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Bayesian modeling of clustered competing 
risks survival times with spatial random 
effects

ABSTRACT 

In some studies, survival data are arranged spatially such as geographical regions. Incorporating spatial association 
in these data not only can increase the accuracy and efficiency of the parameter estimation, but it also investigates 
the spatial patterns of survivorship. In this paper, we considered a Bayesian hierarchical survival model in the 
setting of competing risks for the spatially clustered HIV/AIDS data. In this model, a Weibull Parametric distribution 
with the spatial random effects in the form of county-failure type-level was used. A multivariate intrinsic conditional 
autoregressive (MCAR) distribution was employed to model the areal spatial random effects. Comparison among 
competing models was performed by the deviance information criterion and log pseudo-marginal likelihood. We 
illustrated the gains of our model through the simulation studies and application to the HIV/AIDS data.
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INTRODUCTION

In biomedical studies, it is common to have time to 
event data. In the survival analysis, in many situations, 
there are some risk factors that are unobservable. In the 
presence of such risk factors, the usual survival models such 
as the Cox proportional hazards model are not proper (1). 
For solving this problem, Vaupel et al. introduced a model 
with the random effect (2). Clayton and Cuzik introduced 
the generalization of proportional hazards model by 
including a random effect to the Cox proportional hazards 
model to account for variability (3). Frailty models could 
increase the accuracy and efficiency of the parameter 
estimation when survival data are independent.

 But, in some situations, survival data are dependent 
such as when a sample of individuals was grouped into 
clusters. If individuals come from different areas, there will 
be a spatial correlation between survival data because 
data from the same or nearer areas are expected to be 
more similar than those from farther areas (4). 

In biostatistics and epidemiology studies, modeling 
spatial survival data accounting for the spatial association 
has become popular. For example, Li and Ryan (5) and 
Banerjee et al. (6) proposed a spatial survival model 
using the proportional hazards structure from the classical 
and Bayesian perspective, respectively. The survival 
model for taking spatiotemporal variation in survival data 
was investigated by Banerjee and Carlin (6) and Hanson 
et al. (7). Banerjee and Dey presented semiparametric 
hierarchical modeling for the proportional odds model in 
spatially survival data (8). Diva et al. used a Bayesian 
hierarchical survival model within the proportional 
hazards and the proportional odds settings (9). Pan 
et al. proposed a spatial Bayesian semiparametric 
model to analyze interval-censored survival data (10). 
More recently, Cramb et al. proposed a spatial flexible 

parametric relative survival model (11), and Zhou and 
Hanson applied the semiparametric survival model with 
spatial random effects to arbitrarily censored survival 
data (12). 

In the survival data, there is also a situation where, there 
is more than one cause of failure, but only the occurrence 
of the first one is observable. (13). The new aspect of this 
paper is an extension of survival model from single failure 
type to competing risks in spatially sampled data. 

The rest of this paper is outlined as follows. Section 
2 describes the HIV/AIDS data. Section 3 formulates our 
proposed model, including the notations, modeling the 
cause-specific proportional hazards function with spatial 
random effects, the prior distribution for areal spatial 
random effects, and the prior and posterior specification. 
Section 4 discusses a Bayesian model comparison 
using deviance information criterion (DIC) (5) and log 
pseudo-marginal likelihood (LPML) (14). In Section 5, the 
performance of our model is evaluated through simulation 
studies. Section 6 analyzes the HIV/AIDS data. Finally, 
Section 7 presents a discussion of related issues.

THE HIV/AIDS DATA

The data were from a retrospective cohort study, 
which was conducted in Hamadan Province, the central-
western part of Iran, from 1997 to 2011. All 585 HIV-
positive people who had a medical record in the HIV 
testing and treatment centers were included in this study. 
The explanatory variables included were as follows: 
age at time of diagnosis, sex, marital status, method of 
transmission, co-infection with tuberculosis (TB). Also, date 
of HIV diagnosis, date of progression to AIDS and date 
of death (if any) and patient’s county of residence were 
collected. The main outcome in this study was the time 

