie-line ampacity becomes zero at this hour. On the con
trary, after hour 12:00 and until hour 24:00 there is load shedding in 
Case II as a result of zero tie-line ampacity. There is no load shedding in 
Case II only at hour 24:00 as a consequence of decreasing the network’s 
load at this hour. 

Table 8 reports the total cost, the generation cost, the unit commit
ment cost, the cost of power purchase from the main network, the load 
shedding cost, and the total load shedding in Case I and Case II. Since the 
ampacity of the tie-line is zero in Case II at hours 13:00–24:00, the total 

Fig. 7. Total active power at each hour in Case I.  

Fig. 8. Total active power at each hour in Case II.  
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cost, generation cost, total load shedding and load shedding cost in Case 
II are higher than those in Case I, as given in Table 8. Moreover, the cost 
of power purchase from the main grid in Case I is higher than that in 
Case II as the ampacity of tie-line in Case I is higher than that in Case II 
considering more tie-line disconnection hours in Case II. Additionally, it 
is observed that the unit commitment cost is identical in Case I and Case 
II as it is cost-effective to run the MT units to supply consumers’ demand 
under the low ampacity of the tie-line and also the low capacity of WT/ 
PV units. The large difference between the total costs in Case I and Case 
II illustrates the importance of the distribution network resilient 
operation. 

6.2.2. IGDT-DNRO model 
To evaluate the proposed IGDT-DNRO model, Case III is considered, 

which is similar to Case II. The proposed IGDT-DNRO model is solved for 
various values of UB where 35 different Pareto optimal solutions are 
obtained for every UB value. Although the upper bound of the operation 
costs for all Pareto optimal solutions are identical for a specific UB value, 
their envelope bounds are different. Hence, a posteriori out-of-sample 
analysis, including five scenarios with different wildfire severities for 
the ampacity of the tie-line, is utilized to obtain the most resilient 
operation plan, owning the maximum RI value, among the 35 Pareto 
optimal solutions of a specific UB. The ampacity of the tie-line inversely 
affects the load shedding. In other words, the lower/higher the ampacity 
of the tie-line, the higher/lower the load shedding, and consequently, 
the lower/higher the resilience index. In addition, wildfire severity 
directly impacts line ampacities because the wildfire heat can be 
transferred via radiation to lines and increase their conductors’ tem
peratures [14]. Fig. 5 and Fig. 6 show how the absorbed heat from 
wildfire can decrease the tie-line ampacity and even disconnect the tie- 
line. For these reasons, different tie-line ampacities are used in this 
paper to define wildfire severity levels. Therefore, in these five wildfire 
scenarios, denoted as low, medium–low, medium, medium–high, and 
high, the tie-line’s ampacity is considered as 1.20, 1.10, 1.00, 0.90, and 
0.80 times of the tie-line ampacity in Case II in Fig. 6, respectively [10]. 
The best resilient plans for UB = 0.00 to UB = 2.00 are given in Table 9. 

According to Table 9, it can be concluded that:  

• The value of ROC is increased by increasing UB from 0.00 to 2.00 
where ROC refers to the worst-case total cost. Note that ROC can 
adopt higher values by increasing UB as ROC ≤ (1+ UB)⋅DOC. 
Moreover, more immunizations against different realizations of un
certain parameters are provided by increasing UB due to obtaining 
higher values for envelope bounds offering wider robust regions. In 
other words, by increasing UB, higher robustness is provided at the 
expense of higher ROC. Similarly, EOC increases by increasing UB. It 

is worthwhile to note that the results of the proposed IGDT-DNRO 
model for UB = 0.00 in Case III are the same results of the pro
posed D-DNRO model in Case II, since ROC = (1 + UB)⋅DOC = (1 +

0)⋅DOC = DOC.  
• The generation and commitment costs of MT/PMT units are 

increased by increasing UB due to two reasons. First, αWT, αPV , and αl 

are increased, and consequently, the wind and solar power genera
tions and power purchased from the main grid are decreased. Sec
ond, αD is increased, and therefore, the load of the distribution 
network is increased. Thus, for compensating the decreased renew
able generation/power purchase and the increased load, the power 
generations of MT/PMT units, and thus their associated generation 
and commitment costs, are increased.  

