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Abstract

The study of functional reorganization following stroke has been steadily growing supported by advances in neuroimaging
techniques, such as functional magnetic resonance imaging (fMRI). Concomitantly, graph theory has been increasingly
employed in neuroscience to model the brain’s functional connectivity (FC) and to investigate it in a variety of contexts. The
aims of this study were: 1) to investigate the reorganization of network topology in the ipsilesional (IL) and contralesional (CL)
hemispheres of stroke patients with (motor stroke group) and without (control stroke group) motor impairment, and 2) to predict
motor recovery through the relationship between local topological variations of the functional network and increased motor
function. We modeled the brain’s FC as a graph using fMRI data, and we characterized its interactions with the following graph
metrics: degree, clustering coefficient, characteristic path length, and betweenness centrality (BC). For both patient groups, BC
yielded the largest variations between the two analyzed time points, especially in the motor stroke group. This group presented
significant correlations (Po0.05) between average BC changes and the improvements in upper-extremity Fugl-Meyer (UE-FM)
scores at the primary sensorimotor cortex and the supplementary motor area for the CL hemisphere. These regions participate
in processes related to the selection, planning, and execution of movement. Generally, higher increases in average BC over
these areas were related to larger improvements in UE-FM assessment. Although the sample was small, these results suggest
the possibility of using BC as an indication of brain plasticity mechanisms following stroke.
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Introduction

Advances in neuroimaging have enabled the study
of the reorganization of brain function, which has been
identified as one of the fundamental mechanisms involved
in motor recovery following stroke (1,2). Recent neurologic
research has emphasized the important role of distributed
networks in the brain. Although the brain’s structure is
changed by focal damage, this change influences the
function of distant brain regions (3,4). Focal brain lesions
resulting from ischemic stroke may yield selective alter-
ations in functional and structural interconnectivity of other
brain circuits that are unrelated to motor function, such as
the default mode network (5), executive control network
(6), and the white matter language pathways (7).

Graph theory has been introduced as a prospective
method for studying functional networks in the central

nervous system (for a review, see the paper from Bullmore
and Sporns (8)), enabling investigation of the motor
network functional reorganization after stroke damage
(1,9). This approach, based on the interaction (links or
edges) of brain regions (nodes), describes important
properties of complex systems by quantifying a network’s
topology (10). Graph methods can build models of
complex networks and characterize connection patterns
within the brain from a topological organization perspec-
tive through metrics such as degree, clustering coefficient,
shortest path length, betweenness centrality, and effi-
ciency, among others (8). In particular, the use of graph
models for each brain hemisphere can be helpful for
understanding the dynamic reorganization of the brain
network after stroke and provide clues to the effects on
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recovery, although the precise biological mechanisms
must still be determined (1).

Network randomization may be a final common
outcome following stroke damage, resulting from a
compensatory but nonoptimized outgrowth of new con-
nections due to an impaired connection pathway (1).
Wang et al. (11) showed that motor execution networks in
patients were increasingly random over the course of one
year of recovery. New axonal outgrowths may be partly
responsible for this randomization, but they may not be the
only cause. After ictus, other structural and functional
changes may also contribute to the continued randomiza-
tion of network configuration (11). Lee et al. (1) showed
that the topological configuration of the network shifted
toward a random network 3 months following ictus. The
authors also found a relationship between low character-
istic path length (which characterizes high network
efficiency) in the ipsilesional hemispheric network just
after ictus and better recovery 3 months post-stroke (1).
However, the cited studies evaluated only patients with
moderate to severe motor deficits, while patients with mild
motor impairment or without impairment were excluded.

The aim of this work was to investigate the reorganiza-
tion of network topology in both ipsilesional (IL) and
contralesional (CL) hemispheres during functional recov-
ery in two groups of stroke patients: with and without
motor impairment. We also attempted to predict motor
recovery from the relationship between local topological
variations (more specifically, in the premotor cortex,
supplementary motor area, and primary sensorimotor
cortex) of the functional network and increased motor
function.