FIGURE 1. Cumulative incidence function for AIDS progression (left) and mortality post-HIV infection (right)
.
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interval, between HIV diagnosis and AIDS progression, 
so the event of interest was AIDS progression. However, 
some of HIV infected patients die before AIDS progression. 
Thus, death before AIDS was considered as competing 
risk. The patients who did not experience any of these 
events or were lost to follow-up were considered as 
censored. Accordingly, in the final outcome classification, 
patients were categorized into three categories: those 
who developed AIDS (23.4%), those who died post-HIV 
infection (22.9%), and those who censored (53.7%). 
Figure 1 plotted the observed cumulative incidence 
curve for risks of AIDS progression and mortality post-HIV 
infection. As seen, the cumulative incidence probability for 
AIDS progression is higher than competing event of death 
after the first 5 years. 

MODEL FORMULATION

In this section, we suppose n individuals come from 
K counties. nk is the number of individuals in a sample in 
each county, where k = 1,..., K and ΣK

k=1 nk = n. Also, let 
Cik = (Tik,δik) be the data for the i-th individual living in the 
k-th county, i = 1,..., nk, where Tik denotes time to an event 
which may be right censored time. In competing risks data, 
each individual has one of the G possible failure types 
during follow-up or could be right censored. Hence, failure 
type indicator or δik takes value from {0,1,...,G}.

Survival model with random effects 

Different models for analyzing competing risks data 
have been proposed in the last three decades (15, 16). 
The typical approach for analyzing competing risks survival 
times is modeling the cause-specific hazard functions (17). 

where h0(t)
g  is an unspecified baseline risk function and 

βg  = (βg
1,β

g
2,...,β

g
p)  is a p x 1 vector of regression parameters 

associated to a p x 1 vector of observed explanatory 
covariates xik = (xik1, xik2,..., xikp) for the gth type of failure 
where g = 1,..., G. In this model, to estimate the hazard 
of each failure type, other competing risks are assumed 
as censored in addition to those who are censored from 
loss to follow-up. But, sometimes, those who experience 
competing risk events are censored informatively; because 
of that, in the competing risks setting, the assumption 
of independent censoring is no longer reasonable. For 
example, in the HIV/AIDS data, the factors that affect the 
risk of AIDS progression as the event of interest might also 
influence the probability of mortality post-HIV infection 
as the competing risk event. To avoid biased results, we 
introduce the random effects Vik = (V1

ik,...,V
G
ik)

T, to capture 

for the association between times of different failure types; 
for more details, see Huang and Wolfe (18) and also 
Christian et al. (19). We introduce these random effects 
through (1), as

hg
ik (t|xik,v

g
ik) = h0(t)

g exp (xT
ikβ

g + vg
ik)        (2)

On the other hand, since subjects come from different 
counties, we consider a survival model with the spatial 
random effects. Let Wg

k , k = 1,...,K, g=1,..., G, denotes the 
spatial random effects. We introduce again, these random 
effects through (2), as

hg
ik (t|xik,v

g
ik, W

g
k) = h0(t)

g exp (xT
ikβ

g + vg
ik + Wg

k)         (3)

Alternatively, for the baseline hazard function, we 
assume a cause-specific Weibull function, which is
h0(t)

g = pgt pg-1 with the shape parameter pg for the g-th type 
of failure. Hence, the model (3) can be substituted by:

hg
ik (t|xik,V

g
ik, W

g
k) = pgt pg-1 exp (xT

ikβ
g + Vg

ik + Wg
k)         (4)

Spatial random effects 

A common model for areal data collected over a 
geographic region in a univariate case such as a single 
disease is the conditional autoregressive (CAR) distribution, 
developed by Besage (20). Let W = (W1,...,WK)T be the spatial 
random effects vector observed at the K areal counties, then 
the general form of the CAR joint distribution is

W ~ N (0, [σ2
w D (I - αB)]-1)       (5)

where B is a K x K  matrix, ο2
w  is conditional variance 

and α is called a smoothing parameter. If we specify
D = diag (mk), mk is the number of neighbors of the k-th 
county, and B = D-1 Bw where Bw   is the adjacency matrix 
of the graph representing our county (bw k k

