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Monitoring Rheological Changes Using
Acoustic Emissions for Complex Formulated
Fluids Manufacturing

The measurement capabilities of a newly developed in-situ rheometric device
based on a single passive acoustic emission sensor and machine learning algo-
rithms were investigated. Two surfactant structured fluids demonstrating complex
non-Newtonian rheology (Power-law and Herschel-Bulkley models) were exam-
ined. Furthermore, a static evaluation on the laboratory scale in comparison to dy-
namic processing on the pilot scale was conducted. The results indicate that the
machine learning algorithms of this technology can identify, in > 90 % of scenar-
ios, the correct type of rheology or the manufacturing process step across both
scales. This identification is based on solving a classification problem using qua-
dratic support vector machine learning algorithms, which have proven to deliver
the most robust predictions across a choice of 24 different algorithms tested. Ad-
ditionally, a new format of in situ rheology display was introduced, referred to as
RRF� factor.

Keywords: Acoustic emission, Machine learning, Non-destructive evaluation, Non-
Newtonian fluid, Transient energy release
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1 Introduction

Many fluids that are produced on the industrial scale are mul-
ti-component, formulated products, where the rheology of
these systems develops over the duration of the manufacturing
process. The rheology that is demonstrated in most cases is
typically non-Newtonian in nature [1], and its determination
in situ during industrial-scale mass production could provide
insights that would enable energy and time savings [2, 3]. Typi-
cal fluid behavior assessment techniques in the industry are
either the use of in-line viscometry, which can have slow
response times, or off-line viscometry and/or rheometry
approaches, which can be time consuming [4, 5]. Within the
fast-moving consumer goods (FMCG) industry, the measure-
ment of rheology is essential as a quality indicator for a product
[6, 7], as the consumer often links rheology to quality [8, 9]. A
few examples include the routine rheology assessment of hon-
ey, being a known driving factor of organoleptic perception,
which allows predictions on the honey quality to be made [10].
Furthermore, rheology measurements are a reliable tool to un-
cover adulteration of honey blended with other amorphous
sugars, because rheology is such an inherent fluid property and
adulteration leads to shifts of the expectable rheological profiles
compared to pure, unadulterated honey [11]. In the beverage
industries, rheology is measured for the assessment of emulsion
stability and cloudiness of juice-type products (oil-in-water
emulsions, where the oil is a combination of essential and vege-
table oils [12]), in addition to the assessment of the foam stabil-

ity of light and dark beers by off-line large-amplitude oscilla-
tory shear measurements [13]. Off-line rheometry has been
proposed as a tool to characterize lamellar-structured (colloi-
dal) liquids in regard to their rheology (flow curves and yield
stress) [14]. Processing conditions such as temperature, mixing
intensity, and time have been mapped dynamically using a
rotational rheometer, showing an approach to using a rheome-
ter as a means to replicate the processing conditions on the lab-
oratory scale.

Creating a product’s rheological profile to assess the quality
at the end of the manufacturing process is not the sole applica-
tion of rheological testing. Its use during batch manufacture
can provide unique insights for process understanding and
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optimization, which could reduce the number of failed batches
and minimize waste [15]. There is a lack of readily available
in-line rheometry technologies for application to fluids exhibit-
ing non-Newtonian rheological behavior and across a broad
range of flow rates and scales of operation. Material wastage
due to out-of-product specification rheology in manufacturing
industries is thought to be ~5 % [16]. Hence, there is increas-
ing interest to develop in-line rheometric devices that can
reduce these losses and lead to more uniform product quality.
Established methods of in-line viscosity determination include
commercially available rotational viscometers [17, 18] and the
use of differential pressure to derive the viscosity from the
Hagen-Poiseuille equation [19, 20]. Both of these approaches
give single viscosity values and are unable to capture the com-
plexity of fluids possessing non-Newtonian rheological behav-
ior. In recent decades, novel technologies with the potential to
provide greater rheological insights in-line for industrial appli-
cations include electrical resistivity tomography (ERT) [21, 22]
and ultrasound imaging velocimetry (UIV) [23, 24].

ERT itself is not a novel technology and was originally
designed for geophysics and hydrology applications in order to
explore the Earth’s crust by measuring electrical voltage and
current strength at the Earth’s surface [25–27]. Be that as it
may, in recent years ERT has been adopted for the measure-
ment of complex rheology [28, 29], including food products
(i.e., yoghurts [30]) and surfactant structured isotropic liquids
(i.e., shampoo [31]), and to monitor emulsification processes
in situ [32]. The system’s outputs are displayed by time-lapsed
images, allowing the derivation of, e.g., agitation times until
homogeneity or rheological fluid characteristics.