Material and Methods

Subjects and experimental design
A total of 33 patients who had their first-ever stroke

were assessed for eligibility. All stroke patients were
treated during the subacute phase at the Emergency
Department at the University Hospital of the University of
Campinas. They were enrolled in this study within the first
month for the first evaluation, and they were subsequently
reassessed at 3–4 months after stroke, when they were
seen for follow-up at the outpatient stroke clinic at the
same institution. The inclusion criteria were: 1) ischemic
stroke; 2) patients up to 4 weeks from the onset of ictus;
and 3) motor deficits of the contralesional upper and/or
lower extremities. The exclusion criteria were: 1) patients
whose symptoms completely resolved within 24 h; 2)
hemorrhagic strokes or other neurological disorders; and
3) any contraindication for MRI.

Twenty patients out of 33 were excluded, and 13
patients participated in this study (Figure 1). All patients
underwent two fMRI scans: one performed within 1 month
and another 3 months after stroke onset. Experiments
were conducted with the understanding and written

consent of each participant, and ethics approval was
provided by the University of Campinas Ethics Committee
(document number: 694.729; CAAE: 0841814.0.0000.
5404).

Clinical assessment
All patients had stroke and underwent clinical assess-

ment on the same days as the MRI scans. All patients
were assessed using the modified Rankin (12) score and
the Barthel index (13) to evaluate functionality and daily
activities, that is, the ability to carry out everyday tasks.
Patients were assigned to one of the two groups
depending on their first clinical assessment: with (motor
stroke group) or without (control stroke group) motor
impairment. Patients without impaired functionality had a
Rankin score of 0 or 1 and a Barthel score of 100. Patients
with impaired functionality had Rankin scores X1 and
Barthel scores o100 and were also evaluated using the
Fugl-Meyer assessment for motor function of the upper
and lower extremities (14). The Fugl-Meyer assessment
evaluates sensitivity, speed, coordination, and motor
function and is scored between 0 and 2 (0: unable, 1:
partly able; 2: fully able to complete movement) with a total
score range of 0–66 for upper extremities (UE-FM) and 0–
34 for lower extremities (LM-FM) (14). To measure stroke
severity, we used the National Institutes of Health Stroke
Scale (NIHSS) (15).

fMRI data acquisition and preprocessing
Patients were resting and awake in the scanner with

their eyes closed and were instructed not to think about

Figure 1. Patient inclusion process for the longitudinal observa-
tional study involving two functional magnetic resonance imaging
exams, one within 1 month and another 3 months after stroke
onset.
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problems or stressful situations during the exam. The MRI
protocol included a 3D-T1 weighted image (isotropic
voxels of 1 mm3 acquired in the sagittal plane, flip angle=
8°, repetition time (TR)=7 ms, echo time (TE)=3.2 ms,
matrix=240� 240, FOV=240� 240� 180 mm3) and a
functional acquisition (echo planar image–EPI; isotropic
voxel of 3 mm3, 39 slices, no gap, FOV 240� 240� 117
mm3, flip angle=90°, TR=2 s, TE=30 ms, and 180 time
points).

We preprocessed the data with the UF2C toolbox (16),
a MATLAB suite (mathworks.com) for MRI data prepro-
cessing specifically focused on functional connectivity
analysis. The preprocessing included functional image
realignment, functional-structural images coregistration,
and tissues segmentation, normalization, and smoothing.
The images origins were manually set at the anterior
commissure for all subjects to minimize distortions
resulting from the coregistration and normalization steps.
In addition, subjects who had more than 30 discarded
volumes due to movement constraints were excluded from
this study (step known as ‘‘scrubbing’’, see Power et al.
(17) for a review).

Finally, the BOLD time series were pre-whitened
following the approach suggested by Santosa et al. (18)
to remove the signal autocorrelation. This enables the
calculation of Pearson correlation coefficients for estimat-
ing the functional networks while avoiding inflated
correlation values, yielding more reliable and meaningful
results (19) and, hence, a more accurate graph repre-
sentation of the brain’s functional connectivity (FC). All
images were flipped to constrain the lesion’s location to
the right brain hemisphere (i.e., all patients’ lesions were
constrained to be on the positive MNI x-coordinates by
simply inverting the signal of the voxels along the x-axis
when the lesion was located on the left hemisphere).

Data analysis and functional networks
Functional networks were modeled as a graph, a

mathematical tool composed of a set of nodes (or
vertices), which in this case represented brain regions,
and links (or edges), structures that dictate interactions
between the nodes. Each node was defined according to
the functional atlas proposed by Power et al. (20), and the
strength of the links between nodes was calculated using
the Pearson correlation, yielding a 264� 264 connectivity
matrix. Each node was centered at the coordinates
suggested by the functional atlas, encompassing all of
its nearest neighbors within a three-voxel radius. Hence,
each node’s time series consisted of the average signal of
the aforementioned voxel neighborhood.