 = 0, bw k k = 1 
if the county k is a neighbor of the county k, bw k k

 if the 
county k   is not a neighbor of the county k), we obtain 
the so-called intrinsic conditional autoregressive (ICAR) 
distribution that is the most common CAR distribution (21). 
Also, in this structure, we set the smoothing parameter α 
= 1. This distribution is denoted as CAR (1, σ2

w ) and its 
formulation, thus becomes

W ~ N (0, σ22
w Σ

-1
w) ,       (6)

where Σw = (D - Bw) is a K x K matrix. But, when we 
have the multivariate areal data, such as information on 
multiple diseases over the same regions, the multivariate 
areal models are proper for analyzing this kind of data 
(22, 23). There are several multivariate areal models that 
have been proposed in the literature. The multivariate 
Normal Markov random field (MRF) was proposed by 

hg
ik (t|xik) = lim

p (t≤Tik<t+dt,δik=g|Tik≥t,xik) 

dt dt → 0 
= h0 (t)

gexp(xT
ikβ

g),
 (1)
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Mardia (24). A twofold CAR model for two diseases and 
multi-objective version of the CAR model were proposed 
by Kim et al. (25) and sain and Cressie (26), respectively. 
The multivariate CAR models for the hierarchical modeling 
based on MRF have been proposed by Carlin and 
Banerjee (27) and Gelfand and Vounatsou (28). In this 
paper, we use the multivariate intrinsic conditionally 
autoregressive (MCAR) distribution for the spatial random 
effects in the HIV/AIDS data to be able to model the 
possible correlation in the risks of AIDS progression and 
mortality post-HIV infection over the same counties as well 
as the possible spatial correlation among the counties. 
Let W = (WT

1,...,W
T
K)

T where W is KG x 1 with each Wk  = 
(W1

k ,...,W
G
k)

T  being a G-dimensional vector of the spatial 
random effects collection for the G possible failure types 
within the k-th county. The joint distribution for W takes the 
following form

W ~ N (0 [D (I - αB) , ⊗ Λ]-1) .       (7)

If we postulate D, B, and α similar to ICAR distribution 
that was mentioned above, we obtain the multivariate 
intrinsic conditional autoregressive distribution. This 
distribution is denoted as MCAR (1,Λ) and its formulation 
is also equivalent to

W ~ N (0, (Σw ⊗ Λ)-1),      (8)

where Σw = (D - Bw) is a K x K matrix and therefor 
Σw ⊗ Λ is a KG x KG matrix. Moreover, Λ is a G x G 
positive definite and symmetric matrix, which is defined as 
the variance-covariance matrix of the spatial failure type 
and controls the correlation between the competing risks in 
the survival process at any given county. Note that, in this 
setup, we are modeling the dispersion matrix of the spatial-
by-failure type interaction, W, as the Kronecker product of 
the spatial dispersion and the failure type dispersion. Also, 
we use the same Λ for all of the counties.

Likelihood 

Let θ = (βg, Λ, Wg
k, v

g
ik, p

g ; i = 1,..., nk, k=1,...K, g=1,...G) 
denotes all the unknown parameters and
(Cik, Xik; i=1,..., nk, k=1,..., K) represents the observed data; 
therefore, the likelihood function for this model is product of 
all n individual contributions to the likelihood

L (θ| C,X) α ∏ ∏ Lik (θ| Cik,xik)         (9)

Considering the distribution of competing risks survival 
response, Lik (θ| Cik,xik) is as follows: 

∏ [[pgt pg-1 exp (xT
ikβ

g + vg
ik + Wg

k)]
I(δik=g)                             (10) 

                    x exp [-  ∫0     p
gt pg-1 exp (xT

ikβ
g + Vg

ik + Wg
k)dt]]

Finally, the likelihood for θ, conditional on the 
observed data is expressed as follows,

∏ ∏[∏ [pgt pg-1 [exp(xT
ikβ

g + Vg
ik + Wg

k)]
I(δik=g)                       (11) 

             x exp [-  ∫0    p
gt pg-1 exp (xT

ikβ
g + Vg

ik + Wg
k)d]]]