• The cost of power purchased from the upstream network is decreased 
by increasing UB, since αl is increased, and thus, the ampacity of the 
tie-line is decreased.  

• By increasing UB, the load shedding cost is first decreased (from 
UB = 0.00 to UB = 1.20), then is remained approximately constant 
(from UB = 1.20 to UB = 1.60), and subsequently is increased (from 
UB = 1.60 to UB = 2.00). By increasing UB, although load may be 
increased due to increasing αD, the IGDT-DNRO model can rent and 
employ PMT units to supply the additional load and decrease the 
load shedding. Thus, by increasing UB from 0.00 to 1.60, as shown in 
Table 9, the rented PMT units are increased and thus the load 
shedding cost decreases to about zero (from UB = 0.00 to UB =

1.20) and remains about zero (from UB = 1.20 to UB = 1.60). 
However, by further increasing UB from 1.60, the load shedding cost 
increases as there is no further PMT unit to be rented.  

• While αWT , αPV , αD, and αl increase by increasing UB, they have 
different rates of increase in Table 9. It is due to the fact that the 
capacity of WT and PV units are significantly lower than the distri
bution network load and the tie-line rating in this test system. Thus, 
the increase rates of αWT and αPV are higher than the increase rates of 
αD and αl as a specific change in terms of MW leads to a higher 
percentage change in the wind and solar powers compared to the 
percentage change in the load and tie-line rating. For instance, 
Table 9 shows that by increasing UB from 0.00 to 0.40, αWT and αPV 

increase by 85 % and 100 %, while αD and αl increase by 2 % and 10 
%. In addition, in the numerical experiment of Table 9, the maximum 
value of UB is selected 2 as in this UB value all envelope bounds 
approximately reach their maximum limits.  

• If only the loss of load is considered as the resiliency index, UB =

1.60, indicated in yellow color in Table 9, leads to the most resilient 
operation plan as it has the highest ratio of the total load to the total 
load shedding (or equivalently, the minimum ratio of the total load 

Table 8 
Costs and total load shedding in Case I and Case II.  

Case DOC ($) Generation Cost ($) Commitment Cost ($) Power Purchase Cost ($) Load Shedding Cost ($) Total Load Shedding (MW) 

I  14225.96  8211.13  600.00  5018.51  396.32  0.40 
II  18266.42  14106.02  600.00  1198.07  2362.33  2.36  

Table 9 
Costs, PMT buses, robust regions, and resiliency index in Case III.  
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shedding to the total load). However, using the proposed resiliency 
index, which concurrently considers the impacts of both expected 
operation cost and load shedding ratio, UB = 1.20, indicated in 
green color in Table 9, results in the most resilient operation plan. 
Thus, UBopt = CMB = 1.20 in this test case. Also, it is seen that the 
resiliency index of the most resilient operation plan (i.e., RImax =

RI1.2 = 10.73) is significantly higher than the resiliency index of the 
deterministic model operation plan (i.e., RI0 = 4.92), which further 
indicates the effectiveness of the proposed IGDT-DNRO model.  

• According to the discussion of the previous point, using the proposed 
a posteriori out-of-sample analysis, the most resilient operation plan 
can be determined based on the preferences of the distribution sys
tem operator. 

To further investigate the performance of the IGDT-DNRO model 
with the most resilient operational schedule (i.e., Case III with UBopt =

1.20 in Table 9) as compared to the D-DNRO model (i.e., Case II with 
UB = 0.00 in Table 8), the total active power generation and con
sumption at each hour in Case III are presented in Fig. 9. Based on Fig. 8 
and Fig. 9, it can be observed that:  

• The total load of the network in Case III is increased by about 30 % as 
compared to Case II because of a non-zero value for the robust region 
of the load demand in the IGDT-DNRO model, i.e., αD = 0.30.  

• The power generation of MT/PMT units in Case III is significantly 
higher than that in Case II. In contrast to Case II, the power gener
ation of the PMT units is non-zero in Case III because of the increased 
load demand of the network and the decreased ampacity of the tie- 
line connecting the distribution network to the main grid. Howev
er, similar to Case II, the power generation of the MT/PMT units in 
Case III is increased when the price of power purchased from the 
main grid is higher than the marginal costs of the MT/PMT units or 
when the ampacity of the tie-line is zero.  