UIV (commonly used along with pressure drop measure-
ments [33]) is another prominent in-line rheometry technique
used to monitor the rheology of complex fluids [34, 35], and
has been validated on personal care products, namely shampoo
[36]. The outputs from such measurements are velocity profiles
over length, allowing the derivation of rheology. Ultrasonic
technologies are classified as non-destructive, and as they are
an emitter-receiver system, they are also often coined as an
active acoustic emission (AE) technology [37]. Ultrasonic
waves are pulsed in short bursts into the fluid, where the fluid
will propagate the ultrasonic wave. A key assumption for UIV
is the presence of heterogenicity, hence limiting the types of
fluids suitable for this technology. If there are solid particles or
bubbles present in the sound field, the sound wave will be
attenuated by these systems. Part of the sound energy is scat-
tered back to the ultrasonic transducer; this is dependent on
the size and emission characteristics of the particle/bubble.
However, there are multiple weaknesses in the technology.
Standard UIV is only capable of measuring the velocity parallel
to the ultrasound beam. Under the assumption of parallel flow,
this only works when the angle between the ultrasound beam
and the flow direction are known; direct proportionality be-
tween velocity component and velocity magnitude applies. In
practical terms, this makes it either necessary to pre-condition
the flow before passing by the transducer, or devices cannot be
installed at restrictions, openings, or curves. Theoretically, an
angle correction can be done; however, this is prone to error
[38, 39]. There are limits to the possible gas and/or solid level
within a fluid before the wave is fully scattered or adsorbed,

resulting in a loss of signal. Furthermore, UIV is restricted to a
narrow range of flow rates, where the minimum flow rate pos-
sible is related to the resolution of the pressure drop sensor
used, and the maximum flow rate is confined to a laminar flow
regime. However, these are often not viable flow conditions in
real industrial full-scale processes [40].

This study adds a new technology to the field of in-line rhe-
ometry; it is based on passive AE sensing and has been success-
fully subjected to patenting [41]. To the authors’ knowledge,
such a technology has yet to be used for the assessment of rheol-
ogy in-line for non-Newtonian fluids on the laboratory and
pilot scales. There has, however, been work carried out looking
at the use of a single passive AE sensor flanged onto the outer
wall of a pipe. Such studies focusing on AE in response to vis-
cosity changes have been carried out on multiphase fluid sys-
tems exclusively, such as particulate slurries [42] and fluidized
beds (solid-gas) [43]. Another application field for the above-
mentioned technology is the detection of obstructions in pipe
flow [44, 45], which may also be relevant for future applications
to fouling detection and/or cleaning validation.

The objective of this work is to monitor the rheological
changes of two formulated fluids exhibiting Power-law and
Herschel-Bulkley rheological properties. This novel passive
AE-based system comprises three major components. (1) The
mechanical component consists of a metal pipe length with an
inserted rod, serving as an ‘‘antenna’’ to receive and convey AE
as the fluid passes through the duct. (2) The electronic compo-
nent includes a single AE monitoring unit attached to a com-
puter, which applies supervised machine learning models to
classify different rheological states and processing conditions.
The AE sensor is flanged onto the outer pipe wall, perpendicu-
lar to the extending rod and resting on a plateau. (3) The out-
put user interface presents the rheological profile as a graphical
fingerprint, introduced as the proprietary RRF� factor. Results
were validated against traditional off-line rheometry, and fluids
have been processed on a static laboratory-scale and on a dy-
namic pilot-scale setup. The obtained results indicate that the
machine learning algorithms of the technology can identify, in
> 90 % of cases, the correct state of rheology and the process
step across both equipment scales. The quadratic support vec-
tor machine (QSVM) algorithm proved to correctly classify the
incoming AE data to this high level.

2 Materials and Methods

2.1 Materials

For the experiments on the laboratory scale, fluids were manu-
factured and kindly provided by Unilever R&D, Port Sunlight,
UK. Five surfactant structured fluids that demonstrate non-
Newtonian rheology were examined in this study. Three of the
fluids exhibit Power-law rheological behavior and the other
two fluids follow the Herschel-Bulkley model. Fluids for trials
conducted on the pilot scale were not pre-manufactured, but
manufactured in situ to dynamically map the process. Again,
five fluids were manufactured similarly to those tested during
the experiments on the laboratory scale and following the same
principal rheological models.
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2.2 Experimental Setup

Fig. 1 provides a schematic of the experimental setups on (a)
the laboratory and (b) the pilot scale. Both experimental rigs
consist of a recirculation loop with a tank, a pump, a flow-
meter, and a 120-mm stainless-steel length of pipe with an
internal diameter of 25.4 mm (1’’). Both experimental rigs are
comparable but differ in tank volume, achievable flow rates,
thermal insulation, and mixing systems.