Bayesian approach

In the Bayesian approach, we considered the prior 
distribution for all parameters. The standard non-informative 
prior distributions for the parameters were considered as 
follows: for the regression coefficients,βg, and the Weibull 
shape parameters, pg; g = 1,...; G; a multivariate Normal, 
N (0, Σβ), and a gamma, G (a1, b1), priors were taken 
respectively. We assumed for
vg

ik; i = 1,..., nk, k = 1,...,  K, g = 1,...,G a multivariate Normal 
distribution, that is Vik ~ N (0,Λ) where Λ is a G x G variance-
covariance matrix. Concerning the spatial random effects, 
we used the MCAR prior distribution, W ~ MCAR (1,Λ), 
(see section 3.2). For the variance-covariance matrix, Λ an 
inverse Wishart, JW (R, v), was used where matrix R is a 
G x G positive definite matrix and v is degrees of freedom. 
Thus, in our model, we are using the same Λ to model the 
MCAR and failure type random effects distributions. For all 
these priors, we chose the distributions with the very high 
variance. The joint posterior distribution of our proposed 
model is denoted by π (θ|C,X), and is proportional to 

L (θ|C,X)x π (βg|Σβ) x π (pg| a1, b1) x π (V,Λ) x π (W|Σw,Λ) x π (Λ|R,v).

             (12)

After initializing values for the parameters, sampling 
from the full conditional distribution by the MCMC 
algorithm was performed. All statistical analysis and also 
mapping the results were performed using OpenBUGS 
software (29), version 3.2.3, GeoBUGS and R package 
R2OpenBUGS (30, 31). 

MODEL SELECTION 

We selected two summary measures for the model 
selection as follows: the deviance information criterion 
(DIC) and log pseudo-marginal likelihood (LPML). The DIC 
criterion for model m is defined as follows:

nk

i=1k=1

K

G

g=1 tik

tik

K nk G

k=1 i=1 g=1
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DIC (m) = -2D[θm ,m] - D [θm ,m] = D [θm ,m] + 2pm, 

   
             (13)

where D[θm ,m] is the deviance measure and is defined as:

D[θm ,m] = -2log f (Y|θm ,m),

and D[θm ,m] is its posterior mean. Also, θm is the posterior 
mean of the parameters involved in model m and pm is an 
effective number of parameters of model m and is defined 
as follows:

pm= D[θm ,m] - D [θm ,m].

The model with the smallest of DIC is the preferred 
model between a collection of alternative models. LPML 
statistic is based on the conditional predictive ordinate 
(CPO). The CPO statistic for ikth individual is defined 
as predictive density based on all of data except ikth  
individual. The high value of CPO statistic indicates that 
data for subject can be truly predicted by a model based 
on data from all other subjects. The LPML is used as an 
overall measure of the model fit and is calculated as:

LPML = Σlog (CPOik).          (14)

A model with a maximum value of LPML implies a 
better model. Using the MCMC methods, the DIC and 
LPML compute from the posterior samples.

SIMULATION STUDY

The performance of our model was evaluated through 
a series of scenarios in the simulation study. We generated 
a total of 100 simulated datasets with three levels of 
sample size in each county (nk=50, nk =100, nk =200) 
and with three censoring rate (low, 20%, medium, 40%, 
and high, 60%). For each dataset, the neighborhood 
structure was based on the nine counties in Hamadan, 
Iran. We used a continuous covariate (X1) and a binary 
categorical covariate (X2) that was generated from a 
standard Normal distribution and a Bernoulli distribution 
with a success probability p = 0.5, respectively. Also, 
we simulated two competing risks, risk 1 and 2, from the 
cause-specific exponential model. The failure times were 
generated based on the algorithm that Beyersmann and et 
al. presented for Competing risks data (32). As for each 
individual, the event time was generated by overall hazard 
rate that at each time point was the sum of cause-specific 
hazard rates for two types of event, λik(t) = λ1

ik(t) + λ2
ik(t).  

The cause-specific hazard rate for each type of event was 
considered as follows in each county

λ1
ik(t|xik,V

1
ik) = exp (β1

1x1ik +β1
2x2ik +V1

ik +W1
k),

λ2
ik(t|xik,V

2
ik) = exp (β2

1x1ik +β2
2x2ik +V2

ik +W2
k).