• The power purchase from the main grid in Case III is significantly 
decreased as compared to Case II because of the non-zero value of the 
robust region of the tie-line connecting the distribution network to 
the main grid during hours 0:00–12:00, i.e., αl = 0.50.  

• In contrast to Case II, the power generation of WT and PV units in 
Case III is zero because of non-zero values for their robust regions, i. 
e., αWT = 1.00 and αPV = 1.00.  

• The charging and discharging of ESS units in Case III are less than in 
Case II. The main reasons are: (i) the ampacity of the tie-line, and 
consequently, the power purchased from the main grid is decreased 
during hours 0:00–12:00, and (ii) the total load of the network is 
increased by about 30 %, and consequently, the MT/PMT units are in 
operation during these hours despite the electricity price of the up
stream network is lower than the marginal cost of the MT/PMT units.  

• Despite the total load of the network in Case III is higher than in Case 
II, the load shedding in Case III is less than that in Case II. In other 
words, the load shedding in Case III is about zero because of utiliz
ing/renting MT/PMT units. 

In addition to comparing the total active power generation and 
consumption at each hour for both the D-DNRO and IGDT-DNRO models 
in Case II (Fig. 8) and Case III (Fig. 9), respectively, the nodal load 
shedding and the nodal voltage profile for two selected buses (i.e., 30 
and 32) in Case II and Case III for UBopt = 1.20 are depicted in Fig. 10 
and Fig. 11 to further compare the performance of the D-DNRO and 
IGDT-DNRO models. While the amount of load shedding at bus 30 (blue 
color) and bus 32 (gray color) is non-zero for several hours in Case II (i. 
e., 13:00–22:00), as shown in Fig. 10, there is no load shedding at those 
buses in Case III for UBopt = 1.20 because the power generation of MT/ 
PMT units in Case III is substantially higher than that in Case II. 

Fig. 9. Total active power at each hour in Case III (UBopt = 1.20).  

Fig. 10. The amount of load shedding for buses 30 and 32 in Case II and Case 
III (UBopt = 1.20). 

Fig. 11. The voltage profiles for buses 30 and 32 in Case II and Case III 
(UBopt = 1.20). 
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Furthermore, as depicted in Fig. 11, the nodal voltage profiles at buses 
30 and 32 in Case III for UBopt = 1.20 (blue and red solid lines, respec
tively) are higher than those in Case II (blue and red dashed lines, 
respectively) because there is more local generation in Case III as 
compared to Case II. 

In summary, it can be concluded that the main benefits of the IGDT- 
DNRO model with the most resilient operational schedule (UBopt =

1.20) are related to a significantly lower amount of load shedding as 
compared to the D-DNRO model while the operation conditions in Case 
III are worse than those in Case II, i.e., the power generation of WT and 
PV units are zero, the total load of the network is increased by 30 %, and 
the ampacity of the tie-line connecting the distribution network to the 
main grid is decreased by 50 % in Case III as compared to Case II. 
Furthermore, the higher voltage profiles in Case III (UBopt = 1.20) as 
compared to those in Case II are the other evidence for the superiority of 
the proposed IGDT-DNRO model over the D-DNRO model. 

7. Conclusion 

This paper presents a robust model (IGDT-DNRO) for enhancing the 
resilience of distribution network operation under the spread of a 
wildfire as a disastrous event. The influence of the fire heat on the 
performance of the tie-line connecting the distribution network to the 
main grid is modeled. The resilient operation is achieved by maximizing 
the robust region of each uncertain parameter for a particular UB value. 
Therefore, the proposed IGDT-DNRO model is presented as a multi- 
objective optimization problem and solved by the ANNC approach. A 
posteriori out-of-sample analysis is utilized to obtain the most resilient 
operation plan among a set of Pareto optimal solutions generated by the 
ANNC approach. The proposed IGDT-DNRO model and its solution 
method have been tested on the modified 33-bus distribution system. 
The results demonstrate that the proposed IGDT-DNRO model can 
enhance the operational resiliency against wildfire by finding robust 
solutions with different immunization levels against the uncertainty 
sources. Furthermore, the crisis management budget, as the optimum 
value of the uncertainty budget, has been obtained by maximizing the 
distribution network resiliency index. 

In summary, it can be concluded:  

• The proposed RI index can evaluate the actual performance of the 
network during the spread of the wildfire.  