2.2.1 Laboratory-Scale Rig

The experiments were conducted in a closed recirculating sys-
tem (Fig. 1a) fed by a 20-L conical tank powered by an APV
DW1 series positive displacement pump (SPX FLOW Inc.,
USA). The flow rate was monitored by an OPTIMASS 700C
Coriolis flowmeter (Krohne Ltd., UK). To detect the AE signals,
the sensor was strapped onto the outer wall of a 130-mm
DN25 (SCH 10) stainless-steel pipe segment on top of a circu-
lar pinhead that is connected to the tip of the geometry
(T-shaped pin) – the modified pipe segment (Rheality Ltd.,
UK). This enables the sensing element not to be in direct con-
tact with fluid, thus yielding advantages in both maintenance
and hygiene if translated into an industrial environment. For
each fluid, three fixed flow rates of 800, 1000, and 1200 L h–1

were investigated. Acoustic measurements (see Sect. 2.4) for
each fluid at all three flow rates were taken once the fluid had
reached steady state. Steady state was reached when there was
no flow rate fluctuation measured for 30 s. The recordings were
repeated in duplicate for each fluid at each investigated flow
rate.

2.2.2 Pilot-Scale Rig

The pilot-scale rig was fed by a 50-L jacketed vessel fitted with
an anchor scraper and a turbine impeller. This rig has the
option to make use of an inline high-shear mixer within the
recirculation loop. Acoustic measurements (see Sect. 2.4) were
taken at each stage of production of the investigated fluids
(Power-law and Herschel-Bulkley fluids), allowing the rheology
of the process to be mapped by means of transient energy
release measurements. Measurements were taken at the follow-
ing stages at a fixed flow rate of 250 kg h–1. Two different pro-
cesses were used to manufacture the two products possessing
disparate rheological properties. To produce the Power-law flu-
id, seven major process steps are involved, while for the Her-
schel-Bulkley-type fluid, five major steps are involved for their
manufacture.

The following steps describe the manufacture of the formu-
lated product possessing Power-law rheological behavior:
(1) water addition, (2) main surfactant addition, (3) post surfac-
tant minor I addition, (4) post surfactant minor II addition,
(5) rheological modifier I addition – low-viscosity end product,
(6) rheological modifier II addition – medium-viscosity end
product, and (7) rheological modifier III addition – high-vis-
cosity end product.

The following steps describe the manufacture of the formu-
lated product possessing Herschel-Bulkley rheological behav-
ior: (1) water addition, (2) addition of main ingredients, (3) ad-
dition of water, (4) addition of minor ingredients, and (5) high-
shear mixing.

2.3 Rheology Characterization

The rheological material characterization was done
with a Discovery HR-1 rheometer (TA� Instru-
ments, Inc., USA), a rotational rheometer that can
interchange geometries and Peltier element for tem-
perature control. The fluids were tested in triplicate
for the shear rates ranging from 0.1 to 1000 s–1 and
at a fixed temperature of 25 �C, using a vane-type
geometry for the Power-law fluid (rotor vaned SST
smart-swap with bob diameter 25 mm, bob length
42 mm, vane diameter 20.5 mm) and a 60-mm, 2�
cone-on-plate geometry (stainless steel) for the
Herschel-Bulkley-type fluids. The need to make use
of the vane-type geometry is explained by the pres-
ence of slip and fluid viscosity. The results from this
rheological characterization are presented in Tab. 1,
showing that the two types of tested fluids follow
either the Power-law or the Herschel-Bulkley rela-
tionship. Off-line rheological characterization was
performed to identify the difference of the apparent
rheological behavior. For simplicity, all fluids were
fitted to the Herschel-Bulkley or Power-law model.
Both are mathematically similar; however, the Her-
schel-Bulkley model considers an additional param-
eter: the yield stress. Power-law fluids follow the
shear rate-stress behavior, given in Eq. (1).
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Figure 1. Simplified experimental apparatus: (a) laboratory scale and (b) pilot
scale. Dashed lines indicate the optional equipment/process stream that was
used to determine the effects of the background noise.
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t ¼ K _gn�1 (1)

where t is the shear stress (Pa), k is the flow consistency index
(Pa sn), _g is the shear rate (s–1), and n is the flow behavior index
(–). The Power-law formulation is not process dependent and,
therefore, the final rheology should not be significantly affected
by changes in the process temperature [46]. Herschel-Bulkley
fluids follow the shear rate-stress behavior but incorporate a
yield stress, as given in Eq. (2).

t ¼ t0 þ k _gn (2)

where t0 is the yield stress (Pa), k is the consistency index
(Pa sn), and n is the flow index (–).

The measurements for the laboratory-scale experiments were
carried out with fresh samples at the beginning of the first cam-
paign of measurements, which were used as reference. For the
pilot-scale trials, the measurements were carried out using
samples collected during the trials. Tab. 1 details the rheological
models and associated parameters for the investigated fluids.

2.4 AE Detection System

Transient energy releases were recorded using a PicoScope�

5243B oscilloscope (Pico Technology Ltd., UK). The transient
recorder was attached to a Vallen AE sensing system (Vallen
Systeme GmbH, Germany), comprising a DCPL2 decoupling
unit, a 34-dB gain preamplifier, and a broadband sensor peak-
ing at 375 kHz. The sensor itself is protected by an IP40-rated
stainless-steel housing with a ceramic wear plate (sensitive
area) of 20.3 mm in diameter. The sensor itself does not touch
the fluid and rests on top of the pinhead of the modified pipe
segment (Rheality Ltd., UK). The entire system and data pro-
cessing structure is subject to an international patent applica-
tion and includes further descriptors and figures [41].