The type of event was determined by a Bernoulli experiment 
with the probability P1= λ1

    λ  for the event of type 1 and 
P2= λ2

    λ  for the event of type 2. The random effects Vik, 
were generated from a multivariate Normal with a mean 0 
and a 2 x 2 covariance matrix of Λ, that Λ11= 0.1, Λ22= 0.1  
and Λ12= 0.05 and then were centered around its mean. 
Also, the spatial random effects W, were generated from 
the MCAR distribution, N (0, (Σ*-1

w⊗Λ)) where Σ*
w=0.99xΣw 

+ diag (0.01), and then were centered around its mean. 
We introduced Σ*

w to be invertible the precision matrix 
and centered to be identifiable the spatial random effects. 
The corresponding regression coefficients were set β1

1=0.6,  
β1

2=-0.4. for risk 1 and β2
1=-0.3, β2

2=0.7 for risk 2. The matrix 
R was set as 0.1I2x2. The data above a threshold were right 
censored which were selected as the (1-α) -quantile of the 
sample survival times, such that 100α% of the observations 
were censored.

For each of the fitted models, the convergence of 
the MCMC chain was evaluated by trace plot, auto-
correlation plot, and Gelman-Rubin’s diagnostic (33). 
For each MCMC chain, we run the 25,000 iterations. 
For each parameter, the point estimate, bias, and mean 
square error (MSE) were calculated by the average of 
the means, biases and the square errors from the 100 
replicates, respectively. The coverage probability (CP) was 
calculated as the proportion of the 95% credible intervals 
that contain the true values. The bias and square error are 
defined as:

Bias (θ) = (θi-θ),   SE(θ) = (θi-θ)2.

Simulation results 

The results of the simulation study from nine scenarios 
are reported in Table 1. While estimation of the regression 
coefficients in the total scenario were close to the truth 
value 1, but estimation of the covariance matrix Λ had a 
consistently small bias for the large sample size (nk = 200) 
and with censoring rate 20% and 40%. Also, all parameters 
had the coverage probabilities close to the nominal level 
of 0.95 under all the scenarios. The MSE criterion for 
all parameters was close together and as sample size 
increases, the estimation accuracy of parameters increases. 

ANALYSIS OF THE HIV/AIDS DATA

We analyzed the HIV/AIDS data using four models 
as follows:

Model 1: The model with any random effects in the 
log-relative hazard (xT

ik β
g  ),

^ ^
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nk = 50, n = 450 nk = 100, n = 900 nk = 100, n = 1800

Censoring 
rate Estimate Bias MSE CP Estimate Bias MSE CP Estimate Bias MSE CP

20%

β1
1 = 0.6 0.598 -0.002 0.019 96 0.594 -0.006 0.009 95 0.584 -0.016 0.005 97

β2
1 = - 0.3 -0.276 -0.024 0.017 94 -0.287 -0.013 0.009 95 -0.294 -0.006 0.004 94

β1
2 = - 0.4 -0.390 -0.010 0.028 96 -0.385 -0.015 0.013 98 -0.389 -0.011 0.007 92

β2
2 = 0.7 0.682 -0.018 0.028 95 0.698 -0.002 0.015 93 0.690 -0.010 0.006 95

Λ11= 0.1 0.085 -0.015 0.004 99 0.093 -0.007 0.003 97 0.097 -0.003 0.002 98

Λ22= 0.1 0.084 -0.016 0.004 99 0.091 -0.009 0.002 99 0.093 -0.007 0.001 99

Λ12= 0.05 0.031 -0.019 0.001 100 0.043 -0.007 0.0002 99 0.044 -0.006 0.0001 99

40%

β1
1 = 0.6 0.595 -0.005 0.022 97 0.613 0.013 0.010 96 0.610 0.010 0.005 94

β2
1 = - 0.3 -0.285 -0.015 0.023 96 -0.306 0.006 0.011 94 -0.290 -0.010 0.005 95

β1
2 = - 0.4 -0.397 -0.003 0.039 95 -0.396 -0.004 0.019 95 -0.393 -0.007 0.009 95