To further avoid spurious correlations, following com-
mon trends for thresholding the connectivity matrix (21),
only the 20% strongest connections were maintained in
the graph’s adjacency matrix (A). This approach also
ensured that the graphs of all subjects had the same total
number of functional links. Therefore, each entry aij of A

could take the value of either ‘1’ or ‘0’, indicating whether
there was a connection between nodes i and j; that is:

aij ¼ 1; if i and j are connected
0; otherwise

�
ðEq: 1Þ

The functional connectivity analysis consisted of
assessing how specific metrics varied across fMRI
acquisitions for the two patient groups. The chosen
metrics were degree, clustering coefficient, characteristic
path length, and betweenness centrality. The degree and
the clustering coefficient were selected for their easy-to-
interpret yet powerful meaning. The characteristic path
length was chosen to provide complementary information
regarding the efficiency of connections within the network,
and the betweenness centrality was selected to provide
a notion of the importance of a node in the sense of
information flow within the network. A brief description of
these metrics is provided below, as they will be needed for
interpreting the results. For further details, the interested
reader may refer to previous studies (22,23).

The degree for a node i (Di) represents its number of
connections, that is (22):

Di ¼
XN

j¼1
aij ðEq: 2Þ

where N is the total number of nodes in the network (in this
case, N=264). The higher the degree of a node, the
greater the number of nodes it connects to.

The clustering coefficient (CC) provides an idea of
clustering of neighboring nodes: given any three nodes i, j,
and k, if i and j are connected, as well as j and k, the CC
can be thought of as the probability of i and k also being
connected. Mathematically, the CC for a node i can be
calculated as (22):

CCi ¼
2
PN

j¼1

PN
k¼1 aij ajk aki

kiðki � 1Þ ðEq: 3Þ

The shortest path length represents the number of
links that compose the shortest path between nodes i and
j (lij). If there is no connection between i and j, then lij ¼ N.
The characteristic path length of node i, then, is simply the
average value of lij , that is (22):

oli4 ¼ 1
N � 1

XN�1

j¼1
lij ðEq: 4Þ

The BC is a metric that describes the importance of
a node regarding how significantly it acts as a bridge
between two other nodes within the network. For node i,
this metric can be calculated as (22):

BCi ¼ 2
ðN � 1ÞðN � 2Þ

X
j 6¼ i 6¼ k

ljkðiÞ
ljk

ðEq: 5Þ

in which ljk represents the number of shortest paths that
go from j to k, and ljk (i) represents those that specifically
pass through node i.

Braz J Med Biol Res | doi: 10.1590/1414-431X2022e12036

Stroke and graph theory: functional reorganization 3/13

https://doi.org/10.1590/1414-431X2022e12036


Finally, changes in metrics between the two fMRI
scans were calculated as follows:

DM ¼ M2 �M1

M1
ðEq: 6Þ

in which M refers to one of the aforementioned metrics,
and indices 1 and 2 represent M’s values on the first and
second scans, respectively. Therefore, DM indicates a
relative value for the change in this metric regarding its
magnitude in the first fMRI evaluation.

Metric variations were attributed to standardized
anatomical regions of the AAL atlas by comparing its
coordinates to those of the functional atlas used in this
study. The regions of interest found in our analyses, which
are related to sites where DM variations were more
prominent, are reported in Table 1.

Finally, the last analysis involved seeking correlations
between variations in the average BC and the UE-FM
scale on the primary sensorimotor cortex, premotor area,
and supplementary motor area.

Results

Of the 13 participating stroke patients, six presented
impaired motor function (motor stroke group, mean age
63±9 years, range 53–80), and seven did not present
impaired motor function (control stroke group, mean age
58±9 years, range 49–72). Table 2 presents the baseline
characteristics for all subjects. There were no statistically
significant differences between the groups regarding age,
sex, time post-stroke, or stroke hemisphere. The patients
in the motor stroke group had statistically worse scores
on the modified Rankin score and Barthel index (see
Table 2).