Data acquisition was based on the following parameter set in
the oscilloscope. Each sampling run comprises 100 recordings,
the so-called buffer; 100 buffers (consecutive waveform record-

ings) are the maximum memory yield possible based on the
hardware resolution, number of samples per buffer, and fre-
quency. Within each buffer a waveform was recorded every
1.264 ms. Tab. 2 summarizes the hardware settings of data
acquisition (time-domain data).

2.5 Post-Acquisition Data Processing and
Interpretation

All the data processing was performed in Matlab� (R2019B
Update 6, MathWorks Inc., USA). By means of a fast Fourier
transform, the time domain signal (time-voltage fluctuation) is
converted into its frequency domain (frequency-intensity plot),
following the expression by Cooley and Tukey [47] and being a
very common first step in data processing of AE [48, 49].

fm ¼
X2n�1

k¼0

xke
2pi

2n
�mk m ¼ 0; . . . ; 2n� 1 (3)

where fm is the discrete signal (Hz), n is the size of its domain
(–), and k represents an integer ranging from 0 to 2n – 1 (–),
and xk is the indexed input (–).

A major feature of the Rheality� system is also the use of
the simplified acoustic signal generated by the Rheality Rheo-

logical Factor (RRF�) proprietary
function [41], giving a unique
acoustic fingerprint of the fluid
rheology. The RRF� reduces the
amount of raw data points into a
sizeable format for fast computa-
tion. Each raw signal buffer con-
tains nearly 800 000 individual data
points in its time domain. Even
after converting the signals through
fast Fourier transform, the datasets
still contain around 750 000 data
points, while the RRF� condenses
these points further to 10 individu-
al factors that are sufficient to allow
the machine learning models to
solve classification problems re-
garding fluid and rheological state.

The RRF� acoustic fingerprints
from the laboratory-scale trials will
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Table 1. Summary of the rheological assessment using an off-line rheometer for Power-law and
Herschel-Bulkley fluids on both the laboratory and pilot scales.

Scale Formulation R2 [–] n [–] k [Pa sn] t0 [Pa] Rheological model

Lab scale Test fluid 1Lab scale 0.99 0.07 34.6 1.56 Herschel-Bulkley

Lab scale Test fluid 2Lab scale 0.95 0.03 28.5 1.61 Herschel-Bulkley

Pilot scale Test fluid 1Pilot scale 0.98 0.37 21.2 1.32 Herschel-Bulkley

Pilot scale Test fluid 2Pilot scale 0.92 0.16 20.3 1.33 Herschel-Bulkley

Lab scale Low-viscosity fluid 0.98 0.03 1.01 – Power-law

Lab scale Medium-viscosity fluid 0.99 0.82 1.73 – Power-law

Lab scale High-viscosity fluid 0.99 0.87 7.12 – Power-law

Pilot scale Low-viscosity fluid 0.97 0.01 0.89 – Power-law

Pilot scale Medium-viscosity fluid 0.99 0.43 0.92 – Power-law

Pilot scale High-viscosity fluid 0.99 4.08 0.65 – Power-law

Table 2. Data acquisition parameter settings for the oscillo-
scope used in experimental testing (PicoScope� 5243B).

Parameter Setting Unit

Sample interval 1.264 ms

Sample rate 791.1 kHz

Number of samples 799 139 –

Hardware resolution 16 bit

Number of recordings per product/process stage 100 –
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be used to train an ensemble of 24 machine learning models,
while a pilot-scale trial will be used to mimic the process condi-
tions of the laboratory-scale trials and to test how the trained
model will cope with data acquired from a different set of
experiments (both campaign datasets coming from laboratory-
scale experiments). All algorithms are designed to solve classifi-
cation problems and were tested to identify the best learning
algorithm giving the highest prediction accuracy. A 10-fold
cross-validation was applied to protect the datasets from over-
fitting, an approach common in applied machine learning
computer sciences [50, 51]. All learning algorithms fall into one
of the following classification learner categories: (1) decision
trees (fine, medium, coarse), (2) discriminant analysis (linear,
quadratic), (3) naı̈ve Bayes (Gaussian, kernel), (4) support vec-
tor machines (SVM) (linear, quadratic, cubic, Gaussian (fine,
medium, coarse)), (5) nearest-neighbor (nn) analysis (fine,
medium, coarse, cosine, cubic, weighted), and (6) ensemble
learners (trees (boosted, bagged, RUS boosted), subspace (dis-
criminant, k-nn)). The quadratic SVM (QSVM) algorithm was
found to deliver the highest prediction accuracies, meaning a
correct classification between the real state of the fluid versus
the predicted state based on the transformed AE signal input.