• The proposed IGDT-DNRO model can determine optimum CMB with 
maximum RI by reducing the nodal load shedding and enhancing the 
nodal voltage profiles under the worst-case condition. 

• Using a posteriori out-of-sample analysis, the most resilient opera
tion plan can be obtained based on the preference of the distribution 
system operator.  

• The proposed D-DNRO and IGDT-DNRO models enforce a reasonable 
computational burden for resilient operational scheduling in distri
bution networks, which makes these models appropriate for practical 
applications. 

Future research will be focused on extending the proposed resiliency- 
oriented scheduling framework to (1) include uncertainties of wind 
speed and wind direction explicitly and (2) incorporate the overall 
system DTR level in the resiliency index under different loading 
conditions. 
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8. Appendix 

In this section, the mathematical models with technical constraints for the wildfire spread and the dynamic thermal rating of the line connecting 
the distribution network to the upstream network are presented in Sections 8.1 and 8.2, respectively. 

8.1. Wildfire formulation 

The mathematical formulation of the wildfire spread as a function of different environmental parameters is given below [44]: 

Vf
t =

kf (1 + wt)

ρb ; ∀t (18.a)  

rf
ij,t = rf

ij,t− 1 −
(

Vf
t ⋅Δt⋅3600⋅cosφw

ij,t

)
; ∀(i, j),∀t (18.b)  

where (18.a) represents the speed of fire spread and (18.b) denotes the distance of fire from the line. 

δf
ij,t = tan− 1

(
Lf ⋅cosγf

rf
ij,t −

(
Lf sinγf

)

)

; ∀(i, j),∀t (18.c)  

φf
ij,t =

τ⋅εf ⋅B⋅Tf 4

2
sinδf

ij,t; ∀(i, j), ∀t (18.d) 

Also, (18.c) denotes the angle of view between the flame and the conductor and (18.d) represents the radiative heat flux emitted from the fire. It is 
worthwhile to mention that the simplified heat flux model in [44] is used in this paper to characterize the wildfire spread. In summary, φf

ij,t in (18.d) 

can be calculated by finding Vf
t in (18.a), rf

ij,t in (18.b), and δf
ij,t in (18.c) at each hour of the scheduling horizon one after another. In the sequel, φf

ij,t is 
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used to calculate the amount of absorbed heat corresponding to the radiative heat flux emitted from the fire (i.e., qf
ij,t), and consequently, to obtain the 

amount of DTR at each hour of the scheduling horizon. 
8.2. Dynamic thermal rating formulation 

The mathematical formulation of the DTR of the line connecting the distribution network to the upstream network during the spread of the wildfire 
can be described by the following equations [14,43]: 

KAngle
ij,t = 1.194 − cos

(
φw

ij,t

)
+ 0.194cos

(
2φw

ij,t

)
+ 0.368sin

(
2φw

ij,t

)
; ∀(i, j), ∀t (19.a)  

NRe
ij,t =

Dij⋅ρa⋅wt

μa ; ∀(i, j),∀t (19.b) 

The wind direction factor and the Reynolds number for the forced convection are presented by (19.a) and (19.b), respectively [43]. 

qc
ij,t = KAngle

ij,t ⋅0.754⋅
(

NRe
ij,t

)0.6
⋅ka⋅
(
Tij,t − Ta

t

)
; ∀(i, j), ∀t (19.c)  

qr
ij,t = 17.8Dij⋅ε⋅

[(
Tij,t + 273

100

)4

−

(
Ta

t + 273
100

)4
]

; ∀(i, j), ∀t (19.d) 

The amount of lost heat caused by convection and radiation are described by (19.c) and (19.d), respectively. Note that the natural convention is 
excluded for non-zero wind speeds in this paper, and only the forced convention is included for high wind speeds in (19.c). 

qs
ij,t = kc

ij⋅Dij⋅φs
ij,t; ∀(i, j),∀t (19.e)  

qf
ij,t = Dij⋅φf

ij,t; ∀(i, j),∀t (19.f) 

The amount of absorbed heat caused by solar radiation and radiative heat flux emitted from the fire are calculated by (19.e) and (19.f), respec
tively. It is noteworthy to mention that φf

ij,t in (19.f) can be calculated by equation (18.d), as discussed in Section 8.1. 