β2
2 = 0.7 0.704 0.004 0.039 95 0.708 0.008 0.017 97 0.691 -0.009 0.008 97

Λ11= 0.1 0.087 -0.013 0.006 99 0.090 -0.010 0.004 98 0.090 -0.010 0.003 95

Λ22= 0.1 0.080 -0.020 0.007 97 0.086 -0.014 0.006 100 0.087 -0.013 0.002 98

Λ12= 0.05 0.021 -0.029 0.003 96 0.030 -0.020 0.0005 99 0.053 0.003 0.0003 99

60%

β1
1 = 0.6 0.642 0.042 0.030 95 -0.586 -0.014 0.013 95 0.594 -0.006 0.005 98

β2
1 = - 0.3 -0.302 0.002 0.025 97 -0.303 0.003 0.015 92 -0.284 -0.016 0.006 93

β1
2 = - 0.4 -0.368 -0.032 0.055 97 -0.339 -0.061 0.026 96 -0.395 -0.005 0.012 96

β2
2 = 0.7 0.749 0.049 0.071 93 0.670 -0.030 0.030 96 0.696 -0.004 0.015 90

Λ11= 0.1 0.082 -0.018 0.008 100 0.089 -0.011 0.006 98 0.090 -0.010 0.005 100

Λ22= 0.1 0.078 -0.022 0.010 99 0.083 -0.017 0.009 99 0.087 -0.013 0.004 99

Λ12= 0.05 0.020 -0.030 0.009 95 0.022 -0.028 0.002 98 0.026 -0.024 0.001 93

TABLE 1. Estimation results for the simulation study

Log-relative hazard LPML DIC

(Model 1) xT
ik β

g -963.11 1908.00

(Model 2) xT
ik β

g + Wk -962.60 1906.00

(Model 3) xT
ik β

g + Vg
ik + Wg

k -962.76 1906.00

(Model 4) xT
ik β

g + Vg
ik + Wg

k -958.78 1903.00

TABLE 2. Model comparison results for the HIV/AIDS data, bold number shows the best fit
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(xT
ik β

g   + Wk; W ~ N (0, Σ-1
w)),

Model 3: The model with the spatial and non-spatial 
failure type random effects in the log-relative hazard

(xT
ik β

g   + Vg
ik + Wg

k; W ~ N (0,I Σ-1
KxK⊗Λ)),

Model 4: The model with the multivariate spatial and 
failure type random effects in the log-relative hazard 

(xT
ik β

g   + Vg
ik + Wg

k; W ~ N (0,I Σ-1
w⊗Λ)).

The first model is the model that does not account for 
the correlation between the competing risks in the survival 
process and also the spatial correlation among the counties. 
The second model is the model that only incorporates the 
spatial variation among the counties. In this model, we 
considered the ICAR prior distribution for the univariate 
spatial random effects (see section 3.2) and also for the 
spatial random effects variance σ22

w an inverse-gamma, IG 
(a2,b2)  prior was used. The third model is the spatially 
independent model with basically the same structure with 
our proposed model. The spatially independent model 
was accomplished by replacing the Σwwith a diagonal 
matrix which does not account for the spatial structure of 
the counties, whence the collection of independent random 
effects for G failure types within the  county, denoted by 
W has a N (0,(I-1

KxK⊗Λ)) distribution. In other words, in this 
model, we consider the spatial and non-spatial failure type 
random effects in the log-relative hazard. The fourth model 
is the full model that we proposed in this paper. 

The proposed models were fitted based on sampling 
chains of 100,000 iterations with a spacing of 10 for 
reducing level of correlation and the first 10,000 discarded 
as a burn-in. Trace, auto-correlation and density plots of the 
posterior distributions were assessed for convergence of 
the MCMC chains. The Gelman-Rubin’s statistics for all 
parameters were between 1.0 and 1.1. The consistent 
batch means estimates of Monte Carlo standard errors 
were from 0.00002 to 0.0002 for all parameters. 
The summary measures of all parameters consist of the 
mean and standard deviation by posterior samples were 
obtained. Moreover, for the regression coefficients, the 
adjusted hazard ratios (HR) were calculated with 95% 
credible intervals.