For the study of in-pipe obstruction presence predictions,
QSVM has shown to be reliable [44]; hence, the algorithm itself
has already proven a good degree of robustness when applied
to fluid flow applications. Some of the advantages of QSVM
include that it is a global optimization method; so, there are no
local minima. It also avoids overfitting when moving into high-
er-dimensional spaces and makes good use of the kernel (sepa-
ration of general learning principles and domain knowledge).
As most problem-solving tasks are nonlinear, this algorithm is
much more suited to handle complex datasets, unlike linear
learning models. However, as the application of such a sensor
to complex fluids had not been tested before, all 24 learning
algorithms were tested. Using QSVM also minimizes error
within measurements errors or the overlap of classes, given that
QSVM include slack variables that have been designed to iden-
tify outlier values as such and do not use them as a basis for
classification (unlike non-SVM models).

The training for the QSVM model of the laboratory-scale
experiments took 3.2537 s with a one-versus-all method. This
method transforms a multi-class problem into a binary prob-
lem, meaning that every possible pair of classes is respected.
The one-versus-all method is less prone to the creation of
imbalanced prediction models [52] and, hence, has been
deemed as the superior method for the algorithm training. The
prediction speed of the trained systems is 3300 observations
per second and the confusion matrix, a tabular summary of
predicted classes versus true classes, came back clean. This
makes the created model comparably fast compared to less
sophisticated algorithms such as SVM [53], meaning that the
prediction speed is reasonable if this algorithm were deployed
for an industrial application.

After the training stage, the created machine learning model
was exported into the Matlab� workspace, where the model
was tested on a second full set of processed AE in RRF� format
from a fully independent test campaign (second campaign),
but on the same settings and the same fluids as per the first test
campaign (training data). This will show how the model copes

with previously unseen information and will validate the mod-
el’s capabilities. For the validation of the single measurement
campaign conducted on the pilot scale, a Pareto split of the
dataset was applied: 80 % of data was used to train the algo-
rithms, 20 % to validate the algorithm [54].

2.6 Data Collection and Curation

2.6.1 Rheological Characterization

Rheometer fluid characterization was performed in triplicate.
The arithmetic mean was applied to determine the parameters
of the Herschel-Bulkley and Power-law models.

2.6.2 Test Campaign

The data from the laboratory-scale testing was recorded in du-
plicate. The supplied formulations were divided into different
aliquots to ensure that each day of experimentation used only
virgin sample material. This step is necessary to ensure that the
sensor system captured data on a consistent product and not
on pre-sheared formulations from the previous trials. Pilot-
scale testing was not repeated as the sensor system was primar-
ily applied here for validation purposes to cope with scale-up.
Furthermore, the batch quantities of the pilot scale made repli-
cates very time intense as well as cost prohibitive.

2.6.3 Machine Learning

For the much larger datasets, created from the experiments on
the laboratory-scale fluid circulation loop, the data was split in-
to two groups (test campaigns 1 and 2). Campaign 1 represents
a full dataset that was used to train machine learning models,
while campaign 2 represents an independent dataset of new da-
ta to test the module; i.e., this is the part of the dataset that has
not been involved in the weight creation and refinement of the
machine learning algorithms. Weights are numerical factors
that are used by machine learning algorithms to classify differ-
ent rheology groups and fluid states. As for the pilot scale, the
data was split according to the Pareto principle [54]. At ran-
dom, 80 % of the data was used for the training phase of the
algorithms while the remaining 20 % were used to test the cre-
ated models on previously unseen data.

3 Results and Discussion

The results and discussion are split into two parts, where the
first part presents the testing conducted on the laboratory-scale
rig, examining if the passive AE sensor was capable of working
well with multi-component formulated fluids demonstrating
complex non-Newtonian rheological behavior (see Tab. 1).
These laboratory-scale experiments described the initial testing
of the pre-manufactured formulations, delivering a training
dataset for the creation of machine learning models and the
selection of the best-performing classification algorithm.
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Furthermore, the laboratory setup was comparable to the one
used on the pilot scale (see Fig. 1), but runs with different flow
rates and temperatures were explored.

The second part details the findings on the validation of the
passive AE technology applied on a pilot-scale setup. The aim
of the validation experiments was to demonstrate the capability
of the passive AE device and its potential to be deployed into
an industrial setting. The processed AE were converted into the
RRF� format and were fed into the created machine learning
model from the laboratory-scale experiments, to test the tech-
nology’s capability and the algorithm’s robustness. A key differ-
ence between the laboratory-scale and pilot-scale experiments
is that the pilot-scale process was dynamic and the technology
tracked the product manufacture.

3.1 Laboratory-Scale Trials

Initially, three different flow rates of 800, 1000, and 1200 L h–1

were tested for each of the formulations, and the RRF�-pro-
cessed signals for the Power-law and Herschel-Bulkley fluids
are shown in Fig. 2. The proprietary RRF� signature is divided
into ten different parameters (P1–10) and the results are dis-
played on a normalized scale that ranges from 0 to 1. Along the
abscissa, the running numbers of time steps are listed, repre-
senting the different sets of buffers (recordings). One hundred
of these time steps on the abscissa represent the three flow rates
under investigation, and the effects of the flow rate on the pro-
cessed signal are presented in Fig. 2.