Group average results
Graphs of metric variations are displayed in color

maps and in relative (percentage) scales. Each metric will
be discussed separately, as each one carries a specific
and unique meaning regarding its interpretation within the
functional network. Figures 2 and 3 show variation maps

Table 1. Regions of interest analyzed through anatomical regions of the automated anatomical labeling atlas.

Region Abbreviation Side Node

coordinates

Region Abbreviation Side Node

coordinates

x y z x y z

Lentiform nucleus LN Left –22 7 –5 Postcentral gyrus PoCG Left –7 –33 72

Right 23 10 1 –40 –19 54

Inferior parietal lobule IPL Left –42 –55 45 –29 –43 61

Right 44 –53 47 –21 –31 61

Parahippocampal girus PHG Left –26 –40 –8 Right 13 –33 75

Right 27 –37 –13 10 –46 73

Middle frontal gyrus MFG Left –35 20 51 29 –39 59

–42 38 21 50 –20 42

–34 55 4 42 –20 55

–28 52 21 Medial frontal gyrus MlFG Left –3 2 53

–32 –1 54 –3 44 –9
Right 34 38 –12 –11 45 8

19 –8 64 –2 38 36

23 33 48 –3 26 44

42 0 47 Right 2 –28 60

29 –5 54 3 –17 58

Inferior frontal gyrus IFG Left –46 31 –13 7 8 51

Right 48 22 10 6 64 22

Middle temporal gyrus MTG Left –46 –61 21 8 42 –5
–58 –26 –15 Superior frontal gyrus SFG Left –18 63 –9

Right 58 –53 –14 –16 29 53

51 –29 –4 –10 55 39

Precentral gyrus PrCG Left –45 0 9 –20 64 19

–55 –9 12 –21 41 –20
Right 20 –29 60 –39 51 17

44 –8 57 Right 10 –17 74

51 –6 32 22 39 39

56 –5 13 13 55 38

Continued
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for the studied metric between both fMRI acquisitions for
patients of the motor stroke group and control stroke
group, respectively. The behavior shown in the figures
was estimated by taking the average connectivity matrix
for each patient group. Areas closer to yellow indicate
increases, while those closer to blue indicate decreases.
In these maps, the white areas indicate values considered
too small to be displayed, that is, the white regions in
Figures 2 and 3 indicate unplotted values. Only variations
that exceeded half the average DM across the whole brain
are shown. Finally, we reiterate that the images of some
patients were flipped to restrict the lesions to the right
hemisphere in all subjects.

To further investigate the patterns of the regions in
Figures 2 and 3, we computed average values for the
metrics of the cortical and subcortical areas with the
largest variations. The results are shown in Table 3, with
motor stroke and control stroke groups separated by
graph metric and hemispheres, as well as for increase or

decrease of the corresponding metric, which are indicated
as upwards and downwards arrows, respectively. Note
that some regions presented both increases and
decreases, and thus both arrows are displayed. We
interpreted the presence of both increasing and decreas-
ing trends as changes belonging to distinct portions (i.e.,
distinct graph nodes) of the same anatomical region.

Individual BC results
Based on the results in Figures 2 and 3 indicating that

BC was the metric with the largest changes in fMRI
acquisitions, we further explored its variations for each
subject. These results are shown in Figure 4 for all
participants in both the motor impairment (A) and control
stroke (B) groups.

In addition, we also investigated whether this metric
correlated with the UE-FM by studying how the average
BC change for a given subject was related to the Fugl-
Meyer score change (Figure 5). For this analysis, three

Table 1. Continued

Region Abbreviation Side Node

coordinates

Region Abbreviation Side Node

coordinates

x y z x y z

Thalamus Th Left –10 –18 7 13 30 59

Right 9 –4 6 26 50 27

Insula In Left –38 –33 17 Precuneus PrCu Left –7 –52 61

Right 32 –26 13 –7 –71 42

36 22 3 –16 –77 34

Superior temporal gyrus STG Left –51 8 –2 Right 15 –63 26

–49 –26 5 4 –48 51

–44 12 –34 10 –62 61

Right 65 –33 20 Superior parietal lobule SPL Left –17 –59 64

Inferior temporal gyrus ITG Left –56 –45 –24 Right 25 –58 60

–50 –7 –39 Cingulate gyrus CG Left –14 –18 40

Right 65 –12 –19 –2 –37 44

49 –3 –38 –2 –35 31

Cuneus Cu Left –8 –81 7 –1 15 44

–14 –91 31 Right 8 –48 31

–3 –81 21 5 23 37

Middle occipital gyrus MOG Left –26 90 3 Claustrum Cl Left –34 3 4

Right 37 –81 1

Right – – –
Inferior occipital gyrus IOG Left – – – Posterior cingulate PoC Left –11 –56 16