Table 2 compared four models based on two criteria, 
DIC and LPML. The DIC and LPML values for the four 
proposed models were very close, but model 4 which 
introducing the multivariate spatial and failure type random 
effects, showed somewhat better comparison measure 
values. In addition, these values suggested that each of 
these models is better than the first model that does not 
account for any correlation. The summary measures of all 
parameters of the fourth model were presented in Table 
3. Also, because the MCAR distribution is improper and 
parameterized to include a sum-to-zero constraint on the 

random effects, a separate intercept coefficient for each 
of two risks with a flat prior was included in this model. 

Based on the adjusted HR estimates, there were 
the significant relationships between TB co-infection and 
mode of transmission with the risk of AIDS progression. 
However, the adjusted relationships for the risk of mortality 
post-HIV infection were not statistically significant for all 
the predictors except age at diagnosis. In other words, 
HIV-positive patients who were co-infected with TB and 
became infected through mother to child had a higher 
risk of AIDS progression as compared to those who were 
infected with HIV alone and infected through IDU. Also, 
the risk of mortality post-HIV infection was higher in patients 
aged 45 to 74 years than in those aged 0 to 24 years, 
such that the adjusted HR was 2.33.

We also mapped the summaries of our results. Figure 
2 shows 2 maps that represent the posterior spatial relative 
risk in nine counties of Hamadan Province. The map on 
the left is for the relative risk of AIDS progression and the 
map on the right is for the relative risk of mortality post-
HIV infection that is defined by exp (W1

w) and exp (W2
w) 

respectively. The posterior estimates of county-specific 
random effects were recorded based on the quintile 
of their distribution for showing the spatial inequalities 
on the map. As shown in Figure 2, for the risk of AIDS 
progression, one cluster of counties was identified with 
higher risk in the south, southeast, and southwest regions 
(six out of nine counties) and one cluster with lower risk in 
the north, northeast, and northwest regions (three out of 
nine counties) was identified. Also, for the risk of mortality 
post-HIV infection, the high-risk cluster consists of the 
northwest, west, and southwest regions (five out of nine 
counties) and the low-risk cluster consists of the northeast, 
east, and southeast regions (four out of nine counties). The 
posterior correlation between risks of AIDS progression 
and mortality post-HIV infection was shown in Table 3. 
The coefficient of correlation was 0.04 suggesting a weak 
shared geographical and overall pattern between the 
risks of AIDS progression and mortality post-HIV infection. 
Finally, with regard to modeling details, using a vague 
inverse Wishart, IW (R,v)  for Λ where v=7 and R=0.1I2x2 
leads to acceptable convergence behavior. 

DISCUSSION

In this paper, we proposed a model for spatially 
clustered survival data in the presence of competing risks 
setting. The data were from Hamadan Province, Iran, from 
1997 to 2011. For these data, we used a parametric 
proportional hazard model in a Bayesian setting which 
leads to a convenient interpretation of the parameters, 
although, the semiparametric models could also be used. 
The simulation study showed that the performance of our 
proposed model, in which two types of random effects 
(spatial and failure type) are incorporated simultaneously, 
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was good in terms of efficiency and accuracy of parameters 
estimation. As far as we know, our proposed model is new 
in survival data and could help in the visual representation 
of the spatial relative risk inequalities for each risk. This 
information also could be valuable for public health 
institutes and health researchers. In other words, despite 
the fact that we had a limited gain we analyzed the HIV/
AIDS data using model 4 for its interesting clinical results. 
Hence, introducing this model in our dataset could be 
useful in similar datasets in clinical research in the future. 
In other words, clinical researches in the area of HIV/AIDS 

can produce interesting clinical results using model 4. 
According to the posterior estimates of adjusted 

HR, there were the significant associations between 
TB co-infection and mode of transmission with risk 
of AIDS progression. Also, there was the significant 
association between age at diagnosis with risk of 
mortality post-HIV infection. It should be mentioned that 
the estimated regression coefficients of cause-specific 
proportional hazards model give the effect of covariates 
on the instantaneous hazard for the   type of failures 
and cannot be interpreted to an effect on the cumulative 