Rij,t
(
Tij,t
)
=

[
Rij
(
THigh

)
− Rij

(
TLow

)

THigh − TLow

]

⋅
(
Tij,t − TLow)+ Rij

(
TLow); ∀(i, j),∀t (19.g)  

IDTR
ij,t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
qc

ij,t + qr
ij,t − qs

ij,t − qf
ij,t

Rij,t
(
Tij,t
)

√

; ∀(i, j),∀t (19.h)  

Tij,t+1 − Tij,t =
Δt × 3600

mCp

[
Rij,t
(
Tij,t
)
⋅I2

ij,t + qs
ij,t + qf

ij,t − qc
ij,t − qr

ij,t

]
; ∀(i, j), ∀t (19.i) 

The resistance of the conductor as a function of the temperature is given by (19.g). The maximum DTR of the tie-line at each hour is expressed by 
(19.h). It is worthwhile to mention that the distribution network will be operated in islanded mode if the maximum DTR of the tie-line is equal to zero. 
Also, the maximum DTR of the tie-line can be calculated after obtaining the values of qc

ij,t, qr
ij,t, qs

ij,t, q
f
ij,t, and Rij,t

(
Tij,t
)

by equations (19.a)-(19.c), (19.d), 
(19.e), (19.f), and (19.g), respectively. Since the conductor temperature is needed to calculate the maximum DTR of the tie-line for the next hour of the 
study period, it can be obtained by (19.i) [14]. 

References 

[1] Abedi A, Gaudard L, Romerio F. Review of major approaches to analyze 
vulnerability in power system. Reliab Eng Syst Saf 2019;183:153–72. 

[2] Izadi M, Hosseinian SH, Dehghan S, Fakharian A, Amjady N. A critical review on 
definitions, indices, and uncertainty characterization in resiliency-oriented 
operation of power systems. Int Trans Electrical Energy Systems 2021;31:e12680. 

[3] Jufri FH, Widiputra V, Jung J. State-of-the-art review on power grid resilience to 
extreme weather events: definitions, frameworks, quantitative assessment 
methodologies, and enhancement strategies. Appl Energy 2019;239:1049–65. 

[4] Panteli M, Mancarella P. The grid: Stronger, bigger, smarter?: Presenting a 
conceptual framework of power system resilience. IEEE Power Energ Mag 2015;13 
(3):58–66. 

[5] Panteli M, Trakas DN, Mancarella P, Hatziargyriou ND. Power systems resilience 
assessment: hardening and smart operational enhancement strategies. Proc IEEE 
2017;105(7):1202–13. 

[6] Zhang P, Ban Y, Nascetti A. Learning U-Net without forgetting for near real-time 
wildfire monitoring by the fusion of SAR and optical time series. Remote Sens 
Environ 2021;261. 

[7] Guo Y, Chen R, Shi J, Wan J, Yi H, Zhong J. Determination of the power 
transmission line ageing failure probability due to the impact of forest fire. IET 
Gener Transm Distrib 2018;12(16):3812–9. 

[8] Bagchi A, Sprintson A, Singh C. Modeling the impact of fire spread on an electrical 
distribution network. Electr Pow Syst Res 2013;100:15–24. 

[9] A, Bagchi, A, Sprintson, S, Guikema, E, Bristow, K, Brumbelow, Modeling 
performance of interdependent power and water networks during urban fire 
events. 2010 48th Annual Allerton Conference on Communication, Control, and 
Computing (Allerton). Monticello, IL, USA: IEEE; 2010. p. 1637-44. 

[10] Ansari B, Mohagheghi S. Optimal energy dispatch of the power distribution 
network during the course of a progressing wildfire. Int Trans Electrical Energy 
Syst 2015;25(12):3422–38. 

[11] Mohagheghi S, Rebennack S. Optimal resilient power grid operation during the 
course of a progressing wildfire. Int J Electr Power Energy Syst 2015;73:843–52. 

[12] Choobineh M, Ansari B, Mohagheghi S. Vulnerability assessment of the power grid 
against progressing wildfires. Fire Saf J 2015;73:20–8. 

[13] M, Choobineh, S, Mohagheghi, Power grid vulnerability assessment against 
wildfires using probabilistic progression estimation model. 2016 IEEE Power and 
Energy Society General Meeting (PESGM). Boston, MA, USA: IEEE; 2016. p. 1-5. 