Low degrees of variation were observed for the testing con-
ducted at flow rates of 800 and 1000 L h–1, whereas greater
fluctuation was exhibited for a flow rate of 1200 L h–1, across
both Power-law (17, number of recordings out of 300) and
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Figure 2. RRF� results of each buffer across three different flow rates for (a) the Power-law and (b) the
Herschel-Bulkley fluids. Recordings 1–100 represent 800 L h–1, recordings 101–200 represent 1000 L h–1, and
recordings 201–300 represent 1200 L h–1.
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Herschel-Bulkley fluids (35, num-
ber of recordings out of 300). This
behavior was thought to be associ-
ated with the occurrence of pump
cavitation in the system at higher
flow rates, which was exacerbated
by the high viscosities of the inves-
tigated fluids, resulting in pumping
inconsistencies causing pressure
fluctuations and affecting the flow
rate. Such AE bursts driven by
cavitation in pipe flow have also
been reported in the literature [55].
Moreover, greater overall variabili-
ty was observed for the Power-law
fluid (Fig. 2a) in comparison to the
Herschel-Bulkley fluid (Fig. 2b),
and this is thought to be associated
with formulation differences be-
tween the two investigated fluids.

Since these inconsistencies of
pumping or cavitation will cause
fluctuations in pressure, the pres-
sure-sensitive piezoelectric element
will gather varying energy signatures
(AE bursts). However, when consid-
ering a pilot plant processing envi-
ronment, measurements would be
taken consistently, and even if such
fluctuations appeared, the effect on
the overall reading would be minor,
when averaged over the time of long
production runs (signal smoothing
[56]). Additionally, certain machine
learning models can be used that
can cope with unexpected data point
outliers (slack) and would disregard
these signals. It is therefore reason-
able to deduce that considering these outliers would allow for the
identification of pump overdrives at early stages and the identifi-
cation of a most suitable pump type for certain types of fluids, or
the optimal pump operation range for newly developed formula-
tions.

When considering the case of the high-viscosity Power-law
formulation (see Tab. 1), the flow appears stable across all tran-
sient recordings (Fig. 3). Fig. 3a shows the machine learning
output expressed by a confusion matrix. A confusion matrix is
a tabular expression of machine learning outputs that summa-
rizes the number of predicted results (the algorithm’s guess)
versus the true class (the true condition). It also highlights the
number of ‘‘confusions’’ where the algorithm has predicted a
different class versus the true condition. Fig. 3b shows the cor-
responding expression in RRF� format (the output of a propri-
etary simplification algorithm of processed AE as a 10-param-
eter expression, as in contrast to a complex Fourier transform
of multiple 100 000 data points). QSVM (2.9122 s training
time) gives robust prediction accuracy responses (Fig. 3a) in
the region of 98 % (average of all 24 learning algorithms:
77.9 %), at a prediction speed of 2600 observations per second.

In addition, Figs. 2 and 3b show that increases in the flow
rate lead to stronger transient energy releases and, hence, more
intense RRF� signatures. This effect of the flow rate on the AE
signal intensity has been reported for Newtonian fluids
[44, 45]; however, it can now be confirmed that the same trend
appears for fluids demonstrating complex non-Newtonian
rheology. These step changes appear smoother for the Power-
law formulation when compared to the Herschel-Bulkley fluid,
and this is thought to be associated with differences in the for-
mulations between the two investigated fluids. Additionally,
analyzing the parameter consistency in Fig. 2, the RRF�
parameter P1 does not change significantly across all investi-
gated flow rates, suggesting that it is an underlying parameter,
while parameters P2 and P3 vary the most with increasing flow
rate. Since each of the color bands represents a certain pro-
cessed part of the frequency spectrum, flow rate changes seem
to be expressed by these parts of the frequency domain whereas
the remaining parameters (P4–10) are associated with fluid
rheology.

For the laboratory-scale experiments, two datasets were cre-
ated. During the first test campaign, a full dataset was recorded
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Figure 3. (a) Confusion matrix of the trained algorithm (class 1 = 800 L h–1, class 2 = 1000 L h–1,
class 3 = 1200 L h–1). (b) RRF� results of each buffer across three different flow rates for the high-
viscosity Power-law fluid. Recordings 1–100 represent 800 L h–1, recordings 101–200 represent
1000 L h–1, and recordings 201–300 represent 1200 L h–1.
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on which machine learning models were trained.
Once trained, the model was tested against inde-
pendent data from a second test campaign (test da-
taset). Fig. 4 shows the RRF� signatures as well the
confusion matrices at a fixed flow rate of 800 L h–1.
The results have 300 columns along the x-axis,
where columns 1–100 represent the low-viscosity
Power-law fluid, columns 101–200 the medium-
viscosity Power-law fluid, and columns 201–300
the high-viscosity Power-law fluid (see Tab. 1).