–3 –49 13

Right 27 –97 –13 Right 11 –54 17

43 –78 –12
Lingual gyrus LG Left –25 –98 –12 Fusiform gyrus FG Left –34 –38 –16

–12 –95 –13
–15 –72 –8

Right 26 –79 –16 Right 46 –47 –17
Anterior cingulate AC Left –3 42 16 Left –31 –10 –36

–11 26 25

Right 10 22 27 Uncus Un Right 33 –12 –34
12 36 20
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areas of interest were explored: the primary sensorimotor
cortex, the supplementary motor area, and the premotor
cortex for both the CL (upper panels) and IL (lower panels)
hemispheres. The correlation strength between the
two variables, i.e., the oDBC4 and the corresponding
changes in UE-FM (indicated by DUE-FM), are shown as
r, that indicates the value of the correlation coefficient.
When the p corresponding to that rho is less than 0.05, the
correlation is significant, with an asterisk indicating
statistical significance (Po0.05).

Discussion

Motor stroke group
Group average results. Several studies have reported

alterations in brain topological organization and disrup-
tions in functional connections in patients following stroke
when compared to healthy controls. As expected, there is
a decrease in global efficiency, indicating a reduced
capacity for information transfer across the entire stroke
brain (9,24). In this work, to better understand brain
changes after stroke, we compared functional network
changes between groups of stroke patients with different
stroke outcomes, namely, with and without motor impair-
ment. Interestingly, robust changes in global integration,
including alterations in strength, clustering coefficient,
characteristic path length, and betweenness centrality,
were identified in both groups, as well as a correlation of
these network changes with clinical variables that assess
motor impairment (for the motor stroke group).

As widespread brain regions and extensive networks
may be damaged in stroke patients, studies investigating
the whole network of functionally interacting brain regions
may be more valuable for a better understanding of the
pathological mechanisms of stroke than studies investi-
gating local connections (9). In this context, we found
several connectivity alterations over time, not only in the
lesion area but also in the frontal and temporal regions,
the parietal gyrus, and the basal ganglia, in both hemi-
spheres. Although it is tempting to attribute these changes
to brain reorganization as a mechanism to suppress
further impairments due to the stroke, it is important to be
cautious with these conjectures, given that the analyzed
patient sample was small, and the patients had a great
variability regarding the damaged brain areas.

The largest increases in metrics on the IL hemisphere
(Figure 2A) were observed in the frontal and temporal
areas. In the CL hemisphere, the largest increases were
observed in the parietal cortex (Brodmann 40), and the
largest decreases occurred in the superior temporal
cortex. Some gyri were common to both hemispheres,
presenting the highest variations (Table 3), but the degree
tended to increase more prominently in the CL hemi-
sphere. In other words, the number of connections tended
to increase more significantly contralateral to the lesion.
An increased degree (i.e., increase in the number of
functional connections) for specific regions implies that
such regions display more synchronicity of their recorded
fMRI time series at a global level (that is, considering
every other region of interest in the brain).

Table 2. Demographic and clinical characteristics of the motor stroke and control stroke groups.

Characteristic Motor stroke group Control stroke group P value

Age (mean; min–max) 63 (53–80) 58 (49–72) 0.361#

Gender (n, %) 1.00*

Male 4 (66.7) 5 (71.4)

Female 2 (33.3) 2 (28.6)

Time after stroke (mean; days) 25 23 0.604#

Stroke hemisphere (n, %) 0.592*

Right 3 (50.0) 5 (71.4)

Left 3 (50.0) 2 (28.6)

NIHSS (mean; min–max) 2.8 (0–8)
UE-FM (mean; min–max) 62 (50–66)
LE-FM (mean; min–max) 32.3 (30–34)
Barthel (mean; min–max) 90 (85–95) 100 0.001+

Rankin index (n, %) 0.003#

0 4 (57.1)

1 2 (33.3) 3 (42.9)

2 4 (66.7)