[14] Trakas DN, Hatziargyriou ND. Optimal distribution system operation for enhancing 
resilience against wildfires. IEEE Trans Power Syst 2017;33:2260–71. 

[15] Amjady N, Attarha A, Dehghan S, Conejo AJ. Adaptive robust expansion planning 
for a distribution network with DERs. IEEE Trans Power Syst 2018;33(2): 
1698–715. 

[16] Ehsan A, Yang Q. State-of-the-art techniques for modelling of uncertainties in 
active distribution network planning: a review. Appl Energy 2019;239:1509–23. 

[17] Dehghan S, Kazemi A, Amjady N. Multi-objective robust transmission expansion 
planning using information-gap decision theory and augmented ε-constraint 
method. IET Gener Transm Distrib 2014;8(5):828–40. 

[18] Yazdaninejad M, Amjady N, Dehghan S. VPP self-scheduling strategy using multi- 
horizon IGDT, enhanced normalized normal constraint, and bi-directional decision- 
making approach. IEEE Trans Smart Grid 2020;11(4):3632–45. 

[19] Dai X, Wang Y, Yang S, Zhang K. IGDT-based economic dispatch considering the 
uncertainty of wind and demand response. IET Renew Power Gener 2019;13(6): 
856–66. 

[20] Soroudi A, Maghouli P, Keane A. Resiliency oriented integration of DSRs in 
transmission networks. IET Gener Transm Distrib 2017;11(8):2013–22. 

M. Izadi et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0306-2619(22)01793-7/h0005
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0005
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0010
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0010
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0010
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0015
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0015
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0015
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0020
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0020
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0020
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0025
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0025
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0025
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0030
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0030
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0030
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0035
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0035
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0035
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0040
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0040
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0050
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0050
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0050
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0055
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0055
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0060
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0060
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0070
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0070
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0075
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0075
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0075
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0080
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0080
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0085
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0085
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0085
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0090
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0090
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0090
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0095
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0095
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0095
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0100
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0100


Applied Energy 334 (2023) 120536

19

[21] Aldarajee AHM, Hosseinian SH, Vahidi B. A secure tri-level planner-disaster-risk- 
averse replanner model for enhancing the resilience of energy systems. Energy 
2020;204. 

[22] Aldarajee AHM, Hosseinian SH, Vahidi B, Dehghan S. A coordinated planner- 
disaster-risk-averse-planner investment model for enhancing the resilience of 
integrated electric power and natural gas networks. Int J Electr Power Energy Syst 
2020;119. 

[23] Li H, Zou Z, Li H, Chen Y, Fu C. Thermal performance of a microchannel primary 
surface recuperator for portable microturbine generators: Design and experimental 
study. Appl Therm Eng 2022;206:118103. 

[24] Amjady N, Dehghan S, Attarha A, Conejo AJ. Adaptive robust network-constrained 
AC unit commitment. IEEE Trans Power Syst 2017;32(1):672–83. 

[25] Farivar M, Low SH. Branch flow model: Relaxations and convexification—Part I. 
IEEE Trans Power Syst 2013;28(3):2554–64. 

[26] Dehghan S, Amjady N. Robust transmission and energy storage expansion planning 
in wind farm-integrated power systems considering transmission switching. IEEE 
Trans Sustainable Energy 2016;7(2):765–74. 

[27] G,Xu, C, Qiao, X, Wang, H, Wu, S, Yang, L, Ma et al. A Multi-layer Optimized 
Configuration Method for Energy Storage Device and Compensation Device on 
Long-Chain Power Distribution Line. 2021 8th International Conference on 
Electrical and Electronics Engineering (ICEEE): IEEE; 2021. p. 150-4. 

[28] Ahmadigorji M, Amjady N, Dehghan S. A robust model for multiyear distribution 
network reinforcement planning based on information-gap decision theory. IEEE 
Trans Power Syst 2018;33(2):1339–51. 

[29] Ben-Haim Y. Info-gap decision theory: decisions under severe uncertainty. In: Info- 
Gap Decision Theory. Elsevier; 2006. p. 9–36. 

[30] Messac A, Ismail-Yahaya A, Mattson CA. The normalized normal constraint method 
for generating the Pareto frontier. Struct Multidiscip Optim 2003;25(2):86–98. 