Similar to Fig. 2, some outliers can be seen across
both test campaigns (Fig. 4b and 4d). The chosen
algorithm was QSVM (94.7 % prediction accuracy
versus 67.8 % average of all other 24 investigated
models). When testing the trained model on the
data collected during the test dataset, the system
was able to classify correctly 100 % of the data.
Therefore, the data across the campaign was com-
parable, and both time and repeated shear do not
seem to have an adverse impact on the rheology of
the investigated Power-law fluid.

Fig. 5 shows the same plots as in Fig. 4 for the
Herschel-Bulkley fluid, where distinct differences
were observed in comparison to the Power-law flu-
id.

The initial algorithm is capable of distinguishing
all the different cases of the Herschel-Bulkley fluid
(see Tab. 1); however, when exposing the learning
algorithms to the test dataset, which was collected
after additional processing of the same sample, the
ability of the model to achieve correct classifica-
tions drops to 74.7 % (the arithmetic mean value of
correct classifications across all three classes as per
Fig. 5b). This reduction in the model accuracy was
thought to be associated with overprocessing of the
Herschel-Bulkley fluid, where the microstructure of
the product is altered as a consequence. Further-
more, more pump inconsistencies were observed
and were comparatively negligible; yet, the rheolog-
ical RRF� differs immensely between both cam-
paigns (Fig. 5b and 5d).

3.2 Pilot-Scale Trials

Prior to the formulation experiments on the pilot
scale, the efficiency of filtering out environmental
noise was investigated. This is a necessary step as
there are known factors that can influence the fre-
quency domain. These factors include valves [57],
obstructions [45], leakages [58], and machinery
wear and faults [59]. A trial with glycerol (30 �C) at
a fixed flow rate of 250 L h–1 was conducted. Initial-
ly, glycerol was pumped through the recirculation
loop without the inline high-shear mixer in opera-
tion, and for a second test it was switched on to
induce additional noise, both in terms of increased
audible background noise and potential vibrations
to the pilot-scale rig itself. No noticeable differ-
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Figure 4. (a) RRF� signatures for the training dataset, (b) its resulting training con-
fusion matrix, (c) the RRF� signatures of the test dataset, and (d) the confusion
matrix results of the test dataset on the trained algorithm based on training data
originating from the training dataset. Recordings 1–100 represent the low-viscosi-
ty Power-law fluid, recordings 101–200 represent the medium-viscosity Power-
law fluid, and recordings 201–300 represent the high-viscosity Power-law fluid.
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ences were observed between the two datasets,
indicating that the signal selection and filtering
effectively captures only the interaction between
the passive AE sensor and the fluid, and no other
events. This can be seen in Fig. 6 with transient
recordings displayed in their frequency domain,
after filtering.
Furthermore, Tab. 3 compares the key statistical
indicators of the frequency for the scenarios where
the in-line high-shear mixer is either off (Fig. 6a) or
on (Fig. 6b). These results were created by using
the Matlab� (R2019B Update 6, MathWorks Inc.,
USA) statistical analysis function and highlighted
that, although background noise was audible to
individuals conducting the experimental testing
due to the in-line high-shear mixer being in opera-
tion, it did not influence the measurements for the
passive AE measurement device. This behavior was
attributed to the low frequency of the generated
sound, outside the range of interest for the passive
AE sensor measurements.

During pilot-scale testing, the passive AE sensor
system achieved better classification when com-
pared to the laboratory scale (see Figs. 4 and 5).
The system was able to correctly distinguish 100 %
of all manufacture stages (training and test stages),
highlighting that the RRF� is an effective tool for
in-process implementation. The high accuracy of
the achieved algorithms on the pilot scale is
thought to be associated with the higher degree of
process control across both temperature and flow
rate measurements, in contrast to the laboratory
environment. Furthermore, laboratory-scale testing
utilized pre-manufactured fluids, where the rheol-
ogy may have changed due to transport, storage,
and re-shearing. This is also supported by compar-
ing the differences in rheology (Tab. 2). However,
the higher level of inaccuracy is not driven by the
device’s failure to measure, but the machine learn-
ing model attached to the passive AE sensor failing
to deliver a better classification. A solution to this
might be the use of improved models [60], more
learning iterations [61], or to look at fuzzy net-
works [62].

For example, when considering the low-, medi-
um-, and high-viscosity Power-law fluids, the
RRF� readings are very consistent and no signifi-
cant outliers are observed (1 %) (Fig. 7).

For the Herschel-Bulkley product, two products
were manufactured with the same formulation,
where the two-endpoint rheology results were
achieved through process alterations (a combina-
tion of varying both the temperature and the mix-
ing conditions). Fig. 8 shows both processes with
their mean RRF� signatures for each process step.