AIDS progression Mortality post-HIV infection

Variable Category Number % Mean (SD) Hazard ratio (95% 
credible interval) Mean (SD) Hazard ratio (95% 

credible interval)

Intercept -3.872(0.35) 0.022 (0.009, 0.039) -3.336(0.30) 0.037 (0.018, 0.062)

Gender Male 521 (89.05) Reference Reference

Female 64 (10.94) 0.054 (0.39) 1.14 (0.496, 2.291) -1.759 (0.94) 0.253 (0.021, 0.844)

Marital status Single 268 (45.81) Reference Reference

Married 223 (38.11) 0.052 (0.21) 1.079 (0.689, 1.610) 0.256 (0.20) 1.318 (0.872, 1.914)

Divorced 75 (12.82) 0.293 (0.27) 1.394 (0.769, 2.275) 0.285 (0.28) 1.384 (0.748, 2.265)

Widowed 19 (3.24) 0.762 (0.44) 2.357 (0.845, 4.817) 0.028 (0.64) 1.246 (0.247, 3.139)

Age 1-24 70 (11.96) Reference Reference

25-44 457 (78.11) 0.329 (0.34) 1.478 (0.741, 2.894) 0.049 (0.29) 1.099 (0.599, 1.912)

45-74 57 (9.74) 0.824 (0.44) 2.517 (0.967, 5.554) 0.775 (0.37) 2.331 (1.050, 4.555)

Tuberculosis infection

No 564 (96.41) Reference Reference

Yes 21 (3.58) 1.705 (0.28) 5.723 (3.077, 9.338) -0.789 (0.81) 0.601 (0.074, 1.696)

Mode of transmission

Injection drug 
use 475 (81.19) Reference Reference

Sexual 72 (12.30) 0.256 (0.36) 1.382 (0.614, 2.58) -0.584 (0.56) 0.645 (0.167, 1.496)

Mother to child 9 (1.53) 2.037(0.60) 9.214 (2.296, 25.06) ND ND

Injection drug 
use/sexual  26 (4.44) 0.637 (0.36) 2.022 (0.886, 3.74) -1.121 (0.80) 0.428 (0.052, 1.217)

p1  =p2

Λ 11 
Λ 22
Corr = 

Λ 12  �Λ11 �Λ22 

1.35 (0. 065)
0.029 (0.035)
0.024 (0.019)
0.041 (0. 038)

ND: no data

TABLE 3. Posterior estimation results of model 4 
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incidence function. In other words, in the cause-specific 
hazard model, the effect of same covariates is modeled 
for competing events, so there is no direct connection 
between the regression coefficients and the cumulative 
incidence functions. The reason is that the cumulative 
incidence function for the   type of failure depends not 
only on the hazard of the   type of failure, but also on the 
hazards of all other failure types. Thus, the relation of one 
covariate with the cumulative incidence functions of the   
type of failure depends on the effects of a covariate on all 
failure types (13, 17). 

In the field of HIV/AIDS disease, understanding of 
geographic variation of risks of AIDS progression and 
mortality post-HIV infection provides greater opportunity 
to identify high-burden areas, since they reflect both 
diagnostic and patient management. From the results of 
present study, the low-risk cluster in risk of AIDS progression 
contained counties with lowest population density and the 
high-risk cluster in risk of AIDS progression consists of some 
counties with the highest rate of population density. Also, 
the low-risk cluster was in remote areas and with much 
distance from the most populous counties in Hamadan 
Province. In order to take more spatial variation in the HIV/
AIDS data, instead of counties another smaller regions 
should be used, that unfortunately, were not available in 
our data.

Our results showed a small positive correlation 
between hazards of AIDS progression and mortality post-
HIV infection that this information is not available when 
each failure type is modeled independently. We used the 
same variance-covariance matrix   to model the MCAR 
and failure type random effects distributions as mentioned 

before, but we could not generalize in a way that the 
model accounts for the different spatial and non-spatial 
failure type variance-covariance matrices because of the 
identifiability problem. 
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