3

4

5

UF-FM: upper-extremity Fugl-Meyer assessment; LE-FM: lower-extremity Fugl-Meyer assessment; #t-test;
+Mann-Whitney U test; *chi-squared test (significant values at Po0.05).
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For the clustering coefficient (Figure 2B), the CL
hemisphere tended to present the most significant cortical
increases, especially in areas such as the superior and
inferior temporal gyri and the postcentral gyrus. Ipsilateral
to the lesion, most displayed locations remained at
approximately the same values for this metric, with the
largest (yet mild) clustering coefficient increases being
observed on the precentral and medial frontal gyri
(Table 3). In addition, altered areas for the CC were
similar to those involving the degree (Figure 2A and B);
relative variations, however, were greater for the latter
metric (CC highest changes were approximately 5%, while
maximum degree changes were approximately 10%).
Since the CC considers functional interactions at a more
local scale, as it accounts for elements of the adjacency
matrix that are nearest neighbors to each another [see

Equation 3], when analyzed simultaneously with degree,
it can further indicate whether, to any extent, the varia-
tions in the number of functional connections of a given
region of interest were spatially restricted to it. In this
case, a qualitative visual inspection of Figure 2A and B
suggests that this seemed to be the case for the motor
stroke group.

The characteristic path length (Figure 2C) followed the
same principle as the other metrics, with increased values
in the CL hemisphere. Increases in the CPL imply that
the information must travel through a larger number of
functional links from origin to destination. Hence, regions
with increased (or decreased) CPLs can be regarded as
requiring a higher (or smaller) number of functional
connections to transfer or receive information, indicating
a loss (or gain) of information transfer efficiency.

Figure 2. Graph metric changes between functional magnetic resonance imaging acquisitions (motor stroke group). Variations are
shown in a relative color scale, according to Equation 6. A, degree (D); B, clustering coefficient (CC); C, characteristic path length (CPL);
D, betweenness centrality (BC). IL: ipsilesional; CL: contralesional.
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To summarize, when concomitantly analyzing the
findings for the three aforementioned metrics, the CL (or
IL) increased (or decreased) for the degree, and the CC
indicated a higher (or lower) number of connections and
efficiency in local communication of a node, resulting in a
smaller (or larger) CPL. In other words, there seems to be
a tendency for the CL hemisphere to become more
efficient in information transfer, perhaps due to compen-
satory mechanisms following a stroke in the other hemi-
sphere.

Greater connectivity and efficiency of the CL hemi-
sphere may occur to compensate for loss of connectivity
in the ischemic region. Functional neuroimaging studies
suggest that activity in the sensorimotor network or
ipsilesional motor cortex, is most abnormal in the early
phase after hemiparetic stroke, and that motor recovery is

related to normalization of activity (25). In a previous
cross-sectional study, we had already demonstrated
increased connectivity on the CL hemisphere in stroke
patients with impaired functionality (6). It is possible that
the normalization of brain activity occurs later. Lee et al.
(1) suggest that the damaged brain enters a chronic stage
and further reorganization might not occur because most
network reorganization usually happens during the first
3 months after stroke.

Finally, the BC (Figure 2D) displayed the most
dramatic variations, with increases of more than 50%.
Additionally, no significant decreases were observed. The
regions with high values of BC are considered network
hubs, and group differences in BC of nodes reflect
effects of the disease on the global roles of regions in
the network (26,27). Similar to the works by Zhang et al.

Figure 3. Graph metric changes between functional magnetic resonance imaging acquisitions (control stroke group). Variations are
shown in a relative color scale, according to Equation 6. A, degree (D); B, clustering coefficient (CC); C, characteristic path length (CPL);
D, betweenness centrality (BC). IL: ipsilesional; CL: contralesional.
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(9) and Yin et al. (24), we verified an increased nodal BC
in the CL superior frontal gyri (identified as supplemen-
tary motor area) and the CL inferior parietal lobule, which
may participate in processes related to movement
selection and movement planning. These areas may be
viewed as reflecting the selective neuroplastic recruitment
of the unaffected motor network to compensate for the
damage induced by the lesion. Furthermore, increases
occurred in subcortical areas, such as the basal
ganglia and thalamus, structures involved in known motor
circuits.