The comparisons between the two batches
show clear differences in the RRF� signatures
throughout the processes and a significantly differ-
ent final product acoustic fingerprint (Fig. 8;
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Figure 5. (a) RRF� signatures for the training dataset, (b) its resulting training
confusion matrix, (c) the RRF� signatures for the test dataset, and (d) the confu-
sion matrix results of the test dataset on the trained algorithm based on training
data originating from the training dataset. Time steps 1–100 represent 800 L h–1,
101–200 represent 1000 L h–1, and 201–300 represent 1200 L h–1.
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process stage 5). This is also supported by the two products
having different rheological profiles as per results from the off-
line rheological measurements (Tab. 1). Furthermore, Fig. 8
shows the potential to trace process stages that could be im-
proved. For instance, looking at the different readings for
stage 2 (Fig. 8a; stages 2–9), the RRF� signatures have reached
a steady state around position 7 (top x-axis), providing the pos-
sibility to optimize that specific stage of the manufacturing
process.

QSVM appears to perform very well when tested on ran-
domly selected data (20 %, Pareto split) of the total data pool
but, as mentioned in an industrial environment, the prediction
accuracies across all learning algorithms are enhanced (Fig. 9).
Fig. 9 shows gross values of overall prediction accuracies based
on the output of each machine learning model. The higher pre-
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Figure 6. Frequency domains (fast Fourier transformed signals) of bandpass-filtered signals with (a) the in-line
high-shear mixer switched off and (b) the in-line high-shear mixer switched on.

Table 3. Key statistical parameters of the frequency domain sig-
nals of Fig. 6.

(a) (b)

Minimum 0 0

Maximum 2.1235e-05 2.1243e-05

Mean (arithmetic) 9.7265e-07 9.7914e-07

Median 8.5341e-07 8.6673e-07

Standard deviation 8.1515e-07 8.1505e-07
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diction accuracy yields when con-
ducting tests on the pilot scale are
most likely due to the better pro-
cess control and steadier process
conditions when compared to the
laboratory-scale setup.

Regularity in data is known to
drive towards higher machine learn-
ing prediction accuracy [63, 64]. A
preference for using QSVM remains
in industrial applications, since this
particular type of machine learning
algorithm can cope better with out-
lier readings (slack) and makes use
of a kernel function. It is less compu-
tationally costly, meaning that it re-
quires less memory compared to de-
cision trees, and it is one of the most
popular learning algorithms in appli-
cations. This is also due to the fact
that SVM are capable of solving both
classification and regression prob-
lems [65].

4 Conclusions

Passive AE were detected by using a novel technol-
ogy with the aims of monitoring the manufacture
and rheological changes of complex fluids live and
in situ by using a simplified output, which is then
transferred to supervised machine learning algo-
rithms. Surfactant structured fluids demonstrating
Herschel-Bulkley and Power-law relationships were
investigated for this study on the laboratory and
pilot scales, using the passive AE, and offline rhe-
ometry was conducted to validate the obtained rhe-
ological properties. On the pilot scale, the system
was additionally tested to highlight that it was not
impacted by environmental noise. Overall, QSVM
delivered the best results, matching correctly
> 90 % of scenarios and making very fast learning
cycles and tests possible, unlike using the full infor-
mation content of the time domain signals com-
posed of 799 139 individual points. Nonetheless,
the passive AE measurement system performs well
in both laboratory- and pilot-scale environments
and leads a step towards the reduction of the neces-
sity for offline rheological testing for quality con-
trol testing in production environments, permitting
batch cycle time reduction. Furthermore, the in-
sights provided by this technology could enable
better process understanding in situ, supporting
waste reduction and optimization of energy con-
sumption.
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Figure 7. RRF� signatures for pilot-scale data for the Power-law fluid. Recordings 1–100 repre-
sent the low-viscosity fluid, stages 101–200 represent the medium-viscosity fluid, and stages
201–300 represent the high-viscosity fluid (see Tab. 1).

Figure 8. Averaged (top line of the x-axis) RRF signatures for the manufacture of
(a) Test Fluid 1 and (b) Test Fluid 2 (Tab. 1). Bottom line of the x-axis mapped
against process descriptors in Sect. 2.2.2.
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lesteros, J. F. Ortega, M. A. Moreno, Remote Sens. 2020,
12 (11), 1735. DOI: https://doi.org/10.3390/rs12111735

[54] A. Clark, ISACA J. 2018, 1, 1–6.
[55] S. Husin, A. Addali, D. Mba, Flow Meas. Instrum. 2013, 33,

251–256. DOI: https://doi.org/10.1016/
j.flowmeasinst.2013.07.011

[56] S. Rippengill, K. Worden, K. M. Holford, R. Pullin, Strain
2003, 39 (1), 31–41. DOI: https://doi.org/10.1046/
j.1475-1305.2003.00041.x

[57] X. Qian, in Int. Compress. Eng. Conf., Purdue University,
West Lafayette 1986.
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