[31] Bagheri B, Amjady N. Stochastic multiobjective generation maintenance 
scheduling using augmented normalized normal constraint method and stochastic 
decision maker. Int Trans Electrical Energy Systems 2019;29(2). 

[32] Hossain E, Roy S, Mohammad N, Nawar N, Dipta DR. Metrics and enhancement 
strategies for grid resilience and reliability during natural disasters. Appl Energy 
2021;290. 

[33] Labaka L, Hernantes J, Sarriegi JM. Resilience framework for critical 
infrastructures: an empirical study in a nuclear plant. Reliab Eng Syst Saf 2015; 
141:92–105. 

[34] Kumar BK, Singh SN, Srivastava SC. A decentralized nonlinear feedback controller 
with prescribed degree of stability for damping power system oscillations. Electr 
Pow Syst Res 2007;77(3-4):204–11. 

[35] Baran M, Wu FF. Optimal sizing of capacitors placed on a radial distribution 
system. IEEE Trans Power Delivery 1989;4:735–43. 

[36] GAMS Generalized Algebraic Modelling System. 
[37] Gholami A, Shekari T, Aminifar F, Shahidehpour M. Microgrid Scheduling With 

Uncertainty: the Quest for Resilience. IEEE Trans Smart Grid 2016;7(6):2849–58. 
[38] Atwa YM, El-Saadany EF, Salama MMA, Seethapathy R. Optimal renewable 

resources mix for distribution system energy loss minimization. IEEE Trans Power 
Syst 2010;25(1):360–70. 

[39] Khodaei A. Microgrid optimal scheduling with multi-period islanding constraints. 
IEEE Trans Power Syst 2014;29(3):1383–92. 

[40] HOMER Pro. 
[41] Farzin H, Fotuhi-Firuzabad M, Moeini-Aghtaie M. Stochastic energy management 

of microgrids during unscheduled islanding period. IEEE Trans Ind Inf 2017;13(3): 
1079–87. 

[42] D, Papaioannou, C, Papadimitriou, A, Dimeas, E, Zountouridou, G, Kiokes, N, 
Hatziargyriou Optimization & sensitivity analysis of microgrids using HOMER 
software-A case study. MedPower 2014. Athens, Greece. IET; 2014. 

[43] Muratori B. IEEE standard for calculating the current-temperature relationship of 
bare overhead conductors. IEEE Standard 2013:738–2012. 

[44] Rossi JL, Simeoni A, Moretti B, Leroy-Cancellieri V. An analytical model based on 
radiative heating for the determination of safety distances for wildland fires. Fire 
Saf J 2011;46(8):520–7. 

M. Izadi et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0306-2619(22)01793-7/h0105
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0105
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0105
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0110
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0110
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0110
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0110
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0115
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0115
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0115
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0120
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0120
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0125
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0125
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0130
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0130
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0130
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0140
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0140
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0140
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0145
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0145
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0150
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0150
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0155
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0155
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0155
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0160
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0160
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0160
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0165
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0165
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0165
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0170
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0170
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0170
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0175
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0175
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0185
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0185
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0190
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0190
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0190
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0195
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0195
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0205
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0205
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0205
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0215
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0215
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0220
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0220
http://refhub.elsevier.com/S0306-2619(22)01793-7/h0220

	Resiliency-Oriented operation of distribution networks under unexpected wildfires using Multi-Horizon Information-Gap decis ...
	1 Introduction
	1.1 Motivation and background
	1.2 Contributions
	1.3 Paper organization

	2 Problem description and assumptions
	3 Deterministic DNRO model
	4 Robust DNRO model
	4.1 The proposed IGDT-Based resilient operation formulation
	4.2 Augmented normalized normal constraint method
	4.3 A posteriori Out-of-Sample analysis

	5 Resilience assessment with optimal crisis management budget
	5.1 Proposed resilience index
	5.2 Finding optimal CMB with maximum resilience level

	6 Case study and results
	6.1 Test network and simulation data
	6.2 DNRO model against approaching forest wildfire
	6.2.1 D-DNRO model
	6.2.2 IGDT-DNRO model


	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	8 Appendix
	8.1 Wildfire formulation
	8.2 Dynamic thermal rating formulation

	References