Individual BC results. When analyzing BC variations
individually, it is noticeable how, despite existing common
trends among all subjects, there were many particularities.
However, overall, frontal, and parietal areas were common
sites of the largest alterations (although the spatial extent
of the involved sites is very subject-dependent). BC
can be an important parameter to identify changes in
functional reorganization since it increased in the frontal
and parietal regions, which are responsible for motor
planning and integration of sensory input and motor
output. This reflects the clinical evolution of patients

Table 3. Increase (m) or decrease (k) of graph metrics in the motor stroke and
control stroke groups.

Graph metric Control stroke group Motor stroke group

CL IL CL IL

D LN (m,k) LN (k) LN (m) MFG (m,k)

STG (m,k) MFG (m) IPL (m) IFG (m)

SFG (m) PrCG (m,k) PHG (m) MTG (m)

IFG (m) PoCG (m) STG (k) PrG (m)

Cl (m) IOG (k) ITG (k)

PrCu (m,k) Th (m) Th (m,k)

IPL (k) PrCU (k) In (m)

CC PHG (m,k) CG (m,k) LN (k) MFG (k)

SFG (m,k) LG (m) MlFG (k) MTG (k)

STG (m) FG (m) SFG (k) PrG (m)

PoC (m) IFG (k) STG (m) PoCG (k)

PoCG (k) MFG (m) ITG (m,k) MlFG (m)

MTG (k) SPL (k)

PrCG (m,k) PoCG (m)

Th (m) In (m)

Cu (m) PrCu (k)

CPL PHG (m) MFG (k) PHG (m) MFG (m)

PrCG (m,k) PHG (m) STG (m,k) MlFG (k)

PoCG (k) FG (m,k) PoCG (m) PrCG (m,k)

STG (m,k) PrCG (k) MOG (k) CG (m)

ITG (m) PoCG (m,k) In (m) Cu (m)

SFG (m,k) LG (m) IPL (k)

In (m) CG (k)

Th (m)

BC LN (m,k) LN (m) LN (m,k) MFG (m,k)

SFG (m,k) MTG (m) IPL (m) IFG (m)

MFG (m) STG (m,k) SFG (m) PRrCG (m,k)

MlFG (m,k) PrCG (m) STG (m) PoCG (m,k)

PoCG (m) LG (m,k) ITG (m) Th (m)

STG (m,k) IFG (m) CL (k)

ITG (k) Un (m)

AC (m) IPL (m)

In (m) Cu (m,k)

PrCu (m)

IPL (k)

CL: contralesional; IL: ipsilesional; D; degree; CC: clustering coefficient; CPL:
characteristic path length; BC: betweenness centrality; For region abbreviations,
see Table 1.
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with motor deficits over time, since there was an im-
provement in functionality and greater independence in
daily activities, shown by the Rankin and Barthel scales
and by the Fugl-Meyer assessment. However, the sample
was too small for further inferences about statistical
significance.

Furthermore, the results in Figure 5 showed that the
average changes in the BC and UE-FM assessments
were significantly correlated for the primary sensorimotor
cortex and the supplementary motor area for the CL
hemisphere. On the other hand, no significant correlation
was found for the same areas on the affected hemisphere,
nor for both hemispheres for the premotor cortex. This
means that both the increase in importance of the primary
sensorimotor area and the supplementary motor area
regarding information flow through the brain – as reflected
by the BC metric – were actually linked to clinical

improvement of patients over time. This finding suggested
that the BC in these areas might be an indicator of neural
plasticity related to motor recovery. Moreover, the fact that
these changes were located on the CL hemisphere may
suggest some type of compensatory mechanism by the
unaffected areas. Nevertheless, further analyses are still
necessary at this point, as our small number of subjects
limits the generalizability of our results.

Control stroke group
Group average results. Most change patterns were

similar to those found for the motor-impaired patients. The
degree and clustering coefficient presented the most
significant increases in the CL hemisphere. As with the
motor impairment patients, most sites with increased
degree (such as the frontal and temporal gyrus) also
roughly exhibited larger clustering coefficients. The

Figure 4. Individual betweenness centrality (BC) variation plots for the groups with (A) and without (B) motor-impairment. ‘IL’ and ‘CL’
indicate ‘ipsilesional’ (the right hemisphere) and ‘contralesional’ (the left hemisphere), respectively. Variations are shown in a relative
color scale, according to Equation 6. Subjects from the motor stroke and control groups are labeled with ‘M’ and ‘C’, respectively.
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metric’s changes were restricted to a small range, from 2
to 5% (Figure 3A and B).

As observed for the motor stroke group, these patients
displayed decreases (or increases) in the CPL in the
proximities of sites that exhibited increases (or decreases)
in the degree and CC (Figure 3C). However, locations
encompassing structures such as the superior frontal,
superior temporal, middle frontal, precentral, and post-
central gyri showed considerable decreases (although
these variations were small compared to the other metric,
of approximately 1%).

The BC alterations were also the most considerable in
this group, reaching values up to 40%. The main areas of
increase in the CL included the superior frontal, superior
temporal, and inferior temporal gyri, whereas IL increases
mainly occurred in the middle frontal, inferior frontal,
precentral, and postcentral gyri. Unlike the motor-impaired
patients, the average for the control group also displayed
considerable BC increases in the proximities of the
cerebellum (Figure 3D).

Indeed, several studies have shown an increase in
cerebellar activity in stroke patients compared with healthy
individuals (11,24). In the present study, patients without
motor deficits also showed increased cerebellar connec-
tivity over time. Most likely, the greater motor performance
of these patients compared with patients with motor
deficits may have been influenced by activation of the
cerebellum, since this region interferes with coordination
and motor learning.

In a previous work, we found higher connectivity in
some non-motor networks in healthy controls than in
stroke patients with impaired functionality (6). Now,
patients in the control group had more regions with
variations in connectivity over time than the motor deficit
group, either increasing or decreasing. One hypothesis is
that these modifications and the alterations of other areas
occurred because it is not only the motor circuit that can
help restore the compromised side. However, it is still
unclear how all these changes, even with reduced
connectivity, can interfere with the process of brain
reorganization and functional recovery.

Individual BC results. Overall, patients in the control
stroke group presented a tendency to display the most
significant increases in the CL hemisphere (Figure 4B;
see, e.g., Subjects 1, 2, 3, 4, and 5). Moreover, occipital
areas and sites close to the cerebellum were more
prominent regarding BC changes for this group than
for the motor stroke group (Figure 4B). Subject 7, in
particular, presented the highest and most noticeable
variations.

Although some studies indicate that patients with good
functional rehabilitation outcome usually have activation in
the perilesional area during functional activities (28), other
findings indicate CL activation, which is more in agree-
ment with our present findings. Indeed, Calautti et al. (29),
Fujii et al. (30), and Almeida et al. (6) suggest that
increased activity in CL sensorimotor cortices is an
available mechanism for compensating, at least partially,

Figure 5. Relationship between upper-extremity Fugl-Meyer (UE-FM) scale changes and average betweenness centrality (BC) variation
for the motor stroke group. In this plot, each point corresponds to the oDBC4 and DUE-FM values of a subject. Plots in the upper and
lower panels correspond to the contralesional (CL) and ipsilesional (IL) hemispheres, respectively. Each column designates oDBC4
values gathered at specific areas. The correlation strength between the two variables, i.e., theoDBC4 and the corresponding changes
in UE-FM (indicated by DUE-FM), are shown as r, that indicates the value of the correlation coefficient. When the P corresponding to that
rho is less than 0.05, the correlation is significant. The correlation strength between the two variables is shown with an asterisk (*) when
significant (Po0.05).
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for stroke-induced motor impairments. Also, Xu et al. (31)
and Swayne et al. (32) reported that while it is unclear
how the CL activity may influence motor recovery, the
reorganization of residual tissue to re-enable motor
function likely depends on some degree of intracortical
disinhibition to allow access to additional networks.

Conclusions
In this study, we investigated how graph metrics

vary over time between two distinct fMRI acquisitions
for patients with different types of impairment following
stroke. We found that most metrics displayed only slight
changes in all patients with stroke, with the exception of
betweenness centrality, which showed changes of up
to 50% for motor-impaired patients and 40% for control
patients.

On further investigation of BC alterations, we found
significant correlations between average change in BC

and alterations in the UE-FM score for the CL hemisphere
in the primary sensorimotor cortex and in the supplemen-
tary motor area for the motor impaired group, up to 3–4
months after stroke. However, additional investigations
with a larger number of subjects are necessary to verify
whether this relationship can be generalized. Therefore,
at this point, we can only speculate that BC may reflect
aspects underlying brain plasticity mechanisms after
stroke. These results should be explored in future studies
in the field.